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Abstract

In 1982 Elie Bienestock, Leon Cooper and Paul Munro wrote ”Theory for the develop-
ment of neuron selectivity” proposing a synaptic evolution scheme in which incoming
patterns rather than converging afferents compete. It briefly became known as BCM
theory and it was the springboard for further works on modification of cortial synapses.
During the last two decades new formulations of the theory were made, like the IBCM
done by Nathan Intrator and Leon Cooper in 1992, and new methods were introduced al-
lowing the creation of more complicated and efficient neural netwoks. The study of these
models points out their capability to adapt to different cases in a simple way. Studies has
been done rearing animals in a critical period for the development of cortical selectivity
and the agreement of the data with the theory has been proved. The whole theory, which
is valid for cortical neurons, might be improved with more computing power which could
get rid of some approximation.
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Sommario

Nel 1982 Elie Bienestock, Leon Cooper e Paul Munro scrissero ”Theory for the develo-
pment of neuron selectivity” proponendo uno schema di evoluzione sinaptica nel quale
competono i modelli in arrivo piuttosto che la convergenza degli afferenti. Brevemen-
te divenne nota come teoria BCM e fu il trampolino di lancio per ulteriori lavori sulla
modificazione delle sinapsi corticali. Durante le ultime due decadi sono state fatte nuo-
ve formulazioni, come la IBCM di Nathan Intrator and Leon Cooper del 1992, e nuovi
metodi sono stati introdotti permettendo la creazione di reti neurali più complicate ed
efficienti. Lo studio di questi modelli evidenzia la capacità di adattamento a diverse
situazioni in un modo semplice. Sono stati fatti studi allevando animali in un periodo
critico per lo sviluppo sella selettività corticale e l’accordo tra i dati e la teoria è stato
provato. Tutta la teoria, valida per i neuroni corticali, potrebbe essere migliorata con una
maggiore capacià di calcolo che permetterebbe di sbarazzarsi di alcune approssimazioni.

Parole chiave: BCM, neurone, selettività, sinapsi, plasticità.
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Chapter 1

Introduction

”It has been known for some time that sensory neurons at practically all levels display
various forms of stimulus selectivity”[1] which may be regarded as a general property
and we might conjecture that the development of such selectivity obeys some general rule
(e.g. some of the mechanism by which selectivity develops in embryonic or early postnatal
life1 are sufficiently general to allow a unifying theoretical treatment). The BCM theory
of cortical plasticity has been introduced by Bienenstock, Cooper and Munro (BCM)[1]
to account for the changes observed in cell response of visual cortex due to changes in
visual environment. The theory simplifies the description of the dynamics by choosing
as variables the pre- and postsynaptic firing frequencies (i.e. moving time averages of
the actual instantaneous variables, where the length of the averaging interval is of the
order of magnitude of the membrane time constant, τ) The formal neuron is a device
that performs spatial integration (it integrates the signal impinging all over the soma
and dendrites) rather than spatiotemporal integration: the output at time t is a function
of the input and synaptic efficacies at t, indipendent of the past history.

1.1 Notation

• Synaptic efficacy mj : characterizes the net effect of the presynaptic neuton j on the
postsynaptic neuron (this effect may be mediated through a complex system). The
resulting ”ideal synapse”[2] thus may be of either sign, depending on whether the
net effect is excitatory or inhibitory; it may also change sign during development)

1The experience plays a determining role in the development of selectivity, the precise role is a matter
of controversy
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• Integrative power of the neuron is assumed to be a linear function, that is:

c(t) =
∑
j

mj(t)dj(t)

where c(t) denotes the output at time t, mj(t) is the efficacy of the j th synapse at
time t, dj is the j th compontent of the input at time t (i.e. the firing frequency of
the j presynaptic neuron). We can write:

m(t) = (m1(t),m2(t), ...,mN(t))

d(t) = (d1(t), d2(t), ..., dN(t))

c(t) = m(t) · d(t) (1.1)

m(t) and d(t) are real-valued vectors, of the same dimension, N (i.e. the number of
ideal synapses onto the neuron). m(t) (i.e.the array of synaptic efficacies at tima
t) is called the state of the neuron at time t.

• Selectivity. It is common usage to estimate the orientation selectivity of a single
visual cortical neuron by measuring the half-width at half-height of its orientation
tuning curve. The selectivity is measured with respect to a parameter of the
stimulation, namely the orientation, wich takes on values over an interval of 180°.

Seld(N) = 1− mean response of N with respect to d

maximum response of N with respect to d
(1.2)

The selectivity is estimate with respect to or in an environment for the neuron,
that is, a random variable d that takes on values in the space of inputs to the
neuron N. d represents a random input to the neuron: it is characterized by its
probability distribution that may be discrete or continous. This distribution defines
an environment, mathematically a random variable d 2. Selectivity is estimated
(before and after development) with respect to this same envionment. Applied to
the formal neuron in state m:

Seld(m) = 1− E[m · d]

ess sup(m · d)

E[...] stands for ”expected value of ...” (i.e. the mean value with respect to the
distribution of d); ess sup(...) stands for ”essential supremum of ...”, equivalent to
”maximun of...” in most applications. Seld(N) always falls between 0 and 1 and
the higher the selectivity of N in d the closer Seld(N) is to 1.

2The concept that is needed in order to represent the environment, d, during the development
period is that of a stationary stochastic process, d(t), that is a time-dependent random variable whose
distribution is invariant in time
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1.2 Modification of Cortical Synapses

The various factors that influence synaptic modification may be divided into two classes:

1. Factors depending on Global information in the form of chemical or electrical sig-
naling which presumably influences in the same way most modifiable junctions of
a given type in a given area;

2. Factors depending on Local information which is available at each modifiable
synapse and can influence each junction in a different manner.

An early proposal as to how local information could affect synaptic modification was
made by Hebb[3]:

When an axon of cell A is near enough to excite a cell B and repeatedly or
persistently takes part in firing it, some growth process or metabolic change
takes place in one or both cells such that A’s efficiency, as one of the cells
firing B, is increased.

Thus, the increase of the synaptic strength connecting A to B depends upon the corre-
lated firing of A and B. In order to be used one must state conditions for synaptic decrease
(to avoid synaptic saturation with no information stored and no selectivity developed).
To do so is required a complementary princilpe as the one proposed by Stent[4]:

When the presynaptic axon of a cell A repeatedly and persistently fails to
excite the postsynaptic cell B while cell B is firing under the influence of
other presynaptic axons, metabolic changes take place in one or both cells
such that A’s efficiency, as one of the cells firing B, is decreased.

Thus, the increase of the strength of certain synapses onto neuron B is accompanied by
simultaneous decrease of the strength of other synapses onto the same neuron. There
thus occurs a spatial competition between convergent afferents. Rather than that, the
BCM theory proposes a mechanism of synaptic modification that results in a temporal
competition between input patterns whether synaptic strength increases or decreases de-
pends upon the magnitude of the postsynaptic response as compared with a variable
threshold; the change of the j th synapse’s strength at the time t obeys the rule:

ṁj(t) = φ(c(t))dj(t)− εmj(t) (1.3)

where φ(c) is a scalar function of the postsynaptic activity, c(t), that changes sign at a
value, θM , of the output called the modification threshold :

φ(c) < 0 for c < θM ; φ(c) > 0 for c > θM
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The term, −εmj(t), produces a uniform decay of all junctions3. Furthermore, m is
driven in the direction of the input d if the output is large ( above θM) or opposite to
the direction of the input if the output is small. When dj > 0 and c is large enough, mj

increases (as required by Hebb’s principle); but if c is not large enough, mj decreases. We
may regard this as a form of temporal competitions between incoming patterns.The idea
of this modification scheme was introduced by Cooper et al.[5] using a constant threshold
where the response could slip below θM and decrease to zero, leading to stable states
with a maximal response to more than one pattern. In a threshold modification scheme,
namely θM(t), the change of the j th synapse’s strength is written as a product of dj(t),
the presynaptic activity, and φ(c(t), c̄(t)), a function of the postsynaptic variables, the
output c(t) and its average c̄(t) 4. Neglecting the uniform decay term (ε = 0), together
with equation (1.1) yields:

ṁj(t) = φ(m(t) · d(t),m(t) · d̄)dj(t) (1.4)

A candidate for θM (i.e. the value of c at which φ(c, c̄) changes sign) is c̄(t) where the
time average is meant to be taken over a period T preceding t much longer than τ , the
membrane time constant, so that c̄(t) evolves on a much slower time scale than c(t).
This can be approximated 5 by averaging over the distribution of inputs for a given state
m(t):

c̄(t) = m(t) · d̄

This results in the instability of low selectivity points and if the state is bounded from the
origin and from infinity then the stable equilibrium points are of high selectivity. These
conditions are fulfilled by a single function φ(c, c̄) if we define θM(t) to be a nonlinear
function of c(t). The rquirement on φ(c, c̄) thus reads:{

sign φ(c, c̄) = sign ( c − ( c̄
c0

)pc̄) for c > 0

φ(0, c̄) = 0 for all c̄
(1.5)

θM = (
c̄

c0

)pc̄

3In most cases it does not affect the behavior of the system if ε is small enough
4The use of c̄(t) is a new and essential feature introduced by Bienenstock et al. [1]. It is necessary

in order to allow both boundedness of the state and efficient threshold modification.
5Replacing the time average by an average over the distribution of d is allowed provided that (1) the

process d(t) is stationary, (2) the interval, T, of time integration is short with respect to the process of
synaptic evolution (i.e. m(t) changes very little during an interval of length T ), (3) T is long compared
to the mixing rate of the process d (i.e. during a period of length T, the relative time spent by the
process d(t) at any point d in the input space is nearly proportional to the weight of the distribution of
d at d). Synaptic modification of the type involved in changes of selectivity is a slow process (order of
minutes or hours) to be significant, whereas elementary sensory patterns are faster (order of 1 minute
or less).
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where c0 and p are two fixed positive constants. The sign of φ(c, c̄) for c < 0 is not
crucial since c is a positive quantity 6. The threshold above serves two purposes: allowing
its own modification when c̄ ' c0 as well as driving the state from region such that
c̄ � c0 or c̄ � c0.

1.2.1 Synaptic growth

The process of synaptic growth, starting near zero to, eventually, end in a stable selective
state, may be described as follows. Initially, c̄ � c0; hence, φ(c, c̄) > 0 for all inputs in
the environment: the responses to all inputs grow. With this growth, c̄ iincreases, thus
increasing θM . Now some inputs result in postsynaptic responses that exceed θM , while
others, those whose direction is far away from (close to orthogonal to) the favored inputs,
give a response less than θM . The response to the former continues to grow, while the
response to the latter decays. This results in a form of competitions between incoming
patterns rather than competition between synapses. The response to unfavored patterns
decays until it reaches zero, where it stabilizes for φ(0, c̄) = 0 for any c̄ (1.5). The
response to favored patterns grows until the mean response c̄ is high enough, and the
state stabilizes.

6For the sake of mathematical completeness, one may define φ(c, c̄) > 0 for c < 0
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1.3 Mathematical results

The behavior of equation (1.4) depends on the environment,that is, on the distribution
of the stationary stochastic process, d. Discrete distributions include K possible inputs
d1, ... , dK . These will generally be assumed to occur with the same probability 1/K.
The process d is therefore a jump process which randomly assumes new values at each
time increment; the vector m is, roughly, a Markov process 7. Results obtained only for
certain discrete distributions are of two types:

1. Equilibrium point are locally stable if and only if they are of the highest available
selectivity with respect to the given distribution of d;

2. Given any initial value of m in the state space, the probability that m(t) converges
to one of the maximum selectivity fixed points as t goes to infinity is 1.

If d takes on K values, then:

Lemma 1. Let d1, ... , dK be linearly indipendent and d satisfy P[d = d1]
= ... = P[d = dK] = 1/K. Then, for any function φ satisfying equa-
tion (1.5), equation (1.4) admits exactly 2K fixed points with selectivities
0, 1/K, 2/K, , ..., (K − 1)/K. There are K fixed points m1, ..., mK of se-
lectivity (K - 1)/K.

(K - 1)/K is the maximum possible selectivity with respect to d which means a positive
response for one and only one of the inputs. The following theorem holds:

Theorem 1. Assume, in addition to the conditions of Lemma 1, that d1, ... , dK

are mutually orthogonal or close to orthogonal. Then the K fixed points of
maximum selectivity are stable, and whatever its initial valus, the state of the
system converges almost surely to one of them.

The proof of Theorem 1 is based on the existence of trap regions around each of the
selective fixed points.

Theorem 2. Under the same conditions as in theorem 1, there exists around
mi, stable point, a region F i, the trap region, such that, once the state enters
in, it converges almost surely to mi

The meaning of theorem 2 is the following: once m(t) has reached a certain selectivity,
it cannot ”switch” to another selective region8.

7A stochastic process that satisfies Markov property (memorylessness): the conditional probability
distribution of future states of the process (conditional on both past and present states) depends only
upon the present state, not on the history of the process.

8Applied to cortical cells in a patterned visual environment, this means that, once they become
sufficiently committed to certain orientations, they will remain committed to those orientation (provided
that the visual environment does not change), becoming more selective as they stabilize to some maximal
selectivity
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Simulation suggestion

• For a fairly broad range of environment if di · dj ≥ 0, even if d1, ..., dK are far from
being mutually orthogonal, the K fixed points of maximum selectivity are stable;

• Even if the d1, ..., dK are not linearly indipendent and are far from being mutually
orthogonal, the asymptotic selectivity is close to its maximum value with respect
to d.

1.3.1 Example (K = 2)

In this simple case d takes on values on two possible input vectros, d1 and d2, that
occur with the same probability P[d = d1] = P[d = d2] = 1/2. Whatever the actual
dimension N of the system, it reduces to two dimensions. (Any component of m outside
of the linear subspace spanned by d1 and d2 will eventually decay to zero due to the
uniform decay term.) By definition it follows that the maximum value of Seld(m) in the
state space is 1/2. It is reached for states m which give a null response when d1 comes
in (i.e. are orthogonal to d1) but a positive response for d2, or vice versa. Minimum
selectivity, namely zero, is obtained for states m such that m · d1 = m · d2. Then for
any value of φ satisfying equation (1.5), equation (1.4) admits exactly 2K = 4 fixed
points ( Lemma 1), m0, m1, m2, m1,2 with Seld(m

0) = Seld(m
1,2) = 0 andSeld(m

1) =
Seld(m

2) = 1/2 (the superscript indicate which of the di are not orthogonal to m. The
behavior depends on the geometry of the inputs, in the present case, on cos(d1, d2). If
cos(d1, d2) ≥ 09, then m0 andm1,2 are unstable, m1 andm2 are stable, and wehatever
its initial value, the state of the system converges almost surely either to m1 or tom2.
This characterizes evolution schemes based on competition between patterns and states
that the state eventually reaches maximal selectivity even when the two input vectors
are very close to one another. It requires that some of the synaptic strengths be negative
since the neuron has linear integrative power.

9When cos(d1, d2) < 0 the situation is much more complicated: trap regions do not necessarily exist
and periodic asymptotic behavior may occur, bifurcating from the stable fixed points when cos(d1, d2)
becomes too negative[6]
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lemma 1, cos(d’, d2) > 0. Then m” and rnlv2 are unstable, m’ 
and m2 are stable, and whatever its initial value, the state of 
the system converges almost surely (i.e., with probability 1) 
either to m’ or to m2. 

Theorem 1 is the basic result in the two-dimensional 
setting: it characterizes evolution schemes based on com- 
petition between patterns and states that the state even- 
tually reaches maximal selectivity even when the two 
input vectors are very close to one another. Obviously 
this requires that some of the synaptic strengths be 
negative since the neuron has linear integrative power. 
Inhibitory connections are thus necessary to obtain se- 
lectivity (see also section IV below). Some selectivity is 
also realizable with no inhibitory connections-not even 
“intracortical” ones-if the integrative power is appro- 
priately nonlinear. However, whatever the nonlinearity 
of the integrative power, theorem 1 could not hold for 
evolution equations based on competition between con- 
verging afferents (see “Appendix B”). 

In theorem 1, we have a discrete sensory environment 
which consists of exactly two different stimuli-a situa- 
tion, although simple mathematically, not often encoun- 
tered in nature. It may, however, very well correspond to 
a visual environment restricted to only horizontally and 
vertically oriented contours present with equal probabil- 
ity. Theorem 1 then predicts that cortical cells will de- 
velop a selective response to one of the two orientations, 
with no preference for either (other than what may result 
from initial connectivity). Thus, on a large sample of 
cortical cells, one should expect as many cells tuned to 
the horizontal orientation as to the vertical one. (So far, 
no assumption is made on intracortical circuitry. See 
“Appendix D.“) 

The proof of theorem 1 is based on the existence of 
trap regions around each of the selective fixed points. 

Theorem 2. Under the same conditions as in theorem 1, there 
exists around m’(m’) a region F’(F2) such that, once the state 
enters F’(F2), it converges almost surely to m1(m2). 

The meaning of theorem 2 is the following: once m(t) 
has reached a certain selectivity, it cannot “switch” to 
another selective region. Applied to cortical cells in a 
patterned visual environment, this means that, once they 
become sufficiently committed to certain orientations, 
they will remain committed to those orientations (pro- 
vided that the visual environment does not change), 
becoming more selective as they stabilize to some maxi- 
mal selectivity. Theorems 1 and 2 are illustrated in Figure 
3. 

It is worth mentioning that, when co.@‘, d2) < 0, the 
situation is much more complicated: trap regions do not 
necessarily exist and periodic asymptotic behavior (i.e., 
limit cycles) may occur, bifurcating from the stable fixed 
points when cos(d’, d2) becomes too negative (see Bi- 
enenstock, 1980). 

We now turn to the case where d takes on K values. 
The following is easily obtained. 

Lemma 2. Let d’, d2, . . . , 
satisfy P[d = d’] = . . . 

dK be linearly independent and d 
= P[d = dK] = 1/K. Then, for any 

function $I satisfying equation 7, equation 6 admits exactly 2K 
fixed points with selectivities 0, l/K, 2/K, . . . , (K - 1)/K. 
There are K f=ed points m’, . . . , mK of selectivity (K - 1)/K. 

Figure 3. The phase portrait of equation 6 in an environ- 
ment consisting of two inputs, d’ and d2 (theorems 1 and 2). 
The diagram shows the trajectories of the state of the system, 
starting from different initial points. This is a computer simu- 
lation performed with one given function cp satisfying condition 
7. Using a different function may slightly change the shape of 
the trajectories without any essential change in the behavior. 
The unstable fried points are ml,’ and m”; the stable ones are 
m1 and m2. The system is a stochastic one, which means that 
the trajectories depend, in fact, on the precise sequence of 
inputs. As long as the state is in the unshaded region, it is not 
yet known whether it will eventually be attracted to m’ or m’. 
This is determined as the state enters one of the trap (shaded) 
regions, F’ or F2. The trajectories shown here are deterministic 
ones, obtained by alternating d regularly between d’ and d2. 
They are, in fact, the averaged trajectories of the state and are 
much more regular and smooth than the actual stochastic ones. 

Obviously, (K - 1)/K is also the maximum possible 
selectivity with respect to d. It means a positive response 
for one and only one of the inputs. The situation is now 
much more complicated than what it was with only two 
inputs: it is not obvious whether, in all cases, the as- 
sumption that all of the cosines between inputs are 
positive is sufficient to yield stability of the maximum 
selectivity fixed points. However, we may state the fol- 
lowing. 

Theorem 3. Assume, in addition to the conditions of lemma 
2, that d’, . . . , dK are all mutually orthogonal or close to 
orthogonal. Then the K fixed points of maximum selectivity are 
stable, and whatever its initial value, the state of the system 
converges almost surely to one of them. 

The proof of theorem 3 also involves trap regions 
around the K maximally selective fixed points, and the 
analog of theorem 2 is true here. 

Although the general case has not yet been solved 
analytically, as will be seen in the next section, computer 

Figure 1.1 – The phase portrait of equation (1.4) in an environment consisting of two inputs.
The diagram shows the trajectories of the state of the system, starting from different initial
points. This is a simulation with a φ that satisfies condition (1.5), using a differen function may
slightly change the shape of the trajectories without any essential change in the behavior. The
system is a stochastic one, which means that the trajectories depend on the precise sequence
of inputs. As long as the state is in the unshaded region, it is not yet known whether it will
eventually be attracted to m1 or m2. This is determined as the state enters one of the trap
(shaded) regions F 1 or F 2. The trajectories shown here are deterministic ones, obtained by
alternating d regularly between d1 and d2; in fact they are averaged ones and displays a much
more regular and smooth behavior than the actual stochastic ones.

10



Chapter 2

Models of synaptic plasticity

2.1 Mathematical forms of BCM

A theoretical solution to the problem of visual cortical plasticity, was presented by
Cooper, Liberman and Oja[7] (1979). According to this theory, the synaptic efficacy
of active inputs increases when the postsynaptic target is cuncurrently depolarized be-
yond a modification threshold (θM). However, when the level of postsynaptic activity
falls below θM , then the strength of active synapses decreases. An important feature was
added to this theory in 1982 by Bienenstock, Cooper and Munro (BCM). They proposed
that the value of the modification threshold is not fixed, but instead varies as a nonlinear
function of the average output of postsynaprtic neuron1. The BCM theory exposed so
far could be summarized as follows:

1. The change in synaptic weights (dmj(t)/dt = ṁj(t)) is proportional to presynaptic
activity (dj).

2. The change in synaptic weights is proportional to a non-monotonic function (φ) of
the postsynaptic activity (c):

• for low c, the synaptic weight decreases (dmj(t)/dt < 0),

• for larger c, it increases (dmj(t)/dt > 0),

The cross over point between those is called the modification threshold (θM).

3. The modification threshold is itself a super-linear function of the history of post-
synaptic activity.

There are many mathematical forms which satisfy those conditions. Traditionally the
approach was to use the simplest form that is still consistent with experiments.

1This provided stability properties and explains why the low level of postsynaptic activity during
binocular deprivation does not drive the strengths of all cortical synapses to zero

11



2.1.1 Bienenstock et al. 1982

In the original form, the neuron is assumed to be linear, a uniform weight decay (−εmj)
is present, and the modification threshold is calculated as the power of the mean of the
neuron output (i.e. scaled by a constant c0).

c(t) = m(t) · d(t) =
∑
j

mj(t)dj(t)

ṁj(t) = φ(c(t))dj(t)− εmj(t)

φ(c(t)) = c(c− θM)

θM = Ep[(c/c0)]

2.1.2 Intrator and Cooper, 1992

Intrator and Cooper[8] presented an objective function formulation for the theory, also
called IBCM rule, which indicates what the neuronal goal is and enables simple analysis
of the dynamics. This formulation allows to interpret the biological neuron’s behavoir
from a statistical point of view.

c(t) = σ(
∑
j

mj(t)dj(t))

ṁj(t) = φ(c(t))dj(t)σ
′(c)

φ(c(t)) = c(c− θM)

θM = E[c2]

This BCM form can be derived by minimizing the loss function (i.e. objectiove function):

R = −1

3
E[c3] +

1

4
E2[c2] (2.1)

where E[...] denotes the expectation value with respect to the input environment. The
function itself measures the sparseness or bi-modality of the output distribution. It is
bounded from below, and it thus has minima which can be obtained by gradient descent
ṁj = −∇R. This leads to an approximate solution via the stochastic differential
equation ṁj(t) = φ(c(t), θM)dj(t). In order to have stable fixed points, the average
used for the modification threshold is calculated with the square of the output.
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Features Extraction

When a classification of high dimensional vectors is sought, the curse of dimensional-
ity2[9] becomes the main factor affecting the classification performance. In those cases
in which important structure in the data actually lies in a much smaller dimensional
space, it becomes reasonable to try to reduce the dimensionality before attempting the
classification3. Unsupervised method use local objective function which may lead to
less sensitivity to the number of parameters in the estimation, and therefore have the
potential to avoid the curse of dimensionality. A general class of unsupervised dimen-
sionality reduction methods, called exploratory projection pursuit, is based on seeking
interesting projections of high dimensional data points. The notion of interesting projec-
tions is motivated by an observation made by Diaconis and Freedman[10], that for most
high dimensional clouds, most low dimensional projections are approximately normal.
This finding suggests that the important information in the data is conveyed in those
directions whose single dimension projected distribution is far from Gaussian. Various
projection indices differ on the asumptions about the nature of deviation from normality,
and in their computational efficiency. Friedman [11] argues that the most computation-
ally efficient measures are based on polynomial moments, but projection indices based
on that are not directly applicable, since they very heavily emphasize departure from
normality in the tails of the distribution[12]. The IBCM theory address the problem
by applying a sigmoidal (σ) function to the projections, and then applying an objective
function based on polynomial moments. The IBCM rule has some nice mathematical
properties:

• It is an exploratory projection index that emphasizes deviation from a Gaussian
distribution at the center of the distribution, in the form of multi-modality.

• The formulation naturally extends to a lateral inhibition network (with a non-linear
saturation transfer function), which can find several projections at once.

• The number of calculations of the gradient grows linearly with the number of
projections sought, thus it is very efficient in high dimensional feature extraction.

• The search is constrained by seeking projections that are orthogonal to all but one
of the clusters (in the original space). Thus, there are at most K optimal projections
and not K(K − 1)/2 separating hyper-planes as in discriminant analysis methods.
This property is very important as it suggests why the ”curse of dimensionality”
is less problematic with this learning rule (every minima is an optimal one).

2The curse of dimensionality is due to the inherent sparsity of high dimensional spaces. The amount
of training data needed to get reasonably low variance estimators becomes very high.

3This approach can be successful if the dimensionality reduction/feature extraction method loses
as little information as possible in the transformation from the high dimensional space to the low
dimensional one.
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• Most importantly, the neuronal output (or the projection) of an input x (or a clus-
ter of inputs) is proportional to 1/P (x), where P(x) is the a-priori probability of
the input x. This property, which directly results from the analysis is essential for
creating coincidence detectors, and it also indicates the optimality of the learning
rule in terms of energy (or code) conservation. If a biologically plausible log sat-
uration transfer function is used as the neuronal non-linearity, it follows that the
amplitude or code length associated with the input x is proportional to −log(P (x)),
which is optimal from information theoretic considerations.

2.1.3 Law and Cooper, 1994

The Law and Cooper form[13] has all of the same fixed points as the Intrator and Cooper
form, but the speed of synaptic modification increases when the threshold is small, and
decreases as θM increases.

c(t) = σ(
∑
j

mj(t)dj(t))

ṁj(t) = φ(c(t))dj(t)/θM

φ(c(t)) = c(c− θM)

θM = E[c2]

The practical result is that the simulation can be run with artificially high learning
rates, and wild oscillations are reduced. This form has been used primarly when running
simulations of networks, where the run-time of the simulation can be prohibitive[14].
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2.2 Selectivity and Tuning curve

34 Bienenstock et al. Vol. 2, No. 1, Jan. 1982 

ment) with respect to this same enviromnent.5 Obviously, 
Sel&V) always falls between 0 and 1 and the higher the 
selectivity of .N in d, the closer Se&V) is to 1. 

When applied to the formal neuron in state m, defini- 
tion 3 gives: 

Sel&n) = 1 - E[-fl 
es.3 sup(m . d) 

where d is any RN-valued random variable (the formal 
environment for the neuron). The symbol E[. . .] stands 
for “expected value of . . .” (i.e., the mean value with 
respect to the distribution of d) and “ess sup of . . .” 
(essential supremum) is equivalent to “maximum of 
. . . ” in most common applications. This is illustrated in 
Figure 1. 

II. Modification of Cortical Synapses 

The various factors that influence synaptic modifica- 
tion may be divided broadly into two classes-those 
dependent on global and those dependent on local infor- 
mation. Global information in the form of chemical or 
electrical signaling presumably influences in the same 
way most (or all) modifiable junctions of a given type in 
a given area. Evidence for the existence of global factors 
that affect development may be found, for instance, in 
the work of Kasamatsu and Pettigrew (1976, 1979), 
Singer (1979, 1980), and Buisseret et al. (1978). On the 
other hand, local information available at each modifia- 
ble synapse can influence each junction in a different 
manner. In this paper, we are interested primarily in the 
effect of local information on the development of selec- 
tivity. 

An early proposal as to how local information could 
affect synaptic modification was made by Hebb (1949). 
His, now classical, principle was suggested as a possible 
neurophysiological basis for operant conditioning: “when 
an axon of cell A is near enough to excite a cell B and 
repeatedly or persistently takes part in firing it, some 
growth process or metabolic change takes place in one or 
both cells such that A’s efficiency, as one of the cells 
firing B, is increased.” Thus, the increase of the synaptic 
strength connecting A to B is dependent upon the cor- 
related firing of A and B. Such a correlation principle has 
inspired the work of many theoreticians on various topics 
related to learning, associative memory, pattern recog- 
nition, the organization of neural mappings (retinotopic 
projections), and the development of selectivity of corti- 
cal neurons. 

It is fairly clear that, in order to actually use Hebb’s 
principle, one must state conditions for synaptic decrease 
as specific as those for synaptic increase: if synapses are 
allowed only to increase, all synapses will eventually 
saturate; no information will be stored and no selectivity 

5 The mathematical concept that is needed in order to represent the 
environment, d, during the development period ia that of a stationary 
stochastic process, d(t), that is (roughly), a time-dependent random 
variable whose distribution is invariant in time. For example, d could 
represent an elongated bar in the receptive field of the neuron, rotating 
in some random manner around its center. At each instant, the proha- 
bility of finding the bar in any given orientation is the same as at any 
other: the distribution of d(t) is time invariant, uniform over the 
interval (0, 1800). 

f( 

M 

WI 

0 
-%nin w Wmax 

Figure 1. Computing the selectivity with respect to an en- 
vironment uniformly distributed between Wmin and amax. The 
abscissa displays a parameter of the stimulus (e.g., orientation 
bhnar - ~,,,h = 180’)) and on the ordinate, the neuron’s response 
0 is the level of the average spontaneous activity; M is the 
maximum response. The selectivity of the neuron then is given 
by 

Seb( Jlr) = l- fMdw 

light area = 
total box area 

This is a simple measure of the breadth of the peak: curves of 
same selectivity have approximately the same half-width at 
half-height. (Think, for instance, of triangularly shaped tuning 
curves.) Typical values for orientation selectivity of adult cor- 
tical celIs vary between 0.7 and 0.85 (“specific” cells). Selectivity 
of broadly tuned but stiIl u&nodal cells (e.g., those termed 
“immature” by Buisseret and Imbert (1976) and F&gnac and 
Imbert (1978)) lies between 0.5 and 0.7. Obviously, 0 is the 
selectivity of an absolutely flat curve, whereas 1 is the selectivity 
of a Dirac 6 function. 

will develop (see, for example, Sejnowski, 1977a, b). What 
is required is thus a complementary statement to Hebb’s 
principle giving conditions for synaptic decrease.‘j 

Such statements usually have resulted in a form of 
synaptic competition. Consider, for example, one that 
was proposed by Stent (1973): “when the presynaptic 
axon of cell A repeatedly and persistently fails to excite 
the postsynaptic cell B while cell B is firing under the 
influence of other presynaptic axons, metabolic changes 
take place in one or both cells such that A’s efficiency, as 
one of the cells firing B, is decreased.” According to 
Stent’s principle, the increase of the strength of certain 
synapses onto neuron B is accompanied by simultaneous 
decrease of the strength of other synapses onto the same 

6 Nonspecsc conditions for synaptic decrease, such as uniform ex- 
ponential decay, are clearly insufficient too: in Naas and Cooper (1975) 
for instance, no selectivity is achieved without lateral intracortical 
inhibition. Other models (von der Malsburg, 1973; Perez et al., 1975) 
use a normalization role in conjunction with a hebbian scheme for 
synaptic increase, which actually results in decrease ae well ae increase. 
This normalization rule is discussed in “Appendix B.” 

Figure 2.1 – An example of tuning curve: the
abscissa displays a parameter of the stimulus
ω and the ordinate the neuron’s response.The
figure is taken from the original BCM paper[1]

The index of selectivity as defined in equa-
tion (1.5) becomes

Seld(m) = 1− E[m · d]

ess sup(m · d)

In the figure 2.1 there is an example of tun-
ing curve from which is possible to com-
pute the selectivity with respect to an en-
vironment uniformly distributed between
ωmin and ωmax

4. The neuron’s response
0 is the level of the average spontaneous
activity; M is the maximum response. It
is a simple measure of the breadth of the
peak: curves of same selectivity have ap-
proximately the same half-width at half-
height. Typical values for orientation se-
lectivity of adult cortical cells vary be-
tween 0.7 and 0.85 (”specific” cells). Selec-
tivity of broadly tuned but still unimodal
cells lies between 0.5 and 0.7 (Buisseret

and Imbret[15] and Frégnac and Imbert[16]) Obviously, 0 is the selectivity of an abso-
lutely flat curve, whereas 1 is the selectivity of a Dirac δ function. The selectivity of the
neuron then is given:

Seld(N) = 1 − 1

M(ωmax − ωmin)

∫ ωmax

ωmin

f(ω) dω =
light area

total box area

Applying what has been discussed to a concrete example, we obtain orientation selec-
tivity and binocular interaction in the primary visual cortex. Consider first a classical
test environment used to construct the tuning curve of cortical neurons: It consists of
an elongated light bar successively presented or moved in all orientations (preferably
in a random sequence) in the neuron’s receptive field. Thus, all of the parameters of
the stimulus are constants except the orientation, which is distributed unifomly on a
circularly symmetric closed path5. The tipical theoretical environment that will be used
for constructing the formal neuron’s tuning curve is a random variable d unifomly dis-
tributed on a circularly symmetric closed one-parameter family of points in the space
RN .

4If the parameter of the stimulus is the orientation then ωmax − ωmin = 180.
5The assumption is that the retinocortical pathway maps this family of stimuli to the cortical neuron’s

space of inputs in such a way as to preserve the circular symmetry.
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Figure 4. The evolution of a synaptic system in a circular environment. Here, K = 40 and N = 37 so 
that the vectors are linearly dependent. The value of the maximum selectivity with respect to d is 
therefore not precisely calculable. The asymptotic selectivity is approximately 0.9, perhaps the maximum 
selectivity. a demonstrates the progressive buildup of the selectivity in a circular environment d, while b 
shows the resulting tuning curve at t = 1000. 

example, in a circular d such that all cosines fall between ratio of the order of 1 and postsynaptic noise with a 
0.94 and 1, a selectivity of 0.68 was reached after 12,000 signal-to-noise ratio as small as ‘/4. 
iterations.) Notice that, in the present context, this ques- 
tion is only of theoretical interest, since naturally occur- IVb. Restricted Monocular Input 

ring environments are continuous rather than discrete. To discuss this situation, we now must include the 
The behavior of our system in such an environment is exponential decay term, --E,(t), previously neglected 
very well approximated by a discrete circular d, provided (equation 4). It is clear that the results stated above will 
that K is large enough. K is then presumably larger than be preserved if E is sufficiently smaller than the average 
N, the K inputs are linearly dependent, and we have no of I$(c,F)I (i.e., competition mechanisms are faster than 
explicit formula for max Seld( m ). decay). However, exponential decay does become crucial 

The system thus functions well in a large class of in some situations. One of these is the response of the 
environments. It should be stressed that the numerical cell to patterns that were not represented in the environ- 
value of the parameters that appear explicitly in the ment during development. 
evolution equation, namely, co and the exponent p, are Consider, for instance, an environment consisting of a 
not at all critical. Simulations performed with a constant single stimulus d’. It is then easily shown that system 6 
d, with p being varied from 0.01 to 10, yield the same with condition 7 admits one attractor m’ that satisfies 
asymptotic limit for the selectivity; the height of the m1 - d’ = co for small E (m’ - d’ = co for E = 0). Obviously, 
asymptotic tuning curve (i.e., max(m-d)) is, however, for E > 0, m’ will satisfy m’ -d = 0 for any d orthogonal to 
highly dependent on p. This invariance property vali- d’. However, the response to a pattern d not orthogonal 
dates in a sense the definition of Seld(x). to d’ will depend both on E and on cos(d, d’). One may 

Inhibitory synapses are essential here exactly as they for instance find that m1 -d = %(ml - d’) for cos(d, d’) = 
are in the two-dimensional case. One way to show this is 0.5. The selectivity of the neuron in state m’ with respect 
to substitute 0 for all negative components in the state to a circular environment (d’, . . . , dK), such that 
once it has become selective. This typically results in a min cos(d’, di) = 0.5, is then lower than 0.5. This should 
drastic drop of selectivity (e.g., from 0.81 to 0.55) al- be contrasted with the high selectivity reached by a 
though a slight preference generally remains for the neuron exposed to all inputs, d’ . . . dK. 
original orientation. This may be related to the experi- The one-stimulus environment may be regarded as a 
mental finding that local pharmacological deactivation case corresponding to rearing the animal in a visual world 
of inhibitory connections strongly impairs orientation where only one orientation is present. No controversy 
selectivity by rendering all orientations effective in trig- remains at present that rearing in such a visual environ- 
gering the cell’s response (Sillito, 1975). ment results in a cortex in which all visually responsive 

Finally, it should be mentioned that the system dis- cells are tuned to the experienced (or nearby) orienta- 
plays a good noise tolerance, particularly when the state tions (Blakemore and Cooper, 1970; Hirsch and Spinelli, 
has already reached a selective region. The system then 1970,197l; see also Stryker et al., 1978). We see that our 
resists presynaptic additive noise with a signal-to-noise theory is in agreement with these findings; moreover, we 

Figure 2.2 – The evolution of a synaptic system in a circular environment: here K = 40 and
N = 37 so that the vectors are linearly dependent.The value of the maximum selectivity with
respect to d is therefore not precisely calculable. The asymptotic selectivity is approximately
0.9.The figure is taken from the original BCM paper[1]
Fig.a demonstrates the progressive buildup of the selectivity;
Fig.b shows the resulting tuning curve.

The parameter coding orientation in the receptive field is, in principle, continous.
However, for numerical simulation’s sake, the distribution is made discrete so that d
takes on values on the points d1, ..., dK6. To specify the stationary stochastic process
that represents the time sequence of inputs to the neuron it is possible giving to it
exactly the same distribution as the circular d. In this case the assumption is that the
development of orientation selectivity is to a large extent independent of other parameters
of the stimulus. The elementary stimulus for a cortical neuron is a rectilinear contrast
edge or bar. Any additional pattern present at the same time in the receptive field is
regarded as random noise.

6The requirement of circular symmetry is expressed mathematically as follows: the matrix of inner
products of the vector d1, ..., dK is circular (i.e. each row is obtained from its nearest upper neighbor
by shifting it one column to the right) and the rows of the matrix are unimodal. A random vaiable, d,
uniformly distributed on such a set of points will be, hereafter, called a circular environment. Such a d
may be roughly characterized by three parameters: N, K and the di vectors.
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Chapter 3

Applications

Statistically a neuron is considered as capable of ”deciding” whether to fire or not for a
given input and vector of synaptic weights. A loss function is attached to each decision
and the neuron’s task is to choose the decision that minimize that loss. It is natural,
then, to seek a synaptic weight vector that will minimize the sum of the losses associated
with every input which is the average loss (also called risk). The search for such a vector,
which yields an optimal synaptic weight vector, can be viewed as learning or parameter
estimation. In those cases where the risk is a smooth function, its minimization can be
accomplished by gradient descent. Different loss functions will yield different learning
procedures.

3.1 Linear Neuron

Considering a linear neuron with n-stimuli and some useful functions:

• input vector d = (d1, ..., dN),

• synaptic weight vector m = (m1, ...,mN),

• synaptic activity c = m · d,

• learning rate µ,

• threshold θM = E[(m · d)2],

• φ(c, θM) = c(c− θM),

• φ̂(c, θM) = c(c− 1
2
θM).
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Vectors are in RN and time dependency is allowed only in the presentation of the training
patterns; by requiring that d is of Type II mixing1. These assumption are plausible, since
they represent the closest continous approximation to the usual training algorithms, in
which training patterns are presented at random. The learning rate has to decay in
time so that the approximation is valid. The projection index (loss function) is aimed at
finding directions for which the projected distribution is far from Gaussian; since high
dimensional clusters have a multimodal projected distribution, the aim is to find the
function/index that emphasizes that multimodality2. The index should exhibit the fact
that bimodal distribution is already interesting, and any additional mode should make
the distribution even more interesting.

3.1.1 Loss function

Consider the following family of loss functions that depends on the synaptic weight and
on the input:

Lm(d) = −µ
∫ m·d

0

φ̂(s, θM) ds

= −µ{1

3
(m · d)3 − 1

4
E[(m · d)2](m · d)2}

(3.1)

For any fixed m and θM , the loss is small for a given input d, when either c = m · d
is close to zero, or when it is larger than θM . Moreover, the loss remains negative for
m · d > θM , therefore any kind of distribution at the right hand side of the threshold
is possible, and the preferred ones are those which are concentrated further from θM . It
is not possible that a minimizer of the average loss will be such that all the mass of the
distribution will be concentrated to one side of θM because the threshold is dynamic and
depends on the projections in a nonlinear way. This implies that θM will always move
itself to a position such that the distribution will never be concentrated at only one of
its sides.

Risk

The risk, which is the expected value of the loss, is given by:

Rm = E[Lm(d)] = −µE{1

3
(m · d)3 − 1

4
E[(m · d)2](m · d)2}

= −µ{1

3
E[(m · d)3] − 1

4
E2[(m · d)2]}

(3.2)

1The mixing property specifies the dependency of the future of the process on its past.
2For computational efficiency it is possible to base projection index on plynomial moments of low

degree (more than 2).
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Since the risk is continuously differentiable, its minimization can be achived via a gradient
descent method (ṁ(t) = −∇Rm) with respect to m, namely:

dmi

dt
= − ∂

∂mi

Rm = µ{E[(m · d)2xi] − E[(m · d)2]E[(m · d)xi]}

= µE[φ(m · d, θM)xi]

(3.3)

The resulting differential equations give somewhat different version of the law governing
synaptic weight modification of the BCM theory:

ṁj(t) = φ(c(t))dj(t)− εmj(t)

The difference lies in the way the threshold is determined. In the original form it was
Ep[c] for p > 1, while in the current form is θM = E[cp] for p > 1.The latter takes
into account the variance of the activity (for p = 2) and therefore is always positive, this
ensures stability even when the average of the inputs is zero3. Moreover the original form
requires that s history of activity be stored and then via a non-linear process produces
the modification threshold. The latter form instead requires that the non-linear process
occurs first. The averaged version of the previous equation is, as described in[17]:

ṁ(t) = P DT Φ(c, θ) (3.4)

where θ = E[c2] =
∑n

j=1 pj(m · dj)2 .Φ = (φ1, ..., φn) and pi, which is the i-th element
of the diagonal matrix of the probabilities P, represents the probability of choosing vector
dii from the data set. The matrix of inputs D is composed of different input vectors and
its determinant is non-zero since the inputs are linearly indipendent. The dynamics is
given by: 

ṁ1

ṁ2

.

.

.
ṁn

 =


p1 0 . . . 0
0 p2 . . . 0
. . .
. . .
. . .
0 0 . . . pn




d11 d21 . . . dn1

d12 d22 . . . dn2

. . .

. . .

. . .
d1n d2n . . . dnn




φ1

φ2

.

.

.
φn

 (3.5)

3The original theory assumed that the inputs were positive, whereas the present relaxes this assump-
tion yieliding stabilty for a larèıger class of bounded inputs.
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3.2 Stability Analysis

The analysis of the theory starts finding the stationary states of equation (3.4). Math-
ematically the condition ṁ(t) = 0 implies that P DT Φ(c, θ) must be zero, and this is
possible if and only if Φ = 0, because it is required that the input vectors are linearly
indipendent (i.e. detD 6= 0). Then:

ci(ci − (
n∑
j=1

pjc
2
j)) = 0 for i = 1, ..., n (3.6)

Whose solutions are in the following equivalence class:

S =



(0, 0, ..., 0, ..., 0)

(0, 0, ..., 0, 1
pi
, 0, ..., 0)

(0, 0, ..., 0, 1
pi+pj

, 0, ..., 0, 1
pi+pj

, 0, ..., 0)

(0, 0, ..., 0, 1
pi+pj+pk

, 0, ..., 0, 1
pi+pj+pk

, 0, ..., 0, 1
pi+pj+pk

, 0, ..., 0)
...

(1, 1, ..., 1, ..., 1)

(3.7)

The corresponding m solutions are given by m = D−1c.
The next step is to examine the Jacobian matrix :

Jn =


d11 d21 · · · dn1

d12 d22 · · · dn2
...

...
. . .

...
d1n d2n · · · dnn



∂φ1
∂c1

∂φ1
∂c2

· · · ∂φ1
∂cn

∂φ2
∂c1

∂φ2
∂c2

· · · ∂φ2
∂cn

...
...

. . .
...

∂φn
∂c1

∂φn
∂c2

· · · ∂φn
∂cn




∂c1
∂m1

∂c1
∂m2

· · · ∂c1
∂mn

∂c2
∂m1

∂c2
∂m2

· · · ∂c2
∂mn

...
...

. . .
...

∂cn
∂m1

∂cn
∂m2

· · · ∂cn
∂mn

 (3.8)

Note that the third matrix is the input matrix D since c = Dm.

Jn = DT


2c1 − θ − 2p1c

2
1 − 2p2c2c1 · · · − 2pncnc1

− 2p1c1c2 2c2 − θ − 2p2c
2
2 · · · − 2pncnc2

...
...

. . .
...

− 2p1c1cn − 2p2c2cn · · · 2cn − θ − 2pnc
2
n

D (3.9)
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From all the above consideration follow that:

• Stable points are those with one non-zero coordinate which set all the off-diagonal
terms to zero obtaining a diagonal matrix with diagonal elements (− 1

pi
) for i =

1, ..., n. Thus, the Jacobian is negative define4.

• (0, 0, ..., 0, ..., 0) is unstable in a Lyapunov sense (i.e. it is neutrally stable).

• Instability of all other points due the Jacobian DT (∂Φ
∂c

)D is a quadratic form non-
negative define in the case of linearly independent vectors and

∑n
j=1 pj = 1.

3.3 Non-Linear Neuron

The BCM could be extent to a non-linear neuron due to the fact that the distribution
has part of its mass on both sides of the threshold θM ; this allows a projection index
that seeks multi-modalities. However, this projection index will be more general if the
loss is insensitive to outliers and if any projected distribution is allowed to be shifted so
that the part of the distribution that satisfies c < θM will have its mode at zero. The
oversensitivity to outliers is addressed by considering a nonlinear neuron in which the
neuron’s activity is defined to be c = σ(m · d), where σ represent a smooth sigmoidal
function. The ability to shift the projected distribution so that one of its modes is at
zero is achieved by introducing a threshold β5 so that the projection is defined to be
c = σ(m · d + β)6 For a nonlinear neuron, θM = E[σ2(m · d)]. The loss function is
given by:

Lm(d) = −µ
∫ σ(m·d)

0

φ̂(s, θM) ds

= −µ{1

3
σ3(m · d) − 1

4
E[σ2(m · d)]σ2(m · d)}

(3.10)

The gradient of the risk becomes:

−∇mRm = µ{E[σ2(m · d)σ′d] − E[σ2(m · d)]E[σ(m · d)σ′d}
= µE[φ(σ(m · d)m · d), θM)σ′d]

(3.11)

4The eigenvalues of the matrix DTD are all positive and real because the matrix is symmetric and
positive define and the product of diagonal matrices is commutative.

5From the biological point of view β can be considered as spontaneous activity.
6The modification equation for finding optimal threshold are obtained observing that it effectively

adds one dimension to the input vector and vector of synaptic weight, namely d = (d1, ..., dn, 1); m =
(m1, ...,mn, β). Therefore β can be found by using the same synaptic modification equation. Hereafter
β will be absorbed in the ordinary form.
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Where σ′ represents the derivative of the σ at the point (m · d)7. The analogoue of
equation (3.4) is:

ṁ(t) = ΣP DT Φ(c, θ) (3.12)

Where, as before, D is the input matrix, Φ is the vector of φ calculated at the points
(σ(m · d1), σ(m · d2), ..., σ(m · dn)), and Σ is the matrix containing σ′:

Σ =


σ′1 0 · · · 0
0 σ′2 · · · 0
...

...
. . .

...
0 0 · · · σ′n

 (3.13)

The matrix Σ is positive definite as σ is smooth and monotonic, thus, the search for
stationary states leads to Φ = 0.For convenience it is possible to f̀ıdefine the variable ζ
such that ζ = σ(m · d) = (σ1, σ2, ..., σn). Thus the fixed points solutions in terms of
ζ are equivalent to the solutions of equation (3.6). It follows that the solutions for m
result from solving an equation of the form m = D−1 σ−1(ζ); with ζ ∈ S8.

7The multiplication by σ′ reduces sensitivity to outliers of the differential equation since for outliers
σ′ is close to zero. The gradient descent procedure is valid, provided that the risk is bounded from
below.

8S is the equivalence class of solutions (3.7)
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3.4 Lateral interacting network

When a neuron is in a network, the incoming inputs can arise from the thalamus and
another set can arise from other cortical neurons.Then the vector of synaptic weights m
for a single cell becomes a matrix M for all the network neurons. At the same time,
the vectori of neuronal activities c (due to the matrix of inputs D) becomes a matrix9.
An extension of the single cell BCM neuron to such a network was presented by Scotfiel
and Cooper in 1985[18] and a mean field approximation of this network by Cooper and
Scofield in 1988[19]10. For a network with a single input d, the activity of the neuron is
affected also by the adjacent neurons in the netwok other than the input itself; namely:

c = Md + Lc (3.14)

where L is the cortico-cortical connectivity matrix in which lij is the interaction between
neuron i (the target) and neuron j (the source) and M is the matrix of the feedforward
(thalamocortical) synapses; mij represents the feedforward connections to cell i arising
from input channel j. For a consistency condition follows that:

c = (I − L)−1Md (3.15)

Which represents the network activity due to a single input vector. For a network of n
neurons that recive n input vectors the modification of the weights described by equation
(3.4) has almost the same form:

ṁ(t) = PnDTn Φ (3.16)

where, in this case, Dn and Pn are the direct product of the input and probability
matrices respectively. Φ now is the vector ofthe neuronal activation function:

Φ = (φ11, ..., φij, ..., φnn)

Pn =
n⊗
k=1

Pj

Dn =
n⊗
k=1

Dj

(3.17)

9It should be treated as a supe-vector
10The mean field approximation is obtained by repalcing the inhibitory contribution of cell j,cj in

ci = mi · d +
∑
j

Lijcj

by its average value c̄ = 1
N

∑
i ci so that ci becomes:

ci = mi · d + c̄
∑
j

Lij
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For the fixed-points equation the requirement is again Φ = 0 and the neuronal activity
takes the form:

c = LnDTn m (3.18)

where:

Ln =


Ln11 Ln12 · · · Ln1n

Ln21 Ln22 · · · Ln2n
...

...
. . .

...
Lnn1 Lnn2 · · · Lnnn

Dn =


D 0 · · · 0
0 D · · · 0
...

...
. . .

...
0 0 · · · D

 (3.19)

Lnij is a diagonal n × n matrix with diagonal elements:

Lnij = (I − L)−1
ij I

where I is the identity n × n matrix. Dn is a diagonal n × n block matrix, where
the bloks are the input matrices D. Duing so allows to decoupled the system in n sub-
systems which means that the solutions are the direct product of the solutions of the
sub-systems. The solutions for the weights could be found with the inverse of c if
|Dn| 6= 0 and |Ln| 6= 0 11. From studies over the stability follows that all the stable
solutions in the single-neuron case are also stable in the network case. While network
interactions do not change the stability of the possible solutions, they do change the
basins of attraction associated with different solutions. The associative solutions can be
divided into completely associative and partially associative, where the first kind refers
to those solutions that associate all the neurons to a simple input pattern and the others
exhibit an incomplete associativity. For a general n-size network the number of stable
solutions is nn, the number of completely selective solutions is n! and the number of
completely associative solutions in n. Thus, the numer of solutions with incomplete
associativity is nn − n! − n. If all the lateral connections are negative, different neurons
reach different stable states (selective state) with higher probability, while if lij are
positive, different neurons are more likely to reach a similar state (associative state).

11Deriving the BCM from the objective function gives a slightly different equation (3.16): ṁ(t) =
Ln PnDT

n Φ. The study of fixed points of this equation is the same because the matrix Ln is non-
singular[17]

24



Nonlinear neuron with lateral interactions

The objective function in the case of nonlinear neurons with lateral interaction is given
by equation(3.10)

Rm = − 1

3
E[σ3(ζ)] − 1

4
E2[σ2(ζ)] (3.20)

where ζ is the inhibited activity of the neurons prior to apply the nonlinearity σ. It is
possible to define ζ = (I − L)−1Md. This leads to the gradient descent dynamics:

E[−∇mRm] = {E[σ2(ζ)σ′∇mζ] − E[σ2(ζ)]E[σ(ζ)σ′∇mζ}
= E[φ(σ(ζ, θm)σ′∇mζ]

= ΣPLDφ(σ(ζ), θm)

(3.21)

From this equation follows that the stationary solutions arise from the equation Φ(σ(ζ)) =
0), because the matrices Σ, D, L are positive definete; hence the solutions are:

m = D−1 L−1 Σ−1(ζ)

with ζ ∈ S equivalence classes of solutions reported in (3.7).
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Chapter 4

Conclusions

The aim of the present research was to examine a model of synaptic plasticity which re-
flects some important biological aspects such neuron’s tuning curve and selectivity. The
model itself is known as BCM learning rule and during the past decades was modified
to fit even better the experimental data. The wok points out the learning mechanism
adopted by cortical neurons and how these cells extract feature from high dimensional
inputs like those we are subjected to. The understanding of the model exposed above is
a good starting point to go deeper inside the neural netwok world we are facing.

This study has shown that synaptic modification occurs when th environment used as
input changes. This can be expressed mathematically with a set of stochastic differen-
tial equations and the application of gradient descent which allows to find the minimum
value for the synaptic weight. The precise form of the modification can change but the
main thread is that it is a function of the input. Some normalization factors could occur.
The application of the model to some cases shows that exists a set of solution for the
stability of the weight.

Overall, this study strengthens the idea that the model is working pretty well under
various conditions and future works might be done on the side of computing. The com-
putational power achieved in these years is impressive but the model sill need some
approximation which means that there is some space for improvement. The findings of
this investigation may be completed with computing and some neural network environ-
ment so that another brinck will be placed on our knowlwdge of our brain and hopefully
help somebody.
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This thesis has provided an overview on the biophysical aspects of the neuron’s plas-
ticity that is tightly tied up with the evolution and adaptive power animals have. The
research area is quite new and the work done pretended to be a useful summary of nowa-
days’ knowledge that could allow other people, researcher and not, to go deeper inside
and not stand on the threshold, which by the way is modicable with time as exposed
above.
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