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Sommario

In questa tesi viene analizzato un possibile mesone formato da un quark top
e un quark antitop chiamato toponio usando la meccanica quantistica. Sono
determinati i primi 6 livelli energetici degli orbitali S,P,D e F, la velocità
e il raggio caratteristico del primo stato legato e lo splitting nei livelli S
dovuto all’interazione spin-spin. Si ipotizza inoltre l’esistenza di una forza
sconosciuta oltre il Modello Standard, mediata da una particela scalare, e
se ne studia l’effetto sui livelli energetici determinati in precedenza. Data
l’esistenza di questa forza si ha una diminuzione del tempo di formazione
del toponio rispetto a quello previsto dal Modello Standard, si procederà
quindi a stimare sommariamente l’intensità minima necessaria per questa
forza affinché sia possibile la formazione di stati legati.



Abstract

In this thesis is analyzed, using quantum mechanics, a possible meson formed
by a top antitop quark pair, called toponium. We have determined the first 6
energy levels of the S, P, D and F orbitals, the velocity and the characteristic
radius of the first bound state and the energy splitting in the S levels due
to the spin-spin interaction. Furthermore, we hypothesize the existence of
an unknown force, mediated by a scalar particle, beyond the standard model
and study the effect of this force on the previously calculated energy levels.
It is possible to determine the minimum intensity of this force for which
toponium formation time becomes smaller than its decay time, allowing the
formations of top-antitop bounded states, otherwise forbidden by Standard
Model.
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Introduction

In the Standard Model framework top quark do not hadronize, the forma-
tion of the top related quarkonium, called toponium, is so inhibited. This is
no longer true if we consider the existence of an unknown attractive top-philic
force carried by an unknown scalar particle. The purpose of this thesis is to
constrain this force, studying which intensity should have to allow toponium
formation.

It is possible to treat quarkonia in the quantum mechanic framework
using the Cornell potential, formed by a linear and a coulombic part.

The first chapter is dedicated to the exposition of some quantum mechan-
ics results and theorem that will be useful in the following chapters.

In chapter two are analyzed two possible ways to solve the 1D Schrödinger
problem, with particular attention to the radial case. WKB approximation
is presented for the S states, while Numerov’s algorithm is introduced solve
numerically the Schrödinger equation in spherical coordinates.

In chapter three we try to determine Cornell potential parameters fitting
Bottomonium spectrum, chosen for the abundance of experimental data, par-
ticular attention is dedicated to understand what is the right energy scale of
the problem, from which αs should depends.

Finally in the fourth chapter we modify Cornell potential adding a Yukawa
one, and we study what happen to energy levels depending on the mass of
the scalar particle, and the intensity of the interaction.
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Chapter 1

Quantum Mechanics tools

The correct way to study the strong interactions is quantum chromody-
namics (QCD), however for heavy quarkonia other methods were developed.

Light quarks move at relativistic speed in mesons but for heavy quarks
(charm, bottom, top) the situation is different and, because of their large
masses, a non-relativistic treatment can be performed using quantum me-
chanics.

In order to build an effective potential suitable for representing the inter-
actions between quarks, two key phenomena need to be considered: the gluon
exchange and the quarks confinement. These two features are embodied in
the Cornell potential[1][2]:

V (r) = −4

3

αs
r

+
r

a2
(1.0.1)

in which the Coulomb part represents the short-range quark-antiquark force
due to gluon exchange, and the linear part is capable of confining quarks
permanently.

The parameter αs is the strong coupling constant, depending on the quark
mass, the parameter a should not depend on the quark flavour.

In this chapter we will briefly resume some quantum mechanics results.

1.1 Schrödinger equation

In order to get the wave function ψ(~x, t) of a particle subjected to a
potential U, we need to solve the Schrödinger equation:

− ~2

2m
∇2ψ(~x, t) + U(~x, t)ψ(~x, t) = i~

∂ψ(~x, t)

∂t
(1.1.1)
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If U is independent of t it is possible to solve eq. (1.1.1) using separation of
variables, writing ψ(~x, t) = φ(~x)τ(t). In this case eq. (1.1.1) becomes:

− ~2

2m
τ(t)∇2φ(~x) + U(x)τ(t)φ(~x) = i~φ(~x)

∂τ(t)

∂t

and dividing by φ(~x)τ(t)

− ~2

2m

1

φ(~x)
∇2φ(~x) + U(x) = i~

1

τ(t)

∂τ(t)

∂t
(1.1.2)

The left member of eq. (1.1.2) depends on t alone and the right member on ~x
alone, the only way in which these two could be equal is if they are constant.

For this reason we put:

i~
1

τ(t)

∂τ(t)

∂t
= E (1.1.3)

that gives us:
τ(t) = e−

iE
~ (t−t0) (1.1.4)

We have obtained the time-independent Schrödinger equation:

∇2φ(~x) +
2m

~2

(
E − V (~x)

)
φ(~x) = 0 (1.1.5)

If φ(~x) is a solution of the Schrödinger equation with domain D, the following
conditions must hold:

• φ(~x) is not identically zero in D;

• φ(~x) must be zero in ∂D;

• lim|~x|→∞ |φ(~x)| ≤ C

• φ(~x) and ∇φ(~x) are continuous in D.

1.1.1 One dimensional Schrödinger equation

Some useful results are valid for the one dimensional case of the time-
independent Schrödinger equation:

d2

dx2
φ(x) +

2m

~2

(
E − V (x)

)
φ(~x) = 0 (1.1.6)

Some useful information about the energy spectrum could be obtained
from the form of the potential U(x): let’s call U+ = limx→+∞ U(x), U− =
limx→−∞ U(x), U< = min(U+, U−) and U> = max(U+, U−). The entire en-
ergy spectrum is contained in the energy range E > min(U(x)), that could
be divided in three parts:



• min(U(x)) < E < U<, in this interval the energy spectrum is discrete
and non degenerate, the eigenfunctions are normalizable;

• U< < E < U>, in this interval the energy spectrum is continuous and
non degenerate, the eigenfunctions are not normalizable;

• E > U>, in this interval the energy spectrum is continuous and doubly
degenerate, the eigenfunctions are not normalizable.

These results can be obtained studying the asymptotic behaviour of the so-
lutions of eq. (1.1.6).

It is possible to label the energy eigenvalues of the discrete part of the
energy spectrum, starting from the ground state E1, in such a way that
En < En+1.

Nodes theorem: any eigenfunctions φn associated to the energy eigen-
value En has exactly n− 1 nodes.

x0 is a node of the eigenfunction φn with domain D, if x0 ∈ Int(D) and
φn(x0) = 0.

1.1.2 Schrödinger equation with a central potential

The potentials used to study quarkonia from a quantum mechanics point
of view are central: U(r, θ, ϕ) = U(r).

Solving the Schrödinger equation with this type of potential is easier if it
is rewritten in spherical coordinates:

∂2φ

∂r2
+

2

r

∂φ

∂r
+

1

r2 sin2 θ

[
sin θ

∂

∂θ
(sin θ

∂φ

∂θ
)+

∂2φ

∂ϕ2

]
+

2m

~2
(E−U(r))φ = 0 (1.1.7)

In eq. (1.1.7) there are no mixed derivatives, we can formulate an ansatz
for the solution: φ(r, θ, ϕ) = R(r)Y (θ, ϕ). Using this ansatz eq. (1.1.7)
becomes: [

1

R

d

dr

(
r2dR

dr

)
+

2mr2

~2
(E − U)

]
+

+
1

Y

[
1

sin θ

d

dθ

(
sin θ

dY

dθ

)
+

1

sin2 θ

(
d2Y

dϕ2

)]
= 0 (1.1.8)

The term in the first brackets of eq. (1.1.8) depends on r alone and the term
in the second bracket depends on θ, φ alone, the only way in which their sum



can be zero is if they are both constants.[
1

R

d

dr

(
r2dR

dr

)
+

2mr2

~2
(E − U)

]
= l(l + 1) (1.1.9)

1

Y

[
1

sin θ

d

dθ

(
sin θ

dY

dθ

)
+

1

sin2 θ

(
d2Y

dϕ2

)]
= −l(l + 1) (1.1.10)

Eq. (1.1.10) can be solved using variable separations Y (θ, ϕ) = Θ(θ)Φ(ϕ).
Performing the same reasoning made before, we can write two separate equa-
tions:

1

Φ

d2Φ

dϕ2
= −m2 (1.1.11)

1

Θ

[
sin θ

d

dθ

(
sin θ

dΘ

dθ

)]
+ l(l + 1) sin2 θ = m2 (1.1.12)

The eq. (1.1.11) solutions are trivial:

Φ(ϕ) = c+e
imϕ + c−e

−imϕ if m 6= 0 (1.1.13)

Φ(ϕ) = aϕ+ b if m = 0 (1.1.14)

We know that Φ(ϕ) = Φ(ϕ+ 2nπ), so m must assume only integer values
and the constant a in solution (1.1.14) must be equal to zero. Moreover if
we change the sign of m eq. (1.1.11) remain the same, therefore we find that
c+ = c−. The general set of normalized solutions is:

Φ(ϕ) =
eimϕ√

2π
with m ∈ Z (1.1.15)

The solution of equation (1.1.12) it is not easy, with the substitution
u = cos θ, we find:

(1− u2)
d2Θ

du2
− 2u

dΘ

du
+

[
l(l + 1)− m2

1− u2

]
u = 0 (1.1.16)

this is an instance of the associated Legendre equation, the solutions diverge
in u = ±1 except if l is an integer equal or greater than zero and |m| ≤ l.
The solution of eq. (1.1.16) are the associated Legendre polynomials Pm

l :

Pm
l (u) =

1

2ll!
(1− u2)

m
2
dm+l

dum+l
(u2 − 1)l (1.1.17)



Finally we find the complete solution of eq. (1.1.10), the so-called spherical
harmonics:

Y (θ, ϕ)l,m = (−1)m
[

2l + 1

4π

(l −m)!

(l +m)!

] 1
2

Pm
l (cos θ)eimϕ (1.1.18)

Rewriting eq. (1.1.9) with the substitution R(r) = χ(r)
r

we obtain:

d2χ

dr2
+

2m

~2

(
E − U(r)− ~2

2m

l(l + 1)

r2

)
χ = 0 (1.1.19)

Eq. (1.1.19) is called Schrödinger radial equation and their solutions χ(r)
radial wave functions. We can call:

Veff (r) = U(r) +
~2

2m

l(l + 1)

r2
(1.1.20)

in this way eq. (1.1.19) has the same form of eq. (1.1.6) and we can apply
to the radial problem the results for the one dimensional problem stated
in the previous section. There is a further condition: if the short distance
centrifugal dominance is valid, i.e. if limr→0 r

2U(r) = 0, then χ(0) = 0. For
two particle systems we substitute the mass m with the reduced mass mu in
the Schrödinger equation, in order to find the energy eigenvalues.

1.1.3 Rescaling Schrödinger equation

We will now consider potentials of the form:

V (r) = λrν (1.1.21)

for which the radial Schrödinger equation is:

d2χ

dr2
+

2µ

~2

(
E − λrν − ~2

2µ

l(l + 1)

r2

)
χ = 0 (1.1.22)

we want to cast it in dimensionless form. The parameter λ, with c = 1, is in
unit of:

[λ] = [~−νµν+1] (1.1.23)

the scaled measure of length ρ is:

ρ =

(
~2

2µ |λ|

)p
r (1.1.24)



With this substitution eq. (1.1.22) becomes:

d2χ

dρ2
+

[
2µ

~2

(
2µ |λ|
~2

)2p

E −
(

2µ |λ|
~2

)p(2+ν)+1

sign(λ)ρν − l(l + 1)

ρ2

]
χ = 0

(1.1.25)
To eliminate the explicit dependence from mass and λ we set:

p = − 1

2 + ν
(1.1.26)

ε =
2µ

~2

(
2µ |λ|
~2

)2p

E (1.1.27)

in this way we obtain the dimensionless form of the Schrödinger equation
(1.1.22):

d2χ

dρ2
+

[
ε− sign(λ)ρν − l(l + 1)

ρ2

]
= 0 (1.1.28)

From eq. (1.1.27) we obtain how the level spacings depend on mass and
coupling strength:

∆E ∝
(

2µ

~2

)− ν
2+ν

|λ|
2

2+ν (1.1.29)

From eq. (1.1.29), for the Coulomb potential we find the well-known result
that the Rydberg constant is proportional to µ |λ|2. For the linear potential,
as we will see also solving the Schrödinger equation later, the energy level
spacing scale as:

( |λ|2
µ

) 1
3 .

1.1.4 Useful Theorems

The virial theorem states that:

〈T 〉 = E − 〈V 〉 =

〈
r

2

dV

dr

〉
(1.1.30)

for a potential of type (1.1.21) we find useful formulas to connect directly
〈T 〉 and 〈V 〉 with E:

〈V 〉 =
2

2 + ν
E (1.1.31)

〈T 〉 =
ν

2 + ν
E (1.1.32)

Another useful relation is the one that connects the s-wave functions at
the origin and the gradient of the potential:

|ψ(0)|2 =
m

2π~2

〈
dV

dr

〉
(1.1.33)



Chapter 2

Schrödigner equation solving
strategies

2.1 WKB approximation

For a Cornell-like potential, the Schrödinger’s equation has no simple re-
sults that can be calculated analytically, therefore, in order to find the energy
eigenvalues, we have to use numerical methods or approximate methods.

The WKB approximation [3] was formulated in 1926 by Wentzel-Kramers
and Brillouin who found it independently, even if the first formulation was
made in 1923 by the mathematician Jeffreys.

Let’s consider a one-dimensional Schrödinger equation, we call

p(x)2 = 2m
(
E − V (x)

)
(2.1.1)

the classical momentum, and we remember the general form of a wave func-
tion:

ψ(x, t) =
√
ρ(x, t) exp

(
iS(x, t)

~

)
= exp

(
iS(x, t)

~

)
(2.1.2)

in which, to obtain the last result, we have written ρ as a complex exponen-
tial. We are interested in stationary states, so we can use the time indepen-
dent Schrödinger equation, putting the expression of ψ(x, t) from eq. (2.1.2)
in (1.1.6) and using (2.1.1) we obtain:

−~2 d
2

dx2
(e

iS(x)
~ ) = −~2

(
i

~
S(x)′′ + (

i

~
S(x)′)2

)
e
iS(x)

~ = p(x)2e
iS(x)

~

S ′(x)2 − i~S(x)′′(x) = p(x)2 (2.1.3)

The differential equation (2.1.3) obtained is non-linear, so it could seem that
we have complicated the original one, but now comes the WKB approxima-
tion: if we have a slowly varying potential i~S(x)′′ will be very small (if we
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take a constant potential S(x)′′ = 0 ). This is equivalent to consider ~ a
small parameter1, so we can expand S in unit of ~ as:

S(x) = S0(x) + ~S1(x) + ~2S2(x) +O(~3). (2.1.4)

and inserting this result in (2.1.3) we find:(
S ′0(x)+~S1(x)+O(~2)

)2−p(x)2−i~
(
S ′′0 (x)+~S ′′1 (x)+O(~2)

)
= 0. (2.1.5)

Now we can stop the expansion at the desired order, if we choose the first
one 2.1.5 reads:

[S ′0(x)2 − p(x)2] + ~[2S ′0(x)S ′1(x)− iS ′′0 (x)] +O(~2) = 0. (2.1.6)

In order to obtain zero, each coefficient of ~ powers must be zero. We obtain
two conditions:

S ′0(x)2 − p(x)2 = 0 (2.1.7a)

S ′1(x) =
i

2

S ′′0 (x)

S ′0(x)
(2.1.7b)

From (2.1.7a) we easily obtain S ′0(x) = ±p(x) and:

S0(x) = ±
∫ x

x0

p(x′)dx′ (2.1.8)

with x0 a constant to be adjusted. Inserting the result of (2.1.7a) in
(2.1.7b) we obtain:

S ′1(x) =
i

2

±p′(x)

±p(x)
(2.1.9)

that can be integrated to give:

S1(x) =
i

2
ln p(x) + C. (2.1.10)

We can now use (2.1.9) and (2.1.10) to obtain the approximate form of the
wave function:

ψ(x) = e
i
~ [S0(x)+~S1(x)] = e

i
~S0(x)e

i
2

ln p(x)+C =
K√
p(x)

e
± i

~
∫ x
x0
p(x′)dx′ (2.1.11)

We can now write the general solution, as usual we need to distinguish be-
tween two different regions:

1This is the reason why this is the so-called semiclassical approximation: if we perform
the limit ~→ 0 we retrieve the classical mechanics, in fact also the De Broglie wavelength
goes to zero.



• V(x)<E: in this region we have p(x) ∈ R, so we can write p(x) = ~k(x)
with k(x) > 0 and the general solution is the superposition of two waves
propagating in opposite directions:

ψ(x) =
A√
k(x)

e
i
∫ x
x0
k(x′)dx′

+
B√
k(x)

e
−i

∫ x
x0
k(x′)dx′ (2.1.12)

• V(x)>E: this is the classical forbidden region, we have p(x) ∈ C so we
can write p(x) = i~k̃(x) with k̃(x) > 0. The general solution reads:

ψ(x) =
C√
k̃(x)

e
∫ x
x0
k̃(x′)dx′

+
D√
k̃(x)

e
−

∫ x
x0
k̃(x′)dx′ (2.1.13)

2.1.1 Validity of the approximation

For the approximation to be valid, we must have the terms in ~ much
smaller than the O(1) terms. For example, by (2.1.6), we could ask:

~|S ′0(x)S ′1(x)| � |S ′0(x)|2 (2.1.14)

Dividing for |S ′0(x)| (2.1.14) becomes |S ′1(x)| � |S ′0(x)|, if we substitute the
value of S ′1(x) and S ′0(x) from (2.1.7a) and (2.1.7b) we find:∣∣∣∣~p′p

∣∣∣∣� |p| . (2.1.15)

This condition can be read in multiples ways, dividing ~ by p we obtain:

λ(x)

∣∣∣∣dpdx
∣∣∣∣� |p| . (2.1.16)

that means that the change in the momentum over a distance equal to the
de Broglie length is small compared to the momentum. Alternatively we can
divide (2.1.15) by |p| to obtain, after some algebra, the condition:∣∣∣∣dλdx

∣∣∣∣� 1. (2.1.17)

Finally we can take the spatial derivative of (2.1.1), this gives us

|pp′| = m

∣∣∣∣dV (x)

dx

∣∣∣∣ (2.1.18)



and multiplying both members of (2.1.15) for |p| we get:

λ(x)

∣∣∣∣dV (x)

dx

∣∣∣∣� p2

2m
(2.1.19)

from which we recover the first affirmation made in this section, i.e. that
WKB approximation is valid for slowly varying potential. From (2.1.17) we
can easily argue that near the classical turning point, in which the potential
is equal to the energy of the system, the approximation is no longer valid,
since the momentum goes to zero, which implies λ increasing with no upper
bound. In fact, we can approximate the potential at the left of a turning
point as V (x)−E = g(x− a) with g > 0.In the allowed region (x<a) we will
have:

p(x)2 = 2mg(a− x)→ λ(x) =
2π~

√
2mg

√
(a− x)

(2.1.20)

and putting this in (2.1.17) we finally find the condition:

λ(x) =
π~

√
2mg(a− x)

3
2

� 1. (2.1.21)

that is obviously false in the vicinity of a.

2.1.2 Connection formulae

Let’s consider the solution far away from a turning point with the allowed
region to the left and the forbidden region to the right. Near the turning
point, we can make a linear approximation of the potential as seen before, in
this way we will have in (2.1.12) and (2.1.13):

k2 =
2mg

~2
(a− x) x ≤ a (2.1.22)

k̃2 =
2mg

~2
(x− a) x ≥ a. (2.1.23)

In order to derive the connection formulae we are going to solve the
Schrödinger equation near the turning point, with the linearized form of the
potential:

d2ψ

dx2
− 2mg

~2
(a− x) = 0 (2.1.24)

making the substitution:

u =
(2mg

~2

) 1
3 (x− a) (2.1.25)



(2.1.23) becomes:
d2ψ

du2
− uψ = 0 (2.1.26)

This is a well-known differential equation (see app. A), the solutions, named
by his discoverer, was for the first time found by George Airy, an astronomer
of the nineteenth century: ψ(x) = aAi(u) + bBi(u), where:

Ai(u) =
1

π

∫ ∞
0

dk cos
(k3

3
+ ku

)
(2.1.27)

and
Bi(u) =

1

π

∫ ∞
0

dk
[
e−

k3

3
+ku + sin

(k3

3
+ ku

)]
. (2.1.28)

We can write the asymptotic form of the Airy functions as follow:

Ai(u) '

{
1
2

1√
π
|u|−

1
4 e−

2
3
|u|

3
2 u� 1

1√
π
|u|−

1
4 cos

(
2
3
|u|

3
2 − π

4

)
u� −1

(2.1.29)

Bi(u) '

{
1√
π
|u|−

1
4 e

2
3
|u|

3
2 u� 1

− 1√
π
|u|−

1
4 sin

(
2
3
|u|

3
2 − π

4

)
u� −1

(2.1.30)

We can now rewrite (2.1.12) and (2.1.13) in a more manageable way, for
x < a:

ψL(x) =
A√
k(x)

cos

(∫ a

x

k(x′)dx′ − π

4

)
+

B√
k(x)

sin

(∫ a

x

k(x′)dx′ − π

4

)
(2.1.31)

and for x > a:

ψR(x) =
C√
k̃(x)

e
∫ x
a k̃(x′)dx′ +

D√
k̃(x)

e−
∫ x
a k̃(x′)dx′ . (2.1.32)

We can now express (2.1.22) and (2.1.23) in terms of u as defined in (2.1.25):

k = k̃ =

(
2mg

~2

) 1
3

|u|
1
2 = η |u|

1
2 (2.1.33)

and substitute these results in (2.1.31) and (2.1.32):

ψL(x) =
A

√
η |u|

1
4

cos

(
2

3
|u|

3
2 − π

4

)
+

B
√
η |u|

1
4

sin

(
2

3
|u|

3
2 − π

4

)
(2.1.34)



ψR(x) =
C

√
η |u|

1
4

e
2
3
|u|

3
2 +

D
√
η |u|

1
4

e−
2
3
|u|

3
2 . (2.1.35)

Finally we can connect the solution to the left of the turning point (2.1.34)
to the solution to the right of a turning point (2.1.35) using the asymptotic
form of the Airy functions in (2.1.29) and (2.1.30) finding A = 2D, C = −B
and the connection formulae:

2D√
k(x)

cos

(∫ a

x

k(x′)dx′ − π

4

)
←− D√

k̃(x)
e−

∫ x
a k̃(x′)dx′ (2.1.36)

B√
k(x)

sin

(∫ a

x

k(x′)dx′ − π

4

)
−→ − B√

k̃(x)
e
∫ x
a k̃(x′)dx′ . (2.1.37)

The arrows are in one direction for a very precise reason: in (2.1.36) a
decaying exponential to the right of the turning point implies a cosine to
the left, but if we have a sine with a cosine to the left because a small error
in the oscillatory function, this would imply a growing exponential to the
right. In the same way, a sine to the left implies a growing exponential to
the right, and even if we had a cosine together whit the sine this would
implies a decaying exponential to the right that would be dominated by the
growing exponential. But if we have a small error to the right, a decaying
exponential, this would imply the presence of cosine to the left.

In a total analogous way, we can obtain the connection conditions for a
turning point b with the forbidden region to the left and the allowed region
to the right.

A√
k̃(x)

e−
∫ b
x k̃(x′)dx′ −→ 2A√

k(x)
cos

(∫ x

b

k(x′)dx′ − π

4

)
(2.1.38)

− B√
k̃(x)

e
∫ b
x k̃(x′)dx′ ←− B√

k(x)
sin

(∫ x

b

k(x′)dx′ − π

4

)
(2.1.39)

2.1.3 WKB approximation for a central potential

In general the turning point is unknown, but in some cases there is a very
easy way to find it. As we have already seen the radial Schrödinger equation
(1.1.19) can be managed to look completely similar to the one dimensional
time independent one using eq. (1.1.20), so we can apply the WKB approx-
imation. Let’s consider a potential with only a turning point, on the right
of it, in order to satisfy the boundedness condition we will have only the



decaying exponential so we need to put B=0 in (2.1.31) from the connection
condition (2.1.37). So for r � a we will have:

χL(r) =
2D√
k(r)

cos

(∫ a

r

k(r′)dr′ − π

4

)
=

=
2D√
k(r)

cos

(∫ a

0

k(r′)dr′ −
∫ r

0

k(r′)dr′ − π

4

)
(2.1.40)

Now calling ∆ =
∫ a

0
k(r′)dr′ − π

4
and with some trigonometry (2.1.40)

becomes:

2D√
k(r)

cos

(∫ a

0

k(r′)dr′ −
∫ r

0

k(x′)dx′ − π

4

)
=

=
2D√
k(r)

[
cos

(∫ r

0

k(r′)dr′
)

cos ∆− sin

(∫ r

0

k(r′)dr′
)

sin ∆

]
(2.1.41)

And from condition χ(0) = 0 we obtain:

1√
k(r)

cos ∆ = 0 (2.1.42)

which implies: ∫ a

0

k(r′)dr′ =
(
n− 1

4

)
π n = 1, 2, 3 . . . (2.1.43)

that is a quantization condition. Exploiting the fact that V (a) = E and a is
unique, we can write a as a function of the energy: a = a(E). Now writing
the extended form of k(x) we find the integral equation for the stationary
state energy:∫ a(E)

0

√
2m

~2

(
E − Veff (r′)

)
dr′ =

(
n− 1

4

)
π n = 1, 2, 3 . . . (2.1.44)

2.1.4 Coulomb potential

Now we are going to test the WKB approximation on the Coulomb poten-
tial and on a linear potential, because their sum form the Cornell potential.
For the sake of simplicity we solve only the cases with l = 0, for which can
be obtained some simple formulas. We can write the Coulomb potential in
a total general form:

V (r) = −k
r

(2.1.45)



with k > 0 and express the turning point a as a function of the energy:

− k

a
= E → a = − k

E
. (2.1.46)

In order to find the energy eigenvalues we need to solve (2.1.44):∫ − k
E

0

√
2m

~2

(
E +

k

r′
)
dr′ =

(
n− 1

4

)
π n = 1, 2, 3 . . . (2.1.47)

let’s compute the integral:∫ − k
E

0

√(
E +

k

r′
)
dr′ =

∫ − k
E

0

√
Er′ + k

r′
dr′ → r′ = u2 k

E∫ i

0

√
ku2 + k

u
√

k
E

2u
k

E
du =

∫ i

0

2
√
u2 + 1

k√
E
du.

Where u ∈ C and last integral is well-known and can be solved using
trigonometry or hyperbolic functions, the results reads:

k√
E

[
x
√
x2 + 1− ln

(
x+
√
x2 + 1

)]∣∣∣∣1
0

= i
k√
E

π

2
(2.1.48)

. If we put this result in (2.1.47) we obtain the quantization condition:

i

√
2m

~2

π

2

k√
E

=
(
n− 1

4

)
π n = 1, 2, 3 . . .

E = −m
~2

8k2

(4n− 1)2
n = 1, 2, 3 . . . (2.1.49)

Now we can compare the theoretical results with the WKB approximation:

Eth = −m
~2

k2

2n2
n = 1, 2, 3 . . . (2.1.50)

We can notice immediately that increasing n the two formulas tend to coin-
cide (in fact the energy in WKB approximation has an asymptotic behaviour
as 1

2n2 ). The integral in (2.1.44) cannot be easily solved in the Cornell poten-
tial case, so we have written a program to compute the energy eigenvalues
for the WKB approximation: fixed n, for each value of Ei in a given range,
we compute the difference:

∆Ei =

∫ − k
Ei

0

√
2m

~2

(
Ei −

k

r′
)
dr′ −

(
n− 1

4

)
π (2.1.51)



n EthSc EthWKB EnumWKB

1 -0.50000 -0.88889 -0.88889
2 -0.12500 -0.16327 -0.16327
3 -0.05556 -0.06612 -0.06612
4 -0.03125 -0.03556 -0.03556
5 -0.02000 -0.02216 -0.02216
6 -0.01389 -0.01512 -0.01512
12 -0.00347 -0.00362 -0.00362

Table 2.1.1: Coulomb potential energy eigenvalues comparison: in order from left to right the energy
eigenvalues obtained from the Schrödinger equation, the ones from (2.1.49) and the ones obtained numer-
ically.

solving the integral numerically, if ∆Ei∆Ei+1 < 0, the process is repeated in
the range [∆Ei,∆Ei+1] with an energy increment of |∆Ei−∆Ei+1|

10
, in this way

we can compute the energy eigenvalues with the desired number of decimal
digits. In table 2.1.1 we have compared the theoretical energy eigenvalues
of a Coulomb potential with k = 1, c = 1, ~ = 1 and m = 1eV with the
energy eigenvalues obtained from (2.1.49) and the ones computed with the
algorithm described above.

In figure 2.1.1 are plotted the radial eigenfunctions for the Coulomb po-
tential with ` = 0 obtained from the WKB approximation (2.1.31).
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 with WKB approximation
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Figure 2.1.1: Radial wave functions computed with WKB approximation in the Coulomb potential case.



2.1.5 Linear potential

We want now to apply the WKB approximation to a linear potential,
with l = 0 of the type:

U(r) = br. (2.1.52)

The first thing to do is find the turning point as a function of energy

a =
E

b
(2.1.53)

so we can compute the integral in (2.1.43):∫ E
b

0

√
2m

~2

(
E − br′

)
dr′ =

(
n− 1

4

)
π n = 1, 2, 3 . . . (2.1.54)

that is very easy to compute and leads to the quantization equation:

−
√

2m

~2

2

3b

(
E − br′

) 3
2
∣∣Eb
0

=
(
n− 1

4

)
π√

2m

~2

2

3b
E

3
2 =

(
n− 1

4

)
π

E =

[
3b

2

√
~2

2m

(
n− 1

4

)
π

] 2
3

n = 1, 2, 3 . . . (2.1.55)

To compare this with the theoretical eigenvalues we have to solve the
Schrödinger equation:

d2χ

dr2
+

2m

~2
(E − br)χ = 0 (2.1.56)

that we have already seen in a little different form in (2.1.24). The solution
is:

χ(r) = c1Ai
((2m

~2

) 1
3

(br − E)

b
2
3

)
+ c2Bi

((2m

~2

) 1
3

(br − E)

b
2
3

)
(2.1.57)

for the boundedness condition at infinity we have to impose c2=0 and from
the condition χ(0) = 0 we find:

Ai
(
−
(

2m

b2~2

) 1
3

E

)
= 0. (2.1.58)

The energy eigenvalues can be obtained from (2.1.58) with the request:

E = −
(
~2b2

2m

) 1
3

zn (2.1.59)



n EthSc EthWKB EnumWKB

1 1.85576 1.84158 1.84158
2 3.24461 3.23973 3.23973
3 4.38167 4.37898 4.37898
4 5.38661 5.38483 5.38483
5 6.30526 6.30396 6.30396
6 7.16128 7.16027 7.16027
12 11.53074 11.53035 11.53035

Table 2.1.2: Linear potential energy eigenvalues comparison: in order from left to right the energy eigen-
values obtained from the Schrödinger equation, the ones from (2.1.59) and the ones obtained numerically.

where zn is the nth zero of the Airy function Ai(x) from the right to the left.
In table 2.1.2 we have compared the theoretical energy eigenvalues of a linear
potential with b = 1, c = 1, ~ = 1 and m = 1eV with the energy eigenvalues
obtained from (2.1.59) and the ones computed with the algorithm described
in section 2.1.4. In figure 2.1.2 are plotted the radial eigenfunctions for the
linear potential with ` = 0 obtained from the WKB approximation (2.1.31).
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Figure 2.1.2: Radial wavefunctions computed with WKB approximation in the linear potential case.



2.2 Numerov’s algorithm

The Numerov’s algorithm is a method to solve numerically differential
equation of the type:

d2Ψ

dx2
= f(x)Ψ(x). (2.2.1)

The first thing to do is to discretize the coordinate x using an uniform grid:
xk = kδx where δx will be the algorithm step. Now we can write the Taylor
expansion of Ψ(xk+1) = Ψ(xk + δx):

Ψ(xk+1) = Ψ(xk) +
∞∑
n=1

dnΨ

dxn
(xk)

δxn

n!
(2.2.2)

and

Ψ(xk−1) = Ψ(xk) +
∞∑
n=1

(−1)n
dnΨ

dxn
(xk)

δxn

n!
(2.2.3)

From (2.2.2) and (2.2.3) follow that:

Ψ(xk+1)+Ψ(xk−1) = 2Ψ(xk)+
d2Ψ

dx2
(xk)δx

2+
1

12

d4Ψ

dx4
(xk)δx

4+O(δx6) (2.2.4)

We do not know the fourth derivative but we can write it using (2.2.1) and
the approximation made above, neglecting the fourth order term:

d4Ψ

dx4
(xk)δx

2 =
d2

dx2

d2Ψ

dx2
(xk)δx

2 =
d2

dx2

(
f(xk)Ψ(xk)

)
δx2 =

= Ψ(xk+1)f(xk+1) + Ψ(xk−1)f(xk−1)− 2Ψ(xk)f(xk) +O(δx4) (2.2.5)

We can insert this approximate expression for the fourth derivative of
the function in (2.2.4) which, taking in account (2.2.1), can be rewritten as
follows:

Ψ(xk+1) =
2Ψ(xk)

(
1 + 5

12
f(xk)δx

2
)
−Ψ(xk−1)

(
1− 1

12
f(xk−1)δx2

)
1− 1

12
f(xk+1)δx2

+O(δx6)

(2.2.6)
So if we know the first two values of the unknown function we can compute

them all.
The radial Schrödinger (1.1.19) equation can be cast in the form:

d2χ

dr2
=

2m

~2

(
Veff (r)− E

)
χ(r) (2.2.7)



in which 2m
~2
(
Veff (r)−E

)
plays the role of the function f(x) in the Numerov’s

algorithm. As we have seen before, if it is valid the short distance centrifugal
dominance (the potential is less singular than 1

r2
for r → 0), we will have

χ(0) = 0, so the point from which the algorithm will begin will be x0 = 0
and we will have χ(x0) = χ(0) = 0. We now need the value of χ(r) in
x1 = x0 + δx, because of the fact that eigenfunctions are defined up to a
multiplicative constant we are free to choose any value for χ(x1). After the
function is computed we can divide it for its integral computed numerically
to obtain the orthonormalized eigenfunction.

2.2.1 Finding energy eigenvalues

In equation (2.2.7) the energy eigenvalues En,l are still unknown. We can
find them taking into what we have seen in section 1.1. From the analysis on
distribution of the energy eigenvalues we know that E > min(Veff (r)) and
the whole discrete spectrum is contained in the interval: min(Veff (r)) < E <
Veff<(r). In addition, for the discrete part of the spectrum, must hold the
boundedness condition: limr→+∞ χ(r) = 0. Having this information and for
a fixed l we can choose an energy value Einit to start our research and use it
to compute with the Numerov’s algorithm χ(r, Einit) with the request that
χ(r)→ 0 for r →∞, if this request is not satisfied we will dump this energy
value and proceed with the next one, how this could be done in practice?
Because reaching r =∞ is impossible we have chosen a large value R of r in
which the algorithm ends. Then we have made the energy varying by a fixed
step ∆E and computed the product:

χ(R,E) · χ(R,E + ∆E) (2.2.8)

if (2.2.8) it is negative this means that we have a possible energy eigenvalue
between E and E+∆E. To compute accurately the jth decimal digit of E it
is sufficient to repeat the algorithm described above with the energy varying
in the range [Ej−1, Ej−1 + ∆Ej−1] by a step ∆Ej, in which Ej is the energy
eigenvalue with the first j decimal digits correct and ∆Ej = ∆E

10j
.

Reached the desired accuracy the research go over E + ∆E to find the
other energy eigenvalues with the same method.

In order to verify the accuracy of the results found, we need to decrease
the step δr and increase the R value, checking at which decimal digit the
energy eigenvalues start to vary.

We need now to verify which energy eigenvalues we have found, to do
that we count the node and apply the nodes theorem stated in the previous
chapter. If χ(r, E1) has a node in the interval 0 < r < +∞, E1 is not the
ground state energy and the value of Einit must be picked smaller.



We have written a program to perform the Numerov algorithm and find
the energy eigenvalues. In appendices B and C are reported the results
obtained for different values of δr and R in the Coulomb potential and the
linear potential cases with our program.



Chapter 3

Determining quarkonia spectra

3.1 Determining Cornell potential parameters

3.1.1 A naive model

There are two parameters in Cornell potential(1.0.1): the strong coupling
constant αs and a.

The first one depends on the MS subtraction-scale µ, it is conventional
to choose the subtraction scale of order the center of mass energy ECM [4].
In our case µ = mQ, where mQ is the quarkonium mass.

The theoretical value of αs[5] is:

αs(m
2
Q) =

4π

β0t

[
1− β1

β2
0

ln t

t
+

β2
1

β4
0t

2

(
(ln t)2 − ln t− 1 +

β2β0

β2
1

)
+

β3
1

β6
0t

3

(
−(ln t)3 +

5

2
(ln t)2 + 2 ln t− 1

2
− 3

β2β0

β2
1

ln t+
β3β

2
0

β3
1

)
+

O
(

(ln t)4

t

)]
(3.1.1)

with t=ln
m2
Q

Λ2
. The β functions and ΛQCD depend on the number of light

33



quark nf below the energetic scale in which αs is determined.

β0 = 11− 2

3
nf (3.1.2)

β1 = 102− 38

3
nf (3.1.3)

β2 =
2857

2
− 5033

18
nf +

325

54
n2
f (3.1.4)

β3 =

(
149573

6
+ 3564ζ(3)

)
−
(

1078361

162
+

6508

27
ζ(3)

)
nf+(

50065

162
+

6472

87
ζ(3)

)
n2
f +

1093

729
n3
f (3.1.5)

In order to determine the parameter a we will fit the energy spectrum
predicted via Numerov method for the bb meson with the experimental one
[6] that we have reported in table 3.1.1.

n2s+1Lj Particle name Energy (Mev)

11S0 ηb(1S) 9398.7± 2.0
13S1 Υ(1S) 9460.30± 0.26
11P1 hb(1P ) 9899.3± 0.8
13P0 χb0(1P ) 9859.44± 0.42± 0.31
13P1 χb1(1P ) 9892.78± 0.26± 0.31
13P2 χb2(1P ) 9912.21± 0.26± 0.31
23S1 Υ(2S) 10023.26± 0.31
13D2 Υ2(1D) 10163.7± 1.4
23P0 χb0(2P ) 10232.5± 0.4± 0.5
23P1 χb1(2P ) 10255.46± 0.22± 0.50
23P2 χb2(2P ) 10268.65± 0.22± 0.50
33S1 Υ(3S) 10355.2± 0.5
33P1 χb1(3P ) 10513.4± 0.7
33P2 χb2(3P ) 10524.0± 0.8
43S1 Υ(4S) 10579.4± 1.2

Table 3.1.1: The bb energy levels with spectroscopic notation known.

The MS mass of bottom quark is mb = 4.18 GeV to which correspond a
pole mass mpole = 4.78 GeV[6]. Using nf = 4, Mbb = 2mpole = 9.56 GeV and
Λ
nf=4
QCD = 0.292 GeV[7], we find αs(Mbb) = 0.177.
Our treatment is no-relativistic, so we do not expect a splitting in energy

levels due to quantum number J. On the contrary experimental data show



that this splitting exists. To overcome this difficulty, we used the mean energy
value of each energetic level as the real ones that the Cornell potential should
reproduce.

Finally using the list squares method we find a = 2.76 GeV−1.

In table 3.1.2 we have written the experimentally mean energy value of
each state and the ones computed via Numerov algorithm and via WKB
approximation using the Cornell potential.

In this case the potential has one than more turning point on the right,
if l 6= 0, so we have applied the WKB approximation only to S states.

As predicted by the theory the difference between the energy eigenvalue
computed via WKB approximation and the ones computed via Numerov
algorithm decrease as the quantum number increase.

Only for the 1P and 1S states we have all the energy experimental values
for all the J values, so our calculation could be improved with more data.

nL Exp. mean energy Numerov alg. WKB ∆E (MeV)
value predictions predictions th-exp

1S 9429.5± 1.13 9720.69 9610.7 291.2
2S 10023.26± 0.31 10061.06 10021.5 37.8
3S 10355.2± 0.5 10307.06 10285.8 −48.14
4S 10579.4± 1.2 10515.94 10505.2 −63.46
1P 9890.93± 0.44± 0.31 9965.57 - 74.46
2P 10252.2± 0.28± 0.5 10222.82 - −29.38
3P 10518.7± 0.8 10438.66 - −80.04
1D 10163.7± 1.4 10130.40 - −33.3

Table 3.1.2: Comparison between the mean energy values and the ones predicted by Numerov algorithm
and via WKB approximation

In figure 3.1.1 and 3.1.2 are drawn the normalized radial eigenfunctions
computed via Numerov algorithm for the states 1S and 2S for the Coulomb
potential, (V (r) = −4

3
αs
r
), the linear potential (V (r) = r

a2
) and the Cornell

potential (V (r) = −4
3
αs
r

+ r
a2
).
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3.1.2 Two parameters fit

Fitting only one parameter, a problem arise: all states have a positive
energy eigenvalue, but experimentally 1S state has a negative energy eigen-
value.

To overcome this problem we need to increase αs, from a physical point
of view this means that the energy scale characterizing the bottomonium
bound states is lower than 2mb and we can extract it from the best value of
αs obtained by the two parameters fit.

The values obtained from the fit are: αs = 0.371 and a = 2.39 GeV−1,
the results of our computation are putted together in tab. 3.1.3.

nL Exp. mean energy Numerov alg. WKB ∆E (MeV)
value predictions predictions th-exp

1S 9429.5± 1.13 9459.02 9160.13 29.52
2S 10023.26± 0.31 10012.96 9922.40 −10.3
3S 10355.2± 0.5 10349.00 10286.80 −6.2
4S 10579.4± 1.2 10621.31 10570.91 41.9
1P 9890.93± 0.44± 0.31 9916.04 - 25.74
2P 10252.2± 0.28± 0.5 10261.85 - 9.65
3P 10518.7± 0.8 10540.34 - 21.64
1D 10163.7± 1.4 10156.28 - −7.42

Table 3.1.3: Comparison between the mean energy values and the ones predicted by Numerov algorithm
and via WKB approximation

In figure 3.1.3 and 3.1.4 are drawn the normalized radial eigenfunctions
computed via Numerov algorithm for the states 1S and 2S for the Coulomb



potential, (V (r) = −4
3
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Using (3.1.1) we can estimate the αs(m2
Q) scale, that is mQ ' 1.4 GeV.

What is this scale?
For the first bound state we have a negative energy eigenvalue, this means

that the Coulomb potential dominate the linear one, greater the mass and
αs, better this approximation become. So only for the ground state let’s
suppose that:

V0(r) ' −4

3

αs
r

(3.1.6)

The Schrödinger equation for this potential is analytically solvable, and
the ground state energy results to be:

E1 = −µ
2

(
4

3
αs)

2 (3.1.7)

where µ is the mass of the quarkonium.
We can now use the virial theorem (1.1.30) which, for the Coulomb po-

tential, lead to:

〈T 〉 = −E =
µ

2
(
4

3
αs)

2 (3.1.8)

and because our treatment is non-relativistic, by (3.1.8) we find that:

v =
4

3
αs (3.1.9)

From the hydrogen atom theory we also know that the average radius of the
ground state is:

R0 =
3

4µαs
=

1

µv
(3.1.10)



in natural unit this quantity is the inverse of an energy, so we can calculate
the energy scale as 1

R0
, in our case this give us: mQ ' 1.18 GeV that is very

close to the value of the energy scale obtained from (3.1.1).
These approximate calculations tell us that the energy scale in which

calculate αs is neither 2mb as we have done in the previous section, neither
mb, but the one characterizing the first bound state.

3.1.3 Spin splitting

Experiments show that there is a splitting in the energy levels associated
with the quantum number j. If we restrain ourselves to the S-wave functions,
this effect could be taking in account in an easy way[9]. The potential for
the spin-spin interaction takes the form:

Vss =
8π~3

9c
αs
~σq · ~σq
mqmq

δ(~x) (3.1.11)

The expectation values of ~σq · ~σq is found to be:

~σq · ~σq =
4

~2
~sq · ~sq = 2[S(S + 1)− sq(sq + 1)− sq(sq + 1)] =

=

{
−3, if S = 0

+1, if S = 1
(3.1.12)

where S is the total spin. The energy gap between the 1S0 and 3S1 levels
will be:

∆Ess =
8π~3

9c

4αs
mqmq

|ψ(0)|2 (3.1.13)

where |ψ(0)|2 can be calculated, for example, using eq. (1.1.33).
Using eq. (3.1.13) we have fitted again the Bottomonium spectrum, tak-

ing into account the split in the S-levels. The best fit parameters resulted
to be: αs = 0.389 and a = 2.39 Gev−1, the energy obtained are reported in
table 3.1.4.

The 11S0 energy level it is not well predicted, this is due to the fact
that the theoretical energy gap between the two 1S levels is about twice the
experimental one.

We can repeat the calculations made in the previous paragraph about the
energy scale in which αs should be calculated. From eq. (3.1.1) we obtain
mQ = 1.3 GeV and from eq. (3.1.10) mQ = 1.24 GeV with an accordance
even better than before.



nL Exp. mean energy Numerov alg. ∆E (MeV)
value predictions th-exp

11S0 9398.7± 2.0 9294.32 −104.4
13S1 9460.30± 0.26 9466.72 6.42
23S1 10023.26± 0.31 10014.41 −8.85
33S1 10355.2± 0.5 10350.51 −4.69
43S1 10579.4± 1.2 10623.06 43.66
1P 9890.93± 0.44± 0.31 9901.30 10.4
2P 10252.2± 0.28± 0.5 10251.12 −1.08
3P 10518.7± 0.8 10531.53 12.3
1D 10163.7± 1.4 10146.25 −17.45

Table 3.1.4: Comparison between the mean energy values and the ones predicted by Numerov algorithm
with spin splitting in S-waves

3.2 Toponium spectrum

We will try now the compute toponium energy spectrum. We do not have
experimental data, so we can not perform a two parameter fit as done before.

In order to estimate the strong coupling constant we need to guess the
energy characterizing the first bound state. We know that αs decreases with
energy, so surely its value for the toponium case is lesser than the bottomo-
nium one. The upper bound for the toponium first bound state energy scale
will be:

4

3
αs(bb)µtt ' 44 GeV (3.2.1)

We know for certain that toponium reduced mass is greater than the energy
characterizing the first bound state, so a lower limit for it will be:

4

3
αs(µtt)µtt ' 13.7 GeV (3.2.2)

We can compute the central value of αs using the coulombic approxima-
tion described above. (3.1.1). We know αs should be computed at the energy
scale mQ characterizing the first bound state. From equation (3.1.10), this
will be approximately:

mQ =
4

3
αs(mQ)µtt (3.2.3)

For each value of mQ we can calculate the value of αs(mQ) using equation
(3.1.1) until the left and right member of equation (3.2.3) are equal. Using
Λ
nf=5
QCD = 0.210 GeV, mtop = 172.4 GeV[7] we find:

mQ ' 18 GeV



.

The strong coupling constant value, with this bounds, will be somewhere
between αs = 0.133 and αs = 0.166, with an estimated value of αs = 0.157.
To compute an energetic range in which we expect toponium energetic levels
to be we will also allow a to vary between a = 2.3 GeV−1 and a = 2.5 GeV−1.

In table 3.2.1 we have reported the results of our computation.

nL Excitation energy computed Excitation energy computed
via Numerov algorithm (GeV) via WKB approximation (GeV)
min pred max min pred max

1S −2.108342 −1.875160 −1.333800 −3.74653 −3.351237 −2.399122
1P −0.489283 −0.425249 −0.278970
1D −0.154560 −0.117639 −0.038183
1F −0.006099 0.023964 0.082761
2S −0.481007 −0.415689 −0.266891 −0.651314 −0.573072 −0.387054
2P −0.139173 −0.100151 −0.017078
2D 0.013686 0.045950 0.107968
2F 0.109237 0.139688 0.192635
3S −0.130992 −0.090722 −0.005253 −0.189138 −0.147062 −0.053077
3P 0.028493 0.062690 0.127926
3D 0.127967 0.160424 0.216245
3F 0.200675 0.232965 0.283890
4S 0.036581 0.071991 0.139528 0.003290 0.038417 0.108747
4P 0.142296 0.176564 0.235336
4D 0.218589 0.252747 0.306308
4F 0.278834 0.313481 0.364059
5S 0.150300 0.185753 0.246747 0.126058 0.160714 0.222794
5P 0.232524 0.268398 0.324712
5D 0.296092 0.332502 0.385537
5F 0.348483 0.385682 0.436762
6S 0.240453 0.277489 0.335959 0.220662 0.256766 0.315653
6P 0.309692 0.347744 0.403375
6D 0.365195 0.404073 0.457469
6F 0.412151 0.451966 0.504024

Table 3.2.1: Excitation energy for toponium calculated with Numerov algorithm and WKB approxima-
tion
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Using eq. (3.1.13) we can compute the splitting in the S levels due to
spin-spin interaction. The results are reported in tab. 3.2.2. Only for the 1S



0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
r(GeV 1)

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(r)

Reduced radial 1S wave functions for the three potential
Cornell potential
Coulomb potential
Linear potential

Figure 3.2.3: 1S normalized radial wave func-
tions computed via Numerov algorithm for the
three potential.
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Figure 3.2.4: 2S normalized radial wave func-
tions computed via Numerov algorithm for the
three potential.
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Figure 3.2.5: 3S normalized radial wave func-
tions computed via Numerov algorithm for the
three potential.
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Figure 3.2.6: 4S normalized radial wave func-
tions computed via Numerov algorithm for the
three potential.
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Figure 3.2.7: 5S normalized radial wave func-
tions computed via Numerov algorithm for the
three potential.
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Figure 3.2.8: 6S normalized radial wave func-
tions computed via Numerov algorithm for the
three potential.



level the energy gap is important, being of the order of 0.1 GeV. In figure
3.2.9 are shown the new splitted S levels.

nL E(GeV) nL E(GeV)

1S −1.875160 11S0 −1.958609
13S1 −1.847344

2S −0.415689 21S0 −0.427230
23S1 −0.411841

3S −0.090722 31S0 −0.095291
33S1 −0.089199

4S 0.071991
41S0 0.069122
43S1 0.072947

5S 0.185753
51S0 0.183552
53S1 0.186486

6S 0.277489
61S0 0.275637
63S1 0.278106

Table 3.2.2: Energy eigenvalues of Cornell potential
for S-waves with spin-spin splitting

Figure 3.2.9: Total energy of S splitted lev-
els.





Chapter 4

Constraining a new force

Let’s suppose the existence of an unknown force between the top quark
and the antitop quark in toponium, carried by a scalar particle of mass m.
The inter-quark potential, adding Yukawa potential, would become:

V (r) = −4

3

αs
r

+
r

a2
−Ge

−mr

r
(4.0.1)

in which G ≥ 0. We want to see what happen to the energy eigenvalues
and to other relevant quantities with this hypothesis. In particular, in this
section, we want to find the indicative values of G, given m, for which the
variation of the 1S energy eigenvalue is greater or equal than 10%, 15% and
20%, in appendix D we have made the same calculations for other energy
eigenvalues.
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Figure 4.0.1: 1S level energy eigenvalues for different values of G and m. The black lines indicate
respectively a variation from the unperturbed level of 10%, 15% and 20%.
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Mass G value for 10% G value for 15% G value for 20%
(GeV) variation variation variation
10−5 0.010 0.015 0.02
10−4 0.010 0.015 0.02
10−3 0.010 0.015 0.02
10−2 0.010 0.015 0.02
10−1 0.010 0.015 0.02
1 0.011 0.016 0.021
5 0.013 0.019 0.025
10 0.016 0.024 0.031
50 0.052 0.075 0.095
100 0.12 0.17 0.21

Table 4.0.1: Minimum value of G in function of m to obtain a percentage variation of 10%, 15%, 20%
from the 1S unperturbed energy level.

4.1 Formation time and decay time

Top decays semiweakly: t → Wb, we can estimate the lifetime approxi-
mately as the inverse of its width: Γtop = 1.42 GeV. Toponium is composed
by a top quark and antitop one, therefore its lifetime is the half of a single
top quark.

τlifetime '
1

2Γt
=

1

2.8GeV
(4.1.1)

We can estimate quarkonia formation time as the revolution time of the
bound state [10]. As we have already seen in the previous section, for the 1S
state we can neglect the linear part of the Cornell potential, this is particu-
larly true for toponium as can be seen from fig. 3.2.3 in which the coulombic
eigenfunction and the Cornell one practically coincide and the difference be-
tween E1SCorn = −1.875 and E1SCoul = −1.89 are of the 0.8%. With a rough
calculation we estimate toponium formation time, using eq. (3.1.10) and
(3.1.9), as:

τform '
2πr

v
=

9π

8µα2
s

=
1

0.6GeV
(4.1.2)

We can now make the same calculations with the new hypothetical po-
tential. To further simplify the calculation we suppose a light mediating
particle, so, if missmall, we can write the new potential as:

V (r) = −
(

4

3
αs +G

)
1

r
+

r

a2
(4.1.3)



and the formation time will decrease as:

τform '
2π

µ(4
3
αs +G)2

(4.1.4)

this allows us to estimate the minimum value of G for which the toponium
could exists asking kτform ≤ τlifetime with k ≥ 1.

G ≥

√
k

4Γtπ

µ
− 4

3
αs (4.1.5)

Putting k = 1 the minimum value of G would be: G = 0.24.





Conclusion

Using Cornell potential we have determined some relevant quantities for
toponium. We have concluded that the energy scale in which calculate αs
is about the inverse of the Bohr radius in the coulombic approximation: i.e.

mQ '
4αsµ

3
.

In particular for toponium this takes the value 18 GeV. 1S toponium
state is characterized by an energy eigenvalue of −1.875 GeV and velocity of
4

3
αs ' 0.209.
Assuming the existence of a fifth top-philic force carried by a scalar par-

ticle, we added to Cornell potential a Yukawa one. In this way, we have
established a minimum value of the intensity G ≥ 0.24 for which it could be
possible to experimentally observe toponium bounded states.
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Appendix A

Airy functions

A.1 Solving the Airy equation

Airy equation reads as follow:

d2u

dx2
− xu = 0 (A.1.1)

In order to solve it we apply Fourier transform to both members:

F
(
d2u

dx2

)
−F(xu) = 0 (A.1.2)

If u is sufficiently regular the following statements are true:

F(Dau) = (ix)aF(u) (A.1.3)
F(xau) = (iD)aF(u) (A.1.4)

FFu = u (A.1.5)

Using eq. (A.1.3) and (A.1.4) in (A.1.5) we find:

d

dk
F(u) = ik2F(u) (A.1.6)

that has a trivial solution:
F(u) = Cei

k3

3 (A.1.7)

finally applying eq. (A.1.4) we find:

u(x) =
C√
2π

∫ +∞

−∞
ei(

k3

3
+kx)dk (A.1.8)
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choosing C= 1√
2π

we obtain the Airy function Ai(x).
To retrieve eq. (2.1.27) we need to work a little more:

Ai(x) =
1

2π

∫ ∞
−∞

ei(
k3

3
+kx)dk =

=
1

2π

[∫ 0

−∞
ei(

k3

3
+kx)dk +

∫ ∞
0

ei(
k3

3
+kx)dk

]
=

=
1

2π

[∫ ∞
0

e−i(
k3

3
+kx)dk +

∫ ∞
0

ei(
k3

3
+kx)dk

]
=

=
1

π

∫ ∞
0

ei(
k3

3
+kx) + e−i(

k3

3
+kx)

2
dk =

=
1

π

∫ ∞
0

cos

(
k3

3
+ kx

)
dk (A.1.9)

A.2 The Bi(x) function

Finding Bi(x) is more difficult. An ingenious trick is to consider k in the
integral (A.1.8) a complex variable, and write Bi(x) as a sum of that integral
calculated on different contours in the complex plane. Usually the contours
are choose to be: C1 = {k ∈ C : =(k) = 0,−∞ < <(k) <∞} and C2 = {k ∈
C : =(k) = 0,−∞ < <(k) < 0} ∪ {k ∈ C : <(k) = 0,−∞ < =(k) < 0}.

Bi(x) =
1

2π

[
−i
∫
C1

ei(
k3

3
+kx)dk + 2i

∫
C2

ei(
k3

3
+kx)dk

]
=

=
1

2π

[
−i
∫ +∞

−∞
ei(

k3

3
+kx)dk + 2i

∫ 0

−∞
ei(

k3

3
+kx)dk + 2i

∫ −i∞
0

ei(
k3

3
+kx)dk

]
=

=
1

2π

[
−i
∫ ∞

0

ei(
k3

3
+kx) + e−i(

k3

3
+kx) + 2i

∫ +∞

0

e−i(
k3

3
+kx)dk+

+ 2

∫ +∞

0

e−
k3

3
+kxdk

]
=

=
1

2π

[
−i
∫ ∞

0

ei(
k3

3
+kx) − e−i(

k3

3
+kx)dk + 2

∫ +∞

0

e−
k3

3
+kxdk

]
=

1

π

∫ ∞
0

sin

(
k3

3
+ kx

)
+ e−

k3

3
+kxdk (A.2.1)



Appendix B

Numerov results for Coulomb
potential

As usual we choose ~ = c = 1 and a potential of the form:

V (r) = −1

r

whose theoretical energy eigenvalues are well-known (see (2.1.50)) and are
written down in table B.0.1:

E1 E2 E3 E4 E5 E6 E7

−0.5 −0.125 −0.05 −0.03125 −0.02 −0.0138 −0.01020408

Table B.0.1: Theoretical energy eigenvalues for the Coulomb potential

In the next tables are collected the energy eigenvalues computed via Nu-
merov’s algorithm with different values of R and δr and they are compared
with the theoretical prediction. If the algorithm failed in finding an energy
eigenvalue in its place we have written a dash.

In table B.0.2 we have written the results for R = 10:
In table B.0.3 we have written the results for R = 50:
In table B.0.4 we have written the results for R = 100:
In table B.0.5 we have written the results for R = 200:
In table B.0.6 we have written the results for R = 500:
In table B.0.7 we have written the results for R = 1000:
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δr Values 0.1 0.01 0.001 0.0001
E1 −0.49701354 −0.49996627 −0.49999893 −0.49999926
E2 −0.11228344 −0.11280046 −0.11280615 −0.11280621
E3 − − − −
E4 − − − −
E5 − − − −
E6 − − − −
E7 − − − −

Table B.0.2: Energy eigenvalues obtained for the Coulomb potential via Numerov’s algorithm for R = 50

δr Values 0.1 0.01 0.001 0.0001
E1 −0.49701432 −0.49996700 −0.49999967 −0.50000000
E2 −0.12462601 −0.12499588 −0.12499996 −0.12500000
E3 −0.05544466 −0.05555433 −0.05555554 −0.05555555
E4 −0.03115675 −0.03120381 −0.03120433 −0.03120434
E5 −0.01782520 −0.01786433 −0.01786476 −0.01786476
E6 −0.00221122 −0.00226530 −0.00226590 −0.00226590
E7 − − − −

Table B.0.3: Energy eigenvalues obtained for the Coulomb potential via Numerov’s algorithm for R = 50

δr Values 0.1 0.01 0.001 0.0001
E1 −0.49701432 −0.49996700 −0.49999967 −0.50000000
E2 −0.12462601 −0.12499588 −0.12499996 −0.12500000
E3 −0.05544467 −0.05555433 −0.05555554 −0.05555556
E4 −0.03120320 −0.03124948 −0.03124999 −0.03125000
E5 −0.01997600 −0.01999971 −0.01999997 −0.01999997
E6 −0.01385431 −0.01386832 −0.01386848 −0.01386848
E7 −0.00958346 −0.00959623 −0.00959637 −0.00959637

Table B.0.4: Energy eigenvalues obtained for the Coulomb potential via Numerov’s algorithm for R =
100

δr Values 0.1 0.01 0.001 0.0001
E1 −0.49701432 −0.49996700 −0.49999967 −0.50000000
E2 −0.12462601 −0.12499588 −0.12499996 −0.12500000
E3 −0.05544467 −0.05555433 −0.05555554 −0.05555556
E4 −0.03120320 −0.03124948 −0.03124999 −0.03125000
E5 −0.01997603 −0.01999974 −0.02000000 −0.02000000
E6 −0.01387502 −0.01388874 −0.01388889 −0.01388889
E7 −0.01019535 −0.01020399 −0.01020408 −0.01020408

Table B.0.5: Energy eigenvalues obtained for the Coulomb potential via Numerov’s algorithm for R =
200

δr Values 0.1 0.01 0.001 0.0001
E1 −0.49701432 −0.49996700 −0.49999967 −0.50000000
E2 −0.12462601 −0.12499588 −0.12499996 −0.12500000
E3 −0.05544467 −0.05555433 −0.05555554 −0.05555556
E4 −0.03120320 −0.03124948 −0.03124999 −0.03125000
E5 −0.01997603 −0.01999974 −0.02000000 −0.02000000
E6 −0.01387502 −0.01388874 −0.01388889 −0.01388889
E7 −0.01019535 −0.01020399 −0.01020408 −0.01020408

Table B.0.6: Energy eigenvalues obtained for the Coulomb potential via Numerov’s algorithm for R =
500



δr Values 0.1 0.01 0.001 0.0001
E1 −0.49701432 −0.49996700 −0.49999967 −0.50000000
E2 −0.12462601 −0.12499588 −0.12499996 −0.12500000
E3 −0.05544467 −0.05555433 −0.05555554 −0.05555556
E4 −0.03120320 −0.03124948 −0.03124999 −0.03125000
E5 −0.01997603 −0.01999974 −0.02000000 −0.02000000
E6 −0.01387502 −0.01388874 −0.01388889 −0.01388889
E7 −0.01019535 −0.01020399 −0.01020408 −0.01020408

Table B.0.7: Energy eigenvalues obtained for the Coulomb potential via Numerov’s algorithm for R =
1000





Appendix C

Numerov results for linear
potential

As usual we choose ~ = c = 1 and a potential of the form: V (r) = r
whose theoretical energy eigenvalues are well-known (see (2.1.59)) and are
written down in table C.0.1:

E1 1.85575708
E2 3.24460762
E3 4.38167124
E4 5.38661378
E5 6.30526301
E6 7.16128273
E7 7.96889166

Table C.0.1: Theoretical energy eigenvalues for a linear potential.

In the next tables are collected the energy eigenvalues computed via Nu-
merov’s algorithm with different values of R and δr.

In table C.0.2 we have written the results for R = 10:
In table C.0.3 we have written the results for R = 50:
In table C.0.4 we have written the results for R = 100:
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δr Values 0.1 0.01 0.001 0.0001
E1 1.85575676 1.85575708 1.85575708 1.85575708
E2 3.24460068 3.24460762 3.24460763 3.24460763
E3 4.38165236 4.38167124 4.38167124 4.38167124
E4 5.38657765 5.38661378 5.38661378 5.38661378
E5 6.30520451 6.30526321 6.30526322 6.30526322
E6 7.16121161 7.16129822 7.16129823 7.16129823
E7 7.96927727 7.9693974 7.96939741 7.96939741

Table C.0.2: Energy eigenvalues obtained for the linear potential via Numerov’s algorithm for R = 10.

δr Values 0.1 0.01 0.001 0.0001
E1 1.85575676 1.85575708 1.85575708 1.85575708
E2 3.24460068 3.24460762 3.24460763 3.24460763
E3 4.38165236 4.38167124 4.38167124 4.38167124
E4 5.38657765 5.38661378 5.38661378 5.38661378
E5 6.30520430 6.30526300 6.30526301 6.30526301
E6 7.16119611 7.16128272 7.16128273 7.16128273
E7 7.96877179 7.96889164 7.96889166 7.96889166

Table C.0.3: Energy eigenvalues obtained for the linear potential via Numerov’s algorithm for R = 50.

δr Values 0.1 0.01 0.001 0.0001
E1 1.85575676 1.85575708 1.85575708 1.85575708
E2 3.24460068 3.24460762 3.24460763 3.24460763
E3 4.38165236 4.38167124 4.38167124 4.38167124
E4 5.38657765 5.38661378 5.38661378 5.38661378
E5 6.30520430 6.30526300 6.30526301 6.30526301
E6 7.16119611 7.16128272 7.16128273 7.16128273
E7 7.96877179 7.96889164 7.96889166 7.96889166

Table C.0.4: Energy eigenvalues obtained for the linear potential via Numerov’s algorithm for R = 100.



Appendix D

Variations in toponium energy
levels due to Yukawa potential

In this appendix are reported the energy eigenvalues of the Schrödinger
equation with the potential (4.0.1). We have considered the levels that un-
perturbed have a negative energy eigenvalue and the first ones for each value
of l that have a positive energy eigenvalue.

Mass G value for G value for G value for
(GeV) 10% variation 15% variation 20% variation
10−5 0.009 0.013 0.017
10−4 0.009 0.013 0.017
10−3 0.009 0.013 0.017
10−2 0.009 0.013 0.017
10−1 0.009 0.013 0.017
1 0.01 0.015 0.02
5 0.019 0.027 0.036
10 0.029 0.042 0.056
50 0.092 0.13 0.17
100 0.2 0.27 0.34

Table D.0.1: Minimum value of G in function of m to obtain a percentage variation of 10%, 15%, 20%
from the 2S unperturbed energy level.
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Figure D.0.1: 2S level energy eigenvalues for different values of G and m. The black lines indicate
respectively a variation from the unperturbed level of 10%, 15% and 20%.

Mass G value for 10% G value for 15% G value for 20%
(GeV) variation variation variation
10−5 0.004 0.006 0.007
10−4 0.004 0.006 0.007
10−3 0.004 0.006 0.007
10−2 0.004 0.006 0.007
10−1 0.004 0.006 0.008
1 0.005 0.008 0.01
5 0.012 0.017 0.023
10 0.018 0.026 0.035
50 0.055 0.08 0.11
100 0.12 0.17 0.22

Table D.0.2: Minimum value of G in function of m to obtain a percentage variation of 10%, 15%, 20%
from the 3S unperturbed energy level.
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Figure D.0.2: 3S level energy eigenvalues for different values of G and m. The black lines indicate
respectively a variation from the unperturbed level of 10%, 15% and 20%.



Mass G value for 10% G value for 15% G value for 20%
(GeV) variation variation variation
10−5 0.004 0.006 0.008
10−4 0.004 0.006 0.008
10−3 0.004 0.006 0.008
10−2 0.004 0.006 0.008
10−1 0.004 0.007 0.009
1 0.007 0.01 0.014
5 0.016 0.024 0.031
10 0.023 0.034 0.046
50 0.069 0.1 0.13
100 0.15 0.22 0.27

Table D.0.3: Minimum value of G in function of m to obtain a percentage variation of 10%, 15%, 20%
from the 4S unperturbed energy level.
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Figure D.0.3: 4S level energy eigenvalues for different values of G and m. The black lines indicate
respectively a variation from the unperturbed level of 10%, 15% and 20%.

Mass G value for 10% G value for 15% G value for 20%
(GeV) variation variation variation
10−5 0.009 0.013 0.017
10−4 0.009 0.013 0.017
10−3 0.009 0.013 0.017
10−2 0.009 0.013 0.017
10−1 0.009 0.013 0.018
1 0.011 0.016 0.021
5 0.022 0.032 0.041
10 0.045 0.064 0.081
50 > 0.3 > 0.3 > 0.3
100 > 0.3 > 0.3 > 0.3

Table D.0.4: Minimum value of G in function of m to obtain a percentage variation of 10%, 15%, 20%
from the 1P unperturbed energy level.
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Figure D.0.4: 1P level energy eigenvalues for different values of G and m. The black lines indicate
respectively a variation from the unperturbed level of 10%, 15% and 20%.

Mass G value for 10% G value for 15% G value for 20%
(GeV) variation variation variation
10−5 0.004 0.006 0.008
10−4 0.004 0.006 0.008
10−3 0.004 0.006 0.008
10−2 0.004 0.006 0.008
10−1 0.004 0.006 0.009
1 0.006 0.009 0.012
5 0.016 0.024 0.032
10 0.033 0.048 0.063
50 > 0.3 > 0.3 > 0.3
100 > 0.3 > 0.3 > 0.3

Table D.0.5: Minimum value of G in function of m to obtain a percentage variation of 10%, 15%, 20%
from the 2P unperturbed energy level.
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Figure D.0.5: 2P level energy eigenvalues for different values of G and m. The black lines indicate
respectively a variation from the unperturbed level of 10%, 15% and 20%.



Mass G value for 10% G value for 15% G value for 20%
(GeV) variation variation variation
10−5 0.004 0.006 0.008
10−4 0.004 0.006 0.008
10−3 0.004 0.006 0.008
10−2 0.004 0.006 0.008
10−1 0.004 0.006 0.008
1 0.006 0.009 0.013
5 0.018 0.027 0.035
10 0.035 0.051 0.067
50 > 0.3 > 0.3 > 0.3
100 > 0.3 > 0.3 > 0.3

Table D.0.6: Minimum value of G in function of m to obtain a percentage variation of 10%, 15%, 20%
from the 3P unperturbed energy level.
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Figure D.0.6: 3P level energy eigenvalues for different values of G and m. The black lines indicate
respectively a variation from the unperturbed level of 10%, 15% and 20%.

Mass G value for 10% G value for 15% G value for 20%
(GeV) variation variation variation
10−5 0.005 0.007 0.01
10−4 0.005 0.007 0.01
10−3 0.005 0.007 0.01
10−2 0.005 0.007 0.01
10−1 0.005 0.008 0.01
1 0.007 0.011 0.015
5 0.03 0.044 0.057
10 0.12 0.17 0.21
50 > 0.3 > 0.3 > 0.3
100 > 0.3 > 0.3 > 0.3

Table D.0.7: Minimum value of G in function of m to obtain a percentage variation of 10%, 15%, 20%
from the 1D unperturbed energy level.
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Figure D.0.7: 1D level energy eigenvalues for different values of G and m. The black lines indicate
respectively a variation from the unperturbed level of 10%, 15% and 20%.

Mass G value for 10% G value for 15% G value for 20%
(GeV) variation variation variation
10−5 0.003 0.004 0.006
10−4 0.003 0.004 0.006
10−3 0.003 0.004 0.006
10−2 0.003 0.004 0.006
10−1 0.003 0.005 0.006
1 0.005 0.008 0.01
5 0.022 0.032 0.042
10 0.072 0.11 0.14
50 > 0.3 > 0.3 > 0.3
100 > 0.3 > 0.3 > 0.3

Table D.0.8: Minimum value of G in function of m to obtain a percentage variation of 10%, 15%, 20%
from the 2D unperturbed energy level.
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Figure D.0.8: 2D level energy eigenvalues for different values of G and m. The black lines indicate
respectively a variation from the unperturbed level of 10%, 15% and 20%.



Mass G value for 10% G value for 15% G value for 20%
(GeV) variation variation variation
10−5 0.0015 0.0025 0.003
10−4 0.0015 0.0025 0.003
10−3 0.0015 0.0025 0.003
10−2 0.0015 0.0025 0.003
10−1 0.0015 0.0025 0.0035
1 0.003 0.0045 0.055
5 0.024 0.036 0.048
10 0.2 0.28 0.37
50 > 0.3 > 0.3 > 0.3
100 > 0.3 > 0.3 > 0.3

Table D.0.9: Minimum value of G in function of m to obtain a percentage variation of 10%, 15%, 20%
from the 1F unperturbed energy level.
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Figure D.0.9: 1F level energy eigenvalues for different values of G and m. The black lines indicate
respectively a variation from the unperturbed level of 10%, 15% and 20%.
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