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Abstract

During the last decades the number of vehicles on the roads progressively rises

together with the relative emissions of pollutants, such as CO2 and other green-

house gases, worsening air quality and traffic conditions especially in metropolitan

areas. The OEM (Original Equipment Manufacturer) are investing a lot of money

in alternative solutions, progressively abandoning the Internal Combustion Energy

which can no longer satisfy the more and more stringent regulations as well as the

market requests. The general tendency is to introduce an alternative source of energy

flanking the conventional engine, allowing its downsizing and helping it during the

less efficient operating points. Moreover, the new kind of sensor systems (named

Advanced Driver-Assistance Systems) are starting to be implemented on-board in

addition to connectivity devices. From this union, a connected vehicle arise, able to

exchange data with the surrounding environment and give the driver new kind of

assistance functionality, like the Lane Departure Warning, Adaptive Cruise Control

and Parking Assistance, avoiding dangerous or inefficient decisions. In parallel, these

functions can recreate an electronic horizon, based on the path selected by the

driver, supplying to the Control Unit a detailed preview. The natural tendency is

to gradually limiting the driver control on the vehicle up to definitely excluding

him from driving decisions. Nevertheless, the implementation of fully working and

safe ADAS functions implies millions of kilometres of road test validations, to safely

introduce them on the market. Thus, the OEM have to develop new methodologies

to substitute the road tests with specific simulations, where tools (like Model-in-the-

Loop, Software-in-the-loop, Hardware-in-the-Loop) are used to verify its reliability.

This master thesis work wants to develop and implement an on-board algorithm

for the speed prediction of a connected vehicle along a given route, by elaborating

real-time navigation data. In particular, information about the legal speed limits, the
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traffic density and the presence of the so-called ”stop events”, such as traffic lights

and roundabouts, are sent to the vehicle by the map service provider and they

constitute the input for the algorithm. The algorithm allows you to select one out

of three different driver type (quiet, normal, aggressive): this choice, together with

the performance parameters of the vehicle, influences the acceleration and braking

phases of the prediction. Once the prediction is generated, it constitutes an input

for the predictive ADAS functions and energy management functions. The work has

been split in three main phases: development, calibration end validation. During

the first phase, the logics of the algorithm have been implemented by means of a

Simulink block in order to be included into the Hybrid Control Unit at the HiL. Sub-

sequently, the calibration of the key parameters took place by means of real speed

profile analysis. In the end, the behaviour of the algorithm has been investigated

studying its response in different scenarios.

The master thesis activity has been carried out at Green Mobility Research

Laboratory, born by the collaboration between the University of Bologna and FEV

Italia s.r.l, internationally recognized leader in design and development of advanced

gasoline, diesel and hybrid powertrains and vehicle systems.
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Abstract in lingua italiana

Negli ultimi decenni si è registrato un progressivo aumento dell’utilizzo di mezzi

di trasporto individuali e delle relative emissioni di agenti inquinanti, come CO2

e altri gas serra, peggiorando la qualità dell’aria e la viabilità, specialmente nelle

aree metropolitane. Le case costruttrici stanno investendo molte risorse in soluzioni

alternative, riconoscendo come i motori a combustione interna, per quanto efficienti

questi possano essere, non riescano più a soddisfare le richieste di mercato e ri-

spettare la legislazione sempre piu stringente. L’obiettivo dichiarato è l’abbandono

graduale dei combustibili fossili in favore di una progressiva elettrificazione dei vei-

coli. L’implementazione di una fonte di energia alternativa, in particolare quella

elettrica, permette una riduzione delle dimensioni del motore termico e un aiuto nei

punti operativi meno efficienti ma richiede una nuova concezione della sua gestione

a bordo. In più, l’istallazione nel veicolo di nuovi sistemi di sensoristica avanzata (in

gergo Advanced Driver-Assistance Systems) e di moderni dispositivi di connectivity,

lo rendono capace di comunicare con l’ambiente circostante, aprendo all’introduzio-

ne di nuove funzionalità di supporto al guidatore, come il Lane Departure Warning,

Adaptive Cruise Control e Parking Assistance, per evitare che esso compia scelte

pericolose o inefficienti. Parallelamente queste funzioni possono permettere la ri-

costruzione di un orizzonte elettronico, basato sul percorso deciso dal guidatore,

fornendone alla centralina un’anteprima dettagliata. La conseguenza naturale sa-

ra quella di limitare progressivamente il controllo del guidatore sul veicolo fino ad

escluderlo definitivamente. Tuttavia, l’implementazione di funzionalita ADAS pie-

namente funzionanti e sicure prevedrebbe milioni di chilometri di test su strada,

prima di introdurle sul mercato. Ciò obbliga i costruttori a sperimentare nuove ti-

pologie di validazione per soddisfare questa esigenza sostituendo i test stradali con
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specifiche simulazioni, all’interno delle quali vengono utilizzati strumenti (Model-in-

the-Loop, Software-in-the-Loop, Hardware-in-the-Loop) per verificarne l’affidabilita.

Questo elaborato si pone l’obbiettivo di implementare un algoritmo on-board per la

predizione della velocità di un veicolo connesso, lungo un dato percorso, per mezzo

dell’elaborazione dei dati di navigazione real-time. In particolare, le informazioni

riguardanti i limiti di velocità, la densità di traffico e la presenza di eventuali ”stop

events” come semafori e rotonde, vengono inviate al veicolo dal map service pro-

vider e costituiscono gli input dell’algoritmo. L’algoritmo permette di scegliere tra

tre diversi tipi di driver (prudente, normale, aggressivo): questa selezione, insieme

ai parametri di prestazioni del veicolo pre-impostati, andrà ad influenzare le fasi

di accelerazione e decelarazione nella predizione. Una volta generata, tale predizio-

ne costituisce l’input delle funzioni ADAS predittive e di quelle addette all’energy

management. Il lavoro è stato suddiviso in tre fasi principali: sviluppo, calibrazione

e validazione. Durante la fase di sviluppo, le logiche dell’algoritmo sono state im-

plementate in Simulink in modo da poter essere inserite nell’ Hybrid Control Unit

(HCU) del Software-in-the-Loop. Successivamente, è stata effettuata la calibrazio-

ne dei paramentri principali dell’algoritmo, basata sull’analisi di profili di velocità

acquisiti su strada. Infine, è stata investigata la risposta dell’algoritmo a scenari

diversificati.

Il lavoro di tesi è stato svolto presso il Green Mobility Research Laboratory,

nato dalla collaborazione tra l’Università di Bologna e FEV Italia s.r.l., compagnia

internazionale leader nella progettazione e nello sviluppo di powertrain e sistemi

veicolo.
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Chapter 1

Introduction

1.1 Motivations, challenges and targets

Starting from the twentieth century, the population growth, together with the

technological development, has lead the industrialization process to completely new

scenarios: the birth of more and more factories and the consequent movement of

the people from the countryside to the city centres. This period saw an exponen-

tial growth of production, giving the people technologies, once prohibitive for the

price and now more accessible. As a natural consequence of the economic boom,

in parallel with a general carelessness and incompetence about environment, the

emissions of carbon dioxide (CO2) and other greenhouse gases (GHG) rapidly in-

creased over the year, becoming one of the most challenging issues of the present

time. An important role is played by the automotive industries, in fact, cars are

used throughout the world and they have become the most adopted solution for

people transportation in many countries. Transportation was responsible for 24%

of direct CO2 emissions in 2017. The 77% of both global final energy demand and

CO2 emissions are accountable to the transport sector as a whole, comprehending

cars, trucks, buses and two-wheelers. Moreover, car buyers continue to choose big-

ger, heavier vehicle and this has lead to a rise in the average new car CO2 emissions

in 2017 [1]. Therefore, the European Union has made substantial efforts tightening

the CO2 maximum limit on a Worldwide harmonized light vehicles test procedure

from 130 gCO2/km of 2015 to 95 gCO2/km by 2021 [2], aiming at the fixed target of 60
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1 – Introduction

gCO2/km by 2030 [10]. Hence, automobile manufacturers and engineers have spent the

last decade trying to develop innovative solutions with the double purpose of satis-

fying the market request and complying to the regulations, increasingly stringent.

The result of these years of research is the decision to adopt other form of energy

supporting the conventional engine. In the so-called Hybrid Vehicles the primary

energy source is generally an Internal Combustion Engine (ICE); depending on the

nature of the secondary source, ”Hybrid” can mean

� Hydraulic Hybrid that kind of vehicles have a hydraulic pump as secondary

mover or generator, which stores the energy in an auxiliary hydraulic accumu-

lator where oil is used as operator fluid. For their weight and their character-

istics, this powertrain is particularly indicated for heavy-duty vehicles;

� Kinetic Hybrid kinetic hybrid powertrain means a driveline with a highspeed

flywheel as auxiliary mover, with the possibility of storing kinetic energy, es-

pecially during regenerative braking; [6]

� Compressed-air Hybrid these vehicle are powered by motors which produce

power with the compressed-air expansion in a similar way of the steam engine.

As a non-flammable fluid, the compressed-air can be stored in pressurized tank

at 30 MPa;

� Electric Hybrid here, the auxiliary energy source is the electro-chemical

energy provided by Electric Motors and the batteries are the storage system

which can be recharged during breaking or with the ICE.

The more promising technology in term of CO2 reduction is the Hybrid Electric

Vehicle (HEVs). Focusing on them, the level of hybridization depends on the range

of action of the electric motor which is indicated by the Hybridization Degree (HD)

and described by the eq.(1.1)

HD =
PS,max

PS,max + PICE,max
(1.1)

where PS,max is the maximum power of the secondary source of energy while PICE,max
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1.1 – Motivations, challenges and targets

is the maximum power deliverable by the ICE. Consequently, it is possible to dis-

tinguish the following typology of HEVs:

� Micro Hybrid with a HD ∼ 5%, it’s a vehicle equipped with an Electric Mo-

tor (EM) linked to the ICE and it can only have Start and Stop functionality.

Most of the them have also some sort of Energy Management function, which

optimizes the consumption of the low voltage (12 V) battery energy [26];

� MHEV (Mild Hybrid EV) with a HD ∼ 15%, these types generally use a

compact electric motor (usually < 20kW ) to provide auto-stop/start features,

extra power assist during the acceleration and to work as a generator on the

deceleration phase (regenerative braking). The battery is a Low Voltage Bat-

tery of 48V, whose purpose is to actuate an Energy Management Strategy

(EMS) and it allows a minimum range of full-electric drive1.

� FHEV (Full Hybrid Electric Vehicle) where the HD ∼ 35%, the Electric Ma-

chines and batteries are increased in size, allowing an extended full-electric

drive. The recharging of the batteries can happen only with breaking recuper-

ation and with the ICE, because it isn’t possible to do from external sources;

� PHEV (Plug-in HEV) is usually a general fuel-electric Off-Vehicle Charging

(OVC) hybrid vehicle with increased energy storage capacity and a HD ∼
50%. This allows the vehicle to drive on all-electric mode a distance that

depends on the battery size and its mechanical layout (series or parallel). At

the end of the journey, it may be connected to mains electricity supply through

a socket to avoid recharging using the on-board internal combustion engine.

This concept is attractive to those seeking to minimize on-road emissions by

avoiding - or at least minimizing - the use of ICE during daily driving. As with

pure electric vehicles, the total emissions saving, for example in CO2 terms, is

dependent upon the source of the energy produced by the provider company;

� BEV (Battery EV) are vehicles where there isn’t an ICE and the traction is

granted only by electric motors powered by batteries. Properly, they’re not

1Exceptions of full-electric drive vehicle equipped with a 48V battery are the MEET model
developed by MAHLE[18] or the one designed by Valeo[22]
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1 – Introduction

hybrid vehicle, because the energy source is only one, but it will be the arrival

point of the transaction where the hybrid vehicles are only intermediate step.

At the moment, the main problem of BEV is the capacity of the battery cells,

so how the energy is stored [26]. In Fig. 1.2, the fuel (gaseous and liquid)

and batteries specific energy is represented in function of their volumetric

density, there the problematics of the batteries compared to the other fuels

are clearer. To make a more practical example, the same energy needed for

a drive of about 500km is stocked in 46 litres (∼ 43kg) of gasoline but in

more than 700kg of batteries. Nevertheless, from the dawn of the batteries

for automotive purpose, thanks to the improvement in technology their cost

becomes cheaper and cheaper, while their energy density increases [21].

Figure 1.1: Overview of the Hybrid Electric Vehicle depending on Hybridization and CO2

reduction

Once the typology has been defined, it is possible to describe how the energy flow

is transferred from the energy storage (tank for ICE or battery for the EMs) to the

wheels. Three paths are possible:

� Parallel the engine is the main power source while the electric motor provides

4



1.1 – Motivations, challenges and targets

Figure 1.2: Fuel specific energy in function of their volumetric density

assistance as needed, delivering torque from zero rpm during standing starts

and acceleration. This cooperation consent to avoid engine working points

where the specific fuel consumption is high. The powertrain can be adapted

simply by adding an electric motor and batteries to an existing vehicle, as in

Fig. 1.3.

Figure 1.3: Parallel hybrid power characteristics

� Series/parallel combined hybrid vehicles share characteristics of series and
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1 – Introduction

parallel layouts. In particular, the EM powers the vehicle from a standing start

and at low speed whereas, as the speed increases, ICE and EM work together to

efficiently provide the power required. As can be expected, the system is more

complex featuring a power split device and a generator. An exemplification is

shown in Fig. 1.4.

Figure 1.4: Series/Parallel hybrid power characteristics

� Series the series layout provides torque solely by using electric motors, like

electric vehicles, and the aim of ICE is to recharge the battery with the gen-

erator. The powertrain is equivalent to an EVs, but because the vehicle also

includes an engine, it is considered a hybrid (Fig. 1.5) [8].

Figure 1.5: Series hybrid power characteristics

For what concern the HEVs parallel topology, several architectures are possible

differing from each other for the position of the electric machines within the driveline.

As shown in Fig. 1.6, they are as follow:

� P0 the engine is coupled to the motor through a belt, so the electric machines

is called Belt-driven Starter Generator (BSG);
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1.1 – Motivations, challenges and targets

� P1 the EM is directly mounted on the crankshaft, upstream of the clutch, and

it is named Integrated Starter Generator (ISG);

� P2 the EM is separated from the engine by a clutch, that allows the pure

electric drive;

� P3 the EM is mounted on the secondary shaft out of the gearbox;

� P4 the EM is connected to the front or rear wheels by means of a transmission

ratio;

Figure 1.6: Parallel hybrid driveline architecture

Introducing a different type of energy flow (electrical energy) additional to the

chemical one, engineers have to face new challenging problems. In fact, while the

available space remains the same, the components rise in number: one or more elec-

tric motors, a bigger battery, a more powerful control unit and the inverters have

to be rationally placed inside the vehicle. Adding new components doesn’t imply

only a different spacing configuration but it also means a more complex control at

system level and also regarding the safety. On one hand, it’s possible to achieve sim-

ilar performance to standard vehicle with internal combustion engine while greatly
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1 – Introduction

improving fuel efficiency and tailpipe emission, recovering the energy from braking.

On the other hand the torque split (so how the torque request is fulfilled) becomes

the new control variable and it is complicated to handle. The challenge is to find the

more efficient split that covers the torque request among the possible solutions. As a

matter of fact, the computational effort of the control unit becomes heavier. Finding

the optimal or sub-optimal solution is a part of the so called Energy Management

Strategy which tries to minimize a two-variables function, where the fuel consump-

tion is no longer the only parameter to keep under observation, but it’s flanked by

a new one: the state of charge of the Battery Storage System, shortened SoC. The

state of charge represents the actual capacity of the battery over its maximum ca-

pacity and it’s expressed in percentage. To better understand its meaning, it could

be compared to the physical level of the liquid fuel in the tank. So then, the OEMs

have invested money and time to develop new energy optimization strategies with

the purpose of minimizing the overall energy consumption.

1.2 ADAS

The general tendency is moving toward a vehicle efficient and clean, but a non-

negligible limit to that goal it will always be the driver, the less predictable variable

in the system. The innovative Advance Driver-Assistance Systems (ADAS) come to

help limiting the driver actions but they require a reliable detection of the vehicle

and the surrounding environment. That virtual reconstruction permits the Hybrid

Control Unit (HCU) to make more efficient choices both regarding the road safety as

well the torque management. The new generation of on-board sensors and control

strategies assist a common driver during acceleration and braking and they help

him avoiding inefficient decisions such as during the gear shift, stop & start sys-

tem, increasing the driving comfort and safety. A short explanation of that kind of

equipment is given below, and it is shown in Fig. 1.7.

� LIDAR (LIght Detection And Ranging)

remote sensing method that uses light in the form of a pulsed laser to measure

ranges (variable distances) [20].

� RADAR (RAdio Detection And Ranging)
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detection system that uses radio waves to determine the range, angle, or veloc-

ity of objects. In particular it is distinguished in long range (LRR) for Adaptive

Cruise Control, medium range (MRR)for cross traffic alert and lane change

assist, short-range (SRR) for parking aid, obstacle/pedestrian detection [12].

� CAMERAS

a video sensor used to perceive the environment around the vehicle.

Figure 1.7: On-board sensing equipment

All these efforts are made with the aim of designing and producing an autonomous

vehicle capable of driving safely and efficiently on the road. This, from one hand

will erase or at least reduce mortal accidents, and on the other hand will gave to the

people a less polluting way of transportation. Obviously, to reach that goal, some

gradual steps have to be fulfilled. The Society of Automotive Engineers (SAE) has

defined different automation levels, which span from Level 0, without automation

systems, to Level 5, where the car is completely self-driving [14]. In Fig.1.8 there

is represented a schematic description of each level. In the future, the ADAS will

intervene in the driving process more intensively and autonomously, for example

9
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influencing braking and steering maneuvers (with traffic jam chaffeur or motorway

autopilot functionalities) [9].

Figure 1.8: Automation levels according to SAE

1.3 Connectivity

The way toward the autonomous driving is strictly linked with the progresses

made by the telecommunication industries, in a on-going development of the Vehicle-

to-Everything (V2X) connectivity technologies, with the aim of passing information

from a vehicle to any entity that may affect the vehicle and vice versa:

� Vehicle-to-Vehicle (V2V)

� Vehicle-to-Infrastructure (V2I)

� Vehicle-to-Cloud (V2C)

� Vehicle-to-Pedestrian (V2P)

The amount of information work together in order to achieve road safety, traffic

efficiency and energy savings. Some of the functionality given by the connectivity

could influence the vehicle as a warning (for forward collisions, lane change and
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blind spots) or directly acting on it. Not only they will be at the base for the optimal

safety and effective autonomous driving of tomorrow, but they constitute a powerful

instrument that can already be used to fill the gap introduced by the human factor.

The focus of this essay, for example, is on a PHEV vehicle made connected (enabled

to the V2X communication) so that it is able to exchange data with a Map Service

Provider (MSP) and to use this information to forecast the driving cycle performed

by the human driver. Then, this prediction named eHorizon, can be used not only

by the ego-vehicle for the energy management, but it can also be shared with other

users to actuate strategies of intelligent mobility.

Figure 1.9: V2X connectivity

1.3.1 Predictive driving (eHorizon)

In term of efficiency, the optimal solution will be reached with the complete

knowledge of the future, because it would permit to elaborate a strategy suitable for

the specific route. In the following paragraph there is a very didactic example, but

also very clear, of how the predictive drive will help: Fig. 1.10 shows a possible path

of a commercial vehicle that approaches a climb. In normal conditions, climbing the

hill, the internal combustion engine will provide the requested torque, but doing so

11
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it recharges, or doesn’t discharge the battery. Once the car reaches the top of the

climb, there is a downhill in front of it where it could perform regenerative breaking

but the battery capacity could be already at the maximum limit. So the potential

energy of the slope is useless. But if the presence of this difference in height were

known, the control unit will allow the EMs to help the ICE during the climb, making

it working at more efficient points, and at the top of the hill the battery could be

recharged. This is only a little example of the enormous potential of a predictive

strategy, in fact, it will be possible to avoid traffic congestions, accidents, dangerous

situations and so on.

Figure 1.10: Ideal predictive strategy

This master thesis can be considered as a branch of a wider previous project

developed by Green Mobility Research Laboratory (GMRL) [3] regarding predictive

functions for energy management. The aim of the study was the development of

these functions followed by their implementation in a parallel PHEV model (MiL)

by means of Simulink [4]. In the first stage, torque management strategies have

been implemented in the Control Unit in order to determine the optimal (Discrete

Dynamic Programming) (DDP) or sub-optimal (Equivalent Consumption Minimiza-

tion Strategy) (ECMS) torque split, as the solution of a cost function minimization

problem. In this case, the cost function is the equivalent consumption of fuel (both

chemical and electric). In parallel, two specific Predictive Functions (PF) have been

implemented: the Zero Emissions Zone (ZEZ) and the Predictive Thermal Manage-

ment (PTM)[5]. Both the functions are based on the knowledge of the driving cycle

at priori. In particular, they are focused on the urban zone where the usage of the

conventional engine is forbidden, so the vehicle has to switch to full electric mode.

Firstly, the connectivity check if any part of the selected route belongs to a ZEZ
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and, in case of positive answer, the two functions are called. The Zero Emissions

Zone function gives to the torque strategies a target to fulfill, in order to guaran-

tee enough battery state of charge at the beginning of the event [fig.??]. On the

other side, the Predictive Thermal Management decides if there is the possibility

of managing the battery cooling circuit more efficiently and saving energy. In the

end, the simulations results are made compliant with the newest regulations of the

laboratory tests (Worldwide harmonized Light vehicle Test Cycle) and of the road

tests (Real Driving Emissions).

Figure 1.11: Zero Emission Zone
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Chapter 2

Simulation environment

2.1 Simulation environment

This chapter wants to provide an overview on the main steps that characterized

the development of the Speed Profile Prediction algorithm (SPP), starting from the

definition of the specifications and concluding with the implementation at the con-

nected HiL. In addition, a brief description of the various adopted software/hardware

architectures is presented.

It is important to stress how the whole procedure has been driven by the V-Model

methodology of software development. In fact, while on the one hand the usage of

connected vehicles represents a solution to crucial issues such as pollution and con-

gested urban centers, on the other hand, the development of such a complex frame-

work collides with the common goal of shortening the vehicle time-to-market. The

old consolidated methodologies (reliable road tests above all) does not fit anymore

because the safety validation of a current driver assistance system alone requires up

to 2 millions test kilometers. In addition, most of the situations under control regard

dangerous and highly-variable test conditions. Thus, the tendency is to move all the

driven kilometers from the roads to advanced simulation environment in a process

called ”from-road-to-rig-to-desktop”[3].
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Figure 2.1: V-Model methodology layout

2.2 Model-in-the-Loop

The project started with the qualitative outlining of the information that could

have been received from the MSP. In parallel, a bibliographic research has been con-

ducted in order to define the state of the art and to assume adequate specifications as

target for the logics to be implemented. Once the specifications have been clarified,

the code writing phase has begun. The V-Model expects a testing procedure for each

development step of the algorithm, that’s why the first version of the algorithm has

been written as a script in MATLAB1: this solution allows a quick implementation

of the basic logics followed by a preliminary check of their congruence and validity.

Once the algorithm has passed this first test, the second step was the conversion

of the script into a Simulink2 model by means of a Stateflow3 chart. The need to

switch into Simulink environment stems from the fact that, this algorithm is going

to be flashed into a Simulink-programmable HCU. Until this moment, the Speed

1MATLAB (an abbreviation of ”matrix laboratory”) is a proprietary multi-paradigm program-
ming language and numeric computing environment developed by MathWorks. MATLAB allows
matrix manipulations, plotting of functions and data, implementation of algorithms, creation of
user interfaces, and interfacing with programs written in other languages[23].

2Simulink is a MATLAB-based graphical programming environment for modeling, simulating
and analyzing multidomain dynamical systems. Its primary interface is a graphical block dia-
gramming tool and a customizable set of block libraries. Simulink is widely used for multidomain
simulation and model-based design[24].

3Stateflow (developed by MathWorks) is a control logic tool used to model reactive systems via
state machines and flow charts within a Simulink model[25].
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Profile Prediction Algorithm (SPP) as been treated as a stand alone model, without

the slightest thought for the specifications imposed by the on-board implementa-

tion, but just considering his results in terms of prediction. Nevertheless, thanks

to this transition to Simulink, the inclusion of the SPP in the Model-in-the-Loop

has become possible. MiL testing and simulation is a technique used to abstract the

behaviour of a system or sub-system in a way that this model can be used to test,

simulate and verify one or more component while they are still under development.

In other words, referring to this project, it means that also in this early phase, an

off-line co-simulation of the SPP coupled with the PF has been already possible,

even if compatibility between software and hardware in the HCU was still to be

verified.

2.3 Software-in-the-Loop

Once the logic have been implemented in Simulink, one step beyond along the

development process can be done passing from a Model-in-the-Loop to a Software-in-

the-Loop simulation. SiL makes it possible to test software prior to the initialization

of the hardware prototyping phase, significantly accelerating the development cycle.

It represents an environment where the under analysis hardware component (HCU in

this case) is replaced by its digital twin, containing exactly the same software as the

real one. In this way, SiL enables the earliest detection of system-level defects or bugs,

reducing the costs of later stage troubleshooting, when the number and complexity

of component interactions is greater. A schematic view of SiL architecture employed

in this project is shown in fig. 2.2: Here below, the steps of the data flow are briefly

depicted:

� The virtual MSP sends navigation to the Telecommunication Control Unit

(TeCU), in a format that is exactly the same as the one sent by the real MSP.

� TeCU elaborates navigation data in order to make them compliance with the

CAN line and sends them to the eHorizon reconstructor (eHR) inside the HCU.

In particular, the vectors containing navigation data are fragmented in vector

of lower size.
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Figure 2.2: Software-in-the-Loop scheme

� eHR reads data from CAN, re-builds the original information from fragments

and generates input to feed the SPP.

� SPP generates the predicted speed profile to be sent as input to the PF.

� PF apply the optimization strategies to the predicted speed profile, computing

18
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a SOC target and the thermal management strategy for the path. All the

energies involved in calculations are retrieved by PF thanks to a Simulink

model that reproduces the vehicle dynamics and its control system.

� SUMO (Simulator of Urban MObility) provides the virtual scenarios where PF

are tested off-line. The need for SUMO to be introduced in the loop comes from

the fact that in real driving, the predicted cycle will never perfectly match the

real one. Simulating scenarios in SUMO makes already possible at this stage

the evaluation of the response of the PF to this error, by assuming the cycle

driven by SUMO’s driver as the real one, avoiding costs and risks linked to

road testing.

2.4 Connected Hardware-in-the-Loop

HiL, as stated by the name itself, provides more advanced tests on the control

system, thanks to a detailed and already validated vehicle model implemented on a

Real-Time PC that reproduce the physical signals of the environment. It includes

sub-models for the vehicle longitudinal dynamics, the hybrid powertrain compo-

nents, and their controllers. The Real-Time PC is connected to a rapid-prototyping

HCU running an energy management supervisory controller where SSP and PF are

included. Thus, while at the SiL it is possible to prevent failures due to program-

ming incompatibility, the HiL testing allows in addition to avoid hardware-related

problems such as overrunning or signal disturbances. Before the introduction of con-

nectivity devices, HiL included only the hardware related to a conventional vehicle

but, thanks to the work made by previous master thesis [7][11], it is possible today

to execute on-line co-simulations, where the HiL receives real-time data by the MSP.

Furthermore, to simulate at C-HiL that the vehicle under test is actually traveling

along roads in a urban environment, the GPS signal is generated locally by a host

PC in which SUMO is running.
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Chapter 3

Speed Profile Prediction

3.1 State of the art

In the last four decades several studies about predicting the future speed of the

ego-vehicle have been conducted since it is a necessary component of many Intelli-

gent Transportation Systems (ITS) applications, in particular for safety and energy

management systems. The speed prediction models state of the art can be grouped

into two main categories: parametric and non-parametric. In the first category, we

find algorithms where the driving task is modeled as a stimulus-response system, so,

as a control problem where driver’s goal is to keep a safe distance with the vehicle in

front or to pursue a target speed according to some imposed constrains (e.g. speed

limits). The nomenclature is justified by the fact that in this kind of algorithms

a model for the ego-vehicle and/or for the driver needs to be included by means

of parameters: an example of the most advanced parameters model can be found

in the ones developed to be implemented in traffic simulators (e.g. SUMO). More

recently some non-parametric models have been proposed: this kind of algorithms

are based on probabilistic theories such as Artificial Neural Network, Markov chains

or Monte Carlo methods. The main advantages related to this class consist in allow-

ing a greater flexibility in the representation of the dynamics and in being suitable

for machine learning and artificial intelligence systems. The counterpart is inherent

in the probabilistic nature of these methods since they need time to acquire big

data in order to generate consistent predictions. For a more detailed comparison
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please refer to the study conducted by Lefèvre et al. Comparison of Parametric and

Non-Parametric Approaches for Vehicle Speed Prediction [16].

3.2 Previous version

A basic version of a speed profile prediction algorithm was previously imple-

mented [7] giving a chance for the predictive functions to be tested at the connected-

HiL. This trivial version was able to receive only the information about the legal

speed limits by MSP and then, assuming the vehicle speed to be coincident with

the speed limit value, the transitions between different speed values were modulated

following a constant acceleration/deceleration law. In addition, stop events and rel-

ative duration were supposed (3.1). Although these predictions turned out to be

inconsistent from an energetic point of view, this first version of the algorithm had

allowed the telecommunication chain to be tested, marking the passage from HiL to

a c-HiL, which was the main target at the time [7][11].
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Figure 3.1: Previous version of the speed profile prediction

3.3 Speed Profile Prediction algorithm

This thesis work is based on the idea that the generation of a speed profile for

energy management purposes might be a smart way to maximize the exploitation of

navigation data that nowadays are commonly requested by the cars. Selecting the

parametric approach has made possible to take this route in a relative short time and

being free from the necessity to handle a large amount of previously recorded driving

cycles. At first, when an enrichment target with respect to the previous version had

to be defined, the algorithm described in [2] has been assumed as benchmark, despite

of differences in the information supplied by the eHorizon provider. The logic at its
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base is to use routing information to feed a space based driver model who, segment-

by-segment, will decide between accelerating, decelerating and holding the current

speed in order to reach the maximum speed allowed by boundary conditions. In the

following subsections it will be shown in details how the boundary conditions are

retrieved starting from the input (eHorizon) with a deepening on the driver model.

Here below, for the sake of clarity, the list of the input is provided:

Speed limits
values [1 x n]
lengths [1 x n]

Traffic
density

codes [1 x m]
lengths [1 x m]

Stop events
type [1 x p]

position [1 x p]

Table 3.1: SPP input

3.3.1 Traffic density

Naturally, the first limitation to the speed achievable by the driver along the

path is enforced by speed limits. The information regarding speed limits is sent

to the algorithm in the form of two equal sized vectors, one containing the speed

limit values and the other containing the lengths of the relative range of validity. A

furthermore limitation to the speed domain is imposed thanks to the information

about the traffic density. This information consist likewise in two coupled equal sized

vectors, respectively containing the traffic codes and their validity range lengths. A

traffic code is a commonly way used by MSPs to describe the traffic density relative

to a road segment by means of a colour. In this case, the colours provided by the MSP

are four: starting from green in free flow traffic condition, coming to black in heavily

congested traffic condition. The algorithm manages this information decreasing the

speed limits by a factor, the code weight (CW), depending on the traffic code c,

according to the fact that the more a street segment is congested, the more the

segment average speed is low with respect to the speed value allowed by the limit.

Thus, the maximum allowed speed (MAS) at the j−th road segment is defined by
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the 3.1 as:

MASj = Vlim,j · CWj(c) (3.1)

Where Vlim,j is the legal speed limit.

3.3.2 Stop events

In the end, there is the information for what concerns the stop events. It is

commonly referred to a stop event as an event located along the path, whose presence

implies that the speed of the vehicle in that position must be partially (e.g. bump) or

totally (e.g. red traffic light) decreased. Just like the previous ones, this information

is split in two vectors containing the typology of the stop events and their position.

At the moment, four stop event typologies can be recognized by the algorithm,

but, thanks to its modular architecture, the implementation of new typologies is

straightforward. This is just an example of how the modular architecture makes the

algorithm able to easily keep pace with the advisable improvement of the available

information over time. The current list of stop events typologies is composed by:

Static
Stop signs

Bumps

Dynamic
Traffic lights

Roundabouts (yield signs)

Table 3.2: Stop event typologies

Stop events can be grouped into two main families: static and dynamic. Bumps

and stop signals belongs to the static one, since, once their position is known, the

ego-vehicle speed can be certainly assumed to be equal to zero (stop signals) or

equal to a reference value (bumps). Prediction becomes harder in case of dynamic

stop events, such as traffic lights or roundabouts. The term ”dynamic” is due to the

fact that they may not affect the current speed even if their position is known: to

figure it out, it is sufficient to think about a driver approaching a green traffic light

keeping the speed constant. To consider all the dynamic stop events taking place

would mean making the predictive driving cycle far-fetched, introducing an error

that becomes greater when free-flow traffic conditions are verified. On the opposite,
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neglecting the dynamic stop events at all, the predicted driving cycle would be still

implausible, worsening in case of congested traffic conditions. For this reason, the

necessity to take into account a stop-over probability has come to light. In real world,

traffic lights’ timing is influenced by several static and real-time variables, such as:

time, traffic density, road type, presence of special vehicles (i.e. emergency or public

transport). As a first approximation, the stop-over probability has been modeled

by means of binomial probability, where the chances of green light are related to

the traffic code assigned to the segment of interest [3.2]. This choice is supported

by the fact that the traffic code is influenced by most of the mentioned variables.

Thus, when green light is drawn, the evaluation of the speed in that position is

Figure 3.2: Green traffic light probability depending on traffic code.

performed without caring about the presence of the stop event, otherwise, speed is

imposed to be equal to zero. The choice to not introduce the yellow light comes from

the fact that, according to traffic laws, it can affects driver’s decision in two ways,

both considered by the SPP inside red and green light cases. In fact, a yellow light

warns you that the red signal is about to appear. When you see the yellow light,

you should stop, if you can do so safely (red light), otherwise, it is allowed to leave

the intersection (green light). When the presence of a roundabout is detected, the

algorithm acts in a similar way, drawing a symbolic green (which stands for ”nobody

is coming”) or red light, with the only difference that in case of green light the speed

is imposed to be ≤ 30 km/h as attempt to simulate the behavior of a real driver

approaching to a roundabout.
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3.3.3 Space based driver model

Usually, the target for the average driver during his routine is to arrive to des-

tination in the shortest time possible, respecting the law and avoiding accidents.

Assuming this as fundamental rule, the driver model has been conceived for chasing

the MAS, evaluating at every discretization space interval the opportunity to accel-

erate. At first, the path is divided by J segments whose endpoints are named nodes.

Nodes are points where boundary conditions are imposed, since they represent co-

ordinates where changes in traffic code and/or speed limit take place, or where the

stop events are located. Then, each j−th segment is ulteriorly divided by N points

where the speed will be evaluated point-by-point. To understand how it works, let’s

suppose the driver proceeding at the speed Vi on the generic i−th point along the

j−th segment. First of all, the algorithm looks at the current speed Vi and verifies

one out of two conditions:

1. Vi = MAS

2. Vi < MAS

If condition 1 is verified, the driver will decide whether to keep the speed constant or

to start braking in order to match a lower speed imposed by the closest stop event

or speed limit change.

Otherwise, the driver also considers whether to accelerate and two variables are

computed:

� V : the speed at the point i+1 assuming that the acceleration is performed;

� Q : it represents the maximum speed at the point i+1 that still allows you to

brake in time to match the speed imposed by the next stop event or speed

limit change.

Thus, the speed at the next point is imposed by means of three double if conditions:

1. if V ≤ Q && V ≤MAS ⇒ Vi+1 = V ;

2. if V ≤ Q && V ≥MAS ⇒ Vi+1 = MAS ;

3. if V ≥ Q && V ≤MAS ⇒ Vi+1 = Q .
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Figure 3.3: Verified conditions for acceleration.

Q and V values are calculated in accordance with braking and acceleration laws

that takes into account the ego-vehicle model thanks to two parameters: Maximum

Longitudinal Acceleration (MaxLongAcc) and Maximum Longitudinal Deceleration

(MaxLongDec). Before going into deep with this topic, it is appropriate to cite the

fact that the algorithm allows you to choose one out of three different driver types

(quite, normal, aggressive), since both the acceleration and deceleration laws are

affected by this choice. This feature has been inspired by the fact that, the energy

consumption related to a given route can be largely influenced by driver’s behaviour.

The braking phases, like in the previous version of the algorithm, are modeled my

means of a constant deceleration law. In this case, a constant Kdec has been intro-

duced and its value, ranging between 0 and 1, depends on the selected driver type:

it represents the percentage of MaxLongDec used by the driver.

For what concern accelerations, an exponential law has been introduced instead of

the constant acceleration of the previous version. In this way, longitudinal accel-

erations have been modeled as a first order system undergoing to a step stimulus,
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described by the equation [3.2]:

a(x) = Kacc(1− e−(τx)) (3.2)

Both parameters in the equation Kacc and τ depend on the selected driver type. Like

for the deceleration, Kacc determines the percentage of ego-vehicle’s MaxLongAcc

requested by the driver or, in other words, the step stimulus value. In this kind of

systems, the time constant τ defines the time employed to achieve the step value

[fig.3.4]: the lower is τ , the slower is the transient. The purpose of this approach to

the modeling of the acceleration manoeuvre is to consider different ways to act on

the pedal that are specific to different drivers.

Figure 3.4: Effects of different τ = 1
T in a first order system undergoing to a step stimulus.

3.3.4 Oscillation around constant speed segments

At this point, in accordance with all is said above, there would be a virtual driver

who would keep the speed perfectly constant at the maximum allowed value for as

long as possible. As could be easily imagined, this behaviour is far from reality

[fig.3.5], since the velocity often exhibits oscillations around the speed limit due

to inharmonic traffic flow. Furthermore, different drivers are expected to react in

different ways to traffic variation: for instance, aggressive drivers tends to delay as

much as possible braking until they are very close to the vehicle beyond. To account
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Figure 3.5: Measured speed profile Vs. ”zero-noise” predicted speed profile

for these oscillation, the sum of l-cosines characterized by different amplitude Ar

and frequencies ωr is added to the MAS, so that the reference signal followed by the

driver is no more constant but governed by the equation:

MASnoise = MAS +
l∑

r=1

Arcos(2πfrx) (3.3)

All the parameters in the [3.3] are functions of the selected driver type and of the

traffic code. For further explanations on how they have been determined please refer

to the chapter Calibration and Validation. The oscillation around constant speed

segments constitutes the last space-based enrichment with respect to the previous

version of the algorithm and an example of the final output is shown in fig.3.6:
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Figure 3.6: Measured speed profile Vs. Predicted speed profile
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Chapter 4

Calibration procedure

4.1 Methodology

This chapter represents an overview on how possible values for the parameters

which mostly affect the prediction have been determined. The whole procedure is

based on the acquisition of real data by an on-board recording across predefined

scenarios. In particular, this section wants to provide a detailed description of the

methodologies adopted during the measurements phase. Let it be clear that a rig-

orous calibration requires an amount of time and resources that are beyond the

availability of this thesis work. Nevertheless, the procedures described in this chap-

ter have allowed to supply the algorithm with real-based foundations and can be

considered an effective starting point for future works.

4.1.1 Scenarios

Two scenarios have been introduced so that the first could be used to tune the

phases of acceleration and deceleration, while the second to evaluate the influence

of the environment in terms of traffic, speed limits and stop events:

1. This scenario consists of an ad hoc maneuver where the driver performs a 0-50

km/h acceleration followed by a 50-0 km/h deceleration on a straight road.

The range of speed has been assumed considering the use-case this algorithm

has been developed for: the ZEZ is a urban contest where the most of the
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maneuvers are included in this interval. Looking at fig4.1, it should be notice

how the speed of 50 km/h is not achieved by the real driver: that is because of

car OEMs are used to program cockpits where the displayed speed is slightly

higher than the actual one.

Figure 4.1: 1st scenario: 0-50-0 km/h acceleration and deceleration

2. In this case, a route across the city center of Bologna has been identified to

be driven at different time-slots. This route in particular has been chosen for

its peculiarity to present different speed limits and a high variation of traffic

condition during the day. Thus, selecting adequate time-slots, the effects of

every traffic code can be investigated.
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Figure 4.2: 2nd scenario: from Via Umberto Terracini to Piazza Grigoris Lambrakis,
Bologna

4.1.2 Measurements

The acquisition of the real speed profiles through the scenarios has been done

by means of a GPS receiver (model: Navilock nl-8002u [19]) connected via USB to a

laptop hosted in the passenger compartment. All the measures about vehicle speed

and position are recorded with a 1 Hz sampling frequence and can be saved on PC

thanks to the GNSS evaluation software developed by u-blox, named u-center. The

Graphical User Interface (GUI) of the software offers the possibility for the users

to select the variables of interest out of a long list and use them to feed real-time

charts, like in fig. 4.4. Furthermore, data can also be grouped into tabs so that they

can be easily copied into an Excel data sheet or into a Matlab workspace [fig. 4.5].
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Figure 4.3: Measurement chain

Figure 4.4: u-center GUI: speed over time diagram view

Figure 4.5: u-center GUI: table view with time, speed, longitude and latitude
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4.1.3 Key Performance Indicators

In order to evaluate the overall goodness of predictions as well as the way they are

affected by single parameters, key performance indicators (KPI) have been defined.

Naturally, since the output generated by the algorithm is a speed profile prediction,

an evaluation of the error in terms of speed had to be done, but always minding

the energy management purpose. For this reason, two class of indicators have been

introduced:

� Speed KPI

� Energy KPI

The identification of speed KPI has been entrusted to a bibliography search in order

to be aligned to the many in the past who have experimented the development of

algorithms in this field [16][17][15]. This search revealed how the error in these kind

of predictions are commonly evaluated by means of Mean absolute error (MAE) and

BIAS, both expressed in km/h and defined as:

MAE =
1

n

n∑
i=1

|Sp,i − Sr,i| (4.1)

BIAS =
1

n

n∑
i=1

Sp,i − Sr,i (4.2)

where Sp,i and Sr,i are respectively the predicted and the measured speed at point

i and n is the total amount of point where the differences are calculated. MAE, not

caring about the algebraic signs of the errors, expresses the mean distance between

the prediction and real data. BIAS, instead, operates an algebraic sum so that self-

compensation of the error can occur, resulting in possible low values of BIAS even

in presence of high punctual errors. For this reason, BIAS on its own is not a reliable

index to evaluate the goodness of the predictive model, but represents a powerful

instrument to identify eventual issues related to a systematic under/overestimation

of the speed.

Then, to define effective energetic indicators, [13] has been assumed as reference.

In this document, SAE defines the parameters used to evaluate the goodness of tests
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4 – Calibration procedure

where a reference cycle must be followed by a human operator acting manually on

pedals. First of all, three force components are calculated for both the predicted and

the measured cycle:

� Road load it represents the force required to win rolling resistance and drag

force. It is expressed by the equation 4.3, where F0[N ], F1[
N

km/h
], F2[

N
(km/h)2

]

are the cost down coefficients of the vehicle:

FRL = F0 + v · F1 + v2 · F2 (4.3)

� Positive inertial force it is associated only to positive values of acceleration

(a+) and represents the force required by the vehicle mass to be accelerated.

It is expressed by the equation 4.4, where M is the vehicle mass:

FI+ = M · a+ (4.4)

� Negative inertial force it is associated only to negative values of acceleration

(a−) and represents the force required by the vehicle mass to be decelerated:

FI− = M · a− (4.5)

Once the three forces have been defined, the relative energies can be retrieved by

integrating the forces along the path length L, obtaining:

ERL =

∫ L

0

FRLdl (4.6)

EI+ =

∫ L

0

FI+dl (4.7)

EI− =

∫ L

0

FI−dl (4.8)

Now, three energy KPI can be introduced in form of energy rate, where subscripts
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4.2 – Calibration

p and r are respectively referred to the predicted and measured (real) speed profile:

%ERL =
ERLp − ERLr

ERLr

· 100 (4.9)

%EI+ =
EI+p − EI+r

EI+r
· 100 (4.10)

%EI− =
EI−p − EI−r

EI−r
· 100 (4.11)

While in case of an ICE vehicle differences in the negative inertial energy could be

neglected, they have a huge impact in case of PHEV since they represent the amount

of energy that can be potentially restored while braking. From this, the necessity

for 4.11 to be introduced.

4.2 Calibration

After the acquisition of the real speed profiles, the data analysis could start. The

target of the analysis was to tune the parameters related to acceleration, deceleration

and traffic. It is important to consider that one series of these parameters needs to

Acceleration Kacc, τ

Deceleration Kdec

Traffic CW, Ar, fr

Table 4.1: Calibration parameters

be determined for each driver type. Same approaches can be used for calibration in

all the three cases, for example, by instructing the real driver on behaving differently

during the measurements, or alternatively, recurring to three different real drivers

properly recruited. In the next paragraphs, the procedures in case of driver type

normal are shown for each parameter.
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4.2.1 Acceleration and braking maneuvers

As anticipated in section 4.1.1, an ad hoc maneuver has been recorded as refer-

ence for the calibration of acceleration and braking. The approach has consisted in a

trial and error sequence where different combinations of Kacc, τ and Kdec have been

tested, in order to make the profile generated by SPP matching with the measured

one. The grade of matching has been evaluated on the base of MAE, starting from

MAE = 6.37km/h to get to MAE = 2.42km/h [fig. 4.6].

Figure 4.6: Acceleration and braking: before(left) and after(right) calibration

4.2.2 Traffic: influence on average speed and oscillations

All the parameters related to traffic have been retrieved starting from measured

speed profiles by way of frequence analysis. At first, portions of signal coming from

different measured speed profiles, have been grouped by traffic code. Then, the Fast

Fourier Transform (FFT) has been applied in Matlab to each signal obtaining the

distribution of the amplitudes over frequencies. Since the SPP generates a space-

based speed profile, also the frequencies must be expressed in terms of space (1/m)

to be used in the algorithm. For this reason, a pre-processing is required by the

measured signals before the FFT can be applied. In particular, a re-sampling of the

signal have to be performed to make it sampled every meter instead of every second.

At this point, applying the FFT, distance based frequencies and relative modules are

obtained as shown by the example in fig.4.7. As expected, the amplitudes of these
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4.2 – Calibration

Figure 4.7: Example of FFT applied to a distance-based measured signal

signals are characterized by a continue distribution over the frequencies, since infinite

frequencies are required to perfectly approximate a non-periodic signal. Despite of

it, to be represented in Matlab as couple of vectors, a signal must be discretized

and this allow to easily identify frequencies with a high value of magnitude. The

first consideration has been made looking at the amplitudes at f = 0: since they

represent the average speed along the analyzed segments, they have been used to

assign a CW value to every traffic code. Let’s assume:

� the FFT be performed on J signals corresponding to J segments denoted by

the same traffic code c;

� lj be the length of the j-th segment;

� Vlim,j be the legal speed limit at the j-th segment;
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4 – Calibration procedure

� A0,j be the magnitude at f = 0 of the j-th segment;

The CW for the traffic code c has been retrieved as:

CWc =

∑J
j=1

A0,j

Vlim,j
· lj∑J

j=1 lj
(4.12)

Consequently, once all the CW have been defined, a constant MAS can be assigned

to each segment, as defined in the equation 3.1. After the MAS has been assigned,

r cosines of magnitudes Ar and frequencies fr are added, as shown by the equation

3.3. This results in oscillation around the MAS value whenever it is reached by the

driver. Here below, the procedure followed to retrieve Ar and fr as functions of the

traffic code c is reported. Let’s assume:

� the FFT be performed on J signals corresponding to J segments denoted by

the same traffic code c;

� four ranges of frequencies can be defined, denoted by r = 1,...,4;

� Nj be the number of magnitudes An,r,j corresponding to the fn,r,j frequencies

included in the range r, of the j-th signal;

Amplitudes Ar and frequencies fr for the traffic code c have been retrieved as:

Ar,c =

∑J
j=1 ( 1

Nj

∑Nj

n=1An,r,j) · lj∑J
j=1 lj

(4.13)

fr,c =

∑J
j=1 ( 1

Nj

∑Nj

n=1 fn,r,j) · lj∑J
j=1 lj

(4.14)
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Figure 4.8: Frequency and magnitude’s scatter in case of traffic code ’orange’
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Chapter 5

Results and validation

Consequently to the calibration phase, the SPP has been applied to three dif-

ferent scenarios to get a first evaluation of the performances at this progress of

development. In the next sections, the results for each cycle will be shown as a com-

parison between measured and predicted speed profile, expressed in terms of speed

KPI and energy KPI.

5.1 Scenario 1

This cycle is the result of a 15.8 km route driven at 15.45 and governed by

the three typical speed limit of a city center: 50 km/h, 30 km/h (residential areas),

70 km/h (ring road). Three traffic codes have been experimented (green, orange,

black) whose lengths, in this particular case, have been well forecast by the MSP:

the model, in fact, resulted to be perfectly centered (BIAS = −0.10 km/h) despite

of the real driver more than once has exceeded the speed limit by a lot (m = 805

and m = 1243)[fig.5.1, 5.2].

Table 5.1: Scenario 1:speed KPI

KPI
[km/h]

MAE 12.41
BIAS -0.10
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Table 5.2: Scenario 1:energy KPI

Abs Rel
[kWh] [%]

ERL 0.005 -0.4
EI+ 0.032 -2.0
EI− 0.032 -2.0

Figure 5.1: Scenario 1: speed
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Figure 5.2: Scenario 1: energy

5.2 Scenario 2

This scenario represents the one with the longest length (17831 m) and the most

populated traffic codes vector (55 elements). Such a variety has been obtained doing

the measurements at the rush hour (17.43). In this case, the predicted speed tends

to be higher than the actual one, especially in the central area (from m 7000 to m

12000), but still keeping a narrow value of BIAS (3.31 −3.31 km/h)[fig.5.3]. Looking

at the energy KPI, it is possible to see how this scenario is the only one where the

inertial energies are overestimated[fig.5.4]. Possible reasons for this behavior will be

discussed in detail in the next chapter, where possible solutions are introduced as

future works.

Table 5.3: Scenario 2:speed KPI

KPI
[km/h]

MAE 11.07
BIAS 3.31
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Table 5.4: Scenario 2:energy KPI

Abs Rel
[kWh] [%]

ERL 0.004 3.55
EI+ 0.036 23.47
EI− 0.036 23.47

Figure 5.3: Scenario 2: speed
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Figure 5.4: Scenario 2: energy
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5.3 Scenario 3

This scenario has been introduced to test the robustness of the algorithm in case

of a short length prediction (3,186 km). In this case it can be easily noticed how the

oscillations of the predicted signal seems to have a totally different behavior with

respect to the measured signal. This condition is largely due to the fact that, in

this case, the traffic codes information has not been so reliable like in the other two

previous cases. In general, has been observed how the predicted and the measured

road load energy have the tendency to be coincident: this is in accordance with the

low values of BIAS encountered and with the fact that all the three scenarios are

denoted by a low value of average speed, resulting in small contributes of the term

v2 · F2 [fig.5.5,5.6].

Table 5.5: Scenario 3:speed KPI

KPI
[km/h]

MAE 8.27
BIAS 1.88

Table 5.6: Scenario 2:energy KPI

Abs Rel
[kWh] [%]

ERL 0.003 1.76
EI+ 0.046 -9.82
EI− 0.056 -11.72
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Figure 5.5: Scenario 3: speed

Figure 5.6: Scenario 3: energy
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Chapter 6

Conclusions and future works

6.1 Initial and final speed

Looking at the energy KPI in Scenario 1 [fig.5.2] and Scenario 2 [fig.5.4], it can

be noticed that both of them present coincident errors for positive and negative

inertia (%EI+ = %EI−). On the contrary, this condition is not found in Scenario

3 [fig.5.6]. This behavior is coherent with the way inertial forces are defined: they

represent the energy requested by the vehicle to be accelerated and decelerated,

including the work done by non-conservative forces. Consequently, the cumulative

overall inertial energy, for a cycle whose initial and final speed are coincident, is

equal to zero. So, the coincident errors in first two cases are due to the fact that

both the predicted and the measured initial and final speeds are equal to zero.

Instead,in Scenario 3, both the predicted and the measured final speeds are equal to

zero, while the initial speeds are not coincident. This observation could appear as

trivial, but it highlights how the prediction accuracy can be increased when initial

and final speed are well-imposed. Since in the current version of the algorithm these

values are imposed manually, a possible improvement could be the implementation

of a further algorithm branch that generates them by basing on navigation data in

the vicinity of ZEZ-in and ZEZ-out gates.
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6.2 Oscillation energy

The comparison of the energy KPI brings to an additional observation: the nar-

row underestimation of the inertial energies in Scenario 1 (≈ −2%) and 3(≈ −10%)

are quite in contrast with the overestimation that took place in Scenario 2 (> +20%).

A possible cause for this behavior has been investigated in the oscillations introduced

to reproduce the effects of the traffic flows, since their reliability is still to be veri-

fied. In fact, despite of magnitudes and frequencies of these oscillations have been

retrieved starting from the frequency analysis of real data, as done by many before,

the procedure described in chapter 5 is an empirical approach that can not count

on bibliographic references. Thus, to make a first evaluation of this methodology,

predictions for all the three scenarios described in chapter 5 have been executed

before and after the oscillation were added to the MAS. The results of this series of

comparative simulations are reported in fig.6.1. As can be easily seen, MAS, BIAS

Figure 6.1: Effects of oscillations on KPI

and road load energy are quite unaffected by the introduction of the oscillations. The

situation is totally different for the inertial energies: underestimation in Scenario 1 e

3 is effectively reduced by the introduction of the oscillations, while is way too over-

compensated in Scenario 2. Unfortunately, the current information availability on

traffic codes and measured cycles is not sufficient for an accurate identification of the

causes for this misalignment. Nevertheless, one general conclusion can be retrieved:

in three out of three cases the inertial energies would be heavily underestimated

without the addition of the oscillations. This trend confirms how the oscillation con-

stitute an essential part for a robust prediction and how this topic deserves to be
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further explored. Anyway, a possible workaround to energy estimations issues could

be provided by supplying the SPP with a feedback signal of the vehicle speed. In

this way, the algorithm could be programmed for a real-time KPI evaluation, that

would allow it to autonomously select another driver type and refresh the prediction

in case a certain error threshold is overcome. Naturally, a full calibration of all the

three driver types it is the necessary condition for this solution.

6.3 Road curvature radius and weather conditions

In the real world, traffic and stop events are not the only reasons that can in-

duce a driver to reduce the vehicle speed with respect to the legal speed limit. For

example, sometimes the road shape or condition is that proceeding according to

the speed limit value would be unsafe. Even if they are not between the current

available input, the SPP is prearranged to operate a furthermore limitation to the

assignable speeds domain by elaborating the information regarding weather condi-

tions (WeCon) and the road curvature radius R. This enrichment would be easily

implemented by flanking V and Q [fig.6.2] with another upper limit condition: the

speed C. C represents the maximum speed allowed by the limit of adherence and

can be retrieved by equaling the centrifugal force and the centripetal friction force:

M · C
2

R
= M · g · µWeCon (6.1)

Obtaining:

C =
√
R · g · µWeCon (6.2)

where:

� M is the mass of the vehicle;

� R is the road curvature radius;

� µWeCon is the friction coefficient expressed as function of the weather condi-

tions;
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Figure 6.2: Limit of adherence C

6.4 Stop event duration, slope and eco-Driving

The space-based speed profile generated by the SPP does not represents on

its own the totality of the information needed by the PF to actuate the energy

management optimization strategies. Before feeding the PF, the space-based profile

needs to converted into a time-based profile. This process introduces a new prediction

variable that only affects the time-based model: the stop events duration vector. The

length of this vector depends on how many times the predicted speed had touched

the zero value, and its elements represent the duration of the single stop events

expressed in seconds. A concept for the logic that assigns the duration values to

each element is currently defined but is still to be implemented. This concept starts

from the acquisition of real stop event duration that has already took place during

the recordings previously discussed. The idea consists in a random assignment where

the assignable values have a distribution of probability derived from the real data.

At the moment, to execute the simulations, all the duration are imposed to be equal

to zero. The implementation of this SPP’s branch has the priority between the next

enrichment, since the idle time can have a huge impact on the overall efficiency of
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a cycle. Once the time-based speed profile has been generated, it is finally sent to

Figure 6.3: Predictive Functions layout

the PF with the last of the information generated by the eHr: the slope. Thanks

to the slope, the PF are able to include the potential energy gradient of the path

in their calculations, with the aim of maximizing the amount of energy produced

by the regenerative braking system. The implementation of all the so far discussed

future works finds its natural evolution in the so-called eco-Driving functions. When

the driver sends a navigation request for a certain destination, the eco-Driving asks

for all the predictions to be repeated for several routes alternative to the one chosen

by the driver, then it operates the minimization of a cost function, identifying the

most efficient route that is immediately suggested to the driver.
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