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Abstract

Lane Marking Segmentation is research domain on which many techniques have

been proposed so far, as well as, this thesis explains how to tackle facing problems in

the Autonomous Driving, on the deep learning scenarios. Previously, several approachs,

such deeplab[4], and its extensions have deeply been experienced with multiple datasets,

such ImageNet[11], CityScape[10] and so on. Accordingly, they all represent competitive

outcomes, in terms of lass Accuracy, Mean Intersection Over Union. However, this thesis

represents flatly different approach on Lane Marking Semantic Segmentation, aiming at

improving seen results, and ending up with compeletly new techniques. In this respect,

DeepLabV3 Plus [7], extending DeepLabV3[5], is trained on ApolloScape dataset. This

large-scale dataset contains a diverse set of stereo video cropped sequences, recorded in

street scenes from different cities, with high quality pixel-level annotations of 110 000+

frames. Xception network [8], being extension of InceptionV3 network[8], is considered

on such a particular research, together with DeepLabV3 plus.

Proposed solution has variety of advantages in the task of Semantic Segmen-

tation, in terms of providing, new techniques such as encoder-decoder network, Spatial

Pyramid Pooling with Parallel Atrous Convolution layers[7], Depthwise Separable Con-

volution as well as Multi-Grid Method which all are broadly discussed in this thesis.

Regardless of several state-of-art methods, there are possible challenges, needed to be

explicitly analyzed, and taken good measures, to propose superior achievements. Con-

fronting difficulties in Semantic Segmentation, concerns to obtained results, related to

mIoU and Class Accuracy of 38 classes, which are, in turn, caused by Cross Entropy Loss

for unbalanced dataset and Random Scale Crop function which operates on randomly

scaling ground-truth images, resulting disappearance reasonable information on images,

on the other hand, having 38 classes on images, bring challenge to network to classify

and semantically label, great variety of road signs on the images. Accordingly, there

are experimented methods suggested for those ongoing issues, for example, replacement

of Cross Entropy loss, with Weighted-Cross-Entropy Loss, Random Scale with Standard

Random Crop, moreover, deployment of Center Crop technique and training with two

classes, namely, ”Lane Marking” and ”Non Lane Marking”, all in all have dramatically

improved previous outcomes, in particular, with advent of Weighted Cross Entropy Loss.
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Chapter 1

Introduction

Semantic Segmentation is a natural step in the progression from coarse to fine inference.

The origin could be located at classification, which consists of making a prediction for a

whole input. The next step is localization, detection, which provides not only the classes

but also additional information regarding the spatial location of those classes.Finally,

semantic segmentation achieves fine-grained image classification by making dense predic-

tions inferring labels for every pixel, so that each pixel is labeled with the class of its

enclosing object region. Semantic Segmentation is widely used in different purposes such

as medical, robot vision and understanding, as well as, autonomous driving (Fig 1.2)deep

learning tasks. In this respect, these classes could be pedestrians, vehicles, buildings,

vegetation, sky, void and so on. As it is clear from the concept that DeepLabV3 Plus

comes up with an particular layer, called Convolution Layer, in this respect, convolution

layers have been broadly investigated.Convolutional Neural Network (CNN) architecture

has three main parts. A convolutional layer that extracts features from a source image.

Convolution helps with blurring, sharpening, edge detection, noise reduction, or other op-

erations that can help the machine to learn specific characteristics of an image. Pooling

layer that reduces the image dimensionality without losing important features or patterns.

Fully connected layer also known as the dense layer, in which the results of the convo-

lutional layers are fed through one or more neural layers to generate a prediction.Then,

Lane Marking Semantic Segmentation with Deep Convolution Neural Network, is one of

most fascinating, in the same time, challenging research, because Lane Marking is specific

2



3

Figure 1.1: Fully Convolution Network Deployment

[] []

Figure 1.2: Lane Marking Segmentation(left) and Semantic Segmentation(right)

type of Semantic Segmentation, thus, our target is to develop Lane Marking Semantic

Segmentation, by Deep Convolution Network. Lane Marking Segmentation principle is

expressed by the left part of Fig 1.2

Moreover, some semantic networks comprises Fully Convolution networks(Fig 1.1), and

they do not have Fully Connected Layers, but only convolution layers. It is evident

that ConvNet has dominance on image classification as well as image segmentation.It is

well-controlled on the internal task, with obtained outcome. According to these traits,

ConvNet has great progression in the task of object detection and local correspondence.

Semantic Segmentation broadly used convnet, labelling invidual pixel with class

of the object. Apart from this, Fully Convolution Network illustrates great performance

in semantic segmentation, by training, pixel by pixel, end-to-end, without extra tools or

methods.
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1.1 Aims and Objectives

In order to contribute to this a project, the reasonable measures we follow are:

1. Main goal is refine semantic segmentation achievements, seen in the former experi-

mental results, via ApolloScape Dataset, Xception Network, DeepLabV3 Plus.

2. As second part of primary target is to take advantage of multiple techniques, so as

to achieve high class accuracy and intersection over union.

1.2 Description of the work

The overview of complete master thesis document:

In Chapter 1 We introduce main ideas behind semantic and lane marking segmentation

In Chapter 2 We comprehensively discuss DeepLab and its successors

In Chapter 3 DeepLabV3 Plus and Xception module have both been broadly probed.

In Chapter 4 Ultimately, we represent all considered measures to deal with facing diffi-

culties, moreover their dramatic improvements on the Lane Marking Segmentation Task

In Chapter 5 Finally, we mentioned several bibliographies cited in the thesis.





Chapter 2

Study on Semantic Segmentation

and DeepLab

.

2.1 Apolloscape Dataset Description

We proposed to take advantage of ApolloScape Dataset for the task of Lane Marking

Segmentation with Deep Convolution Neural Network. ApolloScape Dataset consists of

15 thousands of cropped images derived from real-world highway.Apolloscape Dataset is

splitted into training and test set. Moreover, Training Set consist 12 thousands images,

whereas validations set comprises 3 thousands images, however,format of existing ground-

truth images is not suitable for fitting into network. In this respect, we tackle with this

issue, by preceding on building new ground-truth images which will be further fitted into

original network. Following the suggested way, we come up with Data PreProcessing

Technique that is broadly described in the following section.

2.2 Data Preprocessing

It is a data mining technique that transforms raw data into an understandable format.

Raw data(real world data) is always incomplete and that data cannot be sent through a

8



2.2. Data Preprocessing 9

model or network. That would cause certain errors. That is why we need to preprocess

data before sending through a model. Following procedure opens up accurate data on

which all steps are implemented:

1. Extraction of RGB color set from row data of Apolloscape dataset.

2. Consider labels encoded, according to road signs on ApolloScape Dataset.

3. Preparation of Ground-Truth values within the range of [0 255]

4. Replacement of RGB unique colors with Ground-Truth values, in order to provide

Ground-Truth Images

5. Analyse ApolloScape Dataset, so as to understand multiple labels on highway lines

of images

Table 2.1 displayes ID-Labels and conversion of RGB Colors, into Ground-Truth:



RGB Colors Ground-Truth ID-Labels

0 0 0 0 Void
70 130 180 1 Dividing
220 20 60 2 Middle Parallel line
128 0 128 3 Right line Parking
255 0 0 4 Border Line
0 0 60 5 Continuous Line

0 60 100 6 Right Turn
0 0 142 7 Guiding

119 11 32 8 Left Dash-line
244 35 232 9 Cycle line

0 0 160 10 Thick-Guide Line
153 153 153 11 Stopping
220 220 0 12 Convergence Line
250 170 30 13 Safety line
102 102 156 14 Left-Right Dash Separated Line

128 0 0 15 Chevron
238 232 170 17 Turn-Left Line
190 153 153 18 Zebra-Crossing

0 0 230 19 Double-Turn
128 78 160 21 Continuous Line
150 100 100 22 Circle Turn
255 165 0 23 Yield Sign without Words

180 165 180 24 Turn-Left
107 142 35 25 Three Merged Lines
201 255 229 26 Double Turn
0 191 255 27 Straight Line
51 255 51 28 Right Arrow

250 128 114 29 Pedestrian stand Line
127 255 0 30 Turn Right
255 128 0 31 Reduction
0 255 255 32 Attention

178 132 190 33 No Parking
128 128 64 34 Turn Allowance Line
102 0 204 35 Parking
0 153 153 36 Curve Sign

255 255 255 37 Ignored

Table 2.1: Clear Representation of Road Labels, with both, RGB and Ground-Truth
Values



2.3. DeepLab 11

2.3 DeepLab

Primarily, DeepLab [4] is thoroughly investigated, according to its former [5] and state-

of-art techniques [7].DeepLab introduces useful attributes in semantic segmentation task,

such as Atrous Convolution, Fully Connected Conditional Random Field, as well as Deep

Convolution Nets on which it did several refinements through the years.

1. DeepLab precedes with particular convolution, together with upsampled filter, in

other words, Atrous convolution, with which DeepLab gains well-defined perfor-

mance in dense prediction tasks, by guiding resolution on feature responses, com-

puted in Deep Convolution Neural Networks. Moreover, Atrous convolution further

represent another advantage of expanding field of view of filters, so as to put to-

gether larger contexts, without exhibiting any modification on amount of parameters

it has.

2. On the other hand, there is Atrous Spatial Pyramid Pooling, segments object solidly

in various rates. ASPP from [4], leans back an idea of existence of atrous convolution

with filters, aiming at absorbing image context and objects on multiple rates [5].

3. Existence of max-pooling and downsampling acquire invariance from the [4], in

Deep Convolution Neural Network, but has bad effect on localization accuracy, then

good measure is to incorporate responses with Fully Conditional Random Field,

introduced by the [7]

Possible challenges from [4], surrounds semantic segmentation task, are reduction in

feature resolution, existence of objects at multiple scale, as well as ruined localization

accuracy, caused by combination of max-pooling and downsampling.

2.3.1 Atrous Convolution

In ths chapter, we will more figure out ongoing corresponding challenges and their proper

solutions, such that integral part is to improve reduced feature resolution which is caused

by repeated combination of max pooling and downsampling at consecutive Deep Convo-
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Figure 2.1: Sequence Illustration of Atrous Convolution, mapping through Binilear Inter-
polation, which expands feature map to original image size, then fit into Fully Connected
CRF

lution Neural Layers, this performs significantly reduction of resolution on feature map,

when DCNN is employed in Fully Convolutional Fashion [18]

Diminished feature resolution is recovered, with an advent of experimented tech-

nique of extracting downsampling layers, amongst last max pooling layers, furthermore,

appending upsample filters in successive convolution layers. Then, feature map is measure

at high sampling rate.

Both, Atrous Convolution and Bilinear Interpolation of feature responses ,offer

dense computation of feature maps, resulting full resolution feature map [4].

It has to be noted that Deep Convolution Neural Network can be trained in both,

image classification and image segmentation, however, with fully connected layers as well

fully connected convolution layers, respectively. From Fig 2.1 in [4], it is discussed that

atrous convolution enhance feature resolution, then is pursued by bilinear interpolation,

with aim of upsampling score map in Fig 2.1, to obtain original image resolution. As

it is depicted, Fully Connected CRF is added to elaborate segmentation results. By

considering one dimensional signal first, then output y[i] of atrous convolution of d input

signal x[i] with a filter w[k] of length K is defined as shown in the 2.1 equation:

y[i] =
K=1∑
n=1

x[i+ r · k]w[k] (2.1)
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Figure 2.2: Atrous and Standard Convolution (a) Standard convolution with rate r =1 .
(b) Atrous convolution with rate r=2 applied on a high resolution input feature map

As it is given in equation 2.1, parameter r opens up with stride with which input signal is

sampled. It should be noticed that standard convolution will be transformed into atrous

with stride 2.

Clear exposition and dramatic enhancement on feature map, are introduced by

both ideas on the Fig 2.3, such as standard and atrous convolution. Primarily, giving

input image, standard convolution is applied with sparse feature extraction. In first

case, downsampling operation is implemented with stride two, followed by convolution

layers, ultimately, layers upsampled with filers, leading to implicit and low resolution

input feature map. Conversely, superior method, Atrous convolution is proposed, with

the stride r = 2, kernel size = 7, and stride = 1, so as to capture dense feature, at high

resolution input.

It is broadly seen that Atrous Convolution is exceedingly powerful in high reso-

lution of feature extraction. Going more detailed with it, experimentally, Atrous deploys

small kernels, so as to provide fast computation and keep number of parameters un-

changed. As well, Atrous Convolution beginning with stride r, generating r-1 zeros in

the sequenced filter values, and broaden kernel size of k filter, to the k + (k - 1)(r - 1),

without increasing number of parameters.
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Figure 2.3: Various Feature Extraction Method with two kind of:Standard and Atrous
convolution

2.3.2 Atrous Spatial Pyramid Pooling

Second facing challenge is existence of object at multiple scales, therefore, this problem

had been figured out, applying rescaled version of DCNN on the same image, then fur-

ther aggregate feature map . This particular approach, although increase performance,

nonetheless, appears with cost of computing features responses at all DCNN layers for

multi scale version of image. In this case, with aim of alleviating this issue, on the be-

half of motivating Spatial Pyramid Pooling, that playes main role, and in turn provide

computationally efficient scheme of resampling given feature layer at multiple rates, prior

to convolution layer. With these incoming features, this appears to be probed on orig-

inal image with multiple layers that has alluring effective field of views, thus capturing

objects as well as useful image context at multiple scales. On the other hand, Deep Con-

volution Neural Network illustrates great representation by constituting small and large

object scale. In principal, Atrous Spatial Pyramid Pooling is based on the concept from

[13], which discusses achievement of R-CNN spatial pyramid pooling on scale of object

regions on which it produces explicit, accurate outcome, once it re-generates convolution

features, obtained at each single scale. In turn, this will then come up with an idea of

using multiple parallel atrous convolution layers, with different sampling rates [5], thus

after achieving features, at every sampling rate, they will be in turn, processed on various
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Figure 2.4: Atrous Spatial Pyramid Pooling

branches, ultimately, they will be put together to acquire result. Reference descriptions

are outlined in the Fig 2.4

2.3.3 Fully Connected Conditional Random Field for Accurate

Boundary Recovery

Reduction on localization accuracy and its experimental solution are thoroughly examined

in [4].Fig 2.5 clearly explains score map which is quite smooth with short-range CRF,

simultaneously, short-range CRF can be harmful in recovering detailed structure, then

another alternative method, contrast sensitive potentials has been tested, with which are

achieved improved localization, however, this also has lack of constructing thin-structures.

Fig 2.5 express that regardless of DCNN score map predicts presence and solid position

of object, yet is not good at discovering object border.

As challenges appears from short-range CRF, accordingly, assessment of value is

taken into account, with which, system will incorporate with Fully Conditional Random

Field, forming energy function:

E(x) =
∑
i

θi(xi) +
∑
ij

θij(xi, xj) (2.2)

where x is the label assignment for pixels, unary potential θi(xi) = logP (xi) where P (xi)is
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Figure 2.5: Score Map

the label assignment probability at pixel i as computed by a DCNN. As a consequence,

Fully Connected Conditional Random Field is appeared to be remarkable successful for

fine-grained localization accuracy, achieving accurate semantic segmentation results, as

well as recovering object boundaries. as largely presented in the [6], [16].





Chapter 3

DeeplabV3

DeepLabV3 [5], is dramatically improved version of previous DeepLab [4] version, as well

as dealing with the same confronting difficulties, such as existence of objects at multiple

scales, reduced feature resolution caused by previuosly discussed synthesis of downsam-

pling and maxpooling, accordingly solution is derived from taking downsampling from

the amongst last few max pooling layers, preferably upsampling with corresponding filter

kernels. This is preceded on the behalf of Atrous Convolution or Dilated Convolution

capturing dense feature map, obviously experienced in [3], [4]. DeepLabV3 [5], supplies

atrous convolution will gain control on resolution of features responses with DCNN. Ex-

istence of objects at multiple scale should be comprehensively considered, as in the case

of earlier versions, in this respect, from [5], there are various possible measurements to

figure out such a ongoing issues. Fig 3.1 displays multiple methods of Fully Convolution

Network proposed by DeepLabV3 [5], in order to capture objects multi-scale. Each Fully

Figure 3.1: Several Experimental methods of FCN to obtain objects in multi-scale

18
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Convolution Network is deeply investigated and sequenced, in inters of its performance.

1. Image Pyramid presented by [20] fits same weight through all scale inputs. This

technique of FCN is aiming at deriving long-range contextual information from small

scale inputs, whereas, achieving thin and small object details via large scale inputs,

as explicitly shown in (a) of Fig 3.1 [6]

2. Encoder-Decoder appears with [1], [7] gains high popularity in recent version of

DeepLab, generating fine-gained experimental results, (b) part of Fig 3.1 clearly

explaines how encoder-decoder operates in FCN, such that encoder’s target is to

steadily reduce spatial dimension of feature map, in order to accomplish large-range

information its output, as a consequent, it is produced into decoder which is left

part of graphics, performing reverse operation of which encoder does, thus gradually

regain lost object details and spatial dimension.

3. CRF and Deep CNN This method is conceptually divided into two parts: such as

first, Deep CNN deploy many convolution layers, to encoder long-range information,

as the second aim is feed DCNN into CRF [15], to apply incorpation of them, to

build cascade [17] form of convolution layers.

4. Spatial Pyramid Pooling with Cascade Layers ASPP supplies outstanding work on

DeepLab versions, came up with [5], [4], [7] such as DeepLabV2 [4] primarily

talks about ASPP with various multiple atrous convolution, with different rates, to

acquire deep scale contextual data. Then DeepLabV3 [5] explores further benefits

of ASSP and ending up with recent development of corporation between atrous

convolution in cascade form which feeds into feature map , together with ASPP.

3.0.1 Going Deeper in Atrous Convolution

Fig 3.2 impart deep knowledge regarding the Standard and Atrous Convolution opera-

tions. It is noticeable from the Fig 3.2 that Standard Convolution holds rate = 1, version

of Atrous Convonvolution. Essentially, Atrous Convolution provides larger rates, mea-

sured by output stride which is computed as ratio of input image spatial resolution to
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Figure 3.2: Cascade system with and wihout Atrous Convolution

output image spatial resolution. Atrous Convolution continuously modifies atrous rates,

to have a control how densely compute feature responses. Main principal of expand-

ing rates that Atrous Convolution follows, to allows object to be encoded in multiple

scale.Coming back to the cascade form of Atrous Convolution, Fig 3.2 presents ResNet

Blocks, as well as consecutive striding on those blocks and obtained outcomes with atrous

and without atrous convolution. In principal, Atrous Convolution assist to achieve long

contextual information, however, undoubtedly sequenced striding can deteriorate detailed

information, then output stride determining striding is applied, which holds 16 value in

this case.Fig 3.2 has two part : (a) and (b) differs from each other, due to value variation

of output stride, according to atrous convolution case, refered to blocks, starting from 4

on which loss of information is seen, till carried on more 4 blocks.In (a) shows absence of

atrous convolution, instead presence of standard convolution that leads to high value of

output stride and loss of object details in cascade form, whereas (b) outlines well-defined

form, mentioning Atrous convolution with output stride = 16, in the consecutive blocks.

3.0.2 Multi-Grid Method

In order to elaborate atrous convolution providing with various grid size, Multi-Grid

Method is offered, allowing to impose hierarchical grid cells.Advent of Multi-Grid method

suggests assumption of ultimalte atrous for each convolution layer will be calculated by
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Figure 3.3: ASPP and Global Average Pooling

the multiplication between unit rate and atrous rate. Unit rate is formulated as (r1, r2, r3).

[2], [21]

3.0.3 Atrous Spatial Pyramid Pooling with Global Average Pool-

ing

Throughout the sections, all discussed about ASPP, [4] together with its achievements, [12]

however, it is paramount to note that ASPP with atrous convolution with multiple rates

not only absorb long scale information, from the other hand, it filter weights turn out to

be smaller, as rates increase. This is illustrated by the Fig 3.3 deeply.As it is seen, 3× 3

convolutions are applied to the image, accordingly, is fed into 1× 1, because central filter

weight is integral point, but also leading to not to caputure whole part of image. In this

respect, Global Average Pooling appears on last feature map, image level features(b) are

appended to 1× 1 convolution with batch normalization, ultimately, features are adapted

to the desire dimension. Fig 3.3 also is splitted into (a) and (b) part of process in which

(a) delivers sequential procedure of concatenated in the end.

3.1 DeepLabV3 Plus

Conceptually, DeepLabV3 Plus [7] is extension form of DeepLabV3 [5], then providing

state-of-art techniques, not only combining all improved techniques of former version, but

also providing additional refined version of Atrous Spatial Pyramid Pooling and Encoder-
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Figure 3.4: Concatenation of Spatial Pyramid Pooling and Encoder-Decoder with Atrous
Convolution

Decoder network [7], on which Encoder will steadily reduce feature map resolution, so

as to capture large contextual information, which will in turn be, gradually recovered by

decoder, to absorb object boundaries. In addition, Xception [9] network which is extreme

version of InceptionV3 module [22], comes up with depthwise separable convolution,

further applied to ASPP and encoder-decoder module in DeepLabV3 [5].

3.1.1 Encoder-Decoder part of Network with Atrous Convolu-

tion

Previous version of DeepLabV3 plus, basically concentrates to extract large contextual

information,, with multiple pooling operation and atrous convolution,Then, DeepLabV3

Plus introduces new technique such Encoder-Decoder network, on which encoder steadily

reduce resolution of feature map, to inherit larger contextual information, in turn, decoder

in contrast, operates gradually recovering that spatial dimension of feature map, to recon-

struct object boundaries. Mainly, encoder-decoder corporate with large-scale contextual

information, with which semantic information is encoded, simultaneously, atrous convo-

lution control feature resolution, then output of encoder passes into decoder, as shown by

the Fig 3.4.

Fig 3.5 present comprehensive idea of how encoder-decoder incorporates with
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Figure 3.5: Operational Procedure of Encoder-Decoder Network

atrous convolution. Principally, leaning back suggested encoder network, with atrous

convolution and image level features, from [5], output of encoder are primarily upsampled

by factor of 4, then concatenated with image level features, which is in turn, applied to

1×1 convolution, because image channels can be large, causing training to be complicated.

Recursively, 3× 3 is fed into coming output, and upsampled again with factor of 4.

3.1.2 Modified Aligned Xception

Although, Xception module [9] has gain well-defined performance, however, it is further

extended with not only by the name of Modified Align Xception, but also there are new

additionals such as all max pooling operations, replaced by depthwise separable convo-

lution [9] with striding, this will exceedingly improve ongoing performance, by achieving

feature maps via atrous separable convolution. In addition, batch normalization [14] and

Relu Activation are appended, amongst depthwise separable convolutions.However, entry

flow remained unchanged, due to not loss efficiency and rapid computation.
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Figure 3.6: Modified Align Xception
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3.2 Xception

It is already seen about Depthwise Separable Convolution [9] which in turn, plays integral

role in Xception module [9]. Xception module is extreme Inception, providing exceedingly

great performance and slightly better approach for different dataset. In Xception chap-

ter, There are multiple differences between Xception and InceptionV3 [22], in terms of

architecture construction. Another justification should be forgotten that Xception turns

out flatly different from Inception module, because of not increase capacity, but instead

efficiently usage of model parameters.

3.2.1 Inception

Conceptually, Inception module captures the same idea that Convolution follows, extract-

ing large semantic information with less parameters.However, there are possible variance

between them. It is the fact that Convolutions target is to learn filters with both, spa-

tial and channel dimensions, thus if considered just single kernel convolution, then it will

consider spatial and cross channel correlations. Whereas, in this case, Inception module

try to make process easier by putting all them together sequentially. Such consecutive

ordering should independently observe both cross-channel and spatial correlations. What

Inception does is represented by the Fig 3.7. From this figure, it is clear that Inception

concentrates primarily on cross-channel correlations via 1 × 1 convolution. Input is fed

into multiple small branches,utilizing not only 3× 3, but also average pooling layer, then

further put together correlations via 3× 3.

Apart from this, there is simplified version of Inception module, holds only 3×3

convolution, without average pooling, as Fig 3.8 displays.

This Inception module can be formed as large 1× 1 convolution is mapped into

segments of output channels, as a consequent, pursued by spatial convolutions.Fig 3.9

also express reference hypothesis. From this concept, some doubts appears such as how

efficiently and separately map cross and spatial channel correlation? In this respect,

Xception, [9] extreme Inception is proposed, taking advantage of 1 × 1, to map cross

channel correlation. In contrast to previous module, spatial correlations are independently
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Figure 3.7: InceptionV3

Figure 3.8: Simplified Inception Module
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Figure 3.9: Large Convolution form of Simplified Inception

mapped for individual outcome derived from cross correlation, these are all depicted in

the Fig 3.10

Regardless of some factors providing the similar assumptions between Extreme

Inception and Depthwise Separable Convolution, they hold some different concepts. Depth-

wise Separable Convolution is explained as the following: every channel of input under-

goes independently spatial convolution, consecutively, followed by pointwise convolution,

holding 1 × 1 rate, projects output channels by depthwise convolution, generating new

channel space. Depthwise Separable Convolution first focus on spatial convolution, then

followed by 1×1, wherease, Inception module consider 1×1 convolution at first. Secondly,

There are Relu non-linearity applied to Inception module, however, Depthwise Separable

Convolution has no non-linearity.

Fig 3.11 introduce depthwise separable convolution union where depthwise and

pointwise are explicitly formed. Moreover, Atrous benefits combination of Depthwise and

Pointwise Convolution, [9] respectively.
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Figure 3.10: Extreme Inception Architecture(Xception)

Figure 3.11: Depthwise Separable Convolution
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Figure 3.12: Xception Architecture

3.2.2 Xception Architecture

Xception module comes up with an idea of convolution neural network architecture leans

back depthwise separable convolution, thus spatial and cross channel correlations formed

on the feature map of convolution network, are separately conducted. Fig 3.12 opens

up regarding the fact that Xception [9] captures 36 layers and is combined with stack of

depthwise separable convolution with residual interaction. All have strong bond amongst

linear stack of residual connections, but not first and last modules obeys the rule.Fig 3.13

also demonstrates modifications on each individual flow of Xception.
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Figure 3.13: Xception Network with each flow, entry, middle, and exit





Chapter 4

Experimental Results with

DeeplabV3 Plus

Throughout the all former version of DeepLabV3 Plus, we inherit deep practical and

hypothetical knowledge over backbone, called Modified Aliged Xception that we consid-

ered as the optimal module with its reference advantages which is extension of Inception

module, as well as Depthwise Separable Convolution together with Atrous Convolution,

ultimately, DeepLabV3 Plus [9], which gather all state-of-art methods together, is repre-

sented in Lane Marking Semantic Segmentation task.In addition, we will discuss all these

about, in the following sections, in more details, in terms of practical point of view.

1. Tranining Apolloscape Dataset with 38 classes, together with corresponding classes

mentioned, as well as loss function called Stardard Cross - Entropy Loss

2. Tranining Apolloscape Dataset with 38 classes, together with reference class names

and Weighted-Cross-Entropy Loss

3. Training with just two classes such as Lane Marking and Non-Lane Marking

4. Replacement of Random Scale Crop function, with Random Centre Crop function

task.

32
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4.1 Experimental Analysis

Primarily, we established custom-dataset for Apolloscape dataset which introduces 5000

images in total, consecutively, they are divided into train and validation set, 3980 and

1020, respectively. In addition, We make huge attempt to improve localization over

boundary of existed Lane Marks on the road, as well as to reduce loss functions associated

with corresponding labels of Roads. Atrous Spatial Pyramid Pooling has been proposed

with parallel atrous convoluton layers, conceptually proposing inplanes = 2048, moreover

output stride = 16, and 8 based on concept of Multi-Grid Union provide dilation that

varies two times than each other such [1, 6, 12, 18] and [2, 12, 24, 36], respectively. [2],

[21]

In decoder part of network, by considering module of ’Xception’, we tested low-

level-inplanes with 128, furthermore, fitting layers sequentially such as Convolution, Batc-

normalization, Relu Activation and ultimately, we implement sequentual layers in at the

last layer of Convolution, such as Conv2d, Batchnorm, Relu as well as Drop out regular-

ization term. We further testes Modified Align Xception,comprising twenty blocks as well

as output stride with 8 and 16 values, in order to make values of block slightly different

from one to another, as represented in the Table 4.1:

Parametrization output-stride = 8 output-stride = 16

entry-block3-stride 1 2
middle-block-dilation 2 1
exit-block-dilations (2, 4) (1, 2)

Table 4.1: Modified-Aligned-Xception Strides Values

Applying to Apolloscape dataset, as well as first chapter that describes data-

preprocessing step in depths, comprising 38 various classes and corresponding colors.

Those well-formatted ground-truth images are fitted into network.

4.1.1 Standard Cross-Entropy Loss on Semantic Segmentation

While training network with various 38 classes, there are possible challenges that has great

impact on training set, caused by background and 37 reasonable classes such that they
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Figure 4.1: Intersection of Over Union for each class

are update with corresponding weights, instead background pixels exceeds that surrounds

whole part of images, exceed reasonable pixels which leads to lack of accuracy defined for

each class, global accuracy as well as IoU for consecutive classes. By visualizing results

of class accuracy and IoU while training with Standard Cross-Entropy Loss, we represent

graphical representation of each class accuracy and corresponding IoU, as illustrated on

the Fig 4.1: As we have seen from table of 4.1, reasonable classes suffers from leakage

of weighted loss on which network has great difficulties to manage proper accuracy for

each class, in this case, Intersection Over union which comes up with notation of ratio

between number of number of clearly classified pixels by total number of pixels over the

image. Accordingly, we depicted Intersection Over Union and Individual Class accuracy,

with Fig 4.1 and Fig 4.2, accordingly.

Similarly, Global Accuracy, as seen by the Fig 4.3, represents undesirable effect

over the all classes. In addition, Mean Intersection over Union obtained via such a par-

ticular technique, is considered as well in the Fig 4.4. Ultimately, we provide individual

Class Accuracy determined for each classes, through Standard Cross-Entropy Loss in the

Fig 4.5.

As a consequence, we want to represent input - RGB images, and Ground-Truth

images, on training set, and together with predicted image on validation set, as outlined



4.1. Experimental Analysis 35

Figure 4.2: Each class Accuracy

Figure 4.3: Representation of Global Accuracy with Standard-Cross-Entropy Loss
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Figure 4.4: mIoU gained corresponding individual class accuracy

Figure 4.5: Representation of Individual Class Accuracy
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Figure 4.6: RGB(a) Figure 4.7: RGB(b) Figure 4.8: RGB(c)

Figure 4.9: GT(a) Figure 4.10: GT(b) Figure 4.11: GT(c)

amongst The Figures, from 4.6 to 4.14.

Network predicted image as seen on the Fig 4.12. thorough the 50 epochs, as

following the Fig 4.13 and Fig 4.14, It is important to note that We also used Focal loss [23]

which is an improvement to the standard cross-entropy criterion, it is also illustrated with

an Eq. 4.1. This is done by changing its shape such that the loss assigned to well-classified

examples is down-weighted. Ultimately, this ensures that there is no class imbalance. In

this loss function, the cross-entropy loss is scaled with the scaling factors decaying at zero

as the confidence in the correct classes increases. The scaling factor automatically down

weights the contribution of easy examples at training time and focuses on the hard ones.

Figure 4.12: Prediction(a) Figure 4.13: Prediction(b) Figure 4.14: Prediction(c)
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Figure 4.15: Loss value during training

FL(pt) = −(1− pt)γ log(pt) (4.1)

The Eq. 4.2 is the Cross Entropy Loss for binary classification. y ∈ 1 which

is the ground-truth class and p ∈ [0, 1] which is the model’s estimated probability. It is

straightforward to extend it to multi-class case. For notation convenience, pt is defined

and CE is rewritten as the following Eq. of 4.3:

CE(p, y) =


− log(p), if y = 1

− log(1− p), otherwise
(4.2)

pt =


p, if y = 1

1− p, otherwise
(4.3)

CE(p, y) = CE(p)t) = − log(pt) (4.4)

As a consequent, table 4.2 clearly dedicates valid obtained Intersection over

Union and Class Accuracy values for classes, and dash lines allure to existence of missing

classes on test set. meanwhile, it should not be forgotten to introduce Global accuracy,

Mean Intersection Over Union as well as Mean of Class Accuracy achieved during vali-

dation of entire dataset, on the table 4.3. Whole training is conducted withing just 50
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epochs, seen from the Fig 4.15.

Classes IoU Class Accuracy

Dividing 0.99 0.10
Middle Parallel line 0.50 0.60

Continuous Line 0.20 0.30
Left Dashline 0.29 0.33

Safety line 0.01 0.01
Chevron - -

Fork Arrow - -
Turn-Left Line 0.37 0.39

DoubleTurn 0.51 0.77
Continuous Line 0 0

Circle Turn - -
Yield Sign without Words 0 0

Three Merged Line - -
Double Turn - -

Attention - -
No Parking - -

Parking 0.10 0.10
Curve Sign - -

Table 4.2: Standard-Cross-Entropy Loss with Correctly Classified pixels(Classes with
NaN values, are not mentioned in the table)

Global Accuracy mIoU Mean of Class Accuracy

0.98 0.17 0.20

Table 4.3: Standard-Cross-Entropy Loss with Correctly Classified pixels

4.1.2 Weighted Cross Entropy Loss on Lane Marking Semantic

Segmentation

Previous evaluation on training and validation set, are not desirable, due to vast amount

of background pixels appearing more on the whole part of image, rather than reasonable

pixels. We leveraged focal loss and Standard Cross-Entropy-Loss which was unseccessful

on the multi-label tasks of semantic segmentation. In this respect, we eliminate ongoing

challenge by implementation of Weighted-Cross-Entropy-With-Logits is the weighted vari-

ant of Sigmoid-Cross-Entropy-With-Logits. Basically, weighted-cross-entropy-with-logits
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[] []

Figure 4.16: Standard (left) and Weighted Cross Entropy(right) Mean of Class Accuracy
Values

[] []

Figure 4.17: Binary Class(left) and Weighted Cross Entropy(right) Class Accuracy Values

weighting needs to happen within the computation of the loss. This is what weighted-

cross-entropy-with-logits does, by weighting one term of the cross-entropy over the other.

In Other Word, it weights reasonable class pixels, compared to background pixel on the

imbalance dataset. Proposed method dramatically improved class accuracy over the rea-

sonable pixels, on the cost of reduction, performed on the focus of background pixels

as illustrated by obtained result during the validation set, these all accomplished out-

comes are introduced by the comparison with two different loss functions, Standard and

Weighted Cross Entropy Loss, on behalf of Mean of Class Accuracy,with Fig 4.16.

In order to observe drastic improvement related to Class Accuracy, conducted

by two different methods, tensorboard graphic can be seen as the bar chart, in the Fig

4.17.

On the other hand, this success can not hold for the Global-Accuracy of Classes

as well as Mean Intersection of Over the Union, thus, regardless of some dramatic fluc-

tuations, seen on the achieved Global-Accuracy and mIoU, Global-Accuracy does not

indicate any modification, yet mIoU show slight improvement thorough the validation
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[] []

Figure 4.18: Standard (left) and Weighted Cross Entropy(right) Global Class Accuracy

[] []

Figure 4.19: Standard (left) and Weighted Cross Entropy(right) Mean Intersection over
Union

set, respectively, with advent of Weighted-Cross-Entropy loss method. Fig 4.18 denotes

constant experimental results for both methods, in Global Accuracy. Following Fig 4.19

shows mIoU for Standard and Weighted Cross Entropy Loss.

Fundamentally, a weight vector w ∈ Rk is determined with elements wk > 0

defined over the range of class labels k ∈ 1, 2, ..., K .Then, class-weighted cross-entropy

[19] which plays integral role in unbalanced dataset, is mathematically introduced, by the

Eq. 4.5

Ln(W ) = −wcn log ycn(xn,W ) (4.5)

However, Intersection of Union obtained in both methods, appears to be proven slight

improvement or reduction in some classes, seen by bar Fig 4.20.

we visualized achieved results on tensorboard together with corresponding RGB,

Ground-Truth as well as Predicted Images, as the following cases, but loss value modifi-

cation is also presented in the Fig 4.21. There are two examples here to depict, from Fig

4.22 to 4.30 with corresponding RGB, Ground-Truth and Predicted Images are denoted
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Figure 4.20: Standard (left) and Weighted Cross Entropy(right) IoU Values

Figure 4.21: Loss value during training

as first example, then second example is detailed by RGB representative Figures 4.31,

4.32, 4.33, with their analogous achieved images by the Fig 4.37, 4.38 and 4.39.

Table 4.4 perform correctly classified pixels around the predicted image, trained

with Weighted-Cross Entropy Loss

Figure 4.22: RGB(a) Figure 4.23: RGB(b) Figure 4.24: RGB(c)
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Figure 4.25: GT(a) Figure 4.26: GT(b) Figure 4.27: GT(c)

Figure 4.28: RGB(a) Figure 4.29: RGB(b) Figure 4.30: RGB(c)

Figure 4.31: RGB(a) Figure 4.32: RGB(b) Figure 4.33: RGB(c)

Figure 4.34: Prediction(a) Figure 4.35: Prediction(b) Figure 4.36: Prediction(c)
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Figure 4.37: Prediction(a) Figure 4.38: Prediction(b) Figure 4.39: Prediction(c)

Class Id IoU Class Accuracy

Dividing 0.96 0.97
Middle Parallel line 0.50 0.80

Continuous Line 0.21 0.55
Left Dashline 0.35 0.81

Safety line 0.31 0.52
Chevron 0 0

Fork Arrow - -
Turn-Left Line 0.22 0.75

DoubleTurn 0.42 0.93
Continuous Line 0.11 0.42

Circle Turn 0.19 0.28
Yield Sign without Words 0.10 0.40

Three Merged Lines 0.06 0.28
Double Turn 0.05 0.07

Attention - -
No Parking - -

Parking 0.05 0.11
Curve Sign - -

Table 4.4: Weighted-Cross-Entropy Loss with Correctly Classified pixels. (Classes with
NaN values, are not mentioned in the table)

4.1.3 Composition of 38 classes into Binary Classes

As we have encountered with various challenges, regardless of some dramatic refinements,

by deploying new techniques such as Weighted Cross Entropy Loss[19], then we decided to

merge 38 classes into 2 classes, denoted ”Lane-Marking” and ”Non-Lane Marking”. With

this idea, solely, accuracy defined for each class is exponentially increased. It is explicitly

seen that this is unique growth that is not experienced in the previous techniques. What

we comprehensively experienced is that accuracy of each class is exceedingly high for
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Figure 4.40: Binary Class(left) and Weighted Cross Entropy(right) Intersection Over
Union

[] []

Figure 4.41: Binary Class(left) and Weighted Cross Entropy(right) Class Accuracy

lane marking task, whereas, Intersection of Union illustrates low performance in precision

seen with Fig 4.40. Class Accuracy Values experienced via training with two classes,

are more or less close to results, seen with Weighted-Cross Entropy Loss, also explicitly

demonstrated by the Fig 4.41

Another justification is noticeable that Mean of Class Accuracy in Binary classi-

fication method, holds large values, in comparison with Mean of Class Accuracy obtained

with Weighted Cross Entropy Loss, on the Fig 4.42.There achievements further provide

total loss validating the entire dataset on Fig 4.43.

On the other hand, experimental analysis on images are produced from Fig 4.44

to 4.52. In addition, Intersection over Union and Class accuracy both with Binary class

training, are obtained as mentioned in the table 4.5. Despite the fact that, results are

high, however, qualitative results are not satisfactory for depicted by the Fig 4.40 All

in All, network appears to be confused and finds misleading training, with a proposed

method of composition of 38 classes into 2 classes.
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Figure 4.42: Binary Class(left) and Weighted Cross Entropy(right) Mean of Class Accu-
racy

Figure 4.43: Loss value during training

Figure 4.44: RGB(a) Figure 4.45: RGB(b) Figure 4.46: RGB(c)

Figure 4.47: GT(a) Figure 4.48: GT(b) Figure 4.49: GT(c)
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Figure 4.50: Prediction(a) Figure 4.51: Prediction(b) Figure 4.52: Prediction(c)

Class Id IoU Class Accuracy

Lane Marking 0.93 0.93
Non-Lane Marking 0.93 0.92

Table 4.5: Binary Class experimental results

4.1.4 Integration of Centered Crops method with Weighted Cross

As it is seen on the previous chapters, we make huge attempts to refine obtained results

via various kind of techniques, however, they solely opens up regarding modification on

loss function and composition of classes into two classes. In this chapter, we will discuss

about Random Rescale crop which crops input images, random, in other word, with

different scales. With this idea, it is mostly likely to loose reasonable part of image which

instead could effectively be trained and test, but Ramdom Scale function unable to train

accurately, as a consequence, to obtain fine-tuned semantic segmentation. In this respect,

we eliminate to randomly scale input images, instead, propose more effective function

Fixed Crop in which we we want network to train only reasonable part of images, therefore,

defining left and right offset, as well as new height and width, will be crucial set of Fixed

Crop function, conceptually will be appended to transform function of custom dataset.

Ultimately, we create new built-in function of Pytorch, called Random Crop. In addition,

it is interesting to note that metrices with gathered results are similar to the considered

fundamental approach of Weighted Cross Entropy Loss, because we integrate technique

of utilizing Center Crop method, with Weighted Cross Entropy loss, once Weighted-CE

generates optimal performance, amongst the all methods considered so far, in metrices

at the time of validating dataset, as well as, we enlarge total epoch, aiming at training
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Figure 4.53: Binary Class(left) and Weighted Cross Entropy(right) Intersection Over
Union

[] []

Figure 4.54: Center Crop method (left) and Weighted Cross Entropy(right) Intersection
Over Union

network longer, through 120 epochs (Fig 4.61), to allow model to converge, in contrast

to weighted cross entropy loss, which was 2 times smaller in iterations. It is paramount

to notify different Intersection Over Union accomplished with former methods such as

Binary Class, Weighted Cross Entropy Loss and Center Crop method, as demonstrated

between Fig 4.53 and Fig 5.54, respectively.

As graphical representations illustrate clear idea that lowest performances on

class accuracy, concern to Binary Class method by the Fig 4.55, in contrast, Weighted

Cross Entropy loss (right) drastically refines class accuracy through the majority of classes,

similarly, Center Crop method trained with Weighted Cross Entropy Loss delivers almost

identical value for class accuracy by the Fig 4.56(left). Ultimately, Standard Cross En-

tropy Loss appears to be unsuccessful in the presence of unbalance dataset, regardless of

dramatic growth in some classes (Fig 4.56(right)). These all can be seen by bar chart as

well, as the following Figures.

Above Intersection over Union and Class Accuracy come up with interesting
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Figure 4.55: Binary Class(left) and Weighted Cross Entropy(right) Class Accuracy
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Figure 4.56: Center Crop method(left) and Standard Cross Entropy Loss(right) Class
Accuracy

results when observed via bar chart, various considered method, from the Fig 4.57 and

Fig 4.58, accordingly.

On the other hand, Global accuracy and Mean of Class Accuracy should not be

forgotten to mention, since they have also slight modification in representation, in the

Fig 4.59, and 4.60. Training and Validating network in this method as already mentioned

above, will take 120 iterations (Fig 4.75).

Center Crop method solely concentrates on the reasonable part of images, which

[] []

Figure 4.57: Binary Class(left) and Weighted Cross Entropy(right) IoU Values
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Figure 4.58: Center Crop method(left) and Standard Cross Entropy Loss(right) IoU values

Figure 4.59: Global Accuracy

Figure 4.60: Mean of Class Accuracy
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Figure 4.61: Total Loss Epoch

Figure 4.62: RGB(a) Figure 4.63: RGB(b) Figure 4.64: RGB(c)

are all in road signs in this case, then entire discussion relies on the achieve predicted

images by generating input images to network, to train, as it is obvious starting from Fig

4.62 to Fig 4.70. Predicted images are almost identical to the ground-truth images.

Figure 4.65: GT(a) Figure 4.66: GT(b) Figure 4.67: GT(c)



Figure 4.68: Prediction(a) Figure 4.69: Prediction(b) Figure 4.70: Prediction(c)

Classes IoU Class Accuracy

Dividing 0.97 0.97
Middle Parallel line 0.51 0.82

Continuous Line 0.21 0.60
Left Dashline 0.46 0.79

Safety line 0.33 0.68
Chevron - -

Fork Arrow - -
Turn-Left Line 0.36 0.85

DoubleTurn 0.43 0.95
Continuous Line 0.05 0.29

Circle Turn 0.16 0.21
Yield Sign without Words 0.10 0.38

Three Merged Lines 0.04 0.23
Double Turn 0 0

Attention - -
No Parking - -

Parking 0.15 0.34
Curve Sign - -

Table 4.6: Center Crop and Weighted Cross Entropy Loss with Correctly Classified pix-
els(Classes with NaN values, are not mentioned in the table)
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4.1.5 Conclusion

We clearly represented all proposed techniques on the task of Lane Marking Semantic

Segmentation by Deep Convolution Neural Network. Regardless of each method huge

experimental attempts to assist network to produce clear and accurate prediction with

38 labels, only utilization of Weighted Cross Entropy Loss in lane marking semantic

segmentation has great impact on providing high class accuracy. We all take into account

methods with their details continuously modified metrices graphically, thus, finally it

would be reasonable to introduce mean of class accuracy, global accuracy, as well as IoU

by table 4.7

Methods mIoU Mean of Class Accuracy Global Accuracy

Standard Cross Entropy Loss 0.17 0.20 0.98
Weighter Cross Entropy Loss 0.18 0.38 0.96

Composition of 38 classes into Binary 0.61 0.93 0.93
Center Crop and Weighted Cross Entropy 0.19 0.40 0.97

Table 4.7: Mean value of Class Accuracy, IoU and Global Accuracy on different methods
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