Convolutional Neural Networks in Tomographic Image Enhancement

Andriolo, Stefano (2021) Convolutional Neural Networks in Tomographic Image Enhancement. [Laurea], Università di Bologna, Corso di Studio in Informatica [L-DM270]
Documenti full-text disponibili:
[img] Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato

Download (3MB)

Abstract

Convolutional Neural Networks have seen a huge rise in popularity in image applications. They have been used in medical imaging contexts to enhance the overall quality of the digital representation of the patient's scanned body region and have been very useful when dealing with limited-angle tomographic data. In this thesis, a particular type of convolutional neural network called Unet will be used as the starting point to explore the effectiveness of different networks in enhancing tomographic image reconstructions. We will first make minor tweaks to the 2-dimensional convolutional network and train it on two different datasets. After that, we will take advantage of the shape of the reconstructions we are considering to extend the convolutions to the third dimension. The scanner layout that has been considered for projecting and reconstructing volumes in this thesis indeed consits of a cone-beam geometry, whose output is a volume that approximates the original scanned object. We will then discuss the results in order to try to understand if the proposed solutions could be viable approaches for enhancing tomographic images.

Abstract
Tipologia del documento
Tesi di laurea (Laurea)
Autore della tesi
Andriolo, Stefano
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
convolutional neural networks,tomography,keras,deep learning,3d,unet
Data di discussione della Tesi
17 Marzo 2021
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento

^