
ALMAMATER STUDIORUM

UNIVERSITÀ DI BOLOGNA

DEPARTMENT OF COMPUTER SCIENCE

AND ENGINEERING

ARTIFICIAL INTELLIGENCE

MASTER THESIS

in

Artificial Intelligence in Industry

EXTENDING THE MOVING TARGETS

METHOD FOR INJECTING CONSTRAINTS

IN MACHINE LEARNING

CANDIDATE

Luca Giuliani

SUPERVISOR

Prof. Michele Lombdardi

CO­SUPERVISOR

Eng. Fabrizio Detassis

Academic year 2020/21

Session 1st

Abstract

Informed Machine Learning is an umbrella term that comprises a set of methodologies in

which domain knowledge is injected into a data­driven system in order to improve its level of

accuracy, satisfy some external constraint, and in general serve the purposes of explainability

and reliability. The said topid has been widely explored in the literature by means of many dif­

ferent techniques. Moving Targets is one such a technique particularly focused on constraint

satisfaction: it is based on decomposition and bi­level optimization and proceeds by iteratively

refining the target labels through a master step which is in charge of enforcing the constraints,

while the training phase is delegated to a learner. In this work, we extend the algorithm in

order to deal with semi­supervised learning and soft constraints. In particular, we focus our

empirical evaluation on both regression and classification tasks involving monotonicity shape

constraints. We demonstrate that our method is robust with respect to its hyperparameters,

as well as being able to generalize very well while reducing the number of violations on the

enforced constraints. Additionally, the method can even outperform, both in terms of accu­

racy and constraint satisfaction, other state­of­the­art techniques such as Lattice Models and

Semantic­based Regularization with a Lagrangian Dual approach for automatic hyperparame­

ter tuning.

i

Contents

Abstract i

Introduction 1

1 Background 3

1.1 Machine Learning . 3

1.1.1 Semi­supervised Learning . 5

1.1.2 Data Augmentation . 6

1.2 Constrained Machine Learning . 7

1.3 Shape Constraints . 9

1.3.1 Semantic­based Regularization . 10

1.3.2 Lattice Models . 12

2 Moving Targets 15

2.1 Original Formulation . 15

2.1.1 Algorithm Properties . 17

2.2 Extending the Algorithm . 18

2.2.1 Newly­introduced Hyperparameters 19

2.2.2 Data Augmentation & Monotonicities 22

2.2.3 Regression vs. Classification . 24

3 Empirical Evaluation 26

3.1 Preliminary Studies . 26

3.2 Hyperparameters Investigation . 28

3.2.1 Original Hyperparameters . 30

3.2.2 Newly­introduced Hyperparameters 32

ii

CONTENTS iii

3.2.3 Classification Losses . 32

3.3 Benchmarking . 34

3.3.1 Regression . 35

3.3.2 Classification . 37

4 Conclusions 42

4.1 Future Works . 42

Bibliography 44

Introduction

Progresses made over the last few years in the field ofMachine Learningmade it possible to

expand the application of such a techniques to a wider set of both industrial and research areas.

Notably, a renovated interest in the development of hybrid symbolic/subsymbolic systems is

evident from the plethora of scientific publications on the theme, which constantly show how

the combination of these two methods can undoubtedly help to overcome the limits of each of

them, singularly. In fact, while symbolic models have been traditionally designed by domain

experts and mainly employed for constraint reasoning, with evident drawbacks when it comes

to scalability and robustness, subsymbolic ones are able to provide resilient outcomes even

when fedwith noisy data from stochastic processes, but they are not conceived to satisfy explicit

rules, nor to be interpretable. The main idea, therefore, is to let the two modules interact during

either the learning or the optimization phase, depending on the purposes and the methodologies

adopted in the application.

The benefits are several: from a pure improvement of the effectiveness and efficiency of

the system, to the satisfaction of external requirements regarding reliability, explainability, ro­

bustness when dealing with uncertainty and noise, and trustworthiness in general. Among all,

this second aspect is gradually obtaining a larger share of the debate on technological evolution,

given the expected impact that Artificial Intelligence systems will bring to all the aspects of

our society in a short time frame [1].

The work exposed in this dissertation is located within the research area of Informed Ma­

chine Learning, and consists in the extension of Moving Targets, a recently proposed state­of­

the­art method for constraint injection in data­driven applications [2]. After some preliminary

investigations about specific properties of the algorithm that were left unexplored, we focused

our efforts on the development of ad­hoc techniques in order to deal with semi­supervised

learning scenarios rather then supervised ones only. More specifically, we examined the effect

of both existing and newly­introduced hyperparameters on the handling of monotonicity shape

1

INTRODUCTION 2

constraints both in regression and classification tasks.

Soon after an introductory chapter consisting in an overview of the research area and the

current state of the art, a comprehensive summary of our contribution can be found in chapter

2. Afterwards, chapter 3 will provide an outline of the empirical results obtained both from

the analysis of the hyperparameters, measured by means of their effect on the model accuracy

and the constraint satisfaction, and the benchmarking against other traditional methods from

the literature. Eventually, our final conclusions about the work done and the future directions

to follow in order to improve the method will be presented in chapter 4.

Chapter 1

Background

For the purpose of guaranteeing the essential background knowledge about the context

related to our work, this chapter will provide a quick overview of the main concepts that we will

refer to throughout the course of this dissertation. Precisely, in section 1.1 we will introduce

the field of Machine Learning, with major emphasis to semi­supervised learning tasks and

data augmentation techniques. Section 1.2 will be devoted to the description of constraint

reasoning in machine learning scenarios, with the presentation of a wide range of state­of­the­

art methodologies. Finally, section 1.3 will present a specific class of constraints, that is shape

constraints, with a detailed description of both the theoretical and practical aspects of two of

the predominant approaches employed to inject them into data­driven applications.

1.1 Machine Learning

With Machine Learning (ML) we define the area of Artificial Intelligence (AI) which in­

volves all those algorithms that are not explicitly programmed to solve a task, but rather they

can automatically improve their behaviour by learning from a set of structured data samples.

Indeed, as opposed to symbolic techniques – e.g., expert systems –, which allow the machine

to engage in a cognitive task via the declaration of high­level procedural rules often expressed

in a logical framework, machine learning algorithms are called subsymbolic since they are sta­

tistical methods that maintain and iteratively update an internal state in order to best adapt to

the given set of data. Finally, the recent explosion of the sub­field of Deep Learning (DL) in

the community has brought a new series of challenges and opportunities, with successful appli­

cations in a variety of domains ranging from the medical to the epidemiological ones, as well

3

1.1. MACHINE LEARNING 4

(source: www.linkedin.com/pulse/automated-bias-via-ai-try-human-algorithm-andy-mcleod,
last accessed on 28/06/2021.)

Figure 1.1: Historical perspective on Artificial Intelligence.

as the logistics and scheduling sectors. Along with this, various model structures and learning

paradigms have been proposed and investigated.

From a statistical perspective, machine learning algorithms are able to learn the conditional

distribution, with respect to a series of input features, of the event that generated the data points.

This process is commonly formulated as a likelihood maximization, which can be mathemat­

ically implemented through an iterative procedure aimed at optimizing a predefined metric –

either the maximization of a cost, or the minimization of a loss function. Additionally, depend­

ing on the structure of the input data, the learning paradigmmay be diverse. The most common

paradigms are:

Supervised Learning, in which the output labels are provided alongwith the data samples and

explicitly employed in the learning algorithm. Accordingly, the loss function assumes

the form L(y,M(x, θ)), where y is the vector of ground truths, x the input samples,M

the machine learning model, and θ the vector of its learnable parameters. This is the most

commonly adopted approach for data­driven applications, and it is generally addressed

via a learning procedure that exploits either likelihood maximization techniques, such as

in Naive Bayes Classifiers or Decision Trees, or an iterative gradient­based technique,

such as in Linear and Logistic Regression Models, and in Neural Networks.

www.linkedin.com/pulse/automated-bias-via-ai-try-human-algorithm-andy-mcleod

1.1. MACHINE LEARNING 5

Unsupervised Learning, in which the output labels are not provided, thus the model is not

required to return a prediction but rather to arrange the data points into coherent groups

according to a specific similarity metric. The most common unsupervised tasks are clus­

tering and anomaly detection. The former is aimed at partitioning the input data into

(unlabelled) classes of objects that are near one another within the input space, and it

is usually addressed via algorithms such as K­means and DBSCAN. The latter, instead,

has the sole purpose of performing a binary partition of the dataset in order to separate

outliers from the rest of the input data, and it is usually addressed via Density Estimation

techniques, Neural Autoencoders, or Isolation Forests.

Reinforcement Learning, in which there are not output labels at all, but rather reward mech­

anisms provided by the external environment. In fact, this paradigm is primarily used

to develop artificial agents which are placed inside this (usually simulated) environment

and trained in a learn­by­doing fashion.

1.1.1 Semi­supervised Learning

Labelled datasets are notoriously difficult to obtain and maintain. There even exists cases

in which the output of an event cannot be measured at all, in particular when we are dealing

with high­cognitive tasks such as natural language processing or image recognition. In these

scenarios, datasets may be manually annotated by human operators, a process which is not

only time­consuming, but also inclined to the introduction of noise, errors and, depending

on the context, even undesirable social biases [3]. Still, supervised learning techniques are

preferable to unsupervised ones since they are more accurate and more precise – e.g., they can

deal with regression tasks too, differently from unsupervised techniques that are intrinsically

able to perform classifications only. For this reason, whenever known relationships in the

underlying input distribution exist and can be exploited, semi­supervised learning might be

adopted in order to train the model on a small set of supervised samples while regularizing the

predictions thanks to a larger set of unsupervised ones.

Successful applications of semi­supervised learning have been proposed in various do­

mainds. Among all, computer vision is one of them that most benefits from this paradigm,

since manual labelling of images is particularly costly and error­prone. Besides, different tech­

niques could be employed to take advantage of the patters in unlabelled data. For instance,

Peikari et al. [4] propose a cluster­then­label approach for image classification in the medical

1.1. MACHINE LEARNING 6

(source: https://commons.wikimedia.org/wiki/File:Semi-supervised_learning.png, last accessed on 28/06/2021.)

Figure 1.2: An example of the influence of unsupervised data (grey circles) in a classification
scenarios with two classes (white and black circles). Considering the unsupervised points,
previously gathered via a clustering algorithm, helps the model to better define the decision
boundary.

domain, i.e., they run a clustering algorithm in order to identify groups of similar images, then

use a Support Vector Machine to obtain a finer decision boundary for separating the classes.

Alternatively, Rosenberg et al. [5] opt for a self­training approach, which consists in training

a classifier on the small set of labelled data, then using it to predict the class of unlabelled data

points, and eventually include the most confident unlabelled examples in the training set before

iteratively retrain the model on a larger collection of data samples.

1.1.2 Data Augmentation

It is not always the case that unlabelled data is provided. Nevertheless, as it may still bring

conspicuous benefits to the training process, it might be desirable to generate it from scratch.

This process, known as data augmentation, consists of increasing the size of the training set by

adding slightly modified copies of already existing data points or newly created synthetic ones

obtained by randomly sampling the input space. Even though in some cases the augmented

data can be instantly labelled under reasonable assumption – e.g., a common practice to avoid

overfitting in computer vision tasks is to rotate, crop, or slightly warp an input image and insert

it in the training set along with the label of the original one –, in the majority of applications this

strategy must be paired with the above­mentioned semi­supervised techniques in order to reg­

https://commons.wikimedia.org/wiki/File:Semi-supervised_learning.png

1.2. CONSTRAINED MACHINE LEARNING 7

ularize and, potentially, constraint the model predictions within a feasible region by exploiting

the interrelation between samples.

1.2 Constrained Machine Learning

As opposed to subsymbolic techniques, there are symbolic ones. The term comprises many

different algorithms which, nonetheless, share a common feature: they lack of a hidden state,

but rather they leverage explicit procedures to find the solutions of some instances of a given

problem. Some of these methods – e.g., constraint programming, linear and non­linear pro­

gramming, mixed­integer programming, etc. – are strictly related to the operational research

area. Indeed, they are aimed at solving Combinatorial Optimization tasks, namely those ones

involving a finite set S = {x1, ..., xn} in which each object x ∈ S is linked to a cost – or a score

– computed thanks to an objective function f(x). To optimize f(x) means to find the object

x∗ ∈ S that returns the best value f ∗(x), which can be either its minimum or its maximum

depending on the application.

A commonly acknowledge advantage of symbolic approaches is that constraints can be

natively embedded into the definition of the set S, which represents in fact a feasible region

within a larger, unbounded space – usually, S ⊆ Rk or S ⊆ Zk. On the contrary, machine

learning systems are totally inappropriate for this kind of tasks since, by relying on a subsym­

bolic representation, there is no way to know which of their internal parameter to constraint in

order to get a specific outcome and within which bounds. However, having guarantees on the

outputs yielded by a data­driven model is a desirable feature in many contexts. For instance,

depending on the domain area, we may want to enforce:

Fairness Constraints, i.e., those ones aimed at settling guarantees on the correct behaviour of

the system with respect to minorities and other less­favoured social groups so to avoid

unwanted discrimination.

Physical Constraints, i.e., those ones engaged to comply with laws from natural sciences,

such as physics, chemistry, biology, etc.

Logical Constraints, i.e., those ones employed to respect logical inferences.

As formerly said, hybridization between symbolic and subsymbolic artificial intelligence

techniques started to be explored and widely used in the last few years to allow for constraint

1.2. CONSTRAINED MACHINE LEARNING 8

satisfaction in machine learning environments. Besides, the primary aim of these approaches

is not limited to the constraint enforcement, but rather, depending on the application, may

serve the purpose of increasing both the model interpretability and its accuracy, particularly

when constraints are employed as a form of knowledge injection – a meticulous taxonomy of

the various techniques and sources of knowledge is presented in [6]. Among the variety of

methodologies that have been proposed, we will now list some of those that share similarities

with our presented approach.

Most of these constraint satisfaction methods rely on some kind of logical framework,

within which the data­driven module is integrated in order to obtain an explicit formulation

of the model that might be easily constrained without any further effort. For instance, Richard­

son and Domingos propose Markov Logic Networks [7], a framework to combine first­order

logic and Markov networks which has been also extended in [8] in order to allow the handling

of continuous variables as well. In Deep­ProbLog [9], Neural Networks with probabilistic out­

puts are embedded into a first­order logic program and treated as predicates, i.e., the data­driven

module is used to extract high­level features – the classes – which are then used as inputs for

symbolic reasoning. Finally, Rocktäschel and Riedel present a ”neural network for end­to­end

differentiable proving of queries to knowledge bases by operating on dense vector representa­

tions of symbols” [10]. The main pitfall of these approaches is that, by directly constraining

the output predictions via explicit rules, there is no effect on the learning procedure and, sub­

sequently, on the inner state of the machine learning module. This might be undesirable both

in terms of explainability and feature importance analysis. Additionally, relational constraints,

i.e., those imposed on a group of predictions, become difficult to handle since they require

access to the entire distribution rather than to each single output [11, 12].

Another group of approaches focuses solely on the pretraining step. This have been pro­

posed and widely investigated particularly in the context of fairness constraints by Luong et

al. [13] and Kamiran et al. [3]. Indeed, these methodologies are well­disposed towards the

enforcement of relational constraints on the dataset in order to mitigate the effects of social

biases. Then, once the data has been freed of all biases, it can be used to train a data­driven

model with a standard procedure that requires no further intervention to ensure the satisfaction

of the constraints. Still, a common drawback of these approaches is that it might happen that,

somehow, it is either the model itself or the training algorithm that introduces the discrimina­

tion – e.g., due to the underrepresentation of certain groups –, thus preventing from getting

1.3. SHAPE CONSTRAINTS 9

close to the desired labels.

Furthermore, a third class of approaches is based on the regularization of the model at train­

ing time via some constraint­based expression. Diligenti et al. propose Semantic­based Regu­

larization [14], a framework where constraints, which translate into fuzzy logical formulae, can

express general prior knowledge about the environment and can be used to adjust the model’s

predictions. Similarly, Logic Tensor Networks [15] tries to implement Real Logic within a

neural­network framework. In [16], relational background knowledge is used to enforce con­

straints on a set of unsupervised data, while the – smaller – set of supervised samples is kept

to increase the system accuracy. The exploitation of unsupervised data points has been investi­

gated as well in [17], where the theory behind Lagrangian duality is applied to the enforcement

of complex constraints. Finally, domain­specific procedures related to the context of fairness

have been proposed in [18–22]. Shortcomings about this group of approaches, however, in­

clude issues with relational constraints – that may eventually translate into serious problems

when it comes to mini­batches –, and prior requirements on the properties of the constraints,

such as differentiability. Likewise, numerical issues may worsen the training procedure up to

the point that the approach becomes almost useless.

Finally, some ultimate methods may derive from the combination of previously mentioned

techniques – e.g., Deep Structured Models [23, 24] –, or they may arise from novel integration

paradigms aimed at solving specific issues – e.g., differentiability, as in [25].

1.3 Shape Constraints

Shape constraints are a specific kind of constraint that act on the silhouette of a func­

tion. They often come from an economic, physical, or biological domain, as well as from

both stochastic and deterministic processes. The most common shape constraint enforced in

machine learning is monotonicity [26], i.e., the output of the model is supposed to be mono­

tonically increasing – or decreasing – with respect to one or more input features, all else be­

ing equal [27] – ceteris paribus condition. Nonetheless, many other constraints involving the

shape of a function have been formulated and investigated. Cotter et al. [28] propose the

concepts of Edgeworth Shape Constraints and Trapezoid Shape Constraints. In [29], Gupta

et al. investigate the effect of diminishing returns – i.e., monotonicity constraints paired with

concavity/convexity ones – on model regularization and improvement, while in [30] and [31],

1.3. SHAPE CONSTRAINTS 10

partial monotonic constraints and joint monotonic constraints on multidimensional functions

are examined, respectively.

In this dissertation, we will focus solely on monotonicity constraints. Still, we need to dis­

tinguish between the concept of monotonicity in regression and classification tasks. In fact,

when it comes to regression, increasing monotonicity1 can be formalized as a relationship be­

tween pairs (x1, x2) of data samples in this way:

is_monotonic(x1, x2) =⇒ f(x1) ≥ f(x2),with

is_monotonic(x1, x2) ⇐⇒ x1 = (xM
1 | x¬M

1)∧x2 = (xM
2 | x¬M

2)∧x¬M
1 = x¬M

2 ∧xM
1 ≥ xM

2

where xM
i and x¬M

i represent the attribute(s) involved in the expected monotonicity and the

remaining attribute(s), respectively. Additionally, regarding the symbol ”≥” in the formula

xM
1 ≥ xM

2 , this has to be intended with a wider semantic meaning, not necessarily limited to

its numerical definition.

On the contrary, when we think about classification tasks, we expect the model f to return a

categorical value. Yet, the formulation of monotonicity constraints in classification tasks does

not regard the output classes, but rather the output probabilities, in the sense that x1 is expected

to have a higher probability to be classified in a certain group with respect to x2 but, depending

on the thresholds, it may happen that they will eventually fall into the same class. Nonetheless,

referring to binary classification tasks only – the only ones that we will address in the rest of

our work –, the formulation of the constraint is the same one of the regression scenario as long

as we consider f to yield the (binary) probability rather than the actual class.

Now that we have presented a formal definition of what a shape constraint is and which

kinds do exist, we will proceed by providing two exemplifying techniques which are commonly

adopted to handle them in data­driven applications, namely Semantic­based Regularization and

Lattice Models.

1.3.1 Semantic­based Regularization

Semantic­based regularization techniques rely on the introduction of a penaltyP in the loss

function which accounts for the constraint violation. In our particular scenario, the penalty
1Monotonically decreasing constraints have an identical formulation, up to the switch of the inequality.

1.3. SHAPE CONSTRAINTS 11

concerns pairs of data samples, thus it can be formulated as:

P(xi, xj, ŷi, ŷj) = max(0, (ŷj − ŷi) ·monotonicity(xi, xj))

where xi and xj are the input samples, and ŷi and ŷj their respective predictions yielded by

the model. Regarding the functionmonotonicity(xi, xj), it represents the sign of the expected

monotonicity on the outputs, i.e., it returns a valuem ∈ {−1, 0, 1}which stands for decreasing,

null, or increasing, respectively. Finally, the max function serves the purposes of ignoring

already satisfied constraints; indeed, it acts as a barrier to filter out all the pairs for which

ŷj − ŷi is already respecting the expected constraint.

The total loss L of the data­driven model can be eventually formulated as a weighted sum

of the standard supervised loss S – e.g., mean squared error, mean absolute error, negative

log­likelihood, etc. – and the penalty P over all the samples and all the pairs:

L(x, y, ŷ, λ) = S(y, ŷ) + λ ·
∑
(xi,ŷi)

P(x, xi, ŷ, ŷi)

which degenerates into the standard loss function in case λ = 0.

This approach comes with three main burdens:

1. λ is a hyperparameter. It may be hard to tune it, especially in scenarios where the con­

straint is not injected as a form of knowledge but rather as a system requirement which

may be in conflict with the final accuracy – e.g., fairness constraints.

2. When dealing with mini­batches, the number of exploitable relational constraints de­

crease dramatically. As well, it is necessary to take care of the batch generation process

so that the set of data points in a single batch has a similar distribution to that of the entire

set, an assumption which might be broken in various scenarios.

3. The penalty term may need to meet additional requirements. For instance, since the ma­

jority of data­driven models rely on gradient­based techniques, the loss function L must

provide a gradient, a condition that can be satisfied only if all its parts are differentiable.

While there is no acknowledged solution to handle the latter, the former can be bypassed

with a lagrangian dual approach, as proposed in [17]. Indeed, the loss function L can be seen

1.3. SHAPE CONSTRAINTS 12

as a relaxation of the constrained optimization problem:

min
ŷ

{S(y, ŷ) |
∑
(xi,ŷi)

P(x, xi, ŷ, ŷi) = 0}

It follows that, whenever the constraint is satisfied, then L(x, y, ŷ, λ) = S(y, ŷ) holds indepen­

dently from the value of λ. On the contrary, if the constraint is not satisfied, then the global

minimum of the relaxed formulation will be certainly smaller – or equal – than the constrained

formulation, otherwise there would have existed an even smaller value of L obtained by en­

forcing the constraint up to the feasibility. This means that, regardless of the value of λ:

min
ŷ

{L(x, y, ŷ, λ)} ≤ min
ŷ

{S(y, ŷ) |
∑
(xi,ŷi)

P(x, xi, ŷ, ŷi) = 0}

namely, L(x, y, ŷ, λ) represents a lower bound on the optimum of the constrained problem.

Hence, the solution that mostly approaches the original constrained formulation is the one that

assigns the higher weight to the penalty term, i.e., the one with maximal λ. Formally, this is

equivalent to solving the problem:

max
λ

{min
ŷ

{L(x, y, ŷ, λ)}}

which can be achieved via a two­step optimization process that exploits the gradient descent

to minimize the loss function with respect to the predictions at first, and then maximizing the

loss function with respect to λ.

1.3.2 Lattice Models

Lattices are data­driven models able to approximate arbitrary input­output relationships in

a given set of data [26, 32]. They work as interpolated look­up tables, i.e., at training time,

they learn the best values ŷi associated to a set of knots K = {k1, ..., km} in the input space.

Eventually, during prediction time, given an input vector x they predict its output ŷ via linear

interpolation from the y­values of the knots surrounding x. The most popular library to develop

lattice models is Tensorflow Lattice2, which provides plenty of layers and predefined esti­

mators that can be easily integrated with the collection of Keras layers as well.
2www.tensorflow.org/lattice, last accessed on 28/06/2021.

www.tensorflow.org/lattice

1.3. SHAPE CONSTRAINTS 13

(source: www.tensorflow.org/lattice/overview, last accessed on 28/06/2021.)

Figure 1.3: Output of four lattice models having different number of parameters, different
amount of regularization, and different constraint enforcement.

One of the main advantages of lattices is that they natively come with a support for regular­

ization and shape constraints enforcement. More specifically, the injection of these constraints

can be performed both on a single feature lever, and on the final output of the model – as shown

in figure 1.3 –, allowing to deal with any kind of shape constraint previously exposed, from

partial to joint ones, in a simpler and effortless way. The other advantage is that, since they are

piecewise­linear, these models are easier to interpret. Moreover, as calibration layers can be in­

serted before the final lattice layer in order both to reduce the number of model parameters and

to normalize the input features, it is possible to inspect the response curve of each calibrated

feature before it enters the lattice layer, as shown in figure 1.4.

Still, there are some shortcomings about lattice models, mainly concerning the impossibil­

ity to rely on flexible knots – indeed, their values must be manually chosen, at least up to now

– and, more importantly, scalability issues which prevent from the application of the technique

on datasets with a high number of features. Nonetheless, their employment has been proven

successful with respect to a wide range of regression and classification problems. In [30], Deep

Lattice Networks are combined with partial monotonicities in order to achieve state­of­the­art

performances while keeping shape guarantees. In [29], expert knowledge about diminishing

www.tensorflow.org/lattice/overview

1.3. SHAPE CONSTRAINTS 14

(source: www.tensorflow.org/lattice/overview, last accessed on 28/06/2021.)

Figure 1.4: Response curves after the calibration of two numeric features.

returns is applied on multiple regression tasks regarding the economic and social domains in

order to increase the performances of the model and, simultaneously, obtain more regularized

and interpretable results. Finally, in [33], monotonicity shape constraints are exploited to sat­

isfy deontological requirements in classification tasks, as well as limiting the amount of unfair

penalization within a fairness insurance framework.

www.tensorflow.org/lattice/overview

Chapter 2

Moving Targets

Moving Targets is a state­of­the­art algorithm ”for injecting constraints at training time in

supervised learning, based on decomposition and bi­level optimization” [2]. It is an iterative

technique that relies on two alternated steps: a learner step, which trains the model on the given

vector of labels, and a master step, which is in charge of enforcing the constraints by adjusting

the labels. A more detailed review regarding the functioning of the method will be presented

in section 2.1. Instead, section 2.2 will be focused on our contribution to extend the original

formulation in order to handle semi­supervised learning and monotonicity shape constraints.

2.1 Original Formulation

Given a machine learning model f , a vector of supervised labels y∗, and a loss function L,

Moving Targets is aimed at solving the following constrained optimization problem:

arg min
θ

{L(y, y∗) | y = f(X; θ), y ∈ C}

where θ is the vector of learnable parameters of the model, and C is the feasible area, i.e.,

the region of the output space in which the constraints are satisfied. This problem can be

reformulated in pure label space as:

arg min
y

{L(y, y∗) | y ∈ C ∩B}

where B = {y | ∃θ, y = f(X; θ)} is the region of the output space that can be covered by the

machine learning model. Intuitively, this means that we are no more interested in optimizing

15

2.1. ORIGINAL FORMULATION 16

(source: Detassis, Lombardi, and Milano [2])

Figure 2.1: A sample run of Moving Targets involving Mean Squared Error loss and convex
constraints and bias.

the model parameter, but rather we aim at optimizing the vector of predictions, which must be

constrained into both the model’s output space B – which is trivial since the predictions are

generated precisely by that model – and the constrained output space C. Hence, the algorithm

proceeds as described in algorithm 1: at the beginning, the vector of original labels y∗ is used to

pretrain the machine learning model; then, the obtained predictions are used to refine the orig­

inal labels, which are in turn adopted to retrain the learner and obtain a new set of predictions,

and so on.

The learning task is formulated straightforwardly, namely:

l(z) = arg min
y

{L(y, z) | y ∈ B}

where l(·) represents the data­driven module and z is the vector of supervised labels1. Re­

garding the master step, instead, the formulation varies depending on the feasibility of the ith

vector of predictions yi returned by the data­driven model. Indeed, in case of infeasibility –

i.e., yi /∈ C –, the optimization problem is formulated as:

mα(y) = arg min
z

{L(z, y∗) + 1

α
L(z, y) | z ∈ C}

where α ∈ (0,+∞) is a hyperparameter of the algorithm – allegedly, the problem is supposed

to return a vector of labels z belonging to the feasible region C and close both to the original
1This will coincide with y∗ during the pretraining step only, while in subsequent iterations it will be replaced

by the ith output of the master step, i.e., zi.

2.1. ORIGINAL FORMULATION 17

Algorithm 1:Moving Targets
input : label vector y∗, scalar parameters α; β; n
y1 = l(y∗) # pretraining
for i=1..n do

if yi /∈ C then
zi = mα(y

i) # infeasible master step
else

zi = mβ(y
i) # feasible master step

end
yi+1 = l(zi) # learner step

end

labels y∗ and to the model’s predictions y, up to that balancing factor. On the contrary, in case

the outputs yi are already feasible, the problem formulation is:

mβ(y) = arg min
z

{L(z, y∗) | L(z, y) ≤ β, z ∈ C}

where β ∈ (0,+∞) is another hyperparameter – in this case, we are not balancing between

the two losses, but rather minimizing one of them while imposing the other one not to exceed

a given amount β.

2.1.1 Algorithm Properties

As stated in [2], ”due to the its open nature and minimal assumptions, establishing the

convergence of our method is hard”. Nevertheless, when the hyperparameters approach one of

their bounds, the algorithm degenerates in a scenario of immediate convergence that is worth

further analysis. In fact, for α → 0 or β → 0, the master step becomes:

mα(y) = mβ(y) = arg min
z

{L(z, y) | z ∈ C}

i.e., since the original labels are discarded, there is no margin for accuracy improvement once

the constraints get satisfied. Likewise, for α → +∞ or β → +∞, it turns into:

mα(y) = mβ(y) = arg min
z

{L(z, y∗) | z ∈ C}

i.e., the model predictions are discarded this time, leading to a master step that will always

return the same vector z∗ which is the projection of the original labels y∗ on the feasible region

2.2. EXTENDING THE ALGORITHM 18

C, preventing any for of iterative improvement. In particular, this latter case is essentially a

preprocessing technique similar in fashion to the one proposed in [3].

Despite the complications to assess its convergence, the general nature of Moving Targets

is still a strong advantage under many points of view. Indeed, the method poses no limits on

the implementation of both the learner and the master. On the one hand, the former may be

either a Linear or Logistic Regression Model, a Naive Bayes Classifier, a Random Forest, a

Support Vector Machine, or even a Deep Neural Network; the sole requirement is the ability of

the model to learn from supervised samples. On the other hand, the master step can be tackled

via any kind of technique which is able to deal with numerical variables and constraints, such

as Mixed­Interger Programming, Constraint Programming, or SAT Modulo Theories.

Finally, empirical investigations on the algorithm functioning has proven its efficiency and

reliability on small and medium­sized datasets involving both regression and classification

problems, with constraints ranging from class balance to fairness enforcement. Still, some

issues remain. Firstly, scalability on very large datasets has not been deeply explored, but it

is expected to be a tough challenge. Secondly, the role of the hyperparameters is still under

examination, and it would be interesting to devise an adaptive procedure able to automatically

tune α and β, as well as to develop two additional features already mentioned in the conclusive

chapter of [2], namely the possibility to start the algorithm by directly projecting the targets

into the feasible space rather than pretraining the learner, and the adoption of crossentropy

loss on output probabilities rather than hamming distance on output classes in the master step.

Thirdly, since Moving Targets has been advised as a mechanism to handle supervised tasks

only, the original formulation provides no support to deal with unsupervised data. As far as

this dissertation is concerned, we will focus solely on the last two issues; in particular, we will

implement and evaluate the effects of those supplementary features, and eventually extend the

use cases ofMoving Targets by developing methodologies to manage semi­supervised learning

and shape constraints, while retaining the same algorithmic core.

2.2 Extending the Algorithm

Our contribution on the extension of Moving Targets is two­fold. On the one hand, we

intend to prove that the said method can be applied to semi­supervised learning tasks without

any modification to the core of the algorithm, which maintains the same iterative structure

2.2. EXTENDING THE ALGORITHM 19

with two alternated steps. In order to do so, we will need to introduce new hyperparamters

that serve the purpose of balancing the influence of supervised and unsupervised data points

during both the learner and the master step, as well as some other expedients to speed up the

computation and get a higher accuracy. On the other hand, given that we focus on monotonicity

shape constraints – which, as stated in section 1.3, need to satisfy the ceteris paribus condition

in order to be enforced –, we propose as well a data augmentation procedure to generate a set

of useful unsupervised samples.

2.2.1 Newly­introduced Hyperparameters

To the extent of our work, we will consider datasets having a form D = DS ∪DU , where

DS = {(xs
1, y

s
1), ..., (x

s
n, y

s
n)} is the subset of supervised examples, and DU = {xu

1 , ..., x
u
m}

the subset of unsupervised ones. Even though we will later consider unsupervised samples

generated via data augmentation techniques only, up to this point of the discussion we pose no

limits neither on the provenance of unlabelled data nor on the kind of constraints involved.

Since Moving Targets proceeds by relabelling all the data points – with the sole exception

of the pretraining phase in which the machine learning module is trained without any prior

intervention of the master step –, from the first iteration on, each unlabelled sample will be

provided a synthetic label yui obtained by the enforcement of the constraints in the optimiza­

tion problem. Nonetheless, the introduction of these new supervised data points poses some

problems on how to consider them with respect to the original ones. Indeed, due to the absence

of authentic ground truths to balance the effects of the model’s predictions and the constraints,

the relabelling process performed by the master may have pushed away the new labels from a

reasonable region of the output space. Therefore, in order to maintain some degrees of freedom

on how to weight the unsupervised data points, we propose three new hyperparameters:

Learner Omega, a positive real number ωl that balances the weight of supervised samples

with respect to unsupervised ones during the learning phase. Practically, given the loss

function L of the learner l, instead of averaging the losses of each sample independently

from its kind, the final value will be computed as:

L(Di) =
∑

(xs,ys)∈DS
i

L(l(xs), ys)

| DS
i |

+
1

ωl

·
∑

(xu,yu)∈DU
i

L(l(xu), yu)

| DU
i |

whereDS
i andDU

i are the two datasets containing the supervised and the (originally) un­

2.2. EXTENDING THE ALGORITHM 20

(a) Adjusted labels adopting the standard configuration (left) and the same one with learner_omega
= 10 (right). Since in the second case unsupervised samples (black circles) are given less weight than
supervised ones (blue crosses), the resulting predictions from the learner (red line) stays lower.

(b) Distance between the original labels (blue circles), the adjusted labels (black crosses), and the predic­
tions (red line) using the standard configuration (left) and the same one with master_omega = 100. In
the second scenario, unsupervised samples are givenmoreweight than supervised ones, thus the adjusted
labels for supervised samples are nearer to the original targets rather than to the learner’s prediction.

(c) Adjusted labels for the standard configuration (left) and the same configuration with
learner_weights = 'infeasible' (right). As in the second scenario only infeasible unsupervised
samples (black circles) are considered, their presence is concentrated in those areas.

Figure 2.2: Effect of the hyperparameters after one iteration in a univariate, monotonically­
decreasing dataset. The standard configuration (left) has values learner_omega = 1,
master_omega = 1, and learner_weights = 'all'.

2.2. EXTENDING THE ALGORITHM 21

supervised samples, respectively, at the ith iteration of Moving Targets, thus containing

in both cases the adjusted labels. The parameter ωl can be used to express a degree of

confidence in the relabelling process carried out by the master. Indeed, since it repre­

sents the ratio between the weights of supervised and unsupervised samples, choosing

a lower value indicates higher confidence, while choosing a higher value means to trust

unsupervised labels less, up to the limit value of +∞ where the unsupervised samples

are completely ignored, leading to a degeneration into the original Moving Target’s for­

mulation.

Master Omega, namely the analogue of ωl for the master step. It is a positive real number too

(ωm), and it balances the weight of supervised and unsupervised samples in the master’s

p_loss, i.e., the loss L(z, y) computed between the adjusted targets z and the learner’s

prediction y. In this case, ωm represents an inverse ratio, thus the loss value will be

computed as:

L(Di) =
∑

(xs,ys)∈DS
i

L(m(xs), ys)

| DS
i |

+ ωm ·
∑

(xu,yu)∈DU
i

L(m(xu), yu)

| DU
i |

where m(x) represents the adjusted label z returned by the master step. This parameter

has an effect which approximates that of α any time that | DU |≫| DS | holds. In

fact, with a much greater number of unsupervised samples with respect to supervised

ones, the p_loss is almost completely dominated by the unsupervised; on the contrary,

given that the y_loss is computed between the original targets and the adjusted ones, the

unsupervised samples cannot influence it since they lack of a label. Still, whenever this

is not the case, ωm allows to better control the influence of the unsupervised samples

during the relabelling process.

Learner Weights, a parameter that influences which and how many unsupervised samples

should be considered during the learning process. In particular, one option is to use all

the unsupervised samples, along with their new labels, while the other one is to use only

those samples which have somehow resulted infeasible at least once during the entire

progression of the algorithm. The latter option allows to reduce the number of data

points used in the subsequent training phases in order both to speed up the computation

and to limit the influence of unsupervised samples only around those regions in which

some regularization is needed. Internally, the model has a data structure that keeps track

2.2. EXTENDING THE ALGORITHM 22

Figure 2.3: Distribution of original (blue) and random/augmented samples (orange) in a dataset
with three monotonic features. The introduction of random data points allows to cover even
the regions of the input space where no supervised data was present.

of the unsupervised samples which have contributed to increase the level of violations

in at least one iteration: those samples only will be adopted in the training phase, with

respective weight 1
ωl
. Trivially, it follows that the number of adopted unsupervised points

cannot decrease during the execution of the algorithm.

Finally, one last investigated hyperparameter – Warm Start – introduces the possibility

to maintain the internal status of the data­driven model throughout the iterations of Moving

Targets. Ideally, since the learner is originally trained on the supervised samples during the

pretraining step, embracing a warm start techniquemay help to regularize the infeasible regions

only, without altering too much the already feasible ones.

2.2.2 Data Augmentation & Monotonicities

Since our purpose is to concentrate solely on the extension of the algorithm, we opted for

keeping the data augmentation procedure detached from it. Namely, the process is run before

the execution of Moving Targets rather then during its iterations, and the purpose of the data

augmentation is merely to generate a setDA of – unsupervised – augmented samples from the

original dataset DS as if it was already available.

In order to do so, we proceed by creating na copies of all the input samples x for each

input feature f ∈ FC on which a constraint can be imposed, for a total of na· | FC | · | DS |

augmented data points. Moreover, some additional unlabelled data point might be generated

as well prior to the core of the augmentation procedure in order to better fill the input space

and allow for the enforcement of constraints even in uncovered areas, as in the case exposed

in figure 2.3. Then, as clarified in algorithm 2, each of the newly generated record is modi­

2.2. EXTENDING THE ALGORITHM 23

Algorithm 2: Data Augmentation
input :dataset DS , features F ; # random nr, # augmented na; sampling function s
DR = ∅ # dataset of random samples
DA = ∅ # dataset of augmented samples
create nr new unlabelled data points by
sampling a random value for each input
feature f, then add it to DR

for f ∈ F do
yr = ∅
xr = ∅
for i=1..nr do

πf (x
r) = s(f)

end
DR = DR ∪ {(xr, yr)}

end
DS = DS ∪DR # merge the two datasets
create a pool of na new unlabelled samples by copying an
original/random data point x and sampling a different
value only for each feature f ∈ FC for which a
constraint can be imposed, then add it to DA

for (x, y) ∈ DS do
for f ∈ FC do

for i=1..na do
ya = ∅
xa = π¬a(x) ▷◁ s(a)
DA = DA ∪ {(xa, ya)}

end
end

end
return DS ∪DA

fied only in the field regarding the specific feature f via the sampling function s, so that the

ceteris paribus condition is satisfied. On a side note about s, even though the literature pro­

vides plenty of different sampling methods, we opted for leveraging either a standard sampling

with replacement technique in case of non­constrained features or a random uniform sampling

technique in case of constrained ones – in order to generate samples within upper and lower

bounds selected accordingly to the input range –, so that the process would have been kept as

simple as possible.

Furthermore, respectively to our specific task, we needed to address the computation of

expected monotonicities in order to inject them during the master step. As the dataset D is

not modified throughout the iterative process – except for the labels which, however, are not

2.2. EXTENDING THE ALGORITHM 24

Loss Function Expression Label Space

Mean Absolute Error 1
n
|| z − y∗ ||1 Rn

Mean Squared Error 1
n
|| z − y∗ ||22 Rn

Table 2.1: Loss functions for regression tasks (n = # examples)

involved in the definition of the constraints –, expected monotonicities can be computed just

once, at the beginning of the process. In particular, regarding the computation per se, we tested

three different methodologies, namely:

Ground, where a constraint is imposed solely between each augmented sample (xa, ∅) ∈ DA

and its respective original sample (x, y) ∈ DS from which it was generated2. A mono­

tonicity between the two data points is always expected to exists, since the augmented

point differs from the original one for exactly one feature f . It follows that the total

number of constraints will be the same as the size | DA |= na· | FC | · | DS | of the

augmented dataset.

Group, where a constraint is imposed between each pair of data points that belong to the group

of samples augmented from the same original one. Since, for any constrainable feature

f ∈ FC , the process generates na augmented samples – plus the original one itself – that

satisfy the ceteris paribus condition with respect to f , the total number of constraints

will be (na+1)·na

2
· | FC | · | DS |, which is na+1

2
times greater than the previous one.

All, where a constraint is imposed between all the pairs in D = DS ∪ DA. In this case, it is

difficult to identify in advance the total number of constraints due to the presence ofmany

different data points which, usually, will hardly satisfy the ceteris paribus condition with

respect to a single feature f . Especially, in case of multiple real­valued features, we can

expect this number to be (na+1)·na

2
· | FC | · | DS | +ε, where ε ∈ N is a small integer.

2.2.3 Regression vs. Classification

If we focus on the specific constrained problems that we have chosen, i.e., those ones re­

garding monotonicity shape constraints, we need to make a distinction between regression and

(binary) classification tasks. In particular, once the formulation is perfected with the addition
2WithDS we indicate the dataset containing both the original supervised samples and the potential randomly­

generated samples which might be introduced in the set at the beginning of the data augmentation procedure.

2.2. EXTENDING THE ALGORITHM 25

Loss Function Expression Label Space

Hamming Distance 1
n

∑n
i=1 I[zi ̸= y∗i] {0, 1}n

Crossentropy − 1
n

∑n
i=1[zi · log y∗i + (1− zi) · log(1− y∗i)] {0, 1}n

Reversed Crossentropy − 1
n

∑n
i=1[y

∗
i · log zi + (1− y∗i) · log(1− zi)] [0, 1]n

Symmetric Crossentropy − 1
n

∑n
i=1[zi · log y∗i + (1− zi) · log(1− y∗i) +

y∗i · log zi + (1− y∗i) · log(1− zi)]
[0, 1]n

Table 2.2: Loss functions for binary classification tasks (n = # examples)

of the constraints originated from the expected monotonicities, in the regression scenario we

obtain a quite straight­forward master problem which can be either a Linear or a Quadratic

Program depending on the chosen loss function, as shown in table 2.1.

On the contrary, as previously exposed in section 1.3, the formulation is rather more com­

plicated in the classification scenario, since the semantics of the constraints concerns the output

probabilities instead of the output classes. This means that we aim at obtaining continuous tar­

gets from the master step, even though our original labels were categorical3. It should follow

that, of all the loss functions shown in table 2.2, we may want to rely either on Reversed or

on Symmetric Crossentropy, which are the only ones allowing for continuous targets4. Still,

these two loss functions come with a considerable burden, namely the variables that must be

optimized are under a logarithm operator, which causes a way more difficult management of

the optimization problem, since logarithms are usually handled by solvers via piecewise lin­

earization, leading to a larger instance and a less precise solution. A possible workaround to

bypass this issue is to consider the classification task on par with a regression one, being the

formulation exactly the same. Specifically, one solution may be to use Mean Squared (or Ab­

solute) Error in the master step, and Binary Crossentropy in the learner step. Otherwise, since

some investigations about exploiting the MAE loss on classification tasks in order to better

handle noisy data have been carried out with positive results [34, 35], another option might be

to adopt a regression loss in both the steps. Nevertheless, a more detailed discussion on the

effects of these choices will be presented in the next chapter, where the results of our empirical

evaluation are presented.

3This is not such a troublesome issue in the majority of the cases, since the most adopted loss function for
binary classification problems in data­driven systems is the crossetropy loss, which can handle continuous targets
as well. Still, there may be cases in which this behaviour is not particularly suitable for the application.

4Take in mind that, in this scenario, the variables that we want to optimize are the adjusted targets z.

Chapter 3

Empirical Evaluation

Now that we have introduced the main concepts related to our contribution, we can proceed

with some empirical tests to evaluate it. In particular, section 3.1 will contain some preliminary

analysis of the two additional features added to the original formulation of Moving Targets.

Then, in section 3.2 we will focus on the core of our contribution by assessing the role of the

hyperparameters that we introduced to deal with semi­supervised learning. Finally, section 3.3

will provide the outcomes of a benchmarking process in which we compared our method to

other common data­driven approaches.

Our setup consists in an Intel Core i7­8565U laptop with 8 GB RAM. For the experiments

in section 3.1 we use CPLEX 12.8 to solve the master problems and a Linear or Logistic Re­

gression model from Scikit-Learn 0.24 as learner. Instead, experiments in sections 3.2 and

3.3 rely on Gurobi 9.1 and on a Multi­layer Perceptron with two hidden layer of 128 units

implemented using Tensorflow 2.4, respectively.

The full results related to each group of tests are available at www.wandb.ai/giuluck/

mt_preliminary, www.wandb.ai/giuluck/mt_tuning, and www.wandb.ai/giuluck/

mt_benchmarking, respectively.

3.1 Preliminary Studies

Before diving into the semi­supervised extension, we implemented and investigated the

role of the two features already mentioned in subsection 2.1.1, namely the possibility to skip

the pretraining step, thus directly start the algorithm with a projection, and the adoption

of output probabilities via crossentropy loss rather than output classes via hamming dis­

26

www.wandb.ai/giuluck/mt_preliminary
www.wandb.ai/giuluck/mt_preliminary
www.wandb.ai/giuluck/mt_tuning
www.wandb.ai/giuluck/mt_benchmarking
www.wandb.ai/giuluck/mt_benchmarking

3.1. PRELIMINARY STUDIES 27

(a) Training history for the redwine dataset. While the accuracy converges to the same value, inde­
pendently from the configuration, adopting the probabilities allows to reduce the level of violation,
measured as the standard deviation of the frequencies of the output classes.

(b) Training history fro the adult dataset. Even though probabilities lead toworse results, it is preferable
to adopt them since the trends are less subjected to fluctuations and stochasticity.

(c) Training history for the crime dataset – since this is a regression task, no probability is involved.
This test confirms that there is no difference among the initial steps, both in terms of accuracy and
violations, measured by the Disparate Impact Discrimination Index (DIDI) [18].

Figure 3.1: Accuracy and constraint satisfaction on three datasets considered in [2].

3.2. HYPERPARAMETERS INVESTIGATION 28

tance. For this purpose, we compared the training history of four different configurations –

namely all the combinations involving the two initial steps and the probabilities/classes choice

– on the seven datasets considered in [2]1.

Figure 3.1 shows the outcomes of our experiments. We trained a Moving Target instance

for 15 iterations, then we aggregated the results of each iteration on the average value of 5 cross­

validated folds. Results demonstrate how the initial step is not such a decisive hyperparameter,

since both the pretraining and the projection scenarios converge to the same solution

within a reasonable amount of iterations. On the contrary, adopting the output probabilities

rather than the output classes leads to a stabler process, which is not only less influenced by

fluctuations, but in certain cases may even guarantee a better satisfaction of the constraints.

3.2 Hyperparameters Investigation

In this section, we will investigate the role of the algorithm’s hyperparameters respectively

to semi­supervised tasks involving monotonicity shape constraints. In order to assess the qual­

ity of the solutions, we rely on two synthetic datasets:

Synthetic, a bivariate dataset with a numerical output in which data points are sampled from

the function f(a, b) = a3

1+sin2(πb−0.01π))
+ sin2(πb− 0.01π) + 1, with a, b ∈ [−1, 1]. The

expected (increasing) monotonicity regards the attribute a only, as evident from figure

3.2a. Moreover, the train and test sets have different distributions; indeed, while a is

sampled from a uniform distribution U(−1, 1) in the latter, in the former those values

are obtained from a normal distributionN (0, 0.3), thus leading to a concentration of the

data points in the central region2.

Restaurants, a classification dataset aimed at computing the click­through rate of a restau­

rant on dedicated websites for comparisons and suggestions – e.g., Tripadvisor. The

dataset has been proposed in www.tensorflow.org/lattice/tutorials/shape_

constraints3, and it involves three partial monotonicities, one regarding a categorical

feature and two regarding numerical ones. As before, train and test sets have different

distributions to simulate the fact that training data is usually available for restaurants

with a high click­through rate only.
1The other hyperparameters, α and β, were kept to the default value of 1.
2The attribute b is uniformly sampled in both cases.
3Last accessed on 03/07/2021.

www.tensorflow.org/lattice/tutorials/shape_constraints
www.tensorflow.org/lattice/tutorials/shape_constraints

3.2. HYPERPARAMETERS INVESTIGATION 29

(a) Function output (left) and marginalized responses for each individual input feature.

(b) Theoretical click­through rates with respect to the four categories of restaurants.

Figure 3.2: Ground truths for the two synthetic datasets.

In order to assess the importance of each parameter, we proceed by running three consec­

utive experiments involving different subsets of parameters, since a unique factorial design

would be prohibitive in terms of computational effort. For each tested configuration, we use

the following experimental procedure:

1. we partition the dataset into a training and a test set;

2. we augment the test set in order to dispose of data subsets satisfying the ceteris paribus

condition with respect to a feature, which will be eventually used to compute the level

of constraint violation;

3. we run a 5­fold cross­validation procedure on the training set;

4. at the end of each iteration, we measure both the loss and the accuracy for the train,

validation, and test sets, as well as the average level of violation and number of violations

with respect to the augmented test set;

5. we collect the results of each fold and aggregate on the mean.

3.2. HYPERPARAMETERS INVESTIGATION 30

3.2.1 Original Hyperparameters

Firstly, we investigate the effects of the hyperparameters that were already present in the

original formulation of the algorithm, or that are not strictly inherent to it, namely: α, β, the

initial step, the master loss, and the kind of monotonicities computation procedure –

i.e., ground, group, and all. The total number of configurations obtained by this factorial

design is 144, which brings to 144 · 5 = 720 runs since we perform 5­fold cross­validation;

still, for the sake of the experiment, we remove two runs in which the learner yields completely

wrong predictions at a certain iteration, leading to biased average results that are abnormally

out of scale.

The outcomes show a slight, though expected, variation of both the solution quality and the

level of constraint violation depending on α. Similarly, even though it seems not to have an

impact on the number of violations, the choice of the master loss slightly alters the metric

score, thus further investigation on the parameter will be carried out. On the contrary, there is

no significant difference in the results respectively to the value of β, nor if we do not adopt the

beta step at all: for this reason, we will not use the beta step anymore from now on in order to

limit the degrees of freedom for the configuration.

Nonetheless, some differences rise up when examining the behaviour of the other two pa­

rameters. As demonstrated in figure 3.3a, starting with a projection step is not as effective as it

was in the previous tests. In fact, even though the trends suggest that in both cases the algorithm

will eventually converge to the same values if enough time is provided, in the pretraining

scenario the level of violations is almost the same but there metric scores are higher since the

first iterations – by any means, this is in line with our expectations, as in this case the unlabelled

may bring the algorithm towards unreasonable regions if no pretraining step balances the in­

jected constraints. Furthermore, figure 3.3b shows how significantly higher violations arise

when monotonicities are imposed with respect to the ground data point only. On the contrary,

the value is practically the same in the group and all configurations, thus it is preferable to

use the former since it requires O(k2 ·N) instead of O(k2 ·N2) time to compute the expected

monotonicities, where N =| DS | is the cardinality of the original dataset and k = na· | FC |

is the number of augmented samples respectively to each original data point.

3.2. HYPERPARAMETERS INVESTIGATION 31

(a) Aggregated results with respect to the initial step.

(b) Aggregated results with respect to the monotonicities kind.

Figure 3.3: Outcomes of the investigation on the original hyperparameters.

3.2. HYPERPARAMETERS INVESTIGATION 32

3.2.2 Newly­introduced Hyperparameters

A further investigation is carried out on the same dataset, but it is focused on the hyper­

parameters introduced specifically to deal with semi­supervised tasks – i.e., learner omega,

master omega, learner weights, and warm start –, plus α and master loss, whose role

could not be unequivocally established from the previous experiment.

Figure 3.4a shows how, contrarily to our expectations, givingmore weights to unsupervised

data points allows not only to reduce the number of violations, but also to increase the accuracy

scores for all the three splits. Similarly, in figure 3.4b we can notice how mse seems to be a

more effective and more robust loss function for the master step, even though the number –

and the distribution – of violations is similar to the mae cases.

Regarding the other parameters, no significant difference was found between the runs. We

can interpret this outcome as a confirmation that our algorithm is rather general and robust,

since it is not particularly influenced by the chosen configuration. Still, as well as before, the

unique exception regards α which, being the most delicate parameter, is able to considerably

influence the obtained results.

3.2.3 Classification Losses

In addition to the tests on regression tasks, we run a last factorial design experiment to

understand the effect of the losses presented in table 2.1 and 2.2 on classification tasks. Thus,

while keeping the three values ofα as usual (0.01, 0.1, and 1), we analyze the four classification

losses for the master step, combined with binary crossentropy for the learner, plus the two

regression losses for the master step combined with both binary crossentropy and mean

squared error for the learner4.

Figure 3.5 shows the outcomes of this experiment. Even though the best approach seems to

be the adoption of the reversed binary crossentropy in the master step, the improvement

with respect to mean squared error is so minimal that does not justify the longer training

times, especially if considering that the former scales much worse than the latter. Moreover,

mse behaves better than mae even in classification scenarios.

A conclusive notable result, which did not follow our expectations, is the fact that using

different losses in the two steps – e.g., bce for the learner, and mse for the master – does not
4In any case, the learner always has a sigmoid activation on the output neuron.

3.2. HYPERPARAMETERS INVESTIGATION 33

(a) Aggregated results with respect to learner omega.

(b) Aggregated results with respect to the master loss.

Figure 3.4: Outcomes of the investigation on the newly­introduced hyperparameters.

3.3. BENCHMARKING 34

Figure 3.5: Outcomes of the investigation on the classification losses.

undermines the convergence of the method. On the contrary, adopting the crossentropy for the

learner seems to be a more reasonable choice even when the master problem is formulated as

a regression task.

3.3 Benchmarking

As a final assessment, we demonstrate the applicability of our proposed method both on

the two previously­introduced synthetic datasets, and on two additional regression and binary

classification real­world datasets taken from [29] and [33], respectively. Additionally, for these

real­world problems, we test two scenarios: an easier one (Partial Features), in which a small

subset of the input features is used, and a regular one (Full Features), where all the features at

disposal are adopted.

For each of these tasks, we compare the results of three instances of Moving Targets (MT),

using the default configuration and three different α values (0.01, 0.1, and 1), with just as many

other common data­driven techniques, namely:

MLP an unconstrained multi­layer perceptron, with two hidden layers having 128 units each

– this is used, too, as learner in the Moving Target’s process.

SBR a semantich­based regularized version of that same MLP, with automatic tuning of the

parameter λ as discussed in subsetion 1.3.1.

3.3. BENCHMARKING 35

MLP SBR TFL MT 0.01 MT 0.1 MT 1.0

Test R2 0.81465 0.89365 0.82484 0.84176 0.84722 0.85654

Test MSE 0.03636 0.02086 0.03436 0.03104 0.02997 0.02815

Val R2 0.97941 0.98304 0.96280 0.97619 0.98338 0.97992

Val MSE 0.00251 0.00200 0.00467 0.00292 0.00205 0.00248

Train R2 0.99349 0.99508 0.96771 0.98609 0.99174 0.99158

Train MSE 0.00082 0.00062 0.00408 0.00175 0.00104 0.00106

Avg. Violation 0.00886 0.00005 < 1e­5 0.00039 0.00025 0.00022

Pct. Violations 0.16140 0.01166 < 1e­5 0.05841 0.05166 0.03723

Training Time 10.4124 15.6683 10.9543 202.905 129.783 107.416

Table 3.1: Results for the synthetic dataset.

TFL a lattice model implemented via Tensorflow Lattice’s Canned Estimator.

The experimental procedure is the same as before, with the training sets obtained by ran­

domly sampling – with stratification, in case of classification tasks – 20% of the data points

for the non­synthetic datasets5. Still, since this time we are not interested in the whole training

history but rather on the goodness of the final solution only, we collect the results of each fold

and compute the average value for all the tested models. The best scores, respectively to each

metric, are highlighted in the conclusive tables6.

3.3.1 Regression

Regression datasets share the same loss function and metric, i.e., Mean Squared Error

(MSE) and R2 Score (R2), respectively. All the neural networks – i.e., the MLP model, the

SBR model, and the Moving Target’s learners – are trained with MSE loss function and no

output activation. Additionally, each Moving Target instance adopts the same loss during the

master step as well, and it is run for a total of 30 iterations.

SYNTHETIC DATASET

A description of the task has been already provided in section 3.2. Among the most notable

features of this dataset, one is that it is not built upon a stochastic process, therefore the enforced
5The only exception regards the puzzle dataset, which already comprises an explicit test set.
6When considering violations, lattice models are ignored as they will certainly bring the best results since they

are conceived to respect the semantics of the shape constraint.

3.3. BENCHMARKING 36

Partial Features MLP SBR TFL MT 0.01 MT 0.1 MT 1.0

Test R2 0.54249 0.54036 0.47919 0.50471 0.52880 0.54593

Test MSE 6855.03 6886.92 7803.53 7421.12 7060.11 6803.44

Val R2 0.41195 0.44419 0.48128 0.44589 0.49590 0.45784

Val MSE 3947.17 3715.05 3682.72 3776.49 3583.07 3667.49

Train R2 0.66980 0.65957 0.57456 0.58746 0.61441 0.63318

Train MSE 2473.87 2561.81 3233.21 3140.36 2923.50 2790.91

Avg. Violation 9.55039 1.13464 < 1e­5 0.10926 0.28870 0.34289

Pct. Violations 0.19564 0.07088 < 1e­5 0.03970 0.04810 0.04617

Training Time 3.75024 15.3248 22.2058 303.348 323.664 400.130

Full Features MLP SBR TFL MT 0.01 MT 0.1 MT 1.0

Test R2 0.52864 0.59019 0.52015 0.59761 0.63541 0.58458

Test MSE 7062.50 6140.40 7189.84 6029.15 5462.87 6224.40

Val R2 0.55850 0.53161 0.52243 0.54714 0.61920 0.59452

Val MSE 3068.34 3264.89 3106.25 3135.00 2441.43 2600.37

Train R2 0.82339 0.76653 0.74308 0.80898 0.95622 0.96101

Train MSE 1358.02 1725.53 1925.14 1432.32 338.121 302.327

Avg. Violation 23.8483 0.41846 < 1e­5 0.33665 0.56701 0.70334

Pct. Violations 0.43341 0.03304 < 1e­5 0.10420 0.11593 0.10807

Training Time 2.43442 15.3112 36.2656 610.614 483.499 528.429

Table 3.2: Results for the puzzles dataset.

constraints directly result from each pair of samples sample having certain input values rather

than on the aggregation of multiple samples. Table 3.1 shows the outcomes of the tests. SBR

clearly outperforms all the other methods in this case; nonetheless, Moving Targets is the one

that mostly approaches its efficiency both in terms of loss, accuracy, and constraint satisfaction,

beating all the other rival techniques.

PUZZLES DATASET

This task consists in predicting the sales of jigsaw puzzles using 8 input features obtained

from an aggregation of Amazon reviews. For thePartial Features variant, monotonic attributes

only are retained, i.e., word count (decreasing), star rating (increasing), and num reviews (in­

creasing). Still, in both scenarios we use the entire dataset, which is composed of 522 samples.

3.3. BENCHMARKING 37

As exposed in table 3.2, differently from the previous task, this time Moving Targets reveals

itself as the most effective technique in terms of accuracy and constraint satisfaction, both in

the full and in the partial features scenario.

CARS DATASET

Similarly to the previous task, this one is aimed at predicting the (monthly) sales of an

item, i.e., cars. The dataset is really small, with 157 samples only. In the Full Features variant,

11 input attributes – both numeric and categorical – are included; conversely, in the Partial

Features variant, we keep a unique attribute, namely the price of the car. Since the latter case

is a univariate task, the ceteris paribus condition is always satisfied, and the monotonicities can

be imposed on all the pairs of samples without any need for data augmentation. Thus, along

with the usual 3 + 3 methods, four other ones are tested, namely SBR (NA), MT 0.01 (NA),

MT 0.1 (NA), and MT 1.0 (NA), where (NA) stands for ”Not Augmented”. As well as in

the puzzles dataset, Moving Targets is able to outperform all the other techniques as displayed

in table 3.3. Also, regarding the univariate case, it is interesting to notice how the effect of

augmented data is still beneficial when it comes to Moving Targets, while Semantic­based

Regularization works better by enforcing the constraints on original data only.

3.3.2 Classification

While sharing the same loss function, i.e., Binary Crossentropy (BCE), classification

datasets differ in the chosen metric – Area under the Receiver Operating Characteristic curve

(AUC) for the restaurant dataset, and Accuracy score (Acc.) for the other two. Both MLP and

SBRmodels, as well as the Moving Target’s learners, are trained with binary crossentropy

loss and sigmoid output activation, while the master step of Moving Targets adopts mean

squared error, as suggested in subsection 3.2.3. Also, in order to lower the training times,

Moving Target instances are run for 10 iterations only.

RESTAURANTS DATASET

As previously asserted in section 3.2, the purpose of this dataset is to predict the click­

through rate of a restaurant given one categorical and two numerical features. The outcomes of

the benckmarking procedure are shown in table 3.4, from which it results that Moving Targets

is able to slightly improve the test accuracy with respect to MLP and SBR – even though TFL

3.3. BENCHMARKING 38

Partial Features MLP SBR TFL MT 0.01 MT 0.1 MT 1.0

Test R2 0.03285 0.02410 0.02997 0.04158 0.00613 0.01498

Test MSE 9520.57 9606.73 9548.95 9434.62 9783.65 9696.49

Val R2 0.05160 0.02468 0.07440 0.09132 ­0.00092 ­0.02714

Val MSE 3103.01 3178.13 3030.94 3002.53 3337.05 3304.13

Train R2 0.15178 0.13715 0.17216 0.11478 0.03281 0.09421

Train MSE 2837.88 2885.56 2769.66 2958.61 3230.31 3030.77

Avg. Violation 0.04981 0.04479 < 1e­5 0.00022 0.18159 0.01446

Pct. Violations 0.01002 0.00861 < 1e­5 0.00072 0.16548 0.07819

Training Time 3.20636 4.96835 8.80360 80.9019 153.855 159.115

SBR (NA) MT 0.01 (NA) MT 0.1 (NA) MT 1.0 (NA)

Test R2 0.03503 0.02325 0.03864 0.04004

Test MSE 9499.16 9615.12 9463.56 9449.82

Val R2 0.05850 ­0.00023 0.09186 0.06020

Val MSE 3079.79 3290.48 2974.85 3073.19

Train R2 0.15040 0.06873 0.12554 0.13779

Train MSE 2842.36 3117.54 2922.56 2884.13

Avg. Violation 0.02409 0.00038 0.04581 0.00085

Pct. Violations 0.00632 0.00136 0.09347 0.00118

Training Time 5.18381 94.5574 91.3459 92.7209

Full Features MLP SBR TFL MT 0.01 MT 0.1 MT 1.0

Test R2 0.17219 ­0.03171 ­1.13504 0.12015 0.05831 0.11057

Test MSE 3373.35 4204.25 8700.33 3585.42 3837.40 3624.44

Val R2 ­0.60541 ­0.72179 ­1.20390 ­0.60064 ­0.43101 ­0.48723

Val MSE 5374.08 5946.53 7160.70 5438.21 5066.78 5207.88

Train R2 0.59631 0.53362 0.75481 0.61858 0.92857 0.96307

Train MSE 1962.86 2014.71 1169.80 1867.51 349.681 180.919

Avg. Violation 8.17774 5.30826 < 1e­5 0.56351 0.99641 0.56137

Pct. Violations 0.38304 0.19488 < 1e­5 0.08586 0.13480 0.07428

Training Time 2.10312 7.99095 18.5090 77.0019 85.7401 109.782

Table 3.3: Results for the cars dataset.

3.3. BENCHMARKING 39

MLP SBR TFL MT 0.01 MT 0.1 MT 1.0

Test AUC 0.78379 0.78650 0.80254 0.79063 0.78795 0.78878

Test BCE 0.67221 0.56502 0.52752 0.83721 0.92973 0.96632

Val AUC 0.78543 0.79579 0.80031 0.78617 0.78258 0.78515

Val BCE 0.54956 0.51769 0.51007 0.62986 0.66554 0.67145

Train AUC 0.86740 0.82948 0.83646 0.86937 0.86048 0.86094

Train BCE 0.42060 0.47132 0.45786 0.41238 0.43159 0.42846

Avg. Violation 0.00035 0.00001 < 1e­5 0.00027 0.00024 0.00077

Pct. Violations 0.00998 0.00125 < 1e­5 0.01671 0.01362 0.01286

Training Time 4.35492 8.32683 26.5865 91.8858 114.754 142.365

Table 3.4: Results for the restaurants dataset.

scores better –, and even to achieve the best scores on the training sets. The major shortcoming

regards the level of constraint satisfaction: indeed, Moving Targets could not reduce so much

the violations if compared to the unconstrained model, even though the original degree of

violation was already small from the beginning.

LAW DATASET

The task is based upon the Law School Admission Dataset [36] and it is aimed at predicting

whether or not a student will pass the bar exam based on a series of demographic and academic

features. In particular, as described in [33], the adoption of monotonicity constraints is justi­

fied by the necessity to avoid unfair penalization towards good attributes, e.g., the Law School

Admission Test (LSAT) score and the Undergraduate Grade Point Average (UGPA), in this

case. The dataset has a rather considerable size, at least with respect to previous ones, since it

is made of 27478 records and 9 input features. Due to its high cardinality, no results could be

obtained from the lattice model within a reasonable time frame for the Full Features variant;

instead, in the Partial Features one, where the two monotonic attributes only are employed,

the TFL model was correctly trained up to convergence. Results shown in table 3.5 exhibit

a slight, though significant, improvement regarding all the accuracy scores for the Moving

Targets method in the partial features scenario, with a similar trend for the level of constraint

violations, which is however beaten by the semantic­based regularization approach. On the

contrary, when it comes to the full features alternative, SBR definitely outperforms Moving

Targets, in particular if we consider the computational overhead that is required by our method.

3.3. BENCHMARKING 40

Partial Features MLP SBR TFL MT 0.01 MT 0.1 MT 1.0

Test Acc. 0.94977 0.94964 0.94951 0.94990 0.95016 0.94981

Test BCE 0.17008 0.17053 0.17081 0.17197 0.17352 0.17642

Val Acc. 0.94864 0.94886 0.94881 0.94897 0.94903 0.94705

Val BCE 0.17274 0.17244 0.17265 0.17338 0.17459 0.17791

Train Acc. 0.94904 0.94922 0.94897 0.94938 0.94931 0.94731

Train BCE 0.17149 0.17095 0.17205 0.17252 0.17357 0.17638

Avg. Violation 0.00034 < 1e­5 < 1e­5 0.00002 0.00004 0.00004

Pct. Violations 0.04433 0.00073 < 1e­5 0.01565 0.03270 0.01791

Training Time 25.7467 113.713 707.052 1130.07 1084.39 1323.96

Full Features MLP SBR TFL MT 0.01 MT 0.1 MT 1.0

Test Acc. 0.94886 0.94915 / 0.94963 0.94546 0.93301

Test BCE 0.15292 0.15223 / 0.20907 0.20822 0.25441

Val Acc. 0.95086 0.95152 / 0.95056 0.94733 0.93458

Val BCE 0.14533 0.14450 / 0.20195 0.18203 0.22184

Train Acc. 0.95333 0.95317 / 0.95013 0.94865 0.94833

Train BCE 0.13676 0.13550 / 0.18582 0.16069 0.14242

Avg. Violation 0.00024 < 1e­5 / 0.00004 0.00017 0.00146

Pct. Violations 0.02499 0.00108 / 0.05254 0.03300 0.05152

Training Time 30.1492 79.2779 / 6884.64 8841.56 6882.53

Table 3.5: Results for the law dataset.

Nevertheless, it should be noticed that the scores are similar when considering the two alter­

native settings; thus, if the additional features are not required due to the presence of further

constraints, it may be reasonable to discard them.

DEFAULT DATASET

This final task is similar to the previous one. It leverages theDefault of Credit Card Clients

benchmark dataset from the UCI repository [37, 38], which contains samples collected from

30000 Taiwanese credit card users and a binary label representing whether or not that user

defaulted on a payment, plus 23 additional input features regarding marital status, gender, ed­

ucation, and how long a user is behind on payment of their existing bills [33] – monotonicity

constraints are imposed in these last 6 numerical features in order not to penalize users who pay

3.3. BENCHMARKING 41

Partial Features MLP SBR TFL MT 0.01 MT 0.1 MT 1.0

Test Acc. 0.81705 0.81705 0.81705 0.81705 0.81357 0.81705

Test BCE 0.45322 0.45477 0.45633 0.45584 0.46468 0.47561

Val Acc. 0.82091 0.82091 0.82091 0.82091 0.81754 0.82091

Val BCE 0.45155 0.45290 0.45476 0.45407 0.46455 0.47607

Train Acc. 0.82091 0.82091 0.82091 0.82091 0.81716 0.82091

Train BCE 0.45126 0.45241 0.45464 0.45424 0.46454 0.47589

Avg. Violation 0.00791 < 1e­5 < 1e­5 0.00008 0.00002 0.00024

Pct. Violations 0.22277 0.00448 < 1e­5 0.08123 0.01391 0.06800

Training Time 49.7223 183.306 1459.72 937.307 1120.18 1303.76

Full Features MLP SBR TFL MT 0.01 MT 0.1 MT 1.0

Test Acc. 0.81880 0.81930 / 0.81043 0.80773 0.77203

Test BCE 0.43888 0.43890 / 0.48947 0.49504 0.63390

Val Acc. 0.81762 0.81808 / 0.81067 0.80783 0.77542

Val BCE 0.43553 0.43563 / 0.48246 0.48997 0.62929

Train Acc. 0.82342 0.82172 / 0.83378 0.85911 0.91175

Train BCE 0.42256 0.42585 / 0.40701 0.32839 0.21999

Avg. Violation 0.00378 0.00001 / 0.00132 0.00121 0.00274

Pct. Violations 0.12268 0.00537 / 0.05940 0.04097 0.05635

Training Time 33.2046 199.056 / 10544.2 13033.4 17722.2

Table 3.6: Results for the default dataset.

more in advance, all else being equal. For the Partial Features scenario, marital status and pay­

ment related to the last month only are considered. Results (table 3.6) show how the accuracies

are practically the same independently from the model; still, the constraints are better enforced

with SBR. Instead, regarding the Full Features scenario, Moving Target is hardly applicable at

all not only due to size of the master problem, but most importantly because of the slowness of

retraining the learner 10 times on a dataset with such a high dimensionality and even higher car­

dinality. In fact, the number of samples goes up to (na· | FC | +1)· | DS |= (3 · 6+1)· | DS |,

i.e., 19 times the cardinality of the dataset used to train the unconstrained neural network.

Chapter 4

Conclusions

In this work, we extended Moving Targets, a state­of­the­art technique for injecting con­

straints in supervised learning [2]. We focused our contribution on three main steps. Firstly,

we implemented and, eventually, empirically evaluated the role of two additional features that

were proposed in the conclusive chapter of the original paper presenting the method. We

demonstrated that starting the process by projecting the original targets into the feasible re­

gion leads to the same results as starting with a pretraining step, at least if enough iterations

are run. Secondly, we developed new methodologies to deal with semi­supervised learning

scenarios as well as supervised ones, while maintaining the core of the algorithm intact. We

finally assessed the quality of our contribution via hyperparameter investigation and bench­

marking against other techniques from the literature in the third step. We were able to prove

that Moving Targets is rather a robust method since it is not particularly influenced by its hyper­

parameters, with the sole exception of α. Moreover, when employed to solve semi­supervised

tasks involving monotonicity shape constraints, the algorithm could outperform other common

techniques such as semantic­based regularization and lattice models, particularly when dealing

with regression problems.

4.1 Future Works

While being proved effective in certain scenarios, Moving Targets exhibited some defects

in other ones, especially regarding classification tasks. This is most probably due to the draw­

backs natively brought by monotonicity shape constraints, as exposed in section 1.3, which

somehow forces the learner and themaster step to rely on two different formulations of the prob­

42

4.1. FUTURE WORKS 43

lem. Nonetheless, even though the algorithm could not outperform the opposing approaches,

it should be taken in mind that Moving Targets comes with other advantages, i.e., an inner

support for relational and non­differentiable constraints, as well as for multiple constraints im­

posed on the same set of data points. Indeed, it would be interesting to extend the evaluation of

the law and default dataset by including fairness constraints on demographic attributes along

with the monotonic ones, and to study the algorithm behaviour respectively to other methods.

Another crucial issue of this approach, whichwas alreadymentioned in the original paper, is

that of scalability. When the dimensionality and the cardinality of the dataset increase, both the

master and the learner steps become computationally unsustainable. For the latter, one solution

may be to adopt GPUs instead of CPUs, even though it is widely known in the Deep Learning

research field that the benefits of general­purpose GPU computing can be appreciated on large

neural models only. The other solution, at least when it comes to semi­supervised tasks, might

be to rely on more intelligent sampling techniques [39, 40]. This, combined with an iterative

augmentation procedure that recomputes the unlabelled data points at each iteration in order

to cover decisive areas only, should allow to substantially limit the number of samples and,

accordingly, to reduce both the training and the optimization times.

Bibliography

[1] High­Level Expert Group on AI. Ethics guidelines for trustworthy AI. eng. Report. Brus­

sels: European Commission, Apr. 2019. URL: https://ec.europa.eu/digital-

single-market/en/news/ethics-guidelines-trustworthy-ai.

[2] Fabrizio Detassis, Michele Lombardi, and Michela Milano. “Teaching the Old Dog New

Tricks: Supervised Learning with Constraints”. In: arXiv preprint arXiv:2002.10766

(2020).

[3] Faisal Kamiran and ToonCalders. “Data preprocessing techniques for classificationwith­

out discrimination”. In: Knowledge and Information Systems 33.1 (Dec. 2011), pp. 1–33.

DOI: 10.1007/s10115-011-0463-8. URL: https://doi.org/10.1007/s10115-

011-0463-8.

[4] Mohammad Peikari et al. “A Cluster­then­label Semi­supervised Learning Approach for

Pathology Image Classification”. In: Scientific Reports 8.1 (May 2018). DOI: 10.1038/

s41598-018-24876-0. URL: https://doi.org/10.1038/s41598-018-24876-0.

[5] C. Rosenberg, M. Hebert, and H. Schneiderman. “Semi­Supervised Self­Training of Ob­

ject Detection Models”. In: 2005 Seventh IEEE Workshops on Applications of Computer

Vision (WACV/MOTION’05) ­ Volume 1. IEEE, Jan. 2005. DOI: 10 . 1109 / acvmot .

2005.107. URL: https://doi.org/10.1109/acvmot.2005.107.

[6] Laura von Rueden et al. “Informed Machine Learning ­ A Taxonomy and Survey of Inte­

grating Prior Knowledge into Learning Systems”. In: IEEE Transactions on Knowledge

and Data Engineering (2021), pp. 1–1. DOI: 10.1109/tkde.2021.3079836. URL:

https://doi.org/10.1109/tkde.2021.3079836.

[7] MatthewRichardson and Pedro Domingos. “Markov logic networks”. In:Machine learn­

ing 62.1­2 (2006), pp. 107–136.

44

https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai
https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai
https://doi.org/10.1007/s10115-011-0463-8
https://doi.org/10.1007/s10115-011-0463-8
https://doi.org/10.1007/s10115-011-0463-8
https://doi.org/10.1038/s41598-018-24876-0
https://doi.org/10.1038/s41598-018-24876-0
https://doi.org/10.1038/s41598-018-24876-0
https://doi.org/10.1109/acvmot.2005.107
https://doi.org/10.1109/acvmot.2005.107
https://doi.org/10.1109/acvmot.2005.107
https://doi.org/10.1109/tkde.2021.3079836
https://doi.org/10.1109/tkde.2021.3079836

BIBLIOGRAPHY 45

[8] Jue Wang and Pedro M Domingos. “Hybrid Markov Logic Networks.” In: AAAI. Vol. 8.

2008, pp. 1106–1111.

[9] Robin Manhaeve et al. “Deepproblog: Neural probabilistic logic programming”. In: Ad­

vances in Neural Information Processing Systems 31 (2018), pp. 3749–3759.

[10] Tim Rocktäschel and Sebastian Riedel. “End­to­end differentiable proving”. In: arXiv

preprint arXiv:1705.11040 (2017).

[11] Moritz Hardt, Eric Price, and Nathan Srebro. “Equality of opportunity in supervised

learning”. In: arXiv preprint arXiv:1610.02413 (2016).

[12] Benjamin Fish, Jeremy Kun, and Ádám D. Lelkes. “A Confidence­Based Approach for

Balancing Fairness and Accuracy”. In: Proceedings of the 2016 SIAM International Con­

ference on Data Mining. Society for Industrial and Applied Mathematics, June 2016.

DOI: 10.1137/1.9781611974348.17. URL: https://doi.org/10.1137/1.

9781611974348.17.

[13] Binh Thanh Luong, Salvatore Ruggieri, and Franco Turini. “k­NN as an implementation

of situation testing for discrimination discovery and prevention”. In: Proceedings of the

17th ACM SIGKDD international conference on Knowledge discovery and data mining

­ KDD ’11. ACM Press, 2011. DOI: 10.1145/2020408.2020488. URL: https://doi.

org/10.1145/2020408.2020488.

[14] Michelangelo Diligenti, Marco Gori, and Claudio Saccà. “Semantic­based regulariza­

tion for learning and inference”. In: Artificial Intelligence 244 (Mar. 2017), pp. 143–

165. DOI: 10.1016/j.artint.2015.08.011. URL: https://doi.org/10.1016/j.

artint.2015.08.011.

[15] Luciano Serafini and Artur d’Avila Garcez. “Logic tensor networks: Deep learning

and logical reasoning from data and knowledge”. In: arXiv preprint arXiv:1606.04422

(2016).

[16] Emile Van Krieken, Erman Acar, and Frank Van Harmelen. “Semi­supervised learning

using differentiable reasoning”. In: arXiv preprint arXiv:1908.04700 (2019).

[17] Ferdinando Fioretto et al. “Lagrangian Duality for Constrained Deep Learning”. In:

Machine Learning and Knowledge Discovery in Databases. Applied Data Science and

Demo Track. Springer International Publishing, 2021, pp. 118–135. DOI: 10.1007/978-

3-030-67670-4_8. URL: https://doi.org/10.1007/978-3-030-67670-4_8.

https://doi.org/10.1137/1.9781611974348.17
https://doi.org/10.1137/1.9781611974348.17
https://doi.org/10.1137/1.9781611974348.17
https://doi.org/10.1145/2020408.2020488
https://doi.org/10.1145/2020408.2020488
https://doi.org/10.1145/2020408.2020488
https://doi.org/10.1016/j.artint.2015.08.011
https://doi.org/10.1016/j.artint.2015.08.011
https://doi.org/10.1016/j.artint.2015.08.011
https://doi.org/10.1007/978-3-030-67670-4_8
https://doi.org/10.1007/978-3-030-67670-4_8
https://doi.org/10.1007/978-3-030-67670-4_8

BIBLIOGRAPHY 46

[18] Sina Aghaei, Mohammad Javad Azizi, and Phebe Vayanos. “Learning Optimal and Fair

Decision Trees for Non­Discriminative Decision­Making”. In: Proceedings of the AAAI

Conference on Artificial Intelligence 33 (July 2019), pp. 1418–1426. DOI: 10.1609/

aaai . v33i01 . 33011418. URL: https : / / doi . org / 10 . 1609 / aaai . v33i01 .

33011418.

[19] Cynthia Dwork et al. “Fairness through awareness”. In: Proceedings of the 3rd innova­

tions in theoretical computer science conference. 2012, pp. 214–226.

[20] Rich Zemel et al. “Learning fair representations”. In: International conference on ma­

chine learning. PMLR. 2013, pp. 325–333.

[21] Toon Calders and Sicco Verwer. “Three naive Bayes approaches for discrimination­free

classification”. In: Data Mining and Knowledge Discovery 21.2 (July 2010), pp. 277–

292. DOI: 10.1007/s10618-010-0190-x. URL: https://doi.org/10.1007/

s10618-010-0190-x.

[22] Faisal Kamiran, Toon Calders, and Mykola Pechenizkiy. “Discrimination Aware Deci­

sion Tree Learning”. In: 2010 IEEE International Conference on Data Mining. IEEE,

Dec. 2010. DOI: 10.1109/icdm.2010.50. URL: https://doi.org/10.1109/icdm.

2010.50.

[23] Guosheng Lin et al. “Efficient Piecewise Training of Deep StructuredModels for Seman­

tic Segmentation”. In: 2016 IEEE Conference on Computer Vision and Pattern Recog­

nition (CVPR). IEEE, June 2016. DOI: 10 . 1109 / cvpr . 2016 . 348. URL: https :

//doi.org/10.1109/cvpr.2016.348.

[24] XuezheMa and EduardHovy. “End­to­end Sequence Labeling via Bi­directional LSTM­

CNNs­CRF”. In: Proceedings of the 54th Annual Meeting of the Association for Compu­

tational Linguistics (Volume 1: Long Papers). Association for Computational Linguis­

tics, 2016. DOI: 10.18653/v1/p16-1101. URL: https://doi.org/10.18653/v1/

p16-1101.

[25] Andrew Cotter et al. “Optimization with Non­Differentiable Constraints with Applica­

tions to Fairness, Recall, Churn, and Other Goals.” In: Journal of Machine Learning

Research 20.172 (2019), pp. 1–59.

[26] Maya Gupta et al. “Monotonic calibrated interpolated look­up tables”. In: The Journal

of Machine Learning Research 17.1 (2016), pp. 3790–3836.

https://doi.org/10.1609/aaai.v33i01.33011418
https://doi.org/10.1609/aaai.v33i01.33011418
https://doi.org/10.1609/aaai.v33i01.33011418
https://doi.org/10.1609/aaai.v33i01.33011418
https://doi.org/10.1007/s10618-010-0190-x
https://doi.org/10.1007/s10618-010-0190-x
https://doi.org/10.1007/s10618-010-0190-x
https://doi.org/10.1109/icdm.2010.50
https://doi.org/10.1109/icdm.2010.50
https://doi.org/10.1109/icdm.2010.50
https://doi.org/10.1109/cvpr.2016.348
https://doi.org/10.1109/cvpr.2016.348
https://doi.org/10.1109/cvpr.2016.348
https://doi.org/10.18653/v1/p16-1101
https://doi.org/10.18653/v1/p16-1101
https://doi.org/10.18653/v1/p16-1101

BIBLIOGRAPHY 47

[27] Eric E Altendorf, Angelo C Restificar, and Thomas G Dietterich. “Learning from sparse

data by exploiting monotonicity constraints”. In: arXiv preprint arXiv:1207.1364 (2012).

[28] Andrew Cotter et al. “Shape constraints for set functions”. In: International Conference

on Machine Learning. PMLR. 2019, pp. 1388–1396.

[29] Maya R Gupta et al. “Diminishing returns shape constraints for interpretability and regu­

larization”. In: Proceedings of the 32nd International Conference on Neural Information

Processing Systems. 2018, pp. 6835–6845.

[30] Seungil You et al. “Deep lattice networks and partial monotonic functions”. In: arXiv

preprint arXiv:1709.06680 (2017).

[31] Maya Gupta et al. “Multidimensional shape constraints”. In: International Conference

on Machine Learning. PMLR. 2020, pp. 3918–3928.

[32] Eric Garcia and Maya Gupta. “Lattice regression”. In: Advances in Neural Information

Processing Systems 22 (2009), pp. 594–602.

[33] Serena Wang and Maya Gupta. “Deontological ethics by monotonicity shape con­

straints”. In: International Conference on Artificial Intelligence and Statistics. PMLR.

2020, pp. 2043–2054.

[34] Yisen Wang et al. “Symmetric Cross Entropy for Robust Learning With Noisy Labels”.

In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, Oct.

2019. DOI: 10.1109/iccv.2019.00041. URL: https://doi.org/10.1109/iccv.

2019.00041.

[35] Zhilu Zhang and Mert R Sabuncu. “Generalized cross entropy loss for training deep

neural networks with noisy labels”. In: arXiv preprint arXiv:1805.07836 (2018).

[36] Linda F Wightman. LSAC national longitudinal bar passage study. Law School Admis­

sion Council, 1998.

[37] Moshe Lichman et al. UCI machine learning repository. 2013.

[38] I­Cheng Yeh and Che­hui Lien. “The comparisons of data mining techniques for the

predictive accuracy of probability of default of credit card clients”. In: Expert Systems

with Applications 36.2 (Mar. 2009), pp. 2473–2480. DOI: 10.1016/j.eswa.2007.12.

020. URL: https://doi.org/10.1016/j.eswa.2007.12.020.

https://doi.org/10.1109/iccv.2019.00041
https://doi.org/10.1109/iccv.2019.00041
https://doi.org/10.1109/iccv.2019.00041
https://doi.org/10.1016/j.eswa.2007.12.020
https://doi.org/10.1016/j.eswa.2007.12.020
https://doi.org/10.1016/j.eswa.2007.12.020

BIBLIOGRAPHY 48

[39] Carolyn Kim, Ashish Sabharwal, and Stefano Ermon. “Exact sampling with integer lin­

ear programs and random perturbations”. In: Proceedings of the AAAI Conference on

Artificial Intelligence. Vol. 30. 1. 2016.

[40] Carla P Gomes, Ashish Sabharwal, and Bart Selman. “Near­uniform sampling of com­

binatorial spaces using XOR constraints”. In: NIPS. 2006, pp. 481–488.

	Abstract
	Introduction
	Background
	Machine Learning
	Semi-supervised Learning
	Data Augmentation

	Constrained Machine Learning
	Shape Constraints
	Semantic-based Regularization
	Lattice Models

	Moving Targets
	Original Formulation
	Algorithm Properties

	Extending the Algorithm
	Newly-introduced Hyperparameters
	Data Augmentation & Monotonicities
	Regression vs. Classification

	Empirical Evaluation
	Preliminary Studies
	Hyperparameters Investigation
	Original Hyperparameters
	Newly-introduced Hyperparameters
	Classification Losses

	Benchmarking
	Regression
	Classification

	Conclusions
	Future Works

	Bibliography

