Andriolo, Stefano
 
(2021)
Convolutional Neural Networks in
Tomographic Image Enhancement.
[Laurea], Università di Bologna, Corso di Studio in 
Informatica [L-DM270]
   
  
  
        
        
	
  
  
  
  
  
  
  
    
  
    
      Documenti full-text disponibili:
      
        
          
            | ![[thumbnail of Thesis]](https://amslaurea.unibo.it/style/images/fileicons/application_pdf.png) | Documento PDF (Thesis) Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
 Download (3MB)
 | 
        
      
    
  
  
    
      Abstract
      Convolutional Neural Networks have seen a huge rise in popularity in image applications. They have been used in medical imaging contexts to enhance the overall quality of the digital representation of the patient's scanned body region and have been very useful when dealing with limited-angle tomographic data. In this thesis, a particular type of convolutional neural network called Unet will be used as the starting point to explore the effectiveness of different networks in enhancing tomographic image reconstructions. We will first make minor tweaks to the 2-dimensional convolutional network and train it on two different datasets. After that, we will take advantage of the shape of the reconstructions we are considering to extend the convolutions to the third dimension. The scanner layout that has been considered for projecting and reconstructing volumes in this thesis indeed consits of a cone-beam geometry, whose output is a volume that approximates the original scanned object. We will then discuss the results in order to try to understand if the proposed solutions could be viable approaches for enhancing tomographic images.
     
    
      Abstract
      Convolutional Neural Networks have seen a huge rise in popularity in image applications. They have been used in medical imaging contexts to enhance the overall quality of the digital representation of the patient's scanned body region and have been very useful when dealing with limited-angle tomographic data. In this thesis, a particular type of convolutional neural network called Unet will be used as the starting point to explore the effectiveness of different networks in enhancing tomographic image reconstructions. We will first make minor tweaks to the 2-dimensional convolutional network and train it on two different datasets. After that, we will take advantage of the shape of the reconstructions we are considering to extend the convolutions to the third dimension. The scanner layout that has been considered for projecting and reconstructing volumes in this thesis indeed consits of a cone-beam geometry, whose output is a volume that approximates the original scanned object. We will then discuss the results in order to try to understand if the proposed solutions could be viable approaches for enhancing tomographic images.
     
  
  
    
    
      Tipologia del documento
      Tesi di laurea
(Laurea)
      
      
      
      
        
      
        
          Autore della tesi
          Andriolo, Stefano
          
        
      
        
          Relatore della tesi
          
          
        
      
        
          Correlatore della tesi
          
          
        
      
        
          Scuola
          
          
        
      
        
          Corso di studio
          
          
        
      
        
      
        
      
        
          Ordinamento Cds
          DM270
          
        
      
        
          Parole chiave
          convolutional neural networks,tomography,keras,deep learning,3d,unet
          
        
      
        
          Data di discussione della Tesi
          17 Marzo 2021
          
        
      
      URI
      
      
     
   
  
    Altri metadati
    
      Tipologia del documento
      Tesi di laurea
(NON SPECIFICATO)
      
      
      
      
        
      
        
          Autore della tesi
          Andriolo, Stefano
          
        
      
        
          Relatore della tesi
          
          
        
      
        
          Correlatore della tesi
          
          
        
      
        
          Scuola
          
          
        
      
        
          Corso di studio
          
          
        
      
        
      
        
      
        
          Ordinamento Cds
          DM270
          
        
      
        
          Parole chiave
          convolutional neural networks,tomography,keras,deep learning,3d,unet
          
        
      
        
          Data di discussione della Tesi
          17 Marzo 2021
          
        
      
      URI
      
      
     
   
  
  
  
  
  
    
    Statistica sui download
    
    
  
  
    
      Gestione del documento: 
      
        