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Abstract

Astrophysical fluids show signs of turbulence across many scales, and turbulent features are also
likely to be present in galaxy clusters. The sources of turbulence in galaxy clusters can be several,
e.g. following the energetic output from Active Galactic Nuclei or merger events.
In this thesis, we studied the turbulence driven by hierarchical accretion processes, by analysing a
sample of galaxy clusters simulated with the cosmological code ENZO. Since one method to study
turbulence in galaxy clusters is the observation of surface brightness fluctuations, we investigated the
relation between turbulent density and velocity fluctuations. This method is most readily applicable
to X-ray data, but is also relevant to Sunyaev-Zeldovich observations. In order to disentagle laminar
from turbulent flows, we implemented a fixed scale filtering approach with a 300 kpc filtering scale.
We found a statistical relation between the root mean square of density and velocity flucutations,
albeit with a different slope than what previously reported in the literature (e.g. Zhuravleva et al.,
2014b). In particular, we found a slope smaller than 1, and depending on the dynamical state of the
galaxy clusters. Moreover, we investigated the radial trend of turbulent diagnostics, obtaining the
density and velocity power spectra at various radii, for the first time in the literature. The slope of
the velocity spectra shows a constant trend with radius, and consistent with the Kolmogorov model
at all radii. On the othar hand, the slope of the density spectra evolves with radius.
Another process which might affect the density fluctuations is the buoyancy. The Richardson number
is a parameter which measures the balance between turbulence and buoyancy, and we found that this
variable has a strong dependence on the filtering scale. Moreover, we investigated the relation, recently
presented in Mohapatra et al. (2020), between the Richardson number and the logarithmic density
fluctuations. In this case, we could not detect any strong relation between the Richardson number
and the logarithmic fluctuations, owing to the different distribution of density fluctuations (compared
to more simplistic expectations from the literature) in the complex environment of simulated galaxy
clusters.
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Sommario

La turbolenza è presente in molti ambienti astrofisici e a diverse scale, dalle atmosfere stellari,
agli ammassi di galassie. In questi ultimi, le sorgenti di turbolenza possono essere diverse, tra cui
turbolenza iniettata da outflow, provenieti da AGN, o merger.
In questa tesi, abbiamo studiato la turbolenza prodotta durante il processo di accrescimento che le
strutture cosmiche sperimentano durante la loro evoluzione, analizzando un campione di ammassi di
galassie simulati con il codice ENZO. Poichè un possibile approccio allo studio della turbolenza in
ammassi di galassie è dato dall’osservazione delle fluttuazioni di brillanza superficiale, abbiamo deciso
di approfondire la relazione tra fluttuazioni di velocità e densità generate dalla turbolenza. I risultati
sono, perlopiù, applicabili a dati in banda X, ma sono comunque rilevanti per eventuali confronti
con osservazioni che utilizzano l’effetto Sunyaev-Zeldovich. Per studiare la turbolenza è necessario
separare i moti laminari da quelli turbolenti. Per fare ciò, abbiamo utilizzato un metodo di filtraggio
con scala di filtraggio fissa pari a 300 kpc.
Abbiamo osservato una relazione, statisticamente significativa, tra le fluttuazioni di densità e velocità,
nonostante il coefficiente angolare sia diverso rispetto ad altri precedenti lavori presenti in letteratura
(Zhuravleva et al. 2014b). In particolare, abbiamo ottenuto un coefficiente angolare minore di 1 e
il quale mostra una dipendenza in funzione dello stato dinamico dell’ammasso. Inoltre, abbiamo
analizzato il profilo radiale delle proprietà della turbolenza, ottenendo lo spettro di potenza sia della
velocità, sia della densità a diversi raggi, per la prima volta in letteratura. La pendenza degli spettri
della velocità mostra un andamento costante con il raggio ed è in accordo con la teoria di Kolmogorov
ad ogni raggio.
Un ulteriore fenomeno che può modificare le fluttuazioni di densità è il buoyancy. Il numero di
Richardson è un parametro che tiene in considerazione il rapporto tra turbolenza e buoyancy, e
abbiamo osservato che esso dipende dalla scala di filtraggio ipotizzata. Considerando ciò, abbiamo
studiato la relazione tra numero di Richardson e fluttuazioni di densità logaritmiche, recentemente
presentata da Mohapatra et al. (2020). Nella nostra analisi, non abbiamo ottenuto alcuna relazione
significativa tra le due variabili, probabilmente a causa di una differente distribuzione delle fluttuazioni
di densità (rispetto a quelle presenti in letteratura) in un plasma complesso come quello presente negli
ammassi di galassie.
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1 Introduction

In this chapter we will present a brief overview of the large scale structure formation mechanism in a
ΛCDM model, following a recent review by Planelles et al. (2016), and then we will discuss some key
properties of the dynamics of galaxy clusters.

1.1 Large scale structure formation

The current hierarchical paradigm of structure formation is the Lambda Cold Dark Matter Model
(ΛCDM) with cosmological constant. Different observational probes (Planck Collaboration et al., 2014)
have allowed to put constrains on the cosmological parameters and consolidated a picture in which the
universe is 13.8 Gyr old with a dark energy component (ΩΛ ≈ 0.7 ), dark matter (ΩDM ≈ 0.25) , baryonic
matter (Ωb ≈ 0.05) and an Hubble constant H0 = 67 km s−1 Mpc−1. The cosmological parameter Ω is
defined as the ratio between the (baryon, dark matter, dark energy) density and the critical density of
the universe, Ω = ρ

ρcr
= 8πGρ

3H2 .
The formation of first structures is driven by the gravitational collapse of small density perturbations of
the matter density field. First objects, probably, appeared at z ∼ 10-30 and were massive isolated stars
(100-300 M�) formed in dark matter halos of 105 - 108 M�. In the hierarchical model, the first objects
are the building blocks of structure formation, leading to larger galaxies and galaxy clusters trough ac-
cretion and merger. A galaxy is an object in approximately dynamical equilibrium, in which there are
component (gas, stars, dark matter) interacting with each other. In order to create stars, the gas which
falls in the halo must cool, so the first conditions for the birth of a galaxy are the cooling time must be
smaller than the free fall time and the density of the gas must be smaller then the critical density, so that
the cooling, through line emission, is efficient. Besides, since there are stars, the supernova feedback can
play a major role in the evolution of a galaxy ejecting gas out of the system. For this reason, the dark
matter halo which hosts the galaxy must be massive enough to keep the gas inside the gravitational well.
Galaxy clusters are the largest non linear objects of the universe and, given their deep gravitational
potential well, they are extremely important to mark the transition between cosmological and galactic
scale. In fact, whereas in the larger structures the evolution is mainly driven by gravity, on galactic scales
hydrodynamics is significant as well. The presence of a hot plasma in the galaxy clusters gives us the
chance to study a wide range of dynamical processes related to both gravity and baryonic physics. As a
consequence, they represent a unique opportunity to answer to a lot of open questions of cosmology and
astrophysics. Actually, their number and distribution can be used to place constraints on the current
model of cosmic structure formation.
In the following chapters we will briefly summarize the theory of density fluctuations and how their
collapse affects the mass function.

1.1.1 Linear theory of density perturbations

The theory of gravitational evolution of small density perturbations, described by Jeans, in an expanding
universe, provides a quite exhaustive scenario of cosmic structure formation.
Let us consider an initial density perturbations field, defined by its density contrast

δ(x) =
ρ(x)− ρ̄

ρ̄
(1.1)

where ρ(x) is the matter density field and ρ̄ the mean mass density. The initial conditions of this
field are determined by the inflationary epoch, whose model predicts homogeneous and isotropic gaussian
distributed fluctuations.
The evolution of the perturbations is driven by the Friedmann’s equation, but, since the dark matter is
the dominant component, we can consider a self gravitating, pressureless, non relativistic fluid. With this
hypothesis, Newtonian treatment can be applied and the evolution of density fluctuations is described by
the continuity, Euler and Poisson equations. If δ � 1 these equations result in
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∂2δ

∂t2
+ 2H(t)

∂δ

∂t
= 4πGρ̄δ (1.2)

whose solution is

δ(x) = δ+(x, t)D+(t) + δ−(x, t)D−(t) (1.3)

with D+(t), D−(t), respectively, the growing and decaying modes of δ(x) and δ+(x, t), δ−(x, t) the spatial
distributions of fluctuations. These modes depend on the cosmology, so different cosmological parameters
means different structure formation history. For example, a universe with Ωm ≈ 1 promotes the collapse
and formation of structures, while, on the other hand, with a smaller value (as in the ΛCDM model)
there is an epoch when the cosmological constant becomes dominant, providing a cosmic expansion faster
than collapse, resulting in a minor number of collapsed structures.
This theory can be applied for the first perturbations with δ � 1, and thus cannot be used to study the
evolution of structures in non-linear regime, in which case numerical simulations are required.

1.1.2 Non-linear evolution

A model which can explain the non-linear evolution of perturbations is the spherical collapse model. It
considers an isolated perturbation which evolves in a background universe, described by an Einstein-de
Sitter (EdS) model, which corresponds to a flat universe with Ωtot = ΩDM + Ωb = 1, cosmological
constant equal to zero and a cosmological expansion parameter evolving as a ∝ t2/3. The perturbation
grows (with the same law of the background) until it reaches its maximum expansion. At this point the
overdensity is δ+ = 4.6 and if Ωp > 1 (p means it is related to the perturbation) the condition for the
collapse is satisfied. After that, it starts its own different evolution reaching the virial equilibrium when
ρp/ρ ' 178. On the contrary, the linear theory would predict a smaller value for the overdensity at the
virial time (δ+ ' 1.69).
The spherical collapse is a simple model which can not perfectly describe the total structure formation
process. Indeed, during the cosmic evolution, there are a lot of phenomena as the filamentary matter
accretion or merger and interactions between density perturbations of different scale which lead to a
redistribution of matter. In particular, Genel et al. (2010) have found that the contribution of mergers
to the total growth of dark matter halos does not exceed 60 %. This suggests that a significant mass
fraction of halos may be accreted in a smoothly way.

1.1.3 Mass function

The mass function is the number density of collapsed objects, at a redshift z, with a mass between M
and M+dM in a given volume. Observationally, the mass function is difficult to obtain and numerical
simulations are often used to calibrate models and compare with available observational data. Never-
theless, there is an analytical way (Press & Schechter 1974) to determine it. The hypothesis is that
any collapsed object with mass ≥ M derives from a density contrast δM ≥ δc (critical overdensity for
collapse), extrapolated from the linear theory. Considering a spherical collapse, δc ' 1.69. The initial
density fluctuations are gaussian distributed with zero mean and variance σ2

M . The mass function derived
in this way is the Press-Schechter function, and it is in the form

dn(M, z)

dM
=

√
2

π

ρ̄

M2

δc
σM (z)

∣∣∣∣dlogσM (z)

dlogM

∣∣∣∣ exp(− δ2
c

2σM (z)2

)
. (1.4)

This mass function is not perfectly in agreement with the one found from cosmological simulations. For
this reason, the model has been improved considering the ellipsoidal collapse or non-gaussian fluctuations.
Anyway, given the simple assumptions the theory is built on, the accuracy to describe the mass function is
limited. Since σM depends on cosmological parameters, the mass function and, in particular, its evolution
with redshift help to constrain the cosmic evolution model.
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1.2 Galaxy clusters properties

Galaxy clusters are the largest virialized systems in the universe and the mass range of these objects is
1013 - 1015 M�. They contain 102-103 galaxies, in a volume of few Mpc, which have a velocity dispersion
σ ≈ 103 km/s. Even though the baryon fraction in these systems is about 17 %, the plasma holds the
majority of the baryonic mass. The gas temperature is ∼ 107-108 K and it emits in the X-Ray band,
making clusters one the brightest class of objects at these frequencies with LX ≈ 1043-1045 erg/s. The
intra-cluster medium (ICM) is mostly composed of hydrogen and helium, with an electron density ne ≈
10−2-10−4 cm−3 and a metallicity that is 1/3 of the solar one.

1.3 Observational features

We summarize some observational features of galaxy clusters, providing a little explanation of the emission
mechanism.

• X-Ray: since the gas temperature is about 107 − 108 K, the main cooling mechanism is the
bremsstrahlung in the X-ray band. Nonetheless, line emission is present, due to the abundance of
metals in the ICM, as the Fe Kα at 6.4 Kev. In this band is possible to derive the density and
temperature profiles and, from the resolved profile of emission lines, the laminar and turbulent
velocity of the gas. This allows us to investigate non-thermal processes e.g. turbulence in the ICM
medium, but high spectral resolution is required, which has not been achieved so far.

• Optical band: the emission at these frequencies is dominated by the black-body emission of stars
in the galaxies. In this band it is possible to study random motion of galaxies and their interactions
(e.g. ram pressure stripping, high speed encounters). Moreover, it is possible to investigate the
galaxy morphological distribution and the evolution of the morphology in clusters and groups.

• Radio band: the emission in this band is mostly due to synchrotron process and we can define
three different kind of sources: relics, halos and mini halos. First are located in the periphery of
the clusters and elongated in the direction perpendicular to the radial one. They probably are
generated by shocks, due to merger, which compress the magnetic field extending it along the main
major axis. They present polarized radiation. Halos are cluster scale object (' 1 Mpc) and present
low surface brightness and polarization. They are associated with perturbed clusters. Mini halos
have a typical dimension of 100-500 kpc, with low surface brightness and low polarization and are
observed in relaxed clusters. They are, probably, the result of the AGN activity, or minor mergers
(Feretti et al. 2012, van Weeren et al. 2019).
Radio-galaxies, which have a compact radio source associated with the active nucleus, are another
contribution to the total radio flux; part of the radio emission is observed in the form of radio lobes,
extended regions of emission diametrically opposed with respect to the compact radio source. The
energy is carried by a mixture of relativistic and thermal gas, which outlines the jets. In clusters,
the rapid motion of the galaxies and the interaction of the gas outflow with the ICM are thought
to be responsible for the observed departures from alingment of the radio lobes.

1.3.1 Hydrostatic equilibrium

The ICM is nearly in hydrostatic equilibrium. In fact, let us consider the sound speed cs =
√

γkBT
µmp

, with

γ the adiabatic index (=5/3 for a monoatomic gas), kB the Boltzman’s constant, T is the gas tempera-
ture, µ is the mean molecular weight and mp the proton mass. It is possible to define the sound crossing
time of the ICM as ts = R/cs with R the typical size of a galaxy cluster. Hence, considering classical
parameters for the plasma as T ≈ 108 K and R ≈ 1 Mpc, this time scale is shorter than the age of this
objects (tage ≈ 1010 yr). For this reason, the gas can be considered in hydrostatic equilibrium.
One of the most important applications of this property is the cluster mass estimate. Hydrostatic equi-
librium means that the pressure of gas is balanced by the gravity force generated by the total mass
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∇Φ = −∇P
ρ

(1.5)

where Φ is gravitational potential and P is the pressure, obtained from the state equation P = ρkBT
µmp

.

Let us assume a spherical simmetry, hence Eq. 1.5 becomes

1

ρ

dP

dr
= −dΦ

dr
= −GM(r)

r2
(1.6)

where r is the radius and M(r) the mass within r. If the density and temperature profiles can be
determined, it is possible to estimate the total mass of the cluster within the raidus r

M(r) = − kBTr
Gµmp

[
dlnρ

dlnr
+
dlnT

dlnr

]
. (1.7)

Both density and temperature profiles are typically obtained from X-ray or radio (through Sunyaev-
Zeldovich effect) observations. In particular, the density profile is obtained from the surface brightness
and the temperature profile from the cut-off of the bremsstrahlung emission, which is the dominant
process for the cooling of the plasma. Observations have confirmed that the ICM has not an isothermal
profile, but the shape in the inner region partially depends on the dynamical properties of considered
galaxy clusters. Systems which show a decreasing temperature profile towards the core are cool-core
(CC) cluster, while the one which show an isothermal profile at the center are non-cool-core (NCC). The
difference is plotted in figure 1.1.

Figure 1.1: Comparison of the dimensionless temperature profile from XMM-Newton observations by
Pratt et al. 2007 (grey dots with errorbars) with the average profiles from ASCA (grey band, Markevitch
et al. 1998), and the observations of cooling core clusters from BeppoSAX (green line, De Grandi &
Molendi 2002) and Chandra (red line, Vikhlinin et al. 2005).
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A usual density profile is the β model profile (Cavaliere & Fusco-Femiano 1976). The main hypothesis
are: spherical symmetry, gas and galaxies subject to the same gravitational potential, isothermal profile
(which means constant velocity dispersion profile) and a King’s profile for the galaxy distribution. The
gas density profile becomes in this case:

ρ (r) =
ρ0[

1 +
(
r
rc

)2
]−3β/2

(1.8)

where β is defined as

β =
µmpσ

2

kBT
(1.9)

and it represents the ratio between kinetic energy of galaxies and thermal energy of the gas. Inserting
this profile in the equation 1.7, we obtain

M (r) =
kBr

2

Gµmp

[
3βT

r2 + r2
c

− dT

dr

]
. (1.10)

Both observations (Ettori et al. 2019) and simulations (Angelinelli et al. 2020, Lau et al. 2009) show that
hydrostatic mass evaluation underestimates the total mass. Such discrepancy is likely to be explained with
the presence of non thermal pressure caused by turbulence and magnetic fields. Due to the importance
of the mass measurement of galaxy clusters for cosmology, is fundamental to study the non thermal
processes in the ICM and find different methods to evaluate the clusters mass.

1.3.2 Scaling relations

The dominant process in the cosmic structure formation is the accretion driven by gravity. Since the
gravity is scale free, all objects of the universe, from galaxy clusters to globular clusters, should have
self-similar relations (Kaiser 1986). Nevertheless, the impact of gas physics during the formation and
evolution of structures could generate deviations from the theoretical laws. For this reason, observed
scaling relations are an important tool to study the thermodynamical history of the ICM and, in general,
of the gas in astrophysical objects. In order to present some of the most important relations, we will
follow Giodini et al. (2013).
If halos are self-similar in time, two objects which have formed at the same time have the same mean
density. Hence

M∆z

R3
∆z

= constant (1.11)

where ∆ is the overdensity, defined as the ratio between the density of a system and the critical density

of the universe ρcz =
3H2

z

8πG , and z is the redshift. Typical values for ∆ are 2500, 500, 200 or 100. R∆ and
M∆ are, respectively, the radius and the mass of the region which has a density contrast equal to ∆

M∆z =
4π

3
∆zρc,0Ez (z)R3

∆z
(1.12)

where Ez (z)=Hz/H0 describes the evolution of the Hubble parameter with redshift. As mentioned
above, the ICM can be considered in hydrostatic equilibrium, so its temperature provides an estimate of
the gravitational potential well

Tgas ∝
GM

R
∝ R2

vir. (1.13)
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Using eq. 1.13 and 1.11 it thus follows that

M ∝ T
3
2
gas, (1.14)

which is the expected self similar relation between mass and ICM temperature.

A simpler proxy to study the galaxy clusters properties is the X-ray luminosity. In fact, the plasma at
a temperature of 107-108 K mostly emits through bremsstrahlung process, so

LX ∝ T
1
2 ρ2
gasR

3
∆z
. (1.15)

In this way, it is possible to link the X-ray luminosity and the total mass of clusters.

Another very useful quantity is the gas entropy, defined as S =
kBTgas

n
3/2
e

, so using eq. 1.14 we have the

relation between the entropy and the mass.

S ∝ Tgas ∝M2/3. (1.16)

As shown in figure 1.2, data do not always follow the theoretical relation scale. A reason might be the
variation of gas content in galaxy clusters: in fact there are evidence that the gas fraction decreases with
the cluster mass (Vikhlinin et al. 2009). In this way, the LX -T relation could vary with mass. Another
explanation for the deviation from the self-similar prediction is suggested by the complementary analysis
of the S-T relation. The theoretical relation (dotted line) does not fit well the data. This suggests a mech-
anism which can increase entropy or remove gas with low entropy from the center. This can be achieved
by non-gravitational processes such as AGN feedback, radiative cooling, star formation or galactic winds.
Therefore, all this kind of feedback might heat the gas, resulting in a higher entropy, as Fig. 1.2 shows.
This mostly affects galaxy groups due to their smaller gravitational potential well.

The presence of plasma in the galaxy clusters and its interaction with the CMB photons allow us to
investigate the properties of these objects in the radio band. The Sunyaev-Zeldovich effect (Sunyaev &
Zeldovich 1970) is a process caused by the inverse-Compton scattering of the electrons in the ICM with
the CMB photons. The gain of energy of photons is given by

∆ν

ν
'
(
kBT

mec2

)
(1.17)

where me is electron mass and T the gas temperature. The frequency shift causes an increase in the
CMB intensity at high frequencies, and a decrease in the Rayleigh-Jeans tail (as shown in figure 1.3).

The magnitude of decrement in the CMB is a function of the frequency and of the thermodynamical
properties of the gas along the line of sight, and it is described by the dimension-less Compton parameter

y =
σT kB
mec2

∫
neTe dl (1.18)

where σT is the Thompson cross section and the equation gives the total thermal pressure along the
line of sight. Observationally, it is useful to define the integrated y-parameter, which is the integral of
the Compton parameter over the solid angle under which the cluster is seen, i.e., Ω:

Y =

∫
Ω

y dΩ =
1

D2
A

σT kB
mec2

∫
V

neTe dV (1.19)

DA is the angular distance and V the volume of the cluster. In an isothermal scenario this means that
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Figure 1.2: Upper-left panel: S-T relation for a sample of clusters. At low temperature the observed
clusters does not follow the self-similarity relation. Upper-right panel: M-T relation for groups (blue)
and clusters (red). Lower panel: Lx-T relation for different samples of gropus and clusters. All the
parameters are evaluated at R500.

D2
AY ∝ Te

∫
V

ne dV ∝ fgasMtotTe (1.20)

and using the equation 1.16 we find the relation between Y and Mtot

D2
AY ∝ fgasM

5/3
tot . (1.21)

Kravtsov et al. (2006) proposed an analogue X-ray parameter less affected by non-gravitational pro-
cesses, whose relation with total mass is plotted in figure 1.4.

Since the scatter of this relation is very small, it provides an optimal proxy for the mass calibration
on galaxy clusters. Furthermore, D2

AY is independent of redshift and for this reason SZ effect is used to
study galaxy clusters at high redshift and their outskirts.

Observations indicate, in general, that the real situation is very complicated and that we need the
numerical simulations to get further insight. They are a good test for the self-similarity theory, since
cosmological simulations mainly evolve due to gravity. Nevertheless, the observed deviation needs some
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Figure 1.3: The deviation from the CMB black body caused by the S-Z effect. The dashed line represnts
the original black body while the solid line traces the spectrum after the interaction.

Figure 1.4: M -Y relation from Kravtsov et al. (2006).The dashed line shows the power law relation with
the self-similar slope fit to the entire sample. The dotted lines indicate 8% scatter.

other features to include. Radiative cooling is one of the first processes to be taken into account, but
it is not sufficient to reproduce the observed relation. Cooling leads to an excessive conversion of gas
in stars, promoting a star formation and a significant presence of cold gas which are not observed. A
suitable solution is the implementation of a heating mechanism which could come from supernovae or
AGN, depending on the host cluster mass. In fact, there are evidence of its impact on the surrounding
gas, but some issues (as the coupling between gas and energy emitted by the black hole) are still poorly
understood. Another process that could explain the deviation from self-similarity is the pre-heating.
In this scenario, the energy injection into the ICM by non-gravitational processes (such as supernovae,
star formation, and galactic winds) heats the gas at high redshift, before the gas collapses in the deep
cluster/group potential well.
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2 Turbulence

In the previous chapter, we have shown that fundamental processes in the formation and evolution of
cosmic structures are mergers and accretions of gas and dark matter. These are two of the most energetic
phenomena in the universe, with objects that can reach velocities of several thousands of kilometers per
second during the interaction. As a consequence, the shocks, generated by such events, inject turbulence
in the ICM. Furthermore, we have seen that the hydrostatic model should be revisited by including the
residual gas motion produced by non-thermal processes. For these reasons, the ICM is likely to be tur-
bulent. This kind of phenomena should be studied because they are related to a lot of open questions
and, also, because turbulence is present at every astrophysical scale, from the surface of stars to galaxy
clusters.
The most successful model of turbulence is the ”Kolmogorov model”, which, under some simple assump-
tions on the behaviour of the gas, can give results comparable with observations. In this chapter, we
will describe the Kolmogorov theory and general properties of turbulence, and then we will focus on
turbulence in the intracluster medium.

2.1 Kolmogorov theory

A description of the ICM requires a study of turbulence injected by the continuous gravitational inter-
actions during the whole evolution of the cluster. To completely characterize the physics of turbulence
we need numerical simulation, but with under some simple hypothesis, the theory by Kolmogorov (1941)
well describes the behaviour of turbulent flows e.g. Pope (2000).

2.1.1 Basic theory

The Kolmogorov theory is based on the idea of the energy cascade, proposed by Richardson (1922). The
idea is that the kinetic energy enters the turbulence, trough the production mechanism, at the largest
scales of motion. The energy is then transferred by inviscid processes to smaller scales until, at the
smallest scales, viscosity dissipates the kinetic energy into thermal energy.
Let us consider a turbulent flow with high Reynolds number, defined as Re = vl

ν , where ν is the viscosity
term and v is the velocity on a scale l. This means that the viscosity may be neglected. In Richardson’s
view, turbulence can be considered to be composed of eddies of different size l. Each eddy is characterized
by a velocity v(l), a timescale τ(l) = l/v(l) and a Reynolds number Re (l) = v(l)l/ν. The energy cascade
continues until the Reynolds number is sufficiently small and the viscosity is effective in dissipating kinetic
energy. These eddies have energy of order v2, so the rate of the transfer of energy can be supposed to
scale as v2/τ = v3/l.
Kolmogorov added to this scenario some hypothesis. Let us consider a steady state incompressible fluid
(∇ · v = 0). The first hypothesis concerns the isotropy of the small-scale motions. In general, largest
eddies are anisotropic and affected by the boundary conditions, but Kolmogorov supposed that the di-
rectional biases of the largest scales are lost in the chaotic cascade to smaller scales. Hence:

Kolmogorov’s hypothesis of local isotropy; At high Reynolds numbers, the turbulent motions at
small scales are statistically isotropic.

As the directional information, the geometry of the largest eddies is also lost. As a consequence, the
statistics of the small scales is similar in every turbulent fluid with Re some large. Since in the energy
cascade the dominant processes are the transfer of energy and the viscous dissipation, the parameters
that govern the statistically universal state are the dissipation rate of energy ε and the kinematic viscosity
ν. This leads to the second hypothesis:

Kolmogorov’s first similarity hypothesis; In every turbulent flow at high Reynolds number, the
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statistics of the small scales have a self-similar form that is uniquely determined by ν and ε.

Defining lEI as the scale at which the information on the geometry and direction are lost, the size
range l < lEI is referred to as the universal equilibrium range.
Given the two parameters ε and ν, a unique length, velocity and time scale can be defined. These are
called the Kolmogorov scales:

η ≡
(
ν3/ε

) 1
4 (2.1)

vη ≡ (νε)
1
4 (2.2)

τη ≡ (ν/ε)
1
2 . (2.3)

Considering L0, v0 and τ0, respectively, the size, the velocity and the dynamical time of the largest
eddies, and the scaling ε ∼ v3

0/L0, we find, from the above equation, the following results

η

L0
∝ R−

3
4

e (2.4)

vη
v0
∝ R−

1
4

e (2.5)

τη
τ0
∝ R−

1
2

e . (2.6)

Evidently, at high Reynolds number the smallest scales are small compared with those of the largest
eddies. As a consequence, at sufficiently high Reynolds number, there is a range of scales, l, that are
small compared to L0, and bigger than η, i.e. η � l� L0. This range is called ”inertial subrange”. Since
eddies in this range are much bigger than the dissipative eddies, it may be supposed that their Reynolds
number is large and consequently that their motion is little affected by viscosity. Hence:

Kolmogorov’s second similarity hypothesis. In every turbulent flow at high Reynolds number,
the statistics of the motions at scale l in the range L0 � l � η have a self-similar form that is uniquely
determined by ε, independent of ν.

In the inertial subrange, given the size l of the eddy, we can define the other scales in this way

v(l) = (εl)
1
3 (2.7)

τ(l) =

(
l2

ε

) 1
3

. (2.8)

A consequence of the second similarity hypothesis is that both v and τ decrease as l decreases.

Once the basic processes of the turbulence cascade are known, it remains to determine the kinetic
energy distribution among eddies of different sizes. The simplest statistics containing information about
the spatial structure of a random field is the two-point correlation function:

Ri,j(r,x) ≡
〈
vi(x)vj(x+r)

〉
, (2.9)
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where i and j specify the components of the velocity field and r is the vector which connects the two
points. For homogeneous turbulence Ri,j is independent of x.
The velocity spectrum is the Fourier transform of the two-point correlation function

Ui,j(k) =
1

(2π)3

∞∫∫∫
−∞

e−ik·rRi,j(r) dr, (2.10)

where k is the wavenumber defined as k = 2π/r. A more useful quantity in the wavenumber space is
the energy spectrum function (or power spectrum)

E(k) =

∞∫∫∫
−∞

1

2
Uii(k)δ(k− k) dk (2.11)

and the integration of this quantity over all scalar wavenumbers k yields

EK =

∞∫
0

E(k) dk =
1

2

〈
vivi

〉
. (2.12)

Thus, E(k) represents the contribution to the turbulent kinetic energy from all the modes with |k| in
the range k ≤ |k| ≤ k+dk. In particular, we are interested in power law spectra of the form E(k) = Ck−p,
where C is a constant. Consequently, following the Kolgomorov’s hypotheses, we can obtain a universal
form of the power spectrum. According to the first similarity hypothesis, in the universal equilibrium
range, E(k) can be considered a universal function of ν and ε. A dimensional analysis shows that the
universal relation can be written as

E(k) = (εν5)1/4φ(kη), (2.13)

where φ(kη) is a universal non-dimensional function - the Kolmogorov spectrum function. Alterna-
tively, if ε and k are used to non-dimensionalize E(k), the relation is

E(k) = ε2/3k−5/3Ψ(kη), (2.14)

where Ψ(kη) is the compensated Kolmogorov spectrum function.
According to the second similarity hypothesis, in the inertial subrange, E(k) is uniquely determined by ε
and it is independent of ν. The latter parameter enters in Eq. 2.14 solely trough η. Hence, the hypothesis
implies that as the argument kη tends to zero, the function Ψ becomes independent of its argument, i.e.
it tends to a constant. In this way, the energy spectrum function is

E(k) = Cε2/3k−5/3. (2.15)

This relation shows that there is a wide range of scales in which the spectrum can be considered
universal, and it is independent of the mechanism responsible of converting kinetic energy into heat
through dissipation. In Fig. 2.1 is plotted the Kolmogorov power spectrum, which clearly shows the
separation between different ranges of the size of the eddies. At the smaller wavenumbers, k, the power
spectrum E(k) ∝ k2, while, at the biggest k, turbulence is affected by viscosity which dissipates the
kinetic energy generating an exponential cut off.

The dissipation rate ε can be derived from the energy spectrum function as follows:

ε =

∫ ∞
0

2νk2E(k) dk, (2.16)
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Figure 2.1: Plot of the power spectrum as function of the wavenumber by Sinha (2013). Different ranges
are emphasized.

.

thus 2νk2E(k) is the contribution to the disspation rate from the Fourier mode k. In the rest of this
thesis, we will look for evidence of a k−5/3 power spectrum for the gas velocity field of simulated gas
clusters, as a possible signature of turbulence in the ICM.

2.1.2 The evolution of the Fourier modes

Given a function in the real space (e.g. a component of the velocity field) g(x), its Fourier series is

g(x) =
∑
k

ĝ(k)eik·x (2.17)

where ĝ(k) is the Fourier coefficient at wavenumber k. These coefficients can be determinded from the
orthogonality condition of the Fouries modes eik·x. It is convenient to define the operator Fk{ } by

Fk{g(x)} =
1

L3

∫ L
0

∫ L
0

∫ L
0

g(x)e−ik·x dx =
〈
g(x)e−ik·x

〉
L (2.18)

where we denote
〈 〉

L the volume average over the cube 0 ≤ xi ≤ L.
Applying the operator to the function g(x) and exploiting the orthogonality condition of the Fourier
modes eik·x, we can obtain the Fourier coefficient of the Fourier mode of wavenumber k:

F{g(x)} =
〈
g(x)e−ik·x

〉
L =

〈∑
k

ĝ(k)eik·xe−ik
′·x)

〉
L

=
∑
k

ĝ(k)δk,k′ = ĝ(k′). (2.19)

The velocity field v(x,t) (and the other quantities related to turbulence) are time dependent. Since
the Fourier modes are fixed in time, the Fourier coefficients have a time evolution, which we can study
applying the operator Fk{ }, term by term, to the Navier-Stokes equations:

∂vi
∂t

+
∂(vivj)

∂xj
= ν

∂2vi
∂xj∂xj

− 1

ρ

∂p

∂xj
. (2.20)
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Considering that Fk{∂vi∂t } = dv̂i
dt and Fk{ ∂vi∂xi

} = ikiv̂i, is possible to show that the equation which
describes the time evolution of the Fourier coefficients of the velocity field is the following (the dependence
on t is implicit)

(
d

dt
+ νk2

)
v̂i(k, t) = −ikk

(
δi,j −

kikj
k2

)∑
k′

v̂j(k’, t)v̂k(k− k’, t). (2.21)

The viscous term in the left-hand side of the equation has a simple meaning. Let us consider the final
period of decay of isotropic turbulence, in which the Reynolds number is so low that the convenction is
negligible relative to the effects of viscosity. Then, neglecting the right-hand side of the equation 2.21
and considering an initial condition v̂(k, 0) the solution is

v̂(k, t) = v̂(k, 0)e−νk
2t. (2.22)

Thus, in the final period of the decay, each Fourier component evolves independently of all other modes,
decaying exponentially. In particular, high wavenumber modes decay more rapidly than low wavenumber
modes. In contrast, the right-hand side involves k and k’, which means that in the wavenumber space
the convection term is nonlinear and non-local, involving interactions between wavenumbers. As a con-
sequence, in addition to the kinetic energy injected at the biggest scale l ∼ L0 (often the size scale of
the biggest eddies is equal to the injection scale) and the dissipation term ε, there is a term representing
the transfer of energy between modes T̂ (k, t). The general equation for the spectral evolution of the
turbulence in the Fourier space is

d

dt
Ê(k, t) = T̂ (k, t)− 2νk2Ê(k, t). (2.23)

Altough the Kolmogorov theory has a wide range of applications, it has some limits. In particular, most
of the astrophysical systems are in the regime of supersonic turbulence. For this reason, more sofisticated
analytical and numerical model are required to get a better comprehension of turbulence. Our results
(section 4) will indeed highlight the theoretical difficulties in the analysis of the ICM, connected to the
presence of supersonic motions.

2.2 Turbulence in the ICM

In the classic picture for the plasma physics, the main mechanism for the energy exchange is the electron-
electron (or proton-proton) collision. In this way, considering the Coulomb interactions, Spitzer (1962)
found that the electron mean free path is

λe =
3

3
2 (kBT )

2

8
√
πe4ln(Λ)ne

' 23

(
T

108[K]

)2(
ne

10−3[cm−3]

)−1

[kpc]. (2.24)

Assuming typical values of the temperature and density in the ICM, λe ≈ 10 − 100 kpc. Moreover,
if the plasma is at the equilibrium, the temperature of the electron is equal to the temperature of the
proton, λp = λe.
The Reynolds number is proportional to the ratio between the inertial and viscous force and can be
defined as

Re =
V L

ν
=

V L

µ/ρgas
(2.25)

where V is the velocity at the scale L and µ = ρgasvthλ ≈ 6 ·10−17 ·
(
lnΛ
37

)
T

5
2 is the viscosity coefficient.

Inserting typical galaxy cluster values in the equation 2.25
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Re =
V L

µ/ρgas
=

108 · 106 · 3.08 · 1018

103/10−27
≈ 100. (2.26)

A fluid is defined turbulent when Re � 10 (say Re ≈ 103), with lower Reynolds number the instabili-
ties hardly produce turbulence due to the effect of the viscosity.
However, the highly ionized plasma in the galaxy clusters is weakly magnetized (Brunetti & Jones 2014
). In this way, the collisionality in the ICM could be mediated by interactions between magnetohydro-
dynamic waves and the particles, reducing the mean free path from about 10 kpc to fraction of kpc
(Beresnyak & Miniati, 2016). The effect is that viscosity (and even the conduction) may be highly
suppressed. This hypothesis is supported by some evident features in galaxy clusters as cold front or
Kelvin-Helmholtz instabilities. These instabilities would be canceled due to conduction and viscosity in
a time scale τ � τage, where τage is the age of the galaxy cluster or the time passed from the last merger.
The fact they still are present in the ICM is likely to be a sign of the suppression of the mean free path
(Roediger et al. 2013, Wang & Markevitch 2018). Considering this new scenario and typical values for
clusters we can find that Re � 103. As a consequence, every little instability can evolve in turbulent
motions. This motivates the idea that turbulence can be ubiquitous in galaxy clusters.
Turbulence, thus, could play a fundamental role in lots of unresolved questions about galaxy clusters
phenomena. As we have shown turbulence can offer additional non-thermal pressure which can have an
impact on the total mass estimation. Furthermore, turbulent diffusion could have an effect on the spread
of metals, modifying their radial profiles (Rebusco et al., 2006). Another process in which turbulence
could be a key element is the radio emission. In fact, some of the radio structures, are supposed to be
powered by turbulent particle acceleration (Brunetti et al. 2008, Cassano 2010) (e.g. ”radio halos” in
sec. 1.3)

2.2.1 Observational evidence for turbulence in galaxy clusters

In addition to the previous results, there are some observational evidence which support the idea of a
turbulent ICM. Schuecker et al. (2004) investigated the merger driven turbulence in the Coma galaxy
cluster with the XMM-Newton satellite. They studied the power spectrum of ”pseudo”-pressure fluc-
tuations, finding that a power law P (k) ∝ kα in the range α = -7/3 to -1/3, is compatible with their
measurements. Schuecker et al. (2004) found that the pressure power spectrum between length scale of
40 and 90 kpc is well described by a projected Kolmogorov power spectrum. This suggests that the lower
limit for non-thermal pressure support in this scale range is about ∼ 10 percent. Using the broadening of
the lines in the emitted X-ray spectra of cool-core clusters is possible to put constraints on the fraction
of turbulent and thermal energy in the cores of clusters. For the first time in a galaxy cluster, Sanders
et al. (2010) place direct limits on the turbulent broadening of the emission lines. They examined the
XMM-Newton Reflection Grating Spectrometer (RGS) spectra from the observation of the galaxy cluster
Abell 1835. Sanders et al. found from the broadening of the emission line, originating within 30 kpc
radius, a velocity of 274 km/s. They also estimated the ratio of turbulent to thermal energy in the core,
which is less than 13 %.
Another way to investigate turbulence is by studying the density fluctuations, which result in surface
brightness fluctuations in the X-ray band. Sanders & Fabian (2012) studied the surface brightness fluc-
tuations in the cluster AWM 7 in the 0.65 - 5 Kev band. The 3D density power spectrum follows a power
law, but with a steeper power index of between -5/3 and -6/3. Besides, Zhuravleva et al. (2014b) argued
about the relation between the density and velocity fluctuations in both the buoyancy-dominated regime
and turbulent regime. Using high-resolution 3D plasma simulations Gaspari et al. (2014) found a relation
between the variance of density perturbations δρ/ρ and the 1D Mach number. Moreover, the authors
created X-ray maps to forecast what X-ray telescopes could observe, providing maps of the potential line
broadening due to turbulent motions. Finally, Eckert et al. (2017) applied theM− δρ relation to a sam-
ple of 51 galaxy clusters with available radio data to investigate the connection between turbulence and
particle acceleration. The authors found a relation linking the radio power at 1.4 GHz and the velocity
dispersion, confirming the reliability of the turbulent re-acceleration model.
One of the main results for the internal kinematic of the hot gas was obtained observing the Perseus
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cluster with the Hitomi satellite before its sudden failure. In Hitomi Collaboration et al. (2016), studying
the iron He-α, He-β and H-like Lyman-α line (fig. 2.2 shows the profiles of these lines), they found that
the contribution to the velocity from the turbulent motion is about ∼ 160 km/s on scales of ∼ 50 kpc.
This suggests that the contribution of the turbulent motion to the total pressure in the centre of the
cluster is small, with a ratio of turbulent to thermal energy of ∼ 4%.
Other observations can also be used to directly infer the amplitude of turbulent motions in the ICM. For
example, Rebusco et al. (2006) have examined the metal distribution in galaxy clusters. In particular,
the distribution of metals around brightest cluster galaxies is wider than the distribution of the stars
which produce them. Assuming that the process responsible for the spread is the turbulent diffusion,
they evaluated a diffusion coefficient of the order of 1029 cm2 s−1. From this, one can put constraints
on the turbulent velocity, finding a value in the range of ∼ 100 km/s on the scale of 10-50 kpc. These
observational evidence tell us that the contribution of turbulent motions to the total pressure in the
centre of the galaxy clusters is about ∼ 10%. Despite this small value, turbulent motions are likely the
dominant source of non-thermal energy. The typical value for the turbulent velocity is ∼ 100 km/s. As
a consequence, the turbulence is subsonic.
However, simulations predict that the turbulent contribution to the total pressure increases at larger
radii, but in these regions turbulence is not well constrained observationally as in the centre. Eckert
et al. (2019) studied the turbulent properties of the ICM, beyond the virial radius, in order to infer the
mass bias. By fixing the baryon fraction within clusters based on numerical simulations, they argued
that the required ratio between non-thermal and total pressure is ∼ 6% at R500 and ∼ 10% at R200.

Figure 2.2: Spectra of FeXXV He-α, XXVI Lyman α and XXV He-β from the outer region. Gaussian
fits have been made to lines with energies (marked in red) from laboratory measurements in the case of
He-like Fe XXV, and theory in the case of Fe XXVI with the same velocity dispersion, except for the
He-α resonant line which was allowed to have its own width. Instrumental broadening with (blue line)
and without (black line) thermal broadening are indicated. The redshift is the cluster value to which the
data were self-calibrated using the He-α lines. Figure from Hitomi Collaboration et al. (2016).

2.2.2 Turbulence driven by cluster merger, Active galactic nuclei and cool-core sloshing

The accretion of gas and dark matter and merger are supposed to be the main mechanism for the
evolution of cosmic structure. During these processes, turbulence can be injected in the ICM through
shocks and instabilities. For example, figure 2.3 shows two different simulated galaxy clusters in two
different dynamical states at z=0.
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Figure 2.3: map of gas density (in ρ/ρcr,b, where ρcr,b is the critical baryon density) for a slice of 100
kpc h−1 through the centre of the major merger cluster H5 (right column) and of the merging cluster H3
(left column). Maps from Vazza et al. (2012).

Vazza et al. (2011) found that the volume filling factor of the turbulence motions below a scale of ∼
300 kpc is relatively small: it seems to be ∼ 30% for the central part of post-merger clusters and ∼ 5%
within the same volume for the relaxed systems. During the accretion some shocks can be generated due
to the high velocities of the interacting systems, even if the Mach number is not large (Ryu & Kang,
2003). Vazza et al. (2017) studied turbulence generated by cluster formation. They detected shocks using
the algorithm presented in Vazza et al. (2009a) in order to avoid spurious term induced by this event and
decomposed the filtered velocity field into solenoidal and compressive motions (see Vazza et al., 2012, for
an example of filtering techinque). Vazza et al. found that shocks affect both solenoidal and compressive
velocity components, but the dissipation in compressive modes is less important. In particular, they only
account a few per cent of the total turbulent dissipation rate in the central ∼ Mpc3 volume, while the
contribution increases to ∼ 15% within the same volume during the merger events, and to ∼ 30% in the
cluster outskirts.

Merger events could, also, trigger the production of cold front, which consists in a discontinuity in
X-ray brightness and gas temperature. They are divided into two classes: merger cold fronts, which are
the contact discontinuities that are formed between the intra-cluster media of the two merging clusters,
and sloshing cold fronts. The latter are the result of the displacement of the cluster core, from the
centre of the gravitational potential, due to the interaction with a sub-cluster. As a consequence, the
gas falls back and start sloshing inside the gravitational potential well. The superimposition of sloshing
and hydrodynamical instabilities (as Kelvin-Helmholtz instability) could inject turbulence in the ICM. It
is important to evaluate the amount of small-scale turbulent motions because turbulence present along
the cold front has been proposed as a mechanism to accelerate particles and create radio mini-halos (see
ZuHone et al., 2011).

Another source of turbulence in the ICM comes from the powerful outflows from active galactic nu-
clei. It has been shown that the AGN feedback is a key process in the evolution of galaxies and galaxy
clusters (Brighenti & Mathews 2002, Gaspari et al. 2011a). Gaspari et al. (2011b) proposed a Chaotic
Cold Accretion (CCA) model in which the hot gas is organized in hot gaseous halos, while hot gas and
neutral medium are combined to form filaments of warm gas. The authors showed how this scenario has
an accretion which is 100 times more efficient than the Bondi’s accretion. In particular, AGN feedback
can play an important role in mixing metals and removing cold and low-entropy plasma from the center.
Li et al. (2020) used high-resolution optical data to study the turbulence injected by AGN feedback,
showing that the multi-phase filamentary structures are turbulent. This suggests that turbulence could
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be an important channel for the energy exchange between the AGN feedback and the ICM.
While turbulence injected by cluster merger may fill the whole volume of the galaxy clusters, turbulence
driven by the AGN feedback mostly affects the innermost region.
It is important to constrain the parameters of the turbulence because the dissipation on the smallest scale
has been proposed as a mechanism which can heat the ICM (Zhuravleva et al., 2014a). The turbulence
heating rate can be estimated as

Qturb = Cρ
v3

L
(2.27)

where C is a constant, ρ is the gas density and v is the velocity at the scale L. Zhuravleva et al. found
that, in the Perseus and Virgo cluster, the local Qturb balances the local cooling rate as shown in figure
2.4.

Figure 2.4: Turbulent heating versus gas cooling rates in the Perseus and Virgo cores, taken from Zhu-
ravleva et al. (2014a). Each shaded rectangle shows the heating and cooling rates estimated within a
given annulus. The size of each rectangle gives the 1σ uncertainty.

Despite this, Reynolds et al. (2015) found that less than 1% of the total energy ejected by the AGN
ends up in turbulence, making this heating mechanism inefficient. The Hitomi Collaboration et al. (2016)
estimated a turbulent velocity of about ∼ 160 km/s on a scale of 10-50 kpc, resulting in a heating rate
that cannot balance the cooling rate in the Perseus cluster. Therefore, the topic still debated.
Another topic of interest is the estimation of turbulence diffusion, which can be evaluated once turbulence
velocity and scale are estimated:

D ≈ 1

3
λvturb (2.28)

where λ is the mean free path in the ICM and vturb the turbulent velocity. Vazza et al. (2012) obtained
the distribution of turbulent diffusion from mergers, AGN activity and cool-core sloshing, plotted in fig.
2.5.

The authors found that the most efficient turbulent mechanism to spread metals or particles is that
generated by cluster mergers and accretion, which injects turbulence in the whole volume of galaxy
clusters. In this case the turbulent diffusion has a distribution with a maximum at D ∼ 1029−1030 cm2s−1.
On the other hand, cool-core sloshing and AGN feedback are less efficient; the distribution of D has
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Figure 2.5: Volume (left) and mass (right) distribution of turbulent diffusion in simulated galaxy clusters.
In red the turbulent diffusion from the AGN-jet is shown, in blue the distributions of turbulent diffusion
from the sloshing and in black the turbulent diffusion from cosmological clusters. The different line-styles
are for each different object while the shadowed region shows the uncertainty in the overall cluster sample.
Plot from Vazza et al. (2012).

maxima at smaller values D ∼ 1026− 1027 cm2s−1. There is a second maximum at D ∼ 1029 cm2s−1 but
with smaller volume filling factor.

2.2.3 Previous results from simulations

The first simulations of merging clusters have been performed by Evrard (1990) and Thomas & Couchman
(1992), who found that shocks play an important role in the evolution of cosmic structures. Schindler
& Muller (1993) for the first time developed an eulerian PPM scheme to study the gas dynamics in
an idealised merger. In this work, the authors estimated the X-ray emission and presented the X-ray
temperature map. Norman & Bryan (1999) studied turbulence in the ICM using the Piecewise Parabolic
Method (PPM) on fixed and adaptive meshes which allow them to resolve the flow field in the intracluster
gas. They found that turbulence is mildly supersonic with Mach numberM∼ 1.6 near the virial radius,
while it is subsonic in the innermost region of the galaxy cluster. In this work turbulent velocities are
found to vary with radius, being ∼ 25% of σvir in the core (where σvir is the value of the velocity
dispersion at the virial radius), increasing to ∼ 60% to the virial radius. The authors, also, argued that
the mechanism which can sustain the obtained level of turbulence are the frequent minor mergers, rather
than major mergers.
Kim & Ryu (2005) studied the density power spectra of transonic and supersonic turbulent flows through
one- and three-dimensional simulations. They found Kolmogorov spectra for low Mach number, while
the slope flattened increasing the Mach number.
The study of turbulence in cosmological simulations has been pioneered by Dolag et al. (2005) using a
smoothed particle hydrodynamics (SPH) code. They introduced a scheme in which viscosity increases
near shocks and decaying after passing trough them. The authors found that the kinetic energy associated
with turbulent gas motion can be up to 30 per cent of the thermal energy content in galaxy clusters with
∼ 1015M�. This value can increase up to 50 % in the innermost region (even if later studies revised this
number). On the other hand, the ratio between thermal and turbulent energy is up to 5 % in clusters
with 1014M�. Besides, the amount of turbulent energy released by accretion and mergers is enough to
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power the radio emission observed in many galaxy clusters.
In order to shed light on the properties of turbulent motions in more ”realistic” galaxy clusters, it is
required a decomposition in the bulk and turbulent component of the velocity field. With the aim to
achieve this, many methods have been implemented. Lau et al. (2009) estimated the turbulent velocities as
the residual respect to the ICM velocity field, averaged over spherical shell. They studied the hydrostatic
mass bias in simulated galaxy clusters and found that gas motions contribute up to ∼ 5%–15% of the
pressure support in relaxed clusters, which leads to the underestimate of the total virial mass accounting
only for the thermal pressure. In more detail, the bias is about 6% ± 2% at R2500 and 8% ± 2% at R500 in
relaxed system, increasing, in perturbed system, to 9% ± 3% and 11% ± 6% at these radii, respectively.
Alternatively, one can estimate the turbulent motions interpolating the original 3-D velocity field to map
the local mean field and to detect the turbulent fluctuation on scales smaller than the interpolation scale
(Vazza et al. 2009b, 2011). Vazza et al. (2012) have proposed a multi-scale iterative filtering of the 3D
velocity field, with which the authors studied the turbulence injected by AGN, merger and cold fronts,
covering a large range scale (1 kpc to 1 Mpc). An example of this filtering approach is shown in fig. 2.6.
In the top left panel is mapped the total velocity field, while in the other panels is plotted the velocity
field after applying the multi scale filter and a filter with fixed scale.

Figure 2.6: Two-dimensional maps of total gas velocity fields (Vazza et al. 2012). Top left total gas
velocity (in [km s−1]); top right turbulent velocity field captured by our new multi-scale filter; bottom
left turbulent velocity field after the removal of L ≥ 300 kpc scale; bottom right turbulent velocity field
after the removal of L ≥ 1000 kpc scales.

The main results are that the ratio between turbulent and thermal energy Eturb/Eth ∼ 0.1 − 0.3 in
the innermost region of the clusters. On the other hand, more relaxed systems have much lower values
of the turbulent ratio, Eturb/Eth < 0.1. Moreover, the power spectra have a Kolmogorov power index
α ∼ 5/3 or steeper. Miniati (2015) and Vazza et al. (2017) have found that the solenoidal turbulence
with a Kolmogorov spectrum dominates the central region of clusters, while the compressible component
becomes more important towards the outskirt.
Finally, Angelinelli et al. (2020) studied a sample of galaxy clusters simulated with the ENZO code in
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order to test the goodness of the estimate of the total galaxy cluster mass via the hydrostatic equilibrium
hypothesis. They estimated the ratio between turbulent and total pressure α = Pnt/Ptot by comparing
the mass estimated from the hydrostatic equilibrium equation with the total mass distribution. The
authors found that the median in the sample is α ∼ 10− 20% at R500 and R200.
Despite the high resolutions, the most recent simulations do not resolve the length scale of physical
turbulent dissipation. For this reason, subgrid model which incorporate the evolution of turbulence at
this scale have been developed.

2.2.4 On the balance between gravity and turbulence

Studies on turbulence in astrophysical systems often consider an idealised Kolmogorov picture in which
turbulence is homogeneous and isotropic. However, the stratification present in the ICM makes the
analysis more complicated as gravity affects the gas dynamics. Due to the lack of X-ray telescopes with
high spectral energy resolutions, many observational studies infer information on the turbulent velocities
starting from the density fluctuations. Stratification can, thus, change the interpretation of important
statistical tools used to analyse turbulence. In the ICM, energy can be channeled back and forth between
kinetic energy and gravitational potential energy, resulting in possible variations on the rate of transfer
of kinetic energy at a given scale. Moreover, there are multiple kinds of density fluctuations, due to the
action of the buoyancy force. When a parcel of gas moves to higher (lower) radii, it has higher (lower)
density compared to the local profile and appears as positive (negative) over-density at the new location
of the parcel.
Since the role of buoyancy in the stratified ICM is center to this thesis, we shortly review its formal
modelling. Let us consider a parcel of gas with density ρ′ and pressure P ′ at a given radius r. If we
adiabatically perturb the parcel, rising it to r+dr, the change in pressure and density are, respectively,

∆P ′ = P ′(r + dr)− P (r) =
∂P

∂r
dr, (2.29)

∆ρ′ =

(
∂ρ′

∂P ′

)
S

∆P ′. (2.30)

Since the the density of the environment ρ(r) changes as a function of r, the overdensity is

δρ =
dP

dr

[(
∂ρ′

∂P ′

)
S

− ∂ρ

∂P

]
δr. (2.31)

The buoyancy restoring force introduces a new time-scale to the system, which is characterized by the
Brunt-Väisälä (BV) frequency, which is defined as

NBV =

√
− g
γ

dln (P/ργ)

dr
(2.32)

where g is the gravitational acceleration, γ the adiabatic index and P and ρ the gas pressure and
density respectively. The BV frequency is a measure of the stability of stratified fluids in which a mass
of gas is adiabatically perturbed in the vertical direction; in particular, if N2

BV > 0 the fluid is stable.
An important proxy describing the relative strength of the buoyancy force compared to the inertia of the
turbulence is the Richardson number, defined as:

Ri =
N2
BV

(vl/l)
2 (2.33)

where vl is the turbulent velocity at the scale l. Therefore, the Richardson number may be seen as
the ratio between the BV frequency and the typical turbulence eddy turn-over time scale. Generally
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speaking, Ri > 1 (buoyancy time < turbulence eddy turn-over time ) suggests that the buoyancy force
becomes dynamically important, whereas Ri � 1 (buoyancy time � turbulence eddy turn-over time)
suggests homogeneous isotropic turbulence unaffected by density stratification.
Recent works investigated the role of the stratification in the ICM. Shi & Zhang (2019) performed an
idelised simulation in order to study how the turbulent properties change in a stratified medium. The

authors found mildly-stratified plasma with a Froude number Fr = R
−1/2
i ∼ 1, which decreases to

Fr ∼ 0.1 in the central region. Nevertheless, the Froude number is still larger than the condition Fr < 0.1
commonly used to identify strongly-stratified turbulence. Besides for Fr ∼ 0.3, such a stratification
influences the morphology of the turbulent eddies, developing vertically thin and horizontally extended
pancake-like structures.
Valdarnini (2019) analysed a large set of N-body/SPH hydrodynamical cluster simulations, finding a
Froude number Fr < 0.1 within r/rvir < 0.1. This result suggests that in the cluster core ICM turbulence
is strongly modified by the presence of the gravity buoyancy force which suppresses the motions along
the radial direction.
Mohapatra et al. (2020) have recently studied the strength of the density fluctuations as function of the
Richardson number. They found a relation which involves the Mach numberM, the Richardson number
Ri and the scale height of the pressure Hp and entropy Hs

σ2
s = ln

(
1 + b2M4 + ζ2M2Ri

Hp

Hs

)
, (2.34)

where σ2
s is the width of the pdf of the variable s = ln (ρ/ρ̄z). The Richardson number in this work

is in the range of ∼ 10−4 − 10 and they found that the amplitude of density fluctuations increases as a
function of Ri for 0.01 < Ri < 10, reaches the peak at Ri ≈ 10 and starts decreasing at Ri > 10 (fig 2.7).

Figure 2.7: Scatter plot of σ2
s versus Ri. Plot from the paper Mohapatra et al. (2020).

My thesis aims at testing the validity of the above picture in the more complex and time variable ICM
of simulated galaxy clusters obtained from a cosmological simulation (see sec. 4.3).
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3 The cluster sample

In this work, we analysed a sample of simulated galaxy clusters from the ”Itasca Simulated Clusters” set
of simulations. The simulation was carried out at high spatial resolution with Adaptive Mesh Refinement
(AMR) and the Piecewise Parabolic Method (PPM) in the ENZO fluid dynamics code (Bryan et al. 2014,
see below).

3.1 ENZO code

ENZO is a (parabolic) cosmological numerical code for magneto-hydrodynamics. The main feature of the
ENZO code is its Adaptive Mesh Refinement (AMR) capability which allows reaching extremely large
spatial and temporal dynamical range. This method utilizes an adaptive hierarchy of grids at different
levels of resolution. In this way, starting from the root grid, which covers the entire volume with a coarse
uniform grid, one can place finer grids as soon as interesting regions start to evolve. These refined patches
may require further refinement, resulting in a hierarchical structure that can continue to any depth. As
the evolution continues, it may be necessary to move, resize or even remove the finer mesh. In this way, if
the root grid spacing is ∆x, then the spacing of a refined patch at level l is ∆x/rl, where r is the integer
refinement factor.
The fluxes across cells in the simulated grid are governed by the following Eulerian equations of the
ideal magneto-hydrodynamics, including gravity, in a coordinate systems comoving with the cosmological
expansion:

∂ρ

∂t
+

1

a
∇ · (vρ) = 0, (3.1)

∂ρv

∂t
+

1

a
∇ ·
(
ρvv + Ip∗ − BB

a

)
= − ȧ

a
ρv− 1

a
ρ∇Φ, (3.2)

∂E

∂t
+

1

a
∇ ·
[
(E + p∗) v− 1

a
B (B · v)

]
= − ȧ

a

(
2E − B2

2a

)
− ρ

a
v · ∇Φ− Λ + Γ +

1

a2
∇ · Fcond, (3.3)

∂B

∂t
− 1

a
∇× (B× v) = 0. (3.4)

In this equations, ρ, v and a are the comoving gas density, peculiar velocity and the cosmological ex-
pansion parameter, respectively. E, B and p* are the total comoving energy, the comoving magnetic field
strength and the total pressure (thermal plus magnetic). The first equation represents the conservation
of mass and the second the conservation of the momentum. In the energy conservation equation (third)
there are Λ, Γ and Fcond that are radiative cooling, radiative heating and the flux due to thermal heat
conduction respectively. The system of equations is closed by the equation of state for an ideal gas with
adiabatic index γ and the Poisson’s equation for the gravitational potential Φ:

e =
p

γ − 1
(3.5)

∇2Φ =
4πG

a
(ρtotal − ρ0) . (3.6)

Here, e is the comoving thermal energy density and G the gravitational constant. The gravitational
potential is created by the total mass denisty contrast, evaluated as the difference between ρtotal =
ρDM + ρ∗ + ρgas and the mean density ρ0.
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The evolution of a(t) is governed by the second Friedmann equation for the expansion of a spatially
homogeneous and isotropic universe

ä

a
= −4πG

3a3

(
ρ0 +

3p0

c2

)
+

Λcc
2

3
, (3.7)

where ρ0 is the mean comoving mass density, p0 is the comoving pressure offered by the background,
and Λc is the cosmological constant.

To solve the magneto-hydrodynamical equations several solvers are implemented in ENZO. The sim-
ulations studied in this thesis are purely hydrodynamical (e.g. without magnetic field) and are based on
the Godunov PPM scheme (Colella & Woodward 1984). These are the steps that the scheme follows:

1. Perform a monotonic parabolic interpolation of cell average data, for all the hydrodynamical quan-
tities.

2. Compute the state of each interface averaging the parabola in the domain of the interface.

3. Solving the Riemann problem given interface data.

4. Update the cell average fluid quantities estimating the flux difference at the interface.

The method is second-order accurate both in time and space.
Concerning the gravitational part of the code, the Poisson’s equation is solved using fast Fourier technique
(Hockney & Eastwood 1988), on the root grid on each time step. In this way, it is implemented a fast
and accurate method which allows periodic boundary conditions.
In cosmological simulations there is, also, the collisionless matter (e.g. dark matter, stars) which is
modelled with particles which interact only via gravity and whose dynamics is governed by Newton’s
equation:

dx

dt
=

1

a
v (3.8)

dv

dt
= − ȧ

a
v− 1

a
∇Φ. (3.9)

In the code, the trajectories of these particles are obtained using a kick-drift-kick algorithm with
second-order accuracy even in the presence of varying time steps. Particles are stored in the most highly
refined grid patch at the point in space where they exist.

3.2 Our simulations

The cosmological simulations of the Itasca sample assume the WMAP7 ΛCDM cosmology (Komatsu
et al. 2011), with ΩB = 0.0445, ΩDM = 0.2265, ΩΛ = 0.728, Hubble parameter h = 0.702, σ8 = 0.8
and a primordial index of n = 0.961. All runs were non radiative, i.e. they did not consider the gas
cooling or the heating from star forming regions or active galactic nuclei. Despite the effects of non-
gravitational heating are limited, on the � 100 kpc scales, compared to the merger or accretion impact
in the ICM (Valdarnini 2019), however, the combination of cooling and feedback can increase the number
of dense substructures. This implies that the estimation of the gas density and temperature could be
locally biased. Besides, an enhanced number of substructures with different temperature and density
could produce, with the help of instabilities, small-scale turbulent motions.
The simulations were runned with the following procedure:
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ID M200

[
1014M�

]
R200[Mpc] Dyn. status (w) Dyn. Status (c)

IT90 0 0.88 0.88 Perturbed Perturbed
IT90 1 2.45 1.29 Relaxed Perturbed
IT90 2 1.10 0.99 Relaxed Perturbed
IT90 3 0.72 0.86 Perturbed Perturbed
IT90 4 0.54 0.78 Perturbed Perturbed
IT92 0 3.32 1.42 Relaxed Perturbed
IT92 1 1.00 0.96 Perturbed Relaxed
IT92 2 1.17 1.01 Perturbed Relaxed

Table 1: List of the clusters of our sample with their main properties

• Independent cosmological volumes were simulated in order to select the most massive objects in
the volume. Initial conditions were generated, separately for each simulations, at redshift z = 30.
The spatial resolution, at this level, is L0 = 110 h kpc−1 ≈ 157 kpc and the DM mass resolution is
mDM = 8.96 · 107 M�.

• A second more refined grid was created, centered on the cluster formation region, which covered
the innermost ≈ 31 Mpc. In this case, the spatial resolution reaches 55 h kpc−1 ≈ 78.4 kpc and
the DM mass resolution is mDM = 1.12 · 107 M�.

• Inside the central (L0/10)
3 ≈ 6.3 Mpc3 volume of each box a fixed further refinement was enforced.

This volume is large enough to include the virial radii of most of the clusters and the spatial
resolution increases to 13.8 h kpc−1 ≈ 20 kpc.

The full ”Itasca simulated cluster” sample consists of 20 galaxy clusters with the above resolutions
and is used to investigate almost every dynamic and thermal properties of the ICM. In this thesis, I
used 8 clusters at z = 0, with 0.54 · 1014 M� < M200 < 3.32 · 1014 M�. In table 1 we report the main
properties of the galaxy clusters sample. The analysis on the dynamical status has been performed with
the centroid shift parameter, which estimates the shift of the centroid of the X-ray isophotes and with
the X-ray surface brightness concentration parameter, which takes into account the density peak in the
innermost region of cool-core cluster. Concerning the first one, once the centroid of the largest aperture
(or isophote), with a certain Rmax, is obtained, the shift parameter is defined as follows:

w =
1

Rmax

√∑
(∆i− < ∆ >)

2

N − 1
, (3.10)

where ∆i is the separation of the centroids computed within Rmax and within the ith aperture and N is
the total number of aperture. The concentration parameter is defined as

c =
S (r < 40 kpc)

S (r > 400 kpc)
. (3.11)

Here S is the X-ray surface brightness within a certain radius and this proxy is useful to recognize cool-
core clusters, which have a density peak in the innermost region. For further informations on the cluster
sample, we refer the reader to Vazza et al. (2017), Wittor et al. (2017), Angelinelli et al. (2020).

In Fig. 3.1 slices at z=0 of two clusters from our sample are shown. The upper panel shows the gas
density and the lower panel the temperature distribution.
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Figure 3.1: Gas density and temperature map of two cluster from the Itasca sample at z = 0.
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4 Numerical analysis and results

In this section, we will present the numerical methods used to analyze the high-resolution outputs of a
large sample of galaxy clusters, simulated with the cosmological adaptive mesh refinement code ENZO.
We addressed the problem of relating the power spectrum of the velocity field of the ICM with gas
density fluctuations, as commonly done in X-ray and SZ observations (e.g. Zhuravleva et al., 2014b).
We compared these results with the radial profile of both density and velocity power spectra, and we
investigated the relation between the slopes of the two spectra. Secondly, we also studied the role of
buoyancy in the stratified ICM of galaxy clusters, and investigated whether the amplitude of gas density
fluctuations across the cluster volume can be directly related with the Richardson number, following
Mohapatra et al. (2020).

4.1 Radial profile of the power spectra

While a direct observation of turbulent motions via the Doppler effect on X-ray detectable emission
lines is not yet feasible for the majority of galaxy clusters, the present sensitivity of X-ray satellites,
combined with the proportionality of the surface brightness with the gas density, SX ∝ n2

gas, makes it
possible to infer, at least in principle, the amplitude of turbulent fluctuations through their impact on
SX . In order to compare the results with observational data, past analysis of simulations were restricted
within the virial radius of the cluster. Moreover, the likely presence of shocks, clumps and filaments
might contaminate the analysis. For this reason, both observationally and numerically, the properties of
turbulence are typically difficult to constrain at large radii. As a preliminary step, we tried to understand
how turbulence properties change, observing the radial profile of the power spectra of both density and
velocity fluctuations. We measured the power spectrum of the velocity field of the simulated ICM using
the Fast Fourier Transform, assuming periodicity (e.g. see Vazza et al., 2011, for a discussion) :

v(k)
2

=
√
vx(k)2 + vy(k)2 + vz(k)2, (4.1)

where vi(k) is the Fourier transform of each component

vi(k) =
1

(2π)
3

∫
V

vi(x)e−2πik·x dx. (4.2)

The density fluctuations ρ(k)
2

were obtained in a similar way, computing the Fourier transform of the
real space density distribution. To obtain the power spectrum we did not disentangle turbulent from
laminar fields, since the latter affects the bigger spatial scale, of the order of magnitude of the virial
radius. In this sense, we carried on the analysis considering the region of the spectra in which there were
no contaminations of both biggest spatial scales and smallest scales on which the turbulent dissipation
becomes dominant. The chosen inertial range is 0.55 < Log(k) < 1.25 , where k is expressed in term of
cells; in physical units this means a spatial scale L in the range 70 kpc . L . 350 kpc. In this sense, for
example, Log(k) = 1 corresponds to a spatial scale L ∼ 200 kpc. Fig. 4.1 shows examples of the power
spectra at various radii and the k range considered for the analysis, in the IT90 1 galaxy cluster, with
M200 = 2.45 · 1014M� and R200 = 1.29Mpc (see Table 1). Finally, we evaluated the slope in each bin of
the considered portion of the power spectrum and averaged them in order to obtain the slope mean for
the entire power spectrum. Concerning the velocity power spectra, we evaluated the slope in each bin of
each velocity component and then we averaged over all slope values within the considered range.

Firstly, in order to study the robustness of the method used for the estimation of the slopes and as a
preliminary study of the dependence of the slopes on the radius, we investigated the dependence of the
power spectra on the size of the computational box. The boxes are all centered on the peak of the gas
density. We present the slope value as function of the size of the box, in a single cluster, in Fig 4.2. For
each slope value, we give the one-sigma errorbar, evaluated as the standard deviation of the slope values
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Figure 4.1: Power spectra of the density distribution (left panel) and velocity distribution (right panel)
in IT90 1. The k values range used for the analysis is highlighted by the vertical yellow lines.

in each bin for both the density and velocity slope. The velocity slope is constant as the width of the
box increases. On the other hand, even if the density slope becomes steeper, considering the errobars
which make the slope values consistent each other, the profile suggests no variations as the size of the box
increases. It is interesting to notice that Vazza et al. (2017), with the same cluster sample, found a steeper
slope (E(k) ∝ k−4), considering larger boxes which include the whole volume of the galaxy cluster. On
the contrary, in this work, we found a velocity slope which is consistent with a Kolmogorov scenario,
whose prediction for the slope is -11/3 = -3.666 for a 3D spectrum. The explanation for this difference is
likely to be that the normalization of the power spectrum decreases as we move to larger radii, resulting
in a more steep spectrum if we consider a larger box than we used for this analysis. Therefore, this
analysis highlights the important fact that a large dynamical range in simulations is necessary in order to
properly measure the spectral slope of turbulent spectra, in an unbiased way with respect to numerical
sampling effects.

In order to produce a slope radial profile, we computed the power spectra considering boxes with 1283

cells located at different radii and in various directions, to fill the whole volume. The centre of the cluster
was identified with the peak of the gas density. To have a unique slope value at a certain radius, we
averaged the slopes, with an inverse-variance weighted mean, of the power spectra performed on boxes
located at the same distance from the center of the galaxy cluster. Fig. 4.3 shows the slope radial profile
in a cluster of our sample. Here, Rvir is the virial radius of the cluster. The one-sigma error-bars were

estimated as the standard error of the weighted mean σ =

(√∑
i

1
σ2
i

)−1

, where σi are the one-sigma

errors of each box at a given radius. As above, the velocity slope shows a constant radial profile, whereas
the density radial profile presents some variations. However, in the outer region, the presence of filaments
and clumps, whose accretion might result in shocks, makes the explanation less straightforward. Despite
this, both fields have a constant slope radial profile within Rvir, suggesting a rather stable relation be-
tween the density and velocity turbulent fluctuations.

In Fig. 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10 we present the radial profile and the dependence on the
size of the box of the slope for the other clusters. All of them show similar results as above, with a
velocity slope similar to the Kolmogorov slope and a constant relation between the two slopes within
the virial radius, as it might be widely expected if baryons would be a simple ”passive” tracer advected
by turbulent fluctuations. In the following sections, we will see that the relation between density and
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Figure 4.2: Power spectrum slope as a function of the width of the box. One-sigma error bars are shown.
The velocity slope remains constant as the number of cells involved increases, whereas the density slope
becomes steeper for box with cell number > 2003.

Figure 4.3: Power spectrum slope as a function of the distance from the cluster center. One-sigma error
bars are shown. The velocity slope remains constant as we move to larger radii, whereas the density slope
becomes flatter.

velocity fluctuations is indeed more complex in the typical environment of galaxy clusters.
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Figure 4.4: Power spectrum slope as a function of the distance from the cluster centre (top panel) and
the width of the box (low panel) in IT90 0
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Figure 4.5: Power spectrum slope as a function of the distance from the cluster centre (top panel) and
the width of the box (low panel) in IT90 2
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Figure 4.6: Power spectrum slope as a function of the distance from the cluster centre (top panel) and
the width of the box (low panel) in IT90 3
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Figure 4.7: Power spectrum slope as a function of the distance from the cluster centre (top panel) and
the width of the box (low panel) in IT90 4
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Figure 4.8: Power spectrum slope as a function of the distance from the cluster centre (top panel) and
the width of the box (low panel) in IT92 0
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Figure 4.9: Power spectrum slope as a function of the distance from the cluster centre (top panel) and
the width of the box (low panel) in IT92 1
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Figure 4.10: Power spectrum slope as a function of the distance from the cluster centre (top panel) and
the width of the box (low panel) in IT92 2

4.2 On the relation between velocity and density turbulent fluctuations

The easiest observational approach to infer information on the turbulent velocity fluctuations in X-ray
band, is the study of the surface brightness fluctuations, supposing that they are related to density
fluctuations produced by turbulent motions. Zhuravleva et al. (2014b) and Gaspari et al. (2014) studied
the δρ/ρ− δv/cs relation in the stratified intracluster medium. In the first work, the authors performed
a cosmological simulation to analyze the merger-driven turbulence in 6 relaxed clusters. On the other
hand, in the latter work, the authors investigated the turbulent statistics in more idealised simulations.
Both of them found that the rms of density and velocity fluctuations are linearly related, across a broad
range of scales, in both buoyancy-dominated and turbulent regimes.
We extended the analysis, studying the above relation in both relaxed and perturbed galaxy clusters in
the ITASCA sample (Sec. 3.2). In order to study the properties of turbulence, it is useful to disentangle
the bulk and turbulent motions. Different algorithms have been performed and there is no consense on the
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best approach. For this reason, we implemented different methods to observe how the δρ/ρ−δv/cs relation
changes as different algorithms are considered. In particular, we estimated the turbulent fluctuations in
the following ways:

• δρ(prof) =
ρ−ρ̄prof
ρ̄prof

. Here ρ̄prof is the density mean, at a certain radius, given by the 3D radial

profile. The variance of this variable is called σ2
ρ(prof).

• δρ = ρ−ρ̄
ρ̄ , where ρ̄ is the density mean evaluated on 300 kpc wide boxes. This is a scale-filtering

approach with a 300 kpc fixed scale. The top-right panel of Fig. 4.11 shows the density distribution
after the procedure to disentagle the bulk motions using this method. The variance of this variable
is called σ2

ρ.

• δvi(prof) =
vi−v̄iprof
csprof

. We computed the 3D radial profile for each velocity component viprof and we

estimated δv(prof) =
√
δv2
x + δv2

y + δv2
z . The sound speed at a given radius, csprof , was evaluated

from the temperature 3D radial profile, using Eq. 4.6. Its varaince is σ2
v(prof).

• δvi = vi−v̄i
csprof

, where v̄i is the density-weighted velocity mean of the i-th component evaluated on

300 kpc wide boxes . The method is analogous to the fixed-scale filtering approach for the density
distribution. Lower-right panel of Fig 4.11 shows the residual turbulent motions. We calculated
the modulus δv as before. We will refer to the variance of this variable as σ2

v .

Since we studied turbulence injected from hierarchical accretion, it is likely that, if there are motions
on large scale, they are related to bulk motions of the gas. Moreover, Angelinelli et al. (2020), with an
iterative multi-scale filtering approach (in the same clusters sample) found that the most likely scale is
about 500 kpc. For these reasons, we are confident the filtering scale chosen value might be reasonable.

The analysis was computed within the virial radius of the clusters and, in order to study the whole
considered volume, we analyzed, with the following algorithm, ≈ 600 kpc (linear size) wide boxes (with
323 cells), located at different radii and considering various radial directions. In each box we computed
the probability distribution function (PDF) of the density turbulent fluctuations (Fig. 4.12, orange plus
blue line). In order to remove the contaminations coming from shock compressions and accreted sub-
halos, we excised the 5% denser cells in each box considered. The orange line in Fig. 4.12 shows the
resulting PDF after this procedure. The density fluctuation σ2

ρ (σ2
ρ(prof)) in each box was estimated

as the variance of the includes points of the PDF. Similarly, the velocity fluctuation σ2
v (σ2

v(prof)) was
calculated as the variance of the velocity in each cell in which the density fluctuation was in the range of
δρ/ρ values included in the PDF after the removal of the denser fluctuations.

As it is shown in Fig. 4.13, the two methods to infer the velocity fluctuations give quite different results,
but, for small values, it is reasonable to think that the small differences might not affect the final result. In
the plot, there are the values of the turbulent velocity fluctuations evaluated with two different methods
(black points) and the y=x line (red line). The last method presented in the above list is supposed to be
more accurate, since the velocity mean is estimated locally, around the cell to filter. For this reason, we
used the results from this method to fit the data. On the other hand, the density fluctuations, estimated
with the two different methods above, deviate between one to the other. In particular, in the case in
which ρ̄ is estimated from the radial profile, very large fluctuations (σ2

ρ(prof) > 10) appear, even with
the cut of the 5% denser fluctuations. A possible explanation for these findings is that this method is
insufficient to filter the largest accreted structures. Moreover, a radial mean does not takes into account
the presence of a clump, resulting in large local fluctuations.
In this latter case, the linear fit is unstable both for relaxed and perturbed cluster, resulting in a nearly
costant relation: m = 0.02±1.17 ·10−4, R = 9.7 ·10−4 and 7.7±1.3 ·10−3, R = 0.39 for the perturbed and
relaxed clusters (according to the centroid shift parameter), respectively. For completeness, we report
the fit of this case in Fig. 4.14. Since the number of points with σ2

ρ > 10 is small, the figure has limits
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Figure 4.11: In the left panels, the original density and velocity distributions in one cluster. In the right
panels, the turbulent density and velocity fluctuations after the application of the fixed-scale filtering
method.

Figure 4.12: Probability distribution function of the turbulent density fluctuations in a single box of a
cluster. The orange points are the final PDF, after the procedure to excise the 5% denser fluctuations.
The blue part represents the excised points.
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Figure 4.13: σ2
v - σ2

v(prof) plot. The red line is the bisector y=x. At small values the two methods give
quite similar results.

on x-axis for a better visualization. To test the goodness of the fit we used the Pearson’s correlation
coefficient

R =

∑
i

(xi − x̄)(yi − ȳ)√∑
i

(xi − x̄)2
∑
i

(yi − ȳ)2
, (4.3)

where x̄ and ȳ are the means of the two variables. This parameter is equal to 1 (-1) when the variables
are perfectly correlated (anti-correlated), while is zero when the variables are completely uncorrelated.

On the contrary, considering the density fluctuations with ρ̄ evaluated on boxes, the results show a
significant relation between the two variables. In Table 2 the parameters of the fit with the classification
of the dynamical state of the clusters, based on the centroid shift parameter, are reported, while in Fig.
4.15 we show the fit. R is the Pearson’s correlation coefficient, m is the slope and q is the intercept.
In Table 3 we report the fit parameters, classifying the dynamical state of the galaxy clusters according to
the value of the X-ray surface brightness concentration (Table 1). Fig. 4.16 shows that, in this case, the
relation remains for the perturbed clusters but disappears for the relaxed clusters. However, the number
of relaxed clusters is small, in particular with the classification based on the concentration parameter.
In this sense, the fit is likely to be affected by small number statistics and some variations might arise if
we consider a larger sample. Moreover, since the concentration parameter is the ratio between the flux
in the innermost region and the ”total” flux of the cluster, it is used to recognize the cool-core clusters,
which usually are relaxed. On the other hand, the simulations performed are non-radiative, which means
that the classification based on the concentration parameter might be less accurate than the classification
according to the centroid shift, because some of the relevant physics responsible for the production of
cool-cores (e.g. radiative cooling, star formation and feedback) is just missing in the numerical model.
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Figure 4.14: σ2
ρ - σ2

v plot in relaxed (upper panel) and perturbed (lower panel) galaxy clusters. The
density mean is evaluated from the 3D radial profile.

R m q
Total cluster sample 0.58 0.59 ± 0.04 -0.015 ± 0.005
Perturbed clusters 0.45 0.27 ± 0.03 0.011 ± 0.005
Relaxed clusters 0.77 0.99 ± 0.06 -0.038 ± 0.007

Table 2: Parameters of the linear fit between linear density and velocity turbulent fluctuations. The
density and velocity mean are evaluated on 300 kpc wide boxes. The cluster dynamical state classification
is based on the centroid shift parameter w.

R m q
Perturbed clusters 0.64 0.68 ± 0.04 0.020 ± 0.005
Relaxed clusters -0.05 -0.017 ± 0.036 0.033 ± 0.004

Table 3: Parameters of the linear fit between linear density and velocity turbulent fluctuations. The
density and velocity mean are evaluated on 300 kpc wide boxes The cluster dynamical state classification
is based on the X-ray surface brightness concentration c.
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Figure 4.15: σ2
ρ - σ2

v plot in the total cluster sample (upper panel), in the relaxed (middle panel) and
perturbed (lower panel) galaxy clusters. The density and velocity mean are evaluated on 300 kpc wide
boxes. The cluster classification is based on the centroid shift parameter.

43



Figure 4.16: σ2
ρ - σ2

v scatter plot in relaxed (upper panel) and perturbed (lower panel) galaxy clusters.
The density mean is evaluated on 300 kpc wide boxes. The cluster classification is based on the X-ray
surface brightness concentration.
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4.3 Testing the Ri −M− σ2
s relation

Mohapatra et al. (2020) studied the role of the stratification in a turbulent plasma, showing that density
fluctuations generated in this scenario depend on the Richardson number, which takes into account the
stratification, and the Mach number. We tested the validity of the picture presented in the previous
work in a more complex and time dependent plasma. The considered clusters region is within the virial
radius and we implemented the following algorithm on boxes with 323 cells, located at different radii and
considering various radial directions. We used the peak of gas density distribution to recognize the center
of the cluster.
To disentangle the bulk and turbulent motions we used the fixed-scale filtering approach presented above.
For unstratified subsonic turbulence, the density fluctuations are supposed to follow a log-normal distri-
bution (Federrath et al. 2008, Zhuravleva et al. 2013). For this reason, and to follow the reference work,
we used logarithmic density fluctuations for our analysis:

s = ln (ρ/ρ̄) , (4.4)

where ρ is the original field and ρ̄ is the density mean evaluated on 300 kpc wide boxes around the
cell to filter. The resulting probability distribution function of density fluctuations is presented in Fig.
4.17 (blue line plus orange line). It was obtained in one of our clusters, considering a region of 323 cells
(≈ 600 kpc linear size wide box). The distribution has two tails both at smallest and largest values of
s which make it different from a log-normal distribution. Anyway, as discussed above, high s values are
expected, as shock compressions and accreted filaments are present in galaxy clusters. For this reason,
as in the previous analysis, we excised the 5% denser fluctuations in each box considered. The resulting
PDF, after this procedure, is presented in Fig 4.17 (orange line). The density fluctuation σ2

s in each box
was estimated as the variance of the includes points of the PDF.

Figure 4.17: Probability distribution function of the logarithmic density fluctuations in a box of a cluster.
The orange points are the final PDF, after the procedure to excise the 5% denser fluctuation. The blue
part represnts the esxcised points.

To estimate the Richardson number we used the Eq. 2.33. We divided each box of 323 cells with 30
shells to create the radial profiles. The Brünt-Väisälä frequency was evaluated following the Eq. 2.32
computing a centered derivative. Tha gas pressure and density are given by the radial profile in the box
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as the gravitational acceleration, which we computed, considering a spherical symmetry, making use of
the Newton’s theorem

g(r) = −GM(r)

r2
. (4.5)

Here, M(r) is the total mass of the cluster (Mgas + MDM ) at a given radius. The adiabatic index γ
is 5/3. We derived the turbulent velocity radial profile, within the box, and the value of vl in each shell
was estimated as the quadratic mean of the turbulent velocities of each cell, belonging to the shell, in
which the density fluctuation was in the range of s values included in the PDF after the cut of the denser
fluctuations. Furthermore, we assumed the filtering scale l as the dimension of the boxes on which we
filter the density and velocity distribution, l = 300 kpc. Once Ri was evaluated in each shell, we averaged
it, in order to characterize each box with its Richardson number.

Finally, we evaluated the Mach number mean averaging the Mach number (M = vl/cs) of each cell
belonging to the box. The sound speed in each cell was derived from the temperature

cs =

√
γ
kT

µmp
. (4.6)

Fig. 4.20 shows a distribution of the Mach number considering the total cluster sample. We plot the
σ2
s−Ri relation in Fig. 4.18. The relation we found is clearly different from the fit founded by Mohapatra

et al. In the plot the black points are the results of the analysis, while the blue line is the best fit found
by Mohapatra et al; the density fluctuations we found are larger than the σ2

s values found in the reference
work.

Figure 4.18: Ri - σ2
s plot. Both variables are calculated on box with 323 cells located at different radii.

The analysis was performed considering the total cluster sample

In order to explore the balance between turbulence and buoyancy as function of the radius, we also
computed a radial profile of the Richardson number, repeating the same steps above in a larger box which
includes the cluster region beyond the virial radius. Fig 4.19 gives the different radial profile of Ri , for
boxes of increasing size. We found that the Richardson number has a strong dependence on the filtering
scale, with the possibility of varying of almost two orders of magnitude going from the smallest to largest
filtering scales. According to the Kolmogorov theory, Ri ∝ l4/3, but the plot shows how the Richardson
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number has a steeper rise. For L ≤ 100 kpc, Ri is always smaller than one, suggesting that buoyancy is
inefficient and the property of homogeneity and isotropy of the turbulence probably still be present. On
the other hand, For L ≥ 300 kpc buoyancy seems to be dominant for most of the volume of the cluster.
Only in the more peripheral regions, turbulence takes over the gravity. Finally, the radial profile does
not change its shape, suggesting that the turbulent velocity radial profile does not change increasing the
filtering scale. This is in agreement with the results presented in Fig. 4.2, which shows that the velocity
slope does not change as the size of the box (analogous to the filtering scale) increases.

Figure 4.19: Richardson number radial profile for a single cluster. Different colors mean different filtering
scales (L), evaluated as the dimension of boxes in which the velocity mean of laminar flow is estimated.
Magenta line traces when Ri=1.

For a more complete study of the density fluctuations dependence on the Richardson number, we also
tested the Ri −M− σ2

s relation considering the Richardson number and s = ln(ρ/ρ̄) evaluated on shells
at different radii. We divided the entire cluster with 250 shells and, in each of them, we estimated σ2

s as
the variance of the PDF after the procedure to excise the denser fluctuations. In Fig. 4.21 we present
the Ri − σ2

s scatter plot for this case. In this case, the relation is different from the reference work as
well. Besides, we are confident that the method explained above is more accurate. In fact, a radial
mean cancels possible asymmetries and both the Richardson number and σ2

ρ show different values as the
direction, in which the box is located, changes, even at the same radius. In conclusion, we assessed that
an analysis of turbulence has to be performed on boxes, since the turbulent properties are affected by
the asymmetry of the system and sphericity assumption.
Anyway, both using boxes or radial profile, we found strongly different results from Mohapatra et al.
In particular, the logarithmic density fluctuations we obtained for small Richardson number are larger
up to 3 order of magnitude. This might be caused by the different nature of the simulations (idealised
and cosmological). Since small Richardson number results in turbulence dominated regime, the different
turbulent forcing in the two simulations might result in different density fluctuations. Moreover, as Fig.
4.19 shows, we found small Richardson numbers in the outer region of the cluster, in which shocks and
accretion processes might contaminate the results. In this sense, even if the average Mach numbers we
found on each box suggest subsonic turbulence (see Fig. 4.20), this does not mean that locally the gas is
not in a supersonic regime. On the other hand, Mohapatra et al. investigated turbulence in a subsonic
regime. This might also explain the logarithmic density PDF we obtained. Federrath et al. (2008) showed
how compressive supersonic turbulence results in a PDF with a higher tail at the smallest values, which
is very similar to the PDF we obtained (Fig 4.17). Since the distribution we obtained is clearly not
log-normal, estimating the density fluctuations using the variance might not be the best approach and
some other way must be investigated.
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R m q
Total cluster sample 0.12 0.04 ± 0.02 0.12 ± 0.01
Perturbed clusters 0.19 0.12 ± 0.04 0.09 ± 0.01
Relaxed clusters 0.11 0.02 ± 0.02 0.14 ± 0.01

Table 4: Parameters of the linear fit between logarithmic density and velocity turbulent fluctuations.

Figure 4.20: Distribution of the Mach number estimated averaging the Mach number of each cells be-
longing to a certain 600 kpc (linear size) wide box.

Figure 4.21: Ri - σ2
s scatter plot. Both variables are calculated on shells at different radii. The analysis

was performed considering the total cluster sample.

Finally, we investigated the relation between the logarithmic density and velocity (ln(v/v̄)) fluctuations.
We performed a linear fit between the two variables, considering the whole sample and differentiating
between perturbed and relaxed clusters. In all these cases we found no dependence (i.e. slope m consistent
with zero). In Table 4 are reported the parameters of the fit and in Fig. 4.22 we show the fit. Only the
perturbed clusters show a relation between the logarithmic fluctuations, but with a large scatter which
results in a small correlation coefficient.
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Figure 4.22: σ2
s − σ2

v relation, considering logarithmic fluctuations, in the total cluster sample (upper
panel), relaxed clusters (middle panel) and perturbed clusters (lower panel). Both density and velocity
mean are evaluated in 300 kpc wide boxes.
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5 Comparison with the literature and future developments

In this work, we analyzed a sample of galaxy clusters, simulated with the cosmological code ENZO, in
order to investigate the statistical properties of turbulence arising from hierarchical accretion process.
We studied the radial dependence of the slope of, both, density and velocity power spectra and the
relation between their integrated values, i.e. σ2

ρ and σ2
v , respectively. To achieve this goal, we used a

spatial fixed-scale filtering method to disentangle the laminar from the turbulent motions, producing a
computative 3D distribution of turbulence. We estimated σ2

ρ and σ2
v within a spatial scale of 600 kpc, by

computing the variance of the density and velocity fluctuations. A close comparison can be drawn here
with Zhuravleva et al. (2014b), who studied the same relation in a sample of 6 relaxed clusters; Fig. 5.1
and 5.2 shows that these authors found a one-to-one relation between density and velocity fluctuations,
across a broad range of spatial scales, asserting that the same relation might be valid in perturbed clusters
as well.

Figure 5.1: Amplitudes of density and velocity fluctuations (top panel) and their ratio (bottom panel) in
a simulated cluster. Plot from Zhuravleva et al. (2014b).

The outcome of our work, compared to Zhuravleva et al. (2014b), are twofold. On one hand in our
cluster sample we found that, even if the density and velocity power spectra show different slopes, the
integrated power spectra result in a relation between density and velocity fluctuations. However, the
spectral slopes we recover are not consistent with a one-to-one relation, and we additionally found that
considering both the centroid shift and the concentration parameter, the slope depends on the dynamical
state of galaxy clusters (see Table 2 and 3). However, it shall be noticed that Zhuravleva et al. (2014b)
estimated the density fluctuations as the residuals of the density profile after subtracting a β - model.
We also used a very similar filtering technique in which the density fluctuations was estimated after the
subtraction of the density mean averaged on shells at a certain radius. In this case, we cannot define a
unique fixed filtering scale, but it is reasonable to think that some filtering scales are larger than 300 kpc
and some smaller. Fig. 5.2 shows that for small k values, which means large spatial scales, the one-to-one
relation is still not valid, with density fluctuations being typically larger than velocity fluctuations. We
obtained similar results when we estimated the density fluctuation evaluating the density mean from the
3D density radial profile (see Fig. 4.14). It is also interesting to notice that the ratio between velocity
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Figure 5.2: Ratio of the amplitudes of density and velocity fluctuations averaged on the cluster sample.
Plot from Zhuravleva et al. (2014b).

and density fluctuations depends on the distance from the center of the cluster, as Fig 5.3 shows. In this
plot, Rvir is the virial radius and the black points are related to relaxed clusters, while the values of the
perturbed ones are shown in blue. Regardless of the dynamical state of the cluster, the ratio seems to
rise as we move to larger radii. The classification is based on the centroid shift parameter.

Moreover, we investigated the role of stratification in the production of density fluctuations. To explore
the balance between buoyancy and turbulence we used the Richardson number Ri, which is an estimate
of the dominance of turbulence compared to gravity. We sought for a relation between the logarithmic
density fluctuations and the Richardson number, following the recent work by Mohapatra et al. (2020).
Figures 4.18 and 4.21 show that there is not a correlation between the two variables in our cluster sam-
ple. However, the values of the logarithmic density fluctuations we found are larger than the ones that
Mohapatra et al. obtained. This big difference might be caused by the different nature of the simulation,
since their setup is much more idealised, both concerning the forcing of turbulence and the absence of
self-gravitating gas substructures and bulk motions. Another element of difference might be the estima-
tion of the logarithmic density fluctuation: while the distribution function reported by Mohapatra et al.
was consistent with a log-normal distribution, our distribution turned out to be different, with tails both
at smallest (probably created by supersonic turbulent motions) and largest density fluctuation values (see
Fig. 4.17). In this sense, the variance might not represent the best estimation of the density fluctuations.

In conclusion, the main findings of this thesis are:

• Even though Zhuravleva et al. (2014b) found a one to one relation between density and velocity

turbulent fluctuations, we obtained that the mean ratio in the sample is
(
σ2
v/σ

2
ρ

)1/2
= 0.59 ± 016

in the perturbed clusters (classification according to the centroid shift parameter), 0.68 ± 0.23 in
the relaxed ones and that the δρ/ρ − δv/cs correlation might depend on the dynamical state of
the galaxy cluster. Fig. 5.3 shows the radial dependence of the ratio. Future works may better
explored the multi-parameter dependence of the underlying correlation, in clusters with a different
dynamical state.

• The turbulent velocity fluctuations rather well follow the Kolmogorov theory, with a power spectrum
slope consistent with -11/3, which is the Kolmogorov slope for a 3D spectrum, considering the
spatial scale range 70 kpc . L . 350 kpc. On the other hand, gas density fluctuations present some
variations in their spectral slope as we consider regions of the cluster at different radii.

• Despite the results of previous works (Federrath et al. 2008, Zhuravleva et al. 2013), the distribu-
tion function of logarithmic density fluctuations in our simulated ICM is not log-normal. This is
likely be due to the presence of local supersonic turbulent motions which increase the width of the
distribution, and promote the formation of higher left tail.
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Figure 5.3: Ratio of the amplitudes of density and velocity fluctuations as function of the distance from
the cluster center. The black point correspond to relaxed clusters and blue points to the perturbed ones.
The classification is based on the centroid shift parameter.

• Although Mohapatra et al. (2020) found a tight relation between the logarithmic density turbulent
fluctuations and the Richardson number, which takes into account the strength of the buoyancy
force compared to the turbulent forcing, we could not replicate their results. The time-dependent
plasma environment we analysed is more complex and no simple relation between the two variables
emerged from our analysis. As Fig. 4.20 shows, we do not have a unique Mach number and
some local supersonic turbulent motions might affect the result as well. This, with the likely
presence of accreted clumps and filaments from the outer regions, makes the evaluation of the
density fluctuations less straightforward and further refinements must be taken into account in the
future works.

In summary, since a frequently used method to approach turbulence in the ICM in observations is the
analysis of surface brightness fluctuations, this thesis (and other future works) provides a fundamental
tool for high-resolution data analysis coming from existing (XMM-Newton, Chandra, eROSITA) and
future (Athena) X-ray telescopes.

Finally, the are some further analysis we will perform in future works. First of all, we will investigate
the σ2

ρ−σ2
v relation considering the whole volume of the galaxy clusters and a multi-parameter regression

between these two variable, in order to get a full picture on this topic. Moreover, we will extend the
analysis of the radial profile of the Richardson number to the entire cluster sample, in order to investigate
if the Richardson number might affect the density spectra slope too. In fact, the density slope presents
variations at radii larger than the virial radius, where turbulence seems to be the dominant process for
gas dynamics. Another aspect that will be worth investigating in the near future is the estimation of the
density fluctuations: trying to find a statistic which can be robust both in the subsonic and supersonic
regime will allow us to link turbulence and density with smaller statistical uncertainties. Finally, we will
produce X-ray surface brightness fluctuations maps to compare our results with present and future X-ray
observational data.
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Zhuravleva I., Churazov E., Kravtsov A., Lau E. T., Nagai D., Sunyaev R., 2013, MNRAS, 428, 3274

Zhuravleva I. et al., 2014a, Nature, 515, 85

Zhuravleva I. et al., 2014b, ApJ Letters, 788, L13

ZuHone J. A., Markevitch M., Brunetti G., 2011, in American Astronomical Society Meeting Abstracts,
Vol. 218, American Astronomical Society Meeting Abstracts #218, p. 408.25

59


