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Sommario
L’osservazione di eventi di lensing forte tra galassie consente diversi tipi di studi,
che spaziano dalla ricostruzione della distribuzione di massa delle galassie che li pro-
ducono alla determinazione della costante di Hubble. Le future survey fotometriche,
come quella che verrà effettuata dal telescopio spaziale Euclid, contribuiranno alla
scoperta di migliaia di questi sistemi, che dovranno però essere ricercati tra miliardi
di sorgenti osservate. In questo contesto, è evidente l’importanza di sviluppare tec-
niche automatiche e affidabili per l’analisi veloce di grandi volumi di dati. Le Reti
Neurali Convoluzionali sono una tecnica di Deep Learning che si è particolarmente
affermata negli ultimi anni come potente mezzo di indagine in questo campo, gra-
zie alla loro velocità di esecuzione e capacità di generalizzazione. In questo lavoro
di tesi, in particolare, abbiamo esaminato l’abilità delle reti di individuare eventi
di questo tipo in base alle loro caratteristiche morfologiche, confrontando l’efficacia
di tre diverse architetture. Per farlo, abbiamo utilizzato due dataset, costituiti di
immagini simulate per riprodurre la qualità delle osservazioni attesa dal telescopio
Euclid: il primo dataset contiene eventi di morfologia variegata e complessa, mentre
il secondo è principalmente caratterizzato da lenti chiare. Nello specifico, abbiamo
sia valutato la prestazione delle reti su diverse selezioni di dati, contenenti frazioni
crescenti di oggetti di difficile classificazione, che verificato la loro capacità di iden-
tificare lenti ovvie. Abbiamo inoltre indagato l’impatto di alcune delle principali
caratteristiche di lenti e sorgenti sui risultati ottenuti. La nostra analisi ha confer-
mato le potenzialità delle reti neurali per l’identificazione di lenti ovvie, mentre ha
messo in evidenza la necessità di training specifici per l’individuazione di lenti meno
caratteristiche.



Abstract
Studying Galaxy-Galaxy Strong Lensing events allows to tackle several problems,
that include the reconstruction of the mass distribution of the lens galaxies and the
estimation of the Hubble constant. Thousands of these systems are expected to be
detected in upcoming imaging surveys, such as the one that will be carried out by
the Euclid space telescope, but they will have to be identified among the billions
of sources that will be observed. In this context, the development of automated
and reliable techniques for the examination of large volumes of data is of crucial
importance. Convolutional Neural Networks are a Deep Learning technique that
has proven particularly effective in the past years as a poweful tool for the analysis
of large datasets, because of their speed of execution and capacity of generalization.
In this thesis work, in particular, we evaluate the ability of this kind of Neural
Networks to identify these events on the basis of their morphological characteristics,
comparing the performance of three different architectures. For this purpose, we
have used two datasets, composed of images simulated to mimic the data quality
expected by the observations of the Euclid space telescope: the lenses in the first
dataset are characterized by a diverse and complex morphology, while the lenses in
the second one are mainly recognizable because of large arcs and rings. Specifically,
we have evaluated the performance of the networks on different selections of images,
gradually including larger fractions of borderline objects, as well as their ability
to identify the most evident lenses. Moreover, we have investigated the possible
impact of some of the main characteristics of the lenses and sources on our results.
Our analysis has confirmed the potential of the application of this method for the
identification of clear lenses, while it has highlighted the need of specific training for
the detection of fainter lensing features.
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Introduction

Galaxy-galaxy strong lensing (GGSL) events occur when a background source falls
within the caustic of a foreground galaxy. Finding and studying these events is very
important for several reasons. Recent studies showed that GGSL events in the core
of some massive clusters are relatively abundant (a few per cluster). Their num-
ber exceeds the expectations from numerical simulations in the ΛCDM cosmology
context by about one order of magnitude (Meneghetti et al., 2020). These puz-
zling results may signal potential undiagnosed systematic issues with simulations or
incorrect assumptions about Dark Matter properties. Confirming these results by
finding more events and studying how the probability of GGSL depends on several
cluster properties may help to understand this issue. Besides, GGSL events provide
constraints for recovering the mass distribution of both the lensing galaxies and their
host galaxy clusters (see e.g. Bergamini et al. 2019). Studying the interplay between
Dark Matter and baryons by mapping their spatial distributions on different scales
is essential for understanding the processes that shape the growth and the evolution
of the cosmic structures.
Upcoming large-scale imaging surveys from space, such as the one that will be carried
out by the Euclid mission, can potentially increase the number of known strong
lensing galaxies in clusters by several orders of magnitude. For this to happen,
images of tens of millions of galaxies will need to be inspected to identify potential
GGSL candidates.
One of the most common techniques for the identification of GGSL events has been
the visual inspection of images after a pre-selection of potential candidates based
on their color and luminosity (see e.g. Jackson 2008; Pawase et al. 2014). More-
over, semi-automated algorithms that detect lenses depending on the elongation
of arc-shaped or ring-shaped features have also been developed (see e.g. Seidel &
Bartelmann 2007; Gavazzi et al. 2014).
However, these methods are not fast enough to analyze large data sets and flex-
ible enough to detect diverse lens configurations. In this context, Deep Learning
(DL) techniques are a viable option, since they automatize the problem of feature
extraction and guarantee a fast analysis of great amounts of images. In fact, it is
expected that they will play a key role in the future of astronomical data analysis
methodologies. Convolutional Neural Networks (CNNs), in particular, are able to
learn directly from a training set the features that will be the most relevant for the
classification of images in different categories.
In the past few years, several works have proven the potential of CNNs for detecting
GGSL events in survey data. Lanusse et al. (2018), for example, apply this method
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on a dataset of LSST-like1 mock observations, obtaining 90% of completeness for
the lenses with Einstein radii larger than 1.43”. Petrillo et al. (2019) train and test
their models on a dataset of real galaxies from the Kilo Degree Survey (KiDS, de
Jong et al. 2015) and simulated lenses, recovering the 75% of the confirmed lenses
in the catalog of observations. Jacobs et al. (2019) search for strong lenses at high
redshift in the Dark Energy Survey (DES, The Dark Energy Survey Collaboration
2005), finding 84 new candidates after having trained the networks on simulated
and real images.
In this work, we investigate the ability of CNNs to identify GGSL events depending
on the observed morphology. We implement three popular CNN architectures, in-
spired by the VGG Network (Simonyan & Zisserman, 2015), the Inception Networks
(Szegedy et al., 2015, 2016), and the Residual Networks (He et al., 2016; Xie et al.,
2017). These models have been employed in image classification problems with
great success in the past few years and have become a benchmark for the scientific
community.
We train and test our models on two datasets, simulated to mimic the data quality
expected from the Euclid space mission. The first one consists of 100000 images,
simulated for the Strong Gravitational Lens Finding Challenge (Metcalf et al., 2019),
while the second one consists of 20000 images. Both these datasets are divided into
two classes, according to whether they show lensing characteristics or not.
The main difference between these two datasets is that, while in the case of the first
one morphological and photometric criteria are applied to distinguish between the
images of the two categories, in the case of the second one the division is straight-
forward and determined by the presence or absence of a background source.
In particular, we investigate how the presence of borderline images in the training
sets affects the performance of our models, and how the properties of the simu-
lated lenses and sources impact on the purity and completeness of the recovered
catalogues.
This work is organized as follows:

1. In Chapter 1 we introduce the fundamentals of modern Cosmology, with a
special focus on the physical laws that regulate the expansion of the Universe
(Section 1.1). Moreover, we introduce the Theory of Structure Formation (Sec-
tion 1.2), that investigates the evolution of the primordial density fluctuations
into the structures observed at the present time. Finally, we characterize in
greater detail the clusters of galaxies (Section 1.3), that are the most mas-
sive virialized structures in the Universe: because of the high density of their
central regions, they are the ideal environment for the observation of Strong
Lensing events.

2. In Chapter 2 we introduce the Theory of Gravitational Lensing, defining some
of the fundamental quantities and equations used for the description and com-
prehension of this phenomenon. In particular, in Section 2.1 we define the
deflection angle, the lens equation, the lensing potential, the time delay sur-
face and we discuss the magnification and distortion of background sources.
In Section 2.2 we outline the main properties of some commonly employed

1Large Synoptic Survey Telescope (LSST Science Collaboration et al., 2009).
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lens models. Finally, in Section 2.3 we take into consideration the specific
phenomenology of Gravitational Lensing in galaxy clusters.

3. In Chapter 3 we outline the basics of supervised Machine Learning Theory.
We firstly focus on the description of the structure and training process of
Neural Networks (Section 3.2). Afterwards, we discuss in greater detail the
advantages and applications of Convolutional Neural Networks (Section 3.4),
the type of models investigated in this work. We pay specific attention to the
architectures that inspired the models implemented in this work, presenting
them in Sections 3.4.1, 3.4.2 and 3.4.3 .

4. In Chapter 4 we present the datasets used to train, validate and test our
models. In particular, we introduce the Lens Finding Challenge dataset in
Section 4.1, while we describe the Euclid VIS dataset in Section 4.2. We
describe the simulations and discuss the main properties of the images, as
well as the most relevant characteristics of the galaxy sources and lenses. In
Section 4.3 we discuss the main differences between the two datasets.

5. In Chapter 5 we describe the preprocessing steps applied to the images (Section
5.1) before using them in the experiments and we characterize the metrics
employed for the evaluation of the performance of our models (Section 5.2).
The greatest part of this Chapter is, however, devoted to the delineation of the
setup of the experiments and and on the discussion of the results obtained. We
illustrate the experiments conducted with the Lens Finding Challenge dataset
in Sections 5.3 and 5.4, while we focus on the tests carried on the Euclid VIS
dataset in Section 5.5.

6. In Chapter 6 we summarize the most important results and discuss the future
perspectives and extensions of our work (Section 6.1).

7. In Appendix A we give an overview of the models examined in this work.
In particular, in Section A.1 we describe the models implemented, while in
Section A.2 we outline the setup of the training procedure.

8. In Appendix B we describe a procedure to simulate GGSL events in galaxy
clusters, that is currently under implementation.



Chapter 1

Fundamentals of Cosmology

1.1 Cosmological background
Cosmology is the branch of Astrophysics involved in the study of the formation and
evolution of the Universe on large scales.
The model currently used to describe it is the Standard Model of Cosmology, which
is based on two strong and fundamental assumptions:

1. Cosmological Principle
This is the assertion that at sufficiently large scales (that today are circa hun-
dreds ofMpc1) the Universe is homogeneous and isotropic. Homogeneity is the
property of being identical everywhere in space, while isotropy is the property
of looking the same in every direction.
Observational evidences that the Universe is characterised by both these prop-
erties derive from the Cosmic Microwave Background2 (CMB) and the distri-
bution of galaxies on Mpc scales.

2. Gravity is described by General Relativity
Gravity is the most relevant interaction when describing large scales, and it is
so far best described by Einstein’s Theory of General Relativity. According to
this theory, the Universe’s content of matter-energy determines its geometrical
properties, i.e. its curvature, and gravity is a manifestation of these properties.

In General Relativity, the Einstein equations relate the geometry of space-time,
represented by the metric tensor gµν , to the matter content of the Universe, described
by the energy-momentum tensor Tµν

Rµν −
1

2
Rgµν =

8πG

c4
Tµν + Λgµν (1.1)

where Λ is the cosmological constant, c is the speed of light, G is the universal grav-
itational constant and R and Rµν are the Ricci scalar and tensor, respectively. The
indices µ, ν = 0, 1, 2, 3 represent one time coordinate and three spatial coordinates.

11 Mpc = 3.086 · 1024 cm
2The CMB, first observed in 1965 (Penzias, A. A. & Wilson, R. W., 1965), is the cooled remnant

of the early phases of the Big Bang. It has a perfect black body spectrum at T ∼ 2.73K, uniform
over the whole sky (Longair, S. M., 2011)

8
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It should be noted that the presence of the term Λgµν is not strictly necessary from
a mathematical point of view, but it has been added for physical reasons that will
be discussed later in this Section.
Any metric tensor that represents a cosmological model must incorporate homogene-
ity and isotropy. Under these circumstances, it can be shown (Schutz, 2009) that
the distance between two points in space-time, expressed as ds2 = gµν(x)dxµdxν in
its general form in General Relativity, can be reduced to the form

ds2 = c2dt2 − a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]
(1.2)

in spherical polar coordinates r (dimensionless by convention) θ, φ. Here t is the
proper time; a(t) is the scale factor, a function to be determined which has the
dimensions of a length; k is the curvature parameter, a constant whose value can
only be 1, 0, -1, which is related to the Universe’s geometry.
It can be proven (Coles & Lucchin, 2002) that:

– if k = 0, equation (1.2) describes a flat space, whose geometry is Euclidean;

– if k = 1, equation (1.2) describes a closed space whose geometry is hyperspher-
ical;

– if k = −1, equation (1.2) describes an open Universe, whose geometry is
hyperbolic.

The metric (1.2) is called the Robertson-Walker metric.

1.1.1 The expansion of the Universe

The Hubble law

The proper distance between two points P and P0, which for simplicity is taken to
define the origin of a set of polar coordinates r, θ, φ (we can take dθ = dφ = 0), is
defined as the distance measured by a chain of rulers held by observers between the
two points, at the same cosmic time t (dt = 0).
From equation (1.2) we can define it as

dP =

∫ r

0

a(t)dr′

(1− kr′2)1/2
= a(t)f(r) (1.3)

where the function f(r) is k-dependent and is given by:

f(r) =


sin−1(r) for k = 1,

r for k = 0,

sinh−1(r) for k = −1.

(1.4)

The comoving distance is defined as the proper distance evaluated at the present
time t0:

dC = dP (t0) = a(t0)f(r) =
a(t0)

a(t)
dP (t). (1.5)
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The proper distance of point P might change with time because of the time-dependence
of the scale factor a. So, one can calculate its time derivative and define a radial
velocity between two points as

vR =
ddPR
dt

= ȧf(r) =
ȧ

a
dPR. (1.6)

Equation (1.6) is the Hubble law. It states that two points depart from each other
at a relative velocity proportional to their relative distance. Moreover

H(t) =
ȧ(t)

a(t)
(1.7)

is called the Hubble parameter, and it has the dimensions of inverse time.
It can be proven (Coles & Lucchin, 2002) that the Hubble law is directly derivable
from the Cosmological Principle.

Redshift

In the spectra of distant and luminous sources a shift is observed between the wave-
length at which the photons have been emitted (λe) at time t and that at which
they are observed (λ0) at time t0. This difference is described by a parameter called
redshift :

z =
λ0 − λe
λe

. (1.8)

It can be shown (Coles & Lucchin, 2002) that z and a are related through

1 + z =
a(t0)

a(t)
. (1.9)

This means that the redshift of the signal is related to the distance between two
objects. In addition, the observed values of z are positive, so we can conclude that
a(t0) > a(t), which means that the Universe is expanding, namely ȧ > 0.

The Deceleration Parameter

The scale factor a(t) is a function of time t. We can expand it for values of t close
to t0 in a power series:

a(t) = a(t0)

[
1 +H0(t− t0)− 1

2
q(t0)H2

0 (t− t0)2 + ...

]
(1.10)

where

q(t0) = q0 = − ä(t0)a(t0)

ȧ2(t0)
(1.11)

is the deceleration parameter at t = t0, a dimensionless quantity that is related to
the second derivative of the scale factor and hence describes the acceleration of the
expansion.
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1.1.2 Cosmological distances

The definitions given in equations (1.3) and (1.5) have little operational significance,
since it is not possible to measure simultaneously all the distance elements between
us and some astronomical object. However, one can define operationally other kinds
of distance which can, at least in principle, be measured directly.

• Luminosity distance dL.
This definition aims to preserve the Euclidean inverse-square law for the diminu-
tion of luminosity with distance from a point source:

dL ≡
(

L

4πF

)1/2

, (1.12)

where L is the luminosity of the source at distance r, emitting light at time t,
while F is the flux measured by the observer at time t0.

Several effects need to be taken into account. Because of the expansion of
the Universe, the signal is redshifted by a factor a(t)/a(t0). Due to the time-
dilation effect (Schutz, 2009) time intervals between the photons’ arrivals are
enlarged of another factor a(t)/a(t0). Also, the area of a spherical surface
centred on the source and passing through the observer at time t0 is 4πa(t0)2r2.
So we obtain:

F =
L

4πa2(t0)r2

(
a(t)

a(t0)

)2

=
L

4πa2(t0)r2
(1 + z)−2, (1.13)

from which
dL = a(t0)r(1 + z). (1.14)

• Angular diameter distance dA
This definition aims to preserve a geometrical property of the Euclidean space,
namely the variation of the angular size of an object with its distance from
the observer:

dA =
DP

∆θ
= a(t)r (1.15)

where DP = a(t)r∆θ is the proper diameter of the source at distance r at time
t, and ∆θ is the angle subtended by DP .

From equation (1.15) follows that the luminosity distance and the angular
diameter distance are related through

dA = dL
a2(t)

a2(t0)
=

dL
(1 + z)2

. (1.16)

Since the Universe is not flat and static, these definitions do not coincide in general,
so it is not possible to define length distances in a unique way. Nevertheless, when
considering sources in the local Universe, namely at z ∼ 0, the effects of curvature
and expansion are negligible and they are equivalent.
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1.1.3 Friedmann equations

The Friedmann equations can be directly derived from Equations (1.1) under two
conditions:

1. The Universe is homogeneous and isotropic, as stated by the Cosmological
Principle and assumed in the Robertson-Walker metric in Equation (1.2);

2. The Universe is considered a perfect fluid, so its energy-momentum tensor is

Tµν = −Pgµν + (P + ρc2)uµuν , (1.17)

where uµ is the fluid four-velocity, ρc2 is its energy density and P represents
its pressure.

At the beginning of the past century, the Universe was widely accepted to be static,
but this was not possible according to the Einstein equations as they were originally
formulated (Coles & Lucchin, 2002). For this reason, Einstein modified the equa-
tions, by introducing the cosmological constant Λ, whose value can be appropriately
chosen to obtain a static cosmological model.
For this reason, a new term was added to the tensor (1.17), defining the effective
energy-momentum tensor :

T̃µν ≡ Tµν +
Λc4

8πG
gµν = (ρ̃c2 + P̃ )uµuν − P̃ gµν , (1.18)

where {
ρ̃ = ρ+ ρΛ = ρ+ Λc2

8πG
is the effective energy density

P̃ = P + PΛ = P − Λc4

8πG
is the effective pressure

. (1.19)

PΛ and ρΛ hence represent the modifications to the pressure and density of the
perfect fluid due to the introduction of Λ.
With the discovery of the expansion of the Universe, Λ was removed from the equa-
tions. After the observation of the Universe’s accelerated expansion (Riess, A. G.
et al., 1998; Perlmutter, S. et al., 1999), however, it was re-introduced to physically
justify the observations, as we will clarify later in the Section.
Inserting Equations (1.2) and (1.18) in (1.1), one finds the first and the second
Friedmann equations, respectively:

ä

a
= −4πG

3

(
ρ+

3P

c2

)
+

Λc2

3
= −4πG

3

(
ρ̃+

3P̃

c2

)
, (1.20a)

(
ȧ

a

)2

=
8πG

3
ρ− kc2

a2
+

Λc2

3
=

8πG

3
ρ̃− kc2

a2
. (1.20b)

In reality, these equations are not independent: the second one can be recovered
from the first one, if one takes into account the adiabatic expansion of the Universe,
namely

d(ρc2a3) = −Pda3 (1.21)
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that represents the condition of energy conservation in the Universe.
Equation (1.20b) can be rewritten in terms of the Hubble parameter. At t = t0 we
obtain

H2
0

(
1− Λc2

3H2
0

− 8πGρ0

3H2
0

)
= −kc

2

a2
0

(1.22)

with the notation x0 = x(t = t0) for the generic function x. Equation 1.22 can be
reformulated as

H2
0

(
1− ρΛ,0

ρc,0
− ρ0

ρc,0

)
= −kc

2

a2
0

(1.23)

once the critical density of the Universe has been defined as

ρc,0 =
3H2

0

8πG
. (1.24)

We can introduce the density parameter as Ωi,0 =
ρi,0
ρc,0

for the i-th component of the
Universe.
So equation (1.23) can be rewritten in the form

H2
0 (1− ΩΛ,0 − Ω0) = −kc

2

a2
0

. (1.25)

The main components of the Universe can be divided into three groups: ultra-
relativistic matter and radiation; non-relativistic matter (baryonic and Dark Mat-
ter); dark energy, of which the cosmological constant is one of the possible forms.
As we will show in Section 1.1.4, radiation is currently negligible. So, at present
time, we can relate the curvature of the Universe to its energy content from equation
(1.25) as follows:

• k = 0 ⇔ ΩΛ,0 + Ω0 = 1 (flat Universe)

• k = 1 ⇔ ΩΛ,0 + Ω0 > 1 (closed Universe)

• k = −1 ⇔ ΩΛ,0 + Ω0 < 1 (open Universe)

Furthermore, the measurements of the deceleration parameter q clearly indicate that
ä > 0 (Riess, A. G. et al., 1998). From Equation (1.20a), one can show that this is
only possible if

Λc2 > 4πG

(
ρ+

3P

c2

)
i.e., the observed accelerated expansion of the Universe is made possible by a positive
cosmological constant.

Equation of state

We introduce now an equation of state that defines the relation between pressure
and density of the cosmic fluid. This is necessary to find solutions of the Friedmann
equations, that do not allow a definition of ρ(t), p(t), a(t).
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In Standard Cosmology this equation assumes the general form

P = wρc2 (1.26)

where w is the state parameter and its value is different for each component of the
cosmic fluid.
For the three main components in the Universe:

1. Non-relativistic matter, characterised by w = 0 ⇒ PM = 0.
This is the so-called dust-dominated Universe.

2. Ultra-relativist matter and radiation, characterised by
w = 1

3
⇒ PR = 1

3
ρRc

2.

3. Cosmological constant, characterised by w = −1 ⇒ PΛ = −ρΛc
2.

Inserting Equation (1.26) in (1.21) one can calculate a simple relation between ρ
and a:

ρw ∝ a−3(1+w) ∝ (1 + z)3(1+w). (1.27)

which yields, in the three cases described:

1. Dust-dominated Universe: w = 0 ⇒ ρM = ρM,0

(
a0
a

)3.

2. Radiation-dominated Universe: w = 1
3
⇒ ρR = ρR,0

(
a0
a

)4.

3. Λ-dominated Universe: w = −1 ⇒ ρΛ = ρΛ,0

(
a0
a

)0
= ρΛ,0.

1.1.4 Evolution of densities with cosmic time

As seen in Section 1.1.3, the energy density of each component has a different evo-
lution with cosmic time.
It is possible to divide the history of the Universe into three main epochs, according
to the dominant component: the radiation-dominated era, the matter-dominated
era and the dark energy-dominated era.
It is feasible to calculate the transition redshifts from one era to the other, starting
from Equation (1.27):

• Matter-radiation equivalence, when ρM = ρR:

ρM,0(1 + zeq)
3 = ρR,0(1 + zeq)

4 ⇒

(1 + zeq) =
ρM,0

ρR,0
∼ 3 · 104 ⇒ zMR

eq ∼ 3 · 104 (1.28)

• Matter-Λ equivalence, when ρΛ = ρM

ρΛ,0 = ρM,0(1 + zeq)
3 ⇒

(1 + zeq) =

(
ρΛ,0

ρM,0

)
∼ 1.7⇒ zΛM

eq ∼ 0.7
(1.29)
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Figure 1.1: Evolution of the densities of cosmic components with cosmic
time. The blue, pink and green solid lines represent, respectively, the
evolution of radiation, matter and dark energy densities. Image from
https://pages.uoregon.edu/jimbrau/. Credits to 2011 Pearson Edu-
cation, Inc.

The evolution of densities with cosmic time is schematically pictured in Figure 1.1.
It is evident that dark energy is now dominant, while in the redshift range 0.7 . z .
3 · 104 matter was the main component of the Universe and at z & 3 · 104 radiation
was predominant.
As a first approximation, one can use the main component to describe the evolution
of the Universe in the three different epochs:

• at z & 3 · 104 ⇒ weff ∼ 1/3,

• in 0.7 . z . 3 · 104 ⇒ weff ∼ 0;

• at z . 0.7⇒ weff ∼ −1.

Combining Equations (1.26) and (1.20a), it is possible to show (Coles & Lucchin,
2002) that for the expansion of the Universe to be accelerated (ä > 0), it is neces-
sary that w < 0. In particular, this is the case of a Λ-dominated Universe, while
the expansion would be decelerated if one of the other two components, matter or
radiation, were predominant.
Assembling this information with the observational evidence that ȧ > 0, one can
calculate that at some time in the past, labeled t = 0, the scale factor was null:
a(0) = 0. At this instant, called Big Bang, the density and the Hubble parameter
diverge.
Moreover, since a(t) is a concave function, the time between the singularity and the
epoch t must always be less than the characteristic expansion time of the Universe,
the Hubble time τH = 1/H = a/ȧ. This is shown in Figure 1.2.

https://pages.uoregon.edu/jimbrau/
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Figure 1.2: The concavity of the scale factor together with the observa-
tional evidence that ȧ > 0, ensures that there must have been a singu-
larity in a finite time in the past, i.e. a point when a = 0. It also secures
that the age of the Universe t0 is less than the Hubble time 1/H0. Figure
from Coles & Lucchin (2002).

1.1.5 Friedmann model for a flat Universe

In a Universe dominated by one component, equation (1.25) is of the form

H2
0 (1− Ωw,0) = −kc

2

a2
0

. (1.30)

In this scenario Equation (1.20a) along with Equation (1.27) give

H2(t) = H2
0

(a0

a

)2
[
1− Ωw,0 + Ωw,0

(a0

a

)1+3w
]
. (1.31)

In the case of a flat Universe, i.e. k = 0, Ωw,0 = 1, it is possible to find explicit
solutions for H(t), a(t), q(t), ρw(t):

t0 =
1

H0

2

3(1 + w)
, (1.32a)

a(t) = a0

(
t

t0

) 2
3(1+w)

, (1.32b)

H(t) =
2

3(1 + w)

1

t
, (1.32c)

q(t) =
3(1 + w)

2
− 1 = q0, (1.32d)

ρ(t) =
1

6πG(1 + w)2t2
. (1.32e)
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As this set of Equations points out, in this model the Universe undergoes an indef-
inite expansion, dependent on w, namely on its main component.
Moreover, in this scenario, the geometry of the Universe cannot change during its
evolution. This is evident by combining Equations (1.27) and (1.31):

Ωw(z) =
Ωw,0(1 + z)1+3w

1− Ωw,0 + Ωw,0(1 + z)1+3w
(1.33)

which shows that Ωw,0 stays greater, equal or smaller than 1 throughout the evolution
of the Universe, even while approaching the Big Bang at z →∞.

1.1.6 Measurements of the cosmological parameters

We shall now give a brief review of the measured values of the main cosmological
parameters.
One of the most reliable measurements of H0 is the one obtained by the Planck
experiment (Planck collaboration et al., 2020), that is based on the analysis of the
properties of the Cosmic Microwave Background Radiation. It has been estimated
that

H0 = (67.4± 0.5) kms−1Mpc−1.

It is conventional to express H0 = 100h kms−1Mpc−1, where h is a parameter
that takes into account uncertainties related to the value of H0. In many practical
applications it is considered h = 0.7.
With this notation it is possible to evaluate the present-day value of the critical
density:

ρc,0 =
3H2

0

8πG
≈ 2 · 10−29g cm−3h2.

Other important results of the Planck collaboration are the measurement of

ΩM = 0.315± 0.007

and the constraint put on the curvature parameter, strongly indicating that the
Universe is flat.
These results are in agreement with the outcomes of other experiments, such as
COBE and BOOMERANG experiments (Jaffe, A. H. et al., 2001), also focused on
the CMB, and high-redshift type Ia Supernovae observations (Riess, A. G. et al.,
1998).
From these measurements follows that ΩΛ ∼ 0.7 and q ∼ −0.55.
In summary, the cosmological model with the lowest number of free parameters in
agreement with the theory of General Relativity is the Λ-CDM model, according to
which the Universe is flat and is composed of Dark Matter and Λ.

1.2 Theory of cosmological perturbations
At present time the Universe can be considered homogeneous and isotropic on large
scales. On smaller scales, though, many structures, like galaxies and galaxy clusters,
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are observed. In order to explain how they originally formed and then evolved, it
is necessary to introduce density fluctuations in the primordial Universe and study
their growth.
The origin of the first perturbations is explained by the Inflationary Theory, whose
predictions are in agreement with today observations. This theory also explains
(Coles & Lucchin, 2002) some of the Universe’s most important properties, such as
flatness and the absence of magnetic monopoles.
According to this Theory, primordial density fluctuations arise from quantum effects
in the early Universe. It can be shown that the amplitude of density fluctuations at
the time of recombination3 is proportional to the amplitude of temperature fluctu-
ations observed in the CMB (Bennett, C. L. et al., 1996):

δρ

ρ
∝ δT

T
≈ 10−5 at z ∼ 1100. (1.34)

Structure formation theories describe how these fluctuations grow into the structures
observed today, characterised by a density field with fluctuations of about ∼ 102 on
the scales of collapsed objects.
A linear theory is useful to describe the first stages of the evolution of perturbations,
but its assumptions will not hold after δ ∼ 1: from that moment on it is necessary
to turn to a non-linear theory.

1.2.1 Jeans theory

Jeans theory (Jeans, J. H., 1902) is a linear theory that describes how small fluctu-
ations evolve into collapsed structures.
Firstly, it is convenient to introduce the concept of radius of the cosmological horizon,
that defines the radius of the sphere of all the events that can be in casual connection
with the centre of the sphere.

RH(t) = a(t)

∫ a(t)

0

da′

ȧ′a′(t′)
(1.35)

For scales bigger than the cosmological horizon the only possible interaction is the
gravitational one, so all the fluctuations with a greater length can grow. On smaller
scales, however the gravitational collapse of dark and ordinary matter might be
prevented by other physical processes opposing to gravity, namely the cosmic fluid
pressure.
The fundamental assumption when describing the gravitational collapse of structures
through a linear theory is that the density contrast between the background density
of the Universe ρb and the density of the perturbation ρ is small, namely

δ =
δρ

ρ
=
ρ− ρb
ρb

� 1. (1.36)

This is true in the early stages of perturbations’ growth.
3Recombination is the epoch at which matter became neutral for the first time in cosmic history.

Prior to recombination photons were scattered by free particles (electrons and protons) and could
not travel freely in the Universe. After recombination the Universe’s optical depth decreased
rapidly, so the CMB is the first event possibly observable.
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Growth of perturbations in a static Universe

A homogeneous fluid satisfies the following conditions: the continuity equation, that
implies the conservation of mass; the Euler equation, that guarantees the conser-
vation of the momentum; the Poisson equation and the entropy conservation (since
only adiabatic perturbations are considered), respectively:

∂ρ
∂t

+∇(ρ~v) = 0
∂~v
∂t

+ ~v∇~v = −1
ρ
∇P −∇Φ

∆Φ = 4πGρ
dS
dt

= 0

(1.37)

where ~v is the velocity of the considered fluid element, Φ is its Newtonian gravita-
tional potential and S represents its entropy.
This system has a solution of the kind ρ = ρb = const, P = Pb = const, Φ = Φb =
const, ~v = 0. Now, we add small perturbations to these quantities (δρ, δP, δΦ
and δ~v) and substitute them in the system (1.37), keeping the first-order terms and
discarding all the higher-order ones. We obtain the following set of equations:

∂δρ
∂t

+ ρb∇(δ~v) = 0
∂δ~v
∂t

= −v2s
ρb
∇δρ−∇δΦ

∆δΦ = 4πGδρρb

(1.38)

where v2
s is the sound speed of the fluid in adiabatic conditions, when it is possible

to apply the relation δP = v2
sδρ.

We now consider the perturbations in the form of plane waves:

f(r, t) = fk exp(ikr + iωt) (1.39)

where f stands for a generic quantity that describes the system (ρ, P , etc.), fk is
the wave amplitude and k is the wave number.
Inserting this Equation in the system (1.38), we find a new system whose determi-
nant is null if

ω2 = v2
sk

2 − 4πGρb. (1.40)

This condition is called dispersion relation. We can distinguish between three dif-
ferent cases:

1. ω2 > 0: the dispersion relation has two real solutions, leading to the propaga-
tion of plane waves without significant increase or decrease;

2. ω2 < 0: the dispersion relation has two imaginary solutions, one of which
implies an exponential growth of the amplitude of the perturbation with time;

3. ω2 = 0: this condition represents the boundary between the two former ones.
Recalling that k = 2π

λ
, we can define the Jeans length as the scale λ = λJ at

which ω2 = 0:
λJ = vs

√
π

Gρb
. (1.41)
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Equivalently, one can define the Jeans mass as the mass of the sphere of density
ρb and radius λJ :

MJ =
4

3
πρbλ

3
J . (1.42)

Summarising, if the size λ of a perturbation is such that λ > λJ , it will be subjected
to gravitational collapse, otherwise it will propagate as a stable wave.

Growth of perturbations in an expanding Universe

Three length scales will be considered in the following discussion:

1. The cosmological horizon RH : as already explained, the only possible interac-
tion on scales greater than this one is the gravitational one;

2. Jeans scale RJ : it is important that RJ < RH ;

3. Dissipation scale RD: on smaller scales there are no perturbations because of
dissipation.

Moreover, two important points in time need to be taken into account:

1. Equivalence time teq: before this time radiation was predominant, while after
matter can be considered the main component of the Universe;

2. Decoupling time tDEC : before decoupling, matter could not undergo gravita-
tional collapse because the radiation’s pressure opposed it.

It should be noted that Dark Matter and baryons decouple from radiation at different
times, and for this reason they collapse separately.
We can start from the case λ > RH . The perturbation can be seen as a closed
Universe (Ω > 1) in a flat background Universe (Ωb = 1). Studying the Friedmann
equations one finds

δ ∝ 1

ρba2
(1.43)

where the density contrast δ describes the evolution of the perturbation’s density
and is defined as

δ =
ρ− ρb
ρb

. (1.44)

The density contrast has a different evolution with time before and after the equiv-
alence: {

t < teq ⇒ δ ∝ a2 ∝ t

t > teq ⇒ δ ∝ a ∝ t2/3
. (1.45)

These equations clearly show that all the perturbations grow outside the cosmolog-
ical horizon. Also, they are applied to all the components of the cosmic fluid, not
just to the dominant one, since the only relevant force is gravity.
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Moving on to the case λ < RH , the solutions we will find will only hold for the
main component of the Universe, because the others may be influenced by other
microphysical processes.
Taking the expansion of the Universe into account, one can still assume a solution
of the kind f = f + δf , where f = ρ, P, φ, but two different terms have to be
considered for ~v: the peculiar motion of the fluid element ~vp and the velocity of the
Hubble flow:

~v =
d~r

dt
=
d(a~x)

dt
= a

d~x

dt
+ ~x

da

dt
= H~r + ~vp (1.46)

where ~r is the proper position of the element, while ~x is the comoving one.
Following an approach similar to the one employed in the case of a static Universe
for solving Equation (1.37), we can consider solutions in the form of plane waves
δ(r, t) = δk(t) exp(ikx) and find the dispersion relation

δ̈k + 2δ̇k
ȧ

a
+ δk

[
k2v2

s − 4πGρb
]

= 0 (1.47)

that can be solved with the ansatz δk ∝ tα.
In a matter-dominated, flat Universe (t > teq) this brings to

λJ =
vs
5

√
24π

Gρb
(1.48)

that, if λ > λJ , gives two solutions{
δ− ∝ t−1 ∝ a−3/2 ∝ (1 + z)3/2

δ+ ∝ t2/3 ∝ a ∝ (1 + z)−1
(1.49)

It is noticeable that these equations do not depend on the kind of matter, whether
it is dark or baryonic, but since they decouple at different times from radiation, it
will change the time at which the growth starts.
In a radiation-dominated Universe (t < teq), the dispersion relation becomes

δ̈ + δ̇k
ȧ

a
+ δk

[
k2v2

s −
32

3
πGρb

]
= 0 (1.50)

that, with the same ansatz used on equation (1.47), leads to

λJ = vs

√
3π

8Gρb
. (1.51)

If λ > λJ perturbations grow according to

δ+ ∝ t ∝ a2 ∝ (1 + z)−2. (1.52)

However, it can be proven that under these conditions λJ > RH .
Even though for λ < RH these results are only valid for the dominant component,
which is radiation in this case, at t < teq radiation and matter were coupled because
of the frequent scatterings. The results found are hence valid for both radiation and
matter.
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However, Dark Matter decoupled from radiation before baryonic matter. This means
that Dark Matter perturbations were able to grow before the equivalence. It can be
shown (Coles & Lucchin, 2002), that in teq < t < tDEC

δk,DM = 1 +
3

2

a

aeq
⇒ δk,DM ≤

5

2
at t = teq. (1.53)

This is called the Meszaros effect or stagnation effect : Dark Matter perturbations
don’t grow much before the equivalence, and after that they grow following Equation
(1.45).
At decoupling, when baryons could undergo gravitational collapse, the Universe
was already filled with wells of Dark Matter. This generated the so-called baryon
catch-up: baryonic perturbations followed the Dark Matter ones:

δk,B = δk,DM

(
1− aDEC

a

)
at t > tDEC . (1.54)

In a Universe with no Dark Matter, the baryonic perturbations would grow slower,
and the structures observed today would be smaller.
A summary of the results listed in this Subsection are given in Table 1.1.

Table 1.1: Summary of the growth of perturbations of dark and baryonic
matter on different scales, before and after the equivalence.

t < teq teq < t < tDEC t > tDEC

λ > RH δR, δDM , δB ∝ a2 δDM , δB, δR ∝ a δDM , δB, δR ∝ a

RJ < λ < RH δR, δB oscillate δDM ∝ a δDM ∝ a
δDM undergoes δR, δB oscillate δB ∝ δDM

(
1− aDEC

a

)
stagnation effect

λ < RJ δDM oscillate δDM , δR, δB oscillate δR oscillate

As already seen, perturbations not massive enough to collapse propagate as density
waves, influenced by the gravitational field. This phenomenon causes a leveling of
the existing perturbations, which will have at least the scale reached by the Dark
Matter perturbations. This scale is called free streaming scale:

λFS(t) = a(t)

∫ t

0

vsdt
′

a(t′)
(1.55)

where vs is the speed of the Dark Matter perturbations. This scale increases with
time. It is also possible to define the free streaming mass, MFS ∝ λ3

FS. At t < teq,
MFS = MJ , while at t > teq MFS = MJ(teq) and stays constant.
At the time of equivalence only perturbations with M > MFS existed. MJ has a
trend with time and it can be proven (Coles & Lucchin, 2002) that it reached its
maximum value, which is the smallest one a perturbation should have in order to
keep growing, at t = teq. However, its value depends on the properties of the Dark
Matter, i.e. its velocity, as shown in Equation (1.41).
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Figure 1.3: A schematic representation of the growth of perturbations for
a series of mergers in a bottom-up scenario is given by the merger tree
models. The width of the branches represent the masses of the individual
parent halos. Time increases from top to bottom. Figure from Lacey, C.
& Cole, S. (1993).

Studying the growth of perturbations allows to make some assertions on the nature
of Dark Matter. Two models have been been mainly discussed in the scientific
community:

• Cold Dark Matter (CDM) models : according to this theory the velocity of Dark
Matter particles at decoupling is non-relativistic. They predict MJ(teq) ∼
106M�, which is smaller than the average galaxy mass. According to these
models the lightest objects formed first, and then merged into more massive
structures, in a bottom-up scenario;

• Hot Dark Matter (HDM) models : in this scenario the Dark Matter particles
are lighter and they are still relativistic at decoupling. These models predict
MJ(teq) ∼ 1016M�, which is larger than the mass of galaxy clusters. In this
case, the most massive structures of the Universe are also the oldest ones, and
the other formed for fragmentation, in a top-down scenario.

Current observations of galaxies and galaxy clusters support CDM models, since
many clusters have not reached equilibrium yet. A schematic depiction of the growth
of Dark Matter halos by consecutive mergers is given by merger trees (Lacey, C. &
Cole, S., 1993) in Figure 1.3.

1.2.2 Non-linear theory

Linear theories are only valid until δ ∼ 1, but collapsed structures in the present
day Universe are characterised by δ ∼ 102− 103, so it is impossible to describe their
formation and evolution without turning to a non-linear theory.
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Figure 1.4: Density evolution of a spherical region in the non linear
regime. The background Universe is described as a flat and matter-
dominated Universe, while the perturbation is described as a closed Uni-
verse. Figure from Padmanabhan, T. (2003).

In the non-linear regime it is not feasible to find analytic solutions for the collapse
of perturbations, except for the simple case of a spherical collapse. This example
does not describe real structures, which are more complex, but it gives some insight
into the collapse process.
A synthetic description of the different stages is portrayed in Figure 1.4, from Pad-
manabhan, T. (2003). In this scenario the background Universe is flat and matter-
dominated, while the perturbation is described as a closed Universe of matter.
Firstly, the overdense region expands more slowly than the background Universe,
until the turn-around point is reached at a = amax, where δ(amax) ∼ 4.6, that is
definitely in the non-linear regime. At this point the collapse starts and goes on
until the structure reaches virialization, at t = tcoll when δ ∼ 400. At the same
moment a linear theory would yield δ(tcoll) ∼ 1.68.
This example clearly shows how linear theories are not suitable for treating the
formation of structures, even in the simplest case.

N-body simulations

N-body simulations are numerical simulations widely used to study the evolution of
cosmic structures in the non-linear regime. They require the definition of the number
of particles used as field tracers, the characterisation of the initial conditions (i.e.
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the initial position of the particles, that should try to reproduce the Universe’s
properties at high redshift) and the implementation of the physical laws that the
particles will follow.
In the case of gravitational collapse of Dark Matter halos, the most important in-
teraction is the gravitational one. However, hydrodinamical simulations are the
most accurate simulations when studying phenomena such as galaxy formation or
baryonic matter flows, but they are very expensive from a computational point of
view. Alternatively one can simulate the distribution of galaxies by placing them in
Dark Matter halos obtained by a N-body simulation, following a Halo Occupation
Distribution model (Zheng, Z. et al., 2005).
This approach has been followed in several simulations, including one of the most
important ones of the recent years, the Millennium simulation (Springel, V. et al.,
2005), carried out in 2005. This simulation used N ∼ 1010 particles to trace the
distribution of the matter distribution in a large cube of Universe and its evolution
with cosmic time.
In Figure 1.5 two snapshots of the simulation are compared, showing the distribution
of Dark Matter on large scales at z = 5.7 (left) and at z = 0 (right).

Figure 1.5: Distribution of Dark Matter on large scales at z = 5.7
(left) and at z = 0 (right), as calculated by the Millennium simulation.
Figure from https://wwwmpa.mpa-garching.mpg.de/galform/virgo/
millennium/.

As shown in this Figure, the Dark Matter distribution on large scales forms the
so-called cosmic web, made of filamentary structures connecting denser clumps of
matter, where galaxy clusters form.

1.3 Galaxy clusters
Galaxy clusters are the youngest and the largest gravitationally-bound structures
in the Universe. According to the bottom-up scenario described in the previous
section, they are thought to be formed through a sequence of mergers and accretion
of smaller systems.
The gravitational potential of the cluster is defined by the distribution of Dark
Matter, which makes up for ∼ 80− 85% of their mass, while the major part of the

https://wwwmpa.mpa-garching.mpg.de/galform/virgo/millennium/
https://wwwmpa.mpa-garching.mpg.de/galform/virgo/millennium/
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ordinary matter is in the form of hot plasma, the Intracluster Medium (ICM), which
accounts for ∼ 10 − 15% of the total mass. Baryonic mass in the form of stars in
galaxies only contributes to the total cluster mass for a small percentage. Typically
Mtot ∼ 1014 − 1015M�, with the lowest mass end being called galaxy groups.
There are different tracers for the total mass distribution of the cluster, and a
combination of all of them gives the best possible description of it. In the central
regions studies regarding the stellar kinematics of the Brightest Cluster Galaxy
(BCG) and strong gravitational lensing events are most effective, while hydrostatic
equilibrium of the hot X-ray gas and weak gravitational lensing phenomena allow
to recover the mass distribution in the outer regions, even beyond the virial radius.
The main features of galaxy clusters’ components will be discussed in the following
sections.

1.3.1 Dark Matter

Dark Matter can only be detected by its gravitational effect on other matter and
light passing near it. In fact, Gravitational Lensing has proven particularly effective
for the definition of the large scale distribution of Dark Matter in clusters, as well
as in individual galaxies within them.
The radial distribution of Dark Matter is commonly described by the Navarro-Frenk-
White (NFW) profile (Navarro, J. F., Frenk, C. S., White S. D. M., 1996), firstly
introduced as a universal profile adequate to model density profiles of Dark Matter
halos over a wide range of masses. Its analytical expression is given by

ρ(r) =
ρs(

r
rs

)(
1 + r

rs

)2 (1.56)

where rs is the scale radius and ρs = ρDM(r = rs). At r < rs ρ(r) ∝ r−1, while
at r > rs ρ(r) ∝ r−3. So the NFW profile is stepper than an isothermal profile
(ρ(r) ∝ r−2) in the outer regions and it is shallower in the inner ones, as shown in
Figure 1.6.
It should be noted that equation (1.56) represents an average profile of Dark Matter
halos in equilibrium, but there is considerable scatter in the possible shapes of the
profiles of particular clusters (see Meneghetti et al., 2014; Newman et al., 2011).
From the definition of the NFW profile follows that of concentration c∆ = r∆/rs,
where r∆ represents the size of the halo, defined as the radius enclosing a mean
overdensity ∆ above the critical density of the Universe ρcrit(z). The most adequate
way to describe a cluster would be to use its virial radius rvir, but the value ∆vir

is redshift and cosmology dependent. To avoid this dependence the value ∆ = 200,
at first proposed by Navarro, J. F., Frenk, C. S., White S. D. M. (1996), has been
commonly used in literature.
The mass profile that corresponds to the NFW density profile is

M(r) = 16πρsr
3
s

[
ln

(
1 +

r

rs

)
− r/rs

1 + r/rs

]
(1.57)
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Figure 1.6: Comparison between the Dark Matter density radial profile
given in Equation (1.56) (solid line) and the one of an isothermal sphere of
gas (dotted line). The dashed line represents the β-model often employed
for the description of the intracluster medium radial profile (Cavaliere,
A. & Fusco-Femiano, R., 1976).

1.3.2 Galaxies

Galaxy clusters contain from tens to thousands of galaxies, that differ from isolated
galaxies in morphology. In fact, while clusters mainly host Early Type Galaxies
(ETGs) (Dressler, A., 1980), i.e. elliptical galaxies, spiral and irregular galaxies are
more common in the field, as shown in Figure 1.7.
Also, cluster members usually have low Star Formation Rate (SFR) (Hogg, D. W.
et al., 2004): they tend to be red if compared to field galaxies, as it can be seen in
Figure 1.8.
Every galaxy cluster hosts a Brightest Cluster Galaxy (BCG) at its center. BCGs
are a distinct class of galaxies, that include the most luminous and massive galaxies
in the Universe. In fact, they can be 10 times more luminous than field galaxies,
and reach M ∼ 1013M�, comparable to the mass of small groups (Katayama, H. et
al., 2003). Their formation history is probably different from that of other galaxies.
Three models try to explain their origin: star formation from cooling flows expected
in the centers of clusters (Fabian, A. C., 1994), cannibalism or accretion of existing
galaxies (Ostriker, J. P. & Hausman, M. A., 1977), galaxy merging in the early
history of the formation of clusters (Merritt, D., 1985).
From the kinematics of galaxies one can infer the cluster total mass. Assuming
virial equilibrium, it is possible to relate the kinetic energy of the system K to its
gravitational potential energy U : 2K + U = 0. K and U write, respectively

K ≈ 1

2
Mσ2

v (1.58)

and

U ≈ GM2

R
(1.59)
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Figure 1.7: The fraction of elliptical (E), lenticular (S0), spiral and ir-
regular (S + I) galaxies as a function of the log of the projected density
(in galaxies/Mpc). The upper histogram shows the number distribution
of the galaxies over the bins of projected density. The sample includes
55 clusters in the local Universe. Figure from Dressler, A. (1980).

for a cluster. Here M is the total mass of the cluster, σv is the velocity dispersion
of the cluster members (typically, σv ∼ 103 km/s) and R is the cluster radius.
From these equations follow (Rosati, P. et al., 2002):

M ≈ Rσv
G
≈
(

R

1h−1Mpc

)(
σv

103km/s

)
1015h−1M�. (1.60)

1.3.3 Intracluster medium

As previously said, most of the ordinary matter in clusters is in the form of a hot
plasma. Assuming that gas and galaxies share the same dynamics, it can be proven
(Rosati, P. et al., 2002) that:

kBTICM ≈ µmPσ
2
v ≈ 6

( σv
103kms−1

)2

keV (1.61)

where kB is the Boltzmann constant, µ is the mean molecular weight of the gas
and mP is the proton mass. Typically TICM ∼ 106K. This material is also very
tenuous, and its density increases towards the center of the cluster. Because of these
properties, the ICM emits X-rays via the Bremsstrahlung emission process, which
emits with a brightness proportional to the density of the ICM squared.
In Figure 1.9 is an example of the Coma cluster as observed by XMM-Newton in
the X-rays: here it is possible to appreciate how the center of the cluster emits more
light than the outer regions in this band of the spectrum.
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Figure 1.8: Color of the galaxies [g-r] as a function of their absolute
magnitude in the i band Mi. The columns show subsamples cut in over-
density (the environment density increases from left to right), while the
rows show subsamples cut in Sersic index (n increases from top to bottom,
distinguishing early-type from late-type galaxies). Figure from Hogg, D.
W. et al. (2004).

Figure 1.9: Coma galaxy cluster in X-ray (diffuse emission) and optical
light (galaxies), as seen by XMM-Newton’s European Photon Imaging
Camera (EPIC) and the Sloan Digital Sky Survey (SDSS). Credits to
ESA/XMM-Newton/SDSS/J. (Sanders, J. S. et al., 2020)
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Assuming spherical symmetry, the condition of hydrostatic equilibrium writes

dp

dr
= −GM(< r)ρ(r)

r2
(1.62)

where p is the gas pressure. When considering the equation of state of a perfect gas,
Equation (1.62) yields

M(< r) = − kBTr
Gµmp

(
d ln ρ

d ln r
+
d lnT

d ln r

)
. (1.63)

From X-ray observations it is feasible to find both the temperature and density
profiles of the cluster, so this is a common way to measure the gravitational mass of
these structures. Nevertheless, the assumption of hydrostatic equilibrium does not
hold for some clusters, and other contributions to the total pressure should be taken
into account (Eckert, D. et al., 2019).
A different way of studying the hot gas in clusters of galaxies is through the observa-
tion of decrements in the intensity of the Cosmic Microwave Background associated
with the Sunyaev-Zeldovich effect (Rephaeli, Y., 1995).
Some of the photons of the CMB suffer Compton scattering by the hot electrons
while passing through the gas cloud. Because of these scatterings the spectrum
of the CMB is shifted to slightly higher energies (Longair, S. M., 2011). There is
expected to be a decrease in the intensity of the CMB in the Rayleigh-Jeans of the
spectrum (at hν � kTCMB), while in the Wien region (hν � kTCMB) there should
be a slight excess in TCMB, as shown in Figure 1.10.
The magnitude of the distortion is determined by the Compton scattering optical
depth through the region of hot gas

y =

∫ (
kBTe
mec2

σTNedl

)
(1.64)

where Ne, Te and me represent the numerical density, temperature and mass of the
electrons respectively and σT is the Thomson scattering cross section.
The reduction in the Rayleigh-Jeans region is given by

∆Iν
Iν

= −2y. (1.65)

An important property of the Sunyaev-Zeldovich effect in Cosmology is that, if
the host galaxies have the same properties at all redfhits, the observed decrease is
independent of redshift. Combining Sunyaev-Zeldovich and bremsstrahlung emission
observations, it is possible (Longair, S. M., 2011) to estimate Hubble’s constant
without the necessity of using a hierarchy of distance indicators.
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Figure 1.10: The measured SZ spectrum for eleven clusters. In each plot
the solid line is the best-fit SZ model, the dashed line is the thermal com-
ponent of the SZ effect and the dotted line is the kinematic component
of the SZ effect. Figure from Benson, B. A. et al. (2004).



Chapter 2

Gravitational Lensing Theory

The presence of a massive object may deflect the path followed by photons passing
nearby: this phenomenon is called Gravitational Lensing.
The massive body that acts as a deflector is called lens and it may be point-like, as a
star, or extended, as a galaxy or a galaxy cluster. On the other hand, the luminous
object, whose light is deflected, is called source and it could be a background galaxy
or a distant quasar.
Gravitational lensing studies have several purposes in Astrophysics. One of the
most common applications is the measurement of the mass of the lens and its radial
distribution (e.g. Lagattuta et al. 2019; Caminha et al. 2017). Gravitational lensing
observations have also proved valuable to constrain the value of H0 (e.g. Koopmans
et al. 2003; Wong et al. 2020) and to investigate cosmological models in general (e.g.
Stark et al. 2007; Vanzella et al. 2020a; Grillo 2012). Finally, the flux magnification
that derives from the deflection of the light of distant sources, allows to observe faint
objects at high redshifts (Vanzella et al. 2020b).
In this Chapter we will give an overview of the basics of gravitational lensing theory,
based on Meneghetti, M. (2018).

2.1 An Introduction to Gravitational Lensing

2.1.1 Deflection angle

The idea that photons may be deflected by a mass located along their path was
originally expressed by Newton in the context of the Corpuscolar Theory of Light
(Newton, I., 1704), and it was later confirmed and explained by Einstein’s theory of
General Relativity.
As seen in Section 1.1, according to this theory, the geometrical properties of space-
time depend on its energy-matter content: light paths are bent by the gravitational
effect of masses situated between the source of light and the observer.
In order to calculate the deflection angle of the light path, we make the assumption
that the lens is weak, valid in virtually all astrophysical cases. This approximation
corresponds to the request that the Newtonian gravitational potential of the lens Φ
is such that Φ/c2 � 1. Equivalently, one could ask for the lens to be small compared
to the dimension of the optical system, that includes observer, lens and source.

32
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Under this approximation, the Minkowski metric, that describes unperturbed space-
time, is modified by a small perturbation, and the line element writes

ds2 =

(
1 +

2Φ

c2

)
c2dt2 −

(
1− 2Φ

c2

)
(d~x)2 (2.1)

Light travels on null geodesics, for which ds2 = 0, thus the light speed in the
gravitational field is

c′ =
d~x

dt
= c

√
1 + 2Φ/c2

1− 2Φ/c2
≈ c

(
1 +

2Φ

c2

)
(2.2)

Since Φ ≤ 0, we have c′ ≤ c.
Hence, we can describe the space-time as a medium with effective refraction index

n =
c

c′
=

1

1 + 2Φ/c2
≈ 1− 2Φ

c2
≥ 1. (2.3)

Employing Fermat’s principle it can be shown (Schneider, P., Ehlers, J., Falco, E.
E., 1992) that the deflection angle

~̂α(b) =
2

c2

∫ +∞

−∞
∇⊥Φdz (2.4)

where it has been assumed that the light ray follows the ~ez direction at the beginning
of its path and passes the lens at z = 0 with impact parameter b.
This result is valid if the spatial scales considered are smaller than the distances
between source, lens and observer and if the time scale is short enough to make the
universe’s expansion negligible.
In case of a point mass equation (2.4) reads

|~̂α|(b) =
4GM

c2b
(2.5)

where M is the mass of the lens.
Since the dependence of the deflection angle on the mass M is linear, the deflection
angle of a group of lenses Mi, 1 ≤ i ≤ N , can be superposed:

~̂α(~ξ) =
∑
i

~̂αi(~ξ − ~ξi) =
4G

c2

∑
i

Mi

~ξ − ~ξi
|~ξ − ~ξi|2

. (2.6)

Here ~ξi are the positions of the lenses, while ~ξ marks the position where the deflection
angle is calculated.
In astrophysics it is always justified to use the thin screen approximation, that
describes the lens as a surface mass density

Σ(~ξ) =
4G

c2

∫ +∞

−∞
ρ(~ξ, z)dz (2.7)
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Figure 2.1: Typical configuration of a gravitational lensing system:
source and lens are assumed to lie on two different planes. Image from
Bartelmann & Schneider (2001).

where ρ is the three-dimensional density of the lens, ~ξ defines a position on the lens
plane and ~ez is the direction perpendicular to it.
Since the typical distances of observer, lens and source are much larger than the
physical size of the lens, it is legitimate to use this approximation. The geometrical
configuration of a gravitational lensing system is shown in figure 2.1. The sources
are also assumed to lie on a plane.
In this approximation the deflection angle can be calculated as

~̂α(~ξ) =
4G

c2

∫
(~ξ − ~ξ′)Σ(~ξ′)

|~ξ − ~ξ′|2
d2ξ′ (2.8)

2.1.2 Lens equation

Gravitational lensing effects depend on the relative positions and distances between
the observer, the lens and the source. We’ll consider a lens at angular distance DL

(or, equivalently, redshift zL), that deflects the light emitted by a source at angular
distance DS (or redshift zS).
If the true position of the source is ~β, it will appear as if it was located in ~θ because
of the deflection angle ~̂α, as shown in Figure 2.1.
If ~θ, ~β, ~̂α are small, the lens equation relates the true and apparent positions of the
source:

~θDS = ~βDS + ~̂αDLS. (2.9)
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Here DLS represents the distance between the lens and the source.
Moreover, introducing the reduced deflection angle

~α(~θ) ≡ DLS

DS

~̂α(~θ) (2.10)

equation (2.9) reads
~β = ~θ − ~α(~θ). (2.11)

Equation (2.9) is usually written in a dimensionless form. Considering the length
scale ξ0 on the lens plane and the corresponding length scale η0 = ξ0DS/DL on the
source plane, we can define the two vectors

~x ≡
~ξ

ξ0

, ~y ≡ ~η

η0

and the lens equation writes
~y = ~x− ~α(~x) (2.12)

where
~α(~x) =

DLDLS

ξ0DS

~̂α(ξ0~x). (2.13)

2.1.3 Lensing potential

By projecting the three-dimensional Newtonian potential Φ on the lens plane one
can define the effective lensing potential

Ψ̂ =
DLS

DSDL

2

c2

∫
Φ(DL

~θ, z)dz (2.14)

where DLS/DSDL is a scaling factor. This quantity also has a dimensionless form

Ψ =
D2
L

ξ2
0

Ψ̂ (2.15)

The lensing potential satisfies two fundamental properties:

1. The gradient of Ψ̂ returns the deflection angle:

∇xΨ(~x) = ~α(~x) (2.16)

2. The Laplacian of Ψ̂ corresponds twice the convergence:

∆xΨ(~x) = 2κ(~x) (2.17)

where the convergence is defined as a dimensionless surface mass density:

κ(~x) =
Σ(~x)

Σcr

(2.18)

where
Σcr =

c2

4πG

DS

DLDLS

(2.19)

is the critical surface density, a quantity that depends on the distances of lens
and source and characterises the lensing system.
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2.1.4 Magnification and distortion

One of the most peculiar effects of gravitational lensing in the distortion of the
shapes of the background sources. For example, it is common for galaxies to appear
in the form of elongated arcs in galaxy clusters.
The shape of the images can be determined by solving the lens equation for all the
points within the source. In particular, if the source is smaller than the angular size
on which the physical properties of the lens change, these positions can be locally
linearized and the distortion of images is described by the Jacobian matrix

A ≡ ∂~y

∂~x
= δij −

∂αi(~x)

∂xj
= δij −

∂2Ψ(~x)

∂xi∂xj
= δij −Ψij (2.20)

where xi is the i-component of ~x and δij is the Kronecker delta.
This matrix can be split into two parts:

A ≡
(
A− 1

2
TrA · I

)
+

(
1

2
TrA · I

)
(2.21)

The first part is an antisymmetric, trace-free matrix called the shear matrix :(
A− 1

2
TrA · I

)
=

(
−1

2
(Ψ11 −Ψ22) −Ψ12

−Ψ12
1
2
(Ψ11 −Ψ22)

)
. (2.22)

The elements of this matrix lead to the definition of the shear, the pseudo-vector
~γ = (γ1, γ2) on the lens plane

γ1(~x) =
1

2
(Ψ11 −Ψ22)

γ2(~x) = Ψ12 = Ψ21

(2.23)

The eigenvalues of the shear matrix are ±
√
γ2

1 + γ2
2 = ±γ. Thus, it is possible to

rotate the coordinate system by an angle φ such that(
γ1 γ2

γ2 −γ1

)
= γ

(
cos 2φ sin 2φ
sin 2φ cos 2φ

)
(2.24)

On the other hand, the isotropic part of the Jacobian matrix is related to the
convergence (Meneghetti, M., 2018), so A becomes

A = (1− κ)

(
1 0
0 1

)
− γ

(
cos 2φ sin 2φ
sin 2φ − cos 2φ

)
. (2.25)

This equation clarifies how convergence and shear contribute to the distortion of
images. The convergence induces an isotropic distortion, rescaling the images of
the same factor in all directions, while the shear stretches the intrinsic shape of the
source along the privileged direction identified by the eigenvectors of A.
For instance, the distortion experienced by a circular source is pictured in Figure
2.2, where the contributions of shear and convergence are separated.
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Figure 2.2: The distortion caused by convergence and shear on a circular
source. Figure from Umetsu, K. (2010).

Let r be the radius of the circular source: the semi-major and semi-minor axes of
the distorted image will be

a =
r

λt
, b =

r

λr
(2.26)

where

λt = 1− κ− γ
λr = 1− κ+ γ

(2.27)

are the tangential and radial eigenvalues of A, respectively.
Another important consequence of gravitational lensing is the magnification of the
source’s images.
The process of deflection of photons by the lens does not involve emission nor ab-
sorption, so their number is conserved, and their frequency of emission ν is not
altered either. Overall, this means that the surface brightness Iν of the source is
preserved. However, the effect of the lens changes the solid angle under which the
source is observed, hence the source may appear magnified or demagnified.
Given the definition of the Jacobian matrix in Equation (2.20), the magnification
can be calculated as the inverse of the determinant of A:

µ ≡ dθ2

dβ2
= (detA)−1 =

1

(1− κ)2 − γ2
(2.28)

where dθ2 is the solid angle intrinsically subtended by the source and dβ2 is the
observed solid angle.
The inverse of the eigenvalues of A measure the amplification in the tangential and
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radial directions, respectively:

µt =
1

λt
=

1

1− κ− γ

µr =
1

λr
=

1

1− κ+ γ

. (2.29)

The curves on the lens planes where λt = 0 and λr = 0 ideally correspond to infinite
magnification and are respectively called the tangential and the radial critical lines.
These curves are mapped by the lens equation (2.11) into the caustics on the source
plane.
When faint sources transit across the caustic of a powerful lens, such as a galaxy
cluster, their flux is strongly magnified and it is possible to observe them, even if
they would otherwise be invisible.

2.1.5 Time delay surface

The deflection of light rays causes a time delay between the emission of radiation by
the source and the signal reception by the observer. This delay can be decomposed
into two contributions:

1. Geometrical time delay
The different path length followed by the deflected light rays and the unper-
turbed ones partially causes the time delay:

tgeom =
1

2c

DLDS

DLS

(~x− ~y)2 (2.30)

2. Gravitational time delay
Photons traveling through the gravitational field of the lens are slowed down,
and this leads to an increase in the time delay:

tgrav = −DLDS

DLS

1

c2
Ψ(~x) (2.31)

Summing the two contributions, the total time delay can be calculated as follows:

t(~x) =
(1 + zL)

c

DSξ
2
0

DLDLS

[
1

2
(~x− ~y)2 −Ψ(~x)

]
. (2.32)

Since the gradient of the effective lensing potential is related to the deflection angle,
the lens equation can be reformulated as

(~x− ~y)−∇Ψ(~x) = ∇
[

1

2
(~x− ~y)2 −Ψ(~x)

]
= 0. (2.33)

Equation 2.33 implies that solving the lens equation and searching the stationary
points of the delay surface defined in Equation 2.32 are equivalent.



Gravitational Lensing Theory 39

Figure 2.3: Time delay function of an axially symmetric potential Ψ(x) ∝√
x2 + x2

c for different source positions. This is the projection of the
time delay surface along the symmetry axis. Figure from Meneghetti, M.
(2018).

The Hessian matrix of this surface corresponds to the Jacobian matrix:

T =
∂2t(~x)

∂xi∂xj
∝ (δij −Ψij) = A (2.34)

The Hessian matrix describes the curvature of the time delay surface, and it is
proportional to the inverse of the magnification. In particular, magnification is
higher along the direction with a smaller curvature. It is possible to distinguish
between three types of images:

• Type I images, with detA > 0, TrA > 0: images arise at the minima of t(~x)
and they have positive magnification;

• Type II images, with detA < 0: images arise at the saddle points of t(~x) and
they have negative magnification;

• Type III images, with detA > 0, TrA < 0: images arise at the maxima of t(~x)
and they have positive magnification.

It should be noted that images having negative magnification are not demagnified
(this condition corresponds to |µ| < 1), but the parity of the image is flipped com-
pared to the one of the source.
For instance, let’s consider an axially symmetric potential and the possible source
configurations in Figure 2.3. If the source is perfectly aligned with the lens, t(~x) has
a maximum at the lens center, while its minima are located on a ring centered on
the maximum. In this situation the source is mapped to a type I ring-shaped image,
the so-called Einstein Ring, an example of which is in Figure 2.4, and to a central
type III image.
When the source is away from the optical axis, the delay surface distorts: the ring
breaks and a minimum and a saddle point form. Therefore, three images arise.
Moving the source further away, the maximum and the saddle point get closer and
the local curvature of the surface in the radial direction becomes smaller: the images
arising at these two points are elongated towards each other and a radial image forms.
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Figure 2.4: Horseshoe Einstein Ring observed with Hubble Space Tele-
scope’s Wide Field Camera 3. Image Credit: ESA/Hubble & NASA.

Since he curvature changes from negative to positive between the maximum and
the saddle point, critical lines separate multiple-image pairs: if a lens does not have
critical lines, it will not be able to form multiple images of the same source.

2.2 Lens Models

Analytic lens models are commonly used for several applications, such as the de-
scription of specific image configurations and the prediction of the rate of lensing
events.
Different models are required to describe lensing phenomena on different scales. For
instance, point lenses approximate the properties of compact objects like stars and
planets, while elliptical models are better suited for the characterization of extended
lenses, like clusters of galaxies.
In the following sections we will illustrate the main characteristics of some of the
most common models used to describe extended lenses.

2.2.1 Axially symmetric models

The surface density of axially symmetric models is independent on the position angle
with respect to the lens center. Therefore, the lensing equations can be reduced to
a one-dimensional form. The deflection angle in this case writes

α(x) =
2
∫ x

0
x′κ(x′)dx′

x
=
m(x)

x
(2.35)

wherem(x) is the dimensionless mass enclosed within the radius x. The substitution
in the lens equation 2.12 yields

y = x− m(x)

x
, (2.36)



Gravitational Lensing Theory 41

while the convergence and shear can be calculated as

κ(x) =
1

2x

dm

dx
,

γ(x) = κ̄(x)− κ(x)
(2.37)

where k̄(x) is the mean value of the convergence within the radius x.
The tangential and radial critical lines are, respectively:

1− κ̄(x) = 0,

1− 2κ(x) + κ̄(x) = 0
(2.38)

as it can be calculated from the determinant of the Jacobian matrix.
Both these equations describe circumferences, that are respectively mapped into a
point and into a circular radial caustic by the lens equation. If the source is located
within the radial caustic, it produces three images, while it only produces one image
otherwise. If source, lens and observer are perfectly aligned an Einstein Ring forms,
as it was explained in Section 2.1.5.

Power Law Lens

Power Law lenses are characterised by the following set of equations:

κ(x) =
3− n

2
x1−n,

m(x) = x3−n,

α(x) = x2−n,

γ(x) =
n− 1

2
xn−1,

detA = (1− x1−n)(1− (2− n)x1−n)

(2.39)

where the exponent n may be varied to better describe different objects:

a) n < 1: the radial profile of the convergence grows with the radius, which is a
non-physical behaviour;

b) n = 1: this is the case of a completely convergent lens, characterised by a
constant κ profile. Every light ray is mapped into y = 0;

c) 1 < n < 2: the radial profile of the convergence decreases with the radius;

d) n = 2: this particular case describes the Singular Isothermal Sphere (SIS),
that represents an ideal gas in thermal and hydrostatic equilibrium confined
by a circularly symmetrical potential;

e) 2 < n < 3: the deflection angle diverges at the origin;

f) n = 3: this is the case of the point lens ;

g) n > 3: m(x) decreases with the radius, which is a non-physical behaviour.
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Figure 2.5: Radial profiles of the convergence (upper left), dimensionless
mass (upper right), deflection angle (lower left) and shear (lower right)
of a Power Law Lens for different values of n, 0 < n < 3. Figure from
Meneghetti, M. (2018).

The radial profiles of the deflection angle, the dimensionless mass, the convergence
and the shear for several values of n are illustrated in Figure 2.5.
As shown in equation (2.29) the tangential and radial critical lines can be obtained
as the points where the eigenvalues of the Jacobian matrix are null.
In this case, for the tangential critical line we get:

λt = 1− x1−n = 0 ⇒ xcr,t = 1 ⇒ ycau,t = 0. (2.40)

The tangential critical line, i. e. the Einsten ring, is independent on x and is mapped
into a point on the source plane.
On the other hand, for the radial critical line we find:

λr = 1− (2− n)x1−n = 0 ⇒ xcr,r = (2− n)
1

n−1 . (2.41)

The dimensions of the radial critical line depend on n. As n increases the radial
critical line becomes smaller and it is null for n = 2, while the opposite of this trend
is true for the caustic. There are no radial critical lines for n > 2, therefore lenses
described by a Power Law model with this exponent do not have radial critical lines,
and this is relevant when studying the number of multiple images yielded in a given
configuration, as seen in Section 2.1.5.

The Navarro Frenk & White density profile

The NFW density profile was introduced in Section 1.3.1 as a common one to de-
scribe the distribution of the Dark Matter within galaxy clusters.
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If we take ξ0 = rs, the density profile 1.56 corresponds to the surface mass density

Σ(x) =
2ρsrs
x2 − 1

f(x) (2.42)

where

f(x) =


1− 2√

x2−1
arctan

√
x−1
x+1

if x > 1

1− 2√
x2−1

arctanh
√

1−x
x+1

if x < 1

0 if x = 1

. (2.43)

The lensing potential is
Ψ(x) = 4κsg(x) (2.44)

where κs ≡ ρsrsΣ
−1
cr and

g(x) =
1

2
ln2 x

2
+


2 arctan2

√
x−1
x+1

if x > 1

−2 arctanh2
√

1−x
x+1

if x < 1

0 if x = 1

. (2.45)

This implies the deflection angle

α(x) =
4κs
x
h(x) (2.46)

with

h(x) = ln
x

2
+


2√
x2−1

arctan
√

x−1
x+1

if x > 1

2√
x2−1

arctanh
√

1−x
x+1

if x < 1

1 if x = 1

. (2.47)

Finally, the convergence is given by

κ(x) = 2κs
f(x)

x2 − 1
(2.48)

that gives the dimensionless mass

m(x) = 2

∫ x

0

κ(x′)x′dx′ = 4κsh(x). (2.49)

2.2.2 Elliptical models

Circularly symmetric models are too simplistic to describe the properties of real ex-
tended lenses. The addition of two more parameters, the ellipticity and the position
angle, that defines the orientation of the lens, yield slightly less idealized models.
An axially symmetric model with surface density Σ(x) may be generalized to an
elliptical model by the substitution

x→ X =
√
x2

1 + fx2
2 (2.50)
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Figure 2.6: Deflection angle maps generated by a NFW profile with el-
lipticity ε = 0 (i.e. axially symmetric profile, left), ε = 0.2 (center) and
ε = 0.4 (right). Figure from Meneghetti, M. (2018) .

where e = b/a, a and b major and minor axis of the ellipse, respectively.
However, this approach may result into complicated calculations to derive the ex-
pression of the lensing potential.
It is often simpler to model a lens by means of an elliptical lensing potential Ψ(x),
following the same substitution in Equation 2.50.
The disadvantage of this approach is that the deflection angle field becomes dumbbell-
shaped even for moderate values of ellipticity, which is often unwanted.
Figure 2.6 shows an example of how the deflection angle field changes according to
different values of the ellipticity, in the case of the NFW density profile.

2.2.3 External perturbations

In order to obtain more realistic models, the effect of the objects surrounding the lens
should be taken into account. In fact, lenses are often located in dense environments,
where they are surrounded by other massive structures, such as galaxies in galaxy
clusters. It is not feasible to describe each substructure as a mass distribution,
because it would require too many parameters.
It is common practice to consider the effect of the surrounding lenses with an external
shear represented by a potential Ψγ, that satisfies three conditions:

γ1 =
1

2
(Ψ11 −Ψ22) = constant;

γ2 = Ψ12 = constant;

κ =
1

2
(Ψ11 + Ψ22) = constant.

(2.51)

Since both Ψ11 ±Ψ22 must be constant, Ψ11 and Ψ22 have to be constants, and the
potential will take the form

Ψγ = Cx2
1 + C ′x2

2 +Dx1x2 + E. (2.52)
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The substitution of Equation 2.52 into the conditions 2.51 gives

γ1 =
1

2
(Ψ11 −Ψ22) = C − C ′ = γ1,

γ2 = Ψ12 = D = γ2,

κ =
1

2
(Ψ11 + Ψ22) = C + C ′ = κ.

(2.53)

Imposing κ = 0, we obtain C = C ′, hence C = γ1
2
. Thus, the external potential will

be
Ψγ =

γ1

2
(x2

1 − x2
2) + γ2x1x2. (2.54)

Similarly, one could place the lens on a sheet of constant surface density, with null
shear, and Equation 2.51 would yield

Ψκ =
κ

2
(x2

1 + x2
2). (2.55)

The addition of external perturbations modifies the lensing properties of the isolated
lens.
In particular, if the perturbations are modeled by a constant external shear, they
produce an additional deflection of the light rays

~αγ = ∇Ψγ =

(
γ1 γ2

γ2 −γ1

)
~x. (2.56)

On the other hand, if they are modeled by a sheet of constant mass density, the
addition to the deflection angle is of the type

~ακ = ∇Ψκ = κ~x (2.57)

and the lens equation is reads

~y = ~x(1− κ). (2.58)

If the external sheet is critical (i.e. Σ = Σcr ⇒ κ = 1), the lens focuses all of the
light rays in the origin, so y = 0 for all of the images.
Modeling external perturbations by means of an external shear is more common
than doing it by means of the convergence, because the substructures around the
main lens are able to induce an additional deflection on the light rays.

2.3 Lensing by galaxies and galaxy clusters
The gravitational lensing of background galaxies by galaxy clusters represents a solid
method to recover the mass distribution of Dark Matter in the latter. In particular,
the position of multiple images of the same source and their distortion give valuable
information to constrain the mass distribution in the core regions.
As it was explained in the Section 2.2.3, however, the lens effect caused by the
cluster potential well is modified by the individual galaxies within it, that induce
perturbations in the large-scale mass distribution. These alterations have to be
taken into account, and may provide additional information.
It is possible to distinguish between two main classes of events, according to the
relative position of the observer, the lens and the source:
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• Strong lensing events may occur when the observer, the lens and the source
are well aligned along the line of sight, i.e. if the angular distance between the
center of the lens and the source is small;

• Weak lensing events may be observed when the angular separation between
the lens and the source projected on the sky is large.

These two regimes are characterised by different observables and properties, that
will be discussed in the following Sections.

2.3.1 Strong Lensing

Strong lensing events are frequently observed in the central regions of galaxies and
rich galaxy clusters, since they are favoured in dense environments. They occur when
the lens develops extended critical lines, and the source, that may be point-like or
extended, falls within the corresponding caustics or intersects them.
According to the geometrical configuration of the system, namely the relative posi-
tions of the source and the lens, the resulting event may show different characteris-
tics.
Firstly, multiple images of the same background source may be observed. Since
gravitational lensing is an achromatic effect, i.e. it acts in the same way at all
wavelengths, images corresponding to the same source can be identified by their
spectrum, whose features are preserved. The mass distribution of the inner regions
of the lens can be constrained by the number of images and their displacement.
Secondly, if the source is extended, its images may be highly distorted by the dif-
ferential deflection of the light in the tangential or in the radial direction. One of
the most common types of distortion is the gravitational arcs observed in the cores
of massive galaxy clusters.
In order to trace the mass distribution in the core of the lens, a mass model has to be
calculated. This is usually done trying to reproduce the observational constraints,
that can be of three different types.
Astrometric constraints are based on the measurements of the relative positions
of the lens and the images, whose separation can usually be measured accurately.
This information is related to the deflection angle, i.e. the the first derivative of the
lensing potential. Moreover, photometric constraints can be retrieved evaluating the
relative fluxes of different images, that are determined by the magnification on the
lens plane, hence by the second derivatives of the potential. These measurements are
more difficult to carry out and many factors, such as time variability in the source,
lensing by substructures in the extended lens, have to be taken into account, so these
constraints are not as accurate as the former ones. Finally, time delay measurements
between multiple images can be used to constrain the mass distribution of the lens.
In particular, they are mainly used when the lens is a galaxy, in which case they
amount to months, while they are of the order of decades or centuries when dealing
with galaxy clusters.
Building a lens model of an extended lens requires some effort, since they are com-
plicated structures, perturbed by substructures and described by huge sets of pa-
rameters. According to this approach, the best model is found by defining the
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combination of parameters that best describes the observed lensed features. Thus,
the model will be optimized by minimizing the χ2 function.
For instance, if one has constraints regarding the position of the multiple images
corresponding to one source, the χ2 function will be

χ2
i (~p) =

Nim∑
j=1

~θjobs − ~θ
j
pred(~p)

σ2
ij

(2.59)

where the index j refers to the multiple images of the same source i; ~θjobs is the
observed position and ~θjpred is the position predicted by the model for a given image
j; σij is the uncertainty associated to the position; ~p is the set of parameters that
characterizes a model and Nim is number of images produced by the source i.
An example of strong lensing analysis of a galaxy cluster, that aims to recover its
mass distribution, may be found in Caminha et al. (2017). This work employed
positional measurements of 82 multiple images belonging to 27 different families1
to reconstruct the total mass distribution of MACS 1206. Figure 2.7 shows the
multiple images divided according to whether they are produced by a tangential or
radial critical line.
However, different modeling techniques have been developed over the years to map
the Dark Matter distribution in the cluster lens. A description and comparison of
various parametric, free-form and hybrid techniques can be found in the work by
Meneghetti et al. (2017).

Galaxy-Galaxy Strong Lensing events

Galaxy-Galaxy Strong Lensing (GGSL) events occur when a background source
falls within the caustic of a foreground galaxy. It is more likely to observe them
in dense environments, such as galaxy clusters, whose high mass density boosts the
strong-lensing cross-section of individual galaxies (Desprez et al., 2018).
The strong lensing features are expected to appear around the critical lines of the
lens. Hence, while the angular separation of the distorted images of a source pro-
duced by a cluster lens is of the order of tens of arcsec, the multiple images generated
by the cluster members are usually less than a few arcsec apart.
Figure 2.8 shows a collection of images of Galaxy-Galaxy Lenses found in the Cluster
Lensing And Supernovae Survey with Hubble2 (CLASH).
The analysis of this type of events may provide valuable information on several
accounts. For instance, they are useful in the reconstruction of the mass distribution
of both the hosting cluster at large scales and the lensing galaxies (Desprez et al.
2018; Bergamini et al. 2019, 2020) and they have been used to constrain cosmological
parameters (see e.g. Collett & Auger 2014).
Even though GGSL events are rare, recent studies have shown that they are rel-
atively abundant in the core of some massive clusters (few per cluster). In fact,
Meneghetti et al. (2020) have found that the substructures in galaxy clusters pro-
duce about an order of magnitude more events than expected from cosmological

1A family of multiple images is the ensemble of the images produced by the deflection of the
light of one single source.

2https://www.stsci.edu/~postman/CLASH/

https://www.stsci.edu/~postman/CLASH/
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Figure 2.7: Spectroscopically confirmed families of multiple images in
MACS J1206 overlaid on a color composite image based on 12 CLASH
filters. White and green circles indicate, respectively, the tangential and
radial images. Image from Caminha et al. (2017).
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Figure 2.8: Galaxy-Galaxy Lenses found in the CLASH. Image from
Desprez et al. (2018).

simulations. Figure 2.9 compares the probability of observing a GGSL event in
simulated clusters and in real ones, as a function of the redshift of the source.
However, it is also expected that the number of GGSL systems will increase of several
orders of magnitude in upcoming imaging surveys (Collett, 2015), such as those that
will be carried out by the Euclid mission3 and by the Nancy Grace Roman Space
Telescope4. The identification of potential candidates will require the inspection of
tens of millions of images.

2.3.2 Weak Lensing

The measurements regarding weak gravitational lensing effects are statistical and
difficult to carry out. In fact, in this regime the shape of the sources may be only
subtly altered and it is impossible to distinguish the distortions from the intrinsic
shape of a single source. However, the distortion is coherent in a region surrounding
the lens, so it can be detected by studying the shape distribution of an ensemble of
galaxy images (Bartelmann & Schneider, 2001).
Although it is challenging to detect them, weak lensing effects allow to determine
the mass distribution of lenses at large distances from the center of the cluster (see
e.g. Giocoli et al. 2014; Okabe et al. 2010), making it possible to prove cosmological
parameters and dark matter models, that predict different masses for clusters, as
explained in Chapter 1.
Assuming that the orientation of distant, faint and irregularly-shaped sources is
random, the average shape of a large number of them should be circular. However,
as it was explained in Section 2.1.4, because of weak lensing, the circular source
appears to be elliptical, with axes:

a =
r

1− κ− γ
, b =

r

1 + κ+ γ
(2.60)

3https://www.euclid-ec.org/
4https://www.nasa.gov/content/goddard/nancy-grace-roman-space-telescope

https://www.euclid-ec.org/
https://www.nasa.gov/content/goddard/nancy-grace-roman-space-telescope
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Figure 2.9: The GGSL events probability as a function of the redshift of
the source. Image from Meneghetti et al. (2020).

and the ellipticity can be measured as

ε =
a− b
a+ b

=
2γ

2(1− κ)
≈ γ (2.61)

where κ, γ � 1 in the weak lensing regime.
The ellipticity may also be defined by means of a second order tensor that describes
the brightness moments on the source and on the lens planes:

Qij =

∫
d2θI(θ)qI [I(θ)](θi − θ̄i)(θj − θ̄j)∫

d2θI(θ)qI [I(θ)]
,

Q
(s)
ij =

∫
d2βI(s)(β)qI [I

(s)(β)](βi − β̄i)(βj − β̄j)∫
d2βI(s)(β)qI [I(s)(β)]

(2.62)

where qI is a weight function that selects the scale covered by the galaxy, I(θ) and
I(s)(β) are the brightness functions on the lens and on the source planes respectively,
and θ̄, β̄ are the image centroids:

θ̄ =

∫
d2θI(θ)qI [I(θ)]θ∫
d2θI(θ)qI [I(θ)]

, β̄ =

∫
d2βI(s)(β)qI [I

(s)(β)]β∫
d2βI(s)(β)qI [I(s)(β)]

(2.63)

It can be proven that, writing the ellipticity as a complex value, with |ε| =
√
εε∗ =√

ε21 + ε22, one finds

ε =
Q11 −Q22 + 2iQ12

Q11 +Q22 + 2(Q11Q22 −Q2
12)1/2

. (2.64)

In the same way, the intrinsic ellipticity is described by Q(s)
ij . The observed ellipticity

on the lens plane and the intrinsic ellipticity on the source plane are related through
the lens equation, i.e. in the first order approximation β = Aθ:

Q(s) = AQAT = AQA. (2.65)
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Figure 2.10: This sequence of images shows how the intrinsic shape of
a galaxy is modified into the one observed by a ground-based telescope.
Image from Meneghetti, M. (2018).

Combining equations (2.25), (2.64) and (2.65), one finds:

ε(s) =

{
ε−g

1−g∗ε if |g| ≤ 1
1−gε∗
ε∗−g∗ if |g| > 1

, (2.66)

where
g =

γ

1− κ
(2.67)

is the reduced shear.
When averaging over a large sample of galaxies, it is expected that the average value
of the intrinsic ellipticity will be null, so

ε =

{
g if |g| ≤ 1
1
g∗

if |g| > 1
. (2.68)

Therefore, the ellipticity is related to the reduced shear. A detailed explanation
of the procedure for the reconstruction of the mass distribution starting from the
shear profile can be found in the review by Bartelmann & Schneider (2001), that
also provides a thorough description of the effects of the density perturbations on
the propagation of light on cosmological scales.
However, weak lensing is not the only cause of distortion in the shapes of galaxies
images. Other factors, such as the atmosphere and the Point Spread Function5

(PSF) of the instrument must be taken into account. Figure 2.10 schematically
shows how the intrinsic shape of a galaxy may be distorted by different causes.
The Keiser Squires Broadhurst (KSB) method (Kaiser et al., 1995) provides an
effective algorithm to isolate the signal generated by the weak lensing effect from
the other contributions.

5The Point Spread Function describes the response of an imaging system to a point source.
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Machine Learning

Machine Learning (ML) is the capability of an Artificial Intelligence (AI) system
to acquire their own knowledge, by extracting patterns from raw data (Goodfellow
et al., 2016). ML methods have become increasingly popular in the last few decades
because they allow to work on complicated problems, that would not be possible to
tackle by means of other types of algorithm.
A great variety of tasks often performed in astrophysical analyses and, with a broader
perspective, in scientific studies can be approached with a ML technique. Some of
the most common ones are:

• Classification: the data is divided into n categories and the algorithm is either
required to assign some input to the class it is part of or to calculate the
probability that the input belongs to each one of the possible classes, in order
to know which one is the most likely to be the correct one;

• Regression: given some input, the program is asked to predict a real number,
that represents a specific quantity;

• Clustering : the aim of the algorithm is to divide the dataset into subsets of
objects that are similar between them, but different from the objects belonging
to the other clusters.

Moreover, ML algorithms can practically divided into two classes:

1. Supervised learning algorithms learn an arbitrary mapping from input data to
output labels, observing a large number of training examples. In particular,
they examine numerous instances of a vector ~x associated to some vector ~y and
learn to predict ~y from ~x, by estimating the conditional probability p(~y|~x)1;

2. Unsupervised learning algorithms learn meaningful patterns and characteristics
of the structure of a given dataset without being provided with explicit labels.
Specifically, these programs inspect a considerable amount of examples of a
given vector ~x and attempt to learn the probability distribution p(~x) or some
interesting properties of it.

1The conditional probability p(~y|~x) is the probability of ~y given that ~x is true.
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For instance, classification and regression problems are usually dealt with algorithms
of the first kind, while clustering problems are approached with algorithms of the
second type.
With the growth of astronomical datasets in volume and complexity, the exploitation
of ML techniques for data mining has also become necessary in Astrophysics (see e.g.
Baron 2019 for an introduction, Huerta et al. 2019). The need to further develop
reliable ML methods in the field of astronomical data analysis will only increase in
the years to come, because of the amount of data expected to be gathered by future
surveys, such as the ones listed in 2.3.1.
Several tasks have already been addressed with ML algorithms in the context of
astrophysical research. Among these are image classification in Gravitational Lens-
ing studies (see e.g. Schaefer et al. 2018; Davies et al. 2019), the assessment of the
photometric redshift of luminous sources (see e.g. Sadeh et al. 2016), the dissection
of degeneracies in cosmological models (see Merten et al. 2019), the identification
of cluster members in galaxy clusters (see e.g. Angora et al. 2020) and the estima-
tion of the dynamical mass of galaxy clusters (see e.g. Ntampaka et al. 2015; Kodi
Ramanah et al. 2020).
This work employs a supervised learning method, that will be introduced in the next
Sections for image classification, while unsupervised learning techniques will not be
addressed. However, a valid introduction to this topic may be found in the work by
Rojas (2009).

3.1 Supervised Machine Learning

Supervised ML algorithms are designed to learn an unknown mapping from known
input-output pairs. Subsequently, this mapping can be applied to never seen before
data of the same kind as the inputs analysed by the algorithm, in order to predict
the corresponding and unknown output, without following specific instructions.
In particular, the relationship between the input and the output is provided by an
element called model. Several types of ML models, such as Multilayer Perceptron
(MLP, Hastie et al. 2009), Long Short-Term Memory (LSTM, Gers et al. 2002)
and Convolutional Neural Networks (CNN, LeCun & Bengio 1998) are composed of
layers. Each layer is defined by a set of parameters and has a precise role in the
definition of the model.
Moreover, a particular instance of the dataset is called example. As it was previously
said, the peculiarity of supervised learning is the model experiences a phase during
which each example is associated to a corresponding label, that is the output sought
by the model. For instance, in classification problems, the label would be the correct
group that the example should be placed in, while in regression problems it would
be the numerical value that the algorithm is required to predict.
The stage in which the model analyzes the input-output pairs and readjusts itself to
improve its capability to predict the output is called training. Before being applied
to new data, the model also goes through a test phase, in which its predictions on
unlabeled data are compared to the known corresponding labels and its performance
is assessed.
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However, the implementation and training process of the models will be discussed in
greater detail in Sections 3.2 and 3.3, while some of the metrics commonly employed
to evaluate the performance of a supervised model in a classification problem will
be described in Chapter 5.
Going back to the basic components of a ML algorithm, the input variables are
usually referred to as features. Choosing features that adequately represent the
characteristics of the data and provide means of solving the problem is an important
part of the implementation of a ML algorithm. If the features do not describe the
dataset appropriately, the execution of a certain task might become more difficult
or impossible.

3.1.1 Deep Learning

Deep Learning (DL) refers to a class of ML techniques, that exploits complex models
with multiple layers to tackle difficult problems.
The depth of the model is related to its capacity of extracting complex features from
the data and of generalizing well on other data. In this regard, the automatization
of feature extraction is the greatest advantage of DL methods with respect to ML
methods.
In particular, DL techniques resolve the issue of learning a complicated mapping by
dividing it into a series of nested simple mappings, each described by a different layer
of the model (Goodfellow et al., 2016). In other terms, the function that maps the
input into the output is decomposed into simpler functions, each of whom provides
a new representation of the data. We will clarify this concept in Section 3.2.
Further observations and remarks on the theoretical reasons for DL algorithms and
on their practical applications may be found in the work by Deng (2014), while a
more comprehensive introduction to the topic is in the book by Goodfellow et al.
(2016).

3.2 Neural Networks

Neural Networks (NNs) are ML and DL models, whose operating principle is sum-
marily inspired by the functioning of the neurons in the human brain. In particular,
they are constituted by simple processing units, also called neurons, nodes or percep-
trons (Bishop, 2006), that are linked through connections and organised in layers.
While the architecture of the network, i.e. the ensemble of the layers that define it, is
decided by the programmer in the implementation phase, the weights, that indicate
the sensitivity of the connections between the individual nodes (Hebb, 1949), are
adjusted by the learning algorithm in the training phase to improve the capability
of the model to make the correct predictions.
NNs have at least three layers: the input layer, the output layer and one hidden
layer. However, networks generally have several hidden layers, capable to extract
high-level features from the data. In particular:

• The input layer, also called visible layer, is the one where the data is passed
to the network;
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Figure 3.1: Architecture of a generic network with three hidden layers:
in this example x is the input layer, hi, i = 1, 2, 3 are the hidden layers
and h4 is the output layer. The scheme also shows how the units of each
layer are connected to the ones of the lower and higher level layers. Image
from Bengio (2009).

• The hidden layers have the purpose of extracting abstract features from the
data. Their number and the number of nodes within each layer is decided a
priori, while their values are modified throughout the training stage, after a
random initialization;

• The output layer is the final layer of the network and it provides some ad-
ditional transformation from the features, finally fulfilling the required task.
The labels associated to the training data directly specify what the behaviour
of this layer should be: the learning algorithm will adjust the hidden layers in
order to approximate the desired output in the best possible way.

Moreover, every model is characterised by two dimensions: the depth and the width,
namely the total number of layers and the number of neurons within the same layer,
respectively.
Figure 3.1 shows the architecture of a multilayer Neural Network with three hidden
layers and the structure of the connections between the units that belong to different
layers.
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Each layer is composed of several nodes connected to the ones of the previous layer
through weighted connections, that describe how the input is propagated through
the network.
In fact, the output of the k-th layer hk2 can be calculated using the output of the
previous layer hk−1:

hk = f(bk +W khk−1) (3.1)

where b and W k are, respectively, the vector of offsets (biases) and the weight
matrix associated to the layer: their dimension is defined by the number of units in
the layer. The first layer is given by the input: x = h0, while the last layer hL is
used to make a prediction. The notation zk = bk + W khk−1 will be adopted later
in this Chapter.
Finally, f is an activation function: it adds non-linearity to the network, that would
otherwise only be characterised by linear operations. Some examples of often em-
ployed activation functions are listed in Table 3.1, while more information on this
topic may be found in the work by Szandała (2021).

Table 3.1: List of activation functions commonly used in Neural Networks
and their equation.

Activation function Equation

Rectified Linear Unit (ReLU) f(x) = max(0, x)

Leaky ReLU f(x, α) =

{
αx, for x < 0

x for x ≥ 0

Sigmoid sigmoid(x) =
1

1 + exp(−x)

Hyperbolic tangent tanh(x) =
exp(x)− exp(−x)

exp(x) + exp(−x)

Sometimes, in the last layer of the network a different activation function is used.
For instance, the softmax function is usually used in the output layer of a NN whose
task is to classify the input into different categories.

hLi =
eb

L
i +WL

i hL−1∑
j e

bL
j +WL

j hL−1 (3.2)

where the sum in the denominator is over all the neurons in the output layer L
and i represents a generic neuron. The softmax output hLi can be interpreted as an
estimator of P (Y = i|x), where Y is the class associated with the input x (Bengio,
2009).
The models in which the input is propagated through the hidden layers to the output
layer in the way described by Equation 3.1 are also called feed-forward Networks.

2From this moment on, vectors will be indicated as bold characters, to improve clarity.
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3.3 Training process

Once the architecture of the model has been decided and implemented, the network
has to be trained before it can be applied to any data: the aim of this procedure is
to determine the best possible values for the weights and the offsets.
In fact, as it was previously said, in the implementation of the network only the
number of parameters per layer is defined, but their values are readjusted in the
training phase, according to the effectiveness shown by the model in predicting the
correct output.
The training process is hence iterative: each time all of the examples in the training
set are processed by the network defines an epoch. Generally, a great number of
epochs is necessary for the model to converge to the best configuration of parameters.
The weights and biases are updated at the end of each epoch, according to the
performance of the Network, that is assessed by means of a loss function, that
combines the predictions of the Network and the correct outputs L(hl, y).
The most relevant loss function in the context of this work is the Binary Cross-
Entropy (Goodfellow et al., 2016), that is especially useful in binary classification
problems, where the label associated to each example is either 0 or 1:

L = − 1

N

N∑
i=1

y(xi) · log[yp(xi)] + (1− y(xi)) · log(1− yp(xi)) (3.3)

where N is the number of training examples, y is the ground truth and yp is the
probability that the i-th example has label 1 as predicted by the network.
Some other examples of loss functions are listed in Table 3.2. Specifically, the
Categorical Cross-Entropy is used in classification problems where the input might
belong to one of M > 2 classes, while the Mean Squared Error and the Mean
Absolute Error are commonly employed in regression problems.

Table 3.2: Loss functions used in the training process of Neural Networks.
The decision of the loss function to use depends on the task that the
Network has to perform.

Loss function Equation

Categorical Cross-Entropy L = − 1

N

N∑
i=1

M∑
j=1

yj(xi) · log[yj(xi])

Mean Squared Error (MSE) L =
1

N

N∑
i=1

(y(xi)− yp(xi))2

Mean Absolute Error (MAE) L =
1

N

N∑
i=1

|y(xi)− yp(xi)|

The aim of the training algorithm is to minimize the loss function, that is usually
fairly complicated and might have local minima. In other words, the solution of
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the learning problem is given by the combination of weights that minimizes the loss
function.
One of the most common learning algorithms is the backpropagation algorithm (see
e.g. Rojas (2009)), that allows to update the weights of the network in combination
with an optimization method. In particular, the backpropagation algorithm refers
to the method used for the computation of the gradient of the loss function with
respect to the weights of the network, while the optimization method is used to
actually update the weights and perform the learning.
The objective of the backpropagation algorithm is to compute the gradient of the loss
function with respect to the weights and biases of the network, since the gradient
gives an indication of how these parameters should be changed to minimize the
difference between the predictions of the network and the known output.
In particular, this computation is performed by using the chain rule and is split into
two steps, as described in the work by Nielsen (2015):

1. Forward propagation: the input x is propagated through the hidden layers,
whose units compute an output value according to Equation 3.1. In the train-
ing procedure, the output of the final layer, i.e. the prediction of the Network,
is used in combination with the ground truth to evaluate the loss function L.

2. Backpropagation: the gradient of the loss function with respect to the output
of the network is computed and the network is run backwards.

In detail, we can define the error of the neuron i in the layer k as

δki =
∂L
∂zli

. (3.4)

Firstly, the error is evaluated on the output layer L as

δLi =
∂L
∂hLi

f ′(zLi ). (3.5)

The first term of this product takes into account how the loss function is
affected by the output of the i-th neuron, while the second one considers how
the activation function changes at zLi .

Equation 3.5 can also be written in a vectorial form:

δL = ∇hL � f ′(zL) (3.6)

where the operator � stands for the element-wise product of the two vectors.

In the learning procedure, this gradient is converted into a gradient with re-
spect to the weights at each node and is propagated to the adjacent lower level
hidden layer:

δk = ((W k+1)T δk+1)� f(zk) (3.7)

With this equation it is possible to compute the error at each layer k, until the
input layer is reached. The rate of change of the loss function with respect to
a generic weight w can finally be evaluated as

∂L
∂w

= ainδout (3.8)
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where ain is the activation of the neuron input and has been calculated in the
forward step, while δout is the error of the neuron output and is evaluated in
the backward step.

An analogous equation may be derived for the biases of the Network (Nielsen,
2015).

It should be noted that the gradient of the loss function passed to the optimizer is
an average estimation of the gradients calculated for the training examples at the
end of each epoch. In fact, the training dataset is usually split into several small
batches, that include a given number of examples and is not passed to the network
as a whole.

3.3.1 Optimization

The optimization is the method employed to update the weights and biases using
the computed gradient. In this context, the learning rate is probably the most
important hyper-parameter3 for the success of the training process. It is used to
define the step length of each update in the negative gradient direction. If it is too
high, the model rapidly converges towards the minimum of the loss function, but it
might not reach it exactly, while if it is too small, the model might get stuck into a
local minimum or require too many epochs to converge.
Here follows a list of some common optimizers:

• The Gradient Descent (GD) updates the weights using an increment that is a
fraction of the magnitude of the gradient of the loss function:

we+1 = we − γ∇L(we) (3.9)

where e is the epoch considered and γ is the learning rate.

When the training set is too large, it is difficult to compute the derivatives
for each example. In this typical situation, a convenient variant of the GD
is the Stochastic Gradient Descent (SGD), that estimates the derivative on a
random subset of the whole dataset.

• Adaptive Gradient Algorithm (AdaGrad, Duchi et al. 2011) takes into account
that in high-dimensionality problems a given value of the learning rate might
be too high in a certain direction, while being too small in another one.

Since it is quite unpractical to choose different learning rates for each possible
dimension, this algorithm adaptively scales the learning rate in each dimension.
The weights will be updated according to

wi,e+1 = wi,e −
γ√

ε+Gi,e

∂L
∂wi,e

(3.10)

3Hyper-parameters are parameters whose value is chosen manually and is not further adjusted
during the training procedure.
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where ε is a hyper-parameter used to avoid the division of zero and

Gi,e =
e∑
j=1

(
∂L
∂wi,j

)2

=
e∑
j=1

g2
i,j. (3.11)

takes into account the variation of the loss function with respect to a particular
weight in the past epochs.

The effective learning rate is hence dependent on the training itself. In par-
ticular, smaller updates are performed on the parameters associated with fre-
quently occurring features, while larger updates are carried out on parameters
associated with infrequent features. For this reason, this optimization method
is well-suited for dealing with sparse data.

• Root Mean Square propagation (RMSprop, Hinton et al. 2012) is very similar
to AdaGrad, but it also takes into account that during the training process,
the summation in Equation 3.11 monotonically grows and, consequently, the
effective learning rate decreases and eventually approaches 0.

In order to address this issue, RMSprop recursively defines the sum of gradients
as a decaying average of the past gradients:

ve = E[g2
i ]e = ηve−1 + (1− η)g2

i,e (3.12)

where η is a hyper-parameter, usually set to 0.9, and ve is used in place of Gi,e

in Equation 3.10.

• Adadelta (Zeiler, 2012) is very similar to RMSprop: it was also developed to
address the problem of the diminishing learning rate of the AdaGrad optimizer.

The main difference between RMSprop and Adadelta is that the latter does
not require the definition of a default value for the learning rate in Equation
3.10. In fact, the weight update is performed following

wi,e+1 = wi,e −
√
De + ε

ve + ε

∂L

∂wi,e
(3.13)

where
De = E[∆w2

i ]e = ηDe−1 + (1− η)∆w2
i,e. (3.14)

This algorithm basically uses the difference between the current weight and
the newly updated one instead of the learning rate.

Both ve and De are initialized to 0.

• Adaptive moment estimation (Adam, Kingma & Ba 2017, Reddi et al. 2019)
uses the first and second derivatives of the gradient of the loss function to
update the effective learning rate.

wi,e+1 = wi,e −
γ√
v̂e + ε

· m̂e (3.15)
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Figure 3.2: This figure shows the path followed by the learning algorithm
to find the minimum of the loss function, here projected onto the param-
eter space. In this simplistic case the network is defined by two weights,
w1, w2. The length of each step depends on the learning rate. Image
from Rojas (2009).

where β1, β2 are two hyper-parameters and

v̂e =
ve

1− β2
1

m̂e =
me

1− β2
2

(3.16)

are the bias corrections and

me = β2me−1 + (1− β2)gi,e

ve = β2ve−1 + (1− β2)g2
i,e.

(3.17)

The same equations are used to update the biases.
Figure 3.2 shows how following the gradient direction leads the optimization algo-
rithm to find the minimum of the loss function in the simplistic case of a network
with just two weights w1, w2.

3.3.2 Validation and Regularization

One of the most important properties of a NN is generalization, namely the capability
of the network to correctly apply the knowledge it has gained from the training data
on data it has never processed before.
In particular, to determine whether the model has good generalization capability,
its predictions in the training phase are not only evaluated on the training set, but
also on an independent dataset called validation set.
The validation set is usually composed of a small percentage of the training set
(about 10-15%) and it must be representative of the properties of this dataset.
While the performance of the network on the training set determines how the weights
and biases are updated, following the procedure outlined in the previous sections,
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Figure 3.3: Relationship between the model capacity’s and the error on
the training (dashed blue line) and the validation (solid green line) set.
The red vertical line corresponds to the optimal capacity of the model for
this generic task: simpler models will underfit, while more complicated
models will overfit. Image from Goodfellow et al. (2016).

the results on the validation set are used to decide whether the learning rate should
be decreased or the training stopped. However, they are not used to calculate the
loss function and hence do not influence the parameters’ update.
Therefore, when training a ML algorithm, one has two main goals: the first one is
to reduce the loss function on the training set and the second one is to reduce the
gap between the training and the validation errors.
A very complex and deep model will likely perform well on the training set and
the training error will decrease steadily in the training phase. However, there is a
chance that it memorizes some properties that are not representative of the data,
but of specific examples. In this case, the model will not improve in predicting the
output of the validation set, because it will look for features that are not present in
this data. This problem is called overfitting, and is characterized by a small value
of the loss function on the training set, but a high one on the validation set.
On the other hand, if the model is too simple it will not be able to abstract complex
properties from the training set, and will not perform well on either this or the
validation set. In this case, the model is underfitting.
Both these problems may be addressed by trying to change the model’s capacity,
namely its ability of fitting a wide variety of functions (Goodfellow et al., 2016). The
capacity of a model should be appropriate in regard to the complexity of the task
it is required to perform. Figure 3.3 shows how a variation in the model’s capacity
affects the performance of the network on both the training and the validation set.
When training a deep network it is important to take precautions against overfitting,
that might be favored by the complexity of the model. It is called regularization the
ensemble of small modifications to the learning algorithm made in order to achieve a
better performance on the validation set, without affecting the error on the training
set (Goodfellow et al., 2016).
In this regard, several strategies can be opted for in the implementation of the
network’s architecture, in the data processing or in the definition of the learning
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Figure 3.4: Neural Network with two layers before (a) and after (b)
dropout has been applied. Crossed units in image (b) have been dropped.
Image from Srivastava et al. (2014).

algorithm. Some of the most common are listed here:

1. An effective way of reducing overfitting is using a larger training dataset. In
practice, this is not always feasible because one has a limited amount of data.
However, it is sometimes possible to create fake data using data augmentation
techniques.

This strategy has proven particularly useful in image recognition: new images
can be obtained by scaling, flipping, translating or rotating the existing ones.

2. Dropout randomly drops units from the network during training (Srivastava
et al., 2014). This means that the units are temporarily removed from the
network, along with their incoming and outcoming connections. The units
to drop are chosen randomly, while the probability p that each unit will be
dropped independently from the others is fixed (often, p = 0.5).

Figure 3.4 shows how the application of dropout affects the connections be-
tween the units of two hidden layers of a network.

Applying dropout to a neural network amounts to sampling a “thinned” net-
work from it, that consists of all the units that survived dropout. For each
presentation of each training batch, a new thinned network is sampled and
trained. Therefore, training a model with dropout can be seen as training a
collection of thinned networks.

At test time, a single model without dropout is used. The weights of this net-
work are scaled-down versions of the trained weights. If a unit is retained with
probability p during training, the outgoing weights of that unit are multiplied
by p at test time.

3. L2 regularization is a widely used regularization method. It implies the addi-
tion of a penalty term to the loss function for every weight wi of the Network,
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namely

L′ = L+
1

2
λ

N∑
i=1

w2
i (3.18)

where λ is called regularization strength and N is the number of weights in
the Network.

Equation 3.18 shows that the weights with larger values will contribute in
greater part to the total loss. All the weights are pushed to smaller values,
but none of them will likely be constrained to be exactly null. However, the
parameters with larger values will be penalized more, since a negative term is
added to the optimizer.

For example, after the application of this regularization term, Equation 3.9
writes

we+1,i = we,i− γ
∂

∂wi
(L(we) +

1

2
λw2

e,i) = we,i− γ
∂

∂wi
(L(we))− γλwe,i. (3.19)

Similar to this method is the L1 regularization: the difference is in the term
added to the loss function

L′ = L+ λ
N∑
i=1

|wi| (3.20)

with the same notation as before. In this case, the derivative of the penalty
term is a constant value, that is subtracted to the weight at each update and
might constrain it to be precisely zero.

3.4 Convolutional Neural Networks
Convolutional Neural Networks (LeCun & Bengio, 1998) are a particular kind of
Neural Networks specialized for processing data characterized by a grid-like topology
(Goodfellow et al., 2016). This is the case, for instance, of images, that can be treated
as grids of pixels: the following Section will be focused on this type of data.
The peculiarity of the CNNs is in the exploitation of the convolutional layers, that
compute the convolution between their input and a kernel : the output of this oper-
ation is often referred to as feature map.
In this context, the kernels correspond to the units of a generic Network: the pa-
rameters that define them are learned in the training procedure. In particular, each
convolutional layer is composed by a series of kernels, whose number is a hyper-
parameter to define during the implementation of the CNN. Deep architectures
hierarchically learn high-level representations of the data: for example, in the anal-
ysis of an image, the first layers may identify lines and edges, while deeper layers
can detect shapes.
One of the first CNN architectures to be presented has been the LeNet-5 in the work
by Lecun et al. (1998), who applied it to digits recognition. The architecture of this
Network is representative of the basic structure of modern CNNs and is shown in
Figure 3.5.
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Figure 3.5: The architecture of LeNet. The input image is processed
through convolutional and pooling layers. The feature maps are concate-
nated before being processed by two fully connected layers and then are
passed to the output layer. Image from Lecun et al. (1998).

The input is an image, that is convoluted with a series of kernels in the first convolu-
tional layer, so that a series of feature maps is produced. The feature maps are later
subsampled by a pooling layer and new convolutions are performed. This procedure
is repeated for a certain number of layers and, before being fed to the output layer,
the feature maps are concatenated and processed by three fully-connected layers,
that work as the layers of regular NNs.
Now we will describe the convolution and pooling operations in greater detail.
The convolution between two functions is a linear operation that is be defined by
an integral. However, the convolution between multi-dimensional arrays, such as
images and kernels, is better described as a discrete multiplication between matrices.
Typically, the kernel is smaller than the image and the resulting output is a very
sparse matrix with many elements that are null.
The output S of the convolution between an image I and a kernel K of dimension
(M ×N) can be computed as

S(i, j) = (K ∗ I)(i, j) =
M∑
m=1

N∑
n=1

I(i−m, j − n)K(m,n). (3.21)

where (m,n) represents a generic point on the kernel grid, while (i, j) represent a
point on the image grid.
The employment of convolutions has several advantages (Goodfellow et al., 2016):

1. Sparse interactions : each unit in a classical neural network is connected to the
one of the previous layer. In a CNN the kernel is smaller than the input of
the layer, and the number of connections is also reduced. The most important
consequence of this property is that the number of parameters that defines
the Network is reduced, and so is the memory requirement. Figure 3.6a shows
how one output unit, s3, is connected to just three input units of the input
layer, instead of all of them.

The units of one layer that are directly connected to one unit of the following
layer are also known as its receptive field.
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(a) (b)

Figure 3.6: Representation of sparse connectivity (a) and parameter shar-
ing (b) in two adjacent layers of a CNN. si denote the output units, while
xi are the input units. The arrows represent the connections between
these units. Specifically, in image (b) the black arrows represent the
same connection, that is repeated spatially over the input units. Images
from Goodfellow et al. (2016).

2. Parameter sharing : each kernel in a convolutional layer of a CNN is applied
to every position of the input, hence the algorithm does not learn a set of
parameters for every location, but just one set. This property further decreases
the memory requirements of the model. Figure 3.6b depicts how one parameter
(black arrow) is used in several positions of the input.

3. Equivariance to translation. This property of CNNs is a consequence of pa-
rameter sharing: spatially repeating the same kernel over the input grid allows
the network to become equivariant to little translations of the input.

However, CNNs are not intrinsically equivariant to other forms of transforma-
tions, such as rotations: this problem can be addressed with other strategies.

In a convolutional layer several convolutions are performed in parallel, and then
passed to an activation function, that adds non-linearity.
It is common to add a pooling layer in-between convolutional layers.
The pooling operation substitutes the value of the output at a given position with
a summary statistic of the adjacent values. The most common pooling function
is max pooling (Zhou & Chellappa, 1988), but other statistics, such as average or
weighted average may also be used.
Including pooling layers in a CNN’s architecture is important for two main reasons.
Firstly, they make the model invariant4 to little modifications of the input. This is
clear from Figure 3.7: the input units are shifted of one pixel, but just two of the
output units are affected by this modification after max pooling has been applied.
Secondly, using pooling layers reduces the size of the feature maps and, by doing so,
the number of parameters and computation in the Network. Generally, the pooling
filters have dimension (2 × 2) or (3 × 3) and are applied to the feature maps with
stride (2× 2) to downsample them.

4It should be noted equivariance and invariance to translations are not equivalent properties.
Being equivariant to translations means that if the input is translated, the output will be translated
in a similar proportion, while being invariant to translations indicates that a translation in the
input does not amount to any modification the output whatsoever.
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Figure 3.7: This image shows how max pooling makes the CNN invariant
to little modifications of the input. In this case, the input has been
shifted of one pixel to the right (second row in top and bottom panel,
respectively), hence all of the units have a different value, but just half
the values of the max pooling output are changed (first row in top and
bottom panel, respectively). Image from Goodfellow et al. (2016).

The following Sections describe the architecture and properties of three popular
CNNs (VGGNet (Simonyan & Zisserman, 2015), GoogLeNet (Szegedy et al., 2015),
ResNext (Xie et al., 2017)) that have become a benchmark in the scientific commu-
nity in the past few years and have inspired the models implemented in this thesis
work.

3.4.1 Visual Geometry Group Network

The Visual Geometry Group Network (VGGNet) has been presented in the work
by Simonyan & Zisserman (2015). This is one of the first works to exhaustively
evaluate the relationship between the depth of a model and its performance. In
fact, the authors built different Network configurations, with up to 19 layers and
compared them.
However, the most relevant innovation proposed in this work is the use of small
convolutional filters, with a receptive field of 3 × 3: this allowed the construction
of such deep models in the first place. Previous works usually employed filters of
bigger size, with a receptive field of 5× 5 or 7× 7.
With equal number of layers, the introduction of small filters keeps the number
of trainable parameters in the CNN smaller than the one of networks that make
use of larger filters. Therefore, introducing smaller filters in the architecture allows
the implementation of deeper architectures in the first place, since it optimizes the
memory requirements.
Moreover, the concatenation of multiple kernels of size 3× 3 has the same resulting
receptive field of larger filters. For instance, a stack of two convolutional layers
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Figure 3.8: Stacking to filters of size 3×3 has the same effective receptive
field as using a 5 × 5 filter, while keeping the number of parameters
required by the model lower. This property allows the implementation
of deeper architectures. Image from (Szegedy et al., 2016).

3 × 3 has the effective receptive field of a 5 × 5 layer, as it is shown in Figure 3.8,
but requires fewer parameters. In fact, in the first case 2 · 32 = 18 parameters
would be necessary to describe the operation, while in the second case the number
of parameters would increase to 52 = 25. In this example, using 5× 5 filters would
hence be 25/9 = 2.78 times more expensive than using the smaller ones.
It is notable that filters with size 1 × 1 can also be used in CNNs, but their main
advantage is to reduce the dimension of the input without actually changing its
features. However, they are not particularly useful in the detection of the charac-
teristics of the feature maps, as 3 × 3 filters are the smallest able to capture the
notions of left and right, up, down and center (Simonyan & Zisserman, 2015).

3.4.2 Inception Networks

The reasons for the Inception Networks architectures were first outlined in the work
by Szegedy et al. (2015), who apply the idea of Network in Network of Lin et al.
(2013) to CNNs.
Trying to improve the performance of a CNN by enlarging its architecture, namely
the depth and width, comes with a cost. In fact, the number of parameters in
the model increases with the model’s size, favouring overfitting and increasing the
requirements of computational resources.
Szegedy et al. (2015) propose to tackle this problem in an original way. Instead
of developing the network in size, they suggest looking for the filter construction
that locally operates optimally and repeat it spatially, taking advantage of the local
invariance of CNNs. In other words, their idea is to apply filters with different size
on the same input, making the model learn features on different scales in the same
feature maps.
Specifically, this idea is implemented through the inception module, in Figure 3.9.
In the simplest configuration, displayed in Figure 3.9a each module applies filters
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(a) Inception module, naive version (b) Inception module with dimension reduc-
tions

Figure 3.9: The inception module in its naive (a) and in its final (b) im-
plementation. The input of the module is processed by filters of different
size in parallel, and the outputs of these convolutions are concatenated
and used as input of the following layer. Image from Szegedy et al.
(2015).

of several size (1 × 1, 3 × 3, 5 × 5) and a pooling function to the same input
and concatenates their output, passing the result of this operation as input to the
following layer.
However this implementation can be improved by applying 1× 1 filters before 3× 3
and 5 × 5 filters in order to reduce the dimension of the input and, by doing so,
decreasing the computational cost of the operations. This version of the inception
module, in Figure 3.9b is the one actually used in the network’s implementation.
An Inception Network is series of such modules stacked upon each other, with max
pooling layers occasionally used to reduce the resolution of the feature maps.
GoogLeNet, the particular Inception Network described in the original work by
Szegedy et al. (2015) is 22 layers deep. Other than the inception module, this
Network also presents another innovation. Given the good effectiveness of shallower
networks, the authors have added auxiliary classifiers to intermediate layers, that
act as regularizers and help the propagation of the gradient in the lower layers. In
the training phase, their loss is weighted by 0.3 and summed to the loss of the final
output layer.
A further improvement of the original inception module design is presented in the
work by Szegedy et al. (2016). Specifically, the 5×5 filters are replaced by two 3×3
filters stacked together in order to decrease the amount of parameters required by
the model. Moreover, the possibility to substitute a n× n filter (in this case, 3× 3)
with an asymmetric convolution between a filter of size n× 1 followed by a filter of
size 1 × n is also introduced. This expedient, graphically and schematically shown
in Figure 3.10a and 3.10b respectively, further reduces the memory requirements of
the model.

3.4.3 Residual Networks

He et al. (2016) introduce residual learning as a way to make the training process
of Deep Networks easier and more efficient. In fact, the authors notice that the
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(a) (b)

Figure 3.10: Image (a) illustrates how stacking two asymmetric convolu-
tions of size 3× 1 and 1× 3 gives the same result as a 3× 3 convolution.
Image (b) shows a scheme of the architecture of the inception module af-
ter the introduction of the asymmetric convolutions. Image from Szegedy
et al. (2016).

addition of additional layers does not always correspond to a better performance of
the network and experiment a new learning framework.
The basic idea of this type of architecture, called Residual Networks (ResNet), is
that it is easier for a certain layer (or a few stacked layers) to learn a residual function
with respect to the input, other than the complete and more complicated mapping.
In practice, this is implemented using a residual block that exploits shortcut con-
nections, as shown in Figure 3.11a. The input of the block x is simultaneously
propagated through the layers within the block and stored without being changed.
The function that the block is expected to learn can be conceived as

F(x) := H(x)− x (3.22)

where H(x) is the original function and F(x) is the residual function. Thus, the
original function can be computed as F(x) + x.
For instance, if a convolutional layer was supposed to learn the identity mapping,
the corresponding residual block would have to learn all zeros, that is an easier task
to achieve. Of course, the same argument is true for other, more complicated and
realistic mappings.
The output vector y of the residual block is hence calculated as

y = F(x, {Wi}) + x (3.23)

As He et al. (2016) prove, a model that uses this building block and has the same
number of layers of a classical CNN, will perform better.
The evolution of the ResNet is the ResNeXt, presented in the work by Xie et al.
(2017). This network architecture is based on the ResNeXt block, that aggregates
a set of transformations, as the Inception Networks do.
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(a) ResNet block
(b) ResNeXt block

Figure 3.11: This figure compares the architectures of the simple resid-
ual block and of the residual block after the addition of the cardinality
parameter. Image (a) from He et al. (2016) and image (b) from Xie et al.
(2017).

The aggregated transformations can be presented as

F(x) =
C∑
i=1

Ti(x) (3.24)

where Ti(x) can be an arbitrary function and C is a hyper-parameter called cardi-
nality, that represents the size of the set of transformations to be aggregated.
In particular, the aggregated transformation in Equation 3.24 can serve as the resid-
ual function in Equation 3.23. In this case, the output y of the ResNeXt block is
given by

y = x +
C∑
i=1

Ti(x). (3.25)

The basic structure of the Resnext block is displayed in Figure 3.11b.
The approach of the ResNeXt architecture is also referred to as Network in Neuron,
because it replaces the linear transformation wixi operated by the simple neuron
with a non-linear function.
This block allows to expand the network in a new dimension, other than the depth
and the width. A thorough comparison of the effect that increasing the depth, width
or cardinality has on the model’s performance can be found in the original work by
Xie et al. (2017).



Chapter 4

The Datasets

The identification of the optimal network architecture for a certain task completion
is just one of the fundamental steps in the implementation of a supervised ML
model. It is, however, equally important to carefully choose the dataset used in the
training phase, since the features extracted from it will determine how the weights
and biases of the model are adjusted and defined. In fact, the final configuration
of these parameters will be adopted when applying the model to other, unknown
datasets, whose properties need to be well represented by the training set employed.
The models implemented in this thesis work have been trained and tested on two
different datasets, that mainly contain images of GGSL events produced by isolated
galaxies.
The two datasets will be described in greater detail in Sections 4.1 and 4.2.

4.1 Lens Finding Challenge Dataset

The Strong Gravitational Lens Finding Challenges1 are a series of open competitions
organized by the Bologna Lens Factory2. They aim to stimulate the research for
reliable methods for the detection of strong gravitational lensing events in future
surveys.
The results of the Challenge 1.0 were presented in the work by Metcalf et al. (2019)
and compared the effectiveness of different techniques in the classification of the
images: visual inspection, arc-finder algorithms and ML methods, such as Support
Vector Machines (see e.g. Burges 1998) and CNNs. The latter have proven to
perform particularly well and have the great advantages of automatizing the feature
extraction process and allowing a fast analysis of great amounts of images.
The simulations implemented for this Challenge are described in detail in Metcalf
et al. (2019), therefore we will only focus on some of the most important steps.
First of all, the simulations started with the creation of a catalog of Dark Matter
halos, obtained by constructing a light-cone within the Millennium Observatory
project (Overzier et al., 2013), starting from the Millennium simulation (Boylan-
Kolchin et al., 2009).

1http://metcalf1.difa.unibo.it/blf-portal/gg_challenge.html
2http://metcalf1.difa.unibo.it/blf-portal/index.html
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Table 4.1: Main characteristics of the VIS and NISP instruments.

Instrument Capability λ range (nm) Pixel size (arcsec)

VIS Visual imaging 550 - 900 0.1

NISP Near-Infrared imaging Y (920 - 1146), 0.3
photometry J (1146 - 1372),

H (1372 - 2000)

Afterwards, the lensing code Gravitational Lensing with Adaptive Mesh Refinement3
(GLAMER) (Metcalf & Petkova, 2014; Petkova et al., 2014) was applied to the halos
in this catalog to map all the caustics located in different source planes on several
lens planes.
The background sources lensed in the simulation were taken from the Hubble Ultra
Deep Field (Beckwith et al., 2006). In particular, they were placed randomly within
three times the distance between the point of a given caustic that was furthest from
the caustic’s center and the caustic’s center: this choice allows the simulation of
diverse lens configurations in addition to clear events.
Moreover, the visible lens galaxies were simulated within these DM halos by defining
an analytic model for their surface brightness. Specifically, the parameters used to
simulate them were provided by the Millennium Observatory project, using the
semi-analytic galaxy formation models of Guo et al. (2011). Within GLAMER, the
surface brightness map was converted into a mass map, then added to the halos
previously described to obtain the total mass distribution of the lens. Finally the
deflections caused by this map were calculated by Fast Fourier Transform and added
to the halos’ contributions for the ray tracing.
Instead, the dataset used in this thesis work consists of the mock images created for
the Challenge 2.0. They were generated following a similar procedure as those for
the Challenge 1.0, but the initial catalog of foreground and background galaxies was
taken from the Euclid Flagship simulation4 (see http://metcalf1.difa.unibo.
it/blf-portal/galaxy-galaxy.html).
The training set is composed of 100000 images mimicking the quality of the observa-
tions expected by the Visual Imager5 (VIS) and the Near-Infrared Spectrometer and
Photometer6 (NISP) instruments, that the Euclid space telescope will be equipped
with. The main properties of these instruments are in Table 4.1.
The images are available in four different bands: the VIS band and the NISP (H,
Y, J) bands. The dimensions of the VIS and NISP images are 200×200 and 66×66
pixels, respectively. Given the resolution of the images, also reported in Table 4.1,
these correspond to 20′′ × 20′′.
Along with the images the training set also consists of a catalog of properties that
describe the lens candidates:

• ID: image identification number;
3http://glenco.github.io/glamer/
4https://sci.esa.int/web/euclid/-/59348-euclid-flagship-mock-galaxy-catalogue
5https://sci.esa.int/web/euclid/-/euclid-vis-instrument
6https://sci.esa.int/web/euclid/-/euclid-nisp-instrument

http://metcalf1.difa.unibo.it/blf-portal/galaxy-galaxy.html
http://metcalf1.difa.unibo.it/blf-portal/galaxy-galaxy.html
http://glenco.github.io/glamer/
https://sci.esa.int/web/euclid/-/59348-euclid-flagship-mock-galaxy-catalogue
https://sci.esa.int/web/euclid/-/euclid-vis-instrument
https://sci.esa.int/web/euclid/-/euclid-nisp-instrument
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• x_crit, y_crit: coordinates of the center position of the critical curve (in
rad);

• source_ID: source identification number;

• z_source, z_lens: redshift of source and of lens, respectively;

• mag_source, mag_lens: magnitude of source and of lens, respectively;

• ein_area: Einstein area of the largest critical curve (in rad2);

• n_crit: number of critical curves;

• r_source: distance of the source from the center of the caustic (in rad);

• crit_area: area of the caustic (in rad2);

• n_pix_source, n_pix_lens: number of pixels where the source and the lens,
respectively, are observable (i.e. above 1σ);

• source_flux, lens_flux: flux of the source and of the lens in those pixels in
units of σ;

• n_source_im: number of multiple images of the source;

• mag_eff: effective magnification of the source, taking into account the mag-
nification of all images;

• sb_contrast: average surface brightness contrast between the lens and the
source in pixels above threshold;

• color_diff: difference of colour between the lens and the source;

• n_gal_3, n_gal_5, n_gal_10: number of companions with m < 25 within 3,
5, 10 arcsec from the source;

• stellar_mass, halo_mass: stellar and halo mass of the main lens;

• n_sources: number of sources added in the simulation of the image.

The images in the training set are not labeled as lenses or non lenses a priori.
Following the criteria of the Challenge 2.0, the objects are considered lenses if they
satisfy the following conditions:

n_source_im > 0;

mag_eff > 1.6;

n_pix_source > 20.

(4.1)

The ensemble of unambiguous non lenses is constituted by the the 10004 galax-
ies that do not have a corresponding background source and are associated to
n_sources = 0 in the training set. In many other cases the source is intrinsically
very faint and/or is weakly magnified and the object is not recognisable as a lens.
For this reason, the parameters n_pix_source and mag_eff are also considered in
the classification criteria 4.1. Of course, depending on the sensitivity of the model,
the classification of the borderline objects might vary, while the most clear ones
should be unequivocally classified as belonging to the correct category.
In this work the dataset was initially cleaned by dropping the images with a source
at z > 7, thus leaving a catalog of 99612 objects. Afterwards, the criteria listed in
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Equations 4.1 were adopted to divide the dataset into the subsets of lenses and non
lenses, that hence consist of 49060 and 50552 objects, respectively.
A randomly selected sample of images belonging to each of these two categories
is displayed in Figure 4.1 and 4.2. Moreover, Figure 4.3 shows the distribution of
some of the parameters previously enumerated for the whole dataset and for the two
subsets separately.

4.2 The Euclid VIS dataset

The second dataset7 we use to train the Networks is composed by 20000 images,
divided into two different subsets, one of 10000 lenses and one of 10000 non lenses,
respectively.
The images were simulated using GLAMER, following a similar procedure as the
one described in Metcalf et al. (2019) for the creation of the dataset of the Challenge
1.0. Moreover, they mimic the Euclid telescope’s observational capabilities, as the
dataset of the Challenge 2.0. However, in this case the images are only available in
the VIS band. The size of the images is 200×200 pixels.
Each subset of lenses and non lenses is also complemented by two catalogs, with a
total of four catalogs.
The first one is euclid_image_catalog.csv: it contains the same information de-
scribed in the previous Section for the Lens Finding Challenge dataset. In addition,
it contains two entries referred to the source’s Spectral Energy Distribution (SED):

• source_sed_bzp: index of the SED used for the source, among the templates
available in BPZ (see Section B.2 for more details about this software);

• source_sed_cosmos: estimated index of the source’s SED among the tem-
plates of COSMOS8.

All the objects that belong to the class of the non lenses are characterized by
n_sources= 0. Consequently, several parameters, such as n_pix_source, z_source,
flux_source are equal to 0 or NaN9 for all of the members of this subset.
Figure 4.4 displays the distributions of some of the parameters available to describe
the galaxies in the dataset.
The second catalog, euclid_lens_gal_catalog.csv, contains the values of follow-
ing parameters referred to the main lens:

• lens_number: index of the lens;

• mag_lens: magnitude of the lens;

• Rh: scale height of the disk;

• Reff: effective radius of the lens;

• Btot: ratio of the bulge luminosity to the total luminosity;
7Available at http://metcalf1.difa.unibo.it/TrainingData/
8https://cosmos.astro.caltech.edu/
9Not a Number.

http://metcalf1.difa.unibo.it/TrainingData/
https://cosmos.astro.caltech.edu/
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ID = 224790 ID = 233067 ID = 218344 ID = 201081

ID = 210196 ID = 221649 ID = 272092 ID = 250135

ID = 284451 ID = 270422 ID = 295786 ID = 250351

ID = 234452 ID = 249134 ID = 256256 ID = 224973

ID = 212839 ID = 259532 ID = 248974 ID = 228336

Figure 4.1: Randomly selected sample of 20 images classified as lenses,
in the VIS band.
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ID = 230074 ID = 285826 ID = 215616 ID = 277085

ID = 266571 ID = 210244 ID = 252687 ID = 216751

ID = 283348 ID = 294006 ID = 223066 ID = 289506

ID = 243671 ID = 299773 ID = 297882 ID = 220127

ID = 220220 ID = 220748 ID = 256864 ID = 245260

Figure 4.2: Randomly selected sample of 20 images classified as non
lenses, in the VIS band.
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Figure 4.3: Distribution of several properties of the Lens Finding Chal-
lenge dataset: the redshift of the lenses (top left) and sources (top right),
of the magnitude of lenses (central left) and sources (central right), Ein-
stein area of the critical curve (bottom left) and number of pixels in
which the source is visible (bottom right). The distributions are shown
for the whole dataset (sky blue), for the lenses (green) and for the non
lenses (pink).
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Figure 4.4: Distribution of the redshift of the lens (top left), the Einstein
area (top right), the magnitude of the lens (bottom left) and the area
of the main caustic (bottom right) of the objects of the dataset. The
distributions are shown for the whole dataset (purple), and for the subsets
of lenses (orange) and non lenses (green).

• MagBulge: magnitude of the bulge ;

• SphIndex: Sérsic index (Sérsic, 1963) used to model the bulge;

• Z: redshift of the lens.

Before using the data, we clean it from the sources with z >7, obtaining a catalog
of 9931 lenses and 10000 non lenses. Figures 4.5 and 4.6 show 20 objects randomly
selected from the subsets of lenses and non lenses of this dataset.

4.3 Differences between the datasets

We can make a comparison between the images in the two datasets by analyzing the
lenses in Figures 4.1 and 4.5 and the non lenses in Figures 4.2 and 4.6. It is evident
from these examples that the classification of the images is more straightforward in
the Euclid VIS dataset than in the Lens Finding Challenge dataset.
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ID = 205435 ID = 203256 ID = 200489 ID = 201345

ID = 201093 ID = 202641 ID = 209955 ID = 204798

ID = 209984 ID = 205932 ID = 202553 ID = 201708

ID = 204417 ID = 206522 ID = 202729 ID = 201939

ID = 206163 ID = 202498 ID = 209709 ID = 205278

Figure 4.5: Randomly selected sample of 20 lenses from the Euclid VIS
dataset.
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ID = 205354 ID = 201134 ID = 201536 ID = 208465

ID = 207863 ID = 209946 ID = 200968 ID = 209976

ID = 209455 ID = 206100 ID = 206719 ID = 204463

ID = 204568 ID = 202829 ID = 209139 ID = 208143

ID = 201829 ID = 203955 ID = 205882 ID = 209367

Figure 4.6: Randomly selected sample of 20 non lenses from the Euclid
VIS dataset.
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In particular, the lenses in the Euclid VIS dataset display clear arcs and rings in
the majority of the cases, and fainter features in rarer instances. On the other
hand, the lenses in the Lens Finding Challenge dataset are characterized by a more
diverse morphology, that includes several images in which the detection of the lensing
features is more challenging. The same consideration may be highlighted for the
non lenses images: since the ones in the Euclid VIS dataset never show background
sources in addition to the lens galaxy, their classification is easier.
We may also compare the distributions of some of the most relevant properties of the
lens and source galaxies simulated in two datasets. In particular, Figure 4.7 shows
the distribution of ein_area, halo_mass, n_pix_source, mag_eff, z_source and
mag_source in the two datasets.
In particular:

1. The Einstein area of the lenses in the Lens Finding Challenge dataset is on
average greater than that of the lenses in the Euclid VIS dataset.

Considering that the Einstein area and radius are related through

θE =

√
AE
π
, (4.2)

we find θE,max ∼ 3′′ in the Euclid VIS dataset and θE,max ∼ 10′′ in the Lens
Finding Challenge dataset.

2. The range of masses covered by the halos of the lenses in the two datasets
is different. While the lenses in the Euclid VIS dataset are characterized
by Mlens ∼ 1012 − 1014M�, with the largest part of the lenses being in the
interval Mlens ∼ 1012 − 1013M�, the lenses in the Lens Finding Challenge
dataset are characterized Mlens ∼ 1013− few 1014M�, with a peak at Mlens ∼
few 1013M�.
Therefore, the lenses in the Euclid VIS dataset are mainly galaxies of different
size, while the Lens Finding Challenge also includes several examples of groups
of galaxies.

3. The amount of pixels where the source is visible can be considered as an
estimator of how evident the lensing features are in the images. For this
reason, even though it is not an intrinsic property of the sources nor of the
lenses, it is useful to compare its distribution in the two datasets.

We expect the sources to be more distorted and clearer in the images char-
acterized by a high value of n_pix_source and to be less observable in the
opposite case. Although the distribution of this parameter covers the same
range of values for the simulated lensing events in the two datasets, the source
is less visible, on average, in the images of the Euclid VIS dataset.

4. The magnification of the sources is also different in the two datasets. Although
some of the sources in the Euclid VIS dataset are demagnified by the lenses,
their number is negligible with respect to that of the sources that are highly
magnified, with µmax ∼ 104. On the other hand, none of the sources in the Lens
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Figure 4.7: Comparison between the properties of the lenses in the Lens
Finding Challenge (red) and in the Euclid VIS (blue) datasets. From top
left to bottom right, the distributions of the Einstein area, halo mass,
amount of pixels with a visible source, effective magnification, redshift of
and magnitude of the background sources are displayed.
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Finding Challenge dataset are demagnified, but the maximum magnification
reached is smaller, since µmax ∼ 102.

5. The range of redshift covered by the sources is similar in the two datasets.
However, the sources in the Lens Finding Challenge dataset are mostly located
at z ∼ 2 − 3, while those in the Euclid VIS dataset are more homogeneously
distributed in the range z ∼ 2− 5.

6. The distribution of the magnitude of the sources in the two datasets is quite
similar. The main difference we might notice is that in the Euclid VIS dataset
mV IS,max ∼ 27, while in the Lens Finding Challenge dataset mV IS,max ∼ 28,
i.e. some of the sources in the second dataset are fainter than any of the
objects in the first one.

The ensemble of the characteristics of sources and lenses described contributes to
explain the observed differences in the images of the two datasets.



Chapter 5

Experiments and Results

We have trained and tested our models on the datasets described in the previous
Chapter. We have paid particular attention to understand the impact of borderline
objects on the efficiency of the classifiers.
This Chapter is divided into two parts. Section 5.1 describes the preliminary steps
applied to the datasets before the training of the networks, while Section 5.2 intro-
duces the metrics employed for the assessment of the performance of the models.
Sections 5.3 and 5.4 describe the experiments and the main results obtained using
the Lens Finding Challenge dataset, while 5.5 describes the results of the experi-
ments conducted on the Euclid VIS dataset.
The architectures of our networks and the technical specifications related to the
trainings are discussed in Appendix A.

5.1 Data Preprocessing

We divide each dataset described in the previous Chapter into three subsets: the
training set, the validation set and the test set.
The training set represents the greatest part of the whole dataset, since it includes
70% percent of the data, while the validation set contains 5% of the data and the
remaining 25% constitutes the test set.
In particular, the objects of the original dataset are randomly assigned to one of these
subsets. Before passing them to the networks, however, we verify that the validation
and test sets are well described by the training set. We do this by inspecting the
distributions of several parameters that define the characteristics of the lenses and
sources in the dataset, among those listed in the previous Chapter. More specifically,
we consider the redshift, magnitude and Einstein area of the lenses, the redshift and
magnitude of the sources and the amount of pixels where the source is visible.
Figure 5.1 displays the distributions of these properties in the three subsets selected
in the case of the complete Lens Finding Challenge dataset. As it shown here, the
distribution of these parameters is the same for the three samples, thus confirming
that the training set is representative of the other two sets.
Once the dataset is split, we randomly select the 20% of the images in the training
set and augment them. In particular, the operations we perform on the original
image are: a rotation by 90°, 180° and 270° and an up-down and left-right flipping.

85
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Figure 5.1: Distribution of the redshift of the lenses(top left) and sources
(top right), of the magnitude of the lenses (central left) and sources
(central right), of the Einstein area of the lenses (bottom left) and the
amount of pixels where the source is observable (bottom right) in the
training (dark blue), test (blue) and validation (sky blue) sets of the
Lens Finding Challenge dataset.
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Image Rotation of 90° Rotation of 180°

Rotation of 270° Up-down flipping Left-right flipping

Figure 5.2: This figure shows the result of the operations of augmentation
carried out on the 20% of the training set. The original image (top left)
is rotated of 90° (top center), of 180° (top left) and of 270° (bottom left)
and it is flipped up-down (bottom center) and left-right (bottom right).

Figure 5.2 shows, as an example, the result of these transformations on a randomly
selected image of the Lens Finding Challenge dataset. The application of these
operations has the twofold purpose of increasing the amount of images in the training
set and of making the models invariant to the operations carried out.
Afterwards, we normalize every image I as:

Inorm =
I − µtrain
σtrain

(5.1)

where Inorm is the normalized image, µtrain is the mean of the training set and σmean
is the standard deviation of the training set. This computation is performed pixel-
wise. The mean and standard deviation are computed considering the elements in
the training set and also used in the normalization of the images in the test and
validation sets.
The reason for this type of normalization is that the computation of the gradients
in the training stage of the models is easier if the features of the dataset are in a
similar range. Moreover, scaling the inputs in this way makes the parameter sharing
more efficient (Goodfellow et al., 2016).
We carry out the steps described in this Section by employing several functions
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Table 5.1: Confusion matrix in the case of a binary classification prob-
lem. The rows indicate the true class of the objects, while the columns
indicate the predicted one. The main diagonal elements contain the
amount of correctly classified objects: the True Positives (TP) and the
True Negatives (TN).

Predicted class:
Positive

Predicted class:
Negative

Actual class:
Positive TP FN

Actual class:
Negative FP TN

available in the NumPy1 package, treating the images as matrices of pixels.

5.2 Performance evaluation
We evaluate the performance of our models by means of four statistical estimators
that can be directly derived from the confusion matrix (Stehman, 1997). Every
element of the confusion matrix Cij indicates the amount of objects belonging to
the class i and classified as members of class j.
Table 5.1 displays the structure of the confusion matrix in a binary classification
problem, in which each object can belong to one of two categories. In particular:

• C00 is the number of objects that belong to the class True and are classified
as True, namely the True Positives (TP);

• C11 is the number of objects that belong to the class False and are classified
as False, namely the True Negatives (TN);

• C01 is the number of objects that belong to the class True, but are classified
as False, namely the False Negatives (FN);

• C10 is the number of objects that belong to the class False, but are classified
as True, namely the False Positives (FP).

These quantities can be combined to obtain four important estimators of the quality
of the classification:

1. The precision or purity of a given class is the ratio between the number of
objects correctly classified as belonging to the class and the sum of all of the
objects that are classified as belonging to the class.

For example, the precision of the class Positive is computed as

P =
TP

TP + FP
. (5.2)

1https://numpy.org/

https://numpy.org/
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This estimator measures the ability of the model not to classify an object as
being part of a certain category, if it belongs to another one.

2. The completeness or recall of a given class is the ratio between the number of
objects correctly classified as belonging to the class and the amount of objects
that are actually part of the class.

For example, the recall of the class Positive is computed as

R =
TP

TP + FN
. (5.3)

This estimator measures the ability of the classifier to identify all the objects
that belong to a certain class.

3. The F β score estimator combines the precision and recall to compute the score.
Depending on the value of β, one of the two quantities might be weighted more
than the other:

Fβ = (1 + β)2 P ·R
β2P +R

. (5.4)

For β = 1 we obtain the F1-score, that equally weighs the precision and recall.

4. The accuracy classification score is the ratio between the number of correctly
classified objects and the amount of objects in the dataset:

A =
TP + TN

TP + TN + FP + FN
. (5.5)

In addition to these metrics, we also compute the Receiver Operating Characteristic
(ROC) (Hanley, 1982) for each one of our tests. The ROC estimates the performance
of the classifier as a function of the discrimination threshold, i.e. the probability at
which a certain class is chosen over another one. In particular, the ROC curve is
obtained by plotting the True Positive Rate (TPR) versus the False Positive Rate
(FPR) at various classification thresholds.
The area under the ROC curve (AUC or AUROC) summarizes the information
conveyed by the ROC: the closer the AUC is to 1 the better is the performance of
the classifier, while it is useless when the AUC = 0.5.
In practice, the output of our models in the test phase is the probability that each
of the instances in the test set belongs to one of the two classes, "lens" or "non
lens". From this probability, we can establish what the correct classification would
be according to our model’s predictions. We use the functions contained in the
package sklearn2 of Python to compute the estimators just listed, using the truth
table and the predictions as input.

2https://scikit-learn.org/stable/

https://scikit-learn.org/stable/
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5.3 Training on the Lens Finding Challenge Dataset
dataset

The application of the criteria 4.1 for dividing the images of the Lens Finding Chal-
lenge dataset into the classes of lenses and non lenses ensures that the objects in
the first category are at least characterized by the presence of one image of the
background source.
However, due to several factors, such as the possible weak magnification caused by
the lens and the high magnitude of the background sources, the multiple images
of the sources are only weakly observable in a significant fraction of the images.
Moreover, other typical features caused by the lensing phenomenon, namely the
presence of ring-shaped and arc-shaped sources, are evident in only a subset of the
images in the category considered. For instance, some of the images displayed in
Figure 4.1 and 4.2 are quite similar, despite being classified as members of different
categories.
The presence of borderline objects in the dataset is clearly influential in the perfor-
mance of the networks, since their correct classification is more difficult to obtain.
Even though CNNs are quite versatile in extracting from a training set the char-
acteristics that will be the most useful for assigning new data to the appropriate
categories, the recurring occurrence of non immediately recognizable examples might
have a significant impact on the ability of the network of detecting the relevant fea-
tures.
We aim to investigate the capability of the models described in Appendix A to
identify lensing features in borderline objects and to verify what are the physical
properties of the lenses and sources simulated in the images that are correctly clas-
sified. For this purpose, we train our models on different portions of the dataset,
that gradually include a larger amount of images and a greater fraction of objects
whose classification might be ambiguous.

5.3.1 Data Selection

We consider six selections of data, named from S1 to S6, that consist of approxi-
mately 2000, 10000, 20000, 40000, 60000 and the total amount of images respectively.
The criteria we adopt to progressively include the less easily classifiable images in
our selections take into consideration the characteristics of the images that might be
exploited by the networks to classify the objects as members of the correct category.
In the case of the images that belong to the class of the non lenses, the lack of a
background source, or the absence of an image of it, make the classification of the
objects more likely to be correct.
Therefore, we initially consider the objects in the the dataset that are characterized
by n_sources = 0, thus managing to obtain up to approximately 10000 images
of non lenses. Afterwards, we broaden our sample by including the images where
a background source has been added, but does not correspond to a visible image,
i.e. the images that are characterized by n_source_im = 0. Finally, we extend our
selection to the other objects that are classified as non lenses according to the criteria
4.1. Figure 5.3 shows the composition of the non lenses subsets thus obtained in the
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Figure 5.3: This bar chart shows the composition of the subsets of non
lenses obtained accordingly to the criteria listed in Table 5.2. The se-
lections S1, S2, S3 only consist of images with n_sources = 0; selection
S4 also includes objects with n_source_im = 0; selections S5 and S6 are
partly composed of the other non lenses.

different selections.
In the case of the subset of images classified as lenses, the definition of an effective
criterion to identify the most clear examples in the dataset is more important as
well as more challenging. In fact, the mere presence of an image of the source does
not guarantee a straightforward classification of the image, since several factors
contribute to the actual clarity of the observable features. Among them are, for
example, the magnitude of the source and the extent of the image produced by the
lens, as it was previously mentioned.
After testing the importance of several of the parameters in the catalog associated to
the images for discriminating the most evident lenses, we deem n_pix_source to be
an appropriate choice. As it was explained in the previous Chapter, this parameter
describes the amount of pixels where the source is observable. The complete sample
of the lenses is characterized by the minimum value n_pix_source = 20, as specified
in the system 4.1. For each one of the selections we raise this threshold to a different
value, that depends on the amount of images we seek to isolate: the higher is the
value employed, the smaller will be the amount of images selected and the more
evident the lensing features displayed.
The histogram in Figure 5.4 illustrates how the selection of the lenses is gradually
broadened. In particular, as it is evident from the distribution, the greatest part of
the lenses in the dataset is characterized by relatively small values of n_pix_source.
In fact, roughly 1000 lenses are identified in the selection S1 considering the objects
with n_pix_source in the range between 950 and 15000, while the remaining 48000
objects are characterized by a value of n_pix_source in the interval between 20 and
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Figure 5.4: This histogram displays the distribution of n_pix_source
for the complete sample of lenses in the dataset. The vertical lines corre-
spond to the thresholds adopted to achieve the different selections: they
are progressively less strict from the right to the left.

950 and sequentially included in the largest samples.
The thresholds established for the creation of the selections described so far also
take into account the necessity to have comparable amounts of images in each of the
two classes, so that the examples analyzed by the networks in the training phase are
balanced.
Table 5.2 contains a detailed summary of the characteristics of the images that are
part of the different selections, including the amount of images identified in each
of the classes and the criteria and thresholds applied. It should be noted that the
selections have been carried out in such a way that the smaller samples are always
included in the larger ones. This is obvious in the case of the lenses, because of the
criterion followed, but has also been implemented for the non lenses.
Once we have identified the objects that will be part the selections, we divide the
datasets into training, validation and test sets according to the percentages give in
Section 5.1. For these experiments we only consider the images simulated in the
VIS band: the training is described in Appendix A.2.

5.3.2 Results

The results of the classification experiments on the Lens Finding Challenge dataset
are summarized in Table 5.3. We list there the precision, recall, F1-score, accu-
racy and AUC obtained from the application of the three models to the selections
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Table 5.2: This Table summarizes the criteria adopted to select the im-
ages included in the selections of lenses and non lenses used for our
experiments with the Lens Finding Challenge dataset. While the identi-
fication of the lenses is solely based on the variation of a threshold value
for the parameter n_pix_source, the identification of the non lenses is
primarily based on the possible presence and visibility of a background
source.

Selection Lenses Non Lenses Total
amount
of imagesCriteria

Amount
of

images
Criteria

Amount
of

images

S1 n_pix_source >950 1084
Randomly selected

objects with
n_sources = 0

1000 2084

S2 n_pix_source >390 4995
Randomly selected

objects with
n_sources = 0

5000 9995

S3 n_pix_source >220 9977
Whole sample of

objects
with n_sources = 0

9963 19940

S4 n_pix_source >110 19191
Whole sample of
objects with

n_source_im = 0
19107 38298

S5 n_pix_source >60 29704
Randomly selected

objects in the
whole sample

29607 59311

S6 Whole sample
of lenses 49060 Whole sample

of non lenses 50552 99612
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considered.
Figures 5.5, 5.6, 5.7 show the confusion matrices obtained by testing the VGG-like
Network, the Inception Network and the Residual Network, respectively, on the six
selections of data. Moreover, Figure 5.8 displays the ROC curves realized from the
predictions of the different models.
By comparing the results of the experiments carried out with our models we can
highlight a series of interesting results regarding the relationship between the pres-
ence of borderline objects in the dataset and the overall performance of the networks.
First of all, it is clear that the ability of the networks to correctly classify the objects
in the dataset tends to deteriorate as the percentage of borderline objects included
in the dataset increases. This is evident from Figure 5.9, that shows the trend of
the accuracy with the selections and from Figure 5.10, that shows the trends of the
other metrics considered. This last Figure shows specifically that the degradation
of the performance does not only concern the classification of the images that are
part of the class of the lenses, but it involves the objects of both the categories.
In particular, the three models succeed in the classification of the objects in the
selections S1, S2 and S3, as it is shown from the metrics calculated, that range
from ∼ 0.85 to ∼ 0.95 with only slight differences between different networks. On
the other hand, they perform gradually worse on the selections S4, S5 and S6: the
accuracy evaluated on this last selection is ∼ 0.65 for the three models.
We will now focus on the selection S6, that includes the complete subsets of lenses
and non lenses. Figures 5.11 and 5.12 show some of the images in the test set of
this selection that are misclassified: Figure 5.11 shows 12 images that are classified
as non lenses while being part of the lens category and Figure 5.12 shows 12 images
that are classified as lenses while being part of the non lens class. It should be
noted that the objects represented in these Figures are incorrectly classified by all
the three models, therefore they should be characterized by the features that the
models generally find harder to attribute to the correct class.
We can make two comments about these images:

1. The images mistakenly classified as non lenses in Figure 5.11 are in large part
not even recognizable as lenses by visual inspection. Although being classified
as lenses according to the criteria 4.1, many of these objects do not show
evident lensing features. Therefore, if the classification was to be carried out
on real observations, we would not expect the models to be able to identify
them as lenses. In some of the images, however, the presence of arc-shaped
sources is evident. Nevertheless, their classification is incorrect: this issue is
discussed in greater detail later in this Section.

2. The images erroneously classified as lenses in Figure 5.12 are often character-
ized by the presence of more than one source in addition to the lens galaxy.
The coexistence of several objects in the images might be mistaken for the
presence of multiple images of the same source by the networks. Moreover,
in some of these images it might be noticed the presence of spiral galaxies,
whose arms might be interpreted as faint arc-shaped or ring-shaped features
by the models. In particular, the misinterpretation of these features might be
exacerbated by the presence of several images in the subset of the lenses in
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Table 5.3: Summary of the performance of the VGG-like Network, the
Inception Network and the Residual Network in the classification of the
objects of the six selections of data. The precision, recall and F1-score
are evaluated on the class of the non lenses (0) and of the lenses (1)
separately.

VGG-like Network

S1 S2 S3 S4 S5 S6

0 1 0 1 0 1 0 1 0 1 0 1

Precision 0.89 0.98 0.95 0.98 0.95 0.95 0.89 0.92 0.81 0.85 0.65 0.65

Recall 0.98 0.91 0.98 0.95 0.95 0.95 0.92 0.88 0.86 0.81 0.68 0.62

F1-score 0.93 0.95 0.96 0.96 0.95 0.95 0.90 0.90 0.83 0.83 0.66 0.64

Accuracy 0.94 0.96 0.95 0.90 0.83 0.65

AUC 0.72 0.74 0.81 0.78 0.68 0.60

Inception Network

S1 S2 S3 S4 S5 S6

0 1 0 1 0 1 0 1 0 1 0 1

Precision 0.91 0.97 0.94 0.96 0.92 0.92 0.85 0.88 0.73 0.76 0.62 0.70

Recall 0.96 0.93 0.97 0.93 0.92 0.92 0.88 0.84 0.77 0.72 0.80 0.48

F1-score 0.94 0.95 0.95 0.95 0.92 0.92 0.86 0.86 0.75 0.74 0.70 0.57

Accuracy 0.94 0.95 0.92 0.86 0.74 0.65

AUC 0.87 0.82 0.80 0.76 0.69 0.62

Residual Network

S1 S2 S3 S4 S5 S6

0 1 0 1 0 1 0 1 0 1 0 1

Precision 0.85 0.99 0.94 0.91 0.91 0.8 0.81 0.92 0.70 0.75 0.64 0.64

Recall 0.99 0.87 0.91 0.94 0.90 0.91 0.93 0.79 0.78 0.66 0.66 0.61

F1-score 0.92 0.93 0.93 0.93 0.91 0.90 0.87 0.85 0.73 0.70 0.65 0.62

Accuracy 0.92 0.93 0.90 0.86 0.72 0.64

AUC 0.88 0.82 0.81 0.78 0.68 0.61



96 3. Training on the Lens Finding Challenge Dataset dataset

0 1
y_pred

0
1

y_
tru

e

0.98 0.02

0.12 0.91

S1

0 1
y_pred

0
1

y_
tru

e

0.98 0.02

0.05 0.95

S2

0 1
y_pred

0
1

y_
tru

e

0.95 0.05

0.05 0.95

S3

0 1
y_pred

0
1

y_
tru

e

0.92 0.08

0.12 0.88

S4

0 1
y_pred

0
1

y_
tru

e

0.86 0.14

0.2 0.81

S5

0 1
y_pred

0
1

y_
tru

e

0.68 0.33

0.37 0.62

S6

Figure 5.5: From the top panel on the left, to the bottom panel on the
right, the confusion matrices obtained by testing the VGG-like Network
on the test sets of the selections of data from S1 to S6.
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Figure 5.6: From the top panel on the left, to the bottom panel on the
right, the confusion matrices obtained by testing the Inception Network
on the test sets of the selections of data from S1 to S6.
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Figure 5.8: Each panel of this Figure displays the ROC curves obtained
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Figure 5.9: Trend of the classification accuracy of the three CNNs tested
on the six selections of data.

the training set that do not actually display clear lensing features.

In order to further investigate the effect of the inclusion of the borderline objects in
the dataset we test the models trained on S6 on the selection S3, that is characterized
by more evident objects in both the subsets. The confusion matrices obtained from
this test are in Figure 5.13, along with the ROC curves. In particular, we can
analyze these results with respect to those obtained from training and testing the
networks on the selection S3: this comparison is carried out in Table 5.4.
It is clear that the overall performance of the models trained on the selection S6
is worse than that of the models trained on S3, in the identification of the images
that show lensing features as well as in the classification of the non lenses. In this
context, it is important to emphasize that the objects that are part of the selection
S3 will also inevitably be part of S6, since it corresponds to the complete dataset.
This observation indicates that the performance of the models trained on S6 is not
only worse in a general sense, as we may expect since the borderline objects are
intrinsically harder to classify and a large fraction of this selection is composed of
non obvious lenses. In addition to this, the ability of the models to identify the
clearest objects in the dataset, as the ones that are part of S3, also deteriorates.
This might depend on a combination of two complementary factors, regarding the
training of the networks on the complete dataset. First of all, the percentage of clear
objects in the training set of the selection S6 is smaller than in the other selections
because of the relevant portion of borderline objects included. This reflects in the
fact that the networks might not learn how to properly classify them. In fact, wide
arcs and rings will be recognizable in only a moderate fraction of images, thus not
being as relevant as they are in S3 when extracting the most relevant features in
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Figure 5.10: Trend of the precision (first row), recall (second row) and
F1-score (third row) in the classification of the images that belong to the
class of the non lenses (class 0, first column) and to the one of the lenses
(class 1, second column) in the different selections.
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ID = 202358 ID = 210618 ID = 232767

ID = 228369 ID = 202845 ID = 200352

ID = 268580 ID = 245554 ID = 242801

ID = 205726 ID = 264094 ID = 286032

Figure 5.11: Images in the test set of the selection S6 that should be
classified as lenses according to the criteria 4.1, but are classified as non
lenses by the three models.
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ID = 202523 ID = 275293 ID = 213601

ID = 242357 ID = 230200 ID = 223024

ID = 204095 ID = 290816 ID = 299999

ID = 281832 ID = 205156 ID = 225944

Figure 5.12: Images in the test set of the selection S6 that should be
classified as non lenses according to the criteria 4.1, but are classified as
lenses by the three models.
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Figure 5.13: Confusion matrices and ROC curves obtained from the test
of the VGG-like Network (top row), the Inception Network (central row)
and Residual Network (bottom row) trained on the S6 selection on the
S3 selection.
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Table 5.4: Comparison between the metrics of tests on S3 with the models
trained on S3 (top) and on S6 (bottom). Class 0 refers to the non lenses,
while class 1 refers to the lenses.

S3/S3

VGG-like Network Inception Network Residual Network

0 1 0 1 0 1

Precision 0.95 0.95 0.92 0.92 0.91 0.90

Recall 0.95 0.95 0.92 0.92 0.90 0.91

F1-score 0.95 0.95 0.92 0.92 0.91 0.90

Accuracy 0.95 0.92 0.90

S6/S3

VGG-like Network Inception Network Residual Network

0 1 0 1 0 1

Precision 0.86 0.76 0.79 0.84 0.84 0.75

Recall 0.71 0.89 0.85 0.79 0.70 0.87

F1-score 0.78 0.82 0.81 0.81 0.76 0.81

Accuracy 0.80 0.81 0.79

the dataset. At the same time, the most recurrent features in the training set will
be the ones that occur in the borderline images, thus concurring to explain the
misinterpretation of some of the images that present evident lensing features.

All in all, we might conclude that the largest fraction of the objects that are not
correctly identified as lenses by the networks trained on S6 are actually borderline,
as the examples in Figure 5.11 point out. However, a certain fraction of evident
lenses might also be missed if the training set is extended to include a significant
fraction of borderline objects, as they might not be well represented.

In addition to this, we can highlight from the results of our tests that the architecture
of the networks does not appear to be particularly influential in the outcome of the
classification. In particular, when trained and tested on the same selections, the
different architectures generally perform similar to each other.

The only possible exception to this remark is in the performance of the Inception
Network on the entire dataset, as it can be seen in Figure 5.6. In fact, the ap-
plication of this architecture to the selection S6 results into a significantly worse
performance than the ones obtained from the other architectures, for what concerns
the identification of the lenses in the dataset.
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5.4 Additional tests

5.4.1 Trend of the classification with physical properties of
lenses and sources

In this Section, we aim to investigate whether there is a correlation between the
physical characteristics of the lenses and sources in the images and the ability of the
networks to correctly classify them.
We do this by considering the performance of the models on the complete dataset.
In particular, we focus on some of the properties of the lenses (the Einstein area,
ein_area and the halo mass, halo_mass), of the sources (the redshift, z_source
and the magnitude, mag_source) and of the simulated images (the amount of pixels
where the source is visible, n_pix_source and the amount of images of the source,
n_source_im).
We divide the range of values covered by each one of these parameters into several
intervals and assign the elements in the test set of the selection S6 to the different
subsets, depending on the value that characterizes each of the images with respect to
the parameter considered. At this point, we evaluate the performance of the models
in the classification of the objects that belong to the same interval, thus obtaining
the trend of the classification with respect to the chosen characteristic.
Figures 5.14, 5.15, 5.16, 5.17, 5.18 and 5.19 show the results of these tests. Each of
these Figures focuses on the metrics evaluated for the different models with respect
to one of the parameters considered. The normalized histogram of the parameter
for the class of the lenses and of the non lenses is shown in the background of the
respective column. In particular, the distribution is referred to the training set, but
the test set’s distribution is very similar, as it was explained in Section 5.1.
In general, the clearest trends concern the precision of the classification, while in the
majority of the cases the recall is virtually constant with respect to the parameters
considered. Since the F1-score takes into consideration both of these metrics, it
often shows the same trends as the precision, even though less evidently. Moreover,
even though the overall performance of the networks on this selection is not ideal,
as it was shown the previous Section, the models are still able to identify a great
fraction of the objects characterized by certain values for the parameters considered
in this analysis.
We might refer to the F1-score, that takes into consideration both the precision and
the recall. Specifically:

1. The Einstein area of a lens is related to the type of lensing features that
the system might display: in case of larger values of this parameter the lenses
should be more easily recognizable because of the high distortion of the images
of the sources. Figure 5.14 displays a weak trend in this sense.

2. The halo masses of the lenses in the dataset range from the values typical of
galaxies to those that characterize small groups of galaxies (M ∼ 1014M�), as
it is shown in Figure 5.15. The ability of the classifiers to identify the strong
lensing events increases in the range of massive galaxies and shows a weak
decrement in the mass range that corresponds to groups of galaxies.
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Figure 5.14: Trend of the performance of the VGG-like Network (blue),
Inception Network (green) and Residual Network (red) with respect to
the Einstein area of the lenses. The histograms in the background repre-
sent the distribution of the parameter ein_area for the elements in the
classes of the non lenses (in green) and of the lenses (in purple).
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Figure 5.15: Trend of the performance of the VGG-like Network (blue),
Inception Network (green) and Residual Network (red) with respect to
the halo mass of the lenses. The histograms in the background repre-
sent the distribution of the parameter halo_mass for the elements in the
classes of the non lenses (in green) and of the lenses (in purple).
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Figure 5.16: Trend of the performance of the VGG-like Network (blue),
Inception Network (green) and Residual Network (red) with respect to
the magnitude of the sources. The histograms in the background repre-
sent the distribution of the parameter mag_source for the elements in
the classes of the non lenses (in green) and of the lenses (in purple).
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Figure 5.17: Trend of the performance of the VGG-like Network (blue),
Inception Network (green) and Residual Network (red) with respect to
the redshift of the sources. The histograms in the background represent
the distribution of the parameter z_source for the elements in the classes
of the non lenses (in green) and of the lenses (in purple).
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Figure 5.18: Trend of the performance of the VGG-like Network (blue),
Inception Network (green) and Residual Network (red) with respect to
the amount of multiple images of the same source. The histograms in the
background represent the distribution of the parameter n_source_im for
the elements in the classes of the non lenses (in green) and of the lenses
(in purple).
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Figure 5.19: Trend of the performance of the VGG-like Network (blue),
Inception Network (green) and Residual Network (red) with respect to
the amount of pixels where the source is visible. The histograms in the
background represent the distribution of the parameter n_pix_source
for the elements in the classes of the non lenses (in green) and of the
lenses (in purple).
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3. The magnitude of the background sources has a strong impact on the per-
formance of the models, especially in the case of faint sources, for values of
mag_source & 26, as it is shown in Figure 5.16. The lenses are difficult to
distinguish when the background source is intrinsically faint, while the identi-
fication of non lenses is easier if the background sources are not observable.

4. Sources at high redshifts produce larger Einstein rings, that are more likely
to be identified than the ones those at low redshifts. However, these objects
are also intrinsically more difficult to observe. In the combination of these
two factors, the latter seems to be predominant, as it is shown in 5.17: the
identification of the lenses does not improve at high redshifts.

5. As the number of multiple images of the source increases, the ability of the
networks to identify the lenses improves, while the opposite happens in the
case of the non lenses. This trend, shown in Figure 5.18 indicates that the
presence of multiple images of the source facilitates the identification of the
lenses, as expected.

It should be noted that several images of the background source might be
visible in the objects classified as non lenses if the criteria regarding the mag-
nification and visibility of the source in Equations 4.1 are not simultaneously
satisfied.

6. The amount of pixels where the source is visible, that was used as an indicator
of the clarity of the lenses in the identification of the images to include in
the different selections, is of course crucial for the correct classification of the
elements in the dataset. The trend of the performance with respect to this
parameter, shown in Figure 5.19, indicates that the images in which the source
is not well observable are mistakenly classified as non lenses more commonly
than those that display clear lensing features.

5.4.2 Identification of borderline objects with the models
trained on the selection S3

We now aim to assess the flexibility of the models trained on one of the most limited
selections, S3, in the identification of borderline objects that are not included in this
training set.
For this task, we test the models on the selections S4, S5, S6, after removing the
objects of these selections that are also present in the training set of S3. Table 5.5
summarizes the results of our tests. Moreover, Figures 5.20, 5.21 and 5.22 show
the confusion matrices and ROC curves obtained by testing the VGG-like Network,
Inception Network and Residual Network, respectively.
A first analysis of the results indicates that the general performance of the networks
trained on the selection S3 deteriorates on the other selections considered, as it can
be seen in Figure 5.24, that shows the trend of the accuracy: it ranges from ∼ 0.85
on S4 to sin 0.64 on S6. However, it should be noted that with respect to this
particular metric, the performance of the models trained on S3 is not different from
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Table 5.5: Summary of the performance of the VGG-like Network, the
Inception Network and the Residual Network, trained on the selection
S3, in the classification of the objects that are part of the selections S4,
S5, S6. The precision, recall and F1-scoreare evaluated on the class of
the non lenses (0) and of the lenses (1) separately.

VGG-like Network

S3/S4 S3/S5 S3/S6

0 1 0 1 0 1

Precision 0.79 0.93 0.68 0.89 0.59 0.79

Recall 0.95 0.75 0.93 0.55 0.91 0.35

F1-score 0.86 0.83 0.78 0.68 0.72 0.49

Accuracy 0.85 0.74 0.64

AUC 0.8 0.72 0.64

Inception Network

S3/S4 S3/S5 S3/S6

0 1 0 1 0 1

Precision 0.78 0.90 0.68 0.84 0.60 0.74

Recall 0.92 0.75 0.89 0.59 0.87 0.39

F1-score 0.85 0.82 0.77 0.69 0.71 0.51

Accuracy 0.83 0.74 0.63

AUC 0.76 0.69 0.61

Residual Network

S3/S4 S3/S5 S3/S6

0 1 0 1 0 1

Precision 0.75 0.87 0.66 0.81 0.59 0.71

Recall 0.89 0.71 0.87 0.55 0.85 0.38

F1-score 0.82 0.78 0.75 0.65 0.70 0.50

Accuracy 0.80 0.71 0.62

AUC 0.75 0.66 0.59
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Figure 5.20: Confusion matrices and ROC curves obtained from the test
of the VGG-like Network on the selections S4 (first row), S5 (second row)
and S6 (third row), after being trained on the selection S3.
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Figure 5.21: Confusion matrices and ROC curves obtained from the test
of the Inception Network on the selections S4 (first row), S5 (second row)
and S6 (third row), after being trained on the selection S3.
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Figure 5.22: Confusion matrices and ROC curves obtained from the test
of the Residual Network on the selections S4 (first row), S5 (second row)
and S6 (third row), after being trained on the selection S3.
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Figure 5.23: Trend of the precision (first row), recall (second row) and
F1-score (third row) in the classification of the images that belong to the
class of the non lenses (class 0, first column) and to the one of the lenses
(class 1, second column) in the selections S4, S5, S6.
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Figure 5.24: Trend of the classification accuracy of the models trained
on S3 and tested on the selections S4, S5, S6.

that of the models trained on S6, as it can be seen by comparing this value to those
in Table 5.3.
The deterioration of the performance on the wider selections is expected, since the
networks primarily recognize the images that are similar to those in the dataset
they have been trained on, and most of the images in the training set of S3 show
clear lensing features, while the test sets progressively include a greater fraction of
borderline objects. We can analyze in greater detail the results of the classification
with respect to the two classes from Figure 5.23, that shows the trends of the
precision, recall and F1-score: in these cases there are several differences with the
metrics in Table 5.3.
In particular:

1. The precision of the classification in the class of the non lenses deteriorates as
the selections with greater portions of data are considered in the test: it reaches
the value of ∼ 0.6 on S6. On the other hand, the recall is approximately con-
stant at values of ∼ 0.9 independently from the selection considered, meaning
that the greatest part of the objects belonging to this class in the datasets
tested is correctly recovered.

2. In the case of the lenses, the precision of the classification ranges from ∼ 0.9
to ∼ 0.8 depending on the selection being tested. On the other hand, the
completeness of the recovered sample decreases drastically from ∼ 0.8 to ∼ 0.4
when the selections that contain a greater fraction of borderline objects are
examined: this trend suggests that the models are not able to identify a great
part of the images that belong to the class of the lenses in the complete dataset.
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These trends can naturally be explained considering the impact of the inclusion of
the borderline objects in the test sets, also inferable from the confusion matrices in
Figures 5.20, 5.21, 5.22. In particular, the training set of the selection S3 mostly
includes evident lenses, that are characterized by clear lensing features, and images
of non lenses to whom no background sources have been added. When analysing
the borderline objects, that represent an increasing fraction of the lenses subset of
the test sets, the absence of clear arcs and rings, or more generally the faintness of
the lensing features causes that a growing percentage of images is classified as being
part of the non lenses class. These results highlight the inability of the networks
to recover a considerable amount of lenses that are not similar to those in the
selection S3. Moreover, the inability of correctly classifying the lenses, reflects in
the performance of the networks on the non lenses class. Even though borderline
objects are also included in this class, their features make them more similar to
the objects of the non lenses class in the training set, therefore they are correctly
classified by the models.
However, we can analyze in greater detail the type of objects that are correctly
identified in the different tests. We do this by following a similar procedure as the
one described in Section 5.4.1 for studying the trend of the classification with respect
to some of the characteristics of the lenses and sources. In this case, since we are
considering three different test sets, we also divide the trends that refer to the lenses
from those that refer to the non lenses, to improve clarity.
In particular, we have evaluated the trends of the performance of the networks with
respect to the following parameters: the Einstein area (Figures 5.25 and 5.26) and
the halo mass (Figures 5.27 and 5.28) of the lenses; the magnitude (Figures 5.29
and 5.30) and the amount of multiple images (Figures 5.31 and 5.32) of the sources;
the amount of pixels where the source is visible (Figures 5.33 and 5.34).
We can highlight some key points about these Figures:

1. The trends of the precision, recall and F1-score with respect to the parameters
within each of the selections are similar to those identified and described in
the previous Section. In fact, the distribution of the characteristics analyzed
is similar in the different selections. The only exceptions are the parameters
n_pix_source and n_source_im, since they are used to discriminate between
the objects gradually included in the subsets considered.

2. Some common features in the trend of the recall of the classification with
respect to the selections can be highlighted independently from the parameter
considered. In particular, in the case of the non lenses the completeness tends
to increase from S4 to S6, while the opposite happens in the case of the lenses.
This type of trend is expected considering that the percentage of borderline
lenses is higher in S6 than in S5 and S4, thus limiting the percentage of objects
that we expect to be correctly identified in these selections.

3. The trend of the precision of the classification with respect to the selections
varies according to the parameter considered. Both in the case of the lenses
and of the non lenses, the parameters that characterize the sources and the
simulation of the events, namely mag_source, n_source_im, n_pix_source,
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Figure 5.25: Performance of the VGG-like Network (blue line), Inception
Network (green line) and Residual Network (red line) on the classification
of the lenses in the selections S4 (first column), S5 (second column) and
S6 (third column) as a function of the Einstein area of the lenses in these
datasets. The first row refers to the precision, the second to the recall
and the third to the F1-score. Moreover, the distributions of ein_area
values in the lenses subsets of the training (purple) and test (green) sets
are also displayed in each panel.
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Figure 5.26: Performance of the VGG-like Network (blue line), Inception
Network (green line) and Residual Network (red line) on the classification
of the non lenses in the selections S4 (first column), S5 (second column)
and S6 (third column) as a function of the Einstein area of the lenses
in these datasets. The first row refers to the precision, the second to
the recall and the third to the F1-score. Moreover, the distributions
of ein_area values in the non lenses subsets training (purple) and test
(green) sets are also displayed in each panel.
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Figure 5.27: Performance of the VGG-like Network (blue line), Inception
Network (green line) and Residual Network (red line) on the classification
of the lenses in the selections S4 (first column), S5 (second column) and
S6 (third column) as a function of the halo mass of the lenses in these
datasets. The first row refers to the precision, the second to the recall
and the third to the F1-score. Moreover, the distributions of halo_mass
values in the lenses subsets in the training (purple) and test (green) sets
are also displayed in each panel.
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Figure 5.28: Performance of the VGG-like Network (blue line), Inception
Network (green line) and Residual Network (red line) on the classification
of the lenses in the selections S4 (first column), S5 (second column) and
S6 (third column) as a function of the halo mass of the non lenses in these
datasets. The first row refers to the precision, the second to the recall
and the third to the F1-score. Moreover, the distributions of halo_mass
values in the non lenses subsets in the training (purple) and test (green)
sets are also displayed in each panel.
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Figure 5.29: Performance of the VGG-like Network (blue line), Inception
Network (green line) and Residual Network (red line) on the classification
of the lenses in the selections S4 (first column), S5 (second column) and
S6 (third column) as a function of the magnitude of the sources in these
datasets. The first row refers to the precision, the second to the recall
and the third to the F1-score. Moreover, the distributions of mag_source
values in the subsets of the lenses in the training (purple) and test (green)
sets are also displayed in each panel.
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Figure 5.30: Performance of the VGG-like Network (blue line), Inception
Network (green line) and Residual Network (red line) on the classification
of the non lenses in the selections S4 (first column), S5 (second column)
and S6 (third column) as a function of the magnitude of the sources
in these datasets. The first row refers to the precision, the second to
the recall and the third to the F1-score. Moreover, the distributions
of mag_source values in the subsets of the non lenses in the training
(purple) and test (green) sets are also displayed in each panel.
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Figure 5.31: Performance of the VGG-like Network (blue line), Inception
Network (green line) and Residual Network (red line) on the classification
of the lenses in the selections S4 (first column), S5 (second column) and
S6 (third column) as a function of the amount of images of the same
source in these datasets. The first row refers to the precision, the second
to the recall and the third to the F1-score. Moreover, the distributions of
n_source_im values in the subsets of the lenses in the training (purple)
and test (green) sets are also displayed in each panel.
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Figure 5.32: Performance of the VGG-like Network (blue line), Inception
Network (green line) and Residual Network (red line) on the classification
of the non lenses in the selections S4 (first column), S5 (second column)
and S6 (third column) as a function of the amount of images of the same
source in these datasets. The first row refers to the precision, the second
to the recall and the third to the F1-score. Moreover, the distributions
of n_source_im values in the subsets of the non lenses in the training
(purple) and test (green) sets are also displayed in each panel.



Experiments and Results 129

10 3

10 2

10 1

100

N n
or

m

10 3

10 2

10 1

100

N n
or

m
10 3

10 2

10 1

100

N n
or

m

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

S3/S4

VGG_like
IncNet
ResNet

S3/S5

Test set
Training set

S3/S6

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

1 2 3 4
log10(n_pix_source)

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

1 2 3 4
log10(n_pix_source)

1 2 3 4
log10(n_pix_source)

Figure 5.33: Performance of the VGG-like Network (blue line), Inception
Network (green line) and Residual Network (red line) on the classification
of the lenses in the selections S4 (first column), S5 (second column) and
S6 (third column) as a function of the amount of pixels where the source is
visible in these datasets. The first row refers to the precision, the second
to the recall and the third to the F1-score. Moreover, the distributions of
n_pix_source values in the subsets of the lenses in the training (purple)
and test (green) sets are also displayed in each panel.
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Figure 5.34: Performance of the VGG-like Network (blue line), Inception
Network (green line) and Residual Network (red line) on the classification
of the non lenses in the selections S4 (first column), S5 (second column)
and S6 (third column) as a function of the amount of pixels where the
source is visible in these datasets. The first row refers to the precision,
the second to the recall and the third to the F1-score. Moreover, the
distributions of n_pix_source values in the subsets of the lenses in the
training (purple) and test (green) sets are also displayed in each panel.
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z_source have a greater impact on the precision than the characteristics that
describe the lenses, i.e. the Einstein area and the halo mass. In particular, the
precision in the classification of the lenses tends to slightly increase from S4
to S6, while it tends to decrease in the classification of the non lenses. These
trends can be explained as done earlier when the classification of borderline
objects was addressed.

4. On average, while the precision obtained in the classification of the lenses
is comparable to the one estimated in the tests described in the previous
Section, the completeness tends to be lower. This result indicates that in
order to retrieve a greater fraction of borderline objects it is better to train
the networks on wider selections of data, that include a considerable amount
of examples of this type. However, as it was explained in Section 5.3.2, this
strategy might cause the wrong identification of some of the obvious lenses,
which is a major drawback, since they are often the most useful for scientific
purposes.

All in all, these results indicate that training the networks on specific categories
of lenses might be the best strategy to recover a catalog as precise and complete
as possible.

5.5 Training on the Euclid VIS Dataset
In addition to training the networks on the Lens Finding Challenge dataset, we also
train and test our models on the Euclid VIS dataset. The lenses and non lenses in
this dataset are clearly distinguished by the presence or absence of a background
source, hence we expect the identification of the lenses to be straightforward in the
majority of the cases.
Figure 5.35 shows the confusion matrices and ROC curves obtained from the eval-
uation of our models on this dataset. In this case, as in the others considered, the
performance of the different networks are comparable. In particular, Table 5.6 sum-
marizes the performance of the networks on the two classes: the Residual Network
achieves slightly worse results in the identification of the lenses, while the other two
networks’ performances are nearly indistinguishable.
These results stress the importance of the morphology of the events simulated in the
dataset for the performance of the models. In particular, the presence of evident arcs
and rings, as the ones that characterize the lenses in this dataset (see, for example,
the images in Figure 4.5), is crucial for the networks to correctly identify Strong
Lensing events.
We now aim to investigate whether there is a correlation between the performance
of our models on this dataset and the main properties of the lens galaxies in the
catalogue. We focus on the properties of the lens galaxies since the background
sources are only added to the images that are classified as lenses.
We apply the same procedure described in Section 5.4.1 on the images in the test
set. In particular, we consider the Einstein area, the halo mass, the magnitude and
the redshift of the lenses. The trends of the precision, recall and F-score with respect
to these parameters are respectively shown in Figure 5.36, 5.37, 5.38, 5.39.
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Figure 5.35: Confusion matrices and ROC curves obtained from the eval-
uation of the performance of the VGG-like Network (first row), Inception
Network (second row) and Residual Network (third row) in the classifi-
cation of the images in the test set of the Euclid VIS challenge.
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Figure 5.36: Trend of the performance of the VGG-like Network (purple),
Inception Network (blue) and Residual Network (red) with respect to the
Einstein area of the lenses. The histograms in the background represent
the distribution of this parameter for the elements in the classes of the
non lenses (in green) and of the lenses (in purple).
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Figure 5.37: Trend of the performance of the VGG-like Network (purple),
Inception Network (blue) and Residual Network (red) with respect to the
halo mass of the lenses. The histograms in the background represent the
distribution of this parameter for the elements in the classes of the non
lenses (in green) and of the lenses (in purple).
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Figure 5.38: Trend of the performance of the VGG-like Network (purple),
Inception Network (blue) and Residual Network (red) with respect to the
magnitude of the lenses. The histograms in the background represent the
distribution of this parameter for the elements in the classes of the non
lenses (in green) and of the lenses (in purple).
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Figure 5.39: Trend of the performance of the VGG-like Network (purple),
Inception Network (blue) and Residual Network (red) with respect to the
redshift of the lenses. The histograms in the background represent the
distribution of this parameter for the elements in the classes of the non
lenses (in green) and of the lenses (in purple).
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Table 5.6: Summary of the performance of the VGG-like Network, the
Inception Network and the Residual Network in the classification of the
objects in the Euclid VIS dataset. Class 0 refers to the non lenses, while
class 1 refers to the lenses.

VGG-like Network Inception Network Residual Network

0 1 0 1 0 1

Precision 0.94 0.99 0.94 0.98 0.91 0.97

Recall 0.99 0.94 0.98 0.94 0.97 0.91

F1-score 0.97 0.96 0.96 0.96 0.94 0.94

Accuracy 0.97 0.96 0.94

AUC 0.88 0.88 0.88

Let us discuss some of the most important results of these tests:

1. The results in terms of precision, recall and F1-score achieved by the three
models are in the range of values between 0.85 and 1.0 independently from the
parameter considered, as it might have been expected considering the overall
performance in Table 5.6.

2. The trends of the performance with respect to the Einstein area (Fig. 5.36)
and halo mass (Fig. 5.37) are not similar to those obtained with the tests on
the Lens Finding Challenge dataset (see Figures 5.14 and 5.15).

In the case of the halo mass, it should be considered that the lens masses in this
dataset are on average smaller than the ones in the Lens Finding Challenge
dataset. In fact, while in this dataset Mlens ∼ 1012 − 1014M� (although the
largest fraction of the lenses is in the interval Mlens ∼ 1012 − 1013M�), in the
Lens Finding Challenge dataset Mlens ∼ 1013 − 1014M�. This difference re-
flects into different types of events and might partially explain the dissimilarity
between the trends.

More generally, in this case and in the others considered, the trend of the F1-
score reproduces the distributions of the parameters considered (shown in the
background of the Figures under examination). This means that the networks
tend to perform worse on the objects that are under-represented in the dataset.



Chapter 6

Conclusions

In this work we have evaluated the ability of Convolutional Neural Networks to
identify Galaxy-Galaxy Strong Lensing events depending on their morphology.
We have done this by implementing three different architectures, the VGG-like Net-
work, the Inception Network and the Residual Network, that are respectively in-
spired by the works of Simonyan & Zisserman (2015), Szegedy et al. (2016) and Xie
et al. (2017). In particular, we have compared the performance of these models by
training, validating and testing them on two datasets: the Lens Finding Challenge
dataset and the Euclid VIS dataset. They have both been simulated by the Bologna
Lens Factory and mimic the data quality expected by the Euclid space mission.
The presence in the Lens Finding Challenge dataset of a large amount of images
that are characterized by faint lensing features, but do not display evident arcs or
rings, makes this dataset ideal to investigate how the diverse morphology of potential
candidates affects the classification ability of our models.
Specifically, we have trained and tested our models on six portions of this dataset,
initially considering a selection of the most evident objects and gradually expanding
the fraction of images that should be more challenging to classify. The images are
included in or excluded from the selections according to a parameter used as an
indicator of the observability of the event.
We have thus investigated the impact of training our networks on a dataset that
includes different amounts of borderline objects by evaluating the recall, precision
and accuracy of the classification. We have estimated how this inclusion affects the
overall performance of our models as well as the identification of obvious lenses. On
the other hand, we have also tested the ability of our models to detect the presence
of faint features in the images albeit being trained on clear lenses.
We have found that the morphological characteristics of the lenses included in the
training set influences in a crucial way the ability of the CNNs to identify the lenses
in a separate test set, whether they show clear of faint lensing features. As it may
be expected, the inclusion of a large fraction of borderline images deteriorates the
performance of our models, since they are intrinsically more challenging to classify.
Moreover, we have found that it impacts the ability of our models to identify the
most evident lenses, since they are under-represented in the training set.
These results prove that the identification of lenses with different morphology might
require specific trainings, focused on the type of lenses of interest for a certain
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purpose. Alternatively, the classification of the lenses might be tackled as a multi-
class classification problem, distinguishing the evident and probable lenses from the
possible and clear non lenses. In this last case, however, the distinction between
obvious and borderline objects should be further investigated and quantified.
Furthermore, we have examined the dependence of the performance of the networks
in terms of precision and completeness on some of the physical properties of the
simulated lenses and sources. The characterization of the lenses that have been
correctly detected is of particular relevance to define the type of lenses that we
might expect to detect and to miss in upcoming imaging surveys’ data.
In this regard, we have found that the properties of the sources, such as the redshift
and magnitude, influence the classification ability of our models more than those of
the lenses, such as the halo mass and the Einstein area. Intuitive trends with the
amount of multiple images of the background source and the observability of the
lensing events were also found.
At this point, we have focused on the Euclid VIS dataset. The greatest majority
of the lenses in this dataset is characterized by the presence of evident arc-shaped
and ring-shaped features, that might be exploited by the networks for the correct
identification of the events. In this case we have investigated the possible correlation
between the performance of our models and the properties of the lenses, since the
sources are only simulated in the images classified as lenses.
Our results show that the vast majority of the lenses is correctly identified by the
three networks, although the Residual Network performs slightly worse than the
other two. Moreover, our models generally have more difficulties in the detection of
the objects that are under-represented in the dataset, rather than being influenced
by the physical properties of the lenses.
Overall, we can also highlight that the architecture of our models does not have a
great impact on the completeness and precision of the retrieved catalogues of lenses.
In fact, the CNNs we have tested perform similarly on the same selections of images.
Because of the faster training and the easier implementation, however, the VGG-like
Network might be considered the best architecture among those tested for tackling
the problem of identifying GGSL events in large datasets.

6.1 Future perspectives
In the future, several improvements and extensions of this work might be imple-
mented.
First of all, it would be important to assess the flexibility of our models to identify
lensing galaxies located in galaxy clusters. In fact, the simulated events in the
datasets considered are mainly produced by field galaxies, while the majority of the
actual observed events are due to cluster members. Because of the importance of
the realism of the images in the training set with respect to those that the networks
are actually expected to detect, this might be an issue.
In particular, the characteristics of the GGSL events observed in the field are not
exactly the same as they would be if the lens galaxies were members of a cluster.
Specifically, due to the large shear and background mass surface density in dense
environments, the critical lines of the galaxy-scale lenses are expected to be larger
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than those of field lenses with the same mass and light distribution (Meneghetti,
M., 2018).
It would also be interesting to re-train the networks on a training set of cluster
lenses to evaluate the improvement of the performance with respect to the one of
our models. Appendix B presents a simple procedure, which is currently under
implementation, for the simulation of GGSL events in galaxy clusters.
Secondly, it should be noted that we used single band images to evaluate the perfor-
mance of our models: this means that the correct identification of the lenses in the
dataset was solely based on their morphological features, namely on the presence of
arc-shaped and ring-shaped images of the background sources. However, this is not
the only characteristic of the images that might be exploited by the CNNs in the
identification of potential candidates.
In particular, several works have highlighted the importance of colour information
(see e.g. Metcalf et al. 2019), that might be of special relevance in the classification
of the lenses whose morphology is not clear enough. Re-training the networks on the
same selections of the Lens Finding Challenge dataset considered in this work, but
including the images simulated in the IR bands would prove how significant such
information is in the identification of borderline lenses.
Finally, the application of our models to real images would provide useful insights
on the validity of the results obtained from the tests we have conducted on the
simulated datasets. In particular, this type of test would prove whether or not our
models are able to identify, other than the evident lenses, the most exotic ones.
Even though the morphology of the lenses in the Lens Finding Challenge dataset is
diverse, it might be that the simulations are not complicated enough to reproduce
the wide variety of possible real configurations.
While the observations of the Euclid telescope are not yet available, a preliminary
test might be carried out on the catalogues of GGSL events produced by the analysis
of the images gathered by the HST. Of course, these images would have to be
degraded to the image quality of the Euclid telescope, to grant homogeneity with
images in the training set.



Appendix A

Implementation of the models

The models studied in this work were implemented, trained and tested using Keras1

(Chollet, 2015) 2.4.3 with a TensorFlow2 (Abadi et al., 2016) 2.2.0 backend on a
NVIDIA Titan Xp Graphics Processing Unit (GPU).
Keras is an open-source library written in Python as part of the research work of
the Open-ended Neuro-Electronic Intelligent Robot Operating System (ONEIROS)
project. It essentially focuses on the development of intuitive methods and classes
that enable fast experimentation with Neural Networks and, more generally, Machine
Learning models.
TensorFlow is an open-source platform for Machine Learning developed and main-
tained by the Google Brain team of Google. It is used for several Machine Learning
applications and is particularly advantageous because of its ability to run on mul-
tiple Central Processing Units (CPUs) and GPUs, speeding up the execution of a
large variety of tasks, such as the training of deep models.
GPUs are not generally faster than CPUs, but they perform better in the execution
of computations that can be done in parallel because they have a larger number of
cores. Since many of the computations performed in the training procedure of Con-
volutional Neural Networks can be easily parallelized, GPUs are largely employed
to reduce the execution time of this computationally expensive process.
Section A.1 illustrates the main characteristics and features of the architecture of
our models, while Section A.2 contains a brief description of the training procedure’s
setup and specifics.

A.1 Architectures
We implement three CNN architectures, inspired by the work of Simonyan & Zis-
serman (2015), Szegedy et al. (2016) and Xie et al. (2017), respectively named
VGG_like, IncNet and ResNet.
The specific network architectures applied to the images are the result of the trials of
several possible configurations, in which the amount of layers and of kernels has been
varied, in order to identify the arrangement that best performs on our classification
problem.

1https://keras.io/
2https://www.tensorflow.org/
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A.1.1 VGG-like Network

Our implementation of the VGG Network is composed of ten convolutional layers
and five max pooling layers alternating. At the end of each convolutional-pooling
block we perform the batch normalization3 of the output of the block. Moreover, the
output layer is preceded by two fully connected layers, that have been alternated with
three dropout layers. The amount of parameters that constitute the architecture
amounts to about 2 millions.
Figure A.1 shows a diagram of the network, that summarizes its most relevant
properties. The different blocks are color-coded depending on their function: we
distinguish the input layer (green), the convolutional layers (blue), the max pooling
layers (red) and the fully connected layers (orange). The numbers indicated in the
convolutional blocks represent the dimension (D) of the filters and the amount of
filters (F) used in the layer, in the format D×D, F. The numbers highlighted in
the max pooling layer, on the other hand, represent the pooling region (R) and the
strides (S) of the pooling operation, in the format R×R, /S.
The numbers in the square brackets instead indicate the dimension and amount of
the feature maps obtained as output of the layers in the format [D×D×F], if the in-
put has dimension [200×200×1], as is the case of the VIS images of the Lens Finding
Challenge Dataset. Moreover, it is always specified whether batch normalization or
dropout were performed. Finally, the output of the output layer is the probability
of the processed image to be part of each one of the two possible classes considered
in our problem.

A.1.2 Inception Network

The building block of our implementation of the Inception Network is the module
represented in Figure 3.9b. Before being fed to the inception modules, the images are
initially processed through two convolutional and max pooling layers. The network is
composed of seven modules, the fifth of whom is connected to an additional classifier.
Dropout is performed before both the output layers, while batch normalization is
performed on the output of each max pooling layer. The total amount of parameters
that compose the model is circa 2 millions.
The chart in Figure A.2 shows the architecture of this network, following the same
notation clarified in the previous Section.

A.1.3 Residual Network

The fundamental block of our Residual Network is the residual block displayed in
Figure 3.11b, with cardinality equal to eight. In particular, the input is initially an-
alyzed by two convolutional and pooling layers and then processed by four residual
blocks alternated with two max pooling layers. Before being passed to the out-
put layer, dropout is performed on the resulting feature maps. Moreover, batch
normalization is performed after every max pooling layer.

3Batch normalization is a technique employed to accelerate and stabilize the training of deep
networks, that consists in the re-normalization of the layer inputs (Ioffe & Szegedy, 2015).
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Figure A.1: Architecture of the VGG-like Network. This model is char-
acterized by ten convolutional layers and five max pooling layers alter-
nating, followed by three fully connected layers.
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Figure A.2: Architecture of the Inception Network. The two initial
convolutional-pooling blocks are followed by seven inception modules al-
ternating with three max pooling layers. The output of the fifth inception
module is both passed to the following inception module and to an ad-
ditional classifier. The inception modules (purple boxes) are structured
as the one in Figure 3.9b.
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Figure A.3: Architecture of the Residual Network. This model is com-
posed of two convolutional-pooling blocks and four residual blocks with
cardinality equal to eight alternating with two max pooling layers. The
residual block’s (in sky blue) structure is the one reproduced in Figure
3.11b.
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Table A.1: Summary of the main characteristics of the network architec-
tures implemented.

VGG-like Network Inception Network Residual Network

Parameters 1.9 M 2 M 1.1 M

Dropout Yes Yes Yes

Additional No Yes No
classifier

Convolutional, Inception modules, Residual blocks,
Type of Max Pooling, Convolutional, Convolutional,
layers Fully Connected Max Pooling, Max Pooling,

Fully Connected Fully Connected

The parameters in the model amount to 1 million, therefore they are significantly
fewer than in the other architectures. However, this configuration outperformed the
other possible ones that were tested.
The diagram in Figure A.3 shows the structure of this network with the same nota-
tion described in Section A.1.1.

Table A.1 summarizes some of the characteristics of the architectures described.

A.2 Training
We implement a training algorithm that employs the model.fit4 method of Keras.
This method automatically carries out the procedure described in Section 3.3 to
train the model on the training set and simultaneously validate it on the independent
validation set.
We conduct eighteen trainings in total on the selections of data described in Section
5.3.1, since we train each architecture on each selection of data. We use the Adam
optimizer with initial learning rate fixed to 10−4 and we choose to employ the binary
cross-entropy to estimate the loss at the end of each epoch. We run the trainings
for 100 epochs.
Moreover we conduct three additional trainings on the Euclid VIS dataset, one for
each architecture, with the same characteristics.
We monitor the trainings by using two functions available in Keras. In particular, if
the loss function estimated on the validation set does not improve for several consec-
utive epochs, the learning rate will be reduced because of the ReduceLROnPlateau5

callback, or stopped before being completed by the EarlyStopping6 callback. Both
these preventative measures are taken to avoid overfitting.

4https://keras.io/api/models/model_training_apis/#fit-method
5https://keras.io/api/callbacks/reduce_lr_on_plateau/
6https://keras.io/api/callbacks/early_stopping/
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Appendix B

Simulation of GGSL events in galaxy
clusters

In this Section we describe a simple procedure, that is currently under implementa-
tion, to simulate GGSL events in galaxy clusters.
We simulate GGSL events by injecting background sources in real observations of
the six galaxy clusters studied in the Frontier Fields1 (FF) program. We position
these background objects close to the secondary caustics produced by the cluster
members. In this way, they act as strong lenses, distorting and magnifying the
images of the sources.
Note that throughout the simulations we adopt a Λ-CDM cosmology with ΩΛ = 0.7,
ΩM = 0.3, H0 = 70 kms−1Mpc−1.

B.1 The Frontier Fields clusters
The Frontier Fields is a program that combines the capabilities of the HST and the
Spitzer Space Telescope2 to obtain deep observations of six galaxy clusters and their
lensed galaxies (Lotz et al., 2017). In particular, these massive objects were chosen
because they act as high-magnifying lenses, allowing the observation of very faint
and distant galaxies.
The campaign involves the observation of the six galaxy clusters listed in Table B.1
and six parallel fields. See Lotz et al. (2017) for a detailed summary of the main
characteristics of the clusters and of the blank fields.
The observations gathered with this program have been made publicly available at
https://archive.stsci.edu/pub/hlsp/frontier/.
In particular, we use the observations taken with the instrument Wide Field Camera
33 (WFC3) of the HST in the F814W filter of the UVIS channel and in the F105W,
F140W and F160W filters of the IR channel. We choose to focus on these specific
filters because they operate in a similar wavelength range as the Euclid Telescope’s
filters used to simulate the images of the Lens Finding Challenge (see Table B.2 and
4.1, respectively).

1https://outerspace.stsci.edu/display/HPR/HST+Frontier+Fields
2http://www.spitzer.caltech.edu/
3https://wfc3.gsfc.nasa.gov/
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Table B.1: List of the galaxy clusters observed in the Fron-
tier Fields, of their redshifts and of the coordinates of their cen-
ters. Data from https://outerspace.stsci.edu/display/HPR/HST+
Frontier+Fields+Survey.

Cluster name Nickname Redshift
Cluster Coordinates (J2000)

RA DEC

ABELL 370 A370 0.375 02:39:52.9 -01:34:36.5

ABELL S1063 A1063 0.348 22:48:44.4 -44:31:48.5

ABELL 2744 A2744 0.308 00:14:21.2 -30:23:50.1

MACSJ0416.1-2403 M0416 0.396 04:16:08.9 -24:04:28.7

MACSJ0717.5+3745 M0717 0.545 07:17:34.0 +37:44:49.0

MACSJ1149.5+2223 M1149 0.543 11:49:36.3 +22:23:58.1

Table B.2: List of the WFC3 filters, in which the observations of the FFs’
clusters used in this work were taken.

Channel Filter λ (nm)

UVIS F814W 835.3

F105W 1045
IR F140W 1400

F160W 1545

The observation of several strong lensing events in these clusters has made a precise
strong lensing modeling of them possible. In particular, we use the deflection angle
fields obtained from this modeling (Caminha et al., 2017; Bergamini et al., 2019) to
simulate the deflection of the light emitted by a background source located behind
the cluster. These maps take into account the effects of the cluster mass and of the
individual galaxies within it and allow us to reproduce the phenomenology of the
multiple images and distortions typical of GGSL events in galaxy clusters.
Figure B.1 shows, as an example, the deflection angle maps of the galaxy cluster
M0416.

B.2 Simulation procedure

The simulations are carried out by employing several of the methods and functions
implemented in the Python library pyLensLib4 .
Firstly, we build the deflector, namely the object that, given the deflection angle
maps, the redshifts of the lens and of the source computes the deflection of the light
of the source in a given cosmological context. We build the deflector by using the

4More information on this library is in the lecture notes at https://github.com/maxmen/
LensingLectures

https://outerspace.stsci.edu/display/HPR/HST+Frontier+Fields+Survey
https://outerspace.stsci.edu/display/HPR/HST+Frontier+Fields+Survey
https://github.com/maxmen/LensingLectures
https://github.com/maxmen/LensingLectures
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Figure B.1: Deflection angle maps of the galaxy cluster M0416 for a
source plane at zs = 1. The maps are used to compute the deflection of
the light rays emitted by a background source, as in Equation 2.10.

method deflector of pyLensLib.
Using the deflector we can compute the tangential and radial critical lines of the
cluster (primary critical line) and of the galaxies within it (secondary critical lines).
The points of the critical lines can also be traced to the corresponding points of the
caustics on the source plane.
We simulate the GGSL event by adding a background source in the vicinity of the
caustic produced by one of the cluster members. In particular, we model the source
by means of a surface brightness profile described by a Sérsic model (Sérsic, 1963),
that we build using the method sersic of pyLensLib.
Given the deflector, the position of the source with respect to the cluster’s center
and the flux of the source, the method sersic produces the image of the lensed
source. While we have already created the deflector, we need to define the source
position and its flux.

We randomly choose the position of the source in a region around one of the sec-
ondary caustics of the cluster, calculated with the deflector. In particular, we use
the Python package shapely5 to select the area around the caustic that has the
same radius as the effective radius of the galaxy we are simulating.
Figure B.2 displays, as an example, the position of a fictitious source extracted
within the buffer around one of the radial caustics of the galaxy cluster M0416.
Since the radius of the buffer corresponds to the galaxy’s effective radius, we are
confident that the source will at least cross the caustic and the resulting image will
be characterized by some type of strong lensing features. At the same time, following
this procedure for the selection of the source’s position allows the implementation of
a wide range of possible distortions and multiple image configurations, that would
not be reproducible by exclusively locating it within the caustic.

At this point, we evaluate the flux of the source in each of the observational bands
of the simulation, by associating a SED to the source. We do this by choosing one of

5https://shapely.readthedocs.io/en/stable/manual.html

https://shapely.readthedocs.io/en/stable/manual.html
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caustic
buffer
source position

Figure B.2: This image displays an example of the choice of the source
position. radial caustics (blue line), the buffer calculated around them
(red line) and the position randomly chosen within the buffer.

the available templates of the software BPZ6. This software is used to estimate the
photometric redshift of distant objects by cross-correlating the observed magnitudes
of the sources at different wavelengths with the templates of various types of galaxies.
The models at our disposal are suitable to describe Elliptical, Spiral and Starburst
galaxies.
The SEDs in BPZ are rest-frame, so once we have selected one, we shift it at the
redshift of our source. For this task, we employ the package Barak7, that also
allows us to extract the values of the flux of the source in arbitrary bands: in this
case, we are interested in the bands listed in Section B.1. We proceed by defining
the magnitude of the source in a certain band to normalize the SED. We can now
integrate the SED in the desired bands to obtain the flux that corresponds to the
given magnitude.
Given the flux, we can calculate the correspondent counts on the detector of the
instrument used for the observation. For the conversion of the flux into counts, we
use the zero-point of the instrument in a certain band, that can be found in the
header of the image of the cluster.

The counts of the unlensed source in a certain filter and its position are finally used
as input of the sersic function, along with the effective radius, the position angle,
the Sérsic index and the axis ratio. Thanks to the deflector the light of the source
is projected onto the lens plane and the GGSL event is observable. Two possible
output configurations of the operations described are shown in Figure B.3.
We proceed by doing a cutout of the simulated image and of the HST image of
10′′×10′′ separately, centering it at the center of the critical line in both the images.

6https://www.stsci.edu/~dcoe/BPZ/
7http://nhmc.github.io/Barak/

https://www.stsci.edu/~dcoe/BPZ/
http://nhmc.github.io/Barak/


Simulation of GGSL events in galaxy clusters 151

Figure B.3: Zoom-in of two GGSL events produced by the simulation
procedure described. In the image on the left a ring is produced, while
in the image on the right a tangential arc, as the critical line chosen
is tangential. The other lensing features observed are due to the main
caustic of the cluster. The red lines represents the critical lines of the
galaxy lenses.

For this task, we use the function Cutout2D of Astropy8. At this point, we re-
grid the simulated image so that its World Coordinate System (WCS) is the same
as the one of the astronomical image. This operation involves the variation of
pixel resolution, orientation and coordinate system and can be conducted using the
package reproject9, that takes the headers of the simulated image and of the cluster
as input.
After this step, we perform the convolution of the simulated image with the PSF
model characteristic of the HST filter in which the observation of the cluster was
taken. We do this employing the function psf_convolve of the method observation
in pyLensLib.
Finally, we sum the simulation of the lensing features and the real observation of
the cluster and we obtain the image of the GGSL event at a particular wavelength.
To simulate the event in other bands, we do not iterate the procedure from the
beginning. In fact, we re-normalize the reprojected image to the counts of the source
in another filter, as calculated from the SED, and we perform the convolution of the
resulting image with the PSF model appropriate for the current filter. This method
is based on the assumption the the Sérsic profile chosen to describe the source does
not change as a function of λ.
In this way we obtain the image of the GGSL event we are simulating at differ-
ent wavelengths. Figure B.4 shows a few examples of GGSL events simulated by
following the simulation process discussed.

8https://www.astropy.org/
9https://pypi.org/project/reproject/
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Figure B.4: This Figure shows six possible configuration of GGSL events
obtained by following the procedure described in this Section. In these
images, the F814W, F105W, and F140W are being used for the blue,
green, and red channels, respectively.



Bibliography

Abadi M., et al., 2016, TensorFlow: A System for Large-Scale Machine Learn-
ing, 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16), pp 265–283

Angora G., et al., 2020, The search for galaxy cluster members with deep learning
of panchromatic HST imaging and extensive spectroscopy, Astronomy and Astro-
physics, 643, A177

Baron D., 2019, Machine Learning in Astronomy: a practical overview, arXiv e-
prints, p. arXiv:1904.07248

Bartelmann M., Schneider P., 2001, Weak gravitational lensing, Physics Reports,
340, 291–472

Beckwith S. V. W., et al., 2006, The Hubble Ultra Deep Field, The Astronomical
Journal, 132, 1729 –1755

Bengio Y., 2009, Learning Deep Architectures for AI, Foundation and Trends in
Machine Learning, 2, 1–127

Bennett, C. L. et al. 1996, 4-Year COBE DMR Cosmic Microwave Background
Observations: Maps and Basic Results, The Astrophysical Journal, 464, L1 –L4.

Benson, B. A. et al. 2004, Measurements of Sunyaev-Zel’dovich Effect Scaling Rela-
tions for Clusters of Galaxies, The Astrophysical Journal, 617, 829 –846.

Bergamini P., et al., 2019, Enhanced cluster lensing models with measured galaxy
kinematics, Astronomy & Astrophysics, 631, A130

Bergamini P., et al., 2020, A new high-precision strong lensing model of the galaxy
cluster MACS J0416.1-2403, arXiv e-prints, p. arXiv:2010.00027

Bhattacharya, S. et al. 2013, Dark matter Halo profiles of massive clusters: Theory
versus observations, The Astrophysical Journal, 766, 32.

Bishop C., 2006, Pattern Recognition and Machine Learning. Springer-Verlag New
York

Boylan-Kolchin M., Springel V., White S. D. M., Jenkins A., Lemson G., 2009,
Resolving cosmic structure formation with the Millennium-II Simulation, Monthly
Notices of the Royal Astronomical Society, 398, 1150 –1164

153

http://dx.doi.org/10.1051/0004-6361/202039083
http://dx.doi.org/10.1051/0004-6361/202039083
http://dx.doi.org/10.1016/S0370-1573(00)00082-X
http://dx.doi.org/10.1086/507302
http://dx.doi.org/10.1086/507302
http://dx.doi.org/10.1561/2200000006
http://dx.doi.org/10.1561/2200000006
http://dx.doi.org/10.1086/310075
http://dx.doi.org/10.1086/425677
http://dx.doi.org/10.1051/0004-6361/201935974
http://dx.doi.org/10.1088/0004-637X/766/1/32
http://dx.doi.org/10.1111/j.1365-2966.2009.15191.x
http://dx.doi.org/10.1111/j.1365-2966.2009.15191.x


154 Bibliography

Burges C. J., 1998, A Tutorial on Support Vector Machines for Pattern Recognition,
Data Mining and Knowledge Discovery, 2, 121 –167

Caminha G. B., et al., 2017, Mass distribution in the core of MACS J1206. Robust
modeling from an exceptionally large sample of central multiple images, Astronomy
& Astrophysics, 607, A93

Cavaliere, A. & Fusco-Femiano, R. 1976, X-rays from hot plasma in clusters of
galaxies., Astronomy and Astrophysics, 49, 137 –144.

Chollet F., 2015, keras, https://github.com/fchollet/keras

Coles P., Lucchin F., 2002, Cosmology: The Origin and Evolution of Cosmic Struc-
ture. John Wiley & Sons Inc.

Collett T. E., 2015, The Population of Galaxy-Galaxy Strong Lenses in Forthcoming
Optical Imaging Surveys, The Astrophysical Journal, 811, 20

Collett T. E., Auger M. W., 2014, Cosmological constraints from the double source
plane lens SDSSJ0946+1006, Monthly Notices of the Royal Astronomical Society,
443, 969–976

Davies A., Serjeant S., Bromley J. M., 2019, Using convolutional neural networks to
identify gravitational lenses in astronomical images, Monthly Notices of the Royal
Astronomical Society, 487, 5263 –5271

De Boni, C. et al. 2013, Hydrodynamical simulations of galaxy clusters in dark en-
ergy cosmologies – II. c–M relation, Monthly Notices of the Royal Astronomical
Society, 428, 2921–2938.

Deng L., 2014, A tutorial survey of architectures, algorithms, and applications for
deep learning, APSIPA Transactions on Signal and Information Processing, 3, e2

Desprez G., Richard J., Jauzac M., Martinez J., Siana B., Clément B., 2018, Galaxy-
galaxy lensing in the outskirts of CLASH clusters: constraints on local shear and
testing mass-luminosity scaling relation, Monthly Notices of the Royal Astronom-
ical Society, 479, 2630–2648

Dressler, A. 1980, Galaxy morphology in rich clusters: implications for the formation
and evolution of galaxies., The Astrophysical Journal, 236, 351 –365.

Duchi J., Hazan E., Singer Y., 2011, Adaptive Subgradient Methods for Online Learn-
ing and Stochastic Optimization, Journal of Machine Learning Research, 12, 2121
–2159

Eckert, D. et al. 2019, Non-thermal pressure support in X-COP galaxy clusters,
Astronomy & Astrophysics, 621, A40.

Fabian, A. C. 1994, Cooling Flows in Clusters of Galaxies, Annual Review of As-
tronomy and Astrophysics, 32, 277 –318.

http://dx.doi.org/https://doi.org/10.1023/A:1009715923555
http://dx.doi.org/10.1051/0004-6361/201731498
http://dx.doi.org/10.1051/0004-6361/201731498
https://github.com/fchollet/keras
http://dx.doi.org/10.1088/0004-637X/811/1/20
http://dx.doi.org/10.1093/mnras/stu1190
http://dx.doi.org/10.1093/mnras/stz1288
http://dx.doi.org/10.1093/mnras/stz1288
http://dx.doi.org/10.1093/mnras/sts235
http://dx.doi.org/10.1093/mnras/sts235
http://dx.doi.org/10.1017/atsip.2013.9
http://dx.doi.org/10.1093/mnras/sty1666
http://dx.doi.org/10.1093/mnras/sty1666
http://dx.doi.org/10.1086/157753
http://dx.doi.org/10.1051/0004-6361/201833324
http://dx.doi.org/10.1146/annurev.aa.32.090194.001425
http://dx.doi.org/10.1146/annurev.aa.32.090194.001425


BIBLIOGRAPHY 155

Gavazzi R., Marshall P. J., Treu T., Sonnenfeld A., 2014, RINGFINDER: Auto-
mated Detection of Galaxy-scale Gravitational Lenses in Ground-based Multi-filter
Imaging Data, The Astrophysical Journal, 785, 144

Gers A. F., Schraudolph N. N., Schmidhuber J., 2002, Learning precise timing with
lstm recurrent networks, Journal of Machine Learning Research, pp 115–143

Giocoli C., Meneghetti M., Metcalf R. B., Ettori S., Moscardini L., 2014, Mass and
concentration estimates from weak and strong gravitational lensing: a systematic
study, Monthly Notices of the Royal Astronomical Society, 440, 1899–1915

Goodfellow I., Bengio Y., Courville A., 2016, Deep Learning. The MIT Press

Grillo C., 2012, On the Average Density Profile of Dark-matter Halos in the Inner
Regions of Massive Early-type Galaxies, The Astrophysical Journal Letters, 747,
L15

Guo Q., et al., 2011, From dwarf spheroidals to cD galaxies: simulating the galaxy
population in a ΛCDM cosmology, Monthly Notices of the Royal Astronomical
Society, 413, 101 –131

Hanley J. V. & McNeil B., 1982, The meaning and use of the area under a receiver
operating characteristic (ROC) curve, Radiology, 143, 29–36

Hastie T., Tibshirani R., Friedman J., 2009, The Elements of Statistical Learn-
ing: Data Mining, Inference, and Prediction. Springer-Verlag New York,
doi:10.1007/978-0-387-84858-7

He K., Zhang X., Ren S., Sun J., 2016, Deep Residual Learning for Image Recog-
nition, 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp 770–778

Hebb D. O., 1949, The organization of behavior: A neuropsychological theory. Wiley,
doi:10.1016/s0361-9230(99)00182-3

Hinton G., Srivastava N., Swersky K., 2012, Neural networks for machine learning
lecture 6a overview of mini-batch gradient descent., http://www.cs.toronto.
edu/~hinton/coursera/lecture6/lec6.pdf

Hogg, D. W. et al. 2004, The Dependence on Environment of the Color-Magnitude
Relation of Galaxies, The Astrophysical Journal, 601, L29 –L32.

Huerta E. A., et al., 2019, Enabling real-time multi-messenger astrophysics discov-
eries with deep learning, Nature Reviews Physics, 1, 600–608

Ioffe S., Szegedy C., 2015, in Bach F., Blei D., eds, Proceedings of Machine Learning
Research Vol. 37, Proceedings of the 32nd International Conference on Machine
Learning. PMLR, Lille, France, pp 448–456, http://proceedings.mlr.press/
v37/ioffe15.html

http://dx.doi.org/10.1088/0004-637X/785/2/144
http://dx.doi.org/10.1093/mnras/stu303
http://dx.doi.org/10.1088/2041-8205/747/1/L15
http://dx.doi.org/10.1111/j.1365-2966.2010.18114.x
http://dx.doi.org/10.1111/j.1365-2966.2010.18114.x
http://dx.doi.org/doi:10.1148/radiology.143.1.7063747
http://dx.doi.org/10.1007/978-0-387-84858-7
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1016/s0361-9230(99)00182-3
http://www.cs.toronto.edu/~hinton/coursera/lecture6/lec6.pdf
http://www.cs.toronto.edu/~hinton/coursera/lecture6/lec6.pdf
http://dx.doi.org/10.1086/381749
http://dx.doi.org/10.1038/s42254-019-0097-4
http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html


156 Bibliography

Jackson N., 2008, Gravitational lenses and lens candidates identified from the COS-
MOS field, Monthly Notices of the Royal Astronomical Society, 389, 1311–1318

Jacobs C., et al., 2019, Finding high-redshift strong lenses in DES using convolutional
neural networks, Monthly Notices of the Royal Astronomical Society, 484, 5330
–5349

Jaffe, A. H. et al. 2001, Cosmology from MAXIMA-1, BOOMERANG, and COBE
DMR Cosmic Microwave Background Observations, Physical Review Letters, 86,
3475–3479.

Jeans, J. H. 1902, I. The stability of a spherical nebula, Philosophical Transactions
of the Royal Society of London. Series A, Containing Papers of a Mathematical
or Physical Character, 199, 1–53.

Kaiser N., Squires G., Broadhurst T., 1995, A Method for Weak Lensing Observa-
tions, The Astrophysical Journal, 449, 460

Katayama, H. et al. 2003, Properties of the Brightest Cluster Galaxy and Its Host
Cluster, The Astrophysical Journal, 585, 687.

Kingma D. P., Ba J., 2017, Adam: A Method for Stochastic Optimization
(arXiv:1412.6980)

Kodi Ramanah D., Wojtak R., Ansari Z., Gall C., Hjorth J., 2020, Dynamical
mass inference of galaxy clusters with neural flows, Monthly Notices of the Royal
Astronomical Society, 499, 1985–1997

Koopmans L. V. E., Treu T., Fassnacht C. D., Blandford R. D., Surpi G., 2003,
The Hubble Constant from the Gravitational Lens B1608+656, The Astrophysical
Journal, 599, 70–85

LSST Science Collaboration et al., 2009, LSST Science Book, Version 2.0, arXiv
e-prints

Lacey, C. & Cole, S. 1993, Merger rates in hierarchical models of galaxy formation,
Monthly Notices of the Royal Astronomical Society, 262, 627 –649.

Lagattuta D. J., et al., 2019, Probing 3D structure with a large MUSE mosaic:
extending the mass model of Frontier Field Abell 370, Monthly Notices of the
Royal Astronomical Society, 485, 3738–3760

Lanusse F., Ma Q., Li N., Collett T. E., Li C.-L., Ravanbakhsh S., Mandelbaum R.,
Póczos B., 2018, CMU DeepLens: deep learning for automatic image-based galaxy-
galaxy strong lens finding, Monthly Notices of the Royal Astronomical Society,
473, 3895 –3906

LeCun Y., Bengio Y., 1998, Convolutional Networks for Images, Speech, and Time
Series. MIT Press, Cambridge, MA, USA, p. 255–258

http://dx.doi.org/10.1111/j.1365-2966.2008.13629.x
http://dx.doi.org/10.1093/mnras/stz272
http://dx.doi.org/10.1103/PhysRevLett.86.3475
http://dx.doi.org/https://doi.org/10.1098/rsta.1902.0012
http://dx.doi.org/https://doi.org/10.1098/rsta.1902.0012
http://dx.doi.org/https://doi.org/10.1098/rsta.1902.0012
http://dx.doi.org/10.1086/176071
http://dx.doi.org/https://doi.org/10.1086/346126
http://arxiv.org/abs/1412.6980
http://dx.doi.org/10.1093/mnras/staa2886
http://dx.doi.org/10.1093/mnras/staa2886
http://dx.doi.org/10.1086/379226
http://dx.doi.org/10.1086/379226
http://dx.doi.org/10.1093/mnras/262.3.627
http://dx.doi.org/10.1093/mnras/stz620
http://dx.doi.org/10.1093/mnras/stz620
http://dx.doi.org/10.1093/mnras/stx1665


BIBLIOGRAPHY 157

Lecun Y., Bottou L., Bengio Y., Haffner P., 1998, Gradient-based learning applied
to document recognition, Proceedings of the IEEE, 86, 2278 –2324

Lin M., Chen Q., Yan S., 2013, Network In Network, http://arxiv.org/abs/1312.
4400

Longair, S. M. 2011, High Energy Astrophysics. Cambridge University Press.

Lotz J. M., et al., 2017, The Frontier Fields: Survey Design and Initial Results, The
Astrophysical Journal, 837, 97

Meneghetti, M. 2018, Introduction to Gravitational Lensing - Lecture scripts,
https://www.researchgate.net/publication/310620466_Introduction_to_
Gravitational_Lensing_-_Lecture_scripts

Meneghetti M., et al., 2017, The Frontier Fields lens modelling comparison project,
Monthly Notices of the Royal Astronomical Society, 472, 3177–3216

Meneghetti M., et al., 2020, An excess of small-scale gravitational lenses observed
in galaxy clusters, Science, 369, 1347–1351

Merritt, D. 1985, Relaxation and tidal stripping in rich clusters of galaxies. III.
Growth of a massive central galaxy., The Astrophysical Journal, 289, 18 –32.

Merten J., Giocoli C., Baldi M., Meneghetti M., Peel A., Lalande F., Starck J.-
L., Pettorino V., 2019, On the dissection of degenerate cosmologies with machine
learning, Monthly Notices of the Royal Astronomical Society, 487, 104–122

Metcalf R. B., Petkova M., 2014, GLAMER - I. A code for gravitational lensing
simulations with adaptive mesh refinement, Monthly Notices of the Royal Astro-
nomical Society, 445, 1942 –1953

Metcalf R. B., et al., 2019, The strong gravitational lens finding challenge, Astron-
omy & Astrophysics, 625, A119

Navarro, J. F., Frenk, C. S., White S. D. M. 1996, The Structure of Cold Dark
Matter Halos, The Astrophysical Journal, 462, 263 –575.

Newman, A. B. et al. 2011, The Dark Matter Distribution in A383: Evidence for
a Shallow Density Cusp from Improved Lensing, Stellar Kinematic, and X-ray
Data, The Astrophysical Journal Letters, 728, L39.

Newton, I. 1704, Opticks, or, a Treatise of the Reflections, Refractions, Inflections
and Colours of Light. Royal Society

Nielsen M., 2015, Neural Networks and Deep Learning. Determination Press, http:
//neuralnetworksanddeeplearning.com/index.html

Nowlan S. J., Hinton G. E., 1992, Simplifying Neural Networks by Soft Weight-
Sharing, Neural Computation, 4, 473–493

http://dx.doi.org/10.1109/5.726791
http://arxiv.org/abs/1312.4400
http://arxiv.org/abs/1312.4400
http://dx.doi.org/10.3847/1538-4357/837/1/97
http://dx.doi.org/10.3847/1538-4357/837/1/97
https://www.researchgate.net/publication/310620466_Introduction_to_Gravitational_Lensing_-_Lecture_scripts
https://www.researchgate.net/publication/310620466_Introduction_to_Gravitational_Lensing_-_Lecture_scripts
http://dx.doi.org/10.1093/mnras/stx2064
http://dx.doi.org/10.1126/science.aax5164
http://dx.doi.org/10.1086/162860
http://dx.doi.org/10.1093/mnras/stz972
http://dx.doi.org/10.1093/mnras/stu1859
http://dx.doi.org/10.1093/mnras/stu1859
http://dx.doi.org/10.1051/0004-6361/201832797
http://dx.doi.org/10.1051/0004-6361/201832797
http://dx.doi.org/10.1086/177173
http://dx.doi.org/10.1088/2041-8205/728/2/L39
http://neuralnetworksanddeeplearning.com/index.html
http://neuralnetworksanddeeplearning.com/index.html
http://dx.doi.org/10.1162/neco.1992.4.4.473


158 Bibliography

Ntampaka M., Trac H., Sutherland D. J., Battaglia N., Póczos B., Schneider J.,
2015, A Machine Learning Approach for Dynamical Mass Measurements of Galaxy
Clusters, The Astrophysical Journal, 803, 50

Okabe N., Takada M., Umetsu K., Futamase T., Smith G. P., 2010, LoCuSS: Sub-
aru Weak Lensing Study of 30 Galaxy Clusters, Publications of the Astronomical
Society of Japan, 62, 811

Ostriker, J. P. & Hausman, M. A. 1977, Cannibalism among the galaxies: dynam-
ically produced evolution of cluster luminosity functions., Astrophysical Journal,
Part 2 - Letters to the Editor, 217, L125 –L129.

Overzier R., Lemson G., Angulo R. E., Bertin E., Blaizot J., Henriques B. M. B.,
Marleau G. D., White S. D. M., 2013, The Millennium Run Observatory: first
light, Monthly Notices of the Royal Astronomical Society, 428, 778 –803

Padmanabhan, T. 2003, Cosmological Constant - the Weight of the Vacuum, Physics
Reports, 380, 235 –320.

Pawase R. S., Courbin F., Faure C., Kokotanekova R., Meylan G., 2014, A 7 deg2

survey for galaxy-scale gravitational lenses with the HST imaging archive, Monthly
Notices of the Royal Astronomical Society, 439, 3392 –3404

Penzias, A. A. & Wilson, R. W. 1965, A Measurement of Excess Antenna Temper-
ature at 4080 Mc/s., The Astrophysical Journal, 142, 419 –421.

Perlmutter, S. et al. 1999, Measurements of Omega and Lambda from 42 High-
Redshift Supernovae, The Astrophysical Journal, 517, 565–586.

Petkova M., Metcalf R. B., Giocoli C., 2014, GLAMER - II. Multiple-plane grav-
itational lensing, Monthly Notices of the Royal Astronomical Society, 445, 1954
–1966

Petrillo C. E., et al., 2019, Testing convolutional neural networks for finding strong
gravitational lenses in KiDS, Monthly Notices of the Royal Astronomical Society,
482, 807–820

Planck collaboration et al. 2020, Planck 2018 results - VI. Cosmological parameters,
Astronomy & Astrophysics, 641, A6, 67.

Reddi S. J., Kale S., Kumar S., 2019, On the Convergence of Adam and Beyond
(arXiv:1904.09237)

Rephaeli, Y. 1995, Comptonization of the Cosmic Microwave Background: The
Sunyaev-Zeldovich Effect, Annual Review of Astronomy and Astrophysics, 33,
541 –579.

Riess, A. G. et al. 1998, Observational Evidence from Supernovae for an Accelerating
Universe and a Cosmological Constant, The Astronomical Journal, 86, 1009–1038.

http://dx.doi.org/10.1088/0004-637X/803/2/50
http://dx.doi.org/10.1093/pasj/62.3.811
http://dx.doi.org/10.1093/pasj/62.3.811
http://dx.doi.org/10.1086/182554
http://dx.doi.org/10.1086/182554
http://dx.doi.org/10.1093/mnras/sts076
http://dx.doi.org/10.1016/S0370-1573(03)00120-0
http://dx.doi.org/10.1016/S0370-1573(03)00120-0
http://dx.doi.org/10.1093/mnras/stu179
http://dx.doi.org/10.1093/mnras/stu179
http://dx.doi.org/10.1086/148307
http://dx.doi.org/10.1086/307221
http://dx.doi.org/10.1093/mnras/stu1860
http://dx.doi.org/10.1093/mnras/sty2683
http://dx.doi.org/10.1051/0004-6361/201833910
http://arxiv.org/abs/1904.09237
http://dx.doi.org/https://doi.org/10.1146/annurev.aa.33.090195.002545
http://dx.doi.org/10.1086/300499


BIBLIOGRAPHY 159

Rojas R., 2009, Neural Networks. A systematic Introduction. Springer-Verlag Berlin
Heidelberg, doi:10.1007/978-3-642-61068-4

Rosati, P. et al. 2002, The Evolution of X-ray Clusters of Galaxies, Annual Review
of Astronomy and Astrophysics, 40, 539 –577.

Sadeh I., Abdalla F. B., Lahav O., 2016, ANNz2: Photometric Redshift and Proba-
bility Distribution Function Estimation using Machine Learning, Publications of
the Astronomical Society of the Pacific, 128, 104502

Sanders, J. S. et al. 2020, Measuring bulk flows of the intracluster medium in the
Perseus and Coma galaxy clusters using XMM-Newton, Astronomy & Astro-
physics, 633, A42.

Schaefer C., Geiger M., Kuntzer T., Kneib J. P., 2018, Deep convolutional neural
networks as strong gravitational lens detectors, Astronomy & Astrophysics, 611,
A2

Schneider, P., Ehlers, J., Falco, E. E. 1992, Gravitational Lenses. Springer Verlag,
doi:10.1007/978-3-662-03758-4

Schutz B., 2009, A first course in general relativity. Cambridge University Press.

Seidel G., Bartelmann M., 2007, Arcfinder: an algorithm for the automatic detection
of gravitational arcs, Astronomy and Astrophysics, 472, 341 –352

Sérsic J. L., 1963, Influence of the atmospheric and instrumental dispersion on the
brightness distribution in a galaxy, Boletin de la Asociacion Argentina de Astrono-
mia La Plata Argentina, 6, 41–43

Simonyan K., Zisserman A., 2015, Very Deep Convolutional Networks for Large-
Scale Image Recognition, 3rd International Conference on Learning Representa-
tions, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Pro-
ceedings

Springel, V. et al. 2005, Simulating the joint evolution of quasars, galaxies and their
large-scale distribution, Nature, 435, 620 –636.

Srivastava N., Hinton G., Krizhevsky A., Sutskever I., Salakhutdinov R., 2014,
Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Journal
of Machine Learning Research, 15, 1929–1958

Stark D. P., Ellis R. S., Richard J., Kneib J.-P., Smith G. P., Santos M. R., 2007,
A Keck Survey for Gravitationally Lensed Lyα Emitters in the Redshift Range
8.5<z<10.4: New Constraints on the Contribution of Low-Luminosity Sources to
Cosmic Reionization, The Astrophysical Journal, 663, 10–28

Stehman S. V., 1997, Selecting and interpreting measures of thematic classification
accuracy, Remote Sensing of Environment, 62, 77–89

http://dx.doi.org/10.1007/978-3-642-61068-4
http://dx.doi.org/10.1146/annurev.astro.40.120401.150547
http://dx.doi.org/10.1146/annurev.astro.40.120401.150547
http://dx.doi.org/10.1088/1538-3873/128/968/104502
http://dx.doi.org/10.1088/1538-3873/128/968/104502
http://dx.doi.org/https://doi.org/10.1051/0004-6361/201936468
http://dx.doi.org/https://doi.org/10.1051/0004-6361/201936468
http://dx.doi.org/10.1051/0004-6361/201731201
http://dx.doi.org/10.1007/978-3-662-03758-4
http://dx.doi.org/10.1051/0004-6361:20066097
https://ui.adsabs.harvard.edu/abs/1963BAAA....6...41S
http://dx.doi.org/10.1038/nature03597
http://dx.doi.org/10.1086/518098
http://dx.doi.org/10.1016/S0034-4257(97)00083-7


160 Bibliography

Szandała T., 2021, Review and Comparison of Commonly Used Activation Func-
tions for Deep Neural Networks, Bio-inspired Neurocomputing. Studies in Com-
putational Intelligence, 903

Szegedy C., et al., 2015, Going deeper with convolutions, 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), p. 1–9

Szegedy C., Vanhoucke V., Ioffe S., Shlens J., Wojna Z., 2016, Rethinking the In-
ception Architecture for Computer Vision, 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), p. 2818–2826

The Dark Energy Survey Collaboration 2005, The Dark Energy Survey, arXiv e-
prints, pp astro–ph/0510346

Umetsu, K. 2010, Cluster Weak Gravitational Lensing, doi:10.3254/978-1-60750-819-
9-269

Vanzella E., et al., 2020a, Ionizing the intergalactic medium by star clusters: the
first empirical evidence, Monthly Notices of the Royal Astronomical Society, 491,
1093–1103

Vanzella E., et al., 2020b, Candidate Population III stellar complex at z = 6.629 in
the MUSE Deep Lensed Field, Monthly Notices of the Royal Astronomical Society,
494, L81–L85

Wong K. C., et al., 2020, H0LiCOW - XIII. A 2.4 per cent measurement of H0 from
lensed quasars: 5.3σ tension between early- and late-Universe p, Monthly Notices
of the Royal Astronomical Society, 498, 1420–1439

Xie S., Girshick R., Dollár P., Tu Z., He K., 2017, Aggregated Residual Transforma-
tions for Deep Neural Networks, 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), p. 5987–5995

Zeiler M. D., 2012, ADADELTA: An Adaptive Learning Rate Method
(arXiv:1212.5701)

Zheng, Z. et al. 2005, Theoretical Models of the Halo Occupation Distribution: Sep-
arating Central and Satellite Galaxies, The Astrophysical Journal, 633, 791 –809.

Zhou Y., Chellappa R., 1988, Computation of optical flow using a neural network,
IEEE 1988 International Conference on Neural Networks, p. 71–78

de Jong J. T. A., et al., 2015, The first and second data releases of the Kilo-Degree
Survey, Astronomy & Astrophysics, 582, A62

http://dx.doi.org/10.1007/978-981-15-5495-7
http://dx.doi.org/10.1007/978-981-15-5495-7
http://dx.doi.org/10.1109/CVPR.2015.7298594
http://dx.doi.org/10.1109/CVPR.2015.7298594
http://dx.doi.org/10.1109/CVPR.2016.308
http://dx.doi.org/10.1109/CVPR.2016.308
https://ui.adsabs.harvard.edu/abs/2005astro.ph.10346T
http://dx.doi.org/10.3254/978-1-60750-819-9-269
http://dx.doi.org/10.3254/978-1-60750-819-9-269
http://dx.doi.org/10.1093/mnras/stz2286
http://dx.doi.org/10.1093/mnrasl/slaa041
http://dx.doi.org/10.1093/mnras/stz3094
http://dx.doi.org/10.1093/mnras/stz3094
http://dx.doi.org/10.1109/CVPR.2017.634
http://dx.doi.org/10.1109/CVPR.2017.634
http://arxiv.org/abs/1212.5701
http://dx.doi.org/10.1086/466510
http://dx.doi.org/10.1109/ICNN.1988.23914
http://dx.doi.org/10.1051/0004-6361/201526601

	List of Figures
	List of Tables
	Introduction
	Fundamentals of Cosmology
	Cosmological background
	The expansion of the Universe
	Cosmological distances
	Friedmann equations
	Evolution of densities with cosmic time
	Friedmann model for a flat Universe
	Measurements of the cosmological parameters

	Theory of cosmological perturbations
	Jeans theory
	Non-linear theory

	Galaxy clusters
	Dark Matter
	Galaxies
	Intracluster medium


	Gravitational Lensing Theory
	An Introduction to Gravitational Lensing 
	Deflection angle
	Lens equation
	Lensing potential
	Magnification and distortion
	Time delay surface

	Lens Models
	Axially symmetric models
	Elliptical models
	External perturbations

	Lensing by galaxies and galaxy clusters
	Strong Lensing
	Weak Lensing


	Machine Learning
	Supervised Machine Learning
	Deep Learning

	Neural Networks
	Training process
	Optimization
	Validation and Regularization

	Convolutional Neural Networks
	Visual Geometry Group Network
	Inception Networks
	Residual Networks


	The Datasets
	Lens Finding Challenge Dataset
	The Euclid VIS dataset
	Differences between the datasets

	Experiments and Results
	Data Preprocessing
	Performance evaluation
	Training on the Lens Finding Challenge Dataset dataset
	Data Selection
	Results

	Additional tests
	Trend of the classification with physical properties of lenses and sources
	Identification of borderline objects with the models trained on the selection S3

	Training on the Euclid VIS Dataset

	Conclusions
	Future perspectives

	Implementation of the models
	Architectures
	VGG-like Network
	Inception Network
	Residual Network

	Training

	Simulation of GGSL events in galaxy clusters
	The Frontier Fields clusters
	Simulation procedure

	Bibliography

