Solini, Arianna
 
(2021)
Applicazione di Deep Learning e Computer Vision ad un Caso d'uso aziendale: Progettazione, Risoluzione ed Analisi.
[Laurea magistrale], Università di Bologna, Corso di Studio in 
Ingegneria informatica [LM-DM270], Documento full-text non disponibile
  
 
  
  
        
        
	
  
  
  
  
  
  
  
    
      Il full-text non è disponibile per scelta dell'autore.
      
        (
Contatta l'autore)
      
    
  
    
  
  
    
      Abstract
      Nella computer vision, sono oramai più di dieci anni che si parla di Machine Learning (ML), con l'obiettivo di creare sistemi autonomi che siano in grado di realizzare modelli approssimati della realtà tridimensionale partendo da immagini bidimensionali. Grazie a questa capacità si possono interpretare e comprendere le immagini, emulando la vista umana. Molti ricercatori hanno creato reti neurali in grado di sfidarsi su grandi dataset di milioni di immagini e, come conseguenza, si è ottenuto il continuo miglioramento delle performance di classificazione di immagini da parte delle reti e la capacità di individuare il framework più adatto per ogni situazione, ottenendo risultati il più possibile performanti, veloci e accurati. Numerose aziende in tutto il mondo fanno uso di Machine Learning e computer vision, spaziando dal controllo qualità, all'assistenza diretta a persone che lavorano su attività ripetitive e spesso stancanti. Il lavoro di tesi è stato realizzato nel corso di un tirocinio presso Injenia (azienda informatica italiana partner Google) ed è stato svolto nell'ambito di un progetto industriale commissionato ad Injenia da parte di una multi-utility italiana. Il progetto prevedeva l'utilizzo di uno o più modelli di ML in ambito computer vision e, a tal fine, è stata portata avanti un'indagine su più fronti per indirizzare le scelte durante il processo di sviluppo. Una parte dei risultati dell'indagine ha fornito informazioni utili all'ottimizzazione del modello di ML utilizzato. Un'altra parte è stata utilizzata per il fine-tuning di un modello di ML (già pre-allenato), applicando quindi il principio di transfer learning al dataset di immagini fornite dalla multi-utility. Lo scopo della tesi è, quindi, quello di presentare lo sviluppo e l'applicazione di tecniche di Machine Learning, Deep Learning e computer vision ad un caso d'uso aziendale concreto.
     
    
      Abstract
      Nella computer vision, sono oramai più di dieci anni che si parla di Machine Learning (ML), con l'obiettivo di creare sistemi autonomi che siano in grado di realizzare modelli approssimati della realtà tridimensionale partendo da immagini bidimensionali. Grazie a questa capacità si possono interpretare e comprendere le immagini, emulando la vista umana. Molti ricercatori hanno creato reti neurali in grado di sfidarsi su grandi dataset di milioni di immagini e, come conseguenza, si è ottenuto il continuo miglioramento delle performance di classificazione di immagini da parte delle reti e la capacità di individuare il framework più adatto per ogni situazione, ottenendo risultati il più possibile performanti, veloci e accurati. Numerose aziende in tutto il mondo fanno uso di Machine Learning e computer vision, spaziando dal controllo qualità, all'assistenza diretta a persone che lavorano su attività ripetitive e spesso stancanti. Il lavoro di tesi è stato realizzato nel corso di un tirocinio presso Injenia (azienda informatica italiana partner Google) ed è stato svolto nell'ambito di un progetto industriale commissionato ad Injenia da parte di una multi-utility italiana. Il progetto prevedeva l'utilizzo di uno o più modelli di ML in ambito computer vision e, a tal fine, è stata portata avanti un'indagine su più fronti per indirizzare le scelte durante il processo di sviluppo. Una parte dei risultati dell'indagine ha fornito informazioni utili all'ottimizzazione del modello di ML utilizzato. Un'altra parte è stata utilizzata per il fine-tuning di un modello di ML (già pre-allenato), applicando quindi il principio di transfer learning al dataset di immagini fornite dalla multi-utility. Lo scopo della tesi è, quindi, quello di presentare lo sviluppo e l'applicazione di tecniche di Machine Learning, Deep Learning e computer vision ad un caso d'uso aziendale concreto.
     
  
  
    
    
      Tipologia del documento
      Tesi di laurea
(Laurea magistrale)
      
      
      
      
        
      
        
          Autore della tesi
          Solini, Arianna
          
        
      
        
          Relatore della tesi
          
          
        
      
        
          Correlatore della tesi
          
          
        
      
        
          Scuola
          
          
        
      
        
          Corso di studio
          
          
        
      
        
      
        
      
        
          Ordinamento Cds
          DM270
          
        
      
        
          Parole chiave
          Computer Vision,Deep Learning,Image recognition,Object detection,Occlusion method
          
        
      
        
          Data di discussione della Tesi
          4 Febbraio 2021
          
        
      
      URI
      
      
     
   
  
    Altri metadati
    
      Tipologia del documento
      Tesi di laurea
(NON SPECIFICATO)
      
      
      
      
        
      
        
          Autore della tesi
          Solini, Arianna
          
        
      
        
          Relatore della tesi
          
          
        
      
        
          Correlatore della tesi
          
          
        
      
        
          Scuola
          
          
        
      
        
          Corso di studio
          
          
        
      
        
      
        
      
        
          Ordinamento Cds
          DM270
          
        
      
        
          Parole chiave
          Computer Vision,Deep Learning,Image recognition,Object detection,Occlusion method
          
        
      
        
          Data di discussione della Tesi
          4 Febbraio 2021
          
        
      
      URI
      
      
     
   
  
  
  
  
  
  
    
      Gestione del documento: 
      
        