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Abstract 

One of the research areas of artificial intelligence (AI) which is particularly active lately concerns the 

study of autonomous agents, which are pervasive even in daily life. The main goal is developing 

agents which interact efficiently with other agents or humans. Consequently, these relations would 

be greatly simplified by the ability of autonomously inferring the preferences of other entities and 

adapting the agent’s strategy accordingly. Therefore, the aim of this work is implementing a learning 

agent which interacts with another entity in the same environment and uses this experience to 

extrapolate the opponent’s values. This information can be applied to cooperate or exploit the 

adversary, depending on the agent’s objective. Thus, central themes are Reinforcement Learning, 

Multiagent environments and Value Alignment. The agent presented applies Deep Q-Learning and 

receives a reward which is computed blending the environment feedbacks and the opponent’s 

rewards. These values are obtained executing the Maximum Entropy Inverse Reinforcement Learning 

algorithm on the previous interactions. The behaviour of the proposed entity is tested on two different 

environments: the Centipede game and the Apple Picking game. The outcomes obtained are 

promising since they demonstrate that the agent can properly infer the opponent’s preferences and 

use this knowledge to adapt its strategy. However, the final behaviour does not always satisfy the 

expectations; thus, limitations of the current approach and future works to improve the agent are 

analysed.  
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Abstract 

Un’area di ricerca particolarmente attiva ultimamente nel campo dell'intelligenza artificiale (IA) 

riguarda lo studio di agenti autonomi, notevolmente diffusi anche nella vita quotidiana. L'obiettivo 

principale è sviluppare agenti che interagiscano in modo efficiente con altri agenti o esseri umani. Di 

conseguenza, queste relazioni potrebbero essere notevolmente semplificate grazie alla capacità di 

dedurre autonomamente le preferenze di altre entità e di adattare di conseguenza la strategia 

dell'agente. Pertanto, lo scopo di questa tesi è implementare un agente, in grado di apprendere, che 

interagisce con un'altra entità nello stesso ambiente e utilizza questa esperienza per estrapolare le 

preferenze dell'avversario. Queste informazioni possono essere impiegate per cooperare o sfruttare 

l'interlocutore, a seconda dell'obiettivo dell'agente. Pertanto, i temi centrali sono il Reinforcement 

Learning, gli ambienti multi-agente e il Value alignment. L'agente presentato apprende tramite Deep 

Q-Learning e riceve una ricompensa che viene calcolata combinando i feedback dell’ambiente e il 

reward dell'avversario. Questi valori sono ottenuti eseguendo l'algoritmo Maximum Entropy Inverse 

Reinforcement Learning sulle interazioni precedenti. Il comportamento dell’agente proposto viene 

testato in due diversi ambienti: il gioco Centipede e il gioco Apple Picking. I risultati ottenuti sono 

promettenti poiché dimostrano che l'agente può dedurre correttamente le preferenze dell'avversario e 

utilizzare questa conoscenza per adattare la sua strategia. Tuttavia, il comportamento finale non 

sempre corrisponde alle aspettative; sono quindi analizzati i limiti dell'approccio attuale e i gli 

sviluppi futuri per migliorare l'agente. 
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1 Introduction 

Autonomous agents are increasingly widespread and integrated into everyday life; indeed, an 

important research area in modern artificial intelligence (AI) focuses on these entities. Teaching AI 

systems to behave consistently with human intentions and desires is challenging. There are many 

different possibilities to solve this problem such as collecting and tagging all the required examples; 

nevertheless, this method, named Supervised Learning, is often infeasible for autonomous agents. 

Therefore, the Reinforcement Learning (RL) paradigm, based on trial and error, might be preferred. 

However, RL algorithms require a reward function to determine the feedback for each action; 

correctly defining this function results difficult as well. As a matter of fact, the risk is not only 

obtaining an agent which does not learn the wanted behaviour, but also an entity which might be 

harmful.  

The problem of AI safety is thoroughly discussed in multiple studies, given the high number of 

accidents that could or have occurred (Amodei et al., 2016). Therefore, a possible approach to avoid 

the misspecification of the reward function consists in allowing the intelligent agent to autonomously 

extract this information from a series of demonstrations. This method is also similar to the human 

way of learning some practical tasks such as driving. Furthermore, it also favours the learning of more 

abstract concepts like moral values, this results particularly interesting for the field of Machine Ethics.  

Overall, being able to obtain an agent which successfully interacts with other agents or humans is 

particularly important. Specifically, this interaction could be more proficient if the agent is able to 

infer the preferences of its adversary from previous experiences. In this way, the autonomous agent 

could align with these values or use this information to exploit its opponent, depending on its goal. 

Therefore, cooperation or exploitation would be encouraged changing some parameters in the agent 

initialization. The resulting entity would be independent and very flexible since it adapts its behaviour 

on the opponent’s values, depending on the initial settings.  

Consequently, the goal of this work is studying how to develop the described agent, focusing on every 

complex aspect that characterizes it. More specifically, the main objective is implementing a learning 

agent which infers the opponent’s rewards and use this information to find the strategy that best 

satisfies its goal. Several approaches, discussed in the literature, are thoroughly analysed and central 

topics are Reinforcement Learning, Multiagent environments and Value Alignment. The presented 

agent is trained using the Deep Q-Learning algorithm and it receives a reward which is obtained 

combining the environment feedbacks and the opponent’s preferences. These last values are 

computed applying the Maximum Entropy Inverse Reinforcement Learning procedure to a set of 
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demonstrations, collected during previous interactions. We conduct testing in two different 

environments, the Centipede game and the Apple Picking game. In particular, these settings are 

chosen among Social Dilemmas, since they exemplify concrete problems which result very common 

in real interactions. 

Considering the outcomes of the simulations that have been carried out, it results clear that the agent 

is able to infer the opponent’s rewards; moreover, this information can be properly used to modify 

the learning process. Cooperative and exploiting behaviours are observed, depending on the 

parameters value; however, it is worth noting that encouraging cooperation appears easier than 

favouring exploitation. Furthermore, learning in the Apple Picking environment is significantly more 

challenging, compared to the Centipede game; thus, the agent’s performance is worse in this case. 

These observations open some considerations on limitations of the proposed agent and future work 

to improve and extend its behaviour. 

This dissertation is organised as follows. In Section 2 we discuss related work and the state of art in 

relevant areas. Chapter 3 describes the approach followed to design the agent with intrinsic reward, 

while the experimental settings and results are presented in Chapter 4. Finally, Chapter 5 concludes 

the dissertation, highlighting limitations and future work.  
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2 Related work 

The central objective of this work is implementing an agent that is able to learn in a multiagent 

environment using data on the opponent’s strategy which are autonomously inferred from previous 

interactions. Social dilemmas are considered as an interesting setting for the agents’ execution. 

Therefore, the key relevant areas of this project are: Reinforcement Learning, Multiagent Learning, 

techniques to discover di opponent’s strategy, the Value Alignment problem, and Social Dilemmas. 

These topics are illustrated and analysed in the following sections.  

 

2.1 Reinforcement Learning  

Reinforcement Learning is a machine learning paradigm that is inspired by the instinctive way of 

learning of all living beings. More specifically, the learning agent interacts with the surrounding 

environment and receives a reward signal from it, as a consequence of the agent’s actions. These 

mechanism of trial-and-error and reward signals are the learning basis of a Reinforcement Learning 

agent (Kaelbling et al., 1996; Sutton & Barto, 2018).  

Reinforcement Learning (RL) differs from the other two main Machine Learning paradigms, namely 

Supervised Learning and Unsupervised Learning. The former consists in learning through a training 

set of examples that are previously labelled by an expert; the goal of the agent is to generalize from 

these samples and choose the correct response in situations not included in the training data. In RL, 

agents do not have any direct information on how to solve a specific task, they can only try different 

actions and learn from the effects that these actions have on the environment. On the other hand, 

Unsupervised Learning is mainly focused on finding how unlabelled data are organized and correctly 

classify new examples (Sutton & Barto, 2018).  

A peculiar challenge that distinguishes RL from other learning methods is the fundamental trade-off 

between exploration and exploitation. In particular, the agent collects information on the environment 

through experience and selects the actions that entail the highest reward. This means choosing actions 

already experienced in past interactions; however, the agent must explore the environment to find the 

optimal strategy. Hence, the dilemma is whether exploiting known high-reward actions, which could 

be a sub-optimal strategy, or exploring the remaining possibilities, with higher risk of failure. Indeed, 

in both situations the agent will probably fail the task before finding the optimal policy. 

In a Reinforcement Learning system, the main components are a policy, a reward function, a value 

function and a model; however, the latter is not necessary (Sutton & Barto, 2018). The policy (denoted 
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by π) describes the agent’s behaviour and consists in a mapping between states and actions, 𝜋: 𝑆 →

𝐴; more specifically, it expresses the probability of selecting each possible action given a certain 

state. The optimal policy associates each state to the action that produces the greatest long term reward 

(Kaelbling et al., 1996). The policy could be represented by a look up table or through a function of 

different complexity. The reward function, given the agent's current state and action, determines how 

good or bad the agent's new state is, as a consequence of its action. More specifically, the reward 

function returns a numerical value and the agent's sole purpose is to maximize the total reward on the 

long run, which might not correspond to increasing the immediate reward. Defining a proper reward 

function is not a trivial problem; if it is badly specified, the agent will not learn the expected 

behaviour. The value function expresses the total reward that an agent can obtain starting from a 

certain state (or a state-action pair); therefore, this function considers the long-term reward, while the 

reward function gives only the immediate reward associated to each state. The value function is 

updated during training, considering the frequency with which some states follow the current one and 

their immediate reward. Since the sequence of states that follows the current one depends on the 

agent’s behaviour, the value function is defined with respect to a particular policy. Finally, the model 

describes the environment providing the probabilities of moving from one state to another if a certain 

action is chosen. Not all Reinforcement Learning algorithms require it, but only those defined as 

model-based. 

A Reinforcement Learning problem can be formalized as a Markov Decision Process (MDP). A MDP 

is defined as a tuple of four elements {S, A, R,  T}; S is the set of states, A is the collection of possible 

actions,  R: S × 𝐴 → ℛ ⊂  R is the reward function and T: S × 𝐴 → 𝑃(𝑠′|𝑠, 𝑎) is the transition 

probability function, which is a probability distribution over S and determines the system’s dynamics. 

In particular, this transition probability function defines the probability of experiencing the future 

state 𝑠′ starting from state s and choosing action a (Kaelbling et al., 1996; Littman, 1994). The two 

main entities are the agent and the environment, which interacts at discrete time steps t  =

 0,  1,   … ,  T. 
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Figure 1 - Interaction between agent and environment in a MDP (Sutton & Barto, 2018). 

At each time step t, the agent obtains, from the environment, the current state 𝑆𝑡 and selects the action 

𝐴𝑡. The following step, the agent receives a reward 𝑅𝑡+1 and the updated state 𝑆𝑡+1. This sequence 

of states, actions and rewards produces a trajectory. If the MDP has finite state, action, and reward 

sets, then it is defined a finite MDP. The state is said to have the so called Markov Property if it 

contains all the information that influences the choice of the next action (Sutton & Barto, 2018). 

The goal of the agent is maximizing the accumulated reward, which means maximizing the expected 

return from a certain state. This expected return can be formally expressed as 

𝐺𝑡 ≐ 𝑅𝑡+1 + 𝑅𝑡+2 + ⋯ + 𝑅𝑇 

where 𝑅𝑇 is the reward of the last step. This definition is meaningful when the considered problem 

has a final step, and the entire sequence of agent’s interactions can be subdivided in series each ending 

with a final state; these series are defined episodes and these problems are called episodic tasks. On 

the other hand, in case of continuing tasks, there is not a clear definition of final state and the agent 

keep interacting with the environment infinitely (T =  ∞). Hence, a more general definition of 

expected return is 

𝐺𝑡 ≐ 𝑅𝑡+1 + γ𝑅𝑡+2 + γ2𝑅𝑡+3 + ⋯ = ∑ γ𝑘

∞

𝑘=0

𝑅𝑡+𝑘+1 

where γ is a discount factor with values in [0,1]. The discount factor expresses the present value of 

future rewards and it is fundamental in case of continuing tasks to obtain a sum that converges to a 

finite value (γ < 1)(Sutton & Barto, 2018).  
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A Reinforcement Learning agent learns to succeed in his task by better estimating the value function. 

As already mentioned, the value function approximates the expected return from a given state 

following a chosen policy. The value function 𝑣π(𝑠), which is more specifically called state-value 

function for policy 𝜋, can be formally defined as 

𝑣π(𝑠) ≐ 𝔼π[𝐺𝑡|𝑆𝑡 = 𝑠] = 𝔼𝜋 [∑ 𝛾𝑘

∞

𝑘=0

𝑅𝑡+𝑘+1|𝑆𝑡 = 𝑠] 

It is worth noting that the value function is recursive; the relation between the value of the current 

state 𝑣π(𝑠) and the value associated to the possible following states 𝑣π(𝑠′) is expressed by the 

Bellman equation. 

𝑣π(𝑠) ≐ 𝔼π[𝐺𝑡|𝑆𝑡 = 𝑠] 

            = 𝔼π[𝑅𝑡+1 + γ𝐺𝑡+1|𝑆𝑡 = 𝑠] 

            = ∑ π(𝑎|𝑠) ∑ ∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎)[𝑟 + γ𝔼𝜋[𝐺𝑡+1|𝑆𝑡+1 = 𝑠′]]

𝑟𝑠′𝑎

 

            = ∑ π(𝑎|𝑠) ∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎)[𝑟 + γ𝑣π(𝑠′)]

𝑠′,𝑟𝑎

 

The policy that entails the highest cumulated reward, compared to all the possible policies, is called 

optimal policy, π∗. It always exists at least one optimal policy such that 𝑣π∗
(𝑠) ≥ 𝑣π(𝑠), ∀𝑠 ∈ 𝑆. The 

formal definition of the optimal state-value function is 

𝑣∗(𝑠) ≐ 𝑚𝑎𝑥
π

𝑣π (𝑠) 

It is possible to re-write the Bellman equation for the optimal value function, defined Bellman 

optimality equation.  

Moreover, it is possible to define an action-value function for policy 𝜋, 𝑞π(𝑠, 𝑎), which expresses the 

expected return of choosing action 𝑎 in state 𝑠 and then following policy 𝜋. 

𝑞π(𝑠, 𝑎) ≐ 𝔼π[𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] = 𝔼𝜋  [∑ 𝛾𝑘

∞

𝑘=0

𝑅𝑡+𝑘+1|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] 

The Bellman equation, the optimal action-value function and the Bellman optimality equation can be 

equivalently expressed considering 𝑞π(𝑠, 𝑎) (Sutton & Barto, 2018). 
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2.1.1 Q-Learning 

Solving a Reinforcement Learning problem means tackling the prediction problem and the control 

problem. In particular, the first corresponds to computing the value function of a given policy, while 

the second is finding the optimal policy. A class of methods suitable for these goals is represented by 

Temporal Difference Learning (TD Learning). 

Temporal Difference methods use experience to compute the value function of a given policy, 

progressively updating estimated values using previous guesses. Indeed, the state value 𝑉(𝑆𝑡) is 

corrected after each time step; the update rule is: 

𝑉(𝑆𝑡) ← 𝑉(𝑆𝑡) + α[𝑅𝑡+1 + γ𝑉(𝑆𝑡+1) − 𝑉(𝑆𝑡)] 

The quantity between the square brackets 𝑅𝑡+1 + γ𝑉(𝑆𝑡+1) − 𝑉(𝑆𝑡) is called TD error (δ𝑡) since it 

can be interpreted as an error between the current estimate of the value function, 𝑉(𝑆𝑡), and a better 

evaluation of it 𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1) (Sutton & Barto, 2018). 

The update rule expressed above is the core of the Temporal Difference algorithm defined TD(0); 

this method is also called one-step TD, because it improves the state value estimates by looking ahead 

one step. Because of this behaviour, in which the algorithm updates a guess with a guess, TD learning 

is said to bootstrap. The complete TD(0) algorithm is described below. 

Algorithm 1: TD(0) algorithm (Sutton & Barto, 2018) 

𝐺𝑖𝑣𝑒𝑛 𝑡ℎ𝑒 𝑝𝑜𝑙𝑖𝑐𝑦 𝜋, 𝑡ℎ𝑒 𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒 𝛼 ∈]0,1]: 

  

𝐴𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑖𝑙𝑦 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑉(𝑠) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠𝑡𝑎𝑡𝑒𝑠, 𝑒𝑥𝑐𝑒𝑝𝑡 𝑉(𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙) = 0 

𝐿𝑜𝑜𝑝 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑒𝑝𝑖𝑠𝑜𝑑𝑒: 

        𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑆 

        𝐿𝑜𝑜𝑝 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠𝑡𝑒𝑝 𝑜𝑓 𝑒𝑝𝑖𝑠𝑜𝑑𝑒: 

                𝐴 ← 𝑎𝑐𝑡𝑖𝑜𝑛 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑏𝑦 𝜋 𝑖𝑛 𝑆 

                𝑇𝑎𝑘𝑒 𝑎𝑐𝑡𝑖𝑜𝑛 𝐴, 𝑜𝑏𝑠𝑒𝑟𝑣𝑒 𝑅 𝑎𝑛𝑑 𝑆′ 

                𝑉(𝑆) ← 𝑉(𝑆) + 𝛼[𝑅 + 𝛾𝑉(𝑆′) − 𝑉(𝑆)] 

                𝑆 ← 𝑆′ 

        𝑢𝑛𝑡𝑖𝑙 𝑆 𝑖𝑠 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 

The main advantages of TD methods, compared to other algorithms such as Dynamic Programming 

and Monte Carlo methods, are the use of experience only, instead of requiring a model of the 
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environment dynamics, and the possibility of immediately update the value function, instead of 

waiting until the end of the episode.  

Regarding the control problem, a possible approach is the off-policy Temporal Difference control 

algorithm called Q-learning, which was firstly proposed by Watkins. In this case, the action-value 

function is computed and the Q-values are adjusted with the following rule (Watkins, 1989). 

𝑄(𝑆𝑡, 𝐴𝑡) ← 𝑄(𝑆𝑡, 𝐴𝑡) + α [𝑅𝑡+1 + γ 𝑚𝑎𝑥
𝑎

𝑄 (𝑆𝑡+1, 𝑎) − 𝑄(𝑆𝑡, 𝐴𝑡)] 

In particular, this mechanism directly computes the optimal value 𝑞∗. Indeed, Q-learning is also 

defined off-policy TD control since it improves a policy which is not the one used to select actions. 

The complete algorithm is illustrated below.  

Algorithm 2: Q-learning algorithm (Sutton & Barto, 2018) 

𝐺𝑖𝑣𝑒𝑛 𝑡ℎ𝑒 𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒 𝛼 ∈]0,1] 𝑎𝑛𝑑 𝑠𝑚𝑎𝑙𝑙 𝜀 > 0: 

  

𝐴𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑖𝑙𝑦 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑄(𝑠, 𝑎) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠𝑡𝑎𝑡𝑒𝑠 𝑎𝑛𝑑 𝑎𝑐𝑡𝑖𝑜𝑛𝑠, 𝑒𝑥𝑐𝑒𝑝𝑡 𝑄(𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙,∙) = 0 

𝐿𝑜𝑜𝑝 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑒𝑝𝑖𝑠𝑜𝑑𝑒: 

        𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑆 

        𝐿𝑜𝑜𝑝 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠𝑡𝑒𝑝 𝑜𝑓 𝑒𝑝𝑖𝑠𝑜𝑑𝑒: 

                𝐶ℎ𝑜𝑜𝑠𝑒 𝐴 𝑓𝑟𝑜𝑚 𝑆 𝑢𝑠𝑖𝑛𝑔 𝑝𝑜𝑙𝑖𝑐𝑦 𝑑𝑒𝑟𝑖𝑣𝑒𝑑 𝑓𝑟𝑜𝑚 𝑄 (𝑓𝑜𝑟 𝑒𝑥𝑎𝑚𝑝𝑙𝑒 𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦) 

                𝑇𝑎𝑘𝑒 𝑎𝑐𝑡𝑖𝑜𝑛 𝐴, 𝑜𝑏𝑠𝑒𝑟𝑣𝑒 𝑅 𝑎𝑛𝑑 𝑆′ 

                𝑄(𝑆, 𝐴) ← 𝑄(𝑆, 𝐴) + 𝛼 [𝑅 + 𝛾 max
𝑎

𝑄(𝑆′, 𝑎) − 𝑄(𝑆, 𝐴)] 

                𝑆 ← 𝑆′ 

        𝑢𝑛𝑡𝑖𝑙 𝑆 𝑖𝑠 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 

The Q-learning algorithm has been proven to converge if the state-action pairs are continually 

updated; moreover, the convergence is not affected by the degree of exploration. However, the time 

required to reach the optimal policy might be very high (Kaelbling et al., 1996).  

The easiest approach for representing the state-value function (or the action-value function) is using 

tabular methods, which means storing in memory a table with an entry for any possible state (or state-

action pair) and use this space to save and update the values. The Q-learning algorithm can be 

implemented using this technique in case of tasks with small state spaces.  

However, tabular methods are not suitable for complicated problems both for the size of the state 

space and for the time required to compute the best policy; therefore, the value function must be 
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approximated. Indeed, in many situations, each state is visited only once or few times; hence, some 

generalization is required. This can be obtained through function approximation, which is a form of 

supervised learning. A possible implementation involves a Neural Network with its weight vector w 

that can be updated to improve the value prediction.  

Nevertheless, function approximation introduces issues that were not present in tabular methods. In 

particular, there are three elements, identified as “the deadly triad” (Sutton & Barto, 2018), that might 

produce instability and divergence: function approximation, bootstrapping and off-policy learning.  

Despite the problems stated before, function approximation is often required and applied to Q-

learning. In this case, the weights of the neural network can be updated using Stochastic Gradient-

Descent (SGD), which modifies the weight vector by a small constant in the opposite direction of the 

gradient of the error: 

𝐰𝑡+1 ≐ 𝐰𝑡 +  α[𝑣π(𝑆𝑡) − 𝑣(𝑆𝑡, 𝐰𝑡)]∇𝑣(𝑆𝑡, 𝐰𝑡) 

Where 𝛼 is the step size (𝛼 > 0), 𝑣𝜋(𝑆𝑡) − 𝑣(𝑆𝑡, 𝐰𝑡) is the difference between the expected and 

predicted state value and ∇𝑣(𝑆𝑡, 𝐰𝑡) is the gradient of the function with respect to the weights (Sutton 

& Barto, 2018).  

This weight update can be similarly applied to semi-gradient Q-learning, obtaining the following 

expression. 

𝐰𝑡+1 ≐ 𝐰𝑡 + α [𝑅𝑡+1 + γ 𝑚𝑎𝑥
𝑎

𝑞̂ (𝑆𝑡+1, 𝑎, 𝐰𝑡) − 𝑞̂(𝑆𝑡, 𝐴𝑡 , 𝐰𝑡)] ∇𝑞̂(𝑆𝑡, 𝐴𝑡 , 𝐰𝑡)1 

 

An additional technique that can be integrated in semi-gradient Q-learning is experience replay, 

which was introduced by (Lin, 1992). In particular, every time that the agent selects an action 𝐴𝑡 in 

the current state 𝑆𝑡 and receives a reward 𝑅𝑡+1 and the following state representation 𝑆𝑡+1, the tuple 

(𝑆𝑡, 𝐴𝑡 , 𝑅𝑡+1, 𝑆𝑡+1) is saved in memory (Sutton & Barto, 2018). Specifically, each quadruple is an 

experience, and it is saved in the replay memory. At every time step, a mini-batch of past experiences 

is randomly sampled from the replay memory and it is used to apply multiple Q-learning updates. If 

the same experience is used too many times, an undesirable overtraining is obtained; therefore, it is 

important to apply some strategy to prevent this situation (Lin, 1992). For example, only the most 

recent 𝑁 experiences should be saved in the replay memory, as implemented in (Mnih et al., 2015); 

 
1 (Mnih et al., 2015; Sutton & Barto, 2018) 
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this is particularly reasonable, since old experiences might be too different from the most recent ones 

and they could negatively affect the agent, which keeps learning. 

Experience replay has multiple useful effects on the learning agent. First of all, it allows for an 

efficient use of experiences, which are presented to the agent multiple times instead of only once 

(Adam et al., 2012). In addition to it, with this mechanism, the agent learns considerably faster (Lin, 

1992). Finally, the experiences are randomly sampled from the replay memory, therefore the agent 

learns from uncorrelated data; this removes one source of instability, favouring the Q-learning 

convergence (Sutton & Barto, 2018).  

In addition to experience replay, another technique which improves the stability of the learning 

algorithm consists in using a second neural network, called target network, to compute the targets of 

the Q-learning updates. After a fixed number of training steps, the primary network, used to 

approximate Q, is cloned in the second network, which computes the targets for the same number of 

training steps. Then, the primary network is copied again and the process repeats. This delay, 

introduced between the Q value updates on the primary network and the moment in which these affect 

the computation of the Q learning targets, helps to avoid oscillations in the learning process (Mnih et 

al., 2015).  

 

2.2 Multiagent learning 

A multiagent system is a group of independent entities, called agents, which interact in the same 

environment. These agents may have different goals or a common objective; hence, they might 

compete or cooperate towards their target (Busoniu et al., 2008; Shoham & Leyton-Brown, 2008; K. 

Tuyls & Stone, 2018; Karl Tuyls & Weiss, 2012). 

Considering the complexity and dynamism of this system, agents which learn their strategy are more 

robust, compared to entities which perform a deterministic behaviour. Multiagent learning combines 

machine learning methods with multiagent settings in order to obtain agents that learn their tasks 

dynamically (Karl Tuyls & Weiss, 2012).  

The environment where these agents operate can be formally defined as an extension of the Markov 

Decision Process and it is called stochastic or Markov game. A Markov game is a tuple {P, S, A, R, T} 

where P is the collection of 𝑛 agents, S is the set of 𝑘 states, A is the series of joint actions (𝐴 =

𝐴1 × 𝐴2 × … × 𝐴𝑛, 𝐴𝑖 is the set of actions available to agent 𝑖), R: 𝑆 × 𝐴 → ℝ𝑛 is the reward function 

and T: 𝑆 × 𝐴 × 𝑆 → [0,1] is the transition probability function (Karl Tuyls & Weiss, 2012). It is worth 

noting that in a multiagent system, the reward received by each agent depends on the action chosen 
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by all the entities. Hence, every agent influences the learning process of all the remaining actors that 

interact in the same environment (Shoham & Leyton-Brown, 2008).  

A multiagent settings entails some new challenges, compared to the single learning agent situation. 

First of all, the curse of dimensionality is particularly clear in a multiagent system; indeed, 

complicated environments have enormous state spaces. Moreover, this is not the only reason: raising 

the number of agents exponentially increases the state-action combinations. In addition to it, the 

presence of several agents in the same environment produces non-stationarity; this significantly 

complicates learning. Finally, as mentioned before, each agent’s action affects the learning of all the 

remaining entities; thus, the exploration of one agent can negatively influence the ability of other 

agents to find the optimal policy (Busoniu et al., 2008). 

There are multiple approaches in multiagent learning that can be classified following different 

principles. For example, (Busoniu et al., 2008) subdivides them depending on the type of the task: 

fully cooperative tasks, fully competitive tasks and mixed tasks. In fully cooperative tasks, all the 

entities involved have the same goal and the same reward function; therefore, the objective is to 

maximize the common total return. There are different learning algorithms for this situation which 

might use explicit coordination methods, involve indirect coordination mechanism, or solve the task 

without considering coordination. On the other hand, fully competitive tasks involve agents with 

opposite objectives; thus, algorithms that are independent from the remaining agents are suitable in 

this situation. Finally, in mixed tasks, the agents’ reward does not have any constraint; this might be 

the case of self-interested actors or cooperative agents which might compete with the other entities in 

some situations. Single agent Reinforcement Learning algorithms could be applied in this context, 

even if convergence is not guaranteed. 

On the other hand, (Karl Tuyls & Weiss, 2012) classifies Multiagent Learning (MAL) in three groups: 

multiplied learning, divided learning, and interactive learning. In case of multiplied learning, each 

agent learns separately; therefore, even though agents can interact, the learning algorithm is not 

affected. In divided learning, the task is shared among the agents, which have the same objective. The 

overall learning is obtained through the agents’ interaction, but the learning process of each agent is 

individual. Lastly, interactive learning is characterized by a joint learning process which involves all 

the agents. 

Finally, (K. Tuyls & Stone, 2018) classifies the learning paradigms in individual learning, population 

learning and protocol learning. In case of individual learning, one agent or more learns independently 

in a common environment. In particular, agents can learn towards individual utility or social welfare. 

On the contrary, population learning is identified by group level learning, realized through local 
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interactions. This is typically implemented with co-evolutionary learning or swarm intelligence 

paradigms. Ultimately, protocol learning is focused on learning the interaction mechanism among the 

agents; an example is the adaptive learning design paradigm.  

Considering the features of the agents and environments presented in the following, the implemented 

tasks can be described as mixed tasks (Busoniu et al., 2008), while learning can be defined as 

multiplied learning (Karl Tuyls & Weiss, 2012) or individual learning (K. Tuyls & Stone, 2018), 

depending on the type of classification.  

 

2.3 Discover the Opponent’s Strategy 

In the field of multiagent learning, there are multiple approaches to tackle this complex environment, 

as illustrated before. Specifically, the presence of other agents can be explicitly analysed or not. 

However, being able to infer how the other agents act is undoubtedly convenient (Albrecht & Stone, 

2018). This ability is included in the broad category of understanding skills thoroughly analysed in 

(Dafoe et al., 2020), where the focus is Cooperative AI. Considering the simple case of two agents 

only, if one agent is able to understand the opponent’s strategy, it can use this knowledge not only to 

cooperate with the other entity but also to exploit its policy, depending on the specific task. How to 

discover the opponent’s strategy is a cutting-edge theme and very different solutions are offered. 

The typical category of approaches to this problem is opponent modelling. In a multiagent 

environment, the ability of one agent to infer the beliefs and goals of the remaining entities helps to 

understand their behaviour. All this information can be included in a model of the agents, which 

returns specific predictions, given the required data (typically past interactions and observations). The 

capability of discovering the opponent’s strategy is very powerful since it does not limit to the case 

of artificial agents only, but it can be applied to machine-human interactions. Being able to understand 

the intentions of the adversary can really improve the agent’s performance in interactive tasks. Indeed, 

there are countless examples and situations in which knowing the goals and beliefs of the other entities 

help the agent to react in the proper way, depending on its specific goal; autonomous vehicles are a 

striking example. This is particularly important in situations where interaction occurs without any 

explicit coordination and communication system. Interesting categories of modelling methods are 

Policy Reconstruction, Type-based Reasoning, Classification and Plan Recognition (Albrecht & 

Stone, 2018). Policy Reconstruction approaches recreate the agent’s process of selecting the proper 

behaviour and build a model that directly predict the agent’s actions. Specifically, a possible 

implementation consists in Utility Reconstruction where the agent’s preferences are modelled 
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through a utility function associated to the actions. Using this approach, it is possible to learn any 

model and this is achieved during the agents’ interactions; however, a high number of observations 

might be necessary to learn the proper model and this process could be complex in terms of time and 

space. Type-based Reasoning assumes a set of known types of agent models; these models are 

provided to the agent before it begins to interact and they can be generated in various ways. In 

particular, these data can be directly specified by a domain expert or could be derived from previous 

experiences, lived personally by the agent or contained in a database. Given this knowledge, the agent 

starts the interaction with an initial estimate of the opponent’s model, depending on the occurrences 

of the prototypes; then, it refines this prediction thanks to the real-time experiences. This approach 

does not require building an agent’s model from scratch for every execution; however, the pre-defined 

types must be provided in some way and this a priori knowledge is not always available. Moreover, 

an incorrect type-space produces absolutely wrong predictions. On the other hand, classification 

mainly focuses on assigning class labels to the agents, depending on specific properties. This can be 

obtained using various machine learning algorithms; however, complete models typically require a 

considerable amount of data and they are usually developed before agents’ interactions. Finally, Plan 

Recognition has the objective of inferring the agent’s goal and plan. This often involves a plan library, 

which contains the possible plans. Nonetheless, creating a complete plan library might be difficult 

(Albrecht & Stone, 2018). 

Many concrete implementations use these ideas. The learning method “Learning with Opponent-

Learning Awareness” (LOLA) (Foerster et al., 2018) accounts for the impact of an agent’s policy on 

the other agent’s learning. Specifically, a LOLA agent maximises the expected return after the 

opponent revises its strategy with one learning step. In terms of opponent’s policy, two different 

approaches are proposed; in the first version, the agent can directly access the opponent’s parameters. 

On the other hand, a more realistic implementation uses an opponent modelling strategy which 

resembles behavioural cloning. 

Moreover, the research proposed by (Gallego et al., 2019) focuses on strategies to account for the 

presence of other agents in multiagent reinforcement learning. Indeed, single agent reinforcement 

learning approaches typically fail in multiagent settings due to the non-stationarity introduced by 

other agents that interact in the same environment. Specifically, a new framework is proposed; 

Threatened Markov Decision Processes extend the classical MDP setting in order to explicitly 

describe the presence of an opponent agent, which causes non-stationarity in the shared environment. 

Moreover, the Q-learning update rule is modified to handle this non-stationarity; indeed, the agent 

can successfully react to the opponent’s move since the learning rule includes an average over the 

more likely actions of the competitor. Hence, the opponent’s policy must be inferred in some way 
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from previous observations. In particular, an approach similar to Fictious Play is introduced for this 

purpose; an alternative uses Type-Based Reasoning to solve uncertainties on the opponent’s 

properties.  

In the context of agents aware of the opponents, (He et al., 2016) adopts a neural network approach. 

In particular, the learning agent does not predict the adversary’s actions directly, but it determines a 

hidden description of the opponent, training a Deep Q-Network using previous observations. This 

DQN is then used to choose the best next action from the actual state. The learning structure is 

composed by two different networks: the policy learning module computes the Q-values, while the 

opponent learning module derives the opponent strategy. Two different approaches are proposed to 

combine the two networks: DRON-concat simply concatenates the two modules, while DRON-MOE 

is based on a Mixture-of-Experts network.  

An interesting approach to opponent modelling is described in (Markovitch & Reger, 2005), where 

the learning agent does not infer a complete model of its adversary, but it only deducts its weakness. 

In addition to it, this information is used only to bias the agent’s choices. This solution aims to tackle 

the complexity and risk problems, which arises in opponent’s modelling. Indeed, learning a complete 

and accurate model requires many examples and it is complicated. Moreover, if the model is not 

correct, the risk is that the predictions relating to it are harmful to the agent, rather than improving its 

behaviour. The opponent weakness model is elaborated before the agents’ interaction starts. The 

concept of weakness is firstly defined, then a set of examples are collected and tagged, identifying 

the situations in which the adversary results weak; this process is obtained using a teacher. Finally, 

the examples are translated using a feature vector representation and an induction algorithm is applied 

to obtain a classifier. Once the classifier is ready, it can be used online to detect situations in which 

the opponent is at a disadvantage, influencing the agent's choices. This information can be integrated 

in the agent learning process in various ways such as a numerical value in the utility function. This 

method can be further improved adding a self-model of the learning agent’s weakness. In this way, 

favourable actions are actions that are classified as strong for the subject and weak for the opponent.  

Different approaches from explicit opponent modelling are proposed as well. The study described in 

(Anastassacos et al., 2020) introduces a probing system in order to gain experiences that include 

behavioural change of the opponent. This experience is then used to train the reinforcement learning 

agent with an adjusted reward. In addition to it, another possibility is offered by the Machine Theory 

of Mind (Rabinowitz et al., 2018). This method applies the human Theory of Mind to multiagent 

settings. As a matter of fact, the goal is to realize an agent which is able to infer the others mental 

states, that means understanding the opponent’s intentions and future behaviour. This is obtained 
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implementing a Theory of Mind neural network which assembles models of other agents using meta-

learning. The architecture of the Theory of Mind network is formed by three different modules: the 

character net, the mental net, and the prediction net. Each part has a specific role in the complex task 

of determining an accurate characterization of the opponent and predicting the agent’s behaviour. 

Indeed, the proposed system learns how to model other agents autonomously. This articulated 

structure allows to obtain detailed predictions but obviously requires training many more parameters. 

Finally, a still different method to deduce the opponent's strategy may be to use the various types of 

imitation learning. The main idea is learning from a set of demonstrations; this approach is similar to 

the Policy Reconstruction technique mentioned before.  

 

2.3.1 Imitation Learning 

When the complexity of an agent’s task increases, manually specifying its behaviour is very difficult. 

Moreover, even if the agent autonomously learns the proper policy, some information, such as a 

reward function, is needed. However, defining a correct reward function might not be easy as well 

and it often requires a thorough understanding of the agent’s task and environment. Hence, the 

founding idea of Imitation Learning is learning directly from a set of demonstrations, typically 

provided by an expert (Hussein et al., 2017; Osa et al., 2018). The paradigm based on mimicking the 

given behaviour has biological foundations and it simplifies the teaching of complicated tasks. This 

approach can be used to learn the behaviour of anyone; therefore, it can also be applied in the context 

of learning the opponent's strategy. 

Formally, Imitation Learning is a paradigm where the agent learns a policy which recreates the 

behaviour presented in the demonstrations. These examples can be provided by an expert or by 

another agent and they form the dataset 𝒟 = (𝜏𝑖, 𝑠𝑖, 𝑟𝑖)𝑖=1
𝑁 . Each element is composed by a trajectory 

𝜏, which is a sequence of measurements linked to a specific demonstration (typically a sequence of 

state-action tuples). 𝑠𝑖 specifies the context conditions of the demonstration and 𝑟𝑖 is the reward signal 

that can be optionally provided. Solving an Imitation Learning problem means finding the policy 

which produces a behaviour that is the most similar to the one presented in the demonstrations dataset. 

The learning process can be executed both online or offline (Osa et al., 2018). 

Imitation Learning methods can be subdivided into two broad categories: Behavioural Cloning and 

Inverse Reinforcement Learning (Ng & Russell, 2000; Osa et al., 2018). The first approach is based 

on directly learning the association between states, or contexts, and actions, without inferring the 

reward function. This can be solved using a supervised learning technique and the policy which is 
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most compatible with the demonstrated behaviour is typically obtained through a regression problem. 

However, directly learning the state-action mapping has some limitations. Indeed, this method is not 

robust to significant state changes; if the demonstrations provided are not complete, the model is 

unable to generalize correctly when the agent is in states never seen before. Moreover, the clones 

generally fail in determining the underlying structure of the teacher’s behaviour (Bratko & Šuc, 2002; 

Hussein et al., 2017). 

On the other hand, Inverse Reinforcement Learning uses the examples provided to infer the reward 

function that the entity optimizes when acting (Hussein et al., 2017; Ng & Russell, 2000; Osa et al., 

2018). However, there might be multiple equivalent reward functions associated to the same optimal 

policy; therefore, a supplementary objective function is required to find a unique solution to the 

problem.  

 

2.3.2 Inverse Reinforcement Learning  

Inverse Reinforcement Learning (IRL) was introduced by Russell, who provides a first definition of 

this computational problem (Russell, 1998).  

Given:  

1) measurements of an agent’s behaviour over time, in a variety of circumstances, 

2) measurements of the sensory inputs to that agent, 

3) a model of the physical environment (including the agent’s body) 

Determine the reward function that the agent is optimizing 

Deducting the reward from a set of demonstrations has multiple advantages. First of all, as mentioned 

for imitation learning algorithms in general, the agent can learn a certain behaviour without manually 

specifying the reward for each situation. This is particularly convenient if the task to be solved is 

complex and it is difficult to define an appropriate reward function, as in the case of self-driving cars 

(Abbeel & Ng, 2004; Arora & Doshi, 2020; Ng & Russell, 2000). Furthermore, IRL allows to 

implement a computational model of the behaviour of humans and animals; in this way, it is possible 

to realize an agent which learns its preferences from an expert or learns the behaviour of another 

agent. Finally, the reward function is more easily transferable to another agent, compared to the case 

in which a policy is learnt directly (Arora & Doshi, 2020; Ng & Russell, 2000). 

Even if IRL allows to obtain the reward function of any entity of which behavioural examples are 

given, conventionally the observed agent is named expert, while the learning agent is called learner 

(Arora & Doshi, 2020). The policy guiding the expert is defined as π𝐸 and it might be unknown, 
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while the associated reward is called 𝑅𝐸. Considering these notations, a formal definition of the IRL 

problem can be presented. 

Given a Markov Decision Process that represents the expert’s dynamics, without the reward. 

Considering the demonstrations, which are set of trajectories 𝜏, 𝒟 = {〈(𝑠0, 𝑎0), (𝑠1, 𝑎1), … , (𝑠𝑗 , 𝑎𝑗)〉1,

… , 〈(𝑠0, 𝑎0), (𝑠1, 𝑎1), … , (𝑠𝑗 , 𝑎𝑗)〉𝑖=2
𝑁 }, 𝑠𝑗 ∈ 𝑆, 𝑎𝑗 ∈ 𝐴, 𝑎𝑛𝑑 𝑖, 𝑗, 𝑁 ∈ ℕ. Assuming that all the 

trajectories are perfectly observed, determine 𝑅𝐸 that best explains the policy 𝜋𝐸, if it is known, or 

the expert’s behaviour demonstrated in the trajectories (Arora & Doshi, 2020).  

Considering this definition, Inverse Reinforcement Learning appears very promising; however, it has 

multiple challenging aspects. First of all, as mentioned before, there are multiple reward functions 

that are compatible with the demonstrations provided; they also include degenerate functions such as 

𝑅𝐸 = 0 everywhere (Ng & Russell, 2000). One possible reason is the limited number of examples 

given to the agent that makes the solution of the IRL problem ambiguous. If the expert’s policy is 

available, this issue can be solved measuring the difference between the inferred policy and the true 

one, called Inverse Learning Error (Arora & Doshi, 2020). Alternative solutions typically consist in 

considering the margin between the best policy and the remaining ones or maximizing the entropy 

(Osa et al., 2018). 

Moreover, the demonstrations available to the learner cannot typically cover all possible states 

associated with a certain task; hence, generalizability is an important property for the reward function. 

Indeed, a correct reward function reveals the expert’s preferences if the current state is present in the 

examples and if the state is completely new. Obviously, too general reward functions are not accurate 

enough for specific situations; this is an important trade-off that should be considered when 

implementing the IRL algorithm (Arora & Doshi, 2020). Another important consideration concerns 

which examples should be provided to the agent. In fact, if the expert produces only trajectories that 

always start from the same state and follow the optimal strategy, the agent will probably not be able 

to manage errors in the trajectory, being in a whole new and different set of states (Hussein et al., 

2017). 

In addition to these elements, the correctness of IRL depends also on the reward function 

implementation. Specifically, the reward function is typically expressed as a combination of weighted 

features. 

𝑅(𝑠, 𝑎) = 𝜔1𝜙1(𝑠, 𝑎) + 𝜔2𝜙2(𝑠, 𝑎) + ⋯ + 𝜔𝑘𝜙𝑘(𝑠, 𝑎) = 𝜔𝑇𝜙(𝑠, 𝑎) 

where 𝜙𝑘: 𝑆 → ℝ is the feature function, while 𝜔𝑘 ∈ ℝ are the weights (Arora & Doshi, 2020). The 

feature function associates specific features to each state thus it characterizes each trajectory. Each 
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policy, and set of trajectories, can be described computing the feature expectation, which is defined 

as  

𝜇(𝜋) = 𝔼 [∑ 𝛾𝑡𝜙(𝑠𝑡)|π

𝑇

𝑡=0

] ∈ ℝ𝑘 

This equation simplifies the policy value formula 𝔼𝑠0~𝐷[𝑉π(𝑠0)] = 𝜔 ∙ 𝜇(π) (Abbeel & Ng, 2004). 

Considering the reward composition, solving the IRL problem means finding the more appropriate 

weights (Arora & Doshi, 2020). Hence, the expert’s reward can be recovered only if it can be 

expressed as a combination of the chosen feature function. Indeed, there are multiple approaches to 

obtain a suitable feature function; raw data from demonstrations can be usually applied when the task 

is very simple. An alternative is manually designing the feature function, even if identifying the 

salient aspects, in a state, that affect the reward computation is not trivial. Finally, there are automatic 

feature extraction techniques, however this entails additional learning and tuning (Hussein et al., 

2017).  

Finally, IRL methods are significantly sensible to the problem size. Indeed, this class of algorithms 

are iterative; thus, if the task difficulty increases, they suffer from complexity escalation. Therefore, 

even if IRL might be very efficient for small problems, the time complexity required for real tasks 

can be restricting. Furthermore, the problem size influences the number of demonstrations as well. 

As a matter of fact, recovering the reward function in a complicated task requires many more 

examples, compared to a toy problem (Arora & Doshi, 2020).  

Inverse Reinforcement Learning algorithms can be classified depending on the central idea used to 

learn the reward. In particular, the two most common approaches compute the maximum margin or 

the maximum entropy (Osa et al., 2018). In case of Maximum Margin Optimization, the goal is 

finding the reward function such as the demonstrated policy corresponds to the optimal one and the 

difference between the optimal policy and the next-best one is maximized (Arora & Doshi, 2020). 

Algorithms proposed by (Ng & Russell, 2000) and (Abbeel & Ng, 2004) are based on this concept. 

However, this method is suitable when there is a unique reward function that is significantly better 

than the remaining ones. On the other hand, Entropy Optimization identifies the distribution over all 

trajectories that is characterized by the maximum entropy, among the distributions with same feature 

expectations of the demonstrated behaviour (Arora & Doshi, 2020). 

In addition to this classification, IRL methods can be also subdivided in model-based and model-free 

methods. The first approach assumes that system dynamics are known, while model-free algorithms 

do not consider this prior knowledge. Both these techniques are characterized by advantages and 
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disadvantages. Model-free algorithms are suitable for systems with non-linear and unknown 

dynamics; however, a high number of trajectories must be sampled to estimate their distribution. On 

the opposite, computing the trajectory distribution is efficient for model-based methods, but learning 

the correct reward function can be difficult. Most of the IRL methods are model-based (Osa et al., 

2018). 

 

2.3.3 Maximum Entropy Inverse Reinforcement Learning  

Maximum Entropy Inverse Reinforcement Learning (MaxEntIRL) is an algorithm proposed by 

(Ziebart et al., 2008) which adopts a probabilistic approach using the Maximum Entropy Principle. 

A key problem in Inverse Reinforcement Learning is that the demonstrated behaviour is usually 

imperfect and subject to noise; this method helps to deal with this uncertainty (Ziebart et al., 2008).  

In the context of Information Theory, entropy was firstly introduced by (Shannon, 1948). Given a 

variable 𝑥 with a discrete set of probabilities {𝑝1, … , 𝑝𝑛}, the entropy measures the amount of 

uncertainty associated to this variable which corresponds to the quantity of information contained in 

𝑥. The formal definition is 

𝐻 =  −∑𝑝𝑖𝑙𝑜𝑔(𝑝𝑖) 

If the variable 𝑥 is characterized by a continuous probability distribution function 𝑝(𝑥), the entropy 

is defined as 

𝐻 = − ∫ 𝑝(𝑥)𝑙𝑜𝑔 𝑝(𝑥)𝑑𝑥 

The goal of a IRL problem is recovering the expert’s reward function using a set of demonstrations 

typically provided by the expert himself. Therefore, a condition that could be introduced to solve this 

problem is that the feature expectation of the demonstrations should match the feature expectation of 

the learnt policy. However, this equality is ambiguous; hence, the Maximum Entropy Principle states 

that the best and unbiased criteria to solve this ambiguity is choosing the probability distribution 

which has maximum entropy (Arora & Doshi, 2020; Jaynes, 1957). 

The Maximum Entropy Inverse Reinforcement Learning algorithm is illustrated below using the 

following notation (Ziebart et al., 2008). 

• 𝒟 is the set of demonstrations, 𝒟 = {〈(𝑠0, 𝑎0), (𝑠1, 𝑎1), … , (𝑠𝑗 , 𝑎𝑗)〉1, … , 〈(𝑠0, 𝑎0), (𝑠1, 𝑎1),

… , (𝑠𝑗 , 𝑎𝑗)〉𝑖=2
𝑀 }, 𝑠𝑗 ∈ 𝑆, 𝑎𝑗 ∈ 𝐴, 𝑎𝑛𝑑 𝑖, 𝑗, 𝑀 ∈ ℕ; 𝑀 is the number of demonstrations. 
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• 𝑐𝜔 is the cost expressed with respect to the weight parameter 𝜔; the cost is equivalent to the 

negative reward. The cost associated to the trajectory 𝜏 is computed as 𝑐𝜔(𝜏) = 𝜔𝑇𝜙𝜏 =

∑ 𝜔𝑇𝜙𝑠𝑠∈𝜏 , where 𝜙𝑘: 𝑆 → ℝ is the feature function. 

• 𝒯: 𝑆 × 𝐴 → 𝑃𝑟𝑜𝑏(𝑆) is the transition dynamics. Specifically, it is a probability distribution 

over the set of next states conditioned on the probability for the agent of taking action 𝑎 at 

state 𝑠, 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡). 

• 𝑝(𝑠|𝜔, 𝒯) is the state visitation frequency, which is computed with respect to the weights 𝜔 

and the transition dynamics 𝒯. 

In Max Entropy IRL the expert is modelled considering that the probability of having a specific 

trajectory 𝜏 in the demonstrations is proportional to 𝑒−𝑐𝜔(𝜏) (𝑝(𝜏) ∝ 𝑒−𝑐𝜔(𝜏)), where −𝑐𝜔(𝜏) is the 

negative cost of that trajectory. This means that trajectories with identical costs are executed with 

equal probability, while trajectories with higher costs are exponentially less likely.  

The entropy is included in the objective of the expert in order to solve the uncertainty mentioned 

before; in particular, the goal of the demonstrator is expressed as 

min
𝜋

𝔼𝜋[𝑐𝜔(𝜏)] − 𝐻(𝜋) 

The IRL problem can be solved finding the parameters 𝜔, since the cost (as the reward) can be 

expressed as a combination of weights and features. Hence, the best 𝜔 maximizes the total probability 

of the trajectories provided by the expert. Therefore, 𝜔 is obtained maximizing the log-likelihood of 

the demonstrations. 

𝜔 = argmax
𝜔

𝑙𝑜𝑔 ∏ 𝑝(

𝜏𝑑∈𝒟

𝜏𝑑) 

This can be equivalently written as a minimization problem, changing the sign of the equation. 

𝜔 = argmin
𝜔

−
1

𝑀
∑ 𝑙𝑜𝑔 

1

𝑍
𝑒−𝑐𝜔(𝜏𝑑)

𝜏𝑑∈𝒟

 

where the factor 
1

𝑀
 does not influence the solution, but it is convenient for the following derivation. 

𝑝(𝜏𝑑) in the first equation is replaced with 
1

𝑍
𝑒−𝑐𝜔(𝜏𝑑) because 𝑝(𝜏) ∝ 𝑒−𝑐𝜔(𝜏); specifically, 𝑝(𝜏𝑑) =

1

𝑍
𝑒−𝑐𝜔(𝜏𝑑) and 𝑍 = ∑ 𝑒−𝑐𝜔(𝜏𝑑)

𝜏  is the partition function2. 

 
2The cost function 𝑐𝜔 is always expressed with respect to the parameter 𝜔, however the subscript is omitted in the 

following for a clearer notation. 
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The objective function can be further expanded. 

𝜔 = argmin
𝜔

−
1

𝑀
∑ 𝑙𝑜𝑔 

1

𝑍
𝑒−𝑐(𝜏𝑑)

𝜏𝑑∈𝒟

=  argmin
𝜔

1

𝑀
∑ 𝑐(𝜏𝑑) + 𝑙𝑜𝑔 ∑ 𝑒−𝑐(𝜏𝑑)

𝜏𝑑∈𝒟𝜏𝑑∈𝒟

 

The minimization argument is identified with ℒ(𝜔) in the following. 

ℒ(𝜔) =
1

𝑀
∑ 𝑐(𝜏𝑑) + 𝑙𝑜𝑔 ∑ 𝑒−𝑐(𝜏𝑑)

𝜏𝑑∈𝒟𝜏𝑑∈𝒟

 

ℒ(𝜔) is a convex function for deterministic MDPs, therefore the minimization problem has a unique 

solution that can be found using gradient descent. The gradient of ℒ(𝜔) is 

∇ℒ(𝜔) =
1

𝑀
∑

𝑑𝑐(𝜏𝑑)

𝑑𝜔
−

1

∑ 𝑒−𝑐(𝜏𝑑)
𝜏𝑑∈𝒟

∑ (𝑒−𝑐(𝜏𝑑) 𝑑𝑐(𝜏𝑑)

𝑑𝜔
)

𝜏𝑑∈𝒟𝜏𝑑∈𝒟

 

This expression can be equivalently written as 

∇ℒ(𝜔) =
1

𝑀
∑

𝑑𝑐(𝜏𝑑)

𝑑𝜔
− ∑ (

1

∑ 𝑒−𝑐(𝜏𝑑)
𝜏𝑑∈𝒟

𝑒−𝑐(𝜏𝑑) 𝑑𝑐(𝜏𝑑)

𝑑𝜔
)

𝜏𝑑∈𝒟𝜏𝑑∈𝒟

 

The probability of each trajectory is 𝑝(𝜏𝑑) =
1

𝑍
𝑒−𝑐𝜔(𝜏𝑑) =

1

∑ 𝑒−𝑐𝜔(𝜏𝑑)
𝜏

𝑒−𝑐𝜔(𝜏𝑑)  and it depends on the 

parameters 𝜔 and the transition dynamics 𝒯 because 𝑝(𝜏𝑑) can be expressed as 

𝑝(𝜏𝑑)  = p(s1) ∏ 𝑝(𝑎𝑡|𝑠𝑡)𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡)

𝑡

 

where 𝑝(𝑎𝑡|𝑠𝑡) is the policy with respect to 𝜔 and 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) represents the transition dynamics 

𝒯. Therefore, the ∇ℒ(𝜔) can be expressed as 

∇ℒ(𝜔) =
1

𝑀
∑

𝑑𝑐(𝜏𝑑)

𝑑𝜔
− ∑ (𝑝(𝜏𝑑|𝜔, 𝒯)

𝑑𝑐(𝜏𝑑)

𝑑𝜔
)

𝜏𝑑∈𝒟𝜏𝑑∈𝒟

 

Considering the second term, the sum over all possible trajectories in the demonstrations can be also 

expressed as the sum over all possible states. 

∇ℒ(𝜔) =
1

𝑀
∑

𝑑𝑐(𝜏𝑑)

𝑑𝜔
− ∑ (𝑝(𝑠|𝜔, 𝒯)

𝑑𝑐(𝑠)

𝑑𝜔
)

𝑠𝜏𝑑∈𝒟

 

where 𝑝(𝑠|𝜔, 𝒯) is the state visitation frequency.  
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Given the cost expression 𝑐𝜔(𝜏) = 𝜔𝑇𝜙𝜏 = ∑ 𝜔𝑇𝜙𝑠𝑠∈𝜏 , the final equation for the gradient ∇ℒ(𝜔) is 

presented below.  

∇ℒ(𝜔) =
1

𝑀
∑ 𝜙𝜏𝑑

− ∑ 𝑝(𝑠|𝜔, 𝒯)𝜙𝑠

𝑠𝜏𝑑∈𝒟

 

The state visitation frequencies can be computed applying a dynamic programming algorithm, which 

is briefly illustrated in the following lines. 

1. Compute the optimal policy 𝜋(𝑎|𝑠) given 𝑐𝜔 using value iteration. 

2. Compute 𝜇𝑡(𝑠) which is the probability of visiting the state 𝑠 at time 𝑡. 

𝜇1(𝑠) =  𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑠 𝑏𝑒𝑖𝑛𝑔 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑡𝑎𝑡𝑒 

𝑓𝑜𝑟 𝑡 = 1 𝑡𝑜 𝑇 (ℎ𝑜𝑟𝑖𝑧𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑀𝐷𝑃): 

         𝜇𝑡+1(𝑠) = ∑ ∑ 𝜇𝑡(𝑠𝑡−1)𝜋(𝑎|𝑠𝑡−1)𝑝(𝑠𝑡|𝑠𝑡−1, 𝑎)

𝑠𝑡−1𝑎

 

3. Compute the final state visitation frequency 𝑝(𝑠|𝜔, 𝒯) = ∑ 𝜇𝑡(𝑠)𝑇 . 

 

Finally, the complete iterative Maximum Entropy IRL algorithm is summarised below (Ziebart et al., 

2008). 

1. Initialize the cost parameters 𝜔 and collect the expert’s demonstrations 𝒟. 

2. Compute the optimal policy 𝜋(𝑎|𝑠) with respect to the present cost 𝑐𝜔 using value iteration. 

3. Compute the state visitation frequencies 𝑝(𝑠|𝜔, 𝒯). 

4. Compute the gradient of the function ℒ(𝜔) with respect to the parameters 𝜔. 

∇ℒ(𝜔) =
1

𝑀
∑ 𝜙𝜏𝑑

− ∑ 𝑝(𝑠|𝜔, 𝒯)𝜙𝑠

𝑠𝜏𝑑∈𝒟

 

5. Update the parameters 𝜔 with one gradient step 𝛼 ∙ ∇ℒ(𝜔). 

6. Repeat from step 2 until the gradient ∇ℒ(𝜔) is sufficiently close to 0 (or it is not possible to 

obtain further progress). 

 

2.4 Value Alignment 

The Value Alignment problem is strictly linked to the theme discussed in the previous section, where 

the goal is discovering the opponent’s strategy. Moreover, this topic is part of the broader field of 

Machine Ethics whose objective is adding moral concepts and faculties in autonomous machines, 

which are defined Artificial Moral Agents (AMAs). This is an important subject which is emerging 
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with the significant increase of autonomous systems in the everyday life (e. g. driverless cars and 

trains)(Allen et al., 2006; Wallach, 2010). Indeed, machine learning systems might exhibit unwanted 

or dangerous behaviour due to multiple possible problems in their implementation. For example, 

agents’ objective functions could be wrongly specified or hacked; furthermore, the objective 

functions might be too complicated to be frequently evaluated, thus extrapolation from limited 

examples can produce adverse actions. Finally, the learning process could be characterized by 

unwanted behaviour (Amodei et al., 2016) 

In the field of Artificial Intelligence, the Value Alignment problem refers to the need of correctly 

matching human preferences with machines’ behaviour. This means that intelligent systems should 

be implemented in order to be beneficial for humans (Gabriel, 2020; Peterson, 2019; Russell, 2020). 

However, there are multiple interpretation of the definition of beneficial in this context; (Gabriel, 

2020) presents an utilitarian view, where machines should act to satisfy the highest number of people, 

together with other approaches, such as intelligent systems following abstract notions of fairness and 

kindness. On the other hand, (Russell, 2020) states three principles summarized as: machine’s actions 

should correspond to human preferences, which are not evident at the beginning of the interaction, 

thus they must be clarified by human behaviour.  

An important question that requires a deep reflection is what values and principles should be included 

in intelligent agents. Typically, there are two main categories of approaches for defining moral values: 

top-down and bottom-up. Top-down techniques try to directly introduce the principles proposed by 

moral philosophers, while bottom-up methods focus on the evolution of mechanisms that favour 

moral behaviour (Wallach, 2010). However, the value alignment problem results challenging even 

for the technical aspect of how to encode these principles in the agents (Gabriel, 2020). Indeed, the 

issue is how to represent the moral values that the machine should always follow.  

Moral values are concepts that intrinsically influence human behaviour; for this reason, they can be 

also interpreted as an intrinsic motivation. In particular, considering a Reinforcement Learning 

environment, moral values can be implemented through an intrinsic reward. 

 

2.4.1 Define moral values 

The problem of modelling moral values can be solved adopting a direct or indirect approach. In the 

first case, it is necessary to define a specific method to represent the ethical concepts. These form a 

knowledge base which is included in the agent and it is available at runtime. (Peterson, 2019) presents 

a solution that is an example of this approach. Specifically, moral principles are geometrically 
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represented using Voronoi tessellations determined by ethical prototypes. These models are called 

paradigm cases because they are characterized by a known analysis. Hence, ethical considerations 

are based on the similarity between the new moral situation and formerly analysed paradigm cases. 

This method entails an accurate definition of ethical principles and prototypes, which are typically 

domain specific. Moreover, a thorough technique to compute similarities must be identified. As a 

consequence, this solution to the problem of defining moral values requires a deep analysis of the 

specific environment which is far from trivial.  

On the other hand, instead of manually identifying moral principles and then finding a proper 

representation, agents could autonomously create their own representation of these values. This is 

realized presenting examples of moral behaviour to the learning agents. These elements are the key 

concepts of the indirect approach. (Wu & Lin, 2018) proposes to use reward shaping to integrate 

ethical behaviour, inferred from human examples, inside the Reinforcement Learning algorithm used 

to train the agent. Another example is offered by (Ritesh Noothigattu et al., 2018) where the goal is 

learning a model of preferences that are properly aggregated to solve moral dilemmas and determine 

the correct behaviour. This method is based on collecting data of human preferences about 

alternatives in ethical questions; then this data is used to learn a model of the choices for each person 

who provided the moral data. The single models are then combined in a unique one which summarizes 

the overall preferences; finally, at runtime, this model is used to select the alternative which is 

consistent with the collected data.  

An indirect approach is adopted by (R. Noothigattu et al., 2019) as well, where a framework with two 

policies is proposed. More specifically, the first one maximizes the reward received from the 

environment, while the second policy is computed applying Inverse Reinforcement Learning to the 

demonstrations of moral behaviour generated by humans or other agents. Thus, the second policy 

follows the constraint specified by the examples provided. These policies are then combined using a 

third element, an orchestrator, that chooses which policy should be followed in a certain moment. 

The orchestrator is implemented using a contextual bandit algorithm. The advantage of this 

implementation is the interpretability, since it is always possible to determine which policy the agent 

is following at each point of time. An alternative solution could be directly combining the two 

rewards; this approach does not clarify the origin of the policy followed, as before. The choice of the 

best method depends on the specific context and the potential need of keeping the two policies 

separated. 

Finally, a slightly different method is introduced in (Hadfield-Menell et al., 2016). Here, the goal is 

implementing an agent which learns to interact with humans in order to favour and help them. 
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Therefore, a formal definition of this problem, called Cooperative Inverse Reinforcement Learning 

(CIRL), is proposed. In this context, the agent is aware of the presence of the human in the same 

environment and the agent learns to maximize his reward.  

 

2.4.2 Intrinsic reward 

Living beings often act in a certain way without being prompted by the will to solve a practical 

problem; consequently, what causes this behaviour is called intrinsic motivation. However, learning 

occurs also in these moments which are fundamental for improving skills that will be applied in 

practical tasks. Hence, intrinsically motivated behaviour favours the development of independent and 

autonomous entities. More specifically, in the psychological field, a distinction is made between 

extrinsic and intrinsic motivation. The first one refers to the intention to act with the prospect of 

receiving a rewarding result, while intrinsic motivation promotes a certain behaviour because it is 

inherently satisfying (Barto et al., 2004; Singh et al., 2004). Therefore, this second motivation favours 

exploration without an external reward; in a Reinforcement Learning setting, intrinsic motivation 

helps learning the optimal policy. Because of these properties, it is possible to interpret this type of 

behaviour by associating an intrinsic reward to these actions. This analysis is also reflected in 

neuroscience as dopamine production has been associated with exploratory behaviours and the 

discovery of new situations (Barto et al., 2004). Consequently, there are multiple studies to introduce 

intrinsic reward in Reinforcement Learning algorithms in order to achieve various goals.  

Considering the biological mechanism of dopamine production, a possible implementation of 

intrinsic reward consists in computing the novelty of significant events that the agent experiences. 

This approach is adopted by (Singh et al., 2004), where the agent uses intrinsic rewards to learn a set 

of skills. These skills form a knowledge base that is created and is available at runtime; this is used 

to increase the number of possible actions for the agent. During execution, every time that a salient 

event occurs, the intrinsic reward is proportional to the error made while predicting the experienced 

event. A similar approach is presented in (Şimşek & Barto, 2006), where the goal is executing optimal 

exploration with the purpose of learning a policy which allows exploitation in the following. Here, 

the agent computes two value functions: the task value function and the behaviour value function. 

The first one is applied to effectively solve the given task in the future, while the second one is used 

to choose the actions in the present. Two different policies are associated respectively, task policy 

and behaviour policy. The intrinsic reward is computed considering the task value function before 

and after each update; the behaviour value function is improved using this intrinsic reward and the 

external state experienced.  
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The novelty concept mentioned in the previous paragraph is adopted and revised in (Pathak et al., 

2017) where curiosity is introduced. The goal is solving the problem of sparsity of external rewards 

which characterizes many concrete tasks. More specifically, the agent presents an Intrinsic Curiosity 

Module which computes the intrinsic reward, named curiosity, given the previous state, the action 

chosen and the following state. Inside this module, there is a neural network which predicts the future 

state, considering the actual state and the selected action. The error between the predicted future state 

and the actual future state is used to define the intrinsic reward; indeed, this error is bigger when the 

future state is more unpredictable, and this corresponds to the definition of novelty. Finally, the 

overall policy is computed to maximize the expected sum of the extrinsic and intrinsic rewards. The 

same idea of novelty is present in (Savinov et al., 2019), where the agent’s observation of the 

environment are saved. This episodic memory is used to compare the present state with previous 

experiences and unseen scenarios are associated to positive intrinsic reward; searching for unfamiliar 

observation is consistent with seeking for novelty. This approach slightly differs from the curiosity 

computation adopted in (Pathak et al., 2017) because a procrastination-like behaviour has been 

observed in some situations. Indeed, the agent might focus on maximizing the unpredictability of new 

states instead of moving towards the goal of the task. Using an episodic memory seems to solve this 

problem; here, instead of implementing a neural network that predicts future states, it is only required 

a function that computes similarity between observations. 

Apart from using intrinsic reward to express curiosity for new situations, encouraging exploration or 

skill acquisition, it can be also applied to stimulate other behaviours. (Wang et al., 2019) defines an 

intrinsic reward that collects social preferences. More specifically, there is a population of agents 

which is involved in an Intertemporal Social Dilemma and this intrinsic reward is computed using a 

formula that considers the inequity aversion of a specific agent. On the other hand, (Lipton et al., 

2018) introduces the intrinsic fear (IF) which is a penalty that expresses the risk associated to a certain 

state. Indeed, many environments have states which lead to fatal situations; hence, optimal agents 

should rarely visit these states or completely avoid them. However, Deep Reinforcement Learning 

agents might fail in that because the use of function approximation leads to forget infrequent 

experiences. Hence, the fear model is introduced to avoid tragic states or dangerous situations that 

probably degenerates in them. This model is trained to predict which states probably lead to fatal 

situations in less than k steps. The output is a probability which is scaled with a specific factor and it 

is treated as a penalty to the reward received from the environment.  

Following these different uses of intrinsic reward and the considerations about discovering the 

opponent’s strategy and modelling moral values, ethical principles can be learnt applying Inverse 

Reinforcement Learning to the demonstrations provided by an expert or another agent. More 
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specifically, with IRL algorithms it is possible to infer the reward function that the demonstrator is 

maximizing. Hence, these rewards can be considered as an intrinsic reward. The agent, observing the 

entity with which it interacts, infers his principles and his behaviour in the form of rewards. These 

are autonomously deduced by the learning agent using an independent algorithm; therefore, it can be 

seen as information that intrinsically conditions its behaviour and influences the learning process.  

 

2.5 The Social Dilemmas and games 

Many real problems that involve individuals or entire populations are social dilemmas. Therefore, 

they are analysed by multiple disciples such as psychology, biology, mathematics, and economics 

(Van Lange et al., 2013). In these situations, the options available to each decision maker can be 

typically categorized as “cooperation” or “defection” (Segismundo S. Izquierdo, 2008). A first 

definition of these problems is given by (Dawes, 1980), where dilemmas are described by two main 

properties. More specifically, in a social dilemma, each individual obtains a higher payoff choosing 

to defect instead of cooperating, independently from the decision of the remaining entities involved. 

On the other hand, the overall outcome is better if everyone cooperates instead of defecting. This 

definition describes the tension between collective and individual interests (Leibo et al., 2017), but it 

does not considers the time dimension. In particular, (Van Lange et al., 2013) highlights that 

consequences of actions can affect the entities involved in the social dilemma immediately or later in 

the future. Hence, the original definition is revised adding this concept; usually, non-cooperative 

choices have a higher immediate reward, while if everyone defects the effects are negative in the 

long-term. 

Social dilemmas properties can be analysed formalizing these problems as two-person games with 

two possible actions: cooperate (C) or defect (D). Therefore, there are 4 possible outcomes which are 

associated to a specific payoff. R (reward) is the product of mutual cooperation, while P (punishment) 

is obtained with mutual defection; S (sucker) and T (temptation) are the results when one player 

cooperates and the other defects. A game is typically a social dilemma if it satisfies the following 

social dilemma inequalities, which express the trade-off between cooperation and defection (Leibo et 

al., 2017; Macy & Flache, 2002). 

1. 𝑅 > 𝑃  mutual cooperation (CC) is preferred over mutual defection (DD) 

2. 𝑅 > 𝑆  mutual cooperation (CC) is better than cooperation from a single agent (CD) 

3. 2𝑅 > 𝑇 + 𝑆  mutual cooperation (CC) is preferred than identical probability of unilateral 

cooperation and defection (CD or DC) 
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4. 𝑇 > 𝑅 or 𝑃 > 𝑆  unilateral defection (DC) has a better payoff than mutual cooperation (CC) 

or mutual defection (DD) results better than unilateral cooperation (CD) 

The following table clarifies the four payoffs described (Leibo et al., 2017). 

 C D 

C R, R S, T 

D T, S P, P 

 

Considering these conditions, defection is the dominant strategy; however, if both players choose this 

option, the final outcome is the worst possible for everyone. Hence, the resulting Nash Equilibrium 

is named deficient (Anastassacos & Musolesi, 2018; Dawes, 1980).  

Three classic examples of social dilemmas are the Prisoner’s Dilemma, Chicken and Stag Hunt. The 

typical payoff matrices are shown below. 

 C D 

C 3, 3 0, 4 

D 4, 0 1, 1 

Table 1 - Prisoner's Dilemma. 

 C D 

C 3, 3 1, 4 

D 4, 1 0, 0 

Table 2 - Chicken. 

 C D 

C 4, 4 0, 3 

D 3, 0 1, 1 

Table 3 - Stag Hunt. 

 

However, apart from these simple situations, there are more complicated social dilemmas which are 

characterized by more articulated solutions and behaviours. First of all, these classic examples have 
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also an iterated form which allows the development of different strategies and possibly the emergence 

of cooperation. It is worth noting that, if the number of repetitions is known, then the last execution 

is equivalent to an independent game. Hence, using backward induction, the overall strategy 

corresponds to the Nash equilibrium of a single game (Sandholm & Crites, 1996). On the other hand, 

if the number of iterations in unknown, then other strategies emerge. For example, in the Iterated 

Prisoner’s Dilemma (IPD) an interesting strategy is Tit-For-Tat (TFT) which consists in cooperating 

in the first interaction and then copying the previous action of the opponent. This policy favours the 

emergence of cooperation since defecting behaviour is punished by the opponent in the following 

round (Sandholm & Crites, 1996). In iterated or multi-steps games, cooperation and defection are 

properties of overall policies, instead of single actions (Leibo et al., 2017). 

In addition to iterated games, there are many other interesting social dilemmas. Two examples are 

the Centipede Game and Gathering. The first one is a finite move two players game (McKelvey & 

Palfrey, 1992) which was introduced by (Rosenthal, 1981). On the other hand, Gathering is described 

in (Leibo et al., 2017) and it is a grid world game where agents should collect apples. Therefore, this 

game is a clear example of the tragedy of the commons, introduced by (Hardin, 1968). 

 

2.5.1 Centipede game  

The Centipede game is a two players game where the subjects should decide how to share a growing 

sum of money (Smead, 2008). In particular, the game is originally presented in extensive form and 

the two players take turns (Nagel & Tang, 1998; Rosenthal, 1981). At every step, the player who has 

to choose an action can either “take” or “pass”. Taking means obtaining the largest portion of the 

money, while passing entails the growth of the total sum. In the following turn, the other player has 

the same options. The game continues in this way until one of the two subjects takes the money or 

the maximum number of steps is reached. If this second situation occurs, the sum of money is divided 

in a predetermined way. In the classic formulation of this game there are one hundred turns, this 

explains the name (Smead, 2008). An example of rewards and its scheme is presented in the 

following. 

The initial total payoff 𝑥 is $2; each player, during his turn, can choose to take 𝑡 the largest part of 

the money or pass 𝑝. If the player passes, the sum is increased by $2; on the other hand, if the chosen 

action is “take”, the player obtains 𝑦 =
1

2
𝑥 + $1 , while the other agent receives the remaining part 

𝑥 − 𝑦. The game ends after 6 turns, if no one decided to take before; if that happens, the money is 
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divided in a predetermined manner, for example as if the player in the next turn decided to take 

(Smead, 2008).  

Considering the features of this game, the Nash equilibrium is taking immediately for the first 

player. Indeed, since the number of steps is known, player 2 should take in the last turn; hence, 

player 1 would have been better off taking the money in the previous step. This reasoning can be 

iteratively applied until the first step leading to the result mentioned (McKelvey & Palfrey, 1992; 

Rand & Nowak, 2012; Smead, 2008). Therefore, the emergence of cooperation against the game 

theory result has been studied under different points of view.  

The Centipede game can be also considered in its normal form, which is equivalent to the extensive 

one (Nagel & Tang, 1998). More specifically, in this case the players choose an action at the same 

time; the payoff growth can remain the same. 

 

2.5.2 Gathering 

The Gathering game proposed by (Leibo et al., 2017) involves two agents moving within a grid world 

and picking apples. Every time that an apple is collected, the agent receives a reward; then, the apple 

respawns after a certain time. Hence, the goal of the agent is to accumulate as many apples as possible. 

However, the dilemma appears because there are two agents in the same environment with identical 

conflicting objective. Apart from moving in the four directions, each agent can also use a beam to tag 

the opponent; if the other agent is tagged twice, it is temporarily removed from the environment. The 

use of the beam is not associated to any reward; therefore, this action has the only goal of removing 

the opponent to be able to collect more apples. As a consequence, the agent’s policy can be classified 

as cooperative or defecting depending on the frequency with which the beam is applied. Changing 

the respawn rate it is possible to control the number of apples in the environment, while modifying 

the timesteps in which the tagged agent is removed from the environment influences the potential rise 

of conflicts.  

Figure 2 - Six stage Centipede Game in the extensive form (Smead, 2008). 
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The game described above is only an example of a broad category of games where there is a shared 

resource, and two or more agents compete for it. Other examples are Harvest and Cleanup, which are 

presented in (Jaques et al., 2019). 
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3 Approach 

The main goal of this work is to implement an agent capable of learning the optimal behaviour in a 

multiagent environment taking into account the information obtained on the opponent's strategy. This 

objective involves multiple elements that should be analysed and integrated. The overall ambition is 

obtaining an agent which is able to learn the proper behaviour without any prior knowledge of the 

environment or the opponent. More specifically, by changing some parameters, the agent should 

adopt the values of its adversary, cooperate with other entities or exploit them. All the agent’s 

components are analysed in detail below. 

First of all, the agent must learn the optimal policy in an unknown environment without any prior 

knowledge. Indeed, the agent does not have any information before starting to interact with the 

environment. Therefore, the Reinforcement Learning paradigm is chosen. More specifically, the Q-

Learning algorithm results appropriate. As a matter of fact, Temporal Difference procedures do not 

require a model of the environment and they immediately update the value function; moreover, Q-

Learning directly computes the optimal policy. Hence, this algorithm is the most suitable solution for 

this real-time learning task. Moreover, the agent should be as general as possible, thus a tabular 

method cannot be applied since normal-size tasks are too complicated for it. As a consequence, a 

Deep Q-Learning agent is the best solution.  

Once the basic structure is defined, the agent must be placed in a multiagent environment. To simplify 

the interactions, only two entities were considered; however, the implemented agent can be 

theoretically extended to interact with more opponents. Considering the goal of creating a very 

adaptable agent which is able to cooperate or exploit the adversary, depending on parameters values, 

individual learning should be considered. In particular, the task can be classified as a mixed task since 

the agent sometimes cooperates sometimes competes. Therefore, the agent learns its policy 

independently in the common environment. The other entity is perceived as part of the environment 

by the learning agent. This might introduce instability in the learning process; however, it is worth 

noting that if the opponent’s policy is stationary, then the multiagent MDP is equivalent to a single-

agent MDP (He et al., 2016). This facilitates learning since the source of non-stationarity introduced 

by the other agent is removed.  

The central problem of this work is how to infer the opponent’s strategy; this question is characterized 

by a broad interpretation since it can be also considered as a value alignment task. After evaluating 

many different approaches presented in the literature, a possible solution is applying Inverse 

Reinforcement Learning. Indeed, the agent can understand the opponent’s intentions only through its 
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experiences; hence, opponent modelling methods which require previous knowledge must be 

excluded. Furthermore, considering the versatility of the agent, the most significant information on 

the opponent’s behaviour is its reward function. Therefore, recreating the reward that the opponent is 

maximizing provides the essential clues on its preferences. Then, this information can be used to 

adopt the opponent’s values, cooperate with the agent, or exploit it. Among the IRL algorithms, 

Maximum Entropy IRL results particularly suitable since it considers that the demonstrations 

provided by the opponent might be imperfect and subject to noise.  

As mentioned before, recreating the opponent’s preferences can be also considered as a value 

alignment problem. More specifically, the agent autonomously infers the values and intentions of the 

other entity and it is intrinsically motivated to act consistently with them. Therefore, the opponent’s 

reward obtained with the Maximum Entropy IRL algorithm can be considered as an intrinsic reward 

for the learning agent. In particular, the total reward used by the DQN algorithm, to train the agent, 

is the composition of the extrinsic and intrinsic reward. Thus, this solution differs from many 

approaches in the literature, where the opponent’s strategy is typically taken into account changing 

the learning algorithm. Here, the agent’s learning rule is not modified, and the opponent’s presence 

is considered in the agent’s reward. This overall reward is defined as a linear combination of the two 

rewards, where the extrinsic reward comes from the environment, while the intrinsic one is the 

opponent’s reward computed with MaxEnt IRL.  

𝑟𝑡𝑜𝑡𝑎𝑙 = α ∙ 𝑟𝑒𝑥𝑡𝑟𝑖𝑛𝑠𝑖𝑐 + β ∙ 𝑟𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 

The parameters α and β can be interpreted as two scaling factors. Changing their values, it is possible 

to study the combination that produces the best outcome in the agent’s learning. More specifically, 

the opponent’s reward should only bias the reward coming from the environment, to preserve the Q-

learning agent behaviour. 

Finally, the environment of social dilemmas was chosen because many real problems have these 

properties. Consequently, these settings appear to be interesting and challenging situations where 

training the developed agent. Moreover, these problems can be interpreted as games which are 

analysed by many different disciplines. Hence, results in this area can be useful in various fields of 

study. 
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4 Evaluation 

The approach presented in the previous section is now implemented concretely. The following 

paragraphs describe the realization details and how the agent is evaluated.  

4.1 Implementation  

The learning algorithm chosen for the agent is Deep Q-learning, as illustrated before. In terms of 

implementation, this method is widely used and there are many libraries that provide an optimized 

realization. The proposed agent uses the library (TensorFlow Agents) which offers many 

Reinforcement Learning agents, ready to be used and trained. More specifically, the DqnAgent is 

adopted as base agent; it is then elaborated to obtain the desired characteristics. Since this library is 

not specifically realized for a multiagent setting, an additional object, named collector, is created to 

properly collect the agents’ interactions. This collector receives the actions that the two agents want 

to execute on the environment, it collects the results from the environment and then it communicates 

them back to the agents. During these passages, the collector rearranges the data so that it is 

understandable for agents and environment. As required by the (TensorFlow Agents) library, the 

environment is completely described by a Time Step at every point of time; this is the output obtained 

when the collector communicates the agents’ actions to the environment.  

Regarding the intrinsic reward, this is computed applying the Maximum Entropy IRL to a set of 

demonstrations. In particular, during the training, the DQN agent interacts with its opponent and these 

experiences are collected in two buffers: the experience replay buffer and the demonstrations buffer. 

The first one is used by the DqnAgent to obtain the optimal policy; every experience is a triple 

composed by the initial Time Step, the agent’s action, and the following Time Step. On the other 

hand, the demonstrations buffer is required by the Maximum Entropy IRL algorithm; each 

demonstration is a complete execution of the game and it consists in a set of trajectories. Every 

trajectory is a tuple composed by the initial state of the environment, the action chosen and the 

following state (here Time Steps are not required). The opponent’s reward, associated to the current 

state and obtained with the MaxEnt IRL algorithm, is combined with the environment reward by the 

collector. This overall reward is then associated to the specific agent’s action and stored in the proper 

Time Step, which forms an experience in the experience replay buffer.  

Regarding the Maximum Entropy IRL implementation, this algorithm requires the transition 

dynamics as input. These dynamics are a probability distribution describing the likelihood of 

experiencing a certain state, given the probability of choosing a specific action in the previous state; 

this distribution is empirically computed from the agent’s experiences. This approach is feasible since 
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the environments considered are relatively simple; however, a model-free IRL algorithm could be 

used in a future version.  

 

4.2 Experimental settings 

The implemented agent is initially tested on a simple environment represented by the Centipede game 

in its normal form. Indeed, the structure of this game is similar to the classic Prisoner’s Dilemma, but 

each execution has more than one step, allowing more complicated strategies. Recalling that the 

agent’s overall reward is 𝑟𝑡𝑜𝑡𝑎𝑙 = α ∙ 𝑟𝑒𝑥𝑡𝑟𝑖𝑛𝑠𝑖𝑐 + β ∙ 𝑟𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐, the goal of these tests is to investigate 

how the agent's behaviour changes by varying the value of the parameter β that multiplies the intrinsic 

reward. Moreover, a study on a population of agents is also conducted for this game. Considering 

different compositions of the population, the objective is analysing the emerging behaviour of the 

learning agents. 

After a deep examination of the Centipede game environment, the agent is applied to a more 

complicated situation, the Apple Picking game. More specifically, this game is a variation of 

Gathering, which was described in the previous sections. A similar study on the β parameter is 

realized for this game as well.  

Complete details of the two environments and the agent’s parameters are provided in the following 

paragraphs. 

 

4.2.1 Simulation Environments 

Both the simulation environments are slightly modified to be suitable for the goal of the tests. They 

are presented in detail below, along with a description of the state representation that the agent 

receives.  

 

4.2.1.1 Centipede game 

In the Centipede game environment two players have to choose how to split a growing sum of money, 

as described previously. In particular, the experiments were executed using the normal form of the 

game and the maximum number of steps is six. Thus, the two players select the action (“take” or 

“pass”) simultaneously and the game continues until at least one agent selects “take” or the sixth step 

is reached. Compared to the original formulation, the only change refers to how to divide the money 

on the last step. More specifically, if both agents select “pass” on the sixth step, the amount of money 
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is equally shared, while if both choose “take” there is a penalty, and each agent receives half of the 

sum minus the penalty. Indeed, the goal was clearly differentiating a cooperative policy from a 

defecting one; with this mechanism of dividing the total sum, a cooperative strategy which lasts until 

the end is rewarded, while a defecting one has the additional risk of being penalized if the opponent 

behaves in the same way.  

The starting amount is 2, every step it grows by 2 and the splitting rule is 𝑦 =
1

2
𝑥 + 1 for the defecting 

agent and 𝑥 − 𝑦 for the cooperative one; the penalty is 1 on each agent. The following table illustrates 

the agents’ payoffs in every situation; if anyone takes, the game terminates immediately. 

 

Step 1 Step 2 Step 3 

Total: 2 Total: 4 Total: 6 

 

 Agent 1 

A
g
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t 
2

 

 Pass Take 

P
as

s 0, 0 0, 2 

T
ak

e 2, 0 0, 0 

 

 Agent 1 

A
g
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t 
2

 

 Pass Take 

P
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s 0, 0 1, 3 

T
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e 1, 3 1, 1 
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 Pass Take 
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s 0, 0 2, 4 

T
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e 4, 2 2, 2 

Step 4 Step 5 Step 6 

Total: 8 Total: 10 Total: 12 

 

 Agent 1 
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t 
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 Pass Take 

P
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s 0, 0 3, 5 

T
ak

e 5, 3 3, 3 

 

 Agent 1 

A
g
en

t 
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 Pass Take 
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s 0, 0 4, 6 

T
ak

e 6, 4 4, 4 

 

 Agent 1 

A
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2

 

 Pass Take 

P
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s 6, 6 5, 7 

T
ak

e 7, 5 5, 5 

Table 4 - Centipede game payoffs. 

 



43 

Regarding the state representation, each agent receives an array of four elements representing the 

current step number, the previous action of agent 1, the previous action of agent 2, and the current 

sum of money. 

 

4.2.1.2 Apple Picking 

The Apple Picking game is a simplification of Gathering from different points of view. First of all, 

apples do not respawn; when the agents collect all of them, the game terminates. Moreover, the agents 

can only move inside the grid world to collect apples, thus the use of the beam is not considered in 

this version. Because of that, another criterion is required to determine if a policy is cooperative or 

not. For this reason, the grid world is symmetrically structured: the agents always start from opposite 

positions and the total number of apples is divided so as to have half of the apples closer to one agent 

and half closer to the other. Therefore, two agents cooperate if they collect apples in their half, equally 

splitting them. On the other hand, if one agent tries to obtain all the apples available, its behaviour is 

considered non-cooperative.  

The following scheme describes the initial situation of every Apple Picking game. There are 2 agents 

and 6 apples; the agents can move freely inside the 4 × 4 grid, but they cannot go outside. 

 

Figure 3 - Apple Picking initial state. 

The dotted line represents the ideal division of the grid world, illustrating which apples each agent 

should harvest. When the apples terminate, the game ends; however, another stopping criteria is 

introduced to always obtain finite games: after executing 100 actions, the game is over.  

Each agent has four different actions available: up, down, right and left. The agent obtains a reward 

of 10 for every apple collected, while if it tries to move outside the grid, it receives a penalty of -0.25. 

Moreover, in order to encourage the agents to harvest apples as quickly as possible, every empty cell 

is associated to a penalty of -0.1. The same punishment is applied if an agent tries to access a cell 
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which is already occupied by the other agent. Finally, to solve the conflict that may arise if both 

agents choose an action that leads them to land on the same cell, agent 1 is considered as acting first 

only in this specific case. Therefore, it is the one that occupies the position after the turn.  

In terms of state representation, each agent receives a 4 × 4 array describing the position of agents 

and remaining apples.  

 

4.2.2 Simulation Parameters  

The learning agent’s implementation entails the definition of many parameters and properties. First 

of all, the DqnAgent from the (TensorFlow Agents) library requires the specification of several values. 

For some of them, the choice was selecting standard figures since they are reasonable for this 

situation. These main parameters are the following: 

- 𝑟𝑒𝑝𝑙𝑎𝑦_𝑏𝑢𝑓𝑓𝑒𝑟_𝑚𝑎𝑥_𝑙𝑒𝑛𝑔𝑡ℎ =  100000, this value specifies the maximum number of 

experiences saved at the same time in the experience replay buffer; 

- 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 =  64, this is the dimension of the mini-batch of experiences sampled from the 

replay buffer for one training step; 

- 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 =  10−3 defines the learning rate of the Adam optimizer, which is the 

optimizer used to train the DqnAgent. 

In addition to these elements, the DqnAgent requires further parameters which were chosen during 

some preliminary trainings: 

- 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 =  0.2 is the epsilon-greedy parameter. More specifically, the DqnAgent adopts an 

epsilon-greedy collect policy; this means that the agent selects the best next action most of 

the time (probability 1 − 𝜀), while a random action is chosen with probability 𝜀. Therefore, 

this figure regulates the exploration level of the learning agent.  

- 𝑔𝑎𝑚𝑚𝑎 =  0.99 is the discount factor of the Q-learning algorithm which expresses the 

present value of future rewards.  

Furthermore, during the Centipede game training focused on the behaviour of the single agent against 

different deterministic opponents, two additional parameters were specified to improve the stability 

of learning: 𝑡𝑎𝑟𝑔𝑒𝑡_𝑢𝑝𝑑𝑎𝑡𝑒_𝑝𝑒𝑟𝑖𝑜𝑑 = 20 and 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡_𝑐𝑙𝑖𝑝𝑝𝑖𝑛𝑔 =  10. These two values 

indicate the frequency (in terms of training steps) with which the target network of the DqnAgent is 

updated and the norm length to clip gradients. These parameters only favour the learning stability; 

thus, they are used exclusively in the simulations where the goal is studying in detail the strategy of 
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a single agent. On the contrary, standard figures for them are chosen in the Centipede game population 

trainings. 

Finally, the most important parameter for the DqnAgent describes the neural network structure. In 

particular, the two games examined have different complexities; therefore, the structure of the neural 

networks is modified accordingly. The Centipede game has very few states and only two actions; 

hence, a single layer neural network with 64 nodes is enough. On the other hand, the Apple Picking 

environment is significantly more complicated, thus a two layers neural network with 64 nodes for 

each layer is chosen.  

Apart from the Reinforcement Learning paradigm, the Maximum Entropy IRL algorithm requires the 

definition of different parameters as well. These are described in the following and chosen during 

another preliminary study. It is worth noting that the difference in complexity between the two games 

entails different values for some of these parameters: 

- 𝑎𝑙𝑓𝑎 =  0.01 is the step size of the Gradient Descent optimization algorithm, this value 

should be small enough to allow the optimum to be reached, but not too small otherwise the 

algorithm results very slow. This figure is adopted for both the environments.  

- 𝑛𝑢𝑚_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠_𝑚𝑎𝑥_𝑒𝑛𝑡𝑟𝑜𝑝𝑦 indicates the number of iterations of the Maximum Entropy 

IRL algorithm. Indeed, according to the stopping condition previously illustrated, the 

algorithm iterates until the gradient is sufficiently close to 0 or it is not possible to obtain 

further progress. Hence, some specific trainings were completed to understand how many 

iterations were required to satisfy this condition. For the Centipede game, the chosen value is 

𝑛𝑢𝑚_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠_𝑚𝑎𝑥_𝑒𝑛𝑡𝑟𝑜𝑝𝑦 =  100, which guarantees the achievement of the stopping 

condition with a large margin. However, this figure is quite high; therefore, for the Apple 

Picking game the selected value is 𝑛𝑢𝑚_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠_𝑚𝑎𝑥_𝑒𝑛𝑡𝑟𝑜𝑝𝑦 =  50, to reduce the 

execution time. 

- 𝑚𝑎𝑥_𝑑𝑒𝑚𝑜𝑛𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝑠 specifies the maximum number of demonstrations collected in the 

demonstrations buffer and it depends on the complexity of the game. As a matter of fact, the 

number of examples required to infer the opponent’s reward increases with the complexity of 

the task. As a consequence, the chosen figures are: 𝑚𝑎𝑥_𝑑𝑒𝑚𝑜𝑛𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝑠 =  50 for the 

Centipede game, while 𝑚𝑎𝑥_𝑑𝑒𝑚𝑜𝑛𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = 100 in the Apple Picking environment.  

Furthermore, recomputing the cost vector of the opponent every time that a new demonstration is 

acquired is not particularly meaningful, because the values will not probably change significantly. In 

addition to it, this approach is not efficient. Hence, a further parameter is added to specify the 

frequency of execution of the Maximum Entropy IRL algorithm. In particular, the value selected 



46 

corresponds to the 𝑚𝑎𝑥_𝑑𝑒𝑚𝑜𝑛𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝑠 figure: the cost vector is recomputed only when the 

demonstrations buffer is full of completely new examples.  

Finally, applying the Maximum Entropy IRL algorithm involves the definition of the feature function. 

More specifically, given the current state, this function returns a set of features associated to it; the 

opponent’s cost vector is a weighted combination of these features. As already mentioned, a possible 

solution is choosing raw features which means using directly the state representation. For the 

Centipede game case, this is the best choice, since the state is very simple, and it already contains the 

essential elements that influence the reward. On the other hand, for the Apple Picking environment a 

custom function might be suitable. In particular, the initial hypothesis was extracting the following 

information: 

(𝑛𝑢𝑚.  𝑎𝑝𝑝𝑙𝑒𝑠,   𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒,   𝑢𝑝,   𝑑𝑜𝑤𝑛,   𝑟𝑖𝑔ℎ𝑡,   𝑙𝑒𝑓𝑡) 

where 𝑛𝑢𝑚. 𝑎𝑝𝑝𝑙𝑒𝑠 is the number of remaining apples in the grid world, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 is the distance 

from the closest apple and the last four elements represent the direction of the closest apple expressed 

considering the orientation components. However, these features do not produce satisfying results, as 

shown in the following. Therefore, raw features are adopted also for the Apple Picking game.  

All the previous parameters are set for all simulations; on the contrary, the properties that vary during 

the tests concern the type of opponent and the multiplying factor of the opponent's reward. For the 

Centipede game population study, the composition of the population is changed in each test. 

Regarding the type of opponents, the Centipede game trainings applied two different agents: an 

always cooperative entity and a defecting one. More specifically, the first one always plays “pass”, 

while the defecting agent choses “pass” until the last step, when it selects “take”. For the Apple 

Picking environment, only one deterministic agent was used; the following image illustrates its 

sequence of actions. 

 

Figure 4 - Strategy of the deterministic agent in the Apple Picking game. 
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The strategy illustrated in the figure above supposes that the deterministic agent is agent 2, which 

starts from the lower right cell and then selects the actions described by the arrows. Hence, following 

the previous definition of cooperation and defection for this game, this agent is cooperative since it 

only harvests apples in its half of the grid world. This sequence of actions is repeated until one of the 

two stopping criteria is met.  

Regarding the opponent’s reward parameter, different possible values are explored. The resulting 

behaviours and the considerations relating to them are illustrated in the following.  

 

4.3 Results representation 

In order to study the learning performance and understand the predominant policy, the most 

significant measure is the average reward. Therefore, this quantity and its standard deviation are 

computed for all the simulations. In addition to it, the final policy is also generally collected, 

especially for the trainings where this was not deductible from the average reward.  

Finally, the Centipede game population trainings require an additional method to represent the results. 

The idea was producing graphs which are similar to the replicator dynamics3 illustrated in (K. Tuyls 

& Stone, 2018). More specifically, the most interesting policies that have been identified are “Always 

pass”, “Always take”, and “Take last step”. The first one characterizes a cooperative agent which 

always selects “pass”, whereas the remaining two are defecting policies. In “Always take” the agent 

chooses “take” immediately, while in “Take last step” the entity passes until the last step, when it 

selects “take”. This last strategy is particularly worthy of note because it is the optimal policy against 

a cooperative agent: it guarantees to obtain the highest amount of money. In order to represent the 

evolution of the policies among the agents, every time that a loop of game executions is completed 

the final policy of each agent is evaluated. In particular, in the Centipede game population trainings, 

each agent plays against all the remaining agents following a round robin mechanism. In a single 

simulation, this loop of games is executed a chosen number of times. At the end of each loop, the 

agents’ policies are classified in “Always pass”, “Always take”, “Take last step”, and “Other” (this 

last category has been introduced to express all the strategies which cannot be defined as belonging 

to the first three classes). Therefore, depending on the number of loops in every simulation, it is 

possible to have an estimate of how many agents choose each policy over time. These data are then 

displayed on a tetrahedron, where each vertex represents a policy. Every point on the graph expresses 

 
3 Replicator dynamics describe how the population behaviour evolves over time (Cressman & Tao, 2014). These game 

dynamics are computed using the replicator equation, introduced by (Schuster & Sigmund, 1983; Taylor & Jonker, 1978), 

which is an important differential equation in the field of Evolutionary Game Theory.  
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the policies composition at that moment of the simulation. These points are connected by arrows to 

clarify the direction of change. A concrete example and a graph are illustrated below to clarify this 

representation. 

In the simulations realized, the number of complete loops of games is 20. Therefore, for each 

simulation there are 20 policy evaluation and the starting point. The position of each point in the 

graph expresses the policies composition in terms of the percentage of agents which apply “Always 

pass”, “Always take”, “Take last step”, and “Other”; the arrows explain the direction of variation 

over time. 

 

Figure 5 - Centipede game population simulation: example of the policy evolution graph. 

 

4.4 Experimental results 

The results of different simulations executed on the Centipede game and the Apple Picking game are 

collected in this section. In particular, the outcomes are subdivided depending on the game used as 

environment for the developed agent. All tests were realized preforming 10 simulations and 

considering the average values, unless otherwise specified.  

4.4.1 Centipede game 

The first set of experiments consists in training a classic DqnAgent against two deterministic agents 

in order to study the strategies learnt by the pure Reinforcement Learning agent and provide a baseline 

for the following trainings.  
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The first group of simulations involves the pure DqnAgent and a deterministic agent which plays 

“Always cooperate”, thus it always selects “pass”. The game is iterated 5000 times in each training, 

because the agent reaches its maximum reward in this time span. 

 

Figure 6 - Centipede game: pure DqnAgent against an always cooperative agent. 

According to the graph, the average reward is practically stable at the value of 7. This clearly means 

that the Reinforcement Learning agent learns to defect its opponent after 1000 rounds and the learnt 

strategy is “Take last step”. Therefore, the RL agent behaves as expected and it reaches its optimal 

policy quickly.  

The same DqnAgent was tested against a deterministic agent that plays the strategy “Take last step”, 

which consists in passing until the last step and choose “take” then. However, playing against this 

agent results harder than the case of the cooperative agent and the learning oscillates significantly. 

For this reason, the game is iterated 20000 times in each training. 
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Figure 7 - Centipede game: pure DqnAgent against an agent which plays "Take last step". 

As shown in the image, after 13000 rounds the average reward is approximately stable on 6. 

Considering the final states collected in each simulation, the agent learns to take the sum of money 

in the second to last step in 80% of the cases; thus, the DqnAgent understands how to avoid being 

exploited by a defecting agent which waits until the last step to choose “take”. However, this strategy 

results harder to be learnt because significantly more iterations are required.  

The previous experiments provide the baseline behaviour of the pure DqnAgent, this allows to 

understand if the introduction of the intrinsic reward in the agent improves its performance towards 

the desired goal. The following simulations involve the developed agent and the cooperative 

deterministic entity which plays “Always pass”. As previously clarified, the agent’s overall reward is 

𝑟𝑡𝑜𝑡𝑎𝑙 = α ∙ 𝑟𝑒𝑥𝑡𝑟𝑖𝑛𝑠𝑖𝑐 + β ∙ 𝑟𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐; hence, the objective is studying different multiplying factors β 

for the intrinsic reward in order to obtain cooperation or defection, while α is set to 1. More 

specifically, the intrinsic reward represents the opponent’s reward, and the adversary plays a 

cooperative strategy; thus, cooperation is favoured if the opponent’s reward is added with a positive 

multiplying factor to the agent’s extrinsic reward. Indeed, in order to have a cooperative behaviour in 

the developed agent, the overall reward function should be positively influenced by the rewards of a 

deterministic cooperative agent. On the other hand, if the agent wants to exploit a cooperative enemy, 

the opponent’s reward should be subtracted from the agent’s extrinsic reward. The key idea is that 

the best situation for a cooperative agent is probably not convenient for an exploiting agent. A similar 

reasoning can be adopted in the case of a non-cooperative opponent. Given these considerations, the 
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following graphs show the behaviour of the developed agent for different values of the multiplying 

parameter β.  

The emergence of cooperation was firstly examined; the graph below illustrates the average reward 

for different positive values of β. More specifically, only the most significant values of β are 

represented, among all the figures tested.  

 

Figure 8 - Centipede game: developed agent against cooperative agent, cooperation case. 

According to the image, a multiplying parameter β = 5.0 produces an average reward which is 

approximately 6. Therefore, using the cooperative opponent’s reward as intrinsic reward favours the 

emergence of cooperation. Indeed, the pure RL agent would learn to exploit its opponent without this 

additional information, as shown by the black line which represents the baseline behaviour.  

On the other hand, the effect of this parameter was studied also for the opponent’s exploitation. In 

particular, the pure RL agent learns to exploit the cooperative adversary. Therefore, the developed 

agent can be considered better than the DqnAgent if it reduces the number of iterations required to 

reach the stable defecting policy. Different values of β were tested between β = 0 and β = −5, the 

average reward for some of them is illustrated below. 
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Figure 9 - Centipede game: developed agent against cooperative agent, defection case. 

As shown in the graph, the only parameter that entails a steeper increase of the average reward, 

compared to the baseline, is β = −2.7. Moreover, the presence of the intrinsic reward produces a 

fluctuating behaviour; this instability is probably due to the approximation introduced by the 

Maximum Entropy IRL algorithm, as analysed in the following. An additional graph which compares 

less parameters and zooms on the interesting region is provided below.  

 

Figure 10 - Centipede game: developed agent against cooperative agent, defection case – zoom. 

Even if β = −2.7 produces an average reward which increases slightly faster than the baseline, then 

it is significantly instable compared to the pure RL agent case. Therefore, the use of the intrinsic 



53 

reward does not appear particularly useful in this case. This might be due to the simplicity of the 

game; indeed, the pure RL agent learns the optimal policy that maximizes the reward, which 

corresponds to the “Take last step” strategy. However, since the number of states and actions is 

considerably limited, the pure RL agent reaches the optimal policy very quickly. Hence, obtaining a 

significant improvement with the opponent’s reward is not easy. Moreover, the Centipede game is 

not a zero-sum game; therefore, the opponent’s worst situation might not correspond to the agent’s 

best outcome.  

In addition to the cooperative opponent, the other adversary chosen to test the exploiting behaviour 

of the developed agent is a defecting entity which plays “Take last step”. As illustrated before, 

learning against this agent results harder, thus a higher number of iterations is required.  

 

Figure 11 - Centipede game: developed agent against non-cooperative agent, defection case. 

According to the graph, the use of the opponent’s reward favours a higher average reward at the 

beginning of the training, probably because the agent can faster converge to a more convenient 

strategy using this information. However, this decreases under the baseline in the following iterations; 

this behaviour might be explained considering that the opponent’s worst outcome does not necessarily 

correspond to the agent’s best state. For some values of β, the average reward results approximately 

similar to the baseline towards the end of the simulation.  
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Another chart with the most significant figures for β is provided to clarify the described tendency.  

 

Figure 12 - Centipede game: developed agent against non-cooperative agent, defection case - significant values. 

As illustrated in the image, β = −2.5 produces the best behaviour since the average reward increases 

faster than the case β = 0 at the beginning, while it is comparable to the baseline at the end of the 

simulation. Moreover, considering the final states collected during the training for β = −2.5, the 

learnt policy consists in taking the amount of money in the second to last step in 80% of the cases. 

This corresponds to the behaviour of the pure RL agent. 

Even if the exploitation experiments did not exhibit a significant advantage in using the opponent 

modelling agent instead of the pure RL entity, it is worth noting that the best parameters are similar. 

Indeed, whether the opponent is cooperative or chooses “take” on the last step, the multiplying factor 

β that entails the best results is analogous: β = −2.7 and β = −2.5 respectively. 

 

Regarding the population experiments, the goal was studying the emerging behaviour with several 

compositions of the population, as mentioned before. During the trainings, each agent plays against 

all the other ones in a round robin tournament. This loop of games is performed a defined number of 

times in every simulation. More specifically, four different agents were used: two deterministic 

entities and two learning ones. The deterministic agents play “Always cooperate” and “Take last step” 

respectively, while the remaining entities are the developed agent and the pure RL agent (DqnAgent). 

For the developed agent, the value chosen for the multiplying factor β is β = 5.0 and it is constant 

for all simulations. Indeed, a positive parameter β produces an agent which aligns with its opponent. 
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This means that it will tend to learn a cooperative or defecting strategy, depending on the opponent’s 

behaviour. The specific value β = 5.0 was chosen because it produced the best cooperative behaviour 

in the previous experiments. Other specific parameters that were selected for these simulations are 

the number of complete loops executed 𝑛𝑢𝑚_𝑙𝑜𝑜𝑝𝑠 = 20, the population dimension 𝑡𝑜𝑡_𝑎𝑔𝑒𝑛𝑡𝑠 =

 20, and the number of matches played between the same couple 𝑛𝑢𝑚_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 =  50 for each 

turn of the round robin tournament. The following set of graphs illustrates the most significant results 

for different populations; both the average reward of learning agents and the overall policy evolution 

are displayed.  

The first population examined is composed by a single RL agent and 19 deterministic cooperative 

agents; it provides the baseline for this type of simulations. 

Average reward of learning agents Policy evolution considering the entire population 

 

 

Figure 13 - Centipede game population: 1 RL agent and 19 cooperative agents. 
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After these basic trainings, the developed agent is introduced in the population which is thus formed 

by 1 RL agent, 1 opponent modelling agent and 18 cooperative agents. 

Average reward of learning agents Policy evolution considering the entire population 

 

 

Figure 14 - Centipede game population: 1 RL agent, 1 opponent modelling agent and 18 cooperative agents. 

 

The number of learning agent is further increased; the following graphs refer to a population of 2 RL 

agents, 2 opponent modelling agents and 16 deterministic cooperative agents. 

Average reward of learning agents Policy evolution considering the entire population 

 

 

Figure 15 - Centipede game population: 2 RL agents, 2 opponent modelling agents and 16 cooperative agents. 
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The next images illustrate the outcomes when half of the population is composed by learning agents. 

More specifically, these are 5 RL agents, 5 opponent modelling agents and 10 deterministic 

cooperative agents. 

Average reward of learning agents Policy evolution considering the entire population 

 

 

Figure 16 - Centipede game population: 5 RL agents, 5 opponent modelling agents and 10 cooperative agents. 
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Keeping the number of learning agents fixed, another set of experiments consists in modifying the 

type of deterministic agents. The following graphs refer to 5 RL agents, 5 opponent modelling agents, 

5 deterministic cooperative agents and 5 deterministic defecting agents. 

Average reward of learning agents Policy evolution considering the entire population 

 

 

Figure 17 - Centipede game population: 5 RL agents, 5 opponent modelling agents, 5 cooperative agents and 5 defecting agents. 

 

The number of learning agents is increased again, and the images below describe the outcomes with 

a population of 8 RL agents, 8 opponent modelling agents and 4 deterministic cooperative agents. 

Average reward of learning agents Policy evolution considering the entire population 

 

 

Figure 18 - Centipede game population: 8 RL agents, 8 opponent modelling agents and 4 cooperative agents. 
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It is also worth considering the results of the population with the same number of learning agents, but 

different deterministic entities. The graphs presented refer to the case of 8 RL agents, 8 opponent 

modelling agents, 2 deterministic cooperative agents and 2 deterministic defecting agents.  

Average reward of learning agents Policy evolution considering the entire population 

 

 

Figure 19 - Centipede game population: 8 RL agents, 8 opponent modelling agents, 2 cooperative agents and 2 defecting agents. 

 

Finally, the last population introduced is constituted by learning agents only. More specifically, there 

are 10 RL agents and 10 opponent modelling agents. 

Average reward of learning agents Policy evolution considering the entire population 

 

 

Figure 20 - Centipede game population: 10 RL agents and 10 opponent modelling agents. 
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Overall, considering the average reward and the policies evolution of various populations, some 

observations are possible. First of all, increasing the number of learning agents, the average reward 

is characterized by a greater standard deviation. This underlines a higher instability in the learning 

process, as expected. Moreover, the average rewards decrease, and the policy evolution graphs are 

progressively shifted towards the “Always take” policy. Therefore, this appears the dominant 

strategy. A possible explanation could be linked to the Nash equilibrium for this game, which is taking 

on the first step: it results that the growth of instability favours the emergence of this equilibrium.  

Furthermore, comparing the experiments that have the same number of learning agents but a different 

composition of deterministic entities, there is a difference in the average reward. More specifically, 

if half of the deterministic agents play “Always defect”, the average reward is lower. Considering the 

graph that illustrates the policies evolution, it is clear that the presence of defecting agents entails a 

higher number of learning entities which play a non-cooperative strategy. Indeed, the Reinforcement 

Learning and the opponent modelling agents are encouraged to play “Always take” with defecting 

enemies, because in the first case this is the optimal policy against them while the second type of 

agents is aligning with the opponent’s strategy.  
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4.4.2 Apple Picking 

Following the approach chosen for the experiments in the Centipede game, the initial set of 

simulations involves a classic DqnAgent agent and aims to provide a baseline behaviour for all the 

other trainings. The game is iterated 8000 times in each simulation. The average reward and its 

standard deviation are illustrated in the following graph. 

 

Figure 21 - Apple Picking environment: pure DqnAgent average reward. 

As shown in the image, the average reward is nearly constant, but a significant standard deviation is 

observed over time. This behaviour might be due to the fact that there is not a single optimal strategy 

to collect all the apples using the fewest possible moves. Indeed, there are multiple policies that lead 

to the same goal; therefore, the possibility of converging to different paths within the grid world might 

produce this remarkable variance.  

Considering the sequence of actions at the end of each simulation, the agent learns a finite strategy in 

70% of the trainings. All these policies are very similar to each other and the most frequent one is 

described in the following image. 
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Figure 22 - Apple Picking environment: pure DqnAgent’s most frequent strategy. 

According to the image, the pure RL agent learns to pick 5 out of 6 apples available. This corresponds 

to the maximum number of apples that the agent can collect; in fact, the opponent moves in the field 

as well, starting from the bottom right corner, and its first action is gathering the apple that is closest 

to it. 

 

In order to progressively study the agent’s behaviour, two different types of simulations were 

executed. The first case takes advantage of the symmetry of the grid world to simplify the use of the 

opponent’s reward. More specifically, in this setting the agent tries to adopt the opponent’s strategy 

aligning with its values. Therefore, before getting the opponent's reward from the cost vector, the 

state is rotated by 180 degrees so that the agent can consider the state from the opponent's point of 

view. On the opposite, the other group of simulations eliminates this simplification and considers the 

original state; thus, this is the most general case. 

However, training the developed agent in the Apple Picking environment results significantly more 

challenging, compared to the Centipede game. These difficulties are mainly linked to the Maximum 

Entropy IRL algorithm, which is an iterative procedure that considers all the possible states of the 

game. Therefore, the concrete implementation of the algorithm was slightly modified to increase the 

efficiency. In addition to it, the demonstrations collected for the IRL procedure contains simplified 

states. More specifically, the goal of the algorithm is inferring the opponent’s reward which depends 

on the apples position only in this specific case. Thus, the state contains just the location of the 

remaining apples and the position of the opponent. Removing the opponent modelling agent’s 

position does not affect the computation of the cost vector and reduces the number of states.  

Given these changes, the goal of the first set of experiments which involves the opponent modelling 

agent is determining the best feature function. The simplified approach was adopted, and the agent 



63 

considers the grid world state from the opponent’s point of view, when computing its reward. Since 

this is a preliminary study that aims to qualitatively investigate which feature function is most 

suitable, only one simulation was executed for each multiplying factor β. More specifically, the two 

feature functions evaluated are a custom feature function and a raw representation of the state. The 

first one extracts the vector (𝑛𝑢𝑚.  𝑎𝑝𝑝𝑙𝑒𝑠,   𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒,   𝑢𝑝,   𝑑𝑜𝑤𝑛,   𝑟𝑖𝑔ℎ𝑡,   𝑙𝑒𝑓𝑡) from each state, 

where 𝑛𝑢𝑚. 𝑎𝑝𝑝𝑙𝑒𝑠 is the number of remaining apples in the grid world, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 is the distance 

from the closest apple and the last four elements represent the direction of the closest apple expressed 

considering the orientation components. On the other hand, the second approach consists in using 

directly the raw state; therefore, the feature function is an identity function.  
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The following graphs compare the opponent modelling agent’s behaviour with different feature 

functions for β = 1.0, β = 2.5 and β = 5.0. 

 

Custom feature function Raw features 
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Figure 23 - Apple Picking environment: opponent modelling agent with different feature functions. 

According to the graphs, the average reward is characterized by peaks, either up or down, in all 

simulations. A possible explanation might be linked to the use of an epsilon-greedy policy for the 

learning agent; therefore, random actions could produce these sudden variations of behaviour.  
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Analysing the outcomes, raw features produce a significantly better behaviour which is comparable 

with the baseline average reward presented before. Moreover, it appears that a too high multiplying 

factor β negatively affects the average reward. All things considered, the raw features approach is the 

most suitable and the simulations will focus on β values around β = 2.5.  

After defining the feature function for the Maximum Entropy IRL algorithm, the next group of 

simulations concerns the first type of trainings which considers the symmetry of the grid world to 

encourage the agent’s learning. There are 8000 rounds of the Apple Picking game for each simulation 

and the learning agent always plays against the deterministic entity previously described. Since the 

goal is aligning with the opponent’s values and the agent perceives the state from its adversary’s point 

of view, only positive multiplying factors are studied. The following graph illustrates the average 

reward for different positive values of β. 

 

Figure 24 - Apple Picking environment with symmetry: opponent modelling agent's average reward. 

According to the image, the average reward is lower compared to the outcome of the pure RL agent. 

Moreover, considering the series of actions at the end of each training, the agent converges to a finite 

policy in fewer simulations. This behaviour might be due to the instability introduced by the 

Maximum Entropy IRL algorithm which approximates the opponent’s preferences. Furthermore, the 

agent is encouraged to collect apples as fast as possible associating a penalty to the empty cells: the 

opponent’s reward could cancel this penalty promoting a wandering strategy which entails a lower 

extrinsic average reward and an infinite policy. However, the finite strategies obtained are different 

from the policies found by the DqnAgent since they result more cooperative. It is worth noting that 

the agent learns the exact strategy of its opponent in more than one simulation.  
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Considering the average reward and the final strategies learnt by the agent, the best outcome is 

obtained when β = 2.5; indeed, the agent converges to a finite policy in 30% of the simulations and 

20% of the time the opponent’s exact strategy is adopted. This policy is illustrated in the scheme 

below. 

 

Figure 25 - Apple Picking environment with symmetry: learning agent's strategy when aligning with its opponent. 

 

Overall, the outcomes of this set of experiments highlight that the introduction of the opponent’s 

values produces more instability, and the agent converges to finite policies in fewer simulations. As 

a matter of fact, the agent should learn both the adversary’s preferences and its optimal policy. Thus, 

learning a stable strategy results more challenging. However, the intrinsic reward positively 

influences the learnt strategies which appear more cooperative. Moreover, the emergence of a policy 

which is identical to the opponent’s strategy, but which has never been experienced in pure RL 

trainings, is a clear evidence that the learning agent is properly inferring and using the opponent’s 

values.  

The last set of trainings studies the most general case where no additional information is used apart 

from the opponent’s past actions. Therefore, the learning agent computes the opponent’s cost vector 

using previous demonstrations to obtain its adversary’s reward for each position that the agent visits. 

However, preliminary trainings do not appear particularly promising. One of the reasons of this 

behaviour might be linked to the states collected as opponent’s demonstrations. Indeed, the opponent 

plays a deterministic strategy, and it experiences only few states which are far from the positions that 

the learning agent could visit at the beginning of the game. Therefore, the opponent’s reward inferred 

with the Maximum Entropy IRL algorithm might not be accurate for states which never appear in 

demonstrations. Since these situations are crucially the initial states of the learning agent, considering 

the approximation of the opponent’s values could be misleading. Consequently, the implementation 

of the agent was slightly modified for these experiments only, in order to remember which states the 
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adversary visited. More specifically, the opponent’s reward computed with the IRL procedure is 

considered in the overall reward exclusively if the specific state is present in the adversary’s 

demonstrations; the environment feedback is applied alone otherwise. This updated agent is trained 

in the Apple Picking environment for different values of the multiplying factor β to study the 

emergence of cooperation or the ability to exploit its opponent. In particular, the opponent’s reward 

associated to a specific position expresses how much that location is favourable or not from the 

adversary’s point of view. Therefore, positive values of β favours the opponent’s exploitation since 

the learning agent positively evaluates the same position of its opponent. On the other hand, negative 

parameters should discourage the learning agent to move towards the opponent’s most convenient 

states. 

The agent’s behaviour for different positive values of β was firstly studied. The following graph 

compares the average reward of various simulations. 

 

Figure 26 - Apple Picking environment: opponent modelling agent's average reward for positive values of β. 

As shown in the image, the average reward is lower compared to the trainings of the pure RL agent. 

Moreover, the number of simulations in which the agent converges to a finite strategy decreases as 

the value of β increases. Considering the finite strategies obtained, the agent tries to behave non-

cooperatively in most cases; however, the exact opponent’s policy emerges in few simulations.  

Comparing the outcomes for different values of the multiplying factor, β = 1.0 entails a slightly 

higher average reward; however, the agent learns a finite policy in fewer simulations, compared to 

the case of β = 1.5. 
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As an example, if β = 1.5 the agent learns a finite strategy in 60% of simulations; the most frequent 

policy is illustrated below.  

 

Figure 27 - Apple Picking environment: learning agent's strategy when exploiting its opponent, β =1.5. 

According to the graph, the strategy obtained is very similar to the opponent’s policy, illustrated in 

the previous image. However, this is modified to harvest an additional apple. This behaviour clarifies 

the influence of the opponent’s rewards, but also the intention of exploit the other entity collecting 

one of its apples.  

 

On the other hand, the opponent modelling agent’s learning process was studied for negative values 

of β as well. Given the previous considerations, the agent should behave more cooperatively in this 

case. The image below compares the average reward for different values of β. 

 

Figure 28 - Apple Picking environment: opponent modelling agent's average reward for negative values of β. 
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According to the graph, also these simulations highlight that the average reward is lower compared 

to the DqnAgent. Furthermore, learning a finite strategy results harder with negative values of β, 

compared to the previous trainings. However, considering the few finite policies obtained, they result 

more cooperative. For example, for β = −1.5, the agent develops a finite strategy only in 10% of 

simulations; this policy is illustrated in the following scheme.  

 

Figure 29 - Apple Picking environment: learning agent's strategy when cooperating with its opponent, β =-1.5. 

 

All things considered, learning in this more general setting is harder and the final behaviour oscillates 

significantly. More specifically, the average reward is lower compared to the pure RL trainings and 

finite policies are obtained less frequently, especially for negative values of β. However, it is worth 

noting that all the final strategies are different from the policies developed by the DqnAgent; this 

proves that considering the opponent’s rewards influences the agent’s behaviour.  

 

4.5 Discussion 

The central idea of the implemented agent, which consists in modelling the opponent’s values using 

Inverse Reinforcement Learning, is adopted by different research studies presented in the literature. 

However, the novelty concerns the way in which this information is integrated with the agent’s 

learning algorithm. Indeed, the goal is to leave the learning algorithm unchanged and integrate the 

opponent’s information, obtained with IRL, in the agent’s reward. This favours the interpretation 

proposed where the opponent’s reward is properly manipulated and considered as an intrinsic reward 

for the learning agent.  

Considering the outcomes obtained during simulations in different environments, it results clear that 

the opponent’s reward can be inferred from demonstrations and it can be used to influence the 
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behaviour of the developed agent. Therefore, it can learn the proper strategy taking into account this 

information. However, the chosen approach to combine the intrinsic and extrinsic rewards does not 

always produce the expected behaviour. Therefore, other blending methods should be tested. 

Moreover, different environments entail different parameters and results; consequently, the 

possibility of identifying a universal technique to combine extrinsic and intrinsic rewards cannot be 

guaranteed. 

In terms of simulations executed, some specific limitations should be mentioned. First of all, the case 

in which two opponent modelling agents play against each other was not thoroughly studied. Indeed, 

only the Centipede game population trainings consider this situation. Moreover, other strategies for 

the deterministic opponents could have been considered. For example, in the Centipede game case, 

studying the agent’s behaviour against a deterministic entity which plays Tit-For-Tat might be 

interesting. On the other hand, the deterministic agent in the Apple Picking environment might choose 

other paths in the grid world. Finally, in the Maximum Entropy IRL algorithm, the opponent’s cost 

vector can be accurately reconstructed only if the selected feature function is suitable for the specific 

environment. Hence, different functions could have been tested, possibly considering also automatic 

feature extraction techniques. 

A frequent issue in Deep Reinforcement Learning trainings is learning instability; indeed, exploratory 

actions and function approximation are two main causes. Deep Q-learning is even more exposed to 

instability since it is characterized by all the three elements of “the deadly triad” described by (Sutton 

& Barto, 2018). In addition to this, there are two additional elements that produce instability in the 

opponent modelling agent. First of all, the presence of other agents in the same environment favours 

an unstable behaviour, especially if they are all learning entities. Moreover, the intrinsic reward 

representing the opponent’s values is another source of instability. As a matter of fact, the Maximum 

Entropy IRL algorithm provides an approximation of the opponent’s cost vector, which is improved 

with new demonstrations. Therefore, these figures are not exact, and they vary during training. As a 

consequence, this represents an important source of instability that might also explain the oscillating 

trend of the average reward for the opponent modelling agent.  

Finally, another problem that clearly emerges from simulations is the efficiency issue linked to the 

Maximum Entropy IRL algorithm. As a matter of fact, this is an iterative procedure that evaluates all 

the possible states for a specific environment. Therefore, a small growth in the number of states 

produces a significant increase of the computation time. This limits the use of this algorithm to real 

problems because reconstructing the cost vector would be infeasible. A potential solution could be 

improving the algorithm implementation to enhance the efficiency or changing some parameters with 
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the same objective. Another possibility consists in using state approximations or neural networks to 

represent the rewards.  
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5 Conclusions 

The aim of this work is realizing an autonomous agent which properly interacts with other entities 

using the information deducted during execution. More specifically, the main goal is implementing a 

learning agent which is able to infer the opponent’s values and use this evidence to find the policy 

that best satisfies its objective. Therefore, central themes are Reinforcement Learning, Multiagent 

environments and Value Alignment. The proposed agent adopts the Deep Q-Learning algorithm, and 

it receives a reward which is a combination of the environment feedbacks and the opponent’s values. 

These latter preferences are obtained through the Maximum Entropy IRL algorithm as the opponent’s 

cost vector; depending on how these rewards are used, a cooperative or exploiting agent may be 

obtained. The developed entity is tested in two very different environments: the Centipede game and 

the Apple Picking game.  

The central problem in the development of the agent presented concerns the opponent modelling 

approach. The chosen solution does not alter the Deep Q-Learning algorithm and the information on 

the opponent’s preferences is integrated in the overall reward that the agent receives. This method 

has some advantages and disadvantages, but it allows the interpretation of the opponent’s cost vector 

as an intrinsic reward for the agent. This cost vector is computed applying an Inverse Reinforcement 

Learning algorithm, the Maximum Entropy IRL algorithm, on a set of demonstrations that describes 

the previous interactions between the agent and its adversary. The total reward received is a linear 

combination of environment feedbacks and opponent’s values; changing a multiplying parameter, it 

is possible to behave cooperatively or not, as previously mentioned.  

Comparing the outcomes obtained during various simulations, the opponent modelling agent mainly 

behaves as expected in the Centipede game, while the Apple Picking environment results significantly 

more challenging. As previously discussed, there are many possible explanations mostly depending 

on the IRL algorithm and the blending method of extrinsic and intrinsic rewards. More specifically, 

exploiting the opponent’s strategy appears harder than learning for cooperating with it. This could be 

a clear indication that the relation between the environment feedbacks and opponent’s rewards is 

more elaborate than a simple linear combination. 

Overall, the proposed agent is able to infer the opponent’s cost vector, which clarifies its values and 

preferences. These rewards are properly combined with the agent’s own rewards to obtain the desired 

behaviour. Testing the agent on two different environments, the outcomes result promising. However, 

the final behaviour can be further improved under different points of view. Moreover, these broad 

trainings highlight some limitations that should be considered when adopting the agent presented.  
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5.1 Limitations 

The first problem that clearly emerges from different simulations concerns the scalability of the agent. 

More specifically, the developed agent cannot by directly used in real-world environments because 

the Maximum Entropy IRL algorithm applies an iterative procedure which considers all the possible 

states. Therefore, computing the opponent’s cost vector when interacting in complicated 

environments results infeasible. As a matter of fact, moving from the Centipede game to the Apple 

Picking environment produces a significant increase in the computation time. However, there are 

different possible solutions to this problem such as state approximations.  

Moreover, there is another limitation linked to the IRL algorithm. Indeed, the Maximum Entropy IRL 

procedure requires known dynamics. These can be computed from demonstrations, but this is not 

feasible for non-linear dynamics. Therefore, even if the agent were scalable, it would still not be 

general enough to be applied to any environment. 

In addition to this, the agent adopts individual learning in a multiagent environment. This is 

convenient considering the goal of studying the independent learning process in a shared 

environment; however, this might introduce learning instability. Indeed, the opponent modelling 

agent perceives the other entity as part of the environment which results itself unstable. This source 

of non-stationarity can be removed if the adversary’s strategy is deterministic since the multiagent 

MDP is equivalent to a single-agent MDP (He et al., 2016). 

Finally, directly integrating the opponent’s reward with the environment feedbacks entails a lower 

interpretability compared to other solutions where separate policies are learnt. As previously 

mentioned, (R. Noothigattu et al., 2019) proposes an agent which learns two separate policies, one 

from the environment rewards and the other applying IRL to a set of demonstrations; the two policies 

are then properly alternated using an orchestrator. In this solution, it is very clear which policy is 

followed at a specific point of time; however, the architecture is more complicated and the need of 

keeping the learnt policies separate is not always required.  

 

5.2 Future work 

The opponent modelling agent presented achieves promising results during different simulations; 

however, the agent’s behaviour is not perfect and better outcomes are obtained in the Centipede game 

environment, compared to the Apple Picking setting. Therefore, further improvements are possible 

in future studies.  
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First of all, the current agent assumes that the opponent’s reward can be expressed as a linear function. 

However, this approximation might not correctly represent the true function that the opponent is 

optimizing, especially for complicated environments. Moreover, in real-world environments a 

scalability problem emerges as well. Consequently, a more general and scalable approach could 

involve a Neural Network. More specifically, the Maximum Entropy Deep IRL framework proposed 

by (Wulfmeier et al., 2016) applies Fully Convolutional Neural Networks to approximate the 

opponent’s values solving the problem of modelling reward functions for large state spaces. This 

solution could be integrated in the opponent modelling agent to improve its behaviour.  

In addition to this, the possibility of applying the implemented agent to a general environment is 

further limited by the condition of having known or easily computable transition dynamics. (Finn et 

al., 2016) proposes an Inverse Optimal Control method to infer the opponent’s preferences with 

unknown dynamics. This approach could inspire additional improvements in the opponent modelling 

agent.  

Furthermore, the agent’s behaviour depends on the method chosen to blend the opponent’s rewards 

with the environment feedbacks. Indeed, a simple linear combination might not be expressive enough; 

hence, a further development could be applying meta-learning to identify a more complicated relation 

between the two rewards. This interesting approach has been applied in the context of opponent 

modelling (Rabinowitz et al., 2018; Vilalta & Drissi, 2002); however, here the specific goal would 

be learning how to properly combine the opponent’s information with the agent’s own extrinsic 

reward.  

Finally, apart from improving the proposed agent, there are many other possible expansions. Indeed, 

being able to understand the opponent’s intentions and properly use this information allow several 

applications. For example, the agent could learn and save multiple policies, one for each type of entity 

with which it interacts; this would entail a different behaviour with every specific agent. Another 

possibility consists in developing an agent which is aware that its opponent understands its intentions 

and it thus adopts a behaviour which prevents from being exploited. In addition to it, the agent could 

be pretrained on standard interactions in order to obtain a default behaviour which is applied at the 

beginning of the trainings. Lastly, the agent could have a short-term and a long-term model; the first 

one is simpler and requires only few demonstrations to be learnt. On the contrary, the long-term model 

is more complicated and accurate, thus it can be obtained with longer interactions.  
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