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Abstract

In this study, we present a shape completion approach to skull reconstruc­

tion. Our final goal is to reconstruct the complete mesh of a skull starting

from its defective point cloud. Our approach is based on an existing deep

neural network, opportunely modified, trained to reconstruct a complete 3D

point cloud from an incomplete one. The complete point clouds are then pro­

cessed through a multi­step pipeline in order to reconstruct the original skull

surface. Moreover, we analyze and refine the Sant’Orsola skull dataset, de­

signing functional pipelines for its processing. On the test set, the proposed

approach is able to complete missing areas effectively, reaching high accuracy

in terms of the predicted point locations and a good qualitative approximation

of the complete skull.



1 Introduction

Cranioplasty is the surgical process where a skull defect, caused by a brain

tumor surgery or by trauma, is repaired using a cranial implant, which must

fit precisely against the borders of the skull defect as an alternative to the

removed cranial bone. The creation of a cranial implant is a difficult task. It

entails three steps: (1) acquiring 3D imaging data from CT orMRI of the skull

with the defect, (2) translating the 3D imaging data into a 3Dmesh model, and

(3) designing an implant as a 3D mesh model for 3D printing. The last step is

currently conducted by using costly commercial software and highly­trained

professional users [54]. Fully automated, low­cost cranial completion could

provide significant benefits and improvements to the current cranioplasty clin­

ical workflow [32]. Previous research has resulted in open­source CAD tools

for cranial implant design [14], however these methods are time­consuming

and require human interaction. These methods usually make use of the geo­

metric information contained in the shape of the skull. For example, one of the

most common techniques is to find the skull’s symmetry plane and mirror the

defective region [13]. However, mirroring is not the best approach possible,

considering that human heads are not perfectly symmetric.

Therefore, a fast and automatic design of cranial implants is highly desired.

In this thesis we tackle the challenge of automated cranial reconstruction in a

data­driven fashion, instead of relying explicitly on geometric shape priors of

human skulls, to provide a meaningful starting point to help the maxillofacial

surgeons in the design of cranial implants. Our goal is not to provide the final,

perfect to millimetre implant but to develop a good qualitative approximation

of the complete skull that will be used as a base to facilitate the cranioplasty

clinical workflow. An effective estimate of the original, unaffected skull will
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help the doctors to reduce the time and expenses needed to design the final

implant. The cranial reconstruction task may be expressed as a volumetric

shape learning problem, in which the shape of the implant is learned directly

or indirectly from the shape of a damaged skull. On the one hand, the shape of

the implant can be inferred directly from a defective skull. On the other hand,

a complete skull can be generated by learning to fill the defective region on a

defective skull. In this case, the implant is obtained indirectly by subtracting

the completed and defective skulls. In this sense, cranial implant design can

be formulated as a shape completion problem. For direct implant generation,

the ground truth is the implant, which is the region removed from a complete

skull. For skull shape completion, the ground truth is the original complete

skull. The input of either formulation is the defective skull. Since our goal is

to provide an effective qualitative approximation of the complete skull, in this

study, we primarily elaborate on the second formulation, i.e., given a defective

skull shape, we predict the shape of the complete skull.

Unlike existing skull completion methods, we directly operate on raw point

clouds without any structural assumption (e.g. symmetry) or annotation (e.g.

semantic class) about the underlying shape. Since point clouds or meshes

are not in a regular format, most existing techniques voxelized the 3D data

into occupancy grids or distance fields where convolutional networks can be

applied. However, the cubically growingmemory cost of 3D voxel grids limits

the output resolution of these methods. Further, detailed geometry is often lost

as an artifact of discretization that can obscure the natural invariances of the

data. For this reason, we used point clouds as input representation for 3D

geometry. Point clouds are unified and simple structures; this prevents the

high memory cost and loss of geometric information caused by voxelization,

avoid the combinatorial irregularities and complexities of meshes and allows

our network to generate more fine­grained completions.



2 Related Work

As discussed in Chapter 1, cranial implant design can be formulated as a

shape completion problem. 3D shape completion from partial point clouds

is a fundamental problem in computer vision and computer graphics. This

problem occurs when only a single view of an individual object is provided

or large parts of the object are occluded as, e.g., in autonomous driving ap­

plications. Traditional geometry­based approaches, such as Poisson surface

reconstruction [24] can only handle minor gaps in the collected 3D data. Un­

fortunately, these techniques frequently fail to reconstruct significant missing

areas. Learning­based techniques are more suited for this purpose because of

their capacity to learn powerful 3D shape priors from huge online 3D model

datasets for repairing such missing regions. This section reviews the general

shape completion algorithms used for various data modalities (points, meshes

and voxel grids).

• Voxel Grid Completion. Traditional shape completion techniques [21,

11] work with volumetric data that has been voxelized from a point rep­

resentation typically using a signed distance function. Voxel grid ap­

proaches have been widely used in recent experiments using convolu­

tional neural networks (CNN) on volumetric images. Both works use

an encoder­decoder network, which is limited to accepting voxel grids

as input. Meshes can be retrieved from the final completed grids.

• Point/Mesh Completion. Recent advances in deep learning enable a

CNN to learn from unstructured point clouds efficiently. An encoder­

decoder can be used to perform shape completion directly on the raw

point data [67, 74]. The widespread benchmark in litterature is based

on ShapeNet [8], which is often used as a benchmark dataset for both
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the voxel grid and point­based shape completion studies. To complete

dense point clouds, Liu et al. [37] propose a two­step approach. They

used an encoder­decoder network; the first step predicts a completed

but coarse point cloud. In the second phase, a residual network gener­

ates a dense (high­fidelity) version of the completed point cloud, given

as input a combination of the coarse output from the previous step and

the partial point cloud. Early studies from Liepa [35] and Kraevoy et

al. [27] perform shape completion directly on triangular meshes us­

ing classical geometry processing and mesh editing techniques. Shape

completion on triangular meshes is significantly more complex than on

binary voxel grids because the former data structure can carry far more

information (e.g., texture and colour) about an object than the latter.

• Medical Images. Shape completion has also been applied to medical

images. Prutsch et al. [53] used a GAN to complete 2D aortic dissec­

tion (AD) images (CT) in order to create healthy aorta images before

dissection. Armanious et al. [2] developed a GAN network to complete

arbitrary formed regions on 2D brain images. Gapon et al. [16] used

a patch similarity matching approach to eliminate metal artifacts from

2D CT and MRI images. A multi­layer perceptron (MLP) was trained

to search an image for the best matching patches to the missing region.

Manjón et al. [39] employed a 3D U­Net to eliminate lesions on brain

MRI images. While other studies all require an explicit definition of

the region of interest (usually done manually) before completion, the

trained network can complete the missing region without manual delin­

eation of the lesions.

It should be emphasized that becausemedical pictures are often grayscale,

many medical shape completion applications necessitate the restoration

of the shape and the voxel/pixel intensities of the missing region.
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Existing 3D shape completion methods can then be divided into three main

categories: geometry­based, alignment­based, and learning­based.

• Geometry­based techniques complete shapes without the use of ex­

ternal data by exploiting geometric hints from partial input. Surface

reconstruction algorithms [5, 12, 76, 47, 63, 56], for example, gener­

ate smooth interpolations to fill holes in locally partial scans. Instead,

symmetry­driven algorithms [42, 43, 51, 52, 61, 65] discover symme­

try axes and regular recurring structures in the partial input to replicate

pieces from observed regions to unobserved regions. These approaches

assume that the geometry of themissing sections can be inferred directly

from the seen regions. Unfortunately, this assumption does not hold on

to most incomplete data from the real world.

• Alignment­based approaches complete shapes using template models

from an extensive shape database to which the partial input is matched.

Some of these methods [23, 25, 60, 64] retrieve object parts and then

assemble them to obtain the complete shape, while others [20, 33, 46,

50, 58] retrieve the complete shape directly. Other studies [6, 15, 19,

30, 31, 55] alter the returned model to create shapes that are more con­

sistent with the input. In some cases [9, 34, 45, 57, 73], geometric prim­

itives such as planes and quadrics are used instead of a shape database.

These approaches require time­consuming optimization during infer­

ence, making them unsuitable for online use. They are also susceptible

to background noise.

• Learning­based techniques complete shapes using a parameterizedmodel

(typically a deep neural network) that directly maps partial input to a

complete shape, allowing faster inference and generalization. This is

where our method fits in. While most existing learning­based meth­

ods [21, 62, 71, 11, 59, 48] use voxels to represent shapes, which are
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helpful for convolutional neural networks, our method employs point

clouds, which preserve all geometric information about the shapes while

being memory efficient.

Existing networks used in point cloud completion and reconstruction can be

roughly categorized intoMLP­based, graph­based, and convolution­based net­

works according to the network architecture employed.

• MLP­based Networks.Because of its simplicity and high representa­

tion ability, MLP is used in a number of works for point cloud process­

ing [1, 36] and reconstruction [74, 38]. These approaches use multiple

Multi­layer Perceptrons to model each point separately and then use a

symmetric function to aggregate a global feature (e.g., Max Pooling).

However, the geometric connections between 3D points are not fully

taken into account.

• Graph­based Networks consider each point in a point cloud as a ver­

tex of a graph.These kinds of networks generate directed graph’s edges

based on the neighbours of each point. Convolution is usually operated

on spatial neighbours, and pooling is used to produce a new coarse graph

by aggregating information from each point’s neighbours. Graph­based

networks consider local geometric structures in contrast to MLP­based

techniques.

• 3D Convolution­based Networks. 3D CNNs based on the volumet­

ric representation of 3D point clouds were commonly used in early

works [11, 21, 30]. Converting point clouds to 3D volumes creates a

quantization effect which discards some data details [66] and is ineffec­

tive for expressing fine­grained information. Several works [40, 22, 29,

28] develop CNNs that operate on discrete 3D grids transformed from

point clouds.



3 Dataset

3.1 Analysis

The maxillofacial unit of the Sant’Orsola polyclinic in Bologna made avail­

able for this study a dataset consisting of 415meshes obtained from anonymized

head CT scans in DICOM format. The meshes in the dataset were first moved

to their Natural Head Position (NHP), a standardized and reproducible posi­

tion of the head in an upright posture and then aligned, w.r.t a reference skull,

according to 3 matching points, two on the frontozygomatic sutures and one

on the basion. The initial alignment is finally refined using the Iterative closest

point (ICP) algorithm [75].

For each skull in the dataset, a series of metadata have been manually anno­

tated Tab 3.1. They describe the skulls in terms of their quality and extension.

Most metadata can assume just two values, 0 or 1, to indicate the absence or

presence of the corresponding skull’s portion. The metadata for which this

does not hold are Qual Score, Mirror, and the ones concerning the teeth, as

shown in Figure 3.1.
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Metadata Description Possible Values
Alv L Mandible alveolar left part 0, 1

Alv R Mandible alveolar right part 0, 1

Ang L Left mandibular angle 0, 1

Ang R Right mandibular angle 0, 1

Corp L Left mandibular corpus 0, 1

Corp R Right mandibular corpus 0, 1

Fron L Frontal left bone 0, 1

Fron R Frontal right bone 0, 1

Glen/Cond L Left Mandibular glenoid/condyles 0, 1

Glen/Cond R Right Mandibular glenoid/condyles 0, 1

Max Sin L Maxillary left sinus 0, 1

Max Sin R Maxillary right sinus 0, 1

Ment Ment 0, 1

Mirror Mirroring applicability 0, 1, 2

Occ Occipital bone 0, 1

Orb L Left orbit 0, 1

Orb R Right orbit 0, 1

Par L Parietal left bone 0, 1

Par R Parietal right bone 0, 1

Qual Score Comprehensive skull’s quality score 1, 2, 3, 4, 5

Ramus L Left mandibular ramus 0, 1

Ramus R Right mandibular ramus 0, 1

Teeth Up L Upper left dental arch 0, 1, 2

Teeth Up R Upper right dental arch 0, 1, 2

Teeth Lw L Lower left dental arch 0, 1, 2

Teeth Lw R Lower right dental arch 0, 1, 2

Temp L Temporal left bone 0, 1

Temp R Temporal right bone 0, 1

Zyg L Zygomatic left bone 0, 1

Zyg R Zygomatic right bone 0, 1

Table 3.1: Dataset metadata and description.
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Figure 3.1: Examples per different Qual Score, Mirror and Teeth values.

The Qual Score metadata represents the comprehensive quality score of the

skull. A domain expert gave this score based on his/her experience. It can

assume a value between 1 and 5 (included); the higher the value, the better the

overall quality.

The Mirror metadata refers to the possibility to apply a mirror operation

to augment the available data. It can assume a value between 0 and 2 (in­

cluded):

• 0 = midline defects, mirroring not applicable

• 1 = mirror applicable

• 2 = mirroring can be used to correct single­sided defects

The Teeth Up R, Teeth Up L, Teeth LwR, Teeth Lw Lmetadata can assume

3 different values:

• 0 = edentulous or not present in the CT cut
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• 1 = partial edentulous or partially cut teeth in CT

• 2 = reasonably complete dental arch (continues up to at least the first

molar)

Considering that the dataset was acquired from many different, mostly seg­

mental, data sources (e.g. CT scan of eumorphic patients, CT of composite or

conservatively reduced fractures, CT for the evaluation of a head injury), we

discarded the skulls that present a severe deformity or damage (e.g. meshes

annotated with qual score 1 or mirror value other than 1). The resulting dataset

contains 386 skulls in total.

By analyzing the dataset, both the original one and its cleaned version, we have

found that most of the samples have between 250,000 and 400,000 vertices

(points), most of them have quality score 3 and mirror value 1. Therefore,

they are not fully segmented skulls, but there is the possibility of applying a

mirror operation to augment the available data. As expected, there is a clear

correlation between the quality score and the number of vertices, as shown in

Figure 3.2.
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Figure 3.2: Dataset Analysis (a) Histogram of the number of vertices in the
Sant’Orsola dataset, (b) Number of samples per different Qual Score value,
(c) Number of samples per different Mirror value, (d) Correlation between the
number of vertices and the quality score.

3.2 Processing

As anticipated in the previous chapters, we operate directly on raw point clouds

without structural assumptions (e.g. symmetry) or annotation (e.g. semantic

class) about the underlying form. Therefore, we have to convert the meshes

in the dataset into point clouds. In 3D computer graphics and solid modelling,

a polygon mesh is a geometric data structure that allows the representation

of surface subdivisions by a set of polygons. Meshes are particularly used in

computer graphics, to represent surfaces, or in modeling, to discretize a con­

tinuous or implicit surface. A mesh is a collection of vertices, edges, and faces

that define a polyhedral object’s shape, where:

• Vertex: A position (usually in 3D space) and other information such as

colour, normal vector and texture coordinates.

• Edge: A connection between two vertices.
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• Face: A closed set of edges, in which a triangle face has three edges.

Vertices Edges Faces

                                  

Figure 3.3: Mesh elements.

Thus, the simplest way to convert a mesh into a point cloud is to take its ver­

tices and consider them as points. This approach, in most cases, is enough,

but not in our situation. The skull meshes have many vertices hidden inside

the model (Figure 3.4), which describe the internal skull bones structures: not

very useful for our purposes. Most inner bones structures are typically not

reconstructed faithfully since their structural features are much more impor­

tant than the aesthetic ones. Moreover, use the internal points is deleterious

from the point of view of point cloud processing. Unfortunately, there is no

straightforward method to remove them.
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Figure 3.4: Due to the internal points, there can be distinguished two main
volumes. The innermost is made of points that can be removed to simplify the
point clouds and are not necessary for this study’s scope. (a) Frontal view, (b)
Left Lateral view, (c) Parietal view, (d) Basilar view.

To eliminate the internal vertices, we have defined a specific pipeline, illus­

trated in Figure 3.5, that can be summarized as follows:

1. Take many snapshots of the 3D model from different angles.

2. Extract the depth map from each snapshot taken.

3. Convert the depth information in point clouds.

4. Merge all the point clouds so obtained.

5. Simplify the final point cloud.

The first step requires taking several snapshots of the skull mesh from dif­

ferent points of view, Figure 3.5 (a). To be sure to capture every portion of

the skulls, even the most hidden ones, we have taken 8 snaps by moving the

camera along the horizontal axis, 45 degrees at a time, a parietal and a basilar

view of the model. From each of these snapshots, the depth map has been ex­

tracted, Figure 3.5 (b), and converted in a point cloud by simply deprojecting

the depth image into 3D points, considering the camera rotation and translation

to keep all the point clouds in the same reference system, Figure 3.5 (c). The

point clouds for every camera position are merged (concatenated) to obtain a
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complete point cloud of the skull without internal points, which is finally sim­

plified by using a Poisson Disk Sampling (PDS) algorithm [7], Figure 3.5 (d).

PDS yields smoother complete point clouds than uniform sampling, making

them better to represent the underlying object models.

(a)

(b)

(c)

(d)

Figure 3.5: Internal points removal pipeline (a) Snapshots of the 3D model
from different angles, (b) Depth maps of the snapshots, (c) Point clouds ob­
tained from depth information, (d) Final result.

After the cleaning and processing steps, the resulting dataset is finally split

into train (272), validation (29) and test set (73). In splitting the dataset, we

made sure to keep the same proportion of samples w.r.t their quality score,

Figure 3.6. This is a good practice in every deep learning task because separate

the data into train, validation and test splits prevent overfitting. Overfitting

happens when the model learns an overly specific function that performs well

on training data but does not generalize to unseen data. Dataset splitting is

also helpful to accurately evaluate the model performances.
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Figure 3.6: Quality score distribution for each dataset split.

3.3 Defect Injection

We had to create the defects artificially since the dataset we were provided

consisted only of uninjured skulls. The artificial surgical defects were created

by removing skull portions from the complete point clouds.

Figure 3.7 shows how defects are created. A point is picked randomly as the

“centre” of the hole. For skulls of quality score 4, we take a random point on

the face portion of the skull, Figure 3.7 (b). Instead, for skulls of quality score

5, a random point on the maxilla and mandible part is taken, Figure 3.7 (a).

This is done because those areas are the ones of more interest for maxillofacial

surgeons. The chosen point is then used as the centre of a rectangular paral­

lelepiped with a square base of random, between 3cm and 10cm (included),

height and width, Figure 3.7 (c). The range of dimensions of the defects was

chosen under the advice of domain experts since it reflects the size of most

real­case situations. In the end, every point that falls into the parallelepiped is

removed from the complete skull point cloud, leaving a hole.

We created for each point cloud of quality score 2 or 3 only one partial cloud;

instead, for the samples of quality score 4 or 5, we created as many partial

clouds as to match the number of the sum of the available samples of quality
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score 2 or 3 in the same dataset split. In this manner, we have more or less the

same number of partial point clouds for each skull category. Finally, it is worth

noticing that the partial clouds for the training set are created on the fly, so they

are always different. For the validation and test set, they are fixed.

(a) (b) (c)

(d)

Figure 3.7: Defect Injection (a) Area from which to take a random point for
qualscore = 5 point clouds, (b) Area from which to take a random point for
qualscore = 4 point clouds, (c) Defect creation: in red, the random point used
as the centre of the parallelepiped with a square base. In green, the selected
points that will be removed to create the defect, (d) Defect examples.

Our datasets’ defective skulls are generated artificially from complete skulls.

Actual craniotomy surgery defects are generally more complicated and irreg­

ular than synthetic defects. However, we expect that deep learning networks

trained on fake flaws will be able to generalize to genuine surgical defects,

which will require the network to be resilient in terms of the defects’ form,

location, and size.
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3.4 Normalization

In the end, each point cloud P = {pi}n
i=1, where n is the number of points in

P , is normalized to guarantee that the coordinates of each of its points pi =

(xi, yi, zi) satisfy −1 < xi, yi, zi < 1. In datasets like ShapeNet [8], the point

clouds are normalized by subtracting their centroid to centre them in (0,0,0)

and dividing by a scalar value:

m = max
pi∈P

(
√∑

(x2
i , y2

i , z2
i )) (3.1)

In our case, this cannot be done. The problem is that we have both complete

skulls (qualscore = 5) and segmented skulls in our dataset, for example, the

ones without mandibles. Therefore, depending on the ”completeness” of the

skull and the dimension of the defect, m could vary a lot and consequently

changing the skull scale, Figure 3.8 (b). This is undesirable since the point of

normalization is to standardise the inputs to the network.

To overcome this issue, we have computed themaximumm of the point clouds

in the training set (m = 155) and use this value as a fixed scale factor. In this

way, the partial point clouds are normalized by subtracting their centroid and

then diving by m = 155, Figure 3.8 (c). The ground truth complete point

clouds are normalized using the centroid computed on the partial point cloud

to keep the alignment between them. Note that we cannot simply normalize

the point clouds before creating the defects because in a real case scenario, we

may not have the original complete skull.
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(a) (b) (c)

Figure 3.8: (a) Pre­normalization alignment, (b) Alignment after ShapeNet
like normalization, (c) Alignment after using a fixed scale factor m for nor­
malization.

From Figure 3.8 (a) and Figure 3.8 (c), it can be seen that normalization has

introduced a degree of misalignment between the point clouds. We have found

that this misalignment is not a problem; instead, it is necessary to avoid what

we have called the ”phantom mandible issue”. This issue refers to the recon­

struction errors due to the inability of the network to distinguish between skulls

with defects and not fully segmented skulls. For instance, between a complete

skull with a defect on the mandible and a skull that does not include that bone

portion. In those cases, the network did not reconstruct the mandible from this

the name ”phantom mandible issue”. As we will see in the next chapter, our

model reconstructs the entire skull, not only the missing portion. The network

learns, without any external indication, what to reconstruct and what not. For

example, in the case of skulls without the mandible (qualscore <= 5), it

learns that in those cases, the mandible should not be reconstructed because

it is not a defect, but it is just the skull scan that does not include it. Without

the misalignment introduced by normalization, it is harder for the network to

catch this hidden assumption.



4 Skull Reconstruction

This chapter presents the pipeline designed to generate starting from the point

cloud of the defective skull the mesh of the complete skull. The skull recon­

struction pipeline can be summarized as follows:

1. Completion: recover the complete 3D skull point cloud from an in­

complete one.

2. Merging: merge the partial point cloud with the reconstructed points,

i.e. the points needed to fill the defect.

3. Normal Estimation: estimate the normals for the reconstructed points.

4. Surface Reconstruction: use a surface reconstruction technique to ob­

tain the completed skull’s mesh.

4.1 GRNet

The neural network used is based on the Gridding Residual Network (GR­

Net) [70], a very successful network able to recover a complete point cloud

from an incomplete one in a coarse­to­fine fashion by introducing 3D grids as

intermediate representations to regularize unordered point clouds. We chose

to base our model on this architecture because it is able to recover better details

of objects than other point cloud completion methods, its explicit architecture

makes it easy to modify and improve it, and it is manageable from the compu­

tational point of view. The main drawback of GRNet is that it moves the input

points, leading to a noisier reconstruction. Another missing of this network

is that it is not able to recover points normals. We have modified the GR­

Net architecture in order to be able to work with point clouds with many more
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points and to achieve better results. GRNet comprises five parts: Gridding, 3D

Convolutional Neural Network, Gridding Reverse, Cubic Feature Sampling,

Multi­layer Perceptron and Gridding Loss, as shown in Figure 4.1.

(a) GRNet

(b) Gridding (c) Gridding Reverse (d) Cubic Feature Sampling (e) Gridding Loss

Figure 4.1: GRNet overview taken from the original paper [70] (a) GRNet,
(b) Gridding, (c) Gridding Reverse, (d) Cubic Feature Sampling, and (e) Grid­
ding Loss.

4.1.1 Gridding

In chapters 1 and 2we have seen that most of the existingmethods voxelize the

point clouds into 3D voxels where 3D convolutions can be applied. However,

detailed geometry is often lost as an artefact of discretization that can obscure

the natural invariances of the data. Recent methods use MLP for point cloud

reconstruction and aggregate information using a symmetric function (e.g.,

Max Pooling). The problem with MLP­based methods is that the geometric

relationships among 3D points are not fully considered.

The core idea behind GRNet is the introduction of 3D grids as intermediate

representations to regularize point clouds. Given an irregular and unordered

point cloud P = {pi}n
i=1, where pi ∈ R3 and n is the number of points in P ,

they convert it into a regular 3D grid G =
⟨
V, W

⟩
and at the same time pre­

serving the point cloud’s spatial arrangements. V = {vi}N3
i=1, W = {wi}N3

i=1,

vi ∈ {(−N
2 , −N

2 , −N
2 ), ..., (N

2 − 1, N
2 − 1, N

2 − 1)}, wi ∈ R and N is the

resolution of the 3D grid G. A cell is defined as a cube, as shown in Figure
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4.1 (b). The set of neighboring points N (vi) for each vertex vi = (xv
i , yv

i , zv
i )

of the 3D grid is defined as the set of points that lie in the adjacent 8 cells of

the considered vertex. Therefore, a point p = (x, y, z), p ∈ P , if satisfies

xv
i − 1 < x < xv

i + 1, yv
i − 1 < y < yv

i + 1, zv
i − 1 < z < zv

i + 1 then it

belongs to N (vi).

Moreover, the differentiable Gridding layer, as shown in Figure 4.1 (b) com­

putes the corresponding value wi of a vertex vi as:

wi =
∑

p∈N (vi)

w(vi, p)
|N (vi)|

(4.1)

where |N (vi)| is the number of neighboring points of vi so if |N (vi)| = 0 then

also wi = 0. In standard voxelization, instead, wi at the vertex vi is computed

as:

wi =


0 ∀p /∈ N (vi)

1 ∃p ∈ N (vi)
(4.2)

This voxelization process, however, creates a quantization effect, which dis­

cards some object details. Furthermore, because voxelization is not differen­

tiable, it cannot be used for point clouds reconstruction.

Finally, the interpolation function w(vi, p) is defined as:

w(vi, p) = (1 − |xv
i − x|)(1 − |yv

i − y|)(1 − |zv
i − z|) (4.3)

4.1.2 3D Convolutional Neural Network

The purpose of the 3D Convolutional Neural Network (3D CNN) with skip

connections is to fill in the missing parts in the incomplete point cloud. It

is based on the concept of a three­dimensional encoder­decoder with U­net

connections [68, 69]. The 3D CNN can be formulated as follows, given W as
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input:

W ′ = 3DCNN(W ) (4.4)

where W ′ = {w
′
i}N3

i=1 and w
′
i ∈ R.

4.1.3 Gridding Reverse

Gridding Reverse is the component used in GRNet to generate the coarse point

cloud, as illustrated in Figure 4.1 (c). It takes the 3D grid G ′ =
⟨
V, W ′

⟩
and

returns a sparse point cloud P c = {pc
i}m

i=1, where m is the number of points

in the coarse point cloud and pc
i ∈ R3. It generates one point coordinate pc

i for

each grid cell by a weighted combination of its eight vertices coordinates and

corresponding values:

pc
i =

∑
θ∈Θi wi

θvθ∑
θ∈Θi wi

θ

(4.5)

where Θi = {θi
j}8

j=1 is the index set of vertices of the i−th 3D grid cell.

4.1.4 Cubic Feature Sampling

To overcome the inability of MLP­based methods to take into account the ge­

ometric relationships among 3D points, in GRNet Cubic Feature Sampling,

Figure 4.1 (d), is used to combine features for the coarse point cloud P c.

This is useful for the following MLP layers to retrieve more fine­grained de­

tails. More precisely, given the feature map of 3D CNN F = {f v
1 , f v

2 , ..., f v
t3},

where f v
i ∈ Rc and t3 is the size of the feature map, for a coarse point cloud

P c its features are computed as:

f c
i = [f v

θi
1
, f v

θi
2
, ..., f v

θi
8
] (4.6)

so by contatenating the features of eight vertices of the i­th 3D gird cell where

pi
c lies in. In the end, a chosen number of points is randomly sampled from

the coarse point cloud to reduce redundancy and generate a fixed number of

points.
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4.1.5 Multi­layer Perceptron

The Multi­layer Perceptron (MLP) takes the coarse point cloud P c and its

features F c as input and returns P f = {pf
i }k

i=1, where pf
i ∈ R3 and k is the

number of points in the final completed point cloud, as:

Pf = MLP (F c) + Tile(P c, r) (4.7)

Tile creates a new tensor of size rm×3 by replicating P c r times. In GRNet, r

is set to 8. The MLP is used to recover the details from the coarse point cloud

by learning residual offsets between the coarse and final completed point cloud

points.

4.1.6 Gridding Loss

The last notable proposal by the authors of GRNet is theGridding Loss which

computes the L1 distance between the generated points and ground truth by

representing them in regular 3D grids exploiting the aforementionedGridding

layer. Hence, let Gpred =< V pred, W pred > and Ggt =< V gt, W gt > be the

3D grids obtained by Gridding the predicted and ground truth point clouds,

respectively, the Gridding Loss can be defined as:

LGridding(W pred, W gt) = 1
N3

G

∑
∥W pred − W gt∥ (4.8)

where NG is the resolution of the two 3D grids.
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4.2 Proposed Model

4.2.1 Architecture

Figure 4.2 illustrates the architecture used in our study. The number of lay­

ers and their connections match the one proposed in GRNet, whereas their

dimension has been changed in order to be able to take in input incomplete

point clouds with 35, 000 points and return a complete reconstructed point

cloud of 40, 000 points. The original GRNet proposal could accept partial

point clouds of only 2048 points and produce complete point clouds of 16, 384

points. Please note that this does not mean that the partial clouds must have

precisely 35, 000 points, but if it N < 35, 000, where N is the number of

points, zero padding is added. Instead, if N > 35, 000, 35, 000 points are

randomly sampled.
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Figure 4.2: Neural Network architecture.
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We have designed the network in this way because we have found that 40, 000

is a good enough number of points both to capture every skull detail and, at

the same time, to maintain the number of network parameters accountable by

the computational resources available to us.

As shown in Figure 4.2, the 3D CNN encoder consists of four 3D convolu­

tional layers, each having a bank of 43 filters with padding of 2, followed by

batch normalization and a max­pooling layer with a kernel size of 23. Convo­

lutional layers have 40, 80, 160 and 320 output channels, respectively. Finally,

two fully connected layers with sizes of 5000 and 40, 000 follow the encoder.

The decoder is made up of four transposed convolutional layers, each having

a bank of 43 filters with padding of 2 and stride of 1, followed by a batch

normalizing layer.

Every convolution, except for the last one (followed by a ReLU activation), is

followed by the MISH activation function [41], as we found that it improved

our training. MISH provides a smoother energy landscape, resulting in less

peaked training losses than those obtained with ReLU.

Cubic Feature Sampling collects point features from feature maps produced

by 3D CNN’s first three transposed convolutional layers. 5000 points from

the coarse point cloud P c are randomly picked to minimize redundancy and

create a predetermined number of points. As a result, it generates a feature

map with a size of 5000 × 2240.

The MLP consists of four fully connected layers with dimensions of 2240,

448, 112, and 24, respectively. The output of MLP is reshaped to 40, 000 × 3,

which corresponds to the offsets of the coordinates of 40, 000 points.

4.2.2 Loss Functions

Our model is trained end­to­end, and the training loss consists of two parts:

Lsparse and Ldense. Where Lsparse is the loss computed on the coarse point
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clouds P c, and Ldense is the loss computed on the final reconstructed point

clouds P f . Considering the training efficiency, we choose the symmetric

Chamfer Distance (CD) as loss for both Lsparse and Ldense:

LCD(P, Q) = 1
|P |

∑
x∈P

min
y∈Q

||x − y||2 + 1
|Q|

∑
y∈Q

min
x∈P

||x − y||2 (4.9)

where x and y denote points that belong to two point clouds P and Q, respec­

tively. Consequently, the joint loss function can be formulated as:

L = Lsparse + Ldense (4.10)

where:

Lsparse = LCD(P c, P gt) (4.11)

and

Ldense = LCD(P f , P gt) (4.12)

During the fine­tuning step, we have used the Gridding Loss (Equation 4.8),

instead of the Chamfer Distance as loss for the loss on coarse clouds,Lsparse =

LGridding(P c, P gt).

4.3 Reconstructed Points

Working directly on the complete reconstructed point cloud to reconstruct the

skull surface is not a good idea. GRNet reconstruct the entire point cloud,

so even the points belonging to the partial input point clouds are moved and

subject to noise. Moreover, we already have the normals of those points. For

these reasons, we decided to find and then extract from the completed recon­

structed point clouds only the reconstructed points, i.e., the points needed to

fill the defects, and merge them with the partial point clouds to obtain better
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complete skull point clouds.

Compute 

distance
Threshold Merge

Partial Cloud Reconstruted Cloud

DBSCAN

Figure 4.3: Reconstructed points selection pipeline.

Obtained the final reconstructed complete point clouds, we can find the points

relative to the defect by simply computing the distance between the partial

point clouds and the reconstructed ones. Hence by computing for each point

in the partial cloud the distance to the closest point in the reconstructed cloud.

Let P partial and P f = {pf
i }k

i=1, be respectively a partial point cloud and its

final completed reconstruction, the set of reconstructed points, so the ones

added to fill the defect, is given by:

P R =
{
pf

i | min(d(P partial, pf
i )) < ε

}
(4.13)

where d is the Euclidean distance.

Due to the noise present in the reconstructed point cloud, not only the points

needed to fill the defect will be selected. Therefore, we then apply the DB­

SCAN algorithm to select only the largest cluster of points. Finally, we merge

the partial point cloud with the found points. The pipeline is summarized in

Figure 4.3.
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4.4 Normal Estimation

Many surface reconstruction algorithms require the use of normals to generate

a mesh starting from a point cloud. Our network does not estimate the point

normals, so we need to compute them afterwards. The normals of the points

added to the partial cloud to fill the defect are estimated by finding adjacent

points and determining the principal axis of the adjacent points using covari­

ance analysis. The two key parameters are the search radius and the maximum

number of the nearest neighbour. As normal candidates, the covariance anal­

ysis algorithm generates two opposing directions. Both can be valid without

knowing the global structure of the geometry. This is referred to as the nor­

mal orientation problem. For this reason, we then used a further orientation

function to orient the normals with respect to consistent tangent planes.

GT Normals Estimated Normals

Figure 4.4: Example of normal estimation result.

For complex 3D point clouds, plot normals as vectors is not very informative.

It is tough to see where the little arrows point. Therefore, we mapped normal

vectors to the RGB cube. The function takes a unit vector (a point on the

sphere), finds where it intersects the RGB cube, and uses that colour as the

vector representation [3]. In Figure 4.4 it is reported an example of this kind

of visualization and a normal estimation result.
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4.5 Surface Reconstruction

Surface reconstruction from point clouds is a core topic in geometry process­

ing [4]. It is an ill­posed problem: an infinite number of surfaces approximate

a single point cloud, and a point cloud does not define a surface in itself. Thus,

the user must define additional assumptions and constraints, and reconstruc­

tion can be achieved in many different ways.

Using the reconstruction algorithms on outlier­ridden point clouds produce

overly distorted output. Therefore we strongly filter these outliers before per­

forming reconstruction.

We chose Poisson reconstruction [24] as a reconstruction algorithm. It com­

putes an implicit function whose gradient matches the gradient of the input

normal vector field. Inside and outside the inferred shape, this indicator func­

tion has opposing signs (hence the need for closed shapes). This approach ne­

cessitates the use of normals and yields smooth, closed surfaces. If the surface

is intended to interpolate the input points, it is not suitable. On the contrary, it

works well when the goal is to approximate a noisy point cloud with a smooth

surface, like in our case.

Finally, we performed an explicit remeshing of the triangular mesh obtained

Poisson reconstruction algorithm by repeatedly applying edge flip, collapse,

relax and refine to improve aspect ratio and topological regularity.
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5.1 Implementation Details

Our network is implemented using PyTorch [49], an open­source machine

learning framework with automatic differentiation and eager execution, and

CUDA. The leading third­party libraries on which the project is based are

Open3D [77] and PyMeshLab [44]. Open3D is an open­source library that

supports the rapid development of software that deals with 3D data; instead,

PyMeshLab is a Python library that interfaces to MeshLab [10], the popular

open­source application for editing and processing large 3D trianglemeshes.

All the training and validation processes were executed on Google Colabora­

tory [17], a platform that gives the possibility to exploit some computational

resources for free. In particular, Colab allows you to select a GPU runtime

that boosts the training time of neural models and most of the time we were

assigned an NVIDIA Tesla T4 GPU with 16GB of RAM. We use the Adam

optimiser [26] with learning rate 10−4, β1 = 0.9, β2 = 0.999 and batch size

4. We trained the network for 250 epochs, with the learning rates decayed by

0.5 after 100 epochs. We also fine­tuned the network using as training loss the

Gridding Loss for other 50 epochs still using Adam as optimizer and 10−4 as

initial learning rate.

5.2 Evaluation Metrics

One of the challenges in point cloud completion is the comparison with the

ground truth. As evaluation metrics, we have chosen these existing similarity

metrics:
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Chamfer Distance. For two point clouds P and Q, CD measures the mean

distance between each point in one point cloud to its nearest neighbour in the

other point cloud, Equation 4.9.

Earth Mover Distance. Compared to the Chamfer Distance (CD), the Earth

Mover’s Distance (EMD) is more reliable to distinguish the visual quality of

the point clouds [37]. EMD is only defined when P and Q have the same size:

EMD(P, Q) = min
ϕ:P →Q

1
|P |

∑
x∈P

||x − ϕ(x)||2 (5.1)

By solving the linear assignment problem, EMD forces the output to have the

same density distribution as the ground truth and is thus more discriminative

to the local details and the density distribution.

F­Score. F1 score is defined as the harmonic average of precision (the ac­

curacy) and recall (the completeness), where F1 reaches its best value at 1

(perfect accuracy and completeness) and worst at 0. In other terms:

F­Score(τ) = 2P (τ)R(τ)
P (τ) + R(τ)

(5.2)

where P (τ) and R(τ) denote the precision and recall for a distance thresh­

old τ , respectively. Let G = {(xi, yi, zi)}nG
i=1 be the ground truth and R =

{(xi, yi, zi)}nR
i=1 be a reconstructed point set being evaluated, where nG and

nR are the numbers of points of G and R, respectively:

P (τ) = 1
nR

∑
r∈R

[
min
g∈G

||g − r|| < τ
]

(5.3)

R(τ) = 1
nG

∑
g∈G

[
min
r∈R

||g − r|| < τ
]

(5.4)

Cosine Distance. We have used the cosine distance to measure the similarity

between vertices normals. The cosine distance is simply Dc = 1 − Sc, where
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Sc is the cosine similarity between the vectors. However, it is essential to note

that this is not a proper distancemetric as it does not have the Schwarz inequal­

ity, and it violates the coincidence axiom. The cosine distance is a significant

metric because, as said in section 4.5, the normals orientation is fundamental

when dealing with surface reconstruction algorithms such as Screened Pois­

son.

Finally, for the sake of clarity, in the following sections, we will refer to each

of these metrics in two different ways depending on if they were computed

on all the 40,000 points of the reconstructed point clouds or if they were com­

puted only on the reconstructed points. Hence, the ones predicted to fill the

defect. In the former case, the ground truth is the complete skull, and to the

metric name will be set the subscript C in the other case, the ground truth

will be the removed portion of the skull, and R will be set as subscript to the

metric acronym. Thus, for example, the Chamfer Distance will assume the

acronym CDC if computed on the entire set of 40,000 points returned by the

model; instead, CDR if it refers to the value computed just on the reconstructed

points.

5.3 Baselines

We compare our method against two baselines:

1. AtlasNet [18], which generates points by sampling from the parametric

surface element. AtlasNet naively duplicate primitive­decoder pairs to

comply with different shapes.

2. FoldingNet [72], which proposes folding­based decoder to directly gen­

erate points. FoldingNet adopts a PointNet­like encoder to produce la­

tent representations. Like the PointNet encoder, FoldingNet decoder

is a point­wise network shared among points. Given a predefined 2D

primitive (e.g., 2D square patch or a sphere), the FoldingNet decoder
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takes a 2D coordinate from the primitive and latent codeword as input,

then maps the 2D point to a 3D coordinate. The set of 3D points mapped

by the FoldingNet decoder constitute the reconstructed point cloud.

For a fair comparison, we train all the models using the Chamfer Distance loss

with their released codes. All models utilize the same training set.

5.4 Quantitative Evaluation

To achieve a fair comparison, we train all methods on our dataset using the

same training strategy. For all evaluated methods in Table 5.1 are reported the

Chamfer Distance, the F­score and the Earth Mover Distance. Our network

clearly outperforms all the other models. Moreover, we have computed the

evaluation metrics only for the reconstructed points, so the ones added to fill

the defect, Table 5.2. Finally, in Tables 5.3 and 5.4, we have reported the re­

sults obtained by our network (still computed only on the reconstructed points)

for different defect positions and defect dimensions, respectively.

Method CDC ↓ EMDC↓ F­scoreC(3mm)↑

Ours 2.3672 4.5473 0.9696

AtlasNet 11.667 12.5332 0.4995

FoldingNet 7.462 25.1551 0.4732

Table 5.1: Point completion results compared using Chamfer Distance(CD),
Earth Mover Distance(EMD) and F­Score(3mm) computed on 40,000 points.
The best results are highlighted in bold.



5.4 Quantitative Evaluation 34

Method CDR↓ EMDR↓ F­scoreR(3mm)↑ Cosine DistanceR↓

Ours 9.3813 2.9719 0.7532 0.3124

AtlasNet 62.5015 25.1945 0.1456 0.9222

FoldingNet 61.5883 24.0986 0.1356 0.8984

Table 5.2: Point completion results compared using Chamfer Distance(CD),
Earth Mover Distance(EMD), F­Score(3mm) and Cosine Distance computed
on the new data. The best results are highlighted in bold.

Defect Position CDR↓ EMDR↓ F­scoreR(3mm)↑ Cosine DistanceR↓

Cranium 9.5883 2.9825 0.8219 0.2545

Face/Mandible 8.9706 2.8121 0.6169 0.4271

Table 5.3: Point completion results for defect positions.

Defect Dimension CDR↓ EMDR↓ F­scoreR(3mm)↑ Cosine DistanceR↓

[3,5[ cm 9.4049 3.1174 0.6981 0.2785

[5,7[ cm 11.2443 3.249 0.7591 0.3102

[7,10] cm 7.7831 2.6875 0.7662 0.3254

Table 5.4: Point completion results for defect sizes.

Please note that the metrics reported in these tables are computed on the de­

normalized samples to improve the interpretability of the results. It is also

worth noticing how the network seems to generalise pretty well w.r.t the defect

dimension, whereas it seems more susceptible to the defect position.
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5.5 Qualitative Evaluation

The qualitative comparison results are shown in Figure 5.1. The proposed

network, based on GRNet, can generate better complete shapes with fine de­

tails than the other methods. It can effectively reconstruct complete shapes

by learning structural and context relations from the incomplete point cloud,

including geometrical symmetries, regular arrangements, and surface smooth­

ness. Unfortunately, FoldingNet and AtlasNet fail to represent point clouds

with complex topologies even if the networks are scaled up.

Input Ours GT Mesh GT
Reconstructed

Surface
FoldingNetAtlasNet

Input + New 

Points 

Figure 5.1: Qualitative comparison and results.

5.5.1 Additional Results

In this section, we provide more visual results highlighting the areas where

the defect was present.
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Figure 5.2: Qualitative results with a focus on the defective region.
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5.5.2 Error Analysis

We can cluster the errors made by our network in three main categories.

The first one deals with the errors due to a poor normals estimation. As men­

tioned in the section 4.5, we use the Poisson surface reconstruction algorithm.

This method to work well requires that the normals of the points are correctly

estimated and oriented. In some cases, this is not the case, and consequently,

the results are badly affected by this.

The second major cause of poor results is the noise present in the point clouds

returned by the network. The points are not equally distantiated one to the

other, and they do not lay on the same plane. This lead to a non­smooth sur­

face.

Finally, in the last category fall the mistakes due to a combination of factors

from a poor normals estimation to noise and other possible sources of errors

such as the failure of the pipeline to determine the reconstructed points or

simply the failure of the network to reconstruct particular shapes or details

due to little training data for certain defects.

In Figure 5.3, for each category of error are reported two visual examples.
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Figure 5.3: Results per different error categories.



6 Conclusion

In this thesis, we proposed a shape completion approach to skull reconstruc­

tion. Unlike existing skull completion methods, we directly operate on raw

point clouds without any structural assumption or annotation about the under­

lying shape. Point clouds are unified and simple structures; this prevents the

high memory cost and loss of geometric information caused by voxelization,

avoid the combinatorial irregularities and complexities of meshes and allows

our network to generate more fine­grained completions.

The model used is based on GRNet opportunely modified and improved to

deal with the available dataset. In addition, we contribute to analyze and re­

fine the Sant’Orsola skull dataset, designing functional pipelines for its pro­

cessing. The proposed approach is able to complete missing areas effectively,

reaching high accuracy in terms of the predicted point locations and a good

qualitative approximation of the complete skull that will be used as starting

point to facilitate the cranioplasty clinical workflow.

Future works could use this study as a baseline and improve it by investigat­

ing the possibility of filling in new data only where needed while keeping

original samples. Another possible future development may deal with nor­

mals prediction. These extensions will simplify the pipeline to obtain the fi­

nal reconstructed skull surface starting from the model output leading to better

quantitative and qualitative results.
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