
ALMA MATER STUDIORUM - UNIVERSITY OF BOLOGNA

SCHOOL OF ENGINEERING AND ARCHITECTURE

DEPARTMENT OF ELECTRICAL, ELECTRONIC
AND INFORMATION ENGINEERING

"GUGLIELMO MARCONI" - DEI

Master’s Degree
in

AUTOMATION ENGINEERING

DEVELOPMENT OF AN INDUSTRIAL LINE
PARAMETRIC EDITOR IN VIRTUAL REALITY

VIA AUTODESK VRED

Master Thesis
in

MECHATRONICS SYSTEMS MODELING AND CONTROL M

Candidate: Supervisor:
Gian Marco Selleri Prof. Ing. Alessandro Macchelli

Advisors:
Ing. Davide Barchi

Sig. Gildo Bosi
Ing. Edoardo Reggiani

Academic Year 2019/20
Session I

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

2 Chapter 0

Abstract

This thesis describes the development of a parametric virtual reality editor for an indus-
trial line for quality inspection, packaging and palletizing of ceramic tiles.

This project has been developed entirely within the R&D laboratory of Sacmi S.C.,
and includes a complete study of the implementation of an application of this kind, from
the initial software and hardware selection phase, through the design of algorithms and
code programming - in Python language - to the creation of interactive tools and widgets
specifically designed for the exploration of the environment, interaction with the scene
and automatic production of outputs, with the aim of framing this editor within the pro-
duction process of automatic lines for the realization of ceramic materials.

The editor is defined as "parametric" due to the fact that it requires the user to provide
as input a series of values necessary for the configuration of the lines - up to a maximum
of three, each with a set of independent parameters - and then it automatically proceeds to
compute the geometries and animate the scene, allowing the user to enter in an immersive
and realistic context, in order to make a choice among the proposed lines.

Communication protocols have also been developed between different scenes for the
transfer of data from one to the other, and for the transfer of the user between the different
environments through commands given directly in virtual reality.
Subsequently, a phase aimed at optimizing the simulation was addressed, in order to in-
crease its stability and decrease the possible stress induced during the presence in VR.
Finally, an early study was carried out on multi-user experience - the presence of several
users in the same scene - with the aim of testing possible developments in the field of
trade fairs and employee training.

3

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

4 Chapter 0

Contents

Introduction 11

1 Virtual Reality - State Of The Art Hardware: Headset Gear 13
1.1 HTC Vive Pro . 13
1.2 VRgineers XTAL . 16
1.3 HTC Vive Cosmos . 18

2 Virtual Reality - Software Choice 21
2.1 Unity . 21
2.2 Autodesk Vred . 22

3 Single Line Editor 25
3.1 EkoSort Building Alhorithm . 25

3.1.1 EkoSort - Automatic Stacker . 25
3.1.2 EkoSort Editor . 26

3.1.2.1 Preliminary Steps . 26
3.1.2.2 Library Realization 26
3.1.2.3 Algorithm I – “Naïve” Solution 28
3.1.2.4 Algorithm II – “Fast” Solution 32
3.1.2.5 Compenetration Recovery 34
3.1.2.6 Final Solution . 36

3.2 ExtraPack Building Algorithm . 37
3.2.1 ExtraPack - Palletizer . 37
3.2.2 ExtraPack Editor . 37

3.2.2.1 Library Realization 37
3.2.2.2 Editor Algorithm . 38

3.3 Other Machines in the Line . 41
3.3.1 Flawmaster - Tile Inspector System 41
3.3.2 Advancheck - Tile Inspector System 42
3.3.3 EkoWrap - Packager . 42
3.3.4 Transport and Package Handling 43

3.4 Animation . 44
3.5 G.U.I. Implementation . 49

3.5.1 Qt And PySide2 . 49
3.5.2 G.U.I. With Qt Designer . 50

3.5.2.1 Layout Choice . 50
3.5.2.2 Signal Management 52
3.5.2.3 Code Implementation 53

3.6 Final Line Editor . 58

5

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

4 Three Lines Editor 61
4.1 Editor Evolution . 61

4.1.1 Algorithm Adjustment . 61
4.1.2 Control Room . 62

4.1.2.1 Version I - "Compact" Solution 62
4.1.2.2 Version II - "Split" Solution 64

4.2 VR Tools Implementation . 69
4.2.1 Vred Variant Sets . 69
4.2.2 Widget Tools . 70

4.2.2.1 Building Widgets With PySide2 70
4.2.2.2 Editor Parameters Choice 74
4.2.2.3 Parameters Display 92
4.2.2.4 Output Creation . 93

4.2.3 Immersive Tools . 98
4.3 Model Optimization . 106

4.3.1 Performed Steps . 106
4.3.2 Final Results . 108

Conclusions 109

Appendices 115

A EkoSort Building Code 115

B ExtraPack Building Code 119

C Animation Code 127

D Final Editor Code: Main Section 151

List Of References 155

6 Chapter 0 Contents

List of Tables

1.1 Vive Pro - Headset specs . 14
1.2 Vive Pro - Controller specs . 14
1.3 Vive Pro - Tracked area requirements 14
1.4 Vive Pro - Hardware requirements . 15
1.5 VRgineers XTAL - Headset specs . 17
1.6 VRgineers XTAL - Software specs . 17
1.7 Vive Cosmos - Headset specs . 19
1.8 Vive Cosmos - Controller specs . 19
1.9 Vive Cosmos - Tracked area requirements 19
1.10 Vive Cosmos - Hardware requirements 19

3.1 EkoSort: Parameters . 28
3.2 Parameters Boundaries: Configuration dependency 52
3.3 Python code: GUI implementation . 55
3.4 Python code: Widget functions . 57

4.1 Batch file: Open Editor Scenes . 66
4.2 Python code: Control Room - Send Data Lists 68
4.3 Variant Sets module - Context menu options 70
4.4 Variant Sets module - Tabs . 71
4.5 Python code: Open parameters widget (1) 76
4.6 Python code: Open parameters widget (2) 77
4.7 Python code: Update lineEdit . 78
4.8 Python code: Update expected n° of stations 80
4.9 Python code: Show configuration choice elements 81
4.10 Python code: Round parameter value 82
4.11 Python code: Enable parameter editing 83
4.12 Python code: Type a character . 84
4.13 Python code: Delete a character . 85
4.14 Python code: Confirm value . 86
4.15 Python code: Next line widget (updating lists) 87
4.16 Python code: Next line widget (preparing widget) 88
4.17 Python code: Back to selection of number of lines 89
4.18 Python code: Back to previous line . 91
4.19 Python code: Open first line description 92
4.20 Python code: Type a character . 95
4.21 Python code: Create Excel file (1) . 96
4.22 Python code: Create Excel file (2) . 97
4.23 Python code: Switch between scenes 99

7

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

4.24 Python code: Toggle annotations . 100
4.25 Python code: Hide all annotations . 100
4.26 Python code: Create hidden VR menus 101
4.27 Python code: Toggle calculator tool . 102
4.28 Collaboration: Connection Requirements 104
4.29 Collaboration: Hardware Requirements 105
4.30 Collaboration: Software Requirements 105

8 Chapter 0 List of Tables

List of Figures

3.1 EkoSort Machine (courtesy of SACMI Imola S.C.) 26
3.2 Automotive Rendering Tests . 26
3.3 EkoSort’s scenegraph in Vreds . 27
3.4 EkoSort Parts Library . 28
3.5 Compenetration warnings . 35
3.6 Examples of possible EkoSort building 36
3.7 Extrapack Parts Library . 38
3.8 Examples of possible EkoSort building 39
3.9 Flawmaster Machine (courtesy of SACMI Imola S.C.) 42
3.10 EkoWrap Machine (courtesy of SACMI Imola S.C.) 43
3.12 Curves for Translation, Rotation and Visibility values of the stack of tiles

on the first station of the EkoSort . 45
3.13 Example of the tree organization of geometries in Vred 45
3.14 Qt Designer page: main widget (editor parameters) - Widget Editing . . . 50
3.15 Qt Designer page: main widget (editor parameters) - Signals/Slots Editing 53
3.16 Examples of signal connections . 54
3.17 Final appearance of the widget . 58
3.18 Final render of the line . 59

4.1 Control room rendering . 63
4.2 Control room rendering (secondary scene) 64
4.3 Balcony rendering (main scene) . 64
4.4 Editor’s Variant Sets module . 69
4.5 QPushButton . 72
4.6 QLineEdit . 72
4.7 QRadioButton . 73
4.8 QProgressBar . 73
4.9 Editor parameters widget . 74
4.10 Parameters display widget . 92
4.11 Output creation widget . 93
4.12 Excel output example . 94
4.13 VR interactive menu . 98
4.14 html Calculator . 101
4.15 Material selectors . 103
4.16 Virtual Reality User Avatars . 104

9

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

10 Chapter 0 List of Figures

Introduction

In recent years, the so-called "immersive reality" has become increasingly popular in ev-
eryday life. Not only with respect to the video game and entertainment sector, but also
and above all in the industrial and commercial field. Just think, for example, of fair simu-
lations, 3D visualizations to create preventive configurations, or those extremely powerful
tools that are remote assistance or training of personnel in simulation. And these are just
some of the many applications that can be used as examples.
In cases like this one can really say that the only limit is the imagination and skill of the
developers (and only secondarily the hardware, which is developing extremely quickly in
order to follow the needs of the market).

The aim of this thesis is to investigate the potential and possible developments that
these developing technologies can offer in the context of a company workflow in the field
of ceramic production lines, of which Sacmi is a global leader.

In order to provide a context for this, first of all a research was carried out on what
is the current state of the art with regard to the headsets available on the market, in or-
der to make a targeted purchase according to the needs of the project being presented here.

But precisely, what is the project on which this thesis is focused?
As mentioned earlier, before going on to definitively define the direction of this thesis, a
preliminary question was posed: in which part of the company workflow (so in this case
the realization of a production line for the production of ceramic tiles) can the virtual re-
ality be inserted, enhancing the established technologies?

There are two main and most immediate answers: at the beginning and at the end of
the production process. That is to say, in the initial configuration and final testing phases,
both for a mere static visualization of the final line, and for an effective immersive check
of the simulations carried out in the design phase.
The main focus of this thesis was therefore addressed to the first point of this list: the idea
was to exploit the immersion provided by virtual reality, and the strong and immediate
perception of a fictional scene that this instrument can provide, to create a configurator
for a line of sorting of ceramic tiles, through the software Autodesk Vred, already widely
used in applications of immersive reality.

The real power of this instrument lies in being able to make parametric models of
machines that, in the original files supplied by the technical office, would be fixed and
unchangeable. Instead, using the chosen program, which allows to modify and manage
the geometries for a large number of file types, these models can be automatically adapted
(through a script) to those that are the needs of the customer, quickly and effectively, and

11

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

then assembled in a line, and finally be displayed in a realistic and lifelike scene, all in a
matter of minutes.

Now, in what could be defined as an ideal world (at least as far as industry is con-
cerned), each production phase should be able to be interfaced in an almost immediate
and automatic way with those immediately preceding and following, in such a way as to
reduce to a minimum the problems of interfacing between different hardware and soft-
ware, but also between different people and offices or departments (always referring to
a business context), up to that almost utopian concept that could be summed up in the
phrase "data must be entered only once"; that is to say: from the initial configuration it
must be possible to obtain all the data useful for the following phases, without them being
re-entered, over and over again.

Therefore, with this premise, the practical contribution of this application concerning
the line configurator - beyond the immersive representation offered to a potential cus-
tomer - lies in the creation of geometries that already reflect the final requirements, and
therefore can be exported and used (even as a simple reference) in the subsequent stages
of design, bypassing the ex novo creation of these models.

But now, without further ado, let’s dive into the world of virtual reality.

12 Chapter 0 List of Figures

Chapter 1

Virtual Reality - State Of The Art
Hardware: Headset Gear

For an initial development of the Virtual Reality application, a cooperation was initially
established with Protesa, a subsidiary of the Sacmi group, which provided its knowledge
and experience in the field, both for the software and hardware parts.

1.1 HTC Vive Pro
For the hardware part, Protesa makes use of the VIVE Pro headset. It has been designed
to optimize VR experience, starting from the study of comfortable ergonomics for the
user [17]: it has a simple structure, in which the weight of the device is distributed in
order to achieve an optimal center of gravity, allowing him/her not to strain his/her neck.
This can be useful especially for long sessions in sales environment: the client can use
our application for long periods of time without feeling uncomfortable.

Moreover, even if the standard version of this headset involves the use of cables, it is
already predisposed for a wireless solution using an adapter (always by VIVE), already
used in Protesa laboratory. An interesting development for this case is the predisposition
for multiuser virtual reality.

But the main advantage of the VIVE Pro is the optimal resolution that it can provide
with dual-AMOLED displays with a combined resolution of 2880 x 1600 pixels (combin-
ing the two lens) and 615 PPI, allowing the user to achieve full immersion in the digital
environment created by our application. Moreover, it is equipped with a Pro Eye VR
system, designed to improve simulations and processing with a precision eye-tracking
technology, that enables the developer to see what the user is seeing in session, and act
accordingly. This technology can lead to a big improvement in training and sales scenar-
ios, allowing deeper data analysis. Moreover, in this way input and navigation are greatly
simplified and kept more intuitive, implementing gaze-oriented menu navigation, and en-
abling more natural movements and gesture control in virtual reality.
Another innovation of the VIVE Pro visor is the “Foveated Rendering”: a technique that
allows intelligent allocation of GPU workload, improving visualization quality and per-
formance while optimizing graphic fidelity in users’ line of sight. Basically, according to
this technique, the field of view is divided into three main areas: the Foveal area (in direct

13

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

line of sight in front of the pupil, around the focal point) in which the visor gives the
highest resolution, then the Blend and the Peripheral areas, with mid and low resolution,
respectively, as they pull away from the main one.

Specifications are shown in tables 1.1, 1.2, 1.3 and 1.4.

Table 1.1: Vive Pro - Headset specs

Screen: Dual AMOLED 3.5" diagonal
Resolution: 1440 x 1600 pixels per eye (2880 x 1600 pixels combined)

Refresh Rate: 90 Hz

Field of View: 110 degrees

Audio: • Hi-Res certificate headset
• Hi-Res certificate headphone (removable)
• High impedance headphone support

Input: Integrated microphones

Connections: USB-C 3.0, DP 1.2, Bluetooth

Sensors: SteamVR Tracking, G-sensor, gyroscope, proximity, IPD sensor

Ergonomics: • Eye relief with lens distance adjustment
• Adjustable IPD
• Adjustable headphone
• Adjustable headstrap

Table 1.2: Vive Pro - Controller specs

Sensors: SteamVR Tracking 2.0
Input: Multifunction trackpad, Grip buttons, Dual-stage trigger, System but-

ton, Menu button
Connections: Micro-USB charging port

Table 1.3: Vive Pro - Tracked area requirements

Standing / Seated: No min. space requirements
Room-scale: A minimum play area of 6’6” x 4’11” is required, while the max-

imum size is 22’11” x 22’11”

14 Chapter 1 1.1. HTC Vive Pro

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

Table 1.4: Vive Pro - Hardware requirements

Processor: Intel® Core™ i5-4590 or AMD FX™ 8350 equivalent or better
Graphics: NVIDIAl® GeForce® GTX 970 or AMD Radeon™ R9 290

equivalent or better
Memory: 4 GB RAM or more

Video out: DisplayPort 1.2 or newer
USB Ports: 1x USB 3.0 or newer

Operating system: Windows® 10

Chapter 1 1.1. HTC Vive Pro 15

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

1.2 VRgineers XTAL
A direct competitor in the field of virtual reality visors for professional engineering ap-
plications is the VRgineers XTAL visor, which is used to develop applications regard-
ing virtual design evaluation, virtual prototyping, surgeon and employee training, virtual
product configuration [18].

Its main advantage is given by the really high resolution that it can achieve, since this
visor can render 5k images, thanks to high-density OLED displays installed together with
custom-built lenses.

Like the VIVE Pro, the XTAL presents an easy-to-adjust ergonomics, with improved
comfort due to the artificial leather face cushion. Moreover, it is designed for usage
with eyeglasses, with an advanced adjustable focus allowing compensation for dioptres.
Another interesting feature is Autoeye, an automatic lens setting, based on the user’s
interpupillary distance (IPD) using integrated eye cameras, which adjust the lenses for
optimal image quality.
All these features are useful in a case like ours, where the user is changed frequently.

In addition, it is already embedded a leap motion hand-tracking sensor, that allows
users to interact with a VR scene naturally, using their own hands instead of controllers
with great stability and reliability, including finger fidelity.

An additional advantage for our application is the direct built-in integration with the
software Vred (already used in Sacmi’s Innovation Lab).

Specifications are shown in tables 1.5 and 1.6.

16 Chapter 1 1.2. VRgineers XTAL

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

Table 1.5: VRgineers XTAL - Headset specs

Screen: Dual OLED with low latency, low persistence, fast color switching,
no blurring with fast movement

Resolution: 5120 x 1440 (2xQuad HD, i.e. 2560 x 1440 per eye)

Refresh Rate: 70 Hz

Field of View: Up to 180 degrees (based on focus setting)

Audio: Built-in soundcard with audio jack

Input: Integrated microphone with voice commands recognition system (ac-
cessible via Windows native drivers)

Optics: Patented custom-designed aspherical non-Fresnel VR lenses

Ergonomics: Advanced hard head strap with artificial leather cushioning
Replaceable face cushions made of artificial leather for high hygiene
level

Dimensions: • Height: 299 mm
•Width: 123 mm
• Depth: 140 mm

Weight: • Headset: 770 g (without head strap)
• Head mount incl. balance counterweight: 440 g

Table 1.6: VRgineers XTAL - Software specs

Software Included: • Headset Configuration Utility
• Unreal Engine SDK
• Unity 3D SDK
• XTAL C++ Libraries for proprietary render engine
• Integration (optional)

Software Compatibility: • SteamVR (OpenVR) support
• Autodesk VRED
• Dassault Systèmes solutions
• ESI IC.IDO
• OS Windows 7/10

Chapter 1 1.2. VRgineers XTAL 17

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

1.3 HTC Vive Cosmos
The newest proposal in the field of virtual reality visors by Htc is the Vive Cosmos, first
distributed on 3rd October 2019 [16]. It is characterized by the biggest resolution offered
by Vive yet (2880 x 1700 pixels, combining the two lenses), using two lenses of 3.4” each.

The main advantage offered by this headset is its portability: it does not require fixed
stations to delimit the perimeter of the play area and to compute movements, but instead
these functions are based on the use of six camera sensors, providing an accurate inside-
out tracking via wide field of view (FOV) and six-degree-of-freedom (6DoF) support. In
this way, every movement in real space is brought up in virtual space based on the change
in perspective with respect to the physical surroundings. Which means that inside-out
tracking enables plug-and-play portability: it can be used everywhere, simply plugging it
in a VR-ready PC desktop or laptop.

Regarding ergonomics, the forefront of the headset has been redesigned with respect
to previous models, suiting a wide range of face shapes, and also supporting the usage of
glasses. The interpupillary dial, however, still needs to be adjusted manually. Moreover,
in order to facilitate the switching between reality and virtual reality, a flip-up design has
been introduced: in any moment, the user can exit from the simulation by flipping up the
front part (almost like a motorcycle helmet), without having to remove the entire headset.

Finally, the Vive Cosmos is prepared to be expanded with a suite of modular options
(some still in development). Between these modules, the most important ones are the
wireless adapter (in order to get rid of cables connecting the headset to the workstation)
and the external tracking mod, used to combine the tracking methods of the Cosmos with
the precision derived from the fixed stations (useful for example in fares, where the area
of usage of the visor is fixed for long periods of time).

All these advantages (together with the excellent relationship between quality and
price) have led to converge on this headset as the final choice of hardware to be purchased
for the application presented in this thesis.

Specifications are shown in tables 1.7, 1.8, 1.9 and 1.10.

18 Chapter 1 1.3. HTC Vive Cosmos

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

Table 1.7: Vive Cosmos - Headset specs

Screen: Dual 3.4" diagonal

Resolution: 1440 x 1700 pixels per eye (2880 x 1700 pixels combined)

Refresh Rate: 90 Hz

Field of View: Maximum 110 degrees

Audio: Stereo Headphone

Input: Integrated microphones, Headset button

Connections: USB-C 3.0, DP 1.2, Proprietary Connection to Mods

Sensors: G-sensor, gyroscope, IPD sensor

Ergonomics: • Flip-up visor;
• Adjustable IPD;
• Adjustable headstrap.

Table 1.8: Vive Cosmos - Controller specs

Sensors: Built-in sensors:
• Gyro and G sensors;
• Hall sensor;
• Touch sensors.

Input: • System button;
• 2 Application buttons;
• Trigger;
• Bumper;
• Joystick;
• Grip button.

Connections: Micro-USB charging port

Table 1.9: Vive Cosmos - Tracked area requirements

Standing / Seated: No min. space requirements
Room-scale: Minimum is 2m x 1.5m for room-scale mode

Table 1.10: Vive Cosmos - Hardware requirements

Processor: Intel® Core™ i5-4590 or AMD FX™ 8350 equivalent or better
Graphics: NVIDIAl® GeForce® GTX 970 4GB, AMD Radeon™ R9 290

4GB equivalent or better VR Ready graphics card
Memory: 4 GB RAM or more

Video out: DisplayPort 1.2 or newer
USB Ports: 1x USB 3.0 or newer

Operating system: Windows® 10

Chapter 1 1.3. HTC Vive Cosmos 19

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

20 Chapter 1 1.3. HTC Vive Cosmos

Chapter 2

Virtual Reality - Software Choice

2.1 Unity
Unity is a multi-platform graphics engine developed by Unity Technologies that allows
the development of video games and other interactive content, such as architectural visu-
alizations or real-time 3D animations.

It is therefore particularly flexible, as it allows the writing of a wide range of pro-
grams with different intentions. The engine can be used to create three-dimensional,
two-dimensional, virtual reality, and augmented reality games, as well as simulations and
other experiences. The engine has been adopted by industries outside video gaming, such
as film, automotive, architecture, engineering and construction.

It also provides assistance to the programmer, being an integrated development en-
vironment, i.e. during the writing of the source code, the software provides assistance,
directly reporting syntax errors in the code, and providing debugging support tools. It
therefore presents an environment in which users can directly view the object hierarchy,
a visual editor, a detailed property viewer and a live preview of the game.

The engine offers a primary scripting API in C#, for both the Unity editor in the form
of plugins, and games themselves, as well as drag and drop functionality.

For 3D games, Unity allows specification of texture compression, mipmaps, and res-
olution settings for each platform that the game engine supports, and provides support for
bump mapping, reflection mapping, parallax mapping, screen space ambient occlusion
(SSAO), dynamic shadows using shadow maps, render-to-texture and full-screen post-
processing effects.

However, despite this set of advantages, this software has been discarded for the pur-
poses of the project presented here, as the acquisition of the know-how necessary for the
development of a virtual reality application with this tool would have taken too long to
achieve concrete results within the time horizon set for this thesis. Therefore the focus
was shifted to a software already widely used by Protesa: Autodesk Vred.

21

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

2.2 Autodesk Vred
Vred is a software developed by Autodesk, used for 3D visualization and virtual proto-
typing, mainly used by automotive designers, since it can create product presentations,
design reviews and virtual prototypes in real time.

It is particularly useful since it focuses only on geometries and materials, without the
weight of a physical simulation, which is not mandatory in a mostly graphic task like the
realization of an editor, with the aim of building a representation of a machine or a whole
line to be inserted in a virtual reality context, in order to have a reference on how it would
look and “feel” in a real environment.

Therefore, Vred comes in handy with its ability to manage geometries, by importing
parts that can be realized with almost every existing CAD (since it is compatible with a
great number of formats - see list below), converting them in native files, and manipu-
lating their positioning (rototranslations). Moreover, it is able to create animations using
curves in time for values of translation and rotation.

Vred supports loading (import) of 3D geometry and scenes from the following file
formats:

• 3ds Max (.3ds)

• Alias (.wire)

• ASC Dental (.asc)

• AutoCAD (.dwg, .dxf)

• CATIA (.catpart, .catproduct, .cgr, .dlv, .dlv3, .dlv4, .exp, .mdl, .model, .session)

• Autodesk Inventor (.ipt, .iam)

• Cinema 4D (.c4d)

• Cosmo3D (.csb)

• Deltagen (.rtx)

• FBX (.fbx)

• FHS (.fhs)

• GeomView (.off)

• IGES (.igs)

• JT (.jt)

• Maya (.ma, .mb)

• OpenSG (.osb)

• Open Inventor (.iv)

22 Chapter 2 2.2. Autodesk Vred

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

• PLM XML (.plmxml)

• PLY (.ply)

• Pro/E Granite (.g)

• Pro/E Neutral (.neu)

• Pro/E Render (.slp)

• Python Script (.py)

• Rhinoceros (.3dm)

• Showcase (.apf)

• SolidWorks (.sldprt, .sldasm, .prt, .asm)

• STEP (.stp)

• Stereolithography (.stl)

• VRED (.vpe, .vpb, .vpf)

• VRML (.wrl)

• Wavefront (.obj)

Moreover, Vred is optimized for the realization of virtual reality scenes and environ-
ments by using Python scripts.

Chapter 2 2.2. Autodesk Vred 23

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

24 Chapter 2 2.2. Autodesk Vred

Chapter 3

Single Line Editor

Focusing on the side of pre-selling, the field of virtual reality shows its true power in
showing to clients an early idea of how a new line would look like, on its dimensions and
on its layout possibilities.
That’s the reason why, as a first approach, it has been developed an automatic parametric
graphic editor which, taking info from the client about some parameters, can develop a
render of the new line and make it explorable in VR. If the result is not satisfactory, the
editor can be restarted quickly to easily build a new line with a change in the parameters.

As a first step, this editor has been developed for a single machine (Nuova Sima’s
EkoSort), and then expanded to a whole sorting line, including quality control, packaging
and package handling, up to storing packages on pallets.

3.1 EkoSort Building Alhorithm

3.1.1 EkoSort - Automatic Stacker
The EkoSort machine is a sorting line for ceramic tiles, and one of the main products of
Sacmi’s consociate Nuova Sima [11].
It is a simplified sorting system that can be used, thanks to special suction cups, whatever
the tile size or thickness, with consequent minimization of changeover times in case of
flexible productions.
It is also extremely compact, as a result of a circular structure that makes full use of all
the effectively available space, thus allowing efficient handling of even the largest tiles.

EkoSort handles products gently during the stacking phase: it limits the shock un-
dergone by tiles during stacking, thus minimizing environmental impact, noise levels and
production line complexity, as well as reducing wastes of products. All of this is possible
thanks to the innovative pick-up system which ensures that, if a tile “falls”, it is placed
gently on the underlying stack.

The machine is exceptionally reliable thanks to extremely limited maintenance re-
quirements: on one hand, this has been achieved by reducing the number of parts subject
to wear (e.g. by eliminating belts) and, on the other, by the circular turret geometry that
provides an easy access to all machine parts.

25

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

(a) 3/4 Rear View (b) 3/4 Front View

Figure 3.1: EkoSort Machine (courtesy of SACMI Imola S.C.)

3.1.2 EkoSort Editor
3.1.2.1 Preliminary Steps

In order to get a preliminary knowledge of the software, a full online tutorial, present in
the official Autodesk website, has been watched and followed, thus permitting to learn all
the basics of handling geometries and the creation of scenes, from lighting, to animating,
to rendering.

(a) Ferrari LaFerrari (b) Harley Davidson 1200 Evo "Fatster"

Figure 3.2: Automotive Rendering Tests

After this first tutorial, a few different models (not linked to the sorting line) have been
realized, in order to get a first hands-on experience of the software (figure 3.2).

Then, in order to have a powerful and flexible tool to create an automatic method to
realize the editor, and since Vred uses Python as main programming language, a couple
online courses on the basics of this language have been attended on the web platform
Udemy.

3.1.2.2 Library Realization

As a first step in realizing the editor, a library of parts needed to be created. In order to do
so, the original CAD file (3D object: .3ds) has been opened in Vred.

26 Chapter 3 3.1. EkoSort Building Alhorithm

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

As seen in figure 3.3a, the machine is nothing but a group of single geometries, without a
particular order, nor organization.

(a) Original

(b) Reorganized

Figure 3.3: EkoSort’s scenegraph in Vreds

So, the next step has been to group all of them into parts, in order to better organize
everything and to make it easier to isolate every object later. More realistic materials have
also been applied. The result is shown in figure 3.3b.

Then, every part has been saved separately, in order to be loaded time by time and
reassembled by the algorithm developed later.
The complete library of parts resulting (shown in figure 3.4) is then:

(a) Mover 0

(b) Station 0

(c) Rotary Circle

(d) Rotary Support

(e) Conveyor Complete

(f) Machinery

(g) Windows

Chapter 3 3.1. EkoSort Building Alhorithm 27

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

(a) Mover 0 (b) Station 0 (c) Rotary Circle (d) Rotary Support

(e) Conveyor Com-
plete

(f) Machinery (g) Windows

Figure 3.4: EkoSort Parts Library

3.1.2.3 Algorithm I – “Naïve” Solution

The main challenges in this scenario have been the construction of the carousel (with the
number of movers and the diameter selected by user), and the placement of the stations
under the movers, and, in particular, how many of them to actually put in place, making
sure that they were not touching the conveyor belt.
As a first approach, the carousel’s realization had been faced by using Vred’s function
“clone”, which creates a copy of an existing part which is linked to it, i.e., if the original
part is scaled or moved, the clone is modified as well.

Obviously the parameters to be passed to the editor needed limitations (dictated by
the catalogue of possible machine configurations).
The possible choices for the parameters are shown in Table 3.1.

Table 3.1: EkoSort: Parameters

Parameter Min. Value Max. Value

Total N° of Movers 4 16
Carousel Diameter [mm] 2000 4000

The first algorithm developed (in pseudo-code) is shown in Algorithm 1.

28 Chapter 3 3.1. EkoSort Building Alhorithm

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

Algorithm 1 “Naïve” Solution for EkoSort editor
1: n = desired number of movers
2: h = mover’s suction cup height
3: d = carousel’s diameter
4: r = d/2

Rotary Circle

5: Import (RotaryCircle)
6: Translate along Z axis
7: Scale on X and Y dimensions

Movers

8: if n = even number then
9: limit = n/2

10: for (i = 0, i < limit) do
11: Import (mover)
12: Translate in position
13: Set rotation pivot to world center
14: Clone (mover) along Y axis
15: Group mover and clone
16: Rotate around Z axis of i · (360◦)/n
17: i+ +
18: end for
19: else
20: limit = dn/2e
21: for (i = 0, i < limit) do
22: Import (mover)
23: Translate in position
24: Set rotation pivot to world center
25: if i = 0 then
26: Do nothing
27: else
28: Rotate around Z axis of i ∗ (360◦)/n
29: Clone mover along X axis
30: end if
31: end for
32: end if
33: Group all movers together

Stations

34: if n = even number then
35: if n ≤ 6 then
36: for (i = 1, i < limit) do
37: if i = limit/2 then
38: Import(station)

Chapter 3 3.1. EkoSort Building Alhorithm 29

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

39: Scale dimensions
40: Translate in position
41: Rotate around Z axis of 180◦

42: i+ +
43: else
44: Import (station)
45: Scale dimensions
46: Translate in position
47: Set rotation pivot to world center
48: Clone (station) along Y axis
49: Group station and clone
50: Rotate group around Z axis of i ∗ (360◦)/n
51: i+ +
52: end if
53: end for
54: else
55: for (i = 2, i < limit) do
56: if i = limit/2 then
57: Import(station)
58: Scale dimensions
59: Translate in position
60: Rotate around Z axis of 180◦

61: i+ +
62: else
63: Import (station)
64: Scale dimensions
65: Translate in position
66: Set rotation pivot to world center
67: Clone (station) along Y axis
68: Group station and clone
69: Rotate group around Z axis of i ∗ (360◦)/n
70: i+ +
71: end if
72: end for
73: end if
74: else
75: if n = 5 then
76: for (i = 1, i < limit) do
77: Import (station)
78: Scale dimensions
79: Translate in position
80: Set rotation pivot to world center
81: Rotate group around Z axis of i ∗ (360◦)/n
82: Clone station along X axis
83: Group station and clone
84: i+ +
85: end for

30 Chapter 3 3.1. EkoSort Building Alhorithm

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

86: else
87: for (i = 2, i < limit− 1) do
88: Import (station)
89: Scale dimensions
90: Translate in position
91: Set rotation pivot to world center
92: Rotate group around Z axis of i ∗ (360◦)/n
93: Clone station along X axis
94: Group station and clone
95: i+ +
96: end for
97: end if
98: end if
99: Group all stations together

Rotary Support

100: Import (RotarySupport)
101: Scale dimensions

Conveyor

102: Import (ConveyorComplete)
103: Translate along Y axis
104: Scale dimensions

Machinery

105: Import (Machinery)
106: Scale dimensions

Windows

107: Import (Windows)
108: Scale dimensions

EkoSort

109: Group everything

First of all, at a first glance it can easily be seen that it wasn’t well organized: it was
all in one block, and it didn’t present any modularity. Hence, it greatly lost readability,
especially when switching to effective Python code.
That’s the reason why a new version of this code has been written, organizing everything
in functions and function calls in the "main" part of the code. These effort had the result
of producing a greatly readable and shorter code.

Chapter 3 3.1. EkoSort Building Alhorithm 31

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

But the main flaw of this code was to be found in the great usage of the function
“clone” to realize couples of movers and stations. The choice of relying on this procedure
was made starting on the fact that every clone can inherit the transformation of the original
object (called “node” in Vred), so, while handling movers and stations using mouse and
visual interface on-screen could really benefit of this connection, the same thing couldn’t
be said regarding manipulation of nodes via script, which required lots of renaming of
previous loaded nodes (in order to select them properly). So, in the switching between
direct (visual) and scripted building of the scene, almost every positive aspect of the usage
of clones was lost.
Moreover, most of the time used by the script execution was due to loading time, since
the other computations have been proven to be really fast.
With this script, since the smallest EkoSort constructible has 5 movers, a minimum of
10 loadings is required (3 movers, 2 stations, 5 other parts). But when the user asked
for 16 movers, the number of loading procedures went up to 20 (8 movers, 7 stations,
5 other parts). This has led to a great lengthening of the computation time for the final
construction of the machine..
These problems were found to be too limiting, and the need to develop a new, more
efficient algorithm arose.

3.1.2.4 Algorithm II – “Fast” Solution

With the problems previously underlined in mind, a second algorithm has been devel-
oped. The main idea is simple, but effective: instead of relying on so many loadings for
movers and stations, only the first one should be loaded and translated in position. Then it
should be duplicated inside Vred, and the clone rotated with respect to the central axis of
the carousel. Repeating the process n times brings to the complete filling of the carousel.
Same thing for the stations, with the difference that, based on the number of movers and
the carousel diameter, the code must skip the placing of 1, 3, or even 5 stations, in order to
avoid compenetration (in the editor viualization, in reality these stations simply wouldn’t
fit in the configuration) between the conveyor belt and the nearest stations.
The selection of the number of station placings to skip has been done empirically.

So, the algorithm has then changed to what is shown in Algorithm 2.

32 Chapter 3 3.1. EkoSort Building Alhorithm

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

Algorithm 2 “Fast” Solution for EkoSort editor
1: n = desired number of movers
2: h = mover’s suction cup height
3: d = carousel’s diameter
4: r = d/2

Rotary Circle

5: Import (RotaryCircle)
6: Translate along Z axis
7: Scale on X and Y dimensions

Movers

8: limit = n
9: Import (mover)

10: Translate in position
11: for (i = 1, i < limit) do
12: Duplicate mover
13: Set duplicate’s rotation pivot to world center
14: Rotate the duplicate around Z axis of i ∗ (360◦)/n
15: end for
16: Group all movers together

Stations

17: if n ≤ 6 then
18: start = 1
19: limit = n
20: else if (n ≥ 13) and (d ≤ 3000mm) then
21: start = 3
22: limit = n− 2
23: else
24: start = 2
25: limit = n− 1
26: end if
27: Import (station)
28: Scale dimensions
29: Translate in position
30: for (i = 1, i < limit) do
31: Duplicate mover
32: Set duplicate’s rotation pivot to world center
33: Rotate the duplicate around Z axis of (i · 360◦)/n
34: end for
35: Delete first station loaded
36: Group all movers together

Chapter 3 3.1. EkoSort Building Alhorithm 33

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

Rotary Support

37: Import (RotarySupport)
38: Scale dimensions

Conveyor

39: Import (ConveyorComplete)
40: Translate along Y axis
41: Scale dimensions

Machinery

42: Import (Machinery)
43: Scale dimensions

Windows

44: Import (Windows)
45: Scale dimensions

EkoSort

46: Group everything

It can easily be seen how the whole procedure turned out to be shorter and more read-
able (thanks also to a phase of revision and improvement of the algorithm).

3.1.2.5 Compenetration Recovery

On the algorithm side, the empirical choice on the number of stations to be inserted in
the machine configuration was unsatisfactory, because in many cases the cases provided
for by the code were not sufficient to avoid the compenetration of the stations with the
conveyor belt.
Therefore a method has been developed to find a remedy to this situation, without making
substantial changes to the procedure already described, but instead going to solve a pos-
teriori any problems of interpenetration (or excessive proximity) between the polygons of
the stations and those of the conveyor belt.

According to the previous procedure, the algorithm could skip autonomously a max-
imum of three station placements. After the introduction of the new feature, once the
machine was built, the algoritm performed a check on the distance between the last sta-
tion placed and the closest part of the conveyor belt. If the distance was below a prede-
termined threshold (compliance was considered reached at a minimum distance of 200
mm), or worse, negative (meaning geometries compenetration is occurring), the code dis-
played a warning message on the terminal (reporting how many stations were placed and

34 Chapter 3 3.1. EkoSort Building Alhorithm

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

(a) Warning message (Vred’s terminal window) (b) Warning window with user choices

Figure 3.5: Compenetration warnings

what was the distance between the geometries concerned - figure 3.5a) and opened a win-
dow proposing two possible solutions to the user: delete an extra couple of stations, or
open again the editor page, recommending to decrease the number of movers, to increase
the diameter of the carousel, or both (figure 3.5b). When opened again, the editor page
showed the last choice of parameters, so that it was easier for the user to apply a different
choice, following the advice provided on-screen.

The implementation of dialog pages and the connection of on-screen buttons with
functions in the script will be discussed in more detail later on (section 3.5).

There have been some problems regarding the measurement between station and con-
veyor: while it is present in Vred an instrument to take measures (both in 3D and in single
directions), those values cannot be read in any way via script, since the Python documen-
tation lacks functions in this sense.
So, a new solution has been implemented. For each node in the scene, Vred defines 6
values representing the boundaries on the object. These values define a so-called Bound-
ing Box, that is a kind of boundary representing the space occupied by the geometry in
question.
In Python, through the command getBoundingBox(), the values describing the bounding
box of a specified geometry can be retrieved, stored in a vector according to the conven-
tion: [xmin, ymin, zmin, xmax, ymax, zmax].
So, since the conveyor belt was in the first quadrant, it could have been sufficient, theo-
retically, to use the difference between ymin of the conveyor and ymax of the station.

However, bounding boxes have a lower limit regarding their dimensions (in order to
be visible in the scene). So, for thin objects like the geometries of the conveyor belts, the
error between the effective dimension and the lowest value possible for the bounding box
is really not negligible: along Y direction, the bounding box is 600% of the actual node
dimension.
That’s the reason why, in order to take a satisfactory measurement, the formula to be
applied was:

Chapter 3 3.1. EkoSort Building Alhorithm 35

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

ydiff = ymin
conveyor +

((
ymax
conveyor − ymin

conveyor

)
− ymax

conveyor−ymin
conveyor

6

2

)
− ymax

station (3.1)

This formula provided a good approximation of the measurement required, with an
error of less than 1.2%. It has been used in the final code under the function checkDis-
tanceStationsConveyor().

3.1.2.6 Final Solution

Finally, a further improvement applicable to the algorithm has been identified. In fact,
although the number of loadings of the different parts had been minimized in the transi-
tion from version I to version II of the algorithm, these were basically time wasted in the
realization of the scene.
Just consider this case: what would have happened if the editor had been launched several
times in a row to create different lines? At each run, the parts would have been deleted
and then loaded again, and it would have been a waste of time and computation. It was
therefore thought to load all the parts only at the start of the scene, and, at the algorithm
execution, to simply change position and eventually scaling.
The result was more time needed at startup (in fact extremely tolerable), but much less
time needed to execute each instance of the editor.

A couple of examples of the results that could be obtained with the final instance of
the editor can be seen in figure 3.6, while the final code for the EkoSort’s building is pre-
sented in Appendix A.

(a) Smallest buildable EkoSort: 5 movers, 4 sta-
tions, 2 m carousel

(b) Biggest buildable EkoSort: 16 movers, 11
stations, 3 m carousel

Figure 3.6: Examples of possible EkoSort building

36 Chapter 3 3.1. EkoSort Building Alhorithm

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

3.2 ExtraPack Building Algorithm

3.2.1 ExtraPack - Palletizer
ExtraPack is a “portal” palletizer designed and constructed in accordance with the latest
mechanical and electrical codes and standards [13]. Using an independently controlled
4-axis controller, it offers mani advantages:

• positioning accuracy and repeatability;

• high operating speed;

• suitable to handle the most demanding work loads (its load capacity goes up to 250
kg, depending on the configurations).

With Extrapack it is possible to arrange the pallets independently: the layout and prod-
uct code can be set individually for each single pallet.

There are two possible configurations for this machine: 2 or 3 pallets for each arch of
the palletizer frame (in general each arch is dedicated to a tile variety).
Extrapack can load up to 20 pallets for the couple-pallet configuration, 21 for the triplet
one. It can be equipped with a device to automatically pick up empty pallets and suction
cups to pick up slipsheets. It can be programmed to handle different products whose sizes
vary arriving from different lines.

3.2.2 ExtraPack Editor
3.2.2.1 Library Realization

In a similar way to what was done for the EkoSort, the first step was to import the initial
model (STEP file: .stp). This type of file is characterized by great precision (it gets to
details like washers, screws and bolts), and the model already had a pretty good division
of parts.

So in the first instance the model was visually improved, applying appropriate textures
and materials, to achieve realism in VR. To make the editor, we then proceeded to divide
it into parts, creating a library of components to be recalled within the algorithm.

The greatest difficulty has been to divide the support frame of the robot from the initial
model: in fact, in order to make the editor parametric, it has been necessary to be able to
chain the positioning of modules in order to create a frame with variable dimensions and
number of arches. Vred does not offer specific tools, so it has been necessary to divide the
geometries into the primitive polygons, select them manually and finally reposition them
in the various groups. After this operation, the frame was divided into 3 parts: the initial
and final arches, and a central arch (which has only two vertical pillars) to be cloned sev-
eral times as the desired number of pallets increases.
Then, in order to concatenate the parts in an appropriate way, making the frame a unique
and aligned part, some spheres have been inserted in these parts, called "links", whose
position is read at each positioning of the part, so that the next one can be positioned in

Chapter 3 3.2. ExtraPack Building Algorithm 37

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

(a) Initial Arch (b) Middle Arch (c) Final Arch (d) Pallet Station 0

(e) Pallets Buffer (f) Transport (g) Slider Robot

Figure 3.7: Extrapack Parts Library

its correspondence, thus aligning the geometries and giving the illusion of having a con-
tinuity.

The resulting parts at the end of this operation (shown in figure 3.7) are:

(a) Initial Arch;

(b) Middle Arch;

(c) Final Arch;

(d) Pallet Station 0;

(e) Pallets Buffer;

(f) Transport;

(g) Slider Robot.

3.2.2.2 Editor Algorithm

As for the EkoSort, also in this case the editor waits for a series of user input parameters:

• Pallet stations for each arch: 2 or 3;

• Total number of stations: from 4 to 20, or from 6 to 21, respectively;

• Distance between pallets (within the same arch): from 500 mm to 2000 mm, or
from 300 mm to 600 mm, respectively.

Now the functioning of the algorithm realized for the construction of this palletizing
machine in the scene is described, analyzing function by function.

38 Chapter 3 3.2. ExtraPack Building Algorithm

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

(a) Smallest buildable ExtraPack (b) Biggest buildable ExtraPack

Figure 3.8: Examples of possible EkoSort building

Reset ExtraPack

First of all, the previous environment must be cleaned up: this function takes care of
erasing arches and clones of existing pallet stations. It also makes the central arch visible
again (in case it was hidden). Finally, it saves the coordinates of the link sphere of the
previous part of the line (i.e. the package handling one).

Load Transport

The Transport part is selected and placed in position (thanks to the link sphere just
considered).

Build Slider Support

This function takes care of building the support structure for the Slider Robot part.
First, it calculates the number of arches required, based on the desired configuration and
the number of pallet stations required.
Then, it sets the coordinates of the first part of the support (Initial Arch) so that it is
aligned with the rest, again using the link sphere already mentioned. Then it calculates
the number of central arches required as narcs − 2.

If the configuration needs more than one central arch between the first and the last,
it saves the final coordinates of the first arch (i.e. the point where its geometries end),
and places Middle Arch there, so that it gives the illusion of continuity in the part. After
that, it proceeds to clone (if necessary) the first central arch and to position all the copies,
always leaving the impression that they are a unique and continuous group. Finally, it
also positions the final part of the support (Final Arch), thus completing it.
If no central arches are needed, only the first and the last one are positioned, while the
central one is hidden.

Load Slider Robot

The Slider Robot is selected and positioned, aligning it with the other components, so
that it appears to be installed on the support.

Chapter 3 3.2. ExtraPack Building Algorithm 39

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

Load Pallet Stations

Depending on the required configuration, 2 or 3 pallet stations can be inserted for
each arch. The two methods are similar, but for convenience they have been saved in two
different functions.

The first step is the declaration of a list containing all the clones of Pallet Station 0.
After that, the function locates the original station in the first position of the first arch
and proceeds to clone and position all the copies (thanks to the spheres links marking the
middle of the first and last arch), at the distance specified by the user, adding them every
time to the list of clones.
Finally, it groups all the copies included in the list under the "ClonesPallet" group, mak-
ing it easier to delete them when the environment is reset.

The code implementing the developed algorithm is shown in Appendix B.

40 Chapter 3 3.2. ExtraPack Building Algorithm

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

3.3 Other Machines in the Line

3.3.1 Flawmaster - Tile Inspector System
The Flawmaster machines are designed to inspect ceramic tiles for mechanical, glaze and
decoration defects and classify them according to their quality and shade [14].
These machines permit constant and repeatable inspection independent from the work
shift. Tile inspection takes place at various angles detecting different defects such as:

• Surface defects;

• Mechanical defects (corner, edge);

• Reflection and decoration defects;

• Contamination along with shade and gloss.

Connected to any sorting machine, the Flawmaster replaces human inspection. It
works with a wide set of algorithms to identify defects in a broad range of floor and
wall tiles, and it is able to inspect tiles, with dark or complex decorations, at speeds of
up to 1000m2/hour (normal output calculated for sizes ranging from 40x40 to 120x120
cm). Network connection is possible, in order to manage data collection and production
reports.
Automatic final tile inspection allows productivity and performance to be increased while
obtaining numerous benefits:

• High inspection rate;

• Optimized tile flow;

• Fewer shutdowns;

• Quality benefits;

• Uniform inspection;

• Reduction in claims;

• Continuous monitoring of production defects: this allows targeted improvements to
be made to the production process in order to increase quality.

As far as the software is concerned, it is possible to obtain real-time monitoring of
production, alarm signalling and production reports. In addition, it is possible to detect a
wide range of defects such as:

• Decoration;

• Irregular edges;

• Cracks.

Chapter 3 3.3. Other Machines in the Line 41

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

(a) Machine particular (b) Vred rendering

Figure 3.9: Flawmaster Machine (courtesy of SACMI Imola S.C.)

3.3.2 Advancheck - Tile Inspector System
Advancheck technology is used to precisely check squareness of the tiles and not only
size and flatness, for example for rectified and squared products [14].
It is a fully automatic machine that detects ceramic tile size and flatness defects. The user
interface consists of an industrial PC with Windows operating system. The industrial PC
has a “frame grabber” card that processes the signals received from the cameras sampled
every tenth of a millimetre. Detection of size/shape defects along with the possibility to
connect the device to on-line control systems permits “real time” analysis.
As a result, it is possible to go back through the production process and take any corrective
actions required to remedy faults found, thereby remarkably improving overall quality and
saving energy.
The control system is able to:

• Calculate the size class of the tiles and determine if they are to be downgraded
due to tolerance, parallelism, curvature and squareness (measurement of the two
diagonals) defects;

• Set six size thresholds and three thresholds for each type of defect;

• Acquire the areas of the four corners and central measures of the sides;

• The PC can be connected to the network to manage data collection, sorting statistics
and set the configuration parameters.

3.3.3 EkoWrap - Packager
EkoWrap is a system designed to simplify the packaging of both small-to-medium and
medium-to-large sizes. This packaging technique uses two corrugated cardboard blanks
and a patented closure system to package even large product sizes [12].
This machine allows the entire perimeter of a tile stack to be protected, corners included:
the cardboard blanks overlap in the middle of two opposite sides of the box, ensuring that
corners are fully wrapped, where the greatest protection is needed.
EkoWrap is cost-effective and environmentally friendly with its reduced cardboard re-
quirements, lower quantity of packaging waste and raw material/energy savings during
cardboard production ensure minimised environmental impact.
It can be used in a number of different ways. The system can be fed with either pre-cut

42 Chapter 3 3.3. Other Machines in the Line

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

(a) Machine particular (b) Vred rendering

Figure 3.10: EkoWrap Machine (courtesy of SACMI Imola S.C.)

Figure 3.11: Transport and package handling

corrugated cardboard blanks, pre-printed with specific trademarks and logos, or plain cor-
rugated cardboard blanks. In both cases, a shell is obtained, on which all the information
necessary for product identification is then printed in real time.
EkoWrap allows products to be processed on both feed sides, from a minimum of 200
mm up to a maximum of 1200 mm. Systems can also, on request, be personalised to give
a minimum of 150 mm on one side and a maximum of 1500 or 1800 mm on the other.

3.3.4 Transport and Package Handling
Between the packaging part (in this case carried out by EkoWrap) and the preparation
part of the pallet (by means of the ExtraPack), a series of machines are placed which are
responsible for wrapping the packages with plastic film, centring the package and posi-
tioning it precisely on the conveyor, so that it can then be effectively grasped by the robot
in the last part of the line.

Chapter 3 3.3. Other Machines in the Line 43

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

3.4 Animation
After having completely built the various parts of the sorting line through the algorithms
presented in the previous sections, and having aligned them in a continuous line (for more
details see section 3.6), it has been decided to further develop the scene in virtual reality,
in order to really make it "alive", and thus take full advantage of the immersive features
offered by this powerful tool.

After all, a static scene may be realistic and pleasing to the eye, but it fails to express
the potential that can be expected from an industrial sorting line. Putting oneself in the
shoes of a potential customer observing the scene, one can easily imagine how this cus-
tomer would want to see the line effectively in motion.

It was therefore decided to animate a batch of 10 tiles measuring 600 mm x 300 mm
x 10 mm. These tiles will flow conveyed by the belts at a speed specified by the user
(with values between 0.7 m/s and 2.0 m/s, in conformity with what actually happens in
Nuova Sima lines of this type), passing through the machines of the first part of qual-
ity control, and then being lifted by the EkoSort carousel and placed on the first station,
where the stack of tiles will be grabbed and placed on a dedicated conveyor, which will
take it through the EkoWrap, where it will take the form of a real package (including the
packaging). The newly created package will then continue its journey until it reaches the
Extrapack, where it will be grabbed by the Slider Robot , rotated and placed on the first
available pallet.

Vred provides a range of tools to help creating animations. First of all, the animations
are organized according to a timeline that uses frames as units of measurement according
to the PAL system, so that:

1 sec = 24 frames (3.2)

1 frame = 0.0416̄ sec (3.3)

The animations have then been designed according to the operation of the line, and
afterwards all the conventional units of measurement have been converted into the equiv-
alent in frames so that they could be defined inside Vred.

But how does an animation fit into this software?
Vred, as a tool mainly focused on the geometries of the objects present in the scene, as-
sociates two frames to each element in the scene: one for the rototranslation axes, and
one for the scaling axes. Then it is possible to assign to each object the values of rotation,
translation and scaling on each desired axis. Combining to these values also the possibil-
ity to associate to the object a boolean variable to make it visible or not, it is immediately
possible to see how to create even complex animations with a bit of study (see figure 3.12).

It is therefore necessary to create curves over time for these values, then they can be
saved by Vred in a format called animation block, which will enclose the entire animation
of the geometry in question. These blocks can then all be started at the same time (or
saved in animation clips) and eventually be looped in order to have a movement that is

44 Chapter 3 3.4. Animation

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

Figure 3.12: Curves for Translation, Rotation and Visibility values of the stack of tiles on
the first station of the EkoSort

Figure 3.13: Example of the tree organization of geometries in Vred

perceived as continuous.

These curves (and along with them the animation blocks that contain them) are a very
flexible and powerful tool, combined with the tree organization of the geometries in Vred,
because they allow a "cascading" animation. This term refers to the fact that the animation
of a groupnode (geometric entity representing a group of geometries located at a lower
level of the tree) is spread to entities that are within that group.
Considering figure 3.13 as an example, examining the EkoSort carousel, it can be seen
that the movers (i.e. the tile grabbers) are placed inside the group node "AllMovers". The
rotary movement of the carousel during the animation is assigned to this last group (and
will then be replicated by the RotaryCircle), and it therefore propagates to all the movers.
To each of them will be imposed only the translatory motion along the z axis, without the
need for rotation.

Now, the real problem in animating a scene like the one presented in this project is the
fact that the editor built up to this point is parametric, i.e. it responds to user specifica-
tions, and can therefore create a large number of possible configurations for the same line.
Obviously the animation must be adapted to the configuration represented. The problem

Chapter 3 3.4. Animation 45

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

is that the animations created through curves (and then looped) are extremely "static",
meaning that it is very difficult to modify them.

In addition, the differences in animations between different configurations are mul-
tiple and not trivial. If, as an example, one considers the configurations at the opposite
extremes:

1. Line with EkoSort with minimum dimensions (5 movers, carousel diameter 2000
mm) and minimum conveyor speed (0.7 m/s);

2. Line with EkoSort with maximum dimensions (16 movers, carousel diameter 4000
mm) and maximum conveyor speed (2 m/s).

The changes that should be imposed in the transition from animation 1 to animation 2
would be:

• Translation of the entire animation along the y-axis: since in the constructing of
the line, the center of the world corresponds to the center of the circular EkoSort
carousel (as shown in section 3.1.2.4), as the diameter of the latter varies, the center
of the conveyor belt will move along the y-axis (since the line develops in length
along the x-axis). Note, however, that the exact centre of the carousel does not
move, therefore the tiles will have to modify the arc trajectory they must follow
accordingly, so as to perfectly match the trajectory of the movers;

• Moving of the starting and ending points of the animation along the x-axis:
in the construction of the EkoSort (section 3.1.2.4), in order to maintain a correct
balance in the dimensions of the machine as the diameter of the carousel varies,
a scaling of all parts with respect to the x and y axes is carried out. The scaling
with respect to the x-axis will result in an elongation of the conveyor portion of the
machine model, and since the origin of the reference system is in the exact centre
of the carousel, this translates into the distancing (passing from case 1 to case 2) of
the starting and ending animation points;

• Variation of animation times: obviously changing the speed of the conveyor belts
leads to a variation of the instants in which the tiles (and all the elements that inter-
act with them) reach the various checkpoints of the animation;

• Variation of the arrangement of the tiles on the conveyor belt: since, as already
mentioned, Vred’s animations are extremely "static", and therefore not linked to
the dynamics of the machine as could happen in a simulative software, it is not
trivial to adapt it to the variation of key elements such as the number of movers and
the diameter of the carousel. In fact, the greatest difficulty is to have a standard
animation to be respected, i.e. all the tiles grabbed in sequence and placed on the
same station. Logically, to do this, the tiles must be at a well-defined distance from
each other (step), calculated according to the equations:

β =
360

nmovers

(3.4)

βrad = β · π
180

(3.5)

46 Chapter 3 3.4. Animation

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

steptiles = arc = βrad ·
diameter

2
(3.6)

In addition, in case the speed is too high compared to the normal step, and therefore
the rotation of the carousel is not able to guarantee the rendez-vous between mover
and consecutive tiles, this step between the tiles should be doubled. In the latter
case, however, the tiles may be too far apart, and therefore some of them may be
even beyond the grasp point in the initial arrangement of the animation. In these
cases it is therefore necessary to eliminate them, effectively animating a batch of 9
or 8 tiles;

• Variation of the type of curves of movers and tiles: since the EkoSort moves
the tiles at fixed angles (i.e. once a tile is lifted, the carousel performs a rotation
equal to the angle calculated in equation 3.4 and, if possible, drops the tile on the
first available station, otherwise it keeps it lifted until the next rotations allow its
release), the animation will have to be adapted to this behavior, depending on the
size of the machine and the number of stations that are present.

It can therefore be noticed that it would be extremely difficult to modify an existing
animation in such a way as to adapt it to the configuration created by the editor. A "tabula
rasa" approach has therefore been adopted, so each time the editor is launched, existing
animations are deleted, and the curves of each animated object are computed from scratch
again.

Moreover, the final goal of this animation is obviously to give the impression of being
in the presence of a real and working line, therefore it needs to be looped, just to give the
illusion of continuity.
But how to achieve this?
In fact, without any expedient, at the end of the animation time one would see the tiles
and packages disappear and then reappear in the initial positions, creating an extremely
unpleasant effect for the user.
The solution has been to add duplicate elements (called "bis") to overcome this incon-
venience. The bis elements are used to fill the gap left by the main animation, basically
representing the elements coming from the next batch (in the case of tiles) or the previous
one (in the case of the pack) that in the final moment of the animation will be at the exact
point where the main elements will be at the beginning of the animation. In this way, in
the loop of the animation the impression is that the overall movement is perfectly contin-
uous.

As a first approach, in order to get a first familiarity with the problem of creating
curves, and above all to understand how to synchronize all the animated elements in an
exact way, a fixed animation (i.e. without being calculated according to configuration-
dependent variables) was created in order to understand what should be the basis from
which to start. As a basic case, the line with minimum parameters was chosen, with con-
veyor belt speed of 1 m/s.

After the creation of this reference animation, the next step has been to understand
how to introduce the parametrism in its creation within the editor code, and how to make

Chapter 3 3.4. Animation 47

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

the implementation of the above listed variations automatic from one code launch to an-
other.

In the algorithm for the creation of the animation, the units of measurement should
be millimeters for length and frames for time, so that they can be congruent with the
methodology used in the software. It is therefore advisable to convert the speed chosen
by the user during the first phase of parameter selection from m/s to mm/frame. This is
done according to the equation:

v [mm/frame] =
1000

24
v [m/s] (3.7)

During the construction of the animation of the tiles, it can be noticed that, once
established the movement that the carousel must have (based on the number of movers
selected) and the step that the tiles themselves must keep between them, the movements
performed by the entire batch will be exactly the same, only separated in time by a certain
number of frames, calculated through the relationship:

framegap =
steptiles
v [mm/frame]

(3.8)

Then, the key reasoning has been the choice to refer all the animation to a series of
key instants, essential for the synchronism of the various moving parts, while the rest of
the time values set in the curves would be nothing but fixed offsets from these reference
instants.
These fundamental frames are computed as follows:

• Grasping of the first tile (note that xspawn < 0):

framegrasp tile 0 = − xspawn

v [mm/frame]

(3.9)

• Arrival of nearest tile of the batch in grasping position:

framenearest tile arrived = framegrasp tile 0 − (framegap · (ntiles − 1)) (3.10)

• Time horizon of the animation (time-limit).

time horizon = frameall tiles put down + (24 · 3) (3.11)

After all these considerations and after several attempts, the final code for the creation
of the animation was completed (shown in Appendix C).

48 Chapter 3 3.4. Animation

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

3.5 G.U.I. Implementation
So far the methodology used for the construction of the complete line and its animation
has been presented, based on what are the specifications declared by the user before the
launch of the editor. But how are these input parameters actually collected?
In fact, it is necessary to have a functional G.U.I. (Graphical User Interface), so that the
user can enter the desired values for the configuration in an intuitive way. It is also equally
important to show in a clear way the limits within which to choose these values: in the
Nuova Sima catalogue, in fact, there are only a certain number of configurations for the
machines present in the line (EkoSort and ExtraPack), and it is therefore appropriate to
limit the choice of parameters only within these allowed configurations.

For the creation of the GUI at this stage, the program Qt Designer has been used.
This program, developed by Qt Company, provides a variety of intuitive tools for creating
dialog boxes starting from a blank page.

3.5.1 Qt And PySide2
Qt Designer is based on the PySide2 library, which is nothing more than a port in Python
language of the Qt platform.
As reported in [5], Qt is a cross-platform application development framework for desktop,
embedded and mobile. Supported Platforms include Linux, OS X, Windows, VxWorks,
QNX, Android, iOS, BlackBerry, Sailfish OS and others.

Qt is not a programming language on its own. It is a framework written in C++. A
preprocessor, the MOC (Meta-Object Compiler), is used to extend the C++ language with
features like signals and slots. Before the compilation step, the MOC parses the source
files written in Qt-extended C++ and generates standard compliant C++ sources from
them. Thus the framework itself and applications/libraries using it can be compiled by
any standard compliant C++ compiler.

In order to use the tools made available by Qt within a programming using the Python
language, the "Qt for Python" project was developed by the Qt Company, offering the
official Python bindings for Qt (under the library PySide2), so that Qt5 APIs can be used
in Python applications, and a binding generator tool (Shiboken2) which can be used to
expose C++ projects into Python.

Pyside2 is organized in modules [7], which permit to realize the most diversified func-
tions, such as the realization of charts and diagrams, up to audio, video and hardware
interactions.
The main modules contained in this library that can be used to build a Widget-based UI
(and so are the ones used in this application) are:

• Qt Core: Provides core non-GUI functionality, like signal and slots, properties,
base classes of item models, serialization, and more;

• Qt GUI: Extends QtCore with GUI functionality: Events, windows and screens,
OpenGL and raster-based 2D painting, as well as images;

Chapter 3 3.5. G.U.I. Implementation 49

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

Figure 3.14: Qt Designer page: main widget (editor parameters) - Widget Editing

• Qt Widgets: Provides ready to use Widgets for every application, including graph-
ical elements for UI.

3.5.2 G.U.I. With Qt Designer
Qt Designer then, as already mentioned, allows to bypass the creation of the dialog page
via code, using a drag and drop methodology of the various elements included in the
PySyde2 library directly inside a blank page. Once the layout is organized, the program
allows the direct handling of the signals associated in input and output to each element on
the page, thus organizing the internal interactions between them in an automatic way. Af-
ter completing the widget with signal management, it is possible to save the dialog page
in a .ui file, which can then be loaded within the editor code in Vred, before starting the
construction of the scene.

3.5.2.1 Layout Choice

Taking therefore figure 3.14 as reference, it can in fact be noticed how on the left is present
a complete list of the elements present in the library of PySide2, that can therefore be in-
serted inside the page.

First of all it is necessary to underline that, in the approach used by Qt, the main page
(that is an instance of the QDialog class) must be organized through layout combinations.
It is particularly important to focus attention on these layouts, as they are the ones that
make it possible to efficiently organize the elements on the page, and make sure that it
can adapt perfectly to the size desired and/or allowed during their use.
First of all, there are three main types of layouts, represented by the classes: QHBoxLay-
out, QVBoxLayout, QGridLayout. They represent, respectively, horizontal, vertical (col-
umn) and grid (table) layouts. These classes can then be nested into each other to create

50 Chapter 3 3.5. G.U.I. Implementation

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

more complex configurations.

Once the key role that layouts have in creating widgets has been understood, the next
step has been to populate the main dialog page.
The ultimate goal of this widget was, as already mentioned, to allow the user to go and
choose the desired parameters for the line. Before thinking about the layout, therefore,
it was appropriate to think about what these parameters were, in consideration of all the
procedures done so far. The final list is then:

• Conveyor: speed [m/s];

• EkoSort:

– number of movers;

– carousel diameter [mm];

• Extrapack:

– configuration (number of pallet stations per arch);

– total number of pallet stations;

– distance between pallet stations [mm].

Once the parameters were known, it was then considered how to make it intuitive for
the user to choose the parameters only within the boundaries specified in the catalog, and
how to present these limitations in a clear and readable way. To do this, the best and most
visually pleasing solution was to use QSliders and associated QSpinBoxes (the classes
coming from Qt library will be presented in section 3.5.1).

The choice of QSliders is due to the fact that first of all they allow to show imme-
diately what are the boundaries for the value associated with them (to simplify this, text
QLabels have been inserted below the extremes of each slider in order to make the limit
values explicit), and secondly it is impossible to choose values outside the permitted ones,
as the slider cannot move beyond the limits. It is also very intuitive to choose the value by
scrolling the slider with the mouse, and the insertion of graphical tick marks above and
below the slider helps to get an idea of the possible intermediate values.

However, it is of fundamental importance to be able to read exactly the value chosen
by scrolling the sliders, as well as the possibility of entering the value directly via key-
board, if desired. therefore, in a complementary way to the sliders, spinboxes have been
inserted, allowing both these operations to be carried out easily.

As previously written, one of the choice parameters is given by the configuration of
the Extrapack, based on how many pallet stations one wishes to have for each arch of the
machine (in general this choice is linked to the quantity of tile formats to be managed
by the line). Then, the other two parameters related to the Extrapack will see their limit
values change according to this choice (table 3.2):

Chapter 3 3.5. G.U.I. Implementation 51

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

Table 3.2: Parameters Boundaries: Configuration dependency

Configuration Parameter Min. Value Max. Value

2 Pallets per Arch Total N° of Pallets 4 20
Pallets Distance [mm] 500 2000

3 Pallets per Arch Total N° of Pallets 6 21
Pallets Distance [mm] 300 600

In order to manage this variation in the boundaries, the solution adopted was to use
four sliders and four spinboxes (with the limit values specified in table 3.2), and to alter-
nate between the two possible configurations using two QRadioButton.
Radio buttons are nothing but selectable buttons, which by default are mutually exclusive
(i.e. selecting one, the other - or the others - will be automatically deselected, so that
only one button at a time is checked). The user will then have to specify only the two
parameters related to the chosen configuration, while the other two will be irrelevant. The
code will then take care of the input, retaining only the values related to the selected con-
figuration.

After that, three QPushButtons (i.e. simple pressable buttons) were added at the bot-
tom of the page. They had then been associated with the launch of certain functions within
the code:

• Create: confirms parameters choice and launches scene editor;

• Go Back: returns to an eventual previous page (e.g. a welcome message);

• Close: closes current window, editor must then be restarted again.

3.5.2.2 Signal Management

After completing the layout of the widget, it has been necessary to go and connect the
input and output signals of the related elements in order to cooperate correctly when
viewing the page.

Qt Designer provides a section of its program dedicated exclusively to the editing of
signals and slots (figure 3.15). By simply dragging and dropping from one element to
another, it is possible to create connections between the signals that control them (graph-
ically represented by arrows).

First of all, the initial connections established have been those between the values of
the sliders and the values shown in the respective spinboxes. Since they are separate ele-
ments, this connection had to be imposed externally. An example is given in figure 3.16a,
where it can be seen that the valueChanged(int) output signal (which returns the assigned
value as an integer), relative to the horizontalSlider_n slider (i.e. the slider representing
the number of movers), is associated to the input signal setValue(int), which imposes the

52 Chapter 3 3.5. G.U.I. Implementation

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

Figure 3.15: Qt Designer page: main widget (editor parameters) - Signals/Slots Editing

integer value specified to the relative spinbox (spinBox_s).

After that, the connections inherent to the choice of the palletizer configuration have
been set. Indeed, in order to make it extremely clear which are the limit values of the
parameters that can be chosen in both cases, it is advisable that when the configuration is
chosen by checking the corresponding radio button, the sliders, spinboxes and all the text
labels related to it are enabled, while those related to the other configuration are disabled,
making it impossible for the user to interact with them.
An example can be found in figure 3.16c, where the output value clicked(bool) (which
returns a true boolean in case the button is clicked) related to radioButton_2arc (the radio
button associated to the configuration with 2 pallets per arch) is associated to the input sig-
nal setEnabled(bool), which requires the activation of the object horizontalSlider_p_2arc
(i.e. the slider representing the number of pallet stations in the respective configuration).
The dual reasoning was then applied in figure 3.16d, where the clicked(bool) signal of
radioButton_2arc was associated with the setDisabled(bool) signal, which requires the
deactivation of horizontalSlider_p_2arc (which represents the number of pallet stations
in the other configuration).

Finally, the last interaction that can be implemented at this level is the closing of the
page by clicking the Close push button. This is shown in figure 3.16b, where the output
value clicked() (which returns true value each time the button is pressed) is associated
with the close() variable of the page.

3.5.2.3 Code Implementation

Vred’s Python library (divided into VRED Python API v1 + v2) provides a series of
modules and classes for widget management. In this case, for the management of .ui files,
it has been used the class vrWidget.
In particular, the commands used were:

Chapter 3 3.5. G.U.I. Implementation 53

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

(a) Value of horizontalSlider_n →
value of spinBox_s

(b) Clicking pushButton → closing
page

(c) Clicking radioButton_2arc → en-
abling horizontalSlider_p_2arc

(d) Clicking radioButton_2arc→ dis-
abling horizontalSlider_p_3arc

Figure 3.16: Examples of signal connections

• __init__(object, uifile, className, parent, name):
The constructor of the vrVideoGrab class (inherited by vrWidget). Among the valid
sets of possible parameters, the application presented here uses vrWidget(uifile),
that creates a vrWidget object from a .ui xml file, created with Qt Designer.
Parameters:

– object: the QObject (type = vrQObject)

– uifile: the name of the .ui xml file (type = string)

– className: the name of the QT class (type = string)

– parent: the parent QObject (type = vrQObject)

– name: the name of the newly created widget (type = string)

• connect(sender, signal, function):
Connects widget signals with Python functions.
Parameters:

– sender: the name of the sender (type = string)

– signal: the name of the signal (type = string)

– function: the python function (type = boost::python::object)

• show(state):
Shows the widget.
Parameters:

– state: the state (type = integer): 1 = Show, 0 = Hide, -1 = Toggle

54 Chapter 3 3.5. G.U.I. Implementation

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

Therefore, in order to insert the widget in the editor it was necessary to modify its
entire behavior. In fact, as already specified, inside the main widget a push button had
been prepared to start the construction of the scene when pressed, while inside the widget
that notifies the interpenetration of the stations (already presented in section 3.1.2.5, fig.
3.5b) it has been inserted a push button to delete the stations in excess. This means that
the entire editor had to be enclosed within a function, and then connected to the pressure
of the related button.
Therefore, the "main" - a term used with freedom of expression, since programs in Python
do not have a real main, as happens for example with the C language - consists only in the
declaration of the default values of the editor parameters (which must match those shown
when the widget is first opened), the declaration of the widget, and finally the connection
of the functions to its elements.
Note that all widgets must be loaded immediately (and not only at the moment when they
will be used), and then the unnecessary ones must be hidden. They will then be shown
(and the others hidden) when appropriate, using the show(state) command.
So, the first part of the code became:

Table 3.3: Python code: GUI implementation

1 # −−−−− Default (global) variables:
2 conveyor velocity = 1 # conveyor speed [m/s]
3 n = 5 # movers
4 d = 2000 # carousel diameter [mm]
5 three per arc = False # 2 pallet stations per arc
6 p = 4 # pallet stations
7 palletDistance = 500 # distance between pallet stations [mm]
8

9 # −−−−− Create the GUI using the file .ui
10 widget = vrWidget("file path/MainWidget.ui")
11 widget2 = vrWidget("file path/Warning EkoSort.ui")
12

13 # −−−−− Connect python functions to the GUI elements
14 widget.connect("pushButton Create", "clicked()", mainEditor)
15 widget.connect("horizontalSlider n", "valueChanged(int)", nMovers Changed)
16 widget.connect("horizontalSlider p 2arc", "valueChanged(int)", nPallets Changed)
17 widget.connect("horizontalSlider p 3arc", "valueChanged(int)", nPallets Changed)
18 widget.connect("horizontalSlider d", "valueChanged(int)", diameter Changed)
19 widget.connect("horizontalSlider s", "valueChanged(int)", speed Changed)
20 widget.connect("horizontalSlider d 2arc", "valueChanged(int)", distance Changed)
21 widget.connect("horizontalSlider d 3arc", "valueChanged(int)", distance Changed)
22 widget.connect("radioButton 2arc", "clicked(bool)",

arc pallets changed 2perArc pressed)
23 widget.connect("radioButton 3arc", "clicked(bool)",

arc pallets changed 3perArc pressed)
24

25 widget2.connect("pushButton delete", "clicked()", delete ExcessStations)
26 widget2.connect("pushButton reopenEditor", "clicked()", reopen EditorWidget)
27 widget2.show(0) # hide warning widget

Finally, a series of functions have been created to impose the values specified within
the sliders or spinboxes. First of all, since it has already been specified that in the .ui file
the corresponding sliders and spinboxes should show the same value (as written in section
3.5.2.2), the values associated with the functions in the script (shown in table 3.3) are only

Chapter 3 3.5. G.U.I. Implementation 55

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

the ones of the sliders, in order to make the code lighter and better readable.
The reasoning followed was this: the global variables corresponding to the 6 parameters
of the line have been initialized to a default (corresponding to the smallest configuration),
and these values also correspond to those initially shown in the parameter selection wid-
get when loading it. Every time the value of a slider is changed (event notified by the
valueChanged(int) signal, which also returns the corresponding integer value), the related
variable is updated. When a radio button is pressed (event signalled by clicked(bool)),
the variables related to the number of pallet stations and their distance (referring to the
selected configuration) are reinitialized to the default values.
The implementation of these functions in the code is shown inside table 3.4.

56 Chapter 3 3.5. G.U.I. Implementation

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

Table 3.4: Python code: Widget functions

1 def arc pallets changed 3perArc pressed(value):
2 global p, palletDistance, three per arc
3 value bool = bool(value) # value bool == True when selected 3 pallets per arc
4 if not value bool:
5 p = 4
6 palletDistance = 500
7 else: # should never enter here, just in case
8 p = 6
9 palletDistance = 300

10 three per arc = value bool
11

12 def arc pallets changed 2perArc pressed(value):
13 global p, palletDistance, three per arc
14 value bool = bool(value) # value bool == True when selected 2 pallets per arc
15 if value bool:
16 p = 4
17 palletDistance = 500
18 else: # should never enter here, just in case
19 p = 6
20 palletDistance = 300
21 three per arc = not value bool
22

23 def diameter Changed(value):
24 global d
25 d = value
26

27 def distance Changed(value):
28 global palletDistance
29 palletDistance = value
30

31 def nMovers Changed(value):
32 global n
33 n = value
34

35 def nPallets Changed(value):
36 global p
37 p = value
38

39 def reopen EditorWidget():
40 widget2.show(0) # hide warning widget
41 widget.show(1) # show again editor widget (with old values saved)
42

43 def speed Changed(value):
44 global conveyor velocity
45 value float = float(value)
46 conveyor velocity = value float / 100

A useful feature of .ui files is the fact that they inherit the graphical style of the pro-
gram in which they are loaded (unless otherwise specified through the declaration of cus-
tom styleSheets), which makes their use extremely versatile and convenient. So, once the
editor is launched, the final widgets will look like Vred’s pages (figure 3.17).

Chapter 3 3.5. G.U.I. Implementation 57

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

Figure 3.17: Final appearance of the widget

3.6 Final Line Editor
At this point, what was obtained was a code able to load an externally created dialog
page, let the user choose the parameters of the line through it, to save them as variables,
and then to build the scene based on them.In fact, the script first builds the EkoSort, then
places in line the previous part (tile quality control) and the parts immediately following
it (EkoWrap and package transport). Then it builds the ExtraPack palletizer at the end of
the line.
The alignment of all the parts is done through the use of so-called "Link Spheres" that act
as hooking nodes for the various modules of which the line is composed.
After the construction of the line itself, the script takes care of making it "alive", creating
an animated demo that allows the user to have an idea of how the entire line works.

But how does the code launch actually happen? Vred provides the so-called Variant
Sets (presented in detail in section 4.2.1), i.e. entities that can enclose all types of trans-
formations and interactions of the scene, so that they can be called up easily and quickly.
It is also possible to assign a hotkey (keyboard shortcut) to each variant set, which allows
them to be launched at the simple pressure of a key (or combination of keys).

In particular, the variant sets allow to insert inside them scripts in Python, which will
be executed at each launch. It is therefore within a special variant set, called Line Editor,
that the final code of the editor has been inserted, since the idea behind it is precisely that
of the reusability of the scene: the code has been designed to be launched several times in
a row, always creating new configurations for the user who wants to touch the wide range
of customization of the line configuration, without having to open a new Vred scene each
time. Thanks to this powerful tool, a new configuration can be created at any moment,
simply by pressing a button and entering the necessary parameters.

58 Chapter 3 3.6. Final Line Editor

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

Figure 3.18: Final render of the line

Chapter 3 3.6. Final Line Editor 59

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

60 Chapter 3 3.6. Final Line Editor

Chapter 4

Three Lines Editor

4.1 Editor Evolution
After completing the development of the single line editor, it has been thought about how
to expand the scene, simultaneously making it more suitable for the set goal (i.e. in the
field of preselling). In addition to this, however, a second objective has been outlined:
that of being able to fully explore the possibilities offered by this tool, especially in the
field of interactions present in the scene, so as to have an idea of what could be possible
future developments, even for purposes other than those initially set.
In practice, the new objective has become that of carrying out a real exercise in style.

4.1.1 Algorithm Adjustment
The first problem faced in switching to a three-line editor was undoubtedly to adapt the
code to manage the parameters of each line, and to iterate its execution for a number of
times equal to the number of lines required by the user.
To do this, it has been decided to use global lists in Python to store parameters, effectively
replacing the global variables of the single line case. For the choice of the configuration,
a special virtual reality tool has been created (section 4.2.2.2), which provides an intuitive
interface to operate the selection, and then takes care of saving the lists in the form of
global variables (section 4.1.2.2).
Secondly, during its execution, the editor uses other global auxiliary lists to pass the
salient data from one function to another within the code.

Analyzing the main section of the final code (presented in Appendix D), it can be seen
how, in the first instance, it cleans up the scene, preparing it for reconstruction. First, it
resets the tools that involve the use of widgets (section 4.2.2), and deletes the menu utili-
ties (section 4.2.3 - Utilities Management), and then rebuilds them from scratch, keeping
them hidden (it will then be the user to open them if and when necessary). Then it deletes
all pre-existing animations and hides all annotations about the machines (section 4.2.3 -
Machine Annotations Management).

Once the preliminary cleaning phase is finished, according to the number of lines to
be created (saved in the global variable nLines), the code shows or hides the correspond-
ing lines (using the showNode and hideNode commands), then runs the single line code
within a for loop, whose iterations range from 1 to nLines (in the case of a single line, the

61

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

code will exit the loop after one iteration).

In particular, the main cycle of the editor has been separated into two parts: in the
first cycle the entire part concerning the positioning and management of geometries takes
place (including shadow computation to increase the realism of the simulation), as well
as the first part of the animation, the one that could be defined as main, within which the
time horizon of the animation is defined.

The second part of the editor cycle needs to have this value specified: it is in fact the
section about the animation of the so-called "bis elements", those inserted to give the illu-
sion of continuity in the animated loop (already shown in section 3.4). As the dimensions
and velocities of the lines vary, the time horizon of the animations related to each one
will obviously be different; however, the scene is of course unique, as therefore the global
animation must be unique. To overcome this problem, first the lines are created and all the
first parts of the animations are calculated. After that, all time horizons will be saved in the
all_time_horizons list. It will then be sufficient to take the highest value among them, and
use that as the reference time horizon for the global animation (second cycle of the editor).

Finally, in the last part of the main, the code takes care of calculating the shadows
projected on the ground by the lines present, updating the position of the annotations (so
that they always point to the referenced machines), and showing the widget tools. As a
last action, it calls the user in the main scene (in virtual reality), placing him/her on the
balcony.

4.1.2 Control Room
Before actually expanding the editor by increasing the number of existing lines, it has been
decided to insert a control room from which the exploration of the scene could have been
started. This room would have had the dual purpose of putting at ease an inexperienced
user, providing a familiar environment (similar to that of an office) where he could take
his first steps in virtual reality, becoming familiar with the headset and joysticks (not to be
underestimated in case of lack of previous experience), in addition to a display of statistics
regarding the selected lines, and a series of interactive tools for exploring online catalogs
(directly in VR) and creating the final output (see sections 4.2.3 and 4.2.2.4, respectively).

4.1.2.1 Version I - "Compact" Solution

In the first instance, it was decided to keep a "compact" version of the editor, by simply
inserting the control room inside the same scene used for the creation of the lines. So the
room was placed about 15 meters from the side of the first line.

In order to have a wider view of the functioning of the lines created by the editor, as
well as a more effective visual comparison between them, it has been thought to place
the control room high up, so that the user could enjoy a bird’s eye view of the rest of the
scene (figure 4.1b).

The control room has therefore been built: it is a room of 5 m x 5 m of walking floor,
and 3 meters in height. To make it pleasant to the eyes of the user, it has been modelled

62 Chapter 4 4.1. Editor Evolution

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

(a) Front view (b) 3/4 view

Figure 4.1: Control room rendering

like a real office, with furniture and equipment (computers, chairs, stationery...), as shown
in figure 4.1a. In addition to this, two interactive screens have been inserted: one showing
the configuration chosen for the lines present, the other for the creation of the output by
the user (discussed in detail in section 4.2).

Once the scene has been created from data specified on the PC screen, the user will
then wear the headset and access virtual reality.Once the simulation is started, he/she will
be located in the center of the control room, with his back to the lines. Once inside, the
user can freely explore the room. It will be immediately possible to notice the only win-
dow facing "outside": by touching it (or "shooting" on it through the joystick pointer) the
doors will open and the user will be free to move on the balcony, from which he/she will
enjoy a view from the top of the lines.
From the balcony, the user can then descend freely through the teleport managed by joy-
stick, or by using the views in the interactive menu attached to the hand.

The problem with this "compact" solution, however, resided in the fact that it was not
possible to launch the editor directly in VR, but it was necessary to remove the viewer
every time you wanted to recompute the lines, relaunch the program from the computer,
and only then return to virtual reality once the editor had finished creating the scene.
As is easily guessed, this made the use of this application extremely uncomfortable for
the user.

This problem was due to the fact that, during the computations and reconstruction of
the scene, if the headset was maintained on, all that could be seen would have been a fixed
frame flickering in an uncontrollable way, which would have led to headaches and nausea
for the user.

So the solution subsequently sought was to split the editor into two parts: on the one
hand the control room itself, from which to start the editor with a special interface (see
section 4.2.2.2) and on the other the main scene with the lines. The secondary scene with
the control room would also have been used as a waiting room when the lines were being
created in the main scene.
In this way, it would have been possible to do everything directly in virtual reality, without
ever having to remove the headset.

Chapter 4 4.1. Editor Evolution 63

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

(a) Front view (b) 3/4 view

Figure 4.2: Control room rendering (secondary scene)

(a) Front view (b) 3/4 view

Figure 4.3: Balcony rendering (main scene)

4.1.2.2 Version II - "Split" Solution

In order to move to the next version already introduced, the secondary scene had to be
created first. The result (shown in figure 4.2) has been a small scene, with a limited size
environment, hosting only the control room.

To reduce the sense of suffocation due to the small size of the space in which the user
could actually move, the walls of the room were made of "glass" (simply modifying the
walls through the library of materials provided by Vred) and the dome that encloses the
scene was replaced with a natural landscape (in this case a forest). These features also
provide a certain aesthetic pleasure, useful for a waiting room.

Subsequently, an element had to be introduced that would replace the control room in
the main scene: something that could show the interactive screens already set up in the
previous version, as well as permitting the already mentioned top view on the lines.

The solution found was to insert a balcony of 20 m x 3.5 m where the control room
was previously located. The screens have then been inserted along the wall that closes the
balcony. To facilitate the immersiveness of the scene and the view of the lines, the floor
was also made of glass (and the metal support underneath removed), so that the view of
the lines could be enjoyed at all times (figure 4.3).

Apart from the simple construction of the scenes, the next problem has been to create
a communication channel between one environment and another. Ideally, in fact, the

64 Chapter 4 4.1. Editor Evolution

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

operational flow would be the following:

1. Start simulation in virtual reality in the control room;

2. Selection of line parameters via interactive screen;

3. Transmission of line parameters to the scene containing the editor;

4. Line creation;

5. Notification by the main scene of completion of the lines;

6. Switching from one scene to another in virtual reality for the user.

As already seen in section 4.1.1, the only information to be exchanged is the number
of lines to be created and the lists concerning the respective parameters.
The interactive widget (shown in section 4.2.2.2) effectively takes care of the creation of
the lists, so the only problem is the actual transmission of this data.

The final solution makes use of a specific function provided by Vred. It is possible,
in fact, to go and enable a web interface within each scene, making it possible to govern
it through a web server. This function must be enabled, specifying the port to which the
scene in question is interfaced (the default port is 8888). Then, opening any web browser
and going to localhost:XXXX (specifying the exact port) the user will connect to Vred
through the internal web server.
If Python API is selected, a text box will appear where Python commands can be entered.
If Apply is selected, they will be sent to the open scene, basically controlling it externally.

A way was then sought to automatically write the lists created by the widget in form
of a character string, and with it form a series of commands (always in the form of a
string) to be inserted in the text box under the Python API for the main scene containing
the editor.
In order to do this, however, it was first necessary to find a method to automatically open
the two scenes to a predefined port, in order to make the whole process automatic (other-
wise it would be necessary to set everything manually each time).

The final method developed makes use of the commands provided by Vred for the
Windows command prompt [4].
In general, two methods of command execution are made available:

• -prepython “command1(); command2()” will execute any semicolon-separated
python command prior to loading the scene;

• -postpython “command1(); command2()” will execute any semicolon-separated
python command after to loading the scene.

In our case, the mode chosen was the second.
The available Python commands are:

• -wport “port” sets the port for the web interface;

• -screen “id” sets the id for the display:

Chapter 4 4.1. Editor Evolution 65

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

Table 4.1: Batch file: Open Editor Scenes

1 :: Open Lines part listening to port 63340
2 start "" "C:\Program Files\Autodesk\VREDPro−12.3\Bin\WIN64\VREDPro.exe" −console

−wport 63340 −postpython "load(’C:\Users\SelleGia\Documents\LINE EDITOR\
Editor Linee Multiple ONLY LINES.vpb’)"

3

4 :: Open Control Room part listening to port 63342
5 start "" "C:\Program Files\Autodesk\VREDPro−12.3\Bin\WIN64\VREDPro.exe" −console

−wport 63342 −postpython "load(’C:\Users\SelleGia\Documents\LINE EDITOR\
Control Room EDITOR.vpb’)"

6

7 PAUSE

– -1: default;

– 0: primary;

– 1: secondary;

• -software_opengl uses software gl for compatibility purposes;

• -no_opengl disables opengl and uses Ray Tracing;

• -nobanner disables the startup video banner;

• -fast_start defers some startup initializations to the first call of the respective func-
tion;

• -console displays console output.

In order to open the scenes at the desired ports, a batch file has been created to perform
the scene setting operations sequentially.
A batch file is a script file in DOS, OS/2 and Microsoft Windows. It consists of a se-
ries of commands to be executed by the command-line interpreter, stored in a plain text
file. A batch file may contain any command the interpreter accepts interactively and use
constructs that enable conditional branching and looping within the batch file, such as
IF, FOR, and GOTO labels. The term "batch" is from batch processing, meaning "non-
interactive execution", though a batch file may not process a batch of multiple data.

The final batch file is shown in table 4.1.
So in order to open the scenes correctly and start using them, simply open the .bat file,

and it will automatically open everything that is needed.

Now, the next step was to access the web server page that governed the two scenes.
To do this, the Python threading and requests libraries have been used.

Requests is an Apache2 licensed HTTP library written in Python for Human Beings.
Requests does all the work to implement HTTP/1.1 on Python - making it easy to in-
tegrate applications with web services. There is no need to manually add query strings
to URLs, or form-encoding POST data. Keep-alive and pooling HTTP connections are

66 Chapter 4 4.1. Editor Evolution

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

100% automatic, all thanks to urllib3, which is contained within Requests [8].

Thanks to this package, an http_request function has been created in Python. This
function consists of a requests.get that sets the string contained in the text box (initially
empty) under the Python API relative to the desired scene, drawing from the lists popu-
lated by the widget when selecting the parameters.

Then an instance of the Thread class (part of the threading package) is invoked.
As stated in the package documentation [9], The Thread class represents an activity that is
run in a separate thread of control. There are two ways to specify the activity: by passing
a callable object to the constructor, or by overriding the run() method in a subclass. No
other methods (except for the constructor) should be overridden in a subclass. In other
words, only override the __init__() and run() methods of this class. Once a thread object
is created, its activity must be started by calling the thread’s start() method. This invokes
the run() method in a separate thread of control. Once the thread’s activity is started, the
thread is considered "alive". It stops being alive when its run() method terminates – either
normally, or by raising an unhandled exception.
A thread can be flagged as a “daemon thread”. The significance of this flag is that the
entire Python program exits when only daemon threads are left. The initial value is in-
herited from the creating thread. The flag can be set through the daemon property or the
daemon constructor argument.

The class constructor and its arguments are defined as:
class threading.Thread(group=None, target=None, name=None, args=(), kwargs={},
*, daemon=None)

• group: should be None; reserved for future extension when a ThreadGroup class is
implemented.

• target: is the callable object to be invoked by the run() method. Defaults to None,
meaning nothing is called.

• name: is the thread name. By default, a unique name is constructed of the form
"Thread-N" where N is a small decimal number.

• args: is the argument tuple for the target invocation. Defaults to ().

• kwargs: is a dictionary of keyword arguments for the target invocation. Defaults to
{}.

• daemon: daemon A boolean value indicating whether this thread is a daemon thread
(True) or not (False). This must be set before start() is called, otherwise RuntimeEr-
ror is raised. Its initial value is inherited from the creating thread; the main thread
is not a daemon thread and therefore all threads created in the main thread default
to daemon = False. The entire Python program exits when no alive non-daemon
threads are left.

The instance of the Thread class that is created will have the previously declared
http_request function as its target.
After making this statement, it is specified that the thread will be a daemon, and it is

Chapter 4 4.1. Editor Evolution 67

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

started using the start() command.
By doing so, the lists of variables (with their correct values) will be declared in the editor
scene as global variables, effectively transmitting them from one scene to another.

The final Python code is shown in table 4.2.

Table 4.2: Python code: Control Room - Send Data Lists

1 from threading import Thread
2

3 import requests
4

5

6 def http request():
7 # −−−−− Write Commands to set lists and START EDITOR in localhost at port

63340 (port of the editor part)
8 requests.get(
9 "http://localhost:63340/pythonapi?value=nLines = " + str(nLines) + "\

nlist conveyor velocity = [" + str(list conveyor velocity[0]) + ", " + str(
list conveyor velocity[1]) + ", " + str(

10 list conveyor velocity[2]) + "]\nlist d = [" + str(list d[0]) + ", " +
str(list d[1]) + ", " + str(list d[2]) + "]\nlist n = [" + str(list n[0]) + ",
" + str(list n[1]) + ", " + str(

11 list n[2]) + "]\nlist n stat = [" + str(list n stat[0]) + ", " + str(
list n stat[1]) + ", " + str(list n stat[2]) + "]\nlist three per arc = [" + str
(list three per arc[0]) + ", " + str(

12 list three per arc[1]) + ", " + str(list three per arc[2]) + "]\nlist p
= [" + str(list p[0]) + ", " + str(list p[1]) + ", " + str(list p[2]) + "]\
nlist palletDistance = [" + str(

13 list palletDistance[0]) + ", " + str(list palletDistance[1]) + ", " +
str(list palletDistance[2]) + "]\nlist bool stations cancelled = [" + str(

14 list bool stations cancelled[0]) + ", " + str(
list bool stations cancelled[1]) + ", " + str(list bool stations cancelled[2])
+ "]\nexecutePython(’selectVariantSet(\"VR − Line Editor\")’)")

15

16

17 thread = Thread(
18 target=http request
19)
20

21 thread.daemon = True
22

23 thread.start()

68 Chapter 4 4.1. Editor Evolution

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

Figure 4.4: Editor’s Variant Sets module

4.2 VR Tools Implementation

4.2.1 Vred Variant Sets
In order to create programmed variations within the scene, Vred provides the "Variants"
entities. However, in many cases, a variant alone is not enough for managing complex
models; for example, where many different switch nodes are needed to represent a spe-
cific version of the loaded model. Variant Sets provides more functionality, allowing the
activation many states simultaneously. For configurators, logical connections can be gen-
erated [3].
In these cases, it is more convenient to use Variant Sets, or Vsets, to define multiple states
for different properties at same time.

The Variant Sets module is used to create and modify variant sets, as well as add
hotkeys [1]. As an example, the editor’s Variant Set module is shown in figure 4.4.
This module has a section listing every variant set of the scene on the left, tabs on the right,
and an Icon Bar at the bottom, which contains shortcut icons for creating a new variant,
duplicating the currently selected variant, and deleting the currently selected variant.

The list in the left section contains entries of already-defined variant sets. The context
menu that can be recalled with the rigt click of the mouse is used to create new sets, as
well as to perform other actions on its nodes. The tabs can be used to switch between the
different types. Different options are then available for variant sets (table 4.3).

Finally, several tabs are present allowing the Variant Set to be associated with a wide
range of actions (table 4.4).

Basically, the variant sets are the real key for all the tools that can be implemented
in the scene to interact with it. That’s why a lot of use has been made of them inside
the editor (consider that the main code of the editor itself is enclosed within the variant
set DESKTOP - Line Editor and VR - Line Editor, under the "script" tab). The tools that
involve the use of these entities will be presented in section 4.2.3.

Chapter 4 4.2. VR Tools Implementation 69

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

Table 4.3: Variant Sets module - Context menu options

New Set: Creates a variant set.
New Group: Creates groups to organize all variant sets that behave

like folders. Variant sets can be dragged into any group
or removed from a group by dragging it on its parent
folder. It is not possible to recursively store folders
within folders.

Close Groups: Collapses the list of groups in the Variant Sets dialog
box.

Select: Selects and applies the current variant sets.
Select Defaults: Reverts to the previously applied variant sets.

Duplicate: Creates a copy of the selected variant sets.
Rename: Enables the renaming of the selected variant sets.

Delete: Deletes the selected variant sets.
Clear: Removes all Variant Sets and groups.

Optimize Sets: Optimizes and deletes all missing connections within
the variant sets.

Remove Empty Sets: Removes all links (parts) of the variant sets not assigned
to anything in the current scene.

Create Preview: Renders a preview and automatically assigns an icon to
the selected variant set.

Show/Hide Geometry: Shows or hides nodes dragged from the Scene Graph
into the Show/Hide tab.

Show Connected Variants: Selects the variants used in the variant set.

4.2.2 Widget Tools
4.2.2.1 Building Widgets With PySide2

For the realization of the interactive tools inside the scene in virtual reality that require the
use of interactive screens, it has been necessary to use the functions and classes provided
by the Python PySide2 library (already introduced in section 3.5.2.1).
Unlike the previous single line case, where interactions were done through keyboard and
pc screen, and where widgets could be realized externally through Qt Designer, in this
new case widgets had to be necessarily created at the opening of the scene (and only at
that moment) via a script ad-hoc.
To do this, the script containing the creation of these widgets was inserted and saved in-
side the script editor of the scene containing the control room. This is because all the code
contained within it is executed automatically when the part is opened. To execute it again,
the operation should be executed by hand.

First of all, the construction of each widget starts from the declaration of an instance
of the QtWidget class [6]. The widget is the atom of the user interface: it receives mouse,
keyboard and other events from the window system, and paints a representation of itself
on the screen. Every widget is rectangular, and they are sorted in a Z-order. A widget is
clipped by its parent and by the widgets in front of it.

70 Chapter 4 4.2. VR Tools Implementation

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

Table 4.4: Variant Sets module - Tabs

General: Hotkey - Where hotkeys for switching between variant sets can be de-
fined. The first box is for a modifier key, such as Alt or Ctrl, while the
second is for selecting an alphanumeric character for the shortcut. The
second field is required to assign the hotkey (for example, a letter or
sign);
Comment - Adds a custom comment to each variant set.
Screenshot (Go button) - Creates a quick rendering of the Render Win-
dow, using the currently selected variant set and render settings. VRED
asks for a location and format to save the image, which is an 800x600
bitmap image, by default.

Geometry: Creates or modifies the geometry variants. To create a geometry variant,
drag a geometry node or group node to the right section in the Geometry
tab.

Transform: Creates or modifies the transform variants. To add a transform variant to
the variant set, drag a node with transform variants to the right section
in the Transform tab. You can also drag a variant from the Transform
dialog or from the Variants dialog to that section.

Material: Creates or modifies the material variants. To create a material variant,
drag a material node to the right section in the Material tab.

Light: Creates or modifies the light variants. To create a light variant set, drag
a light variant to the right section in the Light tab.

View: Creates or modifies the Viewport variants. Viewport variants can be set
within the View tab. Drag a previously created view into the Camera
Editor to the right side of the View tab.

Sceneplate: Creates or modifies the sceneplate (frontplates and backplates) variants.
To create a new sceneplate variant set, a sceneplate can be dragged from
the Sceneplate Editor to the right side of the Sceneplate tab. If this
variant set is selected, the sceneplate will be set to active. If another
variant set is activated, the new sceneplate will be set to active. It is
possible to add multiple sceneplates to one variant set. It is also possible
to add one sceneplate to multiple variant sets.

Animation: Creates or modifies the animation variants. To create an animation vari-
ant set, drag an animation from the Clip Maker (Clips icon) to the right
side of the Animation tab.

Analyzer: Lets the user enable, disable, or modify clipping planes within a variant
set.

Script: For advanced users, each variant set can contain a Python script, ex-
ecuted automatically, each time the variant set is activated, whether
through the Variant Set module, a hotkey, or another script.

Values: Add generic key/value pairs to any variant set.
Show/Hide: Shows or hides a list of Scene Graph nodes, based on whether Show

Geometry or Hide Geometry was selected in the Variant Set context
menu.

Chapter 4 4.2. VR Tools Implementation 71

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

Once a widget has been declared, it must be initialized. First, a style can be declared
using the setStyleSheet command, to dictate the general lines that are inherited from all
the elements inside the widget (except specific declarations, made at a lower level), such
as the chosen font, and the size of the text elements.
After that, it is possible to declare all the elements internal to the widgets to be created.

In general, the first (and likewise the most immediate) elements inserted are the purely
textual elements, created through the QLabel class. These labels are used for displaying
text or an image. No user interaction functionality is provided.
By default, labels display left-aligned, vertically-centered text and images, where any tabs
in the text to be displayed are automatically expanded. However, the look of a QLabel
can be adjusted and fine-tuned in several ways.In particular, the positioning of the content
within the QLabel widget area can be tuned with setAlignment() and setIndent().

Figure 4.5: QPushButton

Right after the labels, the QPushButton (figure 4.5), or command button, is perhaps
the most commonly used widget in any graphical user interface. Push (click) a button to
command the computer to perform some action, or to answer a question. A command
button is rectangular and typically displays a text label describing its action.
If the button is disabled, the appearance of the text and icon will be manipulated with
respect to the GUI style to make the button look “disabled”.
A push button emits the signal clicked() when it is activated by the mouse, the Spacebar or
by a keyboard shortcut. Connecting a function to this signal means performing it as soon
as it is clicked (all specific functions performed by the widgets in the editor are shown
in the immediately following sections). Push buttons also provide less commonly used
signals, for example pressed() and released().
Command buttons in dialogs are by default auto-default buttons, i.e., they become the
default push button automatically when they receive the keyboard input focus. A default
button is a push button that is activated when the user presses the Enter or Return key in
a dialog. This can be changed by the command setAutoDefault().

Figure 4.6: QLineEdit

To receive and display a text input, QLineEdit entities are used (fig. 4.6).
The text can be changed with setText() or insert(), and then it can be retrieved with text();
the displayed text (which may be different) is retrieved with displayText(). Text can be
selected with setSelection() or selectAll(), and the selection can be cut(), copy()ied and
paste()d. The text can be aligned with setAlignment(). In case the lineEdit requires to be
brought into read mode, simply use the command setReadOnly(bool)
When the text changes the textChanged() signal is emitted; when the text changes other

72 Chapter 4 4.2. VR Tools Implementation

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

than by calling setText(), the textEdited() signal is emitted; when the cursor is moved the
cursorPositionChanged() signal is emitted; and when the Return or Enter key is pressed
the returnPressed() signal is emitted.
When editing is finished, either because the line edit lost focus or Return/Enter is pressed
the editingFinished() signal is emitted.

Figure 4.7: QRadioButton

For applications where the user is expected to make a choice between several possible
options, radio buttons becomes of fundamental importance (fig. 4.7).
A QRadioButton is an option button that can be switched on (checked) or off (unchecked).
Radio buttons typically present the user with a “one of many” choice. In a group of radio
buttons, only one radio button at a time can be checked; if the user selects another button,
the previously selected button is switched off.
Radio buttons are auto-exclusive by default. If autoExclusive is enabled, radio buttons
that belong to the same parent widget behave as if they were part of the same exclusive
button group. If multiple exclusive button groups for radio buttons that belong to the same
parent widget are needed, they have to be put into a QButtonGroup.
Whenever a button is switched on or off, it emits the toggled() signal. Connect to this
signal if an action has to be triggered each time the button changes state. Use isChecked()
to see if a particular button is selected.
Just like QPushButton, a radio button displays text, and optionally a small icon. The icon
is set with setIcon(). The text can be set in the constructor or with setText().

Figure 4.8: QProgressBar

A progress bar is used to give the user an indication of the progress of an operation.
The progress bar uses the concept of steps. It is set up by specifying the minimum and
maximum possible step values, and it will display the percentage of steps that have been
completed when it is later given the current step value. The percentage is calculated by
dividing the progress (value()−minimum()) divided by maximum()−minimum().
The minimum and maximum number of steps can be specified with setMinimum() and
setMaximum(). The current number of steps is set with setValue(). The progress bar can
be rewound to the beginning with reset().

It can therefore be seen how the PySide2 library offers a great number of possibilities
for the creation of widgets (those presented here are just some of the countless elements
made available), and is therefore an essential tool for any application that provides a
Graphic User Interface.
Now the widgets specifically created in the editor will be shown more closely.

Chapter 4 4.2. VR Tools Implementation 73

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

(a) Choice: number of lines (b) Choice: line parameters

(c) Loading screen (d) Editor restart

Figure 4.9: Editor parameters widget

4.2.2.2 Editor Parameters Choice

The final widget for the selection of parameters within the editor is shown in figure 4.9.
First, it can be noticed that it consists of two secondary widgets. The first (figure 4.9a)
is used to operate the choice on the number of lines that the user would like to see repre-
sented in the scene, while the second (figure 4.9b) is used to select the parameters of each
single line.

To achieve this result, it has been necessary to set the two separate widgets, and then
merge them into a widget on the upper level. Then, the second widget is initially hidden
to leave only the first one visible. During the selection process, the reverse operation is
performed to let the second one appear. It is important to notice that only the second sub
widget is used for each line: when switching to the selection of the next (or previous)
lines, the elements concerning one or the other line are shown or hidden. For instance,
note the label that acts as title for the widget ("First Line" in this case): there are actually
four labels in that layout cell: "Your Line", "First Line", "Second Line" and "Third Line".
Depending on the case, only one of the four will be shown (hiding the others), thus giving
the illusion of scrolling between different widgets. Similarly, between the buttons at the
bottom, the same method is applied to the pushButton "Next" (in figure) and "Create",
which is shown (to the detriment of the other) during the selection of the parameters of
the last line.

Lastly, to facilitate the use of the control room separated from the main scene, two
additional widgets have been inserted: one that remains active during the loading of the
lines in the main scene (figure 4.9c), and the other to allow the editor to be reset if neces-
sary (figure 4.9d).

It can be easily noticed that the widget has changed with respect to the one realized

74 Chapter 4 4.2. VR Tools Implementation

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

through Qt Designer (see section 3.5.1, figure 3.17): this is because, after various tests, it
has been observed that in virtual reality the selection of parameters using sliders is inac-
curate to say the least and difficult to manage. This is why it has been decided to perform
the selection only through a virtual keypad prepared ad hoc. In order to be able to give a
graphic idea of the boundaries for the various possibilities of choice of parameters, some
progressBars have been inserted and they are updated at each change of the parameter.

Finally, it can be observed the addition of the "expected number of stations" section
below the carousel diameter selection. In this lineEdit over which the user has no direct
control, a preview of the number of tile stacking stations is automatically written accord-
ing to the carousel diameter and the number of movers selected. This method has been
designed to replace the resolution method used to solve the interpenetration between the
geometry of the stations and the conveyor belt (introduced in section 3.1.2.5), making it
more immediate and free from any further intervention by the user.

Now it is opportune to go and analyze the various functions that are implemented
within the widget to make the operation of this tool possible.

Chapter 4 4.2. VR Tools Implementation 75

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

Open Parameters Widget

As a first step, the user must select how many lines he wants the editor to build. So
the first widget shown is the one in figure 4.9a. The choice is made through the selection
of one of the three pushButton present.
When pressing the Continue button, the chosen value must be saved in the global variable
nLines.

Table 4.5: Python code: Open parameters widget (1)

1 # −−−−−−−−−− SIGNALS AND SLOTS −−−−−−−−−−
2 self.line selector widget.button continue.clicked.connect(self.

open parameter widget)
3

4 # −−−−−−−−−− FUNCTIONS −−−−−−−−−−
5 @Slot()
6 def open parameter widget(self):
7 global nLines
8

9 if self.line selector widget.radio 1.isChecked():
10 nLines = 1
11 elif self.line selector widget.radio 2.isChecked():
12 nLines = 2
13 elif self.line selector widget.radio 3.isChecked():
14 nLines = 3
15 else: # Should never enter here
16 print("−−−−− ERROR: nLines is not set properly −−−−−")
17

18 # −−−−− Re−declare default GLOBAL lists
19 global list conveyor velocity, list n, list d, list three per arc, list p,

list palletDistance, list n stat, list bool stations cancelled
20

21 list conveyor velocity = [1.0, 1.0, 1.0] # conveyor speed [m/s]
22 list n = [5, 5, 5] # movers
23 list d = [2000, 2000, 2000] # carousel diameter [mm]
24 list three per arc = [False, False, False] # 2 pallet stations per arc
25 list p = [4, 4, 4] # number of pallet stations
26 list palletDistance = [500, 500, 500] # distance between pallet stations [mm]
27 list n stat = [0, 0, 0]
28 list bool stations cancelled = [False, False, False] # default values

After that, it is necessary to initialize the starting lists already mentioned in section
4.1.1 to the default values.
Finally, the choice of the number of lines is hidden and the parameter selection widget is
shown, setting the right title and the visibility of the Next or Create button, based on the
value of the nLines variable. The values stored within the progressBar are also reset.

76 Chapter 4 4.2. VR Tools Implementation

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

Table 4.6: Python code: Open parameters widget (2)

1 # −−−−− Prepare parameters selection widget
2 if nLines > 1: # Need to build more than 1 line
3 self.parameters selector widget.label title.setText("First Line")
4

5 # nLines − 1 is used to give the boundary!
6 # EXAMPLE: nLines == 2 (must build 2 lines) −−−> (nLines − 1) == 1
7 # If current line number is 0, activate "NEXT" button
8 # If current line number is 1 (equal to nLines − 1), activate "CREATE" button

(last parameter widget to be shown)
9 if self.parameters selector widget.line number < (nLines − 1):

10 self.parameters selector widget.button next.setVisible(True)
11 self.parameters selector widget.button create.setVisible(False)
12 else:
13 self.parameters selector widget.button next.setVisible(False)
14 self.parameters selector widget.button create.setVisible(True)
15

16 self.parameters selector widget.progressBar s.setValue(100)
17 self.parameters selector widget.progressBar n.setValue(5)
18 self.parameters selector widget.progressBar d.setValue(2000)
19 self.parameters selector widget.radioButton 2arc.setChecked(True)
20 self.parameters selector widget.enable 2arc choice()
21 self.parameters selector widget.progressBar p 2arc.setValue(4)
22 self.parameters selector widget.progressBar dist 2arc.setValue(500)
23 self.parameters selector widget.progressBar p 3arc.setValue(6)
24 self.parameters selector widget.progressBar dist 3arc.setValue(300)
25

26 # −−−−− Show parameters selection widget
27 self.line selector widget.setVisible(False)
28 self.parameters selector widget.setVisible(True)

Chapter 4 4.2. VR Tools Implementation 77

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

Update lineEdit

Each time the value inside the progress bar is changed (since that is the numerical
value that is then saved in the parameter lists), immediately the text string shown inside
the lineEdit corresponding to the considered parameter must be updated so that the value
and string are consistent.

Table 4.7: Python code: Update lineEdit

1 class WidgetLineParameters(QWidget):
2 def init (self):
3 QWidget. init (self)
4

5 # −−−−− Progress Bar
6 self.progressBar s = QProgressBar()
7

8 # −−−−− lineEdit + Groups
9 self.lineEdit s = QLineEdit("1.0")

10

11 # −−−−−−−−−− SIGNALS AND SLOTS −−−−−−−−−−
12 self.progressBar s.valueChanged[int].connect(self.update lineEdit s)
13

14 # −−−−−−−−−− FUNCTIONS −−−−−−−−−−
15 @Slot()
16 def update lineEdit s(self, value):
17 float value = float(value)
18 self.lineEdit s.setText(str(float value / 100))

78 Chapter 4 4.2. VR Tools Implementation

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

Update Expected Number of Stations

In order to give an estimate of the number of stations - based on the number of movers
and the diameter of the carousel inserted in the choice of configuration - an empirical study
was first carried out with the old version of the on-screen editor, observing in which cases
it was actually appropriate to remove two or more stations from the initial configuration.
The results were then included in a global list of tuples (limit_diameter_list). The index
of the list elements refers to the number of movers selected: e.g. index 6 - the 7th element
of the list, since it starts counting from 0 - refers to the choice of 6 movers.
The tuples included in the list are made of four elements, organized in this way:

0. the default number of stations for that number of movers;

1. the limit diameters for which, if the carousel diameter is under the value, 2 addi-
tional stations must be cancelled;

2. the default Starting Value (assuming selected diameter is above the 2nd element -
index 1 - of the tuple). E.g: if it’s 2, the first station to be cloned will be Station2;

3. the default Limit Stat value (assuming selected diameter is above the 2nd element
- index 1 - of the tuple). E.g: if it’s 5, the last station to be cloned will be Station4
(LimitStat− 1).

Whenever the values of lineEdit concerning the number of movers or the diameter of
the carousel are updated, the function saves both these values (variables n_mov and diam)
and performs a check within the list of tuples. It is necessary to access the list at the index
given by n_mov, and check the second element (given by index 1), using the command
limit_diameter_list[n_mov][1]. If this value is not zero, and if the selected diameter is
less than the same value, then 2 more stations must be eliminated than those provided in
the tuple (in first position, with index 0). In all other cases, instead, the expected number
of stations is equal to the first element of the tuple.
Finally, the value of the lineEdit is set by transforming the number of stations into a string.

Chapter 4 4.2. VR Tools Implementation 79

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

Table 4.8: Python code: Update expected n° of stations

1 # −−−−−−−−−− LIMIT LIST −−−−−−−−−−
2 limit diameter list = [(0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0),
3 (0, 0, 0, 0), (4, 0, 1, 5), (5, 2400, 1, 6),
4 (4, 0, 2, 6), (5, 0, 2, 7), (6, 0, 2, 8), (7, 0, 2, 9),
5 (8, 0, 2, 10), (9, 3000, 2, 11), (10, 3500, 2, 12),
6 (9, 0, 3, 9, 12), (10, 0, 3, 13), (11, 0, 3, 14)]
7

8 # −−−−−−−−−− SIGNALS AND SLOTS −−−−−−−−−−
9 self.progressBar n.valueChanged[int].connect(self.update line edit stations)

10 self.progressBar d.valueChanged[int].connect(self.update line edit stations)
11

12 # −−−−−−−−−− FUNCTIONS −−−−−−−−−−
13 @Slot()
14 def update line edit stations(self):
15 global limit diameter list, list bool stations cancelled
16

17 n mov = self.progressBar n.value()
18 diam = self.progressBar d.value()
19

20 # checking the SECOND (1) element in the n−th tuple of the list (limit
diameter)

21 # If it is != 0 (which means there is a limit diameter) and the diameter
selected is BELOW this limit, 2 more stations must be cancelled

22 if limit diameter list[n mov][1] != 0 and diam < limit diameter list[n mov][1]:
23 stations expected = limit diameter list[n mov][0] − 2 # using the FIRST

(0) element in the n−th tuple of the list (expected number of stations)
24 list bool stations cancelled[self.line number] = True
25 else:
26 stations expected = limit diameter list[n mov][0]
27 list bool stations cancelled[self.line number] = False
28

29 self.line edit.setText(str(stations expected))

80 Chapter 4 4.2. VR Tools Implementation

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

Show Configuration Choice Elements

Every time the desired configuration for the palletizing machine is chosen (2 or 3 pal-
lets per arch) through the two push buttons on the bottom left, the elements related to the
corresponding choice must be enabled (and will therefore become interactive), while the
others will be disabled (in figure 4.9a it can be seen how the elements related to the first
configuration are disabled).
To do this, when declaring the elements of the widget, those related to one or the other
configuration are saved in two lists: list_widgets_2_for_arc and list_widgets_3_for_arc.
When selecting the first configuration, for example, for each element of the first list
the command setEnabled(True) is given, while for each element of the second setEn-
abled(False) is given.

Table 4.9: Python code: Show configuration choice elements

1 # −−−−−−−−−− SIGNALS AND SLOTS −−−−−−−−−−
2 self.radioButton 2arc.clicked.connect(self.enable 2arc choice)
3

4 # −−−−−−−−−− FUNCTIONS −−−−−−−−−−
5 @Slot()
6 def enable 2arc choice(self):
7 for item in self.list widgets 2 per arc:
8 item.setEnabled(True)
9

10 for item in self.list widgets 3 per arc:
11 item.setEnabled(False)
12

13 global list three per arc
14 list three per arc[self.line number] = False

Chapter 4 4.2. VR Tools Implementation 81

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

Round Parameter Value

When the value of a parameter is updated, it must be rounded accordingly (e.g. the
diameter of the carousel is rounded to hundreds of centimetres).
To do this, firstly the new value set for the corresponding QProgressBar must be read
through the value() command, then the rounding is done through the round() command:
the value and the number of positions to be rounded are passed to the command (for ex-
ample: 2 = rounding to tenths, -2 = rounding to hundreds).
Then it is sufficient to set the rounded value in the progress bar using the setValue() com-
mand.

Table 4.10: Python code: Round parameter value

1 # −−−−−−−−−− SIGNALS AND SLOTS −−−−−−−−−−
2 self.horizontalSlider s.valueChanged.connect(self.round speed)
3

4 # −−−−−−−−−− FUNCTIONS −−−−−−−−−−
5 @Slot()
6 def round diameter(self):
7 current value = self.lineEdit d.value()
8 rounded value = round(current value, −2)
9 self.lineEdit d.setValue(rounded value)

82 Chapter 4 4.2. VR Tools Implementation

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

Enable Parameter Editing

As already said, in the passage from the selection of the parameters on screen to the
one in virtual reality, the only mode allowed for the modification of the parameters has
become the use of the numeric keypad implemented inside the widget.
By pressing the Edit button next to the parameter concerned (if it is not already checked),
it will be selected, deselecting all the others. At this point, all the elements of the numeric
keypad (which was previously disabled and therefore not interactive) will be activated.
The "screen" of the keypad will display a message regarding the selected parameter (for
example, in the case of the conveyor speed, the message will be "Enter Speed [m/s]").
If, on the other hand, the Edit key had already been selected, a press would simply dese-
lect it and erase the message shown by the keypad screen.

Table 4.11: Python code: Enable parameter editing

1 # −−−−−−−−−− SIGNALS AND SLOTS −−−−−−−−−−
2 self.button edit s.clicked.connect(self.enable edit speed)
3

4 # −−−−−−−−−− FUNCTIONS −−−−−−−−−−
5 @Slot()
6 def enable edit speed(self):
7 if self.button edit s.isChecked():
8 self.display line edit.setDisabled(False)
9

10 # −−−−− Uncheck other edit buttons
11 self.button edit n.setChecked(False)
12 self.button edit d.setChecked(False)
13 self.button edit p 2arc.setChecked(False)
14 self.button edit p 3arc.setChecked(False)
15 self.button edit dist 2arc.setChecked(False)
16 self.button edit dist 3arc.setChecked(False)
17

18 self.display line edit.setText("Enter Speed [m/s]")
19 else: # button edit s is not checked
20 self.display line edit.setDisabled(True)
21 self.display line edit.setText("")

Chapter 4 4.2. VR Tools Implementation 83

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

Type a Character

In order to write a character on the keyboard screen, this must first be enabled (an Edit
button must therefore be checked).
If the screen is still showing one of the default messages (all saved in the list_initial_messagges
list in order to cross-check them), when a key containing a character is pressed, the mes-
sage must be deleted and replaced with the character in question.
If there are other characters typed previously, the text string must be saved (in the variable
current_text), the character must be added, and the merge must be shown on screen using
the command setText(current_text + "char").

Table 4.12: Python code: Type a character

1 # −−−−−−−−−− SIGNALS AND SLOTS −−−−−−−−−−
2 self.button 1.clicked.connect(self.type 1)
3

4 # −−−−−−−−−− FUNCTIONS −−−−−−−−−−
5 @Slot()
6 def type 1(self):
7 current text = self.display line edit.text()
8 if self.display line edit.isEnabled():
9 if current text in self.list initial messagges: # Initial message

10 self.display line edit.setText("1")
11 else:
12 self.display line edit.setText(current text + "1")
13 else:
14 pass

84 Chapter 4 4.2. VR Tools Implementation

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

Delete a Character

In order to delete a character, the procedure is dual to the writing. If one of the pre-
defined messages is present on the screen, it must simply become free of text when the
backspace key is pressed. If a text string is already present, only the last character must
be deleted each time the key is pressed. This is possible by using the command next_text
= current_text[:-1].

Table 4.13: Python code: Delete a character

1 # −−−−−−−−−− SIGNALS AND SLOTS −−−−−−−−−−
2 self.button backspace.clicked.connect(self.delete char)
3

4 # −−−−−−−−−− FUNCTIONS −−−−−−−−−−
5 @Slot()
6 def delete char(self):
7 current text = self.display line edit.text()
8 if current text in self.list initial messagges: # Initial message
9 self.display line edit.setText("")

10 else:
11 next text = current text[:−1]
12 self.display line edit.setText(next text)

Chapter 4 4.2. VR Tools Implementation 85

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

Confirm Value

After writing the desired value on the keypad screen, obviously it is necessary to make
this change effective by sending the value to the progress bar of the parameter in question
(this element is the one that keeps the value, and is consulted at the time of filling the lists
for the editor code).

To do this, first of all it is necessary to save the text string stored inside the display
using the text() command. Then, only when the keypad is enabled (i.e. any Edit key
is checked) and the string is not one of the initial messages, the string is converted into
the corresponding numeric value. Then a second check is done: if the value is lower or
higher than the maximum limit allowed for the parameter in question, the corresponding
progress bar will be assigned the lower or upper limit value, respectively. If the value is
within the limits, it is assigned directly to the progress bar via the setValue() command.
Finally, the Edit button for the parameter is deselected.
To know which parameter corresponds to the choice made, as many cases as the number
of Edit buttons have been entered. In table 4.14 only the case of the conveyor speed is
presented as an example.

Table 4.14: Python code: Confirm value

1 # −−−−−−−−−− SIGNALS AND SLOTS −−−−−−−−−−
2 self.button enter.clicked.connect(self.confirm value)
3

4 # −−−−−−−−−− FUNCTIONS −−−−−−−−−−
5 @Slot()
6 def confirm value(self):
7 value chosen = self.display line edit.text()
8 if self.display line edit.isEnabled() and value chosen not in self.

list initial messagges:
9 float value chosen = float(value chosen)

10

11 if self.button edit s.isChecked():
12 speed value converted = int(round(float value chosen * 100, 0))
13

14 if speed value converted <= self.progressBar s.minimum():
15 self.progressBar s.setValue(self.progressBar s.minimum())
16 elif speed value converted >= self.progressBar s.maximum():
17 self.progressBar s.setValue(self.progressBar s.maximum())
18 else: # Value ok
19 self.progressBar s.setValue(speed value converted)
20

21 self.button edit s.setChecked(False)
22 else:
23 pass
24

25 self.display line edit.setText("")
26 self.display line edit.setDisabled(True)
27 else:
28 pass

86 Chapter 4 4.2. VR Tools Implementation

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

Next Line Widget

After the selection of the parameters, when the Next button is pressed, the lists related
to the line considered in the widget must be updated. To do this, it will simply read the
value stored in the progress bar and save it in the lists, in the position regarding the con-
sidered line (0 = first line, 1 = second line, 2 = third line). For this purpose, each widget
line shift updates the line_number value, initialized by default to 0.

Table 4.15: Python code: Next line widget (updating lists)

1 # −−−−−−−−−− SIGNALS AND SLOTS −−−−−−−−−−
2 self.button next.clicked.connect(self.next line widget)
3

4 # −−−−−−−−−− FUNCTIONS −−−−−−−−−−
5 @Slot()
6 def next line widget(self):
7 global nLines, list conveyor velocity, list n, list d, list three per arc,

list p, list palletDistance, list n stat, list bool stations cancelled
8 # −−−−− Update Lists
9 list conveyor velocity[self.line number] = float(self.progressBar s.value() /

100)
10 list n[self.line number] = self.progressBar n.value()
11 list d[self.line number] = self.progressBar d.value()
12 # −−−−− three per arc is updated when selecting radiobuttons
13 if list three per arc[self.line number]: # 3 per arc chosen
14 list p[self.line number] = self.progressBar p 3arc.value()
15 list palletDistance[self.line number] = self.progressBar dist 3arc.value()
16 else: # 2 per arc chosen
17 list p[self.line number] = self.progressBar p 2arc.value()
18 list palletDistance[self.line number] = self.progressBar dist 2arc.value()
19 list n stat[self.line number] = int(self.line edit.text()) # Number of

stations expected

First, it updates the line_number value, increasing it by 1. If the resulting value is the
same as the last line (specified in nLines), the Next button must be hidden and the Create
button must be shown, as the one that will be shown will be the last widget before the
actual launch of the editor.
After that, the title will need to be updated according to the line number, using the set-
Text() command.
Finally, a value reset procedure has been inserted: in case the user goes back and forth
between the widgets, the program should remember the values already inserted. That’s
why when loading the widget of the next line, instead of resetting the default values, the
values coming from the lists in the line_number position are read. They are in fact initial-
ized to the default values, and differ from them only if a choice has already been made
and the user has returned back and forth through the widgets.

Chapter 4 4.2. VR Tools Implementation 87

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

Table 4.16: Python code: Next line widget (preparing widget)

1 # −−−−− Prepare next "fictitious" widget: increase value of line number (to
initialise the widget to represent next line)

2 self.line number = self.line number + 1
3 if self.line number < (nLines − 1):
4 self.button next.setVisible(True)
5 self.button create.setVisible(False)
6 else:
7 self.button next.setVisible(False)
8 self.button create.setVisible(True)
9 # −−−−− Adjust title

10 if self.line number == 1: # Second line widget
11 self.label title.setText("Second Line")
12 elif self.line number == 2: # Third line widget
13 self.label title.setText("Third Line")
14 # −−−−− Set values (useful if user goes back and forth between widgets)
15 self.progressBar s.setValue(list conveyor velocity[self.line number] * 100)
16 self.progressBar n.setValue(list n[self.line number])
17 self.progressBar d.setValue(list d[self.line number])
18 if list three per arc[self.line number]: # Selected 3 pallets per arc
19 self.radioButton 3arc.setChecked(True)
20 self.enable 3arc choice() # Because it is triggered only when

radioButton 3arc is CLICKED, not checked −−> Call it explicitly
21 self.progressBar p 2arc.setValue(4) # Default value
22 self.progressBar p 3arc.setValue(list p[self.line number])
23 self.progressBar dist 2arc.setValue(500) # Default value
24 self.progressBar dist 3arc.setValue(list palletDistance[self.line number])
25 else: # Selected 2 pallets per arc
26 self.radioButton 2arc.setChecked(True)
27 self.enable 2arc choice() # Because it is triggered only when

radioButton 2arc is CLICKED, not checked −−> Call it explicitly
28 self.progressBar p 2arc.setValue(list p[self.line number])
29 self.progressBar p 3arc.setValue(6) # Default value
30 self.progressBar dist 2arc.setValue(list palletDistance[self.line number])
31 self.progressBar dist 3arc.setValue(300) # Default value

Analogous and dual is then the procedure followed by the Go Back function, associ-
ated with pressing the Back button.

88 Chapter 4 4.2. VR Tools Implementation

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

Back to Selection of Number of Lines

In case the user changes his mind about the number of lines to insert, he can always
go back to the first widget. To do so, simply press the Back button inside the first line
parameter widget.
When pressed, if the line number is 0, the second widget is hidden and the first widget is
shown again.

Table 4.17: Python code: Back to selection of number of lines

1 # −−−−−−−−−− SIGNALS AND SLOTS −−−−−−−−−−
2 self.parameters selector widget.button back.clicked.connect(self.

go back to nlines selection)
3

4 # −−−−−−−−−− FUNCTIONS −−−−−−−−−−
5 @Slot()
6 def go back to nlines selection(self):
7 if self.parameters selector widget.line number >= 1:
8 pass
9 else:

10 # −−−−−−−−−− Show line number selection widget
11 self.parameters selector widget.setVisible(False)
12 self.line selector widget.setVisible(True)

Chapter 4 4.2. VR Tools Implementation 89

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

Back to Previous Line

To return to the selection of the parameters of the previous line, go to the widget con-
cerning the last line and press the Create button. When pressed, the lists must be updated
with the inserted parameters and then the widget must be restored to the default values for
a possible reopening of the editor.
Then, the communication protocol to pass lists from one scene to another is launched (as
shown in section 4.1.2.2). The script to do this is placed inside the Variant Set Send
Data List to Lines Part + START EDITOR, which is called using the command exe-
cutePython(’selectVariantSet("set name")’).
The other tools inside the control room are then updated to be consistent with the param-
eters chosen by the user. Again, the code is inserted in a Variant Set, called Update VR
Tools.
Finally the widgets are hidden, and a loading page is shown, to indicate that the other
scene is computing the lines.

Reset Editor Widget

At the end of the loading of the lines, the main scene sends a signal to the control
room. This signal teleports the user to the other scene, hides the loading widget, showing
the one in figure 4.9d. If the user wants to re-launch the editor, it will be enough for him to
return to the control room and press the Restart Editor button, which will simply display
again the widget to select the number of lines.

90 Chapter 4 4.2. VR Tools Implementation

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

Table 4.18: Python code: Back to previous line

1 # −−−−−−−−−− SIGNALS AND SLOTS −−−−−−−−−−
2 self.parameters selector widget.button create.clicked.connect(self.

show loading widget and create lines)
3

4 # −−−−−−−−−− FUNCTIONS −−−−−−−−−−
5 @Slot()
6 def show loading widget and create lines(self):
7 global nLines, list conveyor velocity, list n, list d, list three per arc,

list p, list palletDistance, list n stat, list bool stations cancelled
8

9 # −−−−− Update Lists
10 index = self.parameters selector widget.line number
11 list conveyor velocity[index] = float(self.parameters selector widget.

progressBar s.value() / 100) # needs to be divided by 100 to obtain m/s
12 list n[index] = self.parameters selector widget.progressBar n.value()
13 list d[index] = self.parameters selector widget.progressBar d.value()
14 if list three per arc[self.parameters selector widget.line number]:
15 list p[index] = self.parameters selector widget.progressBar p 3arc.value()
16 list palletDistance[index] = self.parameters selector widget.

progressBar dist 3arc.value()
17 else: # 2 per arc chosen
18 list p[index] = self.parameters selector widget.progressBar p 2arc.value()
19 list palletDistance[index] = self.parameters selector widget.

progressBar dist 2arc.value()
20 list n stat[index] = int(self.parameters selector widget.line edit.text())
21

22 # −−−−− Restore Default Values inside the Widget
23 self.parameters selector widget.radioButton 2arc.setChecked(True)
24 self.parameters selector widget.enable 2arc choice()
25 self.parameters selector widget.progressBar s.setValue(100)
26 self.parameters selector widget.progressBar n.setValue(5)
27 self.parameters selector widget.progressBar d.setValue(2000)
28 self.parameters selector widget.progressBar p 3arc.setValue(6)
29 self.parameters selector widget.progressBar dist 3arc.setValue(300)
30 self.parameters selector widget.progressBar p 2arc.setValue(4)
31 self.parameters selector widget.progressBar dist 2arc.setValue(500)
32 self.parameters selector widget.line edit.setText("4")
33 self.parameters selector widget.label title.setText("Your Line")
34

35 # −−−−− Restore default value of line number
36 self.parameters selector widget.line number = 0
37

38 # −−−−− Send lists filled to LINES PART, starting the build of the scene
39 executePython(’selectVariantSet("Send Data List to Lines Part + START EDITOR

")’)
40

41 # −−−−− Update VR Tools inside the room
42 executePython(’selectVariantSet("Update VR Tools")’)
43

44 # −−−−− Hide parameters selector widget and show loading widget
45 self.parameters selector widget.setVisible(False)
46 self.loading widget.setVisible(True)

Chapter 4 4.2. VR Tools Implementation 91

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

Figure 4.10: Parameters display widget

4.2.2.3 Parameters Display

In order to be able to show the chosen parameters also inside the simulation (as informa-
tion for the user), a special widget has been inserted in the form of an interactive screen.

It consists of three buttons on the left side (figure 4.10) and a label containing infor-
mation about the selected line on the right side. The buttons on the left side are enabled
only if the corresponding line is present: in this case, there are only two lines, that’s why
the Third line button is obscured.
As far as the right side is concerned, there are actually three different labels, which are
hidden and shown appropriately according to the button that is pressed. In table 4.19 is
represented the case in which the button of the first line is pressed.

Table 4.19: Python code: Open first line description

1 # −−−−−−−−−− SIGNALS AND SLOTS −−−−−−−−−−
2 self.button1.clicked.connect(self.add first description)
3

4 # −−−−−−−−−− FUNCTIONS −−−−−−−−−−
5 @Slot()
6 def add first description(self):
7 self.temp description.setVisible(False)
8 self.second description.setVisible(False)
9 self.third description.setVisible(False)

10 self.first description.setVisible(True)

92 Chapter 4 4.2. VR Tools Implementation

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

(a) Main widget (b) Final message

Figure 4.11: Output creation widget

4.2.2.4 Output Creation

In order to ideally insert the editor in a business context, it is imperative to find a method
to integrate it into the workflow. To do this, it is therefore advisable that, in addition to
receiving input, it can also create an output of some kind, so that it can then be delivered
to the subsequent portions of the production process.

Imagining the use of the editor in the pre-selling field, it was decided to create as out-
put an Excel sheet containing the parameters of the line chosen by the user among those
available in the scene.

To do this, it has been used the XlsxWriter library, which is a Python module for
creating Excel XLSX files [19].
It can be used to write text, numbers, formulas and hyperlinks to multiple worksheets
in an Excel 2007+ XLSX file. It supports features such as formatting and many more,
including:

• 100% compatible Excel XLSX files;

• Full formatting;

• Merged cells;

• Defined names;

• Charts;

• Autofilters;

• Data validation and drop down lists;

• Conditional formatting;

• Worksheet PNG/JPEG/BMP/WMF/EMF images;

• Rich multi-format strings;

• Cell comments;

Chapter 4 4.2. VR Tools Implementation 93

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

Figure 4.12: Excel output example

• Textboxes;

• Integration with Pandas;

• Memory optimization mode for writing large files.

It supports Python 2.7 (the version used by Vred), 3.4+ and PyPy and uses standard
libraries only.
the use of the library has therefore been implemented within a widget used to select the
line among those available (figure 4.11).

The primary widget (fig. 4.11a) is composed of two main parts: in the upper one, the
line is selected by checking one of the push buttons available (note how, in this example,
the choice of the third line is obscured because it is not represented in the scene), while in
the lower one a keyboard has been created to enter the name of the user, so that the output
can be customized.
Once the output is created, a secondary widget appears instead of the previous one (fig.
4.11b). Inside it, it is specified the final name of the output file and its location in the PC
memory.

To better understand the operation of the widget, it is appropriate to analyze the main
functions implemented in the program.

94 Chapter 4 4.2. VR Tools Implementation

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

Type a Character

The function used to write a character is very similar to the one already presented
in section 4.2.2.2, but in this case, being to all intents and purposes a keyboard, differ-
ent characters are entered depending on whether the Shift or Caps Lock key is active.
Therefore, it is necessary to make a check on them and then write the right character ac-
cordingly.

Table 4.20: Python code: Type a character

1 # −−−−−−−−−− SIGNALS AND SLOTS −−−−−−−−−−
2 self.button a.clicked.connect(self.type a)
3

4 # −−−−−−−−−− FUNCTIONS −−−−−−−−−−
5 @Slot()
6 def type a(self):
7 current text = self.lineEdit.text()
8 if self.button caps lock.isChecked() or self.button shift.isChecked(): # Caps

Lock OR Shift is active
9 self.lineEdit.setText(current text + "A")

10 self.button shift.setChecked(False) # Uncheck Shift in case it was
checked

11 else: # Shift and Caps Lock are NOT activated
12 self.lineEdit.setText(current text + "a")

Chapter 4 4.2. VR Tools Implementation 95

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

Create Excel File

By pressing the Enter key on the virtual keyboard, the string inside the keyboard li-
neEdit is saved as the customer’s name. The current date and time is then saved in a string
in the format y.m.d - h.m (e.g. 2020.07.09 - 16.28).
The code then creates a workbook using the xlsxwriter.Workbook() command, which takes
as argument the path of the file to be created, including its name. A worksheet must then
be added to the workbook using the add_worksheet() command.
Then the cell styles will be set afterwards, as well as the column width adjustment.

Table 4.21: Python code: Create Excel file (1)

1 # −−−−−−−−−− IMPORTS −−−−−−−−−−
2 from datetime import datetime
3 import xlsxwriter
4

5 # −−−−−−−−−− SIGNALS AND SLOTS −−−−−−−−−−
6 self.button enter.clicked.connect(self.create excel file)
7

8 # −−−−−−−−−− FUNCTIONS −−−−−−−−−−
9 @Slot()

10 def create excel file(self):
11 global client name, line choice
12

13 # −−−−− Get the client’s name from the lineEdit object’s text
14 client name = self.lineEdit.displayText()
15

16 # −−−−− Get current day’s date
17 now = datetime.now()
18 dt filename = now.strftime("%Y.%m.%d − %H.%M")
19 dt string = now.strftime("%d/%m/%Y − %H:%M:%S")
20

21 # −−−−− Create a workbook and add a worksheet
22 path string = "D:\\Users\\Username\Directory"
23

24 if client name != "": # if line edit is NOT EMPTY
25 workbook = xlsxwriter.Workbook(path string + "\Excel Outputs\Chosen Line

Parameters − " + str(client name) + " − " + str(dt filename) + ".xlsx")
26 else: # line edit is EMPTY
27 workbook = xlsxwriter.Workbook(path string + "\Excel Outputs\Chosen Line

Parameters − Unknown − " + str(dt filename) + ".xlsx")
28

29 worksheet = workbook.add worksheet()
30

31 # −−−−− Add formats to use to highlight cells.
32 bold = workbook.add format({’bold’: True})
33

34 centered = workbook.add format()
35 centered.set align(’center’)
36

37 # −−−−− Adjust the column width.
38 worksheet.set column(0, 0, 30)
39 worksheet.set column(1, 1, 25)

96 Chapter 4 4.2. VR Tools Implementation

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

Finally, it begins the actual filling of the cells with the elements of the interested lists,
through the command write(cell, string). To determine the cell, it is necessary to insert a
string whose first element is the letter denoting the column, and the second the line num-
ber.
As a last action, the secondary widget is made visible (and its content updated), hiding
the primary widget.

Table 4.22: Python code: Create Excel file (2)

1

2 # −−−−− Fill output Excel file with data
3 worksheet.write(’A1’, ’Client:’, bold)
4 worksheet.write(’B1’, str(client name), centered)
5

6 worksheet.write(’A2’, ’Date and Time:’, bold)
7 worksheet.write(’B2’, str(dt string), centered)
8

9 worksheet.write(’A4’, ’Ekosort:’, bold)
10 worksheet.write(’A5’, ’Carousel Diameter [mm]:’)
11 worksheet.write(’B5’, str(list d[line choice]), centered)
12 worksheet.write(’A6’, ’N of Movers:’)
13 worksheet.write(’B6’, str(list n[line choice]), centered)
14 worksheet.write(’A7’, ’N of Stations:’)
15 worksheet.write(’B7’, str(list n stat[line choice]), centered)
16

17 worksheet.write(’A9’, ’Extrapack Palletizer:’, bold)
18 worksheet.write(’A10’, ’Pallet Stations per Arc:’)
19 if list three per arc[line choice]: # == True
20 worksheet.write(’B10’, ’3’, centered)
21 else:
22 worksheet.write(’B10’, ’2’, centered)
23 worksheet.write(’A11’, ’N of Pallet Stations:’)
24 worksheet.write(’B11’, str(list p[line choice]), centered)
25 worksheet.write(’A12’, ’Pallet Stations Distance [mm]:’)
26 worksheet.write(’B12’, str(list palletDistance[line choice]), centered)
27

28 worksheet.write(’A14’, ’Conveyors:’, bold)
29 worksheet.write(’A15’, ’Speed [m/s]:’)
30 worksheet.write(’B15’, str(list conveyor velocity[line choice]), centered)
31

32 workbook.close()
33

34 if client name != "": # if line edit is NOT EMPTY
35 self.file name label 2.setText("\"Chosen Line Parameters − " + str(

client name) + " − " + str(dt filename) + ".xlsx\"")
36 else: # if line edit is EMPTY
37 self.file name label 2.setText("\"Chosen Line Parameters − Unknown − " +

str(dt filename) + ".xlsx\"")
38

39 self.main widget.setVisible(False)
40 self.message widget.setVisible(True)

Chapter 4 4.2. VR Tools Implementation 97

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

(a) Main page

(b) Variant Sets (c) Viewpoints

Figure 4.13: VR interactive menu

4.2.3 Immersive Tools
In order to make the experience in virtual reality more pleasant and useful, a series of im-
mersive tools involving interaction with the environment of the scene have been inserted
into the editor.

These tools are implemented through the use of Variant Sets, and can be activated
from the interactive menu in virtual reality (opened by pressing a special button on the
joystick), which once it has been opened remains attached to the hand (figure 4.13). It is
possible to interact with it in two ways:

• Firing: when the joystick trigger is pressed, a laser pointer will come out of the
joystick. By pressing the trigger all the way down, the user will interact with what
he or she is aiming at;

• Touch: it is possible in vr to represent the joysticks as virtual hands. In this mode,
the tip of the index finger allows the user to interact with the elements by simply
touching them.

98 Chapter 4 4.2. VR Tools Implementation

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

Scenes Switching

As already seen, the editor was therefore divided into two main scenes. In order to
allow the user to jump at will from one to the other, it has been written a small code that
uses the same communication protocol between the scenes already used for data transfer.
As an example, in order to pass from the lines to the control room it is first necessary to
deactivate virtual reality in the main scene (at port 63340) using the setDisplayMode(0)
command, and then reactivate it in the other scene (port 63342), using the setDisplay-
Mode(4) command.

Table 4.23: Python code: Switch between scenes

1 from threading import Thread
2

3 import requests
4

5

6 def http request():
7 # −−−−− Exit VR in LINES −−> Command used: setDisplayMode(0)
8 requests.get("http://localhost:63340/pythonapi?value=setDisplayMode%280%29")
9 # Sets displaymode = 0 (Standard Display) using VRED’s menu in localhost at

port 63340 (port of the editor part)
10

11 # −−−−− Open VR in CONTROL ROOM −−> Command used: setDisplayMode(4);
12 requests.get("http://localhost:63342/pythonapi?value=setDisplayMode%284%29\

nexecutePython(’selectVariantSet(\"Center Room\")’)")
13 # Sets displaymode = 4 (OpenVR HMD) using VRED’s menu in localhost at port

63342 (port of the waiting room part)
14

15

16 thread = Thread(
17 target=http request
18)
19

20 thread.daemon = True
21

22 thread.start()

Chapter 4 4.2. VR Tools Implementation 99

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

Machine Annotations Management

By framing the editor in a possible training area, virtual reality annotations have been
inserted which appear above the machine if the user "shoots" at them. To do this, a small
script has been implemented within a variant set, which has then been associated with a
touch sensor, so the script is activated every time the user interacts with the geometry of
a machine.
The labels are generated by the main editor, which also takes care of repositioning them
so that they always point to the machines they describe.

Table 4.24: Python code: Toggle annotations

1 annotation cent pneum L1 = findAnnotation("Accoppiatore Regolabile L0")
2

3 if annotation cent pneum L1.isVisible():
4 annotation cent pneum L1.setVisible(False)
5 else: # annotation cent pneum L1.isVisible() == False
6 annotation cent pneum L1.setVisible(True)

Other variant sets have been provided to close and open all the annotations at the same
time. Below is the case of hiding of all annotations, the opening one is dual.

Table 4.25: Python code: Hide all annotations

1 list annotations = getAnnotations()
2

3 for annotation in list annotations:
4 if annotation.isVisible():
5 annotation.setVisible(False)
6 else:
7 pass

100 Chapter 4 4.2. VR Tools Implementation

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

Figure 4.14: html Calculator

Utilities Management

Still with the aim of exploring all the possibilities offered by virtual reality, some tools
have been implemented that show pages that can be useful to the user. The tools consid-
ered are a calculator made in html (figure 4.14) and the web page of Sacmi’s catalogue of
automatic tiles sorting, packaging and palletizing lines [10].

To do this, the Vred vrImmersiveUiService class must be used: first, a menu is created
(with a name), then the content is set, be it a file or a Url.
Next, the menu must be positioned. First define an origin: in this case the middle point of
the menu located in the left hand (can be opened with a joystick button). Then position it
by specifying translation and rotation with respect to it, and finally set its size. As soon
as it is created, it becomes invisible. It will become visible when a special Variant Set is
activated.

Table 4.26: Python code: Create hidden VR menus

1 def create hidden vr menus():
2 # −−−−− Calculator
3 hand calculator = vrImmersiveUiService.createMenu("hand calculator")
4 hand calculator.setContent(path string + "\Script Editor Multiple Lines\

Examples\Calculator.html")
5 hand calculator.setOrigin(vrdImmersiveMenu.ORIGIN LEFTHAND)
6 hand calculator.setTranslation(265, 150, −195)
7 hand calculator.setRotation(180 + 45, 0, 0)
8 hand calculator.setWidth(400)
9 hand calculator.setDepth(5)

10 hand calculator.setVisible(False)
11

12 # −−−−− Catalog
13 hand catalog = vrImmersiveUiService.createMenu("hand catalog")
14 hand catalog.setContent("https://www.sacmi.it/it−it/ceramics/Piastrelle/Linee

−di−scelta,−confezionamento−e−pallettizzazione−automatiche−piastrelle")
15 hand catalog.setOrigin(vrdImmersiveMenu.ORIGIN LEFTHAND)
16 hand catalog.setTranslation(280, 170, −230)
17 hand catalog.setRotation(180 + 45, 0, 0)
18 hand catalog.setVisible(False)
19 hand catalog.setWidth(500)
20 hand catalog.setDepth(5)

Chapter 4 4.2. VR Tools Implementation 101

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

To open one of these tools, it is necessary to get information about which hand the
menu is open, so that it appears on the correct hand. First, the main editor defines a
boolean variable - hand_calculator_opened - initialized to False. This variable indicates
whether the tool is open or not.
If the tool is open, launching the Variant Set will close it. If it was closed, the first thing
to do is to check the origin of the interactive menu (i.e. which hand it will be open on),
and then set the tool’s origin at that point. Offset and orientation are set, and finally it is
shown.
In the end, the value of the boolean variable is updated.

Table 4.27: Python code: Toggle calculator tool

1 hand calculator = vrImmersiveUiService.findMenu("hand calculator")
2

3 if hand calculator opened: # Variable inizialized at False, declared in Script
Editor

4 hand calculator.setVisible(False)
5 hand calculator opened = False
6 else: # hand calculator closed
7 main vr menu = vrImmersiveUiService.findMenu("ToolsMenu")
8 origin main vr menu = main vr menu.getOrigin()
9 hand calculator.setOrigin(origin main vr menu)

10

11 if origin main vr menu == vrKernelServices.vrdImmersiveMenu.MenuOrigin.
ORIGIN RIGHTHAND:

12 hand calculator.setTranslation(−265, 150, −195)
13 else: # Main menu on LEFT HAND
14 hand calculator.setTranslation(265, 150, −195)
15

16 hand calculator.setRotation(180 + 45, 0, 0)
17 hand calculator.setVisible(True)
18 hand calculator opened = True

102 Chapter 4 4.2. VR Tools Implementation

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

(a) Tiles selector (b) Packages selector

Figure 4.15: Material selectors

Tiles / Package Selection

To entertain the user, selectors have been inserted in each line to display a decoration
of choice (among three available per type) for tiles and packages. To do this, a switch ma-
terial has been created, which allows a series of different materials to be inserted inside
it, which can then be activated in an exclusive way (meaning that only one at a time can
be visible).
The selectors have the shape of three spheres of the corresponding material for tiles (fig.
4.15a), and three boxes with the corresponding packaging for packages (fig. 4.15b).
A variant set has then been created for each material-line pair (i.e. 6 for each line, for a
total of 18) which is in charge of activating the specific material when selected, invoking
it from the switch material list. Each variant set has then been associated with a touch sen-
sor matched to the selectors geometries. Therefore, at the interaction in the scene (shot or
touch) with each of these balls/boxes, the corresponding material will be represented in
the line.

Scene Exploration

In order to move around the scene, Vred has two main methodologies. The first is
also the simplest and most natural: the headset, thanks to its 6 cameras, is able to map the
physical movements in the virtual reality scene by detecting the variations in the perspec-
tive of the elements of the room around the user; therefore, in simple terms, walking and
moving physically is equivalent to doing so in the simulation.
Secondly, Vred also provides for the agile travel of large "virtual" distances by teleporta-
tion. At the contact of the thumb with the analog stick, a preview appears: a circle on the
ground (or on the geometries present) with an arrow above it. Moving the hand moves
the circle, rotating the wrist changes the direction indicated by the arrow. If the circle is
green, when the stick is pressed the user will be teleported to the position of the circle,
facing the direction of the arrow. If the circle is red, it means that the user cannot teleport
to that point, and therefore nothing will happen when the analog stick is pressed.

In order to move more easily, however, special viewpoints have been created: they are
fixed views created ad hoc to show the main points of the scenes. The main views (center
of the balcony, beginning and end of the lines) when selected in virtual reality (through
the menu section represented in figure 4.13c), effectively teleport the user to the precise
point, allowing immediate navigation within the scene.

Chapter 4 4.2. VR Tools Implementation 103

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

(a) Headset user (b) Desktop user

Figure 4.16: Virtual Reality User Avatars

Machines Inspection

Among the tools provided by Vred, the flashlight is particularly useful: it is a real 3d
model of a lamp, which remains attached to one of the two joysticks, and projects a beam
of light. In itself it is an instrument that seems quite useless, but it has great potential. In
fact, the geometries in Vred are not "solid": it is therefore possible to actually enter the
machines, observing how they are made inside by illuminating everything with the torch.
Obviously the outcome depends on the precision of the model represented, but Vred is
able to represent an entire industrial line with a detail level that reaches up to the screw.
This is an extremely important aspect as far as staff training is concerned: in fact, internal
details of the machine can be seen which, in order to be observed in reality, would require
almost complete disassembly of the parts.

Multiuser Experience

During the last period of realization of this project, it has also been addressed, al-
though in an embryonic way, the topic of multi-user experience, i.e. the entry of several
people into the same scene in virtual reality. This type of shared experience is particu-
larly useful in the areas of possible use of this editor (pre-selling, staff training, exhibition
fairs), as it allows presentations and "guided tours", as well as real lessons concerning the
lines and their layout and functioning.

In order to set up a shared scene, a collaboration must first be set [2]. To do this, a
number of requirements must be met (tables 4.28, 4.29 and 4.30).

Table 4.28: Collaboration: Connection Requirements

Network connection: To access the collaboration session and VRED file.
Internet connection: To send/receive invites.

In this case, having had only one viewer available at the time of approaching this type
of experience, tests were made on two users, one with the viewer, and one in desktop
mode. Each user is represented by an avatar within the scene. While the one in desktop
mode is seen simply as a tablet (figure 4.16b), the user with a viewer is represented as a
robotic humanoid, with hands representing the joysticks (figure 4.16a). By pressing the
keys of the joystick - in addition to activating the associated commands - the hands make
gestures (close the fingers, raise the thumb).

104 Chapter 4 4.2. VR Tools Implementation

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

Table 4.29: Collaboration: Hardware Requirements

VRED system requirements: To guarantee that the machine meets the VRED re-
quirements, as well as the additional VR specific re-
quirements. This ensures that graphics card and GPU
meet the demands of the content.

VR Devices: Only a set of VR devices are supported.
Audio: To minimize outside noise and potential disruptions,

a noise-cancelling mic and headphones is recom-
mended.

Table 4.30: Collaboration: Software Requirements

Matching version of VRED: To participate, all participants must use the same ver-
sion of VRED. This is defined by the first session par-
ticipant.

Calendar application: To send/receive meeting invites.
Email application: To send/receive invites.
Audio application: To communicate with others. The session leader will

set this up using a service, such as Zoom, Skype, or
Mumble.

Participants to the collaboration scenes can trigger things like Variant Sets and anima-
tion. When this happens, VRED uploads only these actions to participants, not the entire
scene. It only syncs the changed information. This is why it’s stressed that all participants
use the same scene file during the collaboration session. This guarantees everyone sees
the same thing.
Participants not using the same scene will experience issues with information syncing, re-
sulting in errors and not seeing changes.There are limitations to the information synced.
Though Variant Sets, animations, and transformations are synced, new geometry added to
the scene is not. However, if participants upload the scene after changes have been made,
even newly created geometry, variants, variant sets, and animation are synced.

Chapter 4 4.2. VR Tools Implementation 105

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

4.3 Model Optimization

4.3.1 Performed Steps
At the end of the project, and after some testing, it was found that unfortunately the scene
in virtual reality had obvious defects of fluidity: jumps, slow loading times, freeze frames.
In general it seemed as if the headset was struggling to satisfy the computational load of
all the polygons. This was especially the case when the user moved his head quickly: the
viewer could not compute the geometries quickly enough, so that annoying black edges
appeared at the edges of the user’s field of view.
In the end, to avoid these inconveniences, a phase of optimization of the model was per-
formed.

1 - Hide Unnecessary Objects

As a first solution, it was decided to hide all the nodes considered unnecessary: the
scene includes lines from fifty to a hundred meters long, so the lack of small elements
of few millimeters (such as screws, nuts, bolts and washers) in positions hidden from the
eye would be perfectly fine. However, assuming the case of a single line scene for staff
training, this lightening would not be acceptable, as accuracy and fidelity to the original
model would be of central importance.

After completing this action and carrying out some tests, it was found that this method
is unfortunately ineffective. In fact, the headset in any case calculates the nodes, even if
they are hidden. This is because they are still part of the scene, and could be made visible
at any time. This first phase was therefore considered inconclusive for optimization pur-
poses.

2 - Delete Unnecessary Objects

Given the failure of the first solution, it was then thought to go one step further: the
unnecessary nodes were not only hidden, but directly eliminated from the scene. In doing
so, they no longer have to be computed by the headset, and therefore the scene turned
out to be generally lighter. The editor file was 100 Mb lighter, with about 3 million less
polygons for each line (for a total of 9 millions).

3 - Delete Empty Subgroups

To try to further lighten the simulation, it was decided to act on the scene’s tree struc-
ture (already introduced in section 3.1.2.2).

The actual parts, i.e. the geometries of the various elements, are grouped into several
levels of subgroups (e.g. foot group → subgroup 1 → subgroup 2 → screw → actual
geometry). Vred - and consequently the headset - must then calculate the positioning and
relative translations of each of these elements: the position of each subgroup is indeed
computed from the position of the group at the higher level. Therefore, in order to cal-
culate the actual position of all geometries, Vred must first calculate a huge amount of
translations and relative rotations.

106 Chapter 4 4.3. Model Optimization

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

In order to try to lighten the overall computational load - in an attempt to obtain better
performance - a transformation flush was first carried out: this procedure resets the rota-
tion value to zero by keeping the workpiece in position, in practice taking the position at
the time of flush as a new zero position.

In any case, zero translations were still computed by the hardware. That’s why it was
decided to maintain a maximum of 4 levels of subgroups (e.g. Line0→ Transport before
sorting → pneumatic centrer → foot group), removing those below (unless there were
relative transformations different than 0). To do so, a small Python script was used, which
selected all the nodes of the geometries (which in the model were named "Geometry", in
fact), allowing to extract them and insert them in the highest level subgroup, and making
it possible to remove empty groups by using the Optimize Module, through the Remove
empty group nodes option.

After performing these actions, the tests showed an improvement in simulation behav-
ior in virtual reality. Everything was smoother and more stable, even if with the maximum
number of lines there was still some fatigue, when the user suddenly framed the lines. In
any case, loading times have been greatly reduced. In addition, about 4000 - 5000 empty
groups per line have been eliminated.

4 - Geometries Conversion

The 3D models used for the realization of this application were taken directly from
CAD files derived from the designs. For this reason, the imported geometries are NURBS
type, which are in fact used by most 3D CAD.

NURBS stands for Non-Uniform Rational B-Splines, a convenient algorithmic method
for building curves and free-form surfaces [15]. They are generated from portions of
curves whose polynomial coefficients depend on some points known as "control" points,
therefore similar to vector images.
The advantage of having curves of this type, is mainly due to the fact that they are invari-
ant with respect to the graphic transformation operations of these points. This means that
if transformations of the curve are to be generated, it is sufficient to apply transformations
to the control points only, without this changes the geometry of the original curve. The
use of non-constant parameterized curves is the optimal solution to ensure the creation of
all possible shapes.

Vred, however, prefers the use of Mesh type curves. Meshes (also called polygonal
mesh surfaces) are used for the three-dimensional representation of complex reliefs, such
as those of statues or terrains. Geometrically they are composed of a set of vertices joined
together by many small flat surfaces, usually triangular in shape, one adjacent to the other.
The description of a surface using a mesh polygonal is usually an approximation process.
The degree of approximation of the shape can be managed by the number of individual
mesh subelements. The higher the number of sub-elements the more detailed the surface
will be.

If a comparison between these two types of surfaces is to be made, it can be said that
NURBS, from a mathematical point of view, are very complex and require a high amount

Chapter 4 4.3. Model Optimization 107

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

of computer resources to manage them in the best way. At the same time, however, as
advantages they have that they are able to represent optimally any form and that they are
made up of a very limited number of elements. Mesh surfaces however, thanks to their
geometric characteristics, are more easily manageable by different 3D modeling software,
thus allowing maximum ductility of shapes and ease of transformation. However, they al-
ways implement a simplification of the geometry of the object of study.

It was therefore decided to convert all the geometries present from NURBS to mesh,
to try to lighten the overall computational load for the headset during navigation in virtual
reality. To do this, it was necessary to once again use the script to select the geometrical
elements, and then use a dedicated command provided by Vred.

4.3.2 Final Results
At the end of all these steps, the situation has improved significantly (especially thanks to
the final conversion of geometries). The result was a generalized smoothing: the problems
manifested at the beginning have become practically absent. The only time when - in the
final version - the simulation shows some uncertainty is when all three lines are present,
and when the user frames them all at once and suddenly. However, it’s just a momentary
situation, which stabilizes immediately.

The meshes also turned out to be lighter from the point of view of file size: the mem-
ory space occupied by the line scene went from 1.2 Gb - before all the optimization steps
presented - to only 825 Mb, effectively showing a decrease of about 33% in the memory
occupied.

108 Chapter 4 4.3. Model Optimization

Conclusions

This project was born first and foremost as an exercise in style as it was extremely inno-
vative - at least as far as the use of virtual reality within Sacmi S.C. was concerned - and
there were no previous approaches.

This is why the application has been expanded more and more during the course of
the project: in fact, it has evolved from a single line to several lines, and then a whole
series of different interfaces for interaction with the scene have been developed.

In a first phase in which the focus was mainly on the perfect execution of the lines
by the editor - involving parameterization and manipulation of the geometries - a set of
Graphic User Interfaces on-screen to be interacted with via mouse and keyboard have
been realized through the use of dedicated programs.

But once a stable version of the code was reached, it was decided to aim at a com-
plete experience in virtual reality: tools for the insertion of information and instruments
for navigation, exploration and interaction with geometries were then designed directly
within the scene.
Methodologies and protocols for communication between different scenes have been stud-
ied, for the passage of data and commands to "remotely" control scenes external to the
one explored by the user, and finally automatic methodologies for the creation of outputs
have been studied and implemented.

It is thanks to these last aspects that one of the main objectives that had been set during
the project definition phase has been reached: the capability of effectively integrating an
application of this kind into the corporate workflow of a company like Sacmi.
This is why, in the perspective of incorporating the developed editor in the phase of quote
realization, the utopian concept of inserting the required data only once in the whole pro-
duction process is - at least in this phase - fully satisfied: a potential customer can in fact
configure the most suitable line to his/her needs within the simulation in virtual reality and
trigger the confirmation of the final choice, and the output data - in this case the desired
parameters - can be sent in the form of Excel spreadsheet directly to the following produc-
tion phases, which can automatically read them directly from the file, whenever necessary.

So what are the advantages brought by virtual reality compared to the more usual and
consolidated methodologies in this field?

First of all, the real power of this technology is undoubtedly - as already mentioned -
the immersion it can provide: just think about the fact that the editor allows you to see,
explore, and in fact "touch" an industrial plant that in reality does not yet exist at the time

109

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

of its usage: it is like effectively making a leap into a potential future. So that’ s the way
to overcome - if not completely, at least partially - the old conception of quotes based only
on two-dimensional planimetries: no effort of imagination is needed, the future is already
here, within reach of joysticks.

Always referring to the possible use in this particular phase of production, another
huge advantage of the editor is undoubtedly its speed: it is able to create a single line of
minimum size in just 30 seconds, while for the case limit of 3 lines of maximum size it
takes about 2 minutes. So within this short period of time, the user can already explore a
complete and animated scene.

It is also necessary to mention the extreme versatility and portability of a solution like
the one presented in this project. In fact, as already discussed, the headset does not need
fixed stations to function, since it is based on the perceived variations in the perspective
of the objects within the room in which it is used, and secondly, it can be easily adapted
to wireless use, eliminating the hassle of the cable connecting the headset to the com-
puter. This means that, potentially, it can be used anywhere: all that is needed is a laptop
with appropriate specifications, and a briefcase with which to transport the headset and
the joysticks, and that’s it. In this way, the editor could be taken directly to the customer,
anywhere in the world.

Moreover, during the realization of this project was also introduced the multiuser ex-
perience, i.e. the co-presence in the same scene of several users, who can interact with it
and among each other, thanks to the use of specific humanoid avatars. This connection
can be established through the web, and so potentially people located thousands of kilo-
meters from each other could gather in the same scene. Just consider the countless uses
to which this solution can be adapted: trade shows, employee training, and many more.

Another point in favour of this application is undoubtedly the high reusability of the
geometries offered by Vred. First of all, Vred is able to accept as input an impressive
number of different CAD files, undoubtedly every main type of model used in the design
phase. Therefore, the editor can be easily expanded and adapted to any type of line, and
immediately inserted into any company workflow: it is not necessary to create ad hoc
models to make it work, but it easily adapts to existing files.
Finally, Vred allows to modify the geometries in an easy and intuitive way: the parametrized
models elaborated during the editor’s operation can be exported, possibly converted, and
reused later by other design phases, without the need for them to be created from scratch.

Finally, it was considered what the possible future developments of this particular ap-
plication could be.
First of all, as it is logical to expect, a further extension of the editor: adding more and
more parts to the considered line, until eventually representing an entire system. After
that, it would be possible to increase more and more interactivity with and for the user,
with the design and implementation of new tools. Finally, the performance of the simu-
lation in virtual reality could be optimized more and more: every year Autodesk releases
a new version of Vred, more stable and with added functionality. Features that could be
leveraged to increasingly improve an experience of this kind.

110 Chapter 4 4.3. Model Optimization

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

So, to sum up, the realization of this project has really brought to the surface what are
the countless possibilities of an instrument like virtual reality. This world is evolving at a
vertiginous pace, and the possibilities and advantages that offers in every field, industrial
and non-industrial, are now absolutely undeniable. Now more than ever it’s clear that the
immersive reality instruments - i.e. virtual and augmented reality - are the future.

Chapter 4.3. Model Optimization 111

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

112 Chapter 4.3. Model Optimization

Appendices

113

Appendix A

EkoSort Building Code

1 # −−−−−−−−−− EDITOR FUNCTIONS −−−−−−−−−−
2

3 # −−−−− B
4

5 def build EkoSort():
6 reset EkoSort()
7

8 h = 1150 # (h >= 1100 + tile thickness + tolerance) AND (h <= 1200)
9 r = d / 2

10

11 load RotaryCircle(r, h)
12

13 load Movers(n, r, h)
14

15 load Stations(n, r)
16

17 load Conveyor(r)
18

19 load RotarySupport(r)
20

21 load Machinery(r)
22

23 load Windows(r)
24

25

26 # −−−−− L
27

28 def load Conveyor(radius):
29 scaling z conveyor = 1
30 scaling x conveyor = radius * 0.0007 # same as rotary circle
31 scaling y conveyor = scaling x conveyor
32

33 conveyor = findNodePath("Your Line/Your EkoSort/ConveyorComplete", True)
34 conveyor.setWorldTranslation(0, radius, 0)
35 setTransformNodeScale(conveyor, scaling x conveyor, scaling y conveyor,

scaling z conveyor) # scale X, Y, Z dimensions
36

37

38 def load Machinery(radius):
39 global scaling y machinery
40

41 if radius <= 1500:

115

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

42 scaling y machinery = radius * 0.000645
43 if radius > 1500 and radius <= 1750:
44 scaling y machinery = radius * 0.00062
45 else:
46 scaling y machinery = radius * 0.000606
47

48 scaling z machinery = 1
49

50 mach = findNodePath("Your Line/Your EkoSort/Machinery/Machinery mov", True)
51 setTransformNodeScale(mach, 1, scaling y machinery, scaling z machinery)
52

53

54 def load Movers(nMovers, radius, height):
55 global limit movers
56 limit movers = nMovers
57

58 # select the mover by using path in Scenegraph
59 starting mover = findNodePath("Your Line/Your EkoSort/AllMovers/Mover0", True)
60 # translate the mover
61 starting mover.setWorldTranslation(0, radius, height)
62 # sets Mover0’s rotation pivot to world center
63 setTransformNodeRotatePivot(starting mover, 0, 0, 0, True)
64

65 for i in range(1, limit movers):
66 # this is the syntax to DUPLICATE. The duplicate is saved as Mover(i)

automatically
67 mov clone temp = cloneNode(starting mover, True)
68

69 # sets the duplicate’s rotation pivot to world center
70 setTransformNodeRotatePivot(mov clone temp, 0, 0, 0, True)
71 # rotate the duplicate
72 setTransformNodeRotation(mov clone temp, 0, 0, i * 360 / nMovers)
73

74 cloned movers list temp = []
75

76 for i in range(1, limit movers): # fill the list
77 a = findNodePath("Your Line/Your EkoSort/AllMovers/Mover" + str(i), True)
78 cloned movers list temp.append(a)
79

80 selectNodes(cloned movers list temp)
81 groupSelection() # group all movers
82

83 rename temp movers = findNodePath("Your Line/Your EkoSort/AllMovers"
84 "/Grouped Nodes1", True)
85 rename temp movers.setName("ClonedMovers")
86

87

88 def load RotaryCircle(radius, height):
89 scaling x circle = (radius * 0.0007) / 0.7
90 scaling y circle = scaling x circle
91 scaling z circle = 0.7
92

93 circle = findNodePath("Your Line/Your EkoSort/RotaryCircle", True)
94 # translate RotaryCircle
95 circle.setWorldTranslation(0, 0, height + 150)
96 setTransformNodeScale(circle, scaling x circle, scaling y circle,

scaling z circle) # scale RotaryCircle
97

116 Chapter A

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

98

99 def load RotarySupport(radius):
100 scaling y rotary support = (radius * 0.0007) / 0.525 # same as rotary circle
101 scaling x rotary support = scaling y rotary support
102 scaling z rotary support = 1 / 0.525
103

104 support = findNodePath("Your Line/Your EkoSort/RotarySupport", True)
105 setTransformNodeScale(support, scaling x rotary support,

scaling y rotary support, scaling z rotary support)
106

107

108 def load Stations(nMovers, radius):
109 scaling x stat = radius * 0.0007 # same as RotaryCircle
110 scaling y stat = scaling x stat
111 scaling z stat = 1
112

113 global n stat, limit stat, starting value stat
114 n stat = nMovers − 1 # default value (total number of stations present)
115 limit stat = nMovers # used to limit the for cycle
116 starting value stat = 1 # default value
117

118 if nMovers <= 6: # in this case skip the positioning of 1 station (just
delete Station0)

119 starting value stat = 1
120 limit stat = nMovers
121 n stat = nMovers − 1
122 else: # in this case skip the positioning of 3 stations
123 starting value stat = 2
124 limit stat = nMovers − 1
125 n stat = nMovers − 3
126

127 starting station = findNodePath("Your Line/Your EkoSort/AllStations/Station0",
True) # select the station by using path in Scenegraph

128 starting station.setWorldTranslation(0, radius, 0) # translate the mover to
initial position

129

130 if scaling x stat <= 1:
131 setTransformNodeScale(starting station, scaling x stat, scaling y stat,

scaling z stat) # scale along X, Y, Z
132 else:
133 setTransformNodeScale(starting station, 1, 1, 1) # scale along X, Y, Z
134

135 for i in range(starting value stat, limit stat):
136 # this is the syntax to DUPLICATE. The duplicate is named starting from

Mover1
137 stat clone temp = cloneNode(starting station, True)
138

139 # set the duplicate’s rotation pivot to world center
140 setTransformNodeRotatePivot(stat clone temp, 0, 0, 0, True)
141 # rotate the duplicate
142 setTransformNodeRotation(stat clone temp, 0, 0, i * 360 / nMovers)
143

144 if nMovers > 6:
145 # if i have to skip more than 1 station, i have to adjust names to

make the code work
146 stat clone temp.setName("Station" + str(i))
147

148 # hide Station0 (without deleting it), since it is clipping in the conveyor

Chapter A 117

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

149 hideNode(starting station)
150

151 cloned stations list temp = []
152

153 for i in range(starting value stat, limit stat): # fill the list
154 a = findNodePath("Your Line/Your EkoSort/AllStations/Station"
155 + str(i), True)
156 cloned stations list temp.append(a)
157

158 selectNodes(cloned stations list temp)
159 groupSelection() # group all cloned stations
160

161 rename temp = findNodePath("Your Line/Your EkoSort/AllStations/"
162 "Grouped Nodes1", True)
163 rename temp.setName("ClonedStations")
164

165

166 def load Windows(radius):
167 scaling y wind = radius * 0.0007
168 scaling x wind = scaling y wind
169 scaling z wind = 1
170

171 wind = findNodePath("Your Line/Your EkoSort/Windows", True)
172 setTransformNodeScale(wind, scaling x wind, scaling y wind, scaling z wind)
173

174 # −−−−− R
175

176 def reset EkoSort():
177 cloned movers = findNodePath("Your Line/Your EkoSort/AllMovers/"
178 "ClonedMovers", True)
179 cloned stations = findNodePath("Your Line/Your EkoSort/AllStations/"
180 "ClonedStations", True)
181

182 trash clone = [cloned movers, cloned stations]
183 deleteNodes(trash clone, False)
184

185 removeAllMeasurements()
186

187 # select the station by using path in Scenegraph
188 starting station = findNodePath("Your Line/Your EkoSort/AllStations/"
189 "Station0", True)
190 showNode(starting station) # show again Station0
191

192

193 # −−−−−−−−−− MAIN −−−−−−−−−−
194

195 build EkoSort()

118 Chapter A

Appendix B

ExtraPack Building Code

1 # −−−−−−−−−− EDITOR FUNCTIONS −−−−−−−−−−
2

3 # −−−−− B
4

5 def build ExtraPack(palletDistance, three per arc):
6 reset ExtraPack()
7

8 r = d / 2
9 link after wrapping = findNodePath("Your Line/ExtraPack After Wrapping/"

10 "Link AfterWrapping", True)
11 coord pack = findLinkCoordinates(link after wrapping)
12

13 global x pack, y pack
14 x pack = coord pack[0]
15 y pack = coord pack[1]
16

17 load Transport(x pack, y pack, r)
18

19 build Slider Support(x pack, y pack, p, three per arc)
20

21 load Slider(x pack, y pack)
22

23 if not three per arc: # 2 pallet stations per arc
24 load PalletStations 2perArc(y pack, p, palletDistance)
25 else: # 3 pallet stations per arc
26 load PalletStations 3perArc(y pack, p, palletDistance)
27

28

29 def build Slider Support(x pack, y pack, nPallets, three per arc):
30 global nArcs
31

32 # N.B. In nArcs I must insert an additional + 1, in order to store pallet
buffers!

33 if not three per arc: # 2 pallet stations per arc
34 if nPallets % 2 == 0: # even number of pallet stations
35 nArcs = int(nPallets / 2) + 1
36 else: # odd number of pallet stations
37 nArcs = 1 + int(nPallets / 2) + 1
38 # in this way, nArcs is the ceiling of nPallets/2 (n of arcs needed in

the support) + 1 ADDITIONAL
39 else: # 3 pallet stations per arc
40 if nPallets % 3 == 0: # number of pallet stations is a multiple of 3

119

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

41 nArcs = int(nPallets / 3) + 1
42 else:
43 nArcs = 1 + int(nPallets / 3) + 1
44

45 global limit arc cent, coord last arc
46 limit arc cent = nArcs − 2
47 coord last arc = [0, 0]
48

49 load FirstArc(x pack, y pack) # load first arc
50

51 if limit arc cent != 0: # if there is need for central arc(s)
52 link first arc = findNodePath("Your Line/Your ExtraPack/SliderSupport/"
53 "CampataIniziale/Link PrimaCampata", True)
54 # save coordinates given by link sphere in first arc
55 coord second arc = findLinkCoordinates(link first arc)
56 x second arc = coord second arc[0]
57 y second arc = coord second arc[1]
58

59 load MiddleArc(x second arc, y second arc)
60

61 # the first center arc has already been positioned. If only that one is
required (limit arc cent == 1), the code won’t enter in the next "for" cycle

62 for i in range(1, limit arc cent):
63 first middle arc = findNodePath("Your Line/Your ExtraPack/Slider"
64 "Support/CampataCentrale "
65 "NoUltimiPiloni0", True)
66 # clone the first middle arc, named starting from "

CampataCentrale NoUltimiPiloni1"
67 mid arc clone temp = cloneNode(first middle arc, True)
68

69 link previous arc = findNodePath("Your Line/Your ExtraPack/"
70 "SliderSupport/Campata"
71 "Centrale NoUltimiPiloni" +str(i − 1)+
72 "/Link CampataCentrale NoUltimiPiloni",
73 True)
74 # get coordinates of previous arc’s link sphere
75 coord arc temp = findLinkCoordinates(link previous arc)
76 x arc temp = coord arc temp[0]
77 y arc temp = coord arc temp[1]
78

79 # translate current arc in link sphere’s position
80 mid arc clone temp.setWorldTranslation(x arc temp, y arc temp, 0)
81

82 link second last arc = findNodePath("Your Line/Your ExtraPack/Slider"
83 "Support/CampataCentrale NoUltimi"
84 "Piloni" + str(limit arc cent − 1) +
85 "/Link CampataCentrale NoUltimiPiloni")
86 # get coordinates of last middle arc’s link sphere
87 coord last arc = findLinkCoordinates(link second last arc)
88

89 else: # if there is NO need for central arc(s)
90 link second last arc = findNodePath("Your Line/Your ExtraPack/Slider"
91 "Support/CampataIniziale/Link Prima"
92 "Campata", True)
93 # obtain coordinates of previous arc’s link sphere
94 coord last arc = findLinkCoordinates(link second last arc)
95

96 node camp cent = findNodePath("Your Line/Your ExtraPack/SliderSupport/"

120 Chapter B

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

97 "CampataCentrale NoUltimiPiloni0", True)
98 hideNode(node camp cent) # hide middle arc
99

100 x last arc = coord last arc[0]
101 y last arc = coord last arc[1]
102

103 load LastArc(x last arc, y last arc)
104

105 if nArcs > 3: # in case I had to clone middle arc
106 all slider supp cloned nodes = []
107 for i in range(1, limit arc cent):
108 a = findNodePath("Your Line/Your ExtraPack/SliderSupport/"
109 "CampataCentrale NoUltimiPiloni" + str(i), True)
110 all slider supp cloned nodes.append(a)
111

112 selectNodes(all slider supp cloned nodes)
113 groupSelection() # group all cloned arcs
114 rename temp movers = findNodePath("Your Line/Your ExtraPack/SliderSupport"
115 "/Grouped Nodes1", True)
116 rename temp movers.setName("Clones CampataCentrale")
117

118 temp list to hide = []
119 for i in range(1, limit arc cent):
120 temp linknode to hide = findNodePath("Your Line/Your ExtraPack/"
121 "SliderSupport/Clones Campata"
122 "Centrale/CampataCentrale No"
123 "UltimiPiloni" + str(i) +
124 "/Link CampataCentrale "
125 "NoUltimiPiloni", True)
126 temp list to hide.append(temp linknode to hide)
127

128 hideNodes(temp list to hide)
129

130

131 # −−−−− F
132

133 def findLinkCoordinates(linkNode):
134 bb = linkNode.getBoundingBox()
135

136 # doing X max − X min of the bounding box gives the X direction’s length
137 bb x length = bb[3] − bb[0]
138 # doing Y max − Y min of the bounding box gives the Y direction’s length
139 bb y length = bb[4] − bb[1]
140 # doing Z max − Z min of the bounding box gives the Z direction’s length
141 bb z length = bb[5] − bb[2]
142

143 x link = round(bb[0] + (bb x length / 2), 3)
144 y link = round(bb[1] + (bb y length / 2), 3)
145 z link = round(bb[2] + (bb z length / 2), 3)
146

147 coord link = [x link, y link, z link]
148 return coord link
149

150

151 # −−−−− L
152 def load FirstArc(x pack, y pack):
153 slider support = findNodePath("Your Line/Your ExtraPack/SliderSupport", True)
154 slider support.setWorldTranslation(x pack, y pack, 0)

Chapter B 121

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

155

156 firstarc = findNodePath("Your Line/Your ExtraPack/SliderSupport/"
157 "CampataIniziale", True)
158 firstarc.setLocalTranslation(0, 0, 0)
159 setTransformNodeScale(firstarc, 1, 1, 1)
160

161

162 def load LastArc(x last arc, y last arc):
163 last arc = findNodePath("Your Line/Your ExtraPack/SliderSupport/"
164 "CampataFinale", True)
165 last arc.setWorldTranslation(x last arc, y last arc, 0)
166 setTransformNodeScale(last arc, 1, 1, 1)
167

168

169 def load MiddleArc(x mid arc, y mid arc):
170 mid arc = findNodePath("Your Line/Your ExtraPack/SliderSupport/"
171 "CampataCentrale NoUltimiPiloni0", True)
172 mid arc.setWorldTranslation(x mid arc, y mid arc, 0)
173 setTransformNodeScale(mid arc, 1, 1, 1)
174

175

176 def load PalletStations 2perArc(y pack, nPallets, palletDistance):
177 all pallets nodes = [] # list of all clones, to be grouped after
178 hw = 600 # half width of the pallet
179 y offset = 1750
180

181 first slider = findNodePath("Your Line/Your ExtraPack/AllPallets/"
182 "PalletStation0", True)
183

184 setTransformNodeScale(first slider, 1, 1, 1) # scaling is kept constant
185

186 prima campata = findNodePath("Your Line/Your ExtraPack/SliderSupport"
187 "/CampataIniziale", True)
188 coord prima campata = findLinkCoordinates(prima campata)
189

190 campata finale = findNodePath("Your Line/Your ExtraPack/SliderSupport"
191 "/CampataFinale", True)
192 coord campata finale = findLinkCoordinates(campata finale)
193

194 for i in range(0, nArcs):
195 if i == 0: # FIRST ARC
196 first slider.setWorldTranslation(coord prima campata[0] − (

palletDistance / 2) − hw, y pack + y offset, 0)
197 pallet clone temp = cloneNode(first slider, True) # clone pallet0
198 pallet clone temp.setWorldTranslation(coord prima campata[0] + (

palletDistance / 2) + hw, y pack + y offset, 0)
199 all pallets nodes.append(pallet clone temp)
200 elif i == nArcs − 1: # FINAL ARC
201 pallet buffer = findNodePath("Your Line/Your ExtraPack/"
202 "AllPallets/Pallets Buffer",
203 True)
204 pallet buffer.setWorldTranslation(coord campata finale[0], y pack +

y offset, 0)
205 elif nArcs > 2 and i == 1: # FIRST MIDDLE ARC
206 prima campata centrale = findNodePath("Your Line/Your ExtraPack/S"
207 "liderSupport/CampataCentrale"
208 " NoUltimiPiloni0", True)
209 coord prima camp cent = findLinkCoordinates(prima campata centrale)

122 Chapter B

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

210

211 pallet clone temp = cloneNode(first slider, True) # clone pallet0
212 pallet clone temp.setWorldTranslation(coord prima camp cent[0] − (

palletDistance / 2) − hw, y pack + y offset, 0)
213

214 pallet clone temp1 = cloneNode(first slider, True) # clone pallet0
215 pallet clone temp1.setWorldTranslation(coord prima camp cent[0] + (

palletDistance / 2) + hw, y pack + y offset, 0)
216

217 all pallets nodes.append(pallet clone temp)
218 all pallets nodes.append(pallet clone temp1)
219 else: # CLONES OF MIDDLE ARC
220 clone campata cent = findNodePath("Your Line/Your ExtraPack/"
221 "SliderSupport/Clones Campata"
222 "Centrale/CampataCentrale "
223 "NoUltimiPiloni" + str(i − 1),
224 True)
225 # (i − 1) must be used, since the first case with a clone of central

arc occurs at i == 2
226 coord clone camp cent = findLinkCoordinates(clone campata cent)
227

228 pallet clone temp = cloneNode(first slider, True) # clone pallet0
229 pallet clone temp.setWorldTranslation(coord clone camp cent[0] − (

palletDistance / 2) − hw, y pack + y offset, 0)
230

231 pallet clone temp1 = cloneNode(first slider, True) # clone pallet0
232 pallet clone temp1.setWorldTranslation(coord clone camp cent[0] + (

palletDistance / 2) + hw, y pack + y offset, 0)
233

234 all pallets nodes.append(pallet clone temp)
235 all pallets nodes.append(pallet clone temp1)
236

237 selectNodes(all pallets nodes)
238 groupSelection() # group all stations
239

240 rename temp movers = findNodePath("Your Line/Your ExtraPack/AllPallets"
241 "/Grouped Nodes1", True)
242 rename temp movers.setName("Clones Pallet")
243

244 if nPallets % 2 == 0: # even number of pallet stations
245 pass
246 else: # odd number of pallet stations
247 pallet to delete = findNodePath("Your Line/Your ExtraPack/AllPallets"
248 "/Clones Pallet/PalletStation" +
249 str(nPallets), True)
250 deleteNode(pallet to delete)
251

252

253 def load PalletStations 3perArc(y pack, nPallets, palletDistance):
254 all pallets nodes = [] # list of all clones, to be grouped after
255 w = 1200 # width of the pallet
256 y offset = 1750
257

258 first slider = findNodePath("Your Line/Your ExtraPack/AllPallets/"
259 "PalletStation0", True)
260

261 setTransformNodeScale(first slider, 1, 1, 1) # scale on Y dimension
262

Chapter B 123

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

263 prima campata = findNodePath("Your Line/Your ExtraPack/SliderSupport/"
264 "CampataIniziale", True)
265 coord prima campata = findLinkCoordinates(prima campata)
266

267 campata finale = findNodePath("Your Line/Your ExtraPack/SliderSupport/"
268 "CampataFinale", True)
269 coord campata finale = findLinkCoordinates(campata finale)
270

271 for i in range(0, nArcs):
272 if i == 0: # FIRST ARC
273 first slider.setWorldTranslation(coord prima campata[0] −

palletDistance − w, y pack + y offset, 0)
274

275 pallet clone1 temp = cloneNode(first slider, True) # clone pallet0
276 pallet clone1 temp.setWorldTranslation(coord prima campata[0], y pack +

y offset, 0)
277

278 pallet clone2 temp = cloneNode(first slider, True) # clone pallet0
279 pallet clone2 temp.setWorldTranslation(coord prima campata[0] +

palletDistance + w, y pack + y offset, 0)
280

281 all pallets nodes.append(pallet clone1 temp)
282 all pallets nodes.append(pallet clone2 temp)
283 elif i == nArcs − 1: # FINAL ARC
284 pallet buffer = findNodePath("Your Line/Your ExtraPack/AllPallets/"
285 "Pallets Buffer", True)
286 pallet buffer.setWorldTranslation(coord campata finale[0], y pack +

y offset, 0)
287 elif nArcs > 2 and i == 1: # FIRST MIDDLE ARC
288 prima campata centrale = findNodePath("Your Line/Your ExtraPack/"
289 "SliderSupport/CampataCentrale"
290 " NoUltimiPiloni0", True)
291 coord prima camp cent = findLinkCoordinates(prima campata centrale)
292

293 pallet clone0 temp = cloneNode(first slider, True) # clone pallet0
294 pallet clone0 temp.setWorldTranslation(coord prima camp cent[0] −

palletDistance − w, y pack + y offset, 0)
295

296 pallet clone1 temp = cloneNode(first slider, True) # clone pallet0
297 pallet clone1 temp.setWorldTranslation(coord prima camp cent[0], y pack

+ y offset, 0)
298

299 pallet clone2 temp = cloneNode(first slider, True) # clone pallet0
300 pallet clone2 temp.setWorldTranslation(coord prima camp cent[0] +

palletDistance + w, y pack + y offset, 0)
301

302 all pallets nodes.append(pallet clone0 temp)
303 all pallets nodes.append(pallet clone1 temp)
304 all pallets nodes.append(pallet clone2 temp)
305 else: # CLONES OF MIDDLE ARC
306 clone campata cent = findNodePath("Your Line/Your ExtraPack/Slider"
307 "Support/Clones CampataCentrale/"
308 "CampataCentrale NoUltimiPiloni"
309 + str(i − 1), True)
310 # (i − 1) must be used, since the first case with a clone of central

arc occurs at i == 2
311 coord clone camp cent = findLinkCoordinates(clone campata cent)
312

124 Chapter B

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

313 pallet clone0 temp = cloneNode(first slider, True) # clone pallet0
314 pallet clone0 temp.setWorldTranslation(coord clone camp cent[0] −

palletDistance − w, y pack + y offset, 0)
315

316 pallet clone1 temp = cloneNode(first slider, True) # clone pallet0
317 pallet clone1 temp.setWorldTranslation(coord clone camp cent[0], y pack

+ y offset, 0)
318

319 pallet clone2 temp = cloneNode(first slider, True) # clone pallet0
320 pallet clone2 temp.setWorldTranslation(coord clone camp cent[0] +

palletDistance + w, y pack + y offset, 0)
321

322 all pallets nodes.append(pallet clone0 temp)
323 all pallets nodes.append(pallet clone1 temp)
324 all pallets nodes.append(pallet clone2 temp)
325

326 selectNodes(all pallets nodes)
327 groupSelection() # group all stations
328

329 rename temp movers = findNodePath("Your Line/Your ExtraPack/AllPallets/"
330 "Grouped Nodes1", True)
331 rename temp movers.setName("Clones Pallet")
332

333 if nPallets % 3 == 0: # number of pallet stations is a multiple of 3
334 pass
335 elif nPallets % 3 == 2: # need to delete 1 excess stations
336 pallet to delete = findNodePath("Your Line/Your ExtraPack/AllPallets/"
337 "Clones Pallet/PalletStation" +
338 str(nPallets), True)
339 deleteNode(pallet to delete)
340 else: # need to delete 2 excess stations
341 pallet to delete = findNodePath("Your Line/Your ExtraPack/AllPallets/"
342 "Clones Pallet/PalletStation" +
343 str(nPallets), True)
344 pallet to delete bis = findNodePath("Your Line/Your ExtraPack/"
345 "AllPallets/Clones Pallet/"
346 "PalletStation" +
347 str(nPallets + 1), True)
348 deleteNode(pallet to delete)
349 deleteNode(pallet to delete bis)
350

351

352 def load Slider(x pack, y pack):
353 slider = findNodePath("Your Line/Your ExtraPack/SliderRobot", True)
354 setTransformNodeScale(slider, 1, 1, 1) # scale on Y direction
355 slider.setWorldTranslation(10000 + x pack, y pack, 0)
356

357

358 def load Transport(x pack, y pack, radius):
359 scaling y transport = radius * 0.0007
360

361 transport = findNodePath("Your Line/Your ExtraPack/Trasporto", True)
362 transport.setWorldTranslation(x pack, y pack, 0)
363 setTransformNodeScale(transport, 1, scaling y transport, 1) # scale on Y

direction
364

365

366 # −−−−− R

Chapter B 125

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

367

368 def reset ExtraPack():
369 old camp cent = findNodePath("Your Line/Your ExtraPack/SliderSupport/"
370 "Clones CampataCentrale", True)
371 old pallets = findNodePath("Your Line/Your ExtraPack/AllPallets/"
372 "Clones Pallet", True)
373

374 delete = [old camp cent, old pallets]
375 deleteNodes(delete, False)
376

377 node camp cent = findNodePath("Your Line/Your ExtraPack/SliderSupport/"
378 "CampataCentrale NoUltimiPiloni0", True)
379 showNode(node camp cent) # show middle arc (in case it was hidden)
380

381 removeAllMeasurements()
382

383

384 # −−−−−−−−−− MAIN −−−−−−−−−−
385

386 build ExtraPack(palletDistance, three per arc)

126 Chapter B

Appendix C

Animation Code

1 # −−−−−−−−−− ANIMATION FUNCTIONS −−−−−−−−−−
2

3 # −−−−− B
4

5 def build AllMovers Animation(x grasp, y grasp, z grasp, z tile on station, nMovers,
nTiles, max handling height, frame nearest tile arrived, frame gap btw tiles):

6 # starting FRAME of mover movement (1 frame before grasping)
7 z descent frame0 = frame nearest tile arrived − 1
8 gap anim mover = frame gap btw tiles * nMovers
9 counterTiles = nTiles

10 counterMovers = nMovers
11 j = 0
12

13 if nTiles < 10:
14 k = 1
15 else:
16 k = 0
17

18 while counterTiles > 0 and counterMovers > 0:
19 frame on station1 = all frames mov on station[nTiles − 1 − j]
20

21 # from mover to mover, the animation is slipped of frame gap btw tiles
22 z tr init frame = z descent frame0 + frame gap btw tiles * j
23 # starting TIME of the descent trajectory of mover i
24 z tr init time = frameToSec(z tr init frame)
25 frame put down1 = all frames tile put down[nTiles − 1 − j]
26

27 tr0 = Vec3f()
28 tr0. init (x grasp, y grasp, z grasp)
29 # grasp tile on conveyor belt
30 tr1 = Vec3f()
31 tr1. init (x grasp, y grasp, z grasp − max handling height)
32 # mover stands still for a frame after arriving on top of the station
33 tr2 = Vec3f()
34 tr2. init (x grasp, y grasp, z grasp)
35 # release tile on station (first)
36 tr4 = Vec3f()
37 tr4. init (x grasp, y grasp, z tile on station + 10 * k)
38

39 if j == 0:
40 mover temp = findNodePath("Your Line/Your EkoSort/AllMovers/Mover0",
41 True)

127

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

42 else:
43 mover temp = findNodePath("Your Line/Your EkoSort/AllMovers/"
44 "ClonedMovers/Mover" + str(j), True)
45

46 # create vectors of translation transform vectors (x, y, z), and
corresponding times to impose them

47 tr vectors = [tr0, tr1, tr0, tr0, tr2, tr4, tr0]
48 tr times = [z tr init time, frameToSec(z tr init frame + 1),
49 frameToSec(z tr init frame + 2), frameToSec(frame on station1),
50 frameToSec(frame put down1 − 5), frameToSec(frame put down1),
51 frameToSec(frame put down1 + 4)]
52

53 # create trajectory of the mover
54 addTranslationControlPoints(mover temp, tr times, tr vectors, True)
55

56 counterTiles = counterTiles − 1
57 counterMovers = counterMovers − 1
58 j = j + 1
59 k = k + 1
60

61 # In case (nTiles = nMovers) or (nTiles < nMovers), the first while will
suffice: counterTiles will be 0 and no other animations will be needed.
However, if nTiles > nMovers, another loop will be needed in order to animate
the (nTiles − counterTiles) tiles "left behind" from the first cycle

62 if counterTiles == 0:
63 pass
64 else:
65 for i in range(0, counterTiles):
66 # the last j positions of the vector all frames mov on station have

already been used inside the first loop
67 frame on station2 = all frames mov on station[nTiles − 1 − i − j]
68

69 # the start of the second batch of trajectories is given by
z descent frame0 (start of first batch) plus the amount of frames used to
animate all of the first batch

70 z tr init frame second = z descent frame0 + gap anim mover +
frame gap btw tiles * i

71 frame put down2 = all frames tile put down[nTiles − 1 − i − j]
72

73 tr0 = Vec3f()
74 tr0. init (x grasp, y grasp, z grasp)
75 # grasp tile on conveyor belt
76 tr1 = Vec3f()
77 tr1. init (x grasp, y grasp, z grasp − max handling height)
78 # mover stands still for a frame after arriving on top of the station
79 tr2 = Vec3f()
80 tr2. init (x grasp, y grasp, z grasp)
81 # release tile on station (second)
82 tr5 = Vec3f()
83 tr5. init (x grasp, y grasp, z tile on station + 10 * i + 10 * nMovers)
84

85 if i == 0:
86 mover temp = findNodePath("Your Line/Your EkoSort/AllMovers/"
87 "Mover0", True)
88 else:
89 mover temp = findNodePath("Your Line/Your EkoSort/AllMovers/"
90 "ClonedMovers/Mover" + str(i), True)
91

128 Chapter C

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

92 # create vectors of translation transform vectors (x, y, z), and
corresponding times to impose them

93 tr vectors = [tr0, tr1, tr0, tr0, tr2, tr5, tr0]
94 tr times = [frameToSec(z tr init frame second),
95 frameToSec(z tr init frame second + 1),
96 frameToSec(z tr init frame second + 2),
97 frameToSec(frame on station2),
98 frameToSec(frame put down2 − 5),
99 frameToSec(frame put down2),

100 frameToSec(frame put down2 + 4)]
101

102 # create trajectory of the mover
103 addTranslationControlPoints(mover temp, tr times, tr vectors, True)
104

105 # Create animation block for every mover
106 for i in range(0, nMovers):
107 if i == 0:
108 mover temp = findNodePath("Your Line/Your EkoSort/AllMovers/"
109 "Mover0", True)
110 else:
111 mover temp = findNodePath("Your Line/Your EkoSort/AllMovers/"
112 "ClonedMovers/Mover" + str(i), True)
113 createAnimationBlockForNode(mover temp, True)
114

115

116 def build Machinery Animation(z rot angle package, frame nearest tile arrived):
117 setCurrentFrame(0)
118

119 # −−−−− MACHINERY MOV
120

121 mach mov = findNodePath("Your Line/Your EkoSort/Machinery/"
122 "Machinery mov", True)
123

124 # to have a good behavior, the pack must be taken from the station AT MOST at
42 frames

125 if frame nearest tile arrived < 42:
126 key frame anim mach = frame nearest tile arrived
127 else:
128 key frame anim mach = 42
129

130 if key frame anim mach − 42 > 0:
131 frame start anim mach = key frame anim mach − 42
132 else:
133 frame start anim mach = 0
134

135 # ROTATIONS
136 z rot angle mach = 180 + z rot angle package
137

138 rot0 = Vec3f()
139 rot0. init (0, 0, 0)
140 rot26 = Vec3f()
141 rot26. init (0, 0, z rot angle mach)
142 rot72 = Vec3f()
143 rot72. init (0, 0, z rot angle mach)
144 rot98 = Vec3f()
145 rot98. init (0, 0, 0)
146

Chapter C 129

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

147 # create vectors of rotation transform vectors (x, y, z), and corresponding
times to impose them

148 rot vectors = [rot0, rot26, rot72, rot98]
149 rot times = [frameToSec(frame start anim mach),
150 frameToSec(key frame anim mach − 16),
151 frameToSec(key frame anim mach + 30),
152 frameToSec(key frame anim mach + 56)]
153

154 # create final trajectories
155 addRotationControlPoints(mach mov, rot times, rot vectors)
156 createAnimationBlockForNode(mach mov, True)
157

158 # −−−−− CROSS
159

160 cross = findNodePath("Your Line/Your EkoSort/Machinery/Machinery mov/Croci",
161 True)
162 coord cross = findLinkCoordinates(cross)
163 conv bottom = findNodePath("Your Line/Your EkoSort/ConveyorComplete/"
164 "Conveyor Bottom", True)
165 coord conveyor bottom = findLinkCoordinates(conv bottom)
166

167 # TRANSLATIONS
168 # N.B: to properly use translations, i have to counterbalance the effect of

the SCALING of each part in the editor! To do so, i have to divide
translations by scaling y machinery

169 tr0 = Vec3f()
170 tr0. init (0, 0, 0)
171 tr26 = Vec3f()
172 tr26. init (0, 0, 0)
173 tr38 = Vec3f()
174 tr38. init (0, 0, 158 / 2)
175 tr42 = Vec3f()
176 tr42. init (0, 0, 208 / 2)
177 tr72 = Vec3f()
178 tr72. init (0, 1662.03, 208 / 2)
179 tr98 = Vec3f()
180 tr98. init (0, 1662.03, 40 / 2)
181 tr144 = Vec3f()
182 tr144. init (8.469, (coord conveyor bottom[1] − coord cross[1]) /

scaling y machinery, 40 / 2)
183 tr156 = Vec3f()
184 tr156. init (8.469, (coord conveyor bottom[1] − coord cross[1]) /

scaling y machinery, −65 / 2)
185 tr168 = Vec3f()
186 tr168. init (13.170, 1662.03, −50.877 / 2)
187 tr194 = Vec3f()
188 tr194. init (17.338, 0, 0)
189

190 # create vectors of translation transform vectors (x, y, z), and corresponding
times to impose them

191 tr cross vectors = [tr0, tr26, tr38, tr42, tr72, tr98, tr144, tr156, tr168,
tr194]

192 tr cross times = [frameToSec(frame start anim mach),
193 frameToSec(key frame anim mach − 16),
194 frameToSec(key frame anim mach − 4),
195 frameToSec(key frame anim mach),
196 frameToSec(key frame anim mach + 30),
197 frameToSec(key frame anim mach + 56),

130 Chapter C

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

198 frameToSec(key frame anim mach + 102),
199 frameToSec(key frame anim mach + 114),
200 frameToSec(key frame anim mach + 126),
201 frameToSec(key frame anim mach + 152)]
202

203 # create final trajectories
204 addTranslationControlPoints(cross, tr cross times, tr cross vectors, True)
205 createAnimationBlockForNode(cross, True)
206

207 # −−−−− CROSS INTERNAL
208

209 cross internal = findNodePath("Your Line/Your EkoSort/Machinery/Machinery mov"
210 "/Croci/Interne", True)
211

212 # ROTATIONS
213 rot int0 = Vec3f()
214 rot int0. init (0, 0, 0)
215 rot int26 = Vec3f()
216 rot int26. init (0, 0, 0)
217 rot int38 = Vec3f()
218 rot int38. init (−20, 0, 0)
219 rot int42 = Vec3f()
220 rot int42. init (−25, 0, 0)
221 rot int72 = Vec3f()
222 rot int72. init (−30, 0, 0)
223 rot int98 = Vec3f()
224 rot int98. init (−10, 0, 0)
225 rot int144 = Vec3f()
226 rot int144. init (−10, 0, 0)
227 rot int156 = Vec3f()
228 rot int156. init (5, 0, 0)
229 rot int168 = Vec3f()
230 rot int168. init (9, 0, 0)
231 rot int194 = Vec3f()
232 rot int194. init (0, 0, 0)
233

234 # create vectors of translation transform vectors (x, y, z), and corresponding
times to impose them

235 rot int vectors = [rot int0, rot int26, rot int38, rot int42, rot int72,
236 rot int98, rot int144, rot int156, rot int168, rot int194]
237 rot int times = [frameToSec(frame start anim mach),
238 frameToSec(key frame anim mach − 16),
239 frameToSec(key frame anim mach − 4),
240 frameToSec(key frame anim mach),
241 frameToSec(key frame anim mach + 30),
242 frameToSec(key frame anim mach + 56),
243 frameToSec(key frame anim mach + 102),
244 frameToSec(key frame anim mach + 114),
245 frameToSec(key frame anim mach + 126),
246 frameToSec(key frame anim mach + 152)]
247

248 # create final trajectories
249 addRotationControlPoints(cross internal, rot int times, rot int vectors)
250 createAnimationBlockForNode(cross internal, True)
251

252 # −−−−− CROSS EXTERNAL
253

Chapter C 131

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

254 cross external = findNodePath("Your Line/Your EkoSort/Machinery/Machinery mov/
Croci/Esterne", True)

255

256 # ROTATIONS
257 rot ext0 = Vec3f()
258 rot ext0. init (0, 0, 0)
259 rot ext26 = Vec3f()
260 rot ext26. init (0, 0, 0)
261 rot ext38 = Vec3f()
262 rot ext38. init (20, 0, 0)
263 rot ext42 = Vec3f()
264 rot ext42. init (25, 0, 0)
265 rot ext72 = Vec3f()
266 rot ext72. init (30, 0, 0)
267 rot ext98 = Vec3f()
268 rot ext98. init (10, 0, 0)
269 rot ext144 = Vec3f()
270 rot ext144. init (10, 0, 0)
271 rot ext156 = Vec3f()
272 rot ext156. init (−5, 0, 0)
273 rot ext168 = Vec3f()
274 rot ext168. init (−9, 0, 0)
275 rot ext194 = Vec3f()
276 rot ext194. init (0, 0, 0)
277

278 # create vectors of translation transform vectors (x, y, z), and corresponding
times to impose them

279 rot ext vectors = [rot ext0, rot ext26, rot ext38, rot ext42, rot ext72,
280 rot ext98, rot ext144, rot ext156, rot ext168, rot ext194]
281 rot ext times = [frameToSec(frame start anim mach),
282 frameToSec(key frame anim mach − 16),
283 frameToSec(key frame anim mach − 4),
284 frameToSec(key frame anim mach),
285 frameToSec(key frame anim mach + 30),
286 frameToSec(key frame anim mach + 56),
287 frameToSec(key frame anim mach + 102),
288 frameToSec(key frame anim mach + 114),
289 frameToSec(key frame anim mach + 126),
290 frameToSec(key frame anim mach + 152)]
291

292 # create final trajectories
293 addRotationControlPoints(cross external, rot ext times, rot ext vectors)
294 createAnimationBlockForNode(cross external, True)
295

296 # −−−−− UP/DOWN MACH
297

298 updown mach = findNodePath("Your Line/Your EkoSort/Machinery/Machinery mov/"
299 "up−down mach", True)
300 coord updown mach = findLinkCoordinates(updown mach)
301

302 # TRANSLATIONS
303 tr ud0 = Vec3f()
304 tr ud0. init (0, 0, 0)
305 tr ud26 = Vec3f()
306 tr ud26. init (0, 0, 0)
307 tr ud38 = Vec3f()
308 tr ud38. init (0, 0, 158)
309 tr ud42 = Vec3f()

132 Chapter C

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

310 tr ud42. init (0, 0, 208)
311 tr ud72 = Vec3f()
312 tr ud72. init (0, 1662.03, 208)
313 tr ud98 = Vec3f()
314 tr ud98. init (0, 1662.03, 40)
315 tr ud144 = Vec3f()
316 tr ud144. init (0, (coord conveyor bottom[1] − coord updown mach[1]) /

scaling y machinery, 40)
317 tr ud156 = Vec3f()
318 tr ud156. init (0, (coord conveyor bottom[1] − coord updown mach[1]) /

scaling y machinery, −65)
319 tr ud168 = Vec3f()
320 tr ud168. init (0, 1662.03, −50.877)
321 tr ud194 = Vec3f()
322 tr ud194. init (0, 0, 0)
323

324 # create vectors of translation transform vectors (x, y, z), and corresponding
times to impose them

325 tr ud vectors = [tr ud0, tr ud26, tr ud38, tr ud42, tr ud72, tr ud98,
326 tr ud144, tr ud156, tr ud168, tr ud194]
327 tr ud times = [frameToSec(frame start anim mach),
328 frameToSec(key frame anim mach − 16),
329 frameToSec(key frame anim mach − 4),
330 frameToSec(key frame anim mach),
331 frameToSec(key frame anim mach + 30),
332 frameToSec(key frame anim mach + 56),
333 frameToSec(key frame anim mach + 102),
334 frameToSec(key frame anim mach + 114),
335 frameToSec(key frame anim mach + 126),
336 frameToSec(key frame anim mach + 152)]
337

338 # create final trajectories
339 addTranslationControlPoints(updown mach, tr ud times, tr ud vectors, True)
340 createAnimationBlockForNode(updown mach, True)
341

342

343 def build Package Animation(nTiles, x packaging position,
conveyor velocity mmPerFrame, z rot angle, frame nearest tile arrived):

344 # −−−−− MAIN PACKAGE
345

346 old package to delete = findNodePath("Switch Demo Tiles/10 DemoTiles/"
347 "Package First Station", True)
348 deleteNode(old package to delete)
349

350 # to have a good behavior, the pack must be taken from the station AT MOST at
42 frames

351 if frame nearest tile arrived < 42:
352 key frame anim mach = frame nearest tile arrived
353 else:
354 key frame anim mach = 42
355

356 if key frame anim mach − 42 > 0:
357 frame start anim mach = key frame anim mach − 42
358 else:
359 frame start anim mach = 0
360

361 frame pack ready = all frames tile put down[0]
362 # go to frame in which the pack is completed

Chapter C 133

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

363 setCurrentFrame(frame pack ready)
364 cloned tiles for package list = []
365

366 for i in range(0, nTiles):
367 tile temp = findNodePath("Switch Demo Tiles/10 DemoTiles/"
368 "Piastrella Prova" + str(i), True)
369 clone tile temp = cloneNode(tile temp, True) # clone each tile
370 # delete animations inherited from original tiles
371 trashAnimation(clone tile temp)
372 cloned tiles for package list.append(clone tile temp)
373

374 selectNodes(cloned tiles for package list)
375 groupSelection() # group all cloned tiles
376 rename temp package = findNodePath("Switch Demo Tiles/10 DemoTiles/"
377 "Grouped Nodes1", True)
378 rename temp package.setName("Package First Station")
379 coord package = findLinkCoordinates(rename temp package)
380 main package = rename temp package
381

382 conv bottom = findNodePath("Your Line/Your EkoSort/ConveyorComplete/"
383 "Conveyor Bottom", True)
384 coord conveyor bottom = findLinkCoordinates(conv bottom)
385

386 # set rotation pivot to package center
387 setTransformNodeRotatePivot(main package, coord package[0], coord package[1],

coord package[2], True)
388 setCurrentFrame(0) # go back to starting frame
389

390 # TRANSLATIONS
391 tr0 = Vec3f()
392 tr0. init (0, 0, 0)
393 tr38 = Vec3f()
394 tr38. init (0, 0, 7)
395 tr42 = Vec3f()
396 tr42. init (0, 0, 57)
397 tr72 = Vec3f()
398 tr72. init (−coord package[0], −coord package[1], 57)
399 tr98 = Vec3f()
400 tr98. init (−coord package[0], −coord package[1], −98)
401 tr144 = Vec3f()
402 tr144. init (−coord package[0], coord conveyor bottom[1] − coord package[1],

−98)
403 tr152 = Vec3f()
404 tr152. init (−coord package[0], coord conveyor bottom[1] − coord package[1],

−152)
405 tr pack = Vec3f()
406 tr pack. init (x packaging position, coord conveyor bottom[1] − coord package

[1], −152)
407

408 # frame used to arrive at packaging point
409 frame to reach packing = (x packaging position) / conveyor velocity mmPerFrame
410 frame packing = round(key frame anim mach + 110 + frame to reach packing, 0)
411

412 # create vectors of translation transform vectors (x, y, z), and corresponding
times to impose them

413 tr vectors = [tr0, tr0, tr38, tr42, tr72, tr98, tr144, tr152, tr pack]
414 tr times = [0, frameToSec(frame start anim mach),
415 frameToSec(key frame anim mach − 4),

134 Chapter C

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

416 frameToSec(key frame anim mach),
417 frameToSec(key frame anim mach + 30),
418 frameToSec(key frame anim mach + 56),
419 frameToSec(key frame anim mach + 102),
420 frameToSec(key frame anim mach + 110),
421 frameToSec(frame packing)]
422

423 # ROTATIONS
424 rot0 = Vec3f()
425 rot0. init (0, 0, 0)
426 rot72 = Vec3f()
427 rot72. init (0, 0, 0)
428 rot98 = Vec3f()
429 rot98. init (0, 0, −180 − z rot angle)
430

431 # create vectors of rotation transform vectors (x, y, z), and corresponding
times to impose them

432 rot vectors = [rot0, rot72, rot98]
433 rot times = [0, frameToSec(key frame anim mach + 30),
434 frameToSec(key frame anim mach + 56)]
435

436 # VISIBILITY
437 vis values = [1, 0]
438 vis times = [0, frameToSec(frame packing)]
439

440 # create final trajectories
441 addTranslationControlPoints(main package, tr times, tr vectors, True)
442 addRotationControlPoints(main package, rot times, rot vectors)
443 addVisibleControlPoints(main package, vis times, vis values)
444 createAnimationBlockForNode(main package, True)
445

446 # −−−−− PACKAGE PACKED
447

448 packed package = findNodePath("Switch Demo Tiles/10 DemoTiles/"
449 "Package Packed", True)
450

451 # TRANSLATIONS
452 tr packed0 = Vec3f()
453 tr packed0. init (x packaging position + coord package[0],

coord conveyor bottom[1], 616)
454

455 # Since i have a time horizon (given by time horizon), i need to know how much
space the pack has to travel from the packing frame to the end of animation.
It obviously depends from the conveyor speed

456 x end of run = x packaging position + 1472 + conveyor velocity mmPerFrame * (
time horizon − frame packing)

457

458 tr packed final = Vec3f()
459 tr packed final. init (x end of run, coord conveyor bottom[1], 616)
460

461 # create vectors of translation transform vectors (x, y, z), and corresponding
times to impose them

462 tr packed vectors = [tr packed0, tr packed final]
463 tr packed times = [frameToSec(frame packing), frameToSec(time horizon)]
464

465 # VISIBILITY
466 vis packed values = [0, 1]

Chapter C 135

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

467 vis packed times = [0, frameToSec(frame packing)] # in frame packing + 1, the
packed tiles become visible

468

469 # create final trajectories
470 addTranslationControlPoints(packed package, tr packed times, tr packed vectors,

True)
471 addVisibleControlPoints(packed package, vis packed times, vis packed values)
472 createAnimationBlockForNode(packed package, True)
473

474 # −−−−− PACKAGE PACKED BIS
475

476 packed package bis = findNodePath("Switch Demo Tiles/10 DemoTiles/"
477 "Package Packed bis", True)
478

479 # TRANSLATIONS
480 tr packed bis0 = Vec3f()
481 tr packed bis0. init (x end of run, coord conveyor bottom[1], 616)
482

483 if conveyor velocity <= 1.7: # conveyor velocity in m/s is a global var
484 pallet package = findNodePath("Your Line/Your ExtraPack/AllPallets/"
485 "PalletStation0", True)
486 else:
487 x = int(round(1 + p / 2, 0))
488 pallet package = findNodePath("Your Line/Your ExtraPack/AllPallets/"
489 "Clones Pallet/PalletStation1", True)
490

491 coord pallet = findLinkCoordinates(pallet package)
492 # find the X and Y value of the center of first pallet station
493 x pallet station = coord pallet[0]
494 y pallet station = coord pallet[1]
495

496 tr packed bis pallet = Vec3f()
497 tr packed bis pallet. init (x pallet station, coord conveyor bottom[1], 616)
498 tr packed bis rest = Vec3f()
499 tr packed bis rest. init (x pallet station, coord conveyor bottom[1], 666)
500 tr packed bis276 = Vec3f()
501 tr packed bis276. init (x pallet station, y pallet station, 666)
502 tr packed bis300 = Vec3f()
503 tr packed bis300. init (x pallet station, y pallet station, 194)
504

505 # create vectors of translation transform vectors (x, y, z), and corresponding
times to impose them

506 tr packed bis vectors = [tr packed bis0, tr packed bis pallet,
507 tr packed bis rest, tr packed bis276, tr packed bis300]
508

509 # frame in which pack reaches pallet
510 global frame pallet
511 frame pallet = round((x pallet station − x end of run) /

conveyor velocity mmPerFrame, 0)
512 tr packed bis times = [0, frameToSec(frame pallet),
513 frameToSec(frame pallet + 15),
514 frameToSec(frame pallet + 27),
515 frameToSec(frame pallet + 51)]
516

517 # ROTATIONS
518 rot packed bis276 = Vec3f()
519 rot packed bis276. init (0, 0, 0)
520

136 Chapter C

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

521 rot packed bis290 = Vec3f()
522 rot packed bis290. init (0, 0, −90)
523

524 # create vectors of rotation transform vectors (x, y, z), and corresponding
times to impose them

525 rot packed bis vectors = [rot packed bis276, rot packed bis290]
526 rot packed bis times = [frameToSec(frame pallet + 27),
527 frameToSec(frame pallet + 41)]
528

529 # create final trajectories
530 addTranslationControlPoints(packed package bis, tr packed bis times,

tr packed bis vectors, True)
531 addRotationControlPoints(packed package bis, rot packed bis times,

rot packed bis vectors)
532 createAnimationBlockForNode(packed package bis, True)
533

534

535 def build RotaryCircle Animation(nMovers, nTiles, frame gap btw tiles,
step rotation):

536 # need a float to calculate a rotation that is NOT an integer
537 fl nMovers = float(nMovers)
538 z rot angle rotary = round(float(−360 / fl nMovers), 1)
539 rotation init frame = all frames grasp position[nTiles − 1] + 4
540 rotary circle = findNodePath("Your Line/Your EkoSort/RotaryCircle", True)
541 rot vectors = []
542 rot times = []
543

544 rot0 = Vec3f()
545 rot0. init (0, 0, 0)
546 rot vectors.append(rot0)
547 rot times.append(0)
548 rot bis = Vec3f()
549 rot bis. init (0, 0, 0)
550

551 rot vectors.append(rot bis)
552 rot times.append(frameToSec(rotation init frame))
553

554 for i in range(1, nTiles + 1):
555 if i == nTiles:
556 # In this case, i have finished the list all frames grasp position, so

i would take a wrong value. I have to take the value of the previous cycle and
then add the frame gap between tiles animation

557 frame grasp position = all frames grasp position[nTiles − 1 − (i − 1)]
\

558 + 4 + frame gap btw tiles
559 else:
560 frame grasp position = all frames grasp position[nTiles − 1 − i] + 4

start from the second−to−last one
561

562 if step rotation == 1:
563 frame on station = all frames mov on station[nTiles − i] # −1
564 frame next movement = frame on station
565 frame last movement = frame next movement
566 elif step rotation == 2:
567 frame on station = all frames tile on miss stat 1[nTiles − i]
568 frame next movement = all frames mov on station[nTiles − i]
569 frame last movement = frame next movement
570 else: # step rotation == 3

Chapter C 137

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

571 frame on station = all frames tile on miss stat 1[nTiles − i]
572 frame next movement = all frames tile on miss stat 2[nTiles − i]
573 frame last movement = all frames mov on station[nTiles − i]
574

575 rot1 = Vec3f()
576 rot1. init (0, 0, z rot angle rotary * i)
577 rot vectors.append(rot1)
578 rot times.append(frameToSec(frame on station))
579 rot2 = Vec3f()
580 rot2. init (0, 0, z rot angle rotary * i)
581 rot vectors.append(rot2)
582 rot times.append(frameToSec(frame grasp position))
583

584 if i == nTiles and step rotation != 1:
585 rot3 = Vec3f()
586 rot3. init (0, 0, z rot angle rotary * (i + 1))
587 rot vectors.append(rot3)
588 rot times.append(frameToSec(frame next movement))
589 rot4 = Vec3f()
590 rot4. init (0, 0, z rot angle rotary * (i + 1))
591 rot vectors.append(rot4)
592 rot times.append(frameToSec(frame grasp position +
593 frame gap btw tiles))
594

595 if step rotation == 3:
596 rot5 = Vec3f()
597 rot5. init (0, 0, z rot angle rotary * (i + 2))
598 rot vectors.append(rot5)
599 rot times.append(frameToSec(frame last movement))
600 rot6 = Vec3f()
601 rot6. init (0, 0, z rot angle rotary * (i + 2))
602 rot vectors.append(rot6)
603 rot times.append(frameToSec(frame grasp position + (

frame gap btw tiles * 2)))
604

605 # create trajectory of RotaryCircle
606 addRotationControlPoints(rotary circle, rot times, rot vectors)
607 createAnimationBlockForNode(rotary circle, True)
608

609 # same rotation trajectory must be followed by the group AllMovers
610 all mov = findNodePath("Your Line/Your EkoSort/AllMovers", True)
611 addRotationControlPoints(all mov, rot times, rot vectors)
612 createAnimationBlockForNode(all mov, True)
613

614

615 def build Slider Animation(x pack, y pack):
616 x start slider = x pack + 10000
617

618 if conveyor velocity <= 1.7: # conveyor velocity in m/s is a global var
619 pallet package = findNodePath("Your Line/Your ExtraPack/AllPallets/"
620 "PalletStation0", True)
621 else:
622 pallet package = findNodePath("Your Line/Your ExtraPack/AllPallets/"
623 "Clones Pallet/PalletStation1", True)
624

625 coord pallet = findLinkCoordinates(pallet package)
626 x pallet station = coord pallet[0]
627 y pallet station = coord pallet[1]

138 Chapter C

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

628

629 # frame pallet is a global variable, already calculated when animating
packages. Every frame of slider movements MUST be referred to frame pallet!

630

631 # −−−−− SLIDER MAIN
632

633 slider = findNodePath("Your Line/Your ExtraPack/SliderRobot", True)
634

635 # TRANSLATIONS
636 tr0 = Vec3f()
637 tr0. init (x start slider, y pack, 0)
638 tr170 = Vec3f()
639 tr170. init (x start slider, y pack, 0)
640 tr220 = Vec3f()
641 tr220. init (x pallet station − 842, y pack, 0) # 842 is the displacement of

the center of grasp w.r.t. the rotation pivot of the slider
642 tr312 = Vec3f()
643 tr312. init (x pallet station − 842, y pack, 0)
644 tr336 = Vec3f()
645 tr336. init (x start slider, y pack, 0)
646

647 # create vectors of translation transform vectors (x, y, z), and corresponding
times to impose them

648 tr vectors = [tr0, tr170, tr220, tr312, tr336]
649 tr times = [0, frameToSec(frame pallet − 79), frameToSec(frame pallet − 29),
650 frameToSec(frame pallet + 63), frameToSec(frame pallet + 87)]
651

652 # create final trajectories
653 addTranslationControlPoints(slider, tr times, tr vectors, True)
654 createAnimationBlockForNode(slider, True)
655

656 # −−−−− UP/DOWN
657

658 setCurrentFrame(0) # go to starting animation frame
659 up down = findNodePath("Your Line/Your ExtraPack/SliderRobot/up−down", True)
660 coord up down = findLinkCoordinates(up down)
661

662 # TRANSLATIONS
663 tr ud0 = Vec3f()
664 tr ud0. init (0, 0, 0)
665 tr ud170 = Vec3f()
666 tr ud170. init (0, 0, 0)
667 tr ud220 = Vec3f()
668 tr ud220. init (0, −460, 0)
669 tr ud264 = Vec3f()
670 tr ud264. init (0, −460, 0)
671 tr ud276 = Vec3f()
672 tr ud276. init (0, y pallet station − coord up down[1], 0)
673 tr ud312 = Vec3f()
674 tr ud312. init (0, y pallet station − coord up down[1], 0)
675 tr ud336 = Vec3f()
676 tr ud336. init (0, 0, 0)
677

678 # create vectors of translation transform vectors (x, y, z), and corresponding
times to impose them

679 tr ud vectors = [tr ud0, tr ud170, tr ud220, tr ud264, tr ud276, tr ud312,
680 tr ud336]
681 tr ud times = [0, frameToSec(frame pallet − 79),

Chapter C 139

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

682 frameToSec(frame pallet − 29),
683 frameToSec(frame pallet + 15), frameToSec(frame pallet + 27),
684 frameToSec(frame pallet + 63), frameToSec(frame pallet + 87)]
685

686 # create final trajectories
687 addTranslationControlPoints(up down, tr ud times, tr ud vectors, True)
688 createAnimationBlockForNode(up down, True)
689

690 # −−−−− GRASP
691

692 grasp = findNodePath("Your Line/Your ExtraPack/SliderRobot/up−down/"
693 "COLONNA/Grasp", True)
694

695 # TRANSLATIONS
696 tr gr0 = Vec3f()
697 tr gr0. init (0, 0, 0)
698 tr gr170 = Vec3f()
699 tr gr170. init (0, 0, 0)
700 tr gr220 = Vec3f()
701 tr gr220. init (0, 0, −370)
702 tr gr234 = Vec3f()
703 tr gr234. init (0, 0, −958)
704 tr gr249 = Vec3f()
705 tr gr249. init (0, 0, −1010)
706 tr gr276 = Vec3f()
707 tr gr276. init (0, 0, −959)
708 tr gr300 = Vec3f()
709 tr gr300. init (0, 0, −1432)
710 tr gr312 = Vec3f()
711 tr gr312. init (0, 0, −500)
712 tr gr336 = Vec3f()
713 tr gr336. init (0, 0, 0)
714

715 # create vectors of translation transform vectors (x, y, z), and corresponding
times to impose them

716 tr gr vectors = [tr gr0, tr gr170, tr gr220, tr gr234, tr gr249, tr gr276,
717 tr gr300, tr gr312, tr gr336]
718 tr gr times = [0, frameToSec(frame pallet − 79),
719 frameToSec(frame pallet − 29),
720 frameToSec(frame pallet − 15), frameToSec(frame pallet),
721 frameToSec(frame pallet + 27), frameToSec(frame pallet + 51),
722 frameToSec(frame pallet + 63), frameToSec(frame pallet + 87)]
723

724 # create final trajectories
725 addTranslationControlPoints(grasp, tr gr times, tr gr vectors, True)
726 createAnimationBlockForNode(grasp, True)
727

728 # −−−−− ROTATOR
729

730 rotator = findNodePath("Your Line/Your ExtraPack/SliderRobot/up−down/"
731 "COLONNA/Grasp/Rotator", True)
732

733 # ROTATIONS
734 rot0 = Vec3f()
735 rot0. init (0, 0, 0)
736 rot170 = Vec3f()
737 rot170. init (0, 0, 0)
738 rot220 = Vec3f()

140 Chapter C

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

739 rot220. init (0, 0, 0)
740 rot276 = Vec3f()
741 rot276. init (0, 0, 0)
742 rot290 = Vec3f()
743 rot290. init (0, 0, −90)
744 rot312 = Vec3f()
745 rot312. init (0, 0, −90)
746 rot336 = Vec3f()
747 rot336. init (0, 0, 0)
748

749 # create vectors of rotation transform vectors (x, y, z), and corresponding
times to impose them

750 rot vectors = [rot0, rot170, rot220, rot276, rot290, rot312, rot336]
751 rot times = [0, frameToSec(frame pallet − 79), frameToSec(frame pallet − 29),
752 frameToSec(frame pallet + 27), frameToSec(frame pallet + 41),
753 frameToSec(frame pallet + 63), frameToSec(frame pallet + 87)]
754

755 # create final trajectories
756 addRotationControlPoints(rotator, rot times, rot vectors)
757 createAnimationBlockForNode(rotator, True)
758

759 # −−−−− CARRELLO SX
760

761 carr sx = findNodePath("Your Line/Your ExtraPack/SliderRobot/up−down/COLONNA"
762 "/Grasp/Rotator/P42000.0051.1/CARRELLO SX", True)
763 carr sx 2 = findNodePath("Your Line/Your ExtraPack/SliderRobot/up−down/"
764 "COLONNA/Grasp/Rotator/P42000.0051.1/"
765 "CARRELLO SX CILINDRO", True)
766

767 # TRANSLATIONS
768 tr sx0 = Vec3f()
769 tr sx0. init (0, 0, 0)
770 tr sx234 = Vec3f()
771 tr sx234. init (0, 0, 0)
772 tr sx249 = Vec3f()
773 tr sx249. init (0, 145, 0)
774 tr sx300 = Vec3f()
775 tr sx300. init (0, 145, 0)
776 tr sx312 = Vec3f()
777 tr sx312. init (0, 0, 0)
778

779 # create vectors of translation transform vectors (x, y, z), and corresponding
times to impose them

780 tr sx vectors = [tr sx0, tr sx234, tr sx249, tr sx300, tr sx312]
781 tr sx times = [0, frameToSec(frame pallet − 15), frameToSec(frame pallet),
782 frameToSec(frame pallet + 51), frameToSec(frame pallet + 63)]
783

784 # create final trajectories
785 addTranslationControlPoints(carr sx, tr sx times, tr sx vectors, True)
786 addTranslationControlPoints(carr sx 2, tr sx times, tr sx vectors, True)
787 createAnimationBlockForNode(carr sx, True)
788 createAnimationBlockForNode(carr sx 2, True)
789

790 # −−−−− CARRELLO DX
791

792 carr dx = findNodePath("Your Line/Your ExtraPack/SliderRobot/up−down/COLONNA"
793 "/Grasp/Rotator/P42000.0051.1/CARRELLO DX", True)
794 carr dx 2 = findNodePath("Your Line/Your ExtraPack/SliderRobot/up−down/"

Chapter C 141

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

795 "COLONNA/Grasp/Rotator/P42000.0051.1/"
796 "CARRELLO DX CILINDRO", True)
797

798 # TRANSLATIONS
799 tr dx0 = Vec3f()
800 tr dx0. init (0, 0, 0)
801 tr dx234 = Vec3f()
802 tr dx234. init (0, 0, 0)
803 tr dx249 = Vec3f()
804 tr dx249. init (0, −152, 0)
805 tr dx300 = Vec3f()
806 tr dx300. init (0, −152, 0)
807 tr dx312 = Vec3f()
808 tr dx312. init (0, 0, 0)
809

810 # create vectors of translation transform vectors (x, y, z), and corresponding
times to impose them

811 tr dx vectors = [tr dx0, tr dx234, tr dx249, tr dx300, tr dx312]
812 tr dx times = [0, frameToSec(frame pallet − 15), frameToSec(frame pallet),
813 frameToSec(frame pallet + 51), frameToSec(frame pallet + 63)]
814

815 # create final trajectories
816 addTranslationControlPoints(carr dx, tr dx times, tr dx vectors, True)
817 addTranslationControlPoints(carr dx 2, tr dx times, tr dx vectors, True)
818 createAnimationBlockForNode(carr dx, True)
819 createAnimationBlockForNode(carr dx 2, True)
820

821 # −−−−− CINGHIA LEFT−RIGHT
822

823 cinghia = findNodePath("Your Line/Your ExtraPack/SliderRobot/left−right/"
824 "Cinghia Left−Right", True)
825

826 # TRANSLATIONS
827 tr cin0 = Vec3f()
828 tr cin0. init (0, 0, 0)
829 tr cin m79 = Vec3f()
830 tr cin m79. init (0, 0, 0)
831 tr cin m29 = Vec3f()
832 tr cin m29. init (0, −565, 0)
833 tr cin15 = Vec3f()
834 tr cin15. init (0, −565, 0)
835 tr cin24 = Vec3f()
836 tr cin24. init (0, 806, 0)
837 tr cin66 = Vec3f()
838 tr cin66. init (0, 806, 0)
839 tr cin87 = Vec3f()
840 tr cin87. init (0, 0, 0)
841

842 # create vectors of translation transform vectors (x, y, z), and corresponding
times to impose them

843 tr cin vectors = [tr cin0, tr cin m79, tr cin m29, tr cin15, tr cin24,
844 tr cin66, tr cin87]
845 tr cin times = [0, frameToSec(frame pallet − 79),
846 frameToSec(frame pallet − 29),
847 frameToSec(frame pallet + 15), frameToSec(frame pallet + 24),
848 frameToSec(frame pallet + 66), frameToSec(frame pallet + 87)]
849

850 # SCALING

142 Chapter C

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

851 sc cin0 = Vec3f()
852 sc cin0. init (1, 1, 1)
853 sc cin24 = Vec3f()
854 sc cin24. init (1, 1, 1)
855 sc cin27 = Vec3f()
856 sc cin27. init (1, 0.7, 1)
857 sc cin63 = Vec3f()
858 sc cin63. init (1, 0.7, 1)
859 sc cin66 = Vec3f()
860 sc cin66. init (1, 1, 1)
861

862 # create vectors of scaling transform vectors (x, y, z), and corresponding
times to impose them

863 sc cin vectors = [sc cin0, sc cin24, sc cin27, sc cin63, sc cin66]
864 sc cin times = [0, frameToSec(frame pallet + 24),
865 frameToSec(frame pallet + 27), frameToSec(frame pallet + 63),
866 frameToSec(frame pallet + 66)]
867

868 # create final trajectories
869 addTranslationControlPoints(cinghia, tr cin times, tr cin vectors, True)
870 addScaleControlPoints(cinghia, sc cin times, sc cin vectors)
871 createAnimationBlockForNode(cinghia, True)
872

873

874 def build Tiles Animation(x spawn, y spawn, z spawn, step, nMovers, nTiles,
z tile on station, max handling height, conveyor vel mmToFrame, frame gap anim,
step rotation):

875 fl nMovers = float(nMovers)
876 z rot angle = round(float(−360 / fl nMovers), 1)
877 # Z coordinate of tile 0 when put on the station above the others. It is set

in this way in order to parametrize the next "for" cycle
878 z last tile on station = z tile on station + 90
879 # frame in which Tile0 is taken by its mover (frame in which he reaches x = 0)

. N.B: the minus is there because x spawn is NEGATIVE
880 grasp frame0 = round(−x spawn / conveyor vel mmToFrame, 0)
881

882 global all frames mov on station, all frames tile on miss stat 1, \
883 all frames tile on miss stat 2, all frames grasp position, \
884 all frames tile put down
885 # vector of frames in which movers arrive on designed station, in descending

order. N.B: goes from 0 to (nTiles − 1)
886 all frames mov on station = []
887 # vector of frames with tiles on station 1 (missing), descending order.
888 all frames tile on miss stat 1 = []
889 # vector of frames with tiles on station 2 (missing), descending order.
890 all frames tile on miss stat 2 = []
891 # vector of frames in which tiles are being grasped (mover down), descending

order.
892 all frames grasp position = []
893 # vector of frames in which tiles are put down on station, descending order.
894 all frames tile put down = []
895

896 for i in range(0, nTiles):
897 # −−−−− MAIN TILES
898 tile temp = findNodePath("Switch Demo Tiles/10 DemoTiles/"
899 "Piastrella Prova" + str(i), True)
900 # set right rotation pivot (X axis = world’s X axis)
901 setTransformNodeRotatePivot(tile temp, 0, −y spawn, 0, False)

Chapter C 143

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

902

903 # TRANSLATIONS
904 tr0 = Vec3f()
905 tr0. init (x spawn + step * i, y spawn, z spawn)
906

907 global x closest tile
908 if i == 9:
909 x closest tile = x spawn + step * i
910

911 tr424 = Vec3f()
912 tr424. init (0, y spawn, z spawn)
913 tr425 = Vec3f()
914 tr425. init (0, y spawn, z spawn + max handling height)
915 tr442 = Vec3f()
916 tr442. init (0, y spawn, z spawn + max handling height)
917 tr453 = Vec3f()
918 tr453. init (0, y spawn, z last tile on station − 10 * i)
919

920 # create vectors of translation transform vectors (x, y, z)
921 tr vectors = [tr0, tr424, tr425, tr442, tr453]
922

923 # N.B: tile descent on station is 5 frames long
924 if step rotation == 1:
925 frame tile put down = grasp frame0 + 20 − frame gap anim * i + 5
926 elif step rotation == 2:
927 frame tile put down = grasp frame0 − frame gap anim * (i − 1) + 25
928 else: # step rotation == 3
929 frame tile put down = grasp frame0 − frame gap anim * (i − 2) + 25
930

931 tr times = [0, frameToSec(grasp frame0 − frame gap anim * i),
932 frameToSec(grasp frame0 + 1 − frame gap anim * i),
933 frameToSec(frame tile put down − 5),
934 frameToSec(frame tile put down)]
935

936 # create final translation trajectories of the tile
937 addTranslationControlPoints(tile temp, tr times, tr vectors, True)
938

939 if step rotation == 1:
940 # ROTATIONS
941 rot0 = Vec3f()
942 rot0. init (0, 0, 0)
943 rot428 = Vec3f()
944 rot428. init (0, 0, 0)
945 rot442 = Vec3f()
946 rot442. init (0, 0, z rot angle * step rotation)
947

948 # create vectors of rotation transform vectors (x, y, z)
949 rot vectors = [rot0, rot428, rot442]
950

951 frame mover rot on station = grasp frame0 + 19 − frame gap anim * i
952 all frames mov on station.append(frame mover rot on station)
953 all frames grasp position.append(grasp frame0 − frame gap anim * i)
954 all frames tile put down.append(frame tile put down)
955 rot times = [0, frameToSec(frame mover rot on station − 15),
956 frameToSec(frame mover rot on station)]
957

958 elif step rotation == 2:
959 # ROTATIONS

144 Chapter C

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

960 rot0 = Vec3f()
961 rot0. init (0, 0, 0)
962 rot1 = Vec3f()
963 rot1. init (0, 0, 0)
964 rot2 = Vec3f()
965 rot2. init (0, 0, z rot angle)
966 rot3 = Vec3f()
967 rot3. init (0, 0, z rot angle)
968 rot4 = Vec3f()
969 rot4. init (0, 0, z rot angle * step rotation)
970

971 # create vectors of rotation transform vectors (x, y, z)
972 rot vectors = [rot0, rot1, rot2, rot3, rot4]
973 frame grasp position = grasp frame0 − frame gap anim * i
974 all frames grasp position.append(frame grasp position)
975 frame tile rot on missing station 1 = frame grasp position + 19
976 all frames tile on miss stat 1.append(frame tile rot on missing station 1

)
977 frame mover rot on station = grasp frame0 − frame gap anim * (i − 1) +

19
978 # obtained counting 19 frames (4 grasping, 15 rotation) from grasping

of NEXT TILE
979 all frames mov on station.append(frame mover rot on station)
980 all frames tile put down.append(frame tile put down)
981 rot times = [0, frameToSec(frame grasp position + 4),
982 frameToSec(frame tile rot on missing station 1),
983 frameToSec(grasp frame0 − frame gap anim * (i − 1) + 4),
984 frameToSec(frame mover rot on station)]
985

986 else: # step rotation == 3
987 # ROTATIONS
988 rot0 = Vec3f()
989 rot0. init (0, 0, 0)
990 rot1 = Vec3f()
991 rot1. init (0, 0, 0)
992 rot2 = Vec3f()
993 rot2. init (0, 0, z rot angle)
994 rot3 = Vec3f()
995 rot3. init (0, 0, z rot angle)
996 rot4 = Vec3f()
997 rot4. init (0, 0, z rot angle * 2)
998 rot5 = Vec3f()
999 rot5. init (0, 0, z rot angle * 2)

1000 rot6 = Vec3f()
1001 rot6. init (0, 0, z rot angle * step rotation)
1002

1003 # create vectors of rotation transform vectors (x, y, z)
1004 rot vectors = [rot0, rot1, rot2, rot3, rot4, rot5, rot6]
1005 frame grasp position = grasp frame0 − frame gap anim * i
1006 all frames grasp position.append(frame grasp position)
1007 frame tile rot on missing station 1 = frame grasp position + 19
1008 all frames tile on miss stat 1.append(frame tile rot on missing station 1

)
1009 frame tile rot on missing station 2 = grasp frame0 − frame gap anim * (i

− 1) + 19
1010 all frames tile on miss stat 2.append(frame tile rot on missing station 2

)

Chapter C 145

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

1011 frame mover rot on station = grasp frame0 − frame gap anim * (i − 2) +
19

1012 all frames mov on station.append(frame mover rot on station)
1013 all frames tile put down.append(frame tile put down)
1014 rot times = [0, frameToSec(frame grasp position + 4),
1015 frameToSec(frame tile rot on missing station 1),
1016 frameToSec(grasp frame0 − frame gap anim * (i − 1) + 4),
1017 frameToSec(frame tile rot on missing station 2),
1018 frameToSec(grasp frame0 − frame gap anim * (i − 2) + 4),
1019 frameToSec(frame mover rot on station)]
1020

1021 # create final rotation trajectories of the tile
1022 addRotationControlPoints(tile temp, rot times, rot vectors)
1023 createAnimationBlockForNode(tile temp, True)
1024

1025

1026 global time horizon
1027 time horizon = all frames tile put down[0] + 24
1028

1029 for i in range(0, nTiles):
1030 # −−−−− "BIS" TILES − used to give a continuity illusion
1031 if i == 0:
1032 pass # Tile0 doesn’t need a "bis" one
1033 else:
1034 tile bis temp = findNodePath("Switch Demo Tiles/10 DemoTiles/"
1035 "Piastrella Prova" + str(i) + " bis",
1036 True)
1037 # total frames of animation for tile i bis
1038 frame anim i bis = step * i / conveyor vel mmToFrame
1039 # set right rotation pivot (Y axis = world’s Y axis)
1040 setTransformNodeRotatePivot(tile bis temp, 0, −y spawn, 0, False)
1041

1042 # TRANSLATIONS
1043 tr bis0 = Vec3f()
1044 tr bis0. init (x spawn, y spawn, z spawn)
1045 tr bis431 = Vec3f()
1046 tr bis431. init (x spawn, y spawn, z spawn)
1047 # at the end of the animation loop, the "bis" tile must be in the same

place where the original one is at time 0
1048 tr bis457 = Vec3f()
1049 tr bis457. init (x spawn + step * i, y spawn, z spawn)
1050

1051 # create vectors of translation transform vectors (x, y, z)
1052 tr vectors bis = [tr bis0, tr bis431, tr bis457]
1053 tr times bis = [0, frameToSec(time horizon − frame anim i bis),
1054 frameToSec(time horizon)]
1055

1056 # create trajectory of tile bis
1057 addTranslationControlPoints(tile bis temp, tr times bis,
1058 tr vectors bis, True)
1059 createAnimationBlockForNode(tile bis temp, True)
1060

1061

1062 # −−−−− C
1063

1064 def calc FrameGapBetweenTiles(step tiles, conveyor velocity mmPerFrame):
1065 frame gap = round(step tiles / conveyor velocity mmPerFrame, 0)
1066 # [mm] / [mm / frame] = frames

146 Chapter C

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

1067 # round the quantity to 0 decimal values
1068 return frame gap
1069

1070

1071 def calc StepTiles(nMovers, radius):
1072 beta = 360 / nMovers
1073 beta rad = beta * math.pi / 180
1074 # distance in mm between subsequent tiles (rounded to 2 decimal values)
1075 arc = round(beta rad * radius, 2)
1076 return arc
1077

1078

1079 # −−−−− F
1080

1081 def frameToSec(frame):
1082 sec per frame = 0.041666666 # 1/24
1083 time = frame * sec per frame
1084 return time
1085

1086

1087 # −−−−− H
1088

1089 def hide 1 tile():
1090 hide tile 1 = findNodePath("Switch Demo Tiles/10 DemoTiles/"
1091 "Piastrella Prova9", True)
1092 hide tile 1 bis = findNodePath("Switch Demo Tiles/10 DemoTiles/"
1093 "Piastrella Prova9 bis", True)
1094

1095 to hide tiles = [hide tile 1, hide tile 1 bis]
1096 hideNodes(to hide tiles)
1097

1098

1099 def hide 2 tiles():
1100 hide tile 1 = findNodePath("Switch Demo Tiles/10 DemoTiles/"
1101 "Piastrella Prova9", True)
1102 hide tile 2 = findNodePath("Switch Demo Tiles/10 DemoTiles/"
1103 "Piastrella Prova8", True)
1104 hide tile 1 bis = findNodePath("Switch Demo Tiles/10 DemoTiles/"
1105 "Piastrella Prova9 bis", True)
1106 hide tile 2 bis = findNodePath("Switch Demo Tiles/10 DemoTiles/"
1107 "Piastrella Prova8 bis", True)
1108

1109 to hide tiles = [hide tile 1, hide tile 2, hide tile 1 bis, hide tile 2 bis]
1110 hideNodes(to hide tiles)
1111

1112

1113 # −−−−− M
1114

1115 def mPerSec in mmPerFrames(velocity mPerSec):
1116 # since 1 m = 1000 mm and 1 sec = 24 frames:
1117 velocity mmToFrames = velocity mPerSec * 1000 / 24
1118 return velocity mmToFrames
1119

1120

1121 # −−−−− S
1122

1123 def show hiddenTiles():
1124 show tile 1 = findNodePath("Switch Demo Tiles/10 DemoTiles/"

Chapter C 147

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

1125 "Piastrella Prova9", True)
1126 show tile 2 = findNodePath("Switch Demo Tiles/10 DemoTiles/"
1127 "Piastrella Prova8", True)
1128 show tile 1 bis = findNodePath("Switch Demo Tiles/10 DemoTiles/"
1129 "Piastrella Prova9 bis", True)
1130 show tile 2 bis = findNodePath("Switch Demo Tiles/10 DemoTiles/"
1131 "Piastrella Prova8 bis", True)
1132

1133 to show tiles = [show tile 1, show tile 2, show tile 1 bis, show tile 2 bis]
1134 showNodes(to show tiles)
1135

1136

1137 # −−−−−−−−−− ANIMATION CREATOR −−−−−−−−−−
1138

1139

1140 def create Animation(nMovers, diameter):
1141 setCurrentFrame(0) # go to starting animation frame
1142 show hiddenTiles()
1143 radius = diameter / 2
1144

1145 # the number of tiles of the demo is selected based on the limitations of
certain cases

1146 if n == 5 and d > 3000 and d <= 3650:
1147 nTiles = 9
1148 hide 1 tile()
1149 elif n == 5 and d > 3650:
1150 nTiles = 8
1151 hide 2 tiles()
1152 else:
1153 nTiles = 10
1154

1155 # [mm/frame]
1156 conveyor velocity mmPerFrame = mPerSec in mmPerFrames(conveyor velocity)
1157 link start line = findNodePath("Your Line/ExtraPack Before Sorting/"
1158 "Link StartInspecting", True)
1159 coord start line = findLinkCoordinates(link start line)
1160 x start line = coord start line[0] # x coordinate of the start of line
1161 y start line = coord start line[1] # y coordinate of the start of line
1162 x spawn tiles = x start line + 1000
1163 y spawn tiles = y start line
1164

1165 if diameter <= 2500:
1166 z spawn tiles = 1105
1167 else:
1168 z spawn tiles = 1108.5
1169

1170 # X, Y, Z coordinates of movers when in grasp position
1171 x start = 0
1172 y start = radius
1173 z start = 1150
1174 # height of tile when released on station
1175 z tile release = 730
1176 # max height of the mover w.r.t. conveyor
1177 max handling height = 40
1178 # X value where the pack is wrapped
1179 x packaging position = 9845
1180

1181 if nMovers <= 6 and not bool stations cancelled:

148 Chapter C

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

1182 step for = 1
1183 elif nMovers > 6 and bool stations cancelled:
1184 step for = 3
1185 else: # if nMovers <= 6 with stations cancelled or in the default case of

nMovers > 6
1186 step for = 2
1187

1188 fl nMovers = float(nMovers) # need a float to calculate a rotation that is
NOT an integer

1189 z rot angle = round(float((−360 / fl nMovers) * step for), 1)
1190

1191 # −−−−− Delete Previous Animations
1192 all anim = getAnimBlockNodes(True)
1193 trashAnimations(all anim)
1194

1195 # −−−−− Animate TILES
1196 step tiles normal = calc StepTiles(nMovers, radius) # distance to be kept

between tiles (to be synchronized with movers)
1197

1198 # if (step tiles normal / conveyor velocity) < 785.4, the speed of the rotary
circle cannot keep up with the tiles arrival rate. So in this case step tiles
must be doubled!

1199 condition = step tiles normal / conveyor velocity
1200 if condition < 785.4: # used to be if step for == 3
1201 step tiles = step tiles normal * 2
1202 else:
1203 step tiles = step tiles normal
1204

1205 frame gap btw tiles = calc FrameGapBetweenTiles(step tiles,
conveyor velocity mmPerFrame) # frame difference between animations of
subsequent tiles

1206 frame nearest tile arrived = round((−x spawn tiles /
conveyor velocity mmPerFrame) − (frame gap btw tiles * (nTiles − 1)), 0)

1207

1208 build Tiles Animation(x spawn tiles, y spawn tiles, z spawn tiles, step tiles, n
, nTiles, z tile release, max handling height, conveyor velocity mmPerFrame,

1209 frame gap btw tiles, step for)
1210

1211 # −−−−− Animate MOVERS
1212 # after positioning tiles, the animation should start 4 frames after the

nearest tile reaches x = 0
1213 build AllMovers Animation(x start, y start, z start, z tile release, nMovers,

nTiles, max handling height, frame nearest tile arrived, frame gap btw tiles)
1214

1215 # −−−−− Animate PACKAGES
1216 build Package Animation(nTiles, x packaging position,

conveyor velocity mmPerFrame, z rot angle, frame nearest tile arrived)
1217

1218 # −−−−− Animate ROTARY CIRCLE
1219 build RotaryCircle Animation(nMovers, nTiles, frame gap btw tiles, step for)
1220

1221 # −−−−− Animate MACHINERY
1222 build Machinery Animation(z rot angle, frame nearest tile arrived)
1223

1224 # −−−−− Animate SLIDER
1225 build Slider Animation(x pack, y pack)
1226

1227 setCurrentFrame(0) # go to starting animation frame

Chapter C 149

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

150 Chapter C

Appendix D

Final Editor Code: Main Section

1 # −−−−−−−−−− EDITOR MAIN SECTION −−−−−−−−−−
2

3 # −−−−− Clean VR tools and menus
4 clean vr tools()
5 delete existing extra vr menus()
6

7 # −−−−− Rebuild VR custom tools and menus (kept hidden)
8 create hidden vr menus()
9

10 # −−−−− Delete Previous Animations
11 delete previous animations()
12

13 # −−−−− Hide existing annotations
14 executePython(’selectVariantSet("Hide All Annotations")’)
15

16 # −−−−−−−−−− Start Editor
17 line 0 = findNodePath("Line0", True)
18 line 1 = findNodePath("Line1", True)
19 line 2 = findNodePath("Line2", True)
20

21 global nLines
22 if nLines == 1:
23 showNode(line 0)
24 hideNode(line 1)
25 hideNode(line 2)
26 elif nLines == 2:
27 showNode(line 0)
28 showNode(line 1)
29 hideNode(line 2)
30 else: # nLines == 2
31 showNode(line 0)
32 showNode(line 1)
33 showNode(line 2)
34

35 line distance = 15000 # distance between lines [mm]
36

37 # −−−−− Global lists used
38 global list d, list p, list n, list palletDistance, list three per arc,

list conveyor velocity, list limit stat, list limit movers,
list starting value stat, list scaling y machinery, list nArcs, list x pack,
list y pack, list limit arc cent, list length m, list bool stations cancelled,
all time horizons

151

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

39

40 for j in range(0, 3):
41 list limit stat[j] = list n[j] − 1
42

43 # −−−−− Main "for" cycle
44 for i in range(0, nLines):
45 setCurrentFrame(0) # go to starting animation frame
46

47 diameter = list d[i]
48 r = list d[i] / 2
49 num pallets = list p[i]
50 num movers = list n[i]
51

52 show All LinkSpheres(i)
53

54 # −−−−− EkoSort
55 build EkoSort(i, line distance)
56

57 # −−−−− EkoWrap
58 link wrapping = findNodePath("Line" + str(i) + "/Your Line/Your EkoSort/

ConveyorComplete/Link EkoSort", True)
59 coord ekowrap = findLinkCoordinates(link wrapping)
60 x wrapping = coord ekowrap[0]
61 y wrapping = coord ekowrap[1]
62

63 load EkoWrap(x wrapping, y wrapping, r, i)
64

65 # −−−−− ExtraPack After Wrapping
66 link extrapack after wrapping = findNodePath("Line" + str(i) + "/Your Line/

EkoWrap/Link EkoWrap", True)
67 coord extrapack after wrapping = findLinkCoordinates(

link extrapack after wrapping)
68 x extrapack after wrapping = coord extrapack after wrapping[0]
69 y extrapack after wrapping = coord extrapack after wrapping[1]
70

71 load ExtraPack AfterWrapping(x extrapack after wrapping,
y extrapack after wrapping, r, i)

72

73 # −−−−− ExtraPack Before Sorting
74 link extrapack before sorting = findNodePath("Line" + str(i) + "/Your Line/

Your EkoSort/ConveyorComplete/Link Before EkoSort", True)
75 coord extrapack before sorting = findLinkCoordinates(

link extrapack before sorting)
76 x extrapack before sorting = coord extrapack before sorting[0]
77 y extrapack before sorting = coord extrapack before sorting[1]
78

79 load ExtraPack BeforeSorting(x extrapack before sorting,
y extrapack before sorting, r, i)

80

81 # −−−−− ExtraPack Palletizer
82 build ExtraPack(num pallets, r, list palletDistance[i], list three per arc[i],

i)
83

84 length tot = measure LineLength(i)
85 # convert to meters and round to 1 decimal
86 list length m[i] = round(length tot / 1000, 1)
87

88 # −−−−− Lights and Shadows

152 Chapter D

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

89 compute line shadows(i)
90

91 # −−−−− Animation
92 create Animation(num movers, diameter, i, line distance)
93

94 longest time horizon = max(all time horizons)
95

96 for i in range(0, nLines):
97 diameter = list d[i]
98 num movers = list n[i]
99

100 create bis animation(num movers, diameter, i, line distance,
longest time horizon)

101

102 hide All LinkSpheres(i)
103 deselectAll()
104

105 # −−−−− ShadowPlane Shadows
106 # go to starting animation frame (so that there are no "strange" shadows when

everything is still)
107 setCurrentFrame(0)
108 compute shadowplane shadows()
109 deselectAll()
110

111 # −−−−− Update Annotations
112 update annotations position()
113 deselectAll()
114

115 # −−−−− Update dummy VR tools
116 update vr tools()
117

118 # −−−−− Close loading screen and open final reset message
119 widget complete editor.editor end widget.show()
120 widget complete editor.loading widget.hide()
121

122 # −−−−− Go To VR
123 executePython(’selectVariantSet("VR − Open Editor in VR")’)
124

125 # −−−−− Starting View
126 executePython(’selectVariantSet("Control Room View")’)

Chapter D 153

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

154 Chapter D

List Of References

[1] Autodesk. About Variant Sets. URL: https://knowledge.autodesk.com/
support/vred- products/learn- explore/caas/CloudHelp/
cloudhelp/2019/ENU/VRED/files/Variants/VRED-Variants-
About-Variant-Sets-html-html.html.

[2] Autodesk. Collaboration. URL: https://knowledge.autodesk.com/
support/vred- products/learn- explore/caas/CloudHelp/
cloudhelp/2020/ENU/VRED/files/Collaboration/VRED-Collaboration-
Collaboration-1-html-html.html.

[3] Autodesk. To Create Variants. URL: https://knowledge.autodesk.com/
support/vred- products/learn- explore/caas/CloudHelp/
cloudhelp/2018/ENU/VRED/files/GUID-F913D186-40A3-4F5B-
87DD-0B22D1D44611-htm.html.

[4] Autodesk. VRED commandline options. URL: https://knowledge.autodesk.
com/support/vred-products/troubleshooting/caas/sfdcarticles/
sfdcarticles/VRED-commandline-options.html.

[5] Qt Company. About Qt. URL: https://wiki.qt.io/About_Qt.

[6] Qt Company. PySide2.QtWidgets. URL: https://doc.qt.io/qtforpython/
PySide2/QtWidgets/index.html#module-PySide2.QtWidgets.

[7] Qt Company. Qt for Python Documentation - Qt Modules. URL: https://doc.
qt.io/qtforpython/modules.html.

[8] HTTP for Humans. Requests: HTTP for Humans. URL: https://requests.
readthedocs.io/en/master/.

[9] Python.org. threading - Thread-based parallelism. URL: https://docs.python.
org/3/library/threading.html.

[10] SACMI S.C. Automatic tiles sorting, packaging and palletizing lines. URL: https:
//www.sacmi.it/en-us/Ceramics/Tiles/automatic-tiles-
sorting,-packaging-and-palletizing-lines.

[11] Nuova Sima S.p.A. EkoSort - Sorting line catalogue. URL: http : / / www .
nuovasima.com/System/00/02/37/23717/635467419552422037_
1.pdf.

[12] Nuova Sima S.p.A. Ekowrap, Ekoroll Catalogue. URL: http://www.nuovasima.
com/System/00/02/18/21899/635156446316392104_1.pdf.

[13] Nuova Sima S.p.A. Palletizer by Nuova Fima. URL: http://www.nuovasima.
com/System/00/01/74/17448/634206860217197500_1.pdf.

155

Development of Industrial Line Parametric Editor in VR via Autodesk Vred

[14] Nuova Sima S.p.A. Tiles inspection systems by Surface Inspection. URL: http://
www.nuovasima.com/System/00/02/34/23496/635421528748930645_
1.pdf.

[15] Gabriele Verducci. Corso di formazione: Modellazione 3D, Rendering, Animazione.
URL: http://www.hardcad.it/rhino/corso_01.pdf.

[16] Vive. VIVE Cosmos Overview. URL: https://www.vive.com/us/product/
vive-cosmos/overview/.

[17] Vive. VIVE Pro Overview. URL: https://enterprise.vive.com/us/
product/vive-pro/.

[18] VRgineers. XTAL Overview. URL: https://vrgineers.com/xtal/.

[19] XlsxWriter. Creating Excel files with Python and XlsxWriter. URL: https://
xlsxwriter.readthedocs.io/index.html.

156 Chapter D List Of References

