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Abstract

The Ctenosaura bakeri is an iguana species endemic to the island of Utila, a small is-
land off the eastern coast of Honduras. It is currently one of the species of the genus
Ctenosaura most threatened with extinction, having its conservation status labelled as
”Critically Endangered” by the IUCN Red List.
The goals of this paper are to give some mathematical insights on the intrinsic trend of
the whole population and to analyse the influence of the greater threats to the survival
of the species (such as sex dependent hunting and habitat destruction).
We will use a transition matrix approach to investigate the intrinsic trend of the popula-
tion and we will provide arguments for the estimation of the different parameters.
For the influence of the threats we will take a deterministic approach using systems of
ODEs and DDEs, investigating the stationary points and their stability and giving pre-
diction through simulations for the evolution of the population.
We will also introduce a first model for the occurence of hybridization with another iguana
species of the island.
The achieved results are summarized and still open questions stated at the end.





Population dynamics of Ctenosaura bakeri





Contents

1 Introduction 3

1.1 Biological background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Mathematical instruments and theorems 9

2.1 Discrete time models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Continuous time models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Nonlinear systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 DDEs systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Transition Matrix approach 15

3.1 Introduction and assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 The approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.2 Parameter estimation and generation time . . . . . . . . . . . . . . 18

3.2.3 Study of the eigenvalues and population estimation . . . . . . . . . 21

3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Sex dependent hunting 29

4.1 Introduction and assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 The model(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.1 First approach: constant hunting effort (I) . . . . . . . . . . . . . . 31

4.2.2 First approach: constant hunting effort (II) . . . . . . . . . . . . . . 36

4.2.3 Second approach: time dependent hunting effort (I) . . . . . . . . . 38

4.2.4 Second approach: time dependent hunting effort (II) . . . . . . . . 39

4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Habitat destruction and Carrying Capacity 41

5.1 Introduction and assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 The model(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2.1 Stationary points and their stability . . . . . . . . . . . . . . . . . . 43

5.2.2 Time dependent carrying capacity . . . . . . . . . . . . . . . . . . . 46

5.2.3 Time dependent carrying capacity with delay . . . . . . . . . . . . 48

5.2.4 Response type death rate . . . . . . . . . . . . . . . . . . . . . . . 50

5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5



1

6 Hybridization 53
6.1 Introduction and assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7 Conclusions and open questions 57

A Basic proofs 61
A.1 Starting population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
A.2 Ratio equation for costant hunting effort (I) . . . . . . . . . . . . . . . . . 62

B Code 63
B.1 Calculation of characteristic polynomial and eigenvalues and corresponding

eigenvectors of the Transition matrix . . . . . . . . . . . . . . . . . . . . . 63
B.2 Calculation of a± of 2.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
B.3 Plot of Figure 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
B.4 Plot of Figure 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
B.5 Calculation of the hunting effort in 4.2.1 . . . . . . . . . . . . . . . . . . . 65
B.6 Plot of Figure 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
B.7 Plot of Figure 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
B.8 Plot of Figure 4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
B.9 Estimation of hunting effort in section 4.2.2 . . . . . . . . . . . . . . . . . 67
B.10 Plot of Figure 4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
B.11 Plot of Figure 4.6 and estimation of a . . . . . . . . . . . . . . . . . . . . . 69
B.12 Estimation of a in section 4.2.4 . . . . . . . . . . . . . . . . . . . . . . . . 70
B.13 Plot of Figure 4.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
B.14 Plot of Figure 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
B.15 Plot of Figure 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
B.16 Plot of Figure 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
B.17 Plot of Figure 5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



2



Chapter 1

Introduction

As we will see in Chapter 2 the problem of predicting the dynamics of a system, let it
be demographical, economical or biological has fascinated humans for centuries. In 1798
Thomas Malthus gave birth to a first approach to model a real world situation to describe
the evolution of the demographics of a population. Of course it was a primitive model
and quite unrealistic but it was a beginnig.
Since then, many progresses have been made starting from the logistic equation (the im-
provement of Malthus approach) arriving to more recent approaches which include a time
delay.

With this elaborate we want to give some predictions on the population dynamics of an
endangered species of Iguana (see below for further details). We will use different models
to approach the study of the dynamics but what is in common to the models we used is
that they are all deterministic: since we are studying a population with a relatively large
number of individuals we can neglect the stochastic effects.

However, we will start using a linear discrete time model and we will focus on the analysis
of the eigenvalues of the corresponding matrix for our model. After that, we will use a
linear continuous time model (via ODEs and DDEs) and we will focus on the study of
the stability of the trivial stationary point. Lastly, we will formulate a nonlinear con-
tinuous model (via ODEs and DDEs) and we will study the stability of the stationary
points (the trivial and the nontrivial one) for both the ODEs approach and the DDEs one.

It is important to stress that most of the models we made up were solved through numer-
ical methods.

1.1 Biological background

The Ctenosaura bakeri (commonly known as Utila Spiny-tailed Iguana) is an iguana
species endemic to the island of Utila (i.e., it can only be found there), a small island off
the eastern coast of Honduras. It is currently one of the species of the genus Ctenosaura
most threatened with extinction, having its conservation status labelled as ”Critically En-
dangered” (which is just above being ”Extinct in the Wild”) by the IUCN (International
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4 CHAPTER 1. INTRODUCTION

Union for Conservation of Nature) Red List.

This iguana appears from dark brown to black in its earliest stages (this help the hatch-
lings and the juveniles to blend in with the vegetation and the soil of the swamps this
species inhabits) and it brightens with age to a blue or light grey.
After hatching and until sexual maturity the Ctenosaura bakeri will grow linearly in total
length and Snout-Vent length (or SVL, which is the typical way of measuring one iguana’s
length, especially if this one can willingly lose its tail) and exponentially in weight. It
is interesting to see how the relative tail length (when the tail is present) changes while
growing: it decreases with increasing SVL, which results in hatchlings with a tail length
almost equals to four times their SVL, while adults have a tail length almost equals to
1.5 times their SVL ([9], [12]).
This species also shows sexual dimorphism with males larger and heavier than females,
with the former ones exhibiting ”comblike” dorsal crests (the genus Ctenosaura was named
after the latter ones since it derives from two Greek words: ctenos meaning ”comb” and
saura meaning ”lizard”).

This reptile can be considered strictly stenoecious (i.e., it has a very restricted range of
habitats): it is the only iguana species that lives almost its whole life in mangrove swamps
of the island (the Ctenosaura bakeri is called ”Swamper” by the locals because of this).
It is thought that this species took the swamps as its habitat because of the competition
with the other larger and more agressive local (but not endemic) iguana species belonging
to the same genus: the Ctenosaura similis (which is also the fastest lizard on Earth reach-
ing up to 35 km/h). Yet the swamp’s soil is not very suitable for egg laying, let alone
for digging nesting burrows since it is muddy and frequently submerged, so when the
laying season approaches the pregnant females migrate to Utila’s beaches and dig there
the nests. Once the eggs hatch the newborns will in turn migrate back to the swamps
([9], [12]).
The mangroves in the swamps (whose species are the Rhizophora mangle, the Avicenna
germinans and the Laguncularia racemosa also known as Red mangrove, Black mangrove
and White mangrove, respectively) provide retreats and shelters with their cavities to the
Ctenosaura bakeri. It has been observed that the different mangrove species are preferred
by different age classes: hatchlings prefer the red mangroves, juveniles the black ones,
while adults the white ones ([31], [8]).

The Ctenosaura bakeri like most of the iguana species is primarily herbivorous, eating
flowers, leaves, stems and fruits, but (just like many species of the Iguanidae family) it
is also an opportunistic carnivore (especially in its early stages) preying upon arthropods
(mainly termites and fiddler crabs) and other small animals (cannibalism has also been
recorded).

The mating season begins with the dry season (roughly from mid-January to early Au-
gust) which starts when both the frequency and the quantity of the rainfall of the previous
months decrease (it will be interesting to study how the current climate crisis will affect
that). Usually mating reaches its peak at mid-February while egg laying is at its highest
intensity from early April to mid-April. As mentioned before gravid females will migrate
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from the swamps they inhabit to the beaches of the Island and there will start looking for
a suitable place for nesting (they can be very ”picky”, looking for spots clear from vege-
tation and debris). Nest burrows vary in depth from 200 mm to 600 mm also depending
on the material composition of the substarte.
The average temperature in the nesting burrows ranged from 29.1◦C to 30.8◦C in a study
dated 2000 ([9], [12]). Because of this short range of temperatures it is not clear whether
the Ctenosaura bakeri is a species with temperature-dependent sex determination (TSD)
like many other reptiles and lizards or not, nevertheless because of the reported sex ratio
of males to females of 1:1.2 (taken from a study dated 2000, [12]) it can be considered a
Fisherian species (the Alligator missisippiensis is an example of a reptilian species which
is non-Fisherian, having a sex ratio of males to females of roughly 1:5 because of its TSD).
The incubation period lasts from 85 to 99 days, after that the newly hatched iguanas will
migrate back to the swamps, as previously mentioned ([9], [12], [18]).

There are not many species that prey on adults of Ctenosaura bakeri, some of the ones that
have been observed are: the Common Black Hawk (Buteogallus anthracinus), Great Egret
(Ardea alba) and Boa Constrictor(Boa imperator). In the earliest stages of an iguana’s
life it is a completely different matter, though: hatchlings are preyed upon by many
more species than the previously mentioned, including but not limited to birds like the
Great-tailed Grackle (Quiscalus mexicanus) and the Green Heron (Butorides virescens);
snakes like the Salmon-bellied Racer (Mastigodryas melanolomus), the Mexican Parrot
Snake (Leptophis mexicanus), the Mexican Vine Snake (Oxybelis aeneus) and the Green
Vine Snake (Oxybelis fulgidus) and, finally, lizards too like the Brown Basilisk (Basiliscus
vittatus), the Common Spiny-tailed Iguana (Ctenosaura similis) and, as previously men-
tioned, the very Ctenosaura bakeri.
The above mentioned predators are autochtonous to Utila, nevertheless there are some
allochthonous (i.e., which have been introduced by humans ) like rats and free-roaming
dogs and cats ([18]).

As for many other species whose population is decreasing (which is the current trend of
Ctenosaura bakeri) there are many contributory causes behind the decision of labelling
this iguana species as ”Critically Endangered”.

The main threat to the survival of this species is the habitat degradation and destruction
of both the swamps and the beaches. Causes of destruction and degradation of swamps are
attributable to infrastructure development for the tourism industry; mangrove swamps are
used as garbage dumping sites and there is a potential risk posed by water contamination
from terrestrial landfills and agricultural chemicals (fertilisers and pesticides). There is
also an extensive deforestation of mangrove habitat for housing and marina construction
and for future potential crop plantations (this could become a more prevalent threat in the
future, since cattle have been observed trampling over nests). Mangroves near developed
areas and roads are also becoming isolated from their water sources, causing the trees to
die and leaving large patches of dead mangrove in dry lagoons. While taking into con-
sideration the beaches, causes of destruction and degradation of them are mainly oceanic
and local pollution (mainly plastics) which affect the nesting sites by obscuring laying
sites and also potentially affecting sand and incubation temperatures. Other factors of
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degradation of nesting beaches are the intensive removal of vegetation in preparation for
development and the presence of invasive plant species which contribute to the imprac-
ticability of nesting sites. Because of the increasing loss of shelters due to the mangrove
forests deforestation the previously mentioned predators may become a greater threat to
the survival of the Ctenosaura bakeri (since they do not feed exclusively on it).

The second main threat is local hunting: even though the Ctenosaura bakeri is protected
by Honduran law through a ban on hunting, in place since 1994, the actual enforcement of
the law is inadequate and both locals and inlanders are still poaching this species primarly
for meat consumption. While this species is not specifically targeted by hunters, it is clear
that if you have to choose between a rather slow and sedentary iguana and the fastest
lizard on Earth you would go for the former as chances of catching it are significantly
higher. To make things worse gravid females are considered a delicacy for the Easter’s
meals (which coincidentially occurs during the period of migration from the swamps to
the nesting beaches): this habit is utterly devastating since by doing this two generations
are wiped out at once.
This practice further jeopardizes the survival of the species not only because specifically
targeting gravid females is detrimental for the well being of the yearly reproductive output
but also because it could lead to a male-biased population which is not optimal for an
overall growth of the whole population (especially for nonmonongamous species, like the
Ctenosaura bakeri), while, on the countrary, having a female-biased population is excel-
lent for the continuity of the species.

Even though Ctenosaura bakeri and Ctenosaura similis are not so closely related (with the
former genetically closer to the species Ctenosaura oedirhina, endemic to Roatán, another
Honduran island, and Ctenosaura melanosterna) it has been observed (in areas of habitat
niche overlap) that they can mate and produce fertile hybrids.
While not a threat to the survival of Ctenosaura bakeri per se, in the future it can become
one in combination with its habitat destruction: with fewer hectars at Ctenosaura bakeri
disposal, the interactions between it and Ctenosaura similis will significantly increase,
which will lead to a greater number of fertile hybrids. It has been observed that the
hybrids have a greater clutch size than Ctenosaura bakeri and thus a greater fitness: this
would lead to the complete eradication of Ctenosaura bakeri where the hybrids are present
(since they compete for the same resources).
It is still unclear whether the hybrids’ spawn (in the long run and after multiple genera-
tions) can fall back into one of the two species or not.

Another potential threat linked to habitat destruction is the fragmentation of the pop-
ulation: even though Ctenosaura bakeri is a sedentary species, subpopulations are not
present, meaning the population is homogeneous from a genetic point of view. Habitat
destruction is likely to cause a segregation of two or three different subpopulations which
would result in a lower biodiversity and higher chances of extinction: isolated subpopu-
lations could present higher cases of inbreeding and would face stronger threats (because
of their smaller number of individuals).
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1.2 Approach

As for many other realistic situations, there are almost countless approaches to study the
population dynamics of Ctenosaura bakeri. In this paper we will focus on four different
aspects.

We will firstly study the intrinsic trend of the whole population via a Transition Ma-
trix approach, i.e. a discrete model,: we will take into consideration its growth without
considering habitat destruction and poaching, so we will only look at survival rates and
preying by both locals and exotic predators. We will study the dominating eigenvalue to
check whether the population would intrinsically grow or not.

Secondly, we will take a closer look to the effects of human hunting (not taking into
consideration habitat destruction) on the population sex ratio: we will try to fit data
and analyse the qualitative behaviour. We will use a linear continuous model to tackle
this problem thus we will focus on the stability of the trivial stationary point. We will
first assume the hunting effort to be constant and we will set up two models to study
the dynamics: first without delay and afterwards with a delay factor. Then, we will as-
sume the hunting effort not to be constant and we will repeat the process we did for the
constant hunting effort: first we will consider our model without delay and then with delay.

Thirdly, we will look at the consequences of habitat destruction (this time not directly tak-
ing into consideration poaching) of both the mangrove forests and the nesting beaches.
We will use a nonlinear continuous time model, and first we will study the stationary
points of the models and their stability. Then we will introduce the factors of habitat
destruction and we will make some predictions for both a nondelayed approach and a
delayed on. Furthermore, we will add a response type death rate to better reflect the
effects of habitat destruction on the population.

Lastly, even though it has not been well understood yet from a biological point of view,
we will try to give a model for the hybridization effects on the populations of Ctenosaura
bakeri and Ctenosaura similis for future research.

The main goal of this thesis is trying to understand which is the current greater threat
to the survival of the Ctenosaura bakeri and see what actions could be taken to reverse
the trend of population decrease.
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Chapter 2

Mathematical instruments and
theorems

In this chapter we will focus on the mathematical theory behind the arguments of the
next chapters (see [14] for further details). As mentioned in the in Introduction we will
use a deterministic approach only, since we can assume the population we are considering
to be large enough to consider stochastic effects to be negligible.

Historically, the first approach to describe the evolution of a population was the one made
by Thomas Malthus in 1798, which in its discrete form reads:

xn+1 = xn + rxn

where xn is the population we are considering at time n and r is the net growth rate per
individual. We can easily see that, given a starting population x0, we can compute an
explicit solution which reads:

xn = (1 + r)nx0

For biological models it makes sense to consider 1 + r ≥ 0, thus we can split the solution
in two (main) cases (omitting the case for r = −1 and for r = 0):

• −1 < r < 0, we have a strictly monotone decreasing sequence, with xn → 0.

• r > 0 , we have a strictly monotone increasing sequence, with xn →∞.

We can see that the main problem with this model is that it can predict an infinite growth
of a population. This is not realistic since every population needs resources to grow and
there are no such things as infinite resorces. Nevertheless, it can still be used both in
its discrete form and in its continuous form (which reads ẋ(t) = rx(t)) to describe the
growth of a relatively small population which has access to abundant resources (like the
first phases of bacterial growth).

Verhulst in 1838 proposed a variation of the Malthus model, which in its continuous form
reads:

9
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ẋ(t) = rx(t)

(
1− x(t)

K

)
where r is again our growth rate which now is slowed down by the factor

(
1− x(t)

K

)
. K

is the so called carrying capacity, which represents the maximum number of individuals
that our system can sustain. We can see that this model does not consider an infi-
nite growth over time since, if r > 1 (and our starting population x(0) << K) we will
have at first a growth similar to exponential but afterwards the population will tend to K.

From the approaches of both Malthus and Verhulst we can see that the deterministc
models can be discrete or continuous in time. In this study we will use both the approaches
and in the next sections we will focus on the theory and instruments needed for the
following chapters (we will omit all the proofs of the following mentioned theorems or
propositions).

2.1 Discrete time models

Discrete time models to describe the dynamics of a population are mainly used when the
previously mentioned population has a fixed time interval between generations, due to,
for example, breeding seasons which occur in regular time interval. Furthermore we will
consider only linear discrete time model, since we will use only this kind of approach in
the next chapter.
Thus, the idea is to generalize the Malthus approach, by having, as population a vector
and as growth rate a matrix rather than a number:

~xn+1 = L~xn (2.1)

where ~xn ∈ Rm and L ∈ Rm×m. Thus, ~xn = Ln~x0 is the solution of (2.1) where ~x0 is our
starting population.
~x0 can be represented by using a basis (~v1, ~v2, ..., ~vm) of eigenvectors of L:

~x0 = b1~v1 + b2~v2 + ...+ bm~vm

Let λ1,λ2,..., λm be the corresponding eigenvalues to ~v1, ~v2, ..., ~vm, then we get:

~xn = Ln~x0 = Ln(b1~v1+...+bm~vm) = b1L
n~v1+...+bmL

n~vm = b1L
n−1(L~v1)+...+bmL

n−1(L~vm) =

= b1L
n−1(λ1~v1) + ...+ bmL

n−1(λm~vm) = b1λ
n
1~v1 + ...+ bmλ

n
m~vm

We can see that the long term behaviour is mainly determined by the eigenvalues and
their corresponding eigenvectors. In particular we will look at the so called Dominating
Eigenvalue.

Definition 2.1 (Dominating Eigenvalue). Let L be a matrix, f a polynomial and λ1 ∈ R.

1. λ1 is called simple zero of f(λ), if f(λ) = 0 and f ′(λ) 6= 0 .
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2. λ1 is called simple eigenvalue of L, if λ1 is simple zero of det(L−λ1I) (characteristic
polynomial).

3. λ1 is called dominating eigenvalue of L, if the following conditions are satisfied:

(a) λ1 is simple eigenvalue

(b) λ1 is real and nonnegative

(c) λ1 >| λ | for all other eigenvalues λ of L.

Then the following proposition tells us explicitely how the long term behaviour of 2.1
looks like.

Proposition 2.1.1 (Dominating Eigenvalue). Suppose matrix L has a dominating eigen-
value λ1. Let ~v be the corresponding eigenvector. Then, there exists an a ∈ R with

lim
j→∞

~x(j)

λj1
= a~v,

i.e., for large j we have ~x(j) ≈ λj1a~v.
(Assuming that ~x(0) can be represented as ~x(0) = a~v+b~w+. . . in the basis of eigenvectors,
where a 6= 0).

We can easily see that if our dominating eigenvalue is smaller than 1 the solution will
tend to 0 while, if it is larger than 1 the population will grow to infinity.

2.2 Continuous time models

In this section we will take a look at the theory we will need for the continuous time
models we will use in the next chapters. We will first look at linear ODE systems, which
are of the form:

ẋ = Ax

Similar to the discrete systems, to learn about the behaviour of the linear continuous
system we will look at the eigenvalues and the eigenvectors. In particular we will focus
on the special case of A ∈ R2×2, i.e., (

ẋ
ẏ

)
= A

(
x
y

)
We know that the characteristic equation reads λ2−tr(A)+det(A) = 0, thus in this special

case the eigenvalues read λ1,2 =
tr(A)±

√
tr2(A)−4det(A)

2
. Thus calling ∆ = tr2(A)− 4det(A),

we have the so called trace determinant graph which is useful to determine the nature of
the stationary points, which in the linear case is only 0.
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Figure 2.1: Picture taken from [14].

The main cases are:

• Sources, given by the fact that
both λ1 and λ2 are positive.

• Saddles, given by the fact that
one among λ1 and λ2 is positive
while the other is negative.

• Sinks, given by the fact that
both λ1 and λ2 are negative.

Furthermore we have a useful criterion
to decide for or against stability in a
linear system:

Proposition 2.2.1 (Linear case).
Consider the linear case ẋ = Ax, A ∈
Cn×n. Let σ(A) be the spectrum of A.

1. 0 is asymptotically stable ⇔ Re σ(A) < 0.

2. 0 is stable ⇔ Re σ(A) ≤ 0 and all eignevalues λ with Re λ = 0 are semi-simple.

3. If there is a λ ∈ σ(A) with Re λ > 0, then 0 is unstable.

2.2.1 Nonlinear systems

For the nonlinear system, to analyze the behaviour around the stationary points, we will
proceed through the so called linearization process.

Let ẋ = f(x), with f ∈ C1(Rn,Rn), f(x̄) = 0, (i.e., x̄ is a stationary point) x̄ ∈ Rn. We
consider the solutions x(t) of ẋ = f(x) in the neighbourhood of x̄, x(t) = x̄+ z(t), then

ż(t) = f ′(x̄)z(t) + o(‖z‖)

The corresponding linearised system is ż = Az , A = f ′(x̄) =
(
∂fi
∂xk

(x̄)
)

, being based on

the Jacobian matrix of the right hand side function.

Proposition 2.2.2. If the real parts of all eigenvalues of A = f ′(x̄) are negative, then
x̄ is exponentially asymptotically stable, i.e., there are constants δ, C, α > 0, such that
‖x(0)− x̄‖ < δ implies

‖x(t)− x̄‖ < Ce−αt for t ≥ 0

Addendum:
From Re σ(A) ∩ (0,∞) 6= ∅ it follows that x̄ is unstable.

Definition 2.2 (Hyperbolic point). x̄ is called hyperbolic, if 0 /∈ Re σ(f ′(x̄)).
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Proposition 2.2.3 (Hartman and Grobman). Let x̄ be hyperbolic. Then, there is a
neighbourhood U of x̄ and a homeomorphism H : U −→ Rn with H(x̄) = 0, which maps
the trajectories of ẋ = f(x) one-to-one into trajectories of ż = Az, with respect to the
time course.

Thus, thanks to the proposition of Hartman and Grobman, if the hypotheses are satisfied,
i.e. if our stationary point is hyperbolic, we are able to use the tools of the analysis of
the linear systems for the analysis of the nonlinear ones.

Another tool for the analysis of the nonlinear 2D systems, something we will use in chapter
5 is the following criterion:

Proposition 2.2.4. Let D ⊆ R2 be a simply connected region and (f, g) ∈ C1(D,R) with
div(f, g) = ∂f

∂x
+ ∂g

∂y
being not identically zero and without change of sign in D. Then the

system
ẋ = f(x, y)

ẏ = g(x, y)

has no closed orbits lying entirely in D.

which gives us insights on the solution curves of our system without directly studying it.

2.2.2 DDEs systems

The basic idea of delay models is the change of a variable may depend not only on its
current state but also on its state some time in the past (for further details see [32]).
Thus we will have a so called (discrete time) delay differential equation (with f ∈
C1(Rn,Rn) and x(t) ∈ Rn), like the following:

ẋ(t) = f(x(t), x(t− τ))

where τ > 0, here is a parameter.
It is important to note that instead of the initial value in the case of an ODE, x(t) needs
to be given for all t ∈ [−τ, 0], which is called history function.

The approach to study the stability of the stationary points is the same as for the ODEs
(furthermore, the stationary points are the same as for an ODE system): we first perform
a Taylor expansion around our stationary point (x̄) , dropping all terms of second or
higher order (i.e., we linearize the system).

Our linearized system in matrix notation is slightly different by the usual ODE system
because of the presence of a delay and it reads:

ẋ(t) = Ax(t) +Bx(t− τ)

where A =
(

∂fi
∂xk(t)

(x̄)
)

and B =
(

∂fi
∂xk(t−τ)

(x̄)
)

. Thus, A contains the non-delayed and B

the delayed terms.
The characteristic equation in terms of A and B is given by:

det(λI − A−Be−λ) = 0
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This equation usually leads to a transcendental equation, but luckily in our case, in
chapter 5 we will have back a ”normal algebraic” equation, as for the ODEs case.



Chapter 3

Transition Matrix approach

3.1 Introduction and assumptions

In this chapter we will study the population dynamics of the Ctenosaura bakeri through
the analysis of the eigenvalues of the transition matrix. This approach will give us an in-
sight to the intrinsic well-being of the population: we will be able to understand whether
the population could survive on its own if we are not considering hunting and habitat
destruction and in case of a negative answer, we will be able to determine which stage is
best to intervene on in order to reverse an intrinsic extinction trend.

First we need to make the following assumptions, keeping the model as simple as possible,
but with most important properties for a realistic situation:

• We consider the population to be uniformly distributed across its habitat.

• We divide the population into 4 different non overlapping age classes:

– Eggs and Hatchlings (from ”-0.5” to 0.5 years old)

– Juveniles or sub adults (from 0.5 to 2.0 years old)

– Novice breeders (from 2.0 to 2.5 years old)

– Mature breeders (from 2.5 years old on)

• We consider the male-female ratio to be 50:50.

• Once an individual reaches sexual maturity they mate every year until their natural
death.

• Mating (and thus egg laying) occurs at the same time for every sexual mature
individual.

• We consider the incubation period to be 6 months.

• We consider the survival probability in the Hatchling and Juvenile age class to
increase linearly in time.

• We consider the survival probability in the adult age classes to be constant in time.

• We are not considering (human) hunting and habitat destruction to occur.

15
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3.2 The model

This is the core section of this chapter; our main goals here are: setting up a transition
matrix for our population and giving an estimation of the different parameters (average
of eggs laid every year per individual, survival probabilities for each age class, etc.). After
that we will compute the eigenvalues of our transition matrix and we will focus on the
Dominating Eigenvalue in order to see which will be the predicted population trend. It
is important to consider that this approach is primarily used for asexually reproducing
species, while we are considering the Ctenosaura bakeri which is a sexually reproducing
reptile. Because of that (and thanks to the 50:50 sex ratio assumption), we will need
to keep in mind that we are only considering the female individuals out of our total
population with all of the implications this will raise (halving the initial population of
each age class, halving the average of eggs laid per female, etc.).

3.2.1 The approach

The transition matrix (from one year to the following) for a four-stage model (with stages
as introduced before) reads in general form:

L =


p1 + e1 e2 e3 e4

q1 p2 0 0
0 q2 p3 0
0 0 q3 p4


where ei denotes the eggs laid per female iguana of stage i per year, pi the proportion of
individuals that remain in stage i in the following year and qi the proportion of individuals
that survive and move into stage i + 1. It is important to note that pi + qi yields the
annual survivorship of stage i (si).

In our scenario we will further split the age classes from four to seven:

• Eggs from ”-0.5” to 0 years old (E)

• Hatchlings from 0 to 0.5 years old (H)

• Juveniles or sub adults from 0.5 to 1.0 year old (J1)

• Juveniles or sub adults from 1.0 to 1.5 years old (J2)

• Juveniles or sub adults from 1.5 to 2.0 year old (J3)

• Novice breeders (NB)

• Mature breeders (MB)

We did this so that the p vector will consist only of the pMB component while all the other
ones will be 0 (for the other classes we have transition only) and thus the estimation of
the q components will be easier.
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The ”problem” is that in our model we have transitions between two stages that occur
every six months while reproduction (and thus egg laying) occurs once a year. We can
tackle this problem by considering our transition matrix to be the product of two other
different matrices: Le which is the transition matrix when the egg laying occurs and
Lh which is the transition matrix when the hatching of the eggs occurs (this is also the
matrix which represents the transition of the just hatched hatchlings to the J1 class). So
our transition matrix reads:

L = LhLe

where:

Le =



p̃1 + e1 e2 e3 e4 e5 e6 e7

q̃1 p̃2 0 0 0 0 0
0 q̃2 p̃3 0 0 0 0
0 0 q̃3 p̃4 0 0 0
0 0 0 q̃4 p̃5 0 0
0 0 0 0 q̃5 p̃6 0
0 0 0 0 0 q̃6 p̃7


and Lh =



p̃1 0 0 0 0 0 0
q̃1 p̃2 0 0 0 0 0
0 q̃2 p̃3 0 0 0 0
0 0 q̃3 p̃4 0 0 0
0 0 0 q̃4 p̃5 0 0
0 0 0 0 q̃5 p̃6 0
0 0 0 0 0 q̃6 p̃7



Here the p̃ and the q̃ vectors have the same role of the previous p and q vectors, but this
time over a period of six months rather than one year. We can then drop the tildes and
use the observation we made after the splitting into seven age classes so that the matrices
read:

Le =



0 0 0 0 0 eNB eMB

qE→H 0 0 0 0 0 0
0 qH→J1 0 0 0 0 0
0 0 qJ1→J2 0 0 0 0
0 0 0 qJ2→J3 0 0 0
0 0 0 0 qJ3→NB 0 0
0 0 0 0 0 qNB→MB pMB



Lh =



0 0 0 0 0 0 0
qE→H 0 0 0 0 0 0

0 qH→J1 0 0 0 0 0
0 0 qJ1→J2 0 0 0 0
0 0 0 qJ2→J3 0 0 0
0 0 0 0 qJ3→NB 0 0
0 0 0 0 0 qNB→MB pMB



It is important to highlight that we are considering an incubation period of six months
instead of 3 months (which is generally what happens in nature) in order not to further
split the age classes and by doing so complicating our transition matrix. We can interpret
this by also considering the mating season to be in the same time frame.
Also, we will not have all the eggs turning into hatchlings, so we will consider qE→H =
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rh < 1, where rh is the natural hatching rate of Ctenosaura bakeri’s eggs. Keeping this in
mind, then our matrix L will read:

0 0 0 0 0 0 0
0 0 0 0 0 rheNB rheMB

rhqH→J1 0 0 0 0 0 0
0 qH→J1qJ1→J2 0 0 0 0 0
0 0 qJ1→J2qJ2→J3 0 0 0 0
0 0 0 qJ2→J3qJ3→NB 0 0 0
0 0 0 0 qJ3→NBqNB→MB qNB→MBpMB p2

MB



It is worth noting that the first row of our matrix is a null vector and this is due to the
fact that the eggs’ age class lasts only 6 months and we are considering the situation
where the egg laying season occurs at the beginning of our one year cycle, so by the end
of the latter all the eggs which have hatched transit to the next age classes.
This means that we will always have at least a null age class among E, H, J1, J2, J3 and
NB every six months.

3.2.2 Parameter estimation and generation time

Now that we have set up our transition matrix we need to give an estimation for the dif-
ferent parameters. Unfortunately, there is not much data on the survival probability for
the different age classes, especially for the hatchlings and the subadults since it appears
they are very hard to detect to begin with ([12]), let alone being able to monitoring them.
Nevertheless we can try giving some realistic estimation based on observations of similar
species in similar habitats.

Let us start with the hatching rate (rh): one statistical study ([9]) gave us the natural
hatching rate of Ctenosaura bakeri to be 92.3%. Another study ([12]) gave us the mean
clutch size (i.e., the mean number of eggs laid per female iguana) for both Novice Breeders
and Mature Breeders, which respectively are ẽNB = 8.7 and ẽMB = 11.2. It is interesting
to see that the difference of eggs laid form one age class to the other one is due to the
fact that there is a linear correlation between the mean Snout-Vent length (SVL) and the
mean clutch size.
It is also important to notice, as we said previously, that we are considering only the
females in our model, so since not all the hatchlings coming out the eggs laid will be
females, we will have eNB = ẽNB

2
= 8.7

2
= 4.35 and eMB = ẽMB

2
= 11.2

2
= 5.6 i.e., since we

are assuming the ratio between males and females to be 50:50, the eggs that will carry
female individuals should be half the total of eggs laid per female.

Now we need to estimate qH→J1 . Luckily enough there was a study made specifically to
give an estimation for the survival rate of hatchlings of Cyclura cornuta stejnegeri on the
Mona Island ([25]). Of course this is a completely different species (it does not even share
the same genus with Ctenosaura bakeri) but at the initial stages most iguanas share the
same size and appearance. Furthermore, both species live on a caraibic island and share
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almost the same predators so it is fair to assume a similar survival rate for the Ctenosaura
bakeri hatchlings. The survival rate the study provided us is 0.22 over the first five months
of life, but we need a survival rate over the first six months. If the survival rate was to stay
constant we would have a survival rate of 0.7387 per month but we are assuming that the
survival rate grows linearly over time (this assumption makes sense if we are considering
that the hatchlings are linearly increasing in length, thus we are assuming the threats to
them to decrease linearly) so we are assuming a survival rate of 0.72 for the first month,
0.73 for the second, 0.74 for the third, 0.75 for the fourth and 0.76 for the fifth. These
rates are realistic indeed since they give us back a survival rate over 5 months of 0.22.
With this procedure in mind, we can assume a survival rate of 0.77 for the sixth month
and this will give us a total suvival rate of 0.17 over the first six months, i.e., qH→J1 = 0.17.

Now we will give an estimation for qNB→MB and pMB. We are assuming the survival
probability for adults to be constant in the age class, rather than increasing (linearly) as
we assumed for the sub adults and the hatchlings. This is mainly due to the fact that
the threats to the adults will not significantly decrease with the increase of size since, for
example, the few species which still prey upon the Ctenosaura bakeri at this stage of its
life, will do regardless of the bulk of the iguanas (individuals of Ctenosaura bakeri are
considered adults when they reach the ”critical” SVL of 150 mm so we assume that, by
then, the predators of the juveniles are no longer able to prey upon the adults).
We also assumed a mean lifespan (or, more likely, the average upper age limit for an
individual to reproduce) of a specimen which reached sexual maturity to be around 10
years. This is due to the fact that the mean lifespan of two similar species (Iguana iguana
and Ctenosaura similis) are, respectively, 9 years ([4], though in this case, it is probably
the average upper age limit for an individual to reproduce, since we found other articles,
like [37], that give us estimations of an average lifespan of 20 years) and 5-20 years ([36]).
We also found a report of a Ctenosaura bakeri which lived in captivity up to 13.8 years
([35]).
This being said we call x = qNB→MB = pMB and we set{

(x2)8 ≥ 0.5

(x2)9 < 0.5

i.e., the probability (starting from the beginning of adulthood) to reach 10 years (or a less
than 10 years age) should be greater than 0.5, while the probability to reach the eleventh
year should be less than 0.5. This yields:{

x ≥ 0.95760

x < 0.96222

So we will take x = 0.96 so qNB→MB = pMB = 0.96 and this result is consistent with
the observations ([12]) where it was found that all the marked adult individuals survived
after one year from the first capture.

Now we will give an estimation for qJ1→J2 , qJ2→J3 and qJ3→NB. Just like we assumed a
linear increase of the survival probability for the hatchlings, we will assume the same
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for the sub adults. We start giving an estimation of the survival probability for the first
month of the age class: we assumed it to be 0.81 (which is slightly larger than the survival
probability for the last month of the hatchling age class). Then we proceed to give an
estimation of the survival probability for the eighteenth month (the last one): we assumed
it to be 0.98 (which is slightly smaller than the adult class survival probability per month,
which is 6

√
qNB→MB = 6

√
pMB > 0.99). Having fixed the range boundaries we are able to

calculate the increase of the survival probability per month: 0.98−0.81
17

= 0.1. This will lead
us to the calculation of qJ1→J2 , qJ2→J3 and qJ3→NB:

qJ1→J2 = (0.81)(0.82)(0.83)(0.84)(0.85)(0.86) = 0.34

qJ2→J3 = (0.87)(0.88)(0.89)(0.90)(0.91)(0.92) = 0.51

qJ3→NB = (0.93)(0.94)(0.95)(0.96)(0.97)(0.98) = 0.76

With the survival probabilities we want to see whether the age structure we chose is
relevant. We will do it via calculating the generation time G given by the following:

G =

∑n
k=0 l(k)b(k)k∑n
k=0 l(k)b(k)

where k is the number of the age class (starting to enumerate from the youngest), l(k) is
the proportion of those individuals that survive until the beginning of age k (or, equiv-
alently, the probability that an individual survives from birth to the beginning of age
k) and b(k) is the average number of (in our case again, female) offspring born by an
individual of the corresponding age class.
Since

g(k) =
l(k + 1)

l(k)

we can calculate l(k) knowing g(k) (the survival probability):

l(0) = 1.0
l(1) = l(0)g(0) = l(0)qH→J1 = (1.0)(0.17) = 0.17
l(2) = l(1)g(1) = l(1)qJ1→J2qJ2→J3qJ3→NB = (0.17)(0.34)(0.51)(0.76) = 0.02
l(3) = l(2)g(2) = l(2)qNB→MB = (0.02)(0.96) = 0.02

So now we can build the corresponding life table:

Age Class k l(k) b(k)

Hatchlings 0 1.0 0
Juveniles 1 0.17 0
Novice breeders 2 0.02 4.35
Mature breeders 3 0.02 5.6

Now we are able to calculate G:

G =

∑n
k=0 l(k)b(k)k∑n
k=0 l(k)b(k)

=
(0.02)(4.35)(2) + (0.02)(5.6)(3)

(0.02)(4.35) + (0.02)(5.6)
≈ 2.56 > 1.0
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Since our generation time is greater than 1.0, the age structure we chose to represent the
Ctenosaura bakeri population is relevant.

Having checked the generation time, we can put the estimations we found earlier into our
matrices Le, Lh and L so that they finally read:

Le =



0 0 0 0 0 4.35 5.6
0.923 0 0 0 0 0 0

0 0.17 0 0 0 0 0
0 0 0.34 0 0 0 0
0 0 0 0.51 0 0 0
0 0 0 0 0.76 0 0
0 0 0 0 0 0.96 0.96



Lh =



0 0 0 0 0 0 0
0.923 0 0 0 0 0 0

0 0.17 0 0 0 0 0
0 0 0.34 0 0 0 0
0 0 0 0.51 0 0 0
0 0 0 0 0.76 0 0
0 0 0 0 0 0.96 0.96



L =



0 0 0 0 0 0 0
0 0 0 0 0 4.02 5.17

0.16 0 0 0 0 0 0
0 0.06 0 0 0 0 0
0 0 0.17 0 0 0 0
0 0 0 0.39 0 0 0
0 0 0 0 0.73 0.92 0.92



3.2.3 Study of the eigenvalues and population estimation

Now that we have the transition matrix L we want to study its eigenvalues by studying
the roots of its characteristic polynomial:

det(L−λI) = det(



−λ 0 0 0 0 0 0
0 −λ 0 0 0 4.02 5.17

0.16 0 −λ 0 0 0 0
0 0.06 0 −λ 0 0 0
0 0 0.17 0 −λ 0 0
0 0 0 0.39 0 −λ 0
0 0 0 0 0.73 0.92 0.92− λ


) = λ7− 92

102
λ6−941

104
λ4−248

104
λ3
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Thus the eigenvalues are:

λ1,2,3 = 0, λ4 ≈ −0.1867, λ5,6 ≈ 0.0378± 0.3567i and λ7 ≈ 1.0311

Then we can find the matrix V of the corresponding eigenvectors (to be read in columns):

0 0 0 0 0 0 0
0 0 0 0.7321 0.9569 0.9569 −0.9819
0 0 0 0 0 0 0
0 0 0 −0.2353 0.0169 + 0.1592i 0.0169− 0.1592i −0.0571

0.2161 −0.2161 0.2161 0 0 0 0
−0.7708 0.7708 −0.7708 0.4916 −0.1702 + 0.0365i −0.1702− 0.0365i −0.0216
0.5993 −0.5993 0.5993 −0.4087 0.1393− 0.0944i 0.1393 + 0.0944i −0.1790


We can see that we have a pair of complex eigenvalues (and corresponding eigenvectors)
and their presence could lead to an oscillatory behaviour, but most importantly, we can see
that λ7 is the dominating eigenvalue of L since it is a simple eigenvalue, it is real and non-
negative and λ7 >| λ | for all other eigenvalues λ of L (| λ5,6 |≈

√
(0.0378)2 + (0.3567)2 ≈

0.3581 < λ7). As for the usage of the proposition of the dominating eigenvalue (see ??),
we need an expression of the form:

N(0) = δ1v1 + δ2v2 + δ3v3 + δ4v4 + δ5v5 + δ6v6 + δ7v7 (3.1)

where N(0) is the vector of the starting population and vi is the i-th column of the matrix
V . The parameter a dominating the long-term behaviour that we are looking for is a := δ7

(v7 is the eigenvector corresponding to the dominating eigenvalue).

Before proceeding calculating a we need to give an estimation of N(0). We can assume
without loss of generality (we will justify it later in this subsection) that our starting
population will be of the type: N(0) = (0, H(0), 0, J2(0), 0, NB(0),MB(0))T i.e., we start
just before the eggs are laid and this makes sense since our transition matrix L is thought
to be starting just after the mating period.
From [9] and [12] we can take the statistical data from on-field observations done in three
different spots on the island (”Blue Bayou”, ”Big Bight Pond” and ”Iron Bound”) and
make an estimation for the total population:

Location J NB MB Total

Blue Bayou 4 9 11 24
Big Bight Pond 2 6 32 40
Iron Bound 40 34 33 107

Σ 46 49 76 171

The study from [12] gives us an estimation of the density of adult iguanas per hectare
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which ranges from 53 adults/ha to 86 adults/ha according to different the different models
employed in the previously mentioned study ([33]).
From the previous table, since we are assuming the population to be uniformly distributed,
we can find the densities of J , NB and MB:

Juveniles

125 : 53 = 46 : j− −→ j− = 19.5

125 : 86 = 46 : j+ −→ j+ = 31.65

Novice breeders

49 : 125 = nb− : 53 −→ nb− = 20.78

49 : 125 = nb+ : 86 −→ nb+ = 33.71

Mature breeders

76 : 125 = mb− : 53 −→ mb− = 32.22

76 : 125 = mb+ : 86 −→ mb+ = 52.29

It is important to consider that the study stated that the actual density of the juveniles is
likely to be five times greater than what the data suggested and this is mainly due to the
sub adults’ small size and ability to camouflage with the vegetation of their habitat. This
consideration leads us to a juveniles’ density that ranges from 98 individuals/ha to 158
individuals/ha. This estimation is a realistic one since the highest density of subadults
recorded was 20 juveniles/(103 m2) (=200 juveniles/ha).

Before giving an estimation for the hatchlings’ density, we must remember that our model
works with the number of females (or the number of couples) so our densities in order to
be used need to be halved, so that they read:

Juvenile : from 49/ha to 79/ha;

Novice breeders : from 10/ha to 19/ha;

Mature breeders : from 16/ha to 26/ha.

Now we can proceed to give an estimation of the hatchlings’ densities. We take the
previously found Novice and Mature breeders’ densities, we multiply them by the hatching
rate and by the respective average eggs laid (considering the female hatchlings only) and
then we sum up the results.

h− = ((nb−)(eNB) + (mb−)(eMB))rh = ((10)(4.35) + (16)(5.6))(0.923) ≈ 112.85 ≈ 113

h+ = ((nb+)(eNB) + (mb+)(eMB))rh = ((19)(4.35) + (26)(5.6))(0.923) ≈ 210.68 ≈ 211

So we have an estimation of the hatchlings’ densities. It is important to highlight that
this estimation is for the following year and not the one we are considering to be the
year of our initial population. Our transition matrix L is not invertible, so we cannot



24 CHAPTER 3. TRANSITION MATRIX APPROACH

properly calculate the hatchlings’ density of our initial population but since the dominat-
ing eigenvalue is bigger than 1, we know that the total population is increasing thus we
can assume, without any loss of generality, the starting hatchlings’ density to be slightly
smaller than the one we have found.
Then, we can assume our densities for the H age class to read:

h− = 105 and h+ = 200

Now, since there are three age classes to represent the more general juveniles’ age class
and since we have the estimated densities of the sub adults starting population, we need
to figure out how the found densities are distributed throughout the J1, the J2 and the
J3 age classes.
Let N(0) be the general vector of our starting population (or starting densities):

N(0) = (e(0), h(0), j1(0), j2(0), j3(0), nb(0),mb(0))T

Now we can calculate N(1) (which is the population after one year):

N(1) = LN(0) =



0
(4.02)nb(0) + (5.17)mb(0)

(0.16)e(0)
(0.06)h(0)
(0.17)j1(0)
(0.39)j2(0)

(0.73)j3(0) + (0.92)(nb(0)mb(0))


=:



0
h(1)
j1(1)
j2(1)
j3(1)
nb(1)
mb(1)


With N(1) we can calculate N(2):

N(2) = LN(1) =



0
(4.02)nb(1) + (5.17)mb(1)

0
(0.06)h(1)
(0.17)j1(1)
(0.39)j2(1)

(0.73)j3(1) + (0.92)(nb(1) +mb(1))


=:



0
h(2)

0
j2(2)
j3(2)
nb(2)
mb(2)


So we can find N(3):

N(3) = LN(2) =



0
(4.02)nb(2) + (5.17)mb(2)

0
(0.06)h(2)

0
(0.39)j2(2)

(0.73)j3(2) + (0.92)(nb(2) +mb(2))


=:



0
h(3)

0
j2(3)

0
nb(3)
mb(3)


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By the same reasoning we calculate N(4):

N(4) = LN(3) =



0
(4.02)nb(3) + (5.17)mb(3)

0
(0.06)h(3)

0
(0.39)j2(3)

(0.92)(nb(3) +mb(3))


=:



0
h(4)

0
j2(4)

0
nb(4)
mb(4)


We can now easily see by induction (see A.1.1) that, for a large enough n ∈ N, we have:

N(n+ 1) = LN(n) =



0
(4.02)nb(n) + (5.17)mb(n)

0
(0.06)h(n)

0
(0.39)j2(n)

(0.92)(nb(n) +mb(n))


=:



0
h(n+ 1)

0
j2(n+ 1)

0
nb(n+ 1)
mb(n+ 1)


This observation allows us to take (without loss of generality) our initial population (or
density) vector the like:

N(0) = (0, h(0), 0, j2(0), 0, nb(0),mb(0))T

This makes sense since the matrices which our transition matrix is made up of are or-
dered in a way that first we have the egg laying and then we have the hatching of the
eggs previously laid. This means that in our transition matrix the transit through the
egg stage is not esplicitly shown.

So, since j2 is the only density for the juvenile’s age class, the starting vectors of our
densities will be of the form:

N−(0) = (0, h−(0), 0, j2−(0), 0, nb−(0),mb−(0))T = (0, h−(0), 0, j−(0), 0, nb−(0),mb−(0))T

N+(0) = (0, h+(0), 0, j2+(0), 0, nb+(0),mb+(0))T = (0, h+(0), 0, j+(0), 0, nb−(0),mb−(0))T

which read:

N−(0) = (0, 105, 0, 49, 0, 10, 16)T

N+(0) = (0, 200, 0, 79, 0, 19, 26)T

Now, going back to (3.1) we need to find a− and a+, which are respectively δ7− and δ7+

of the following equations:

N−(0) = δ1−v1 + δ2−v2 + δ3−v3 + δ4−v4 + δ5−v5 + δ6−v6 + δ7−v7

N+(0) = δ1+v1 + δ2+v2 + δ3+v3 + δ4+v4 + δ5+v5 + δ6+v6 + δ7+v7
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This means:

N−(0) =



0
105
0
49
0
10
16


= V



δ1−
δ2−
δ3−
δ4−
δ5−
δ6−
δ7−


and N+(0) =



0
200
0
79
0
19
26


= V



δ1+

δ2+

δ3+

δ4+

δ5+

δ6+

δ7+


where V is the eigenvectors’ matrix introduced at the beginning of this subsection. The
problem with this matrix is that it is not invertible. So we can reduce it by erasing the
first and third rows (which are null ones) and the first and the third columns (which
are linearly dependent with v2, i.e. the second column of V and one of the eigenvectors
corresponding to the null eigenvalue). By doing so and considering the vectors Ñ±(0) =
(h±(0), j2±(0), 0, nb±(0),mb±(0))T we can solve the following system:
h±(0)
j2±(0)

0
nb±(0)
mb±(0)

 =


0 0.7321 0.9569 0.9569 −0.9819
0 −0.2353 0.0169 + 0.1592i 0.0169− 0.1592i −0.0571

−0.2161 0 0 0 0
0.7708 0.4916 −0.1702 + 0.0365i −0.1702− 0.0365i −0.0216
−0.5993 −0.4087 0.1393− 0.0944i 0.1393 + 0.0944i −0.1790



δ2±
δ4±
δ5±
δ6±
δ7±


Solving these two systems will yield:

a− = δ7− = −190.31

a+ = δ7+ = −321.99

Thus, for large t thanks to 2.1.1, we have:

N−(t) ≈ λt7a−v7 ≈ (1.0311)t



0
186.87

0
10.87

0
4.11
34.07


and N+(t) ≈ λt7a+v7 ≈ (1.0311)t



0
316.16

0
18.39

0
6.99
57.64


3.3 Conclusions

After having set up a model for the population of Ctenosaura bakeri focussing on an
age structured approach we managed to find the dominating eigenvalue of the transition
matrix associated to the model. This dominating eigenvalue being λ7 ≈ 1.0311 > 1 tells
us that, with the given assumptions, the population should be growing. This is factually
not the case, though: in 2000 (the year of the study we took our data for the initial
population had taken place) the estimated total adult population ranged from 57823 to
93826 individuals while in 2017 ([18]) it ranged from 3000 to 6000 individuals.
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These data, with the given assumptions, can be converted in adults’ densities which for
the year 2000 will be given by nb−(0) + mb−(0) = 26 adults/ha and nb+(0) + mb+(0) =
45 adults/ha (for the lower and the upper estimations, respectively). In the year 2017 we
do not have the adults’ densities explicitly shown, but we can easily figure them out: since
we are assuming habitat destruction processes not to occur we will have the same area of
habitat we had in 2000 i.e., 1091 ha. So we take the estimation boundaries, we half them
(it is important to remember that, in this model, we are considering the population of
female individuals only) and then we divide the result by the habitat area. This give us
the observed (female) adults’ densities which are 1.38 adults/ha and 2.75 adults/ha .

Figure 3.1: Estimations of predicted and observed female adults’ densities in comparison.

This result can be read in two ways (which are not mutually esclusive):

1. We have that our dominating eigenvalue λ7 ≈ 1.0311 is indeed larger than 1 (which
leads our population in the long term to grow) but it is only slightly larger than 1.
Because of this (and having rough estimates anyway), if one or more parameters in
our transition matrix L are perturbed by a small ε > 0, our dominating eigenvalue
could turn into a value smaller than 1. This could lead to a different outcome and
an actual decrease of the estimated densities (and so of the estimated population)
rather than an increase.

2. Factors we excluded in the assumptions for this model, like habitat destruction
and intensive hunting (which are known to occur), greatly affect the population
dynamics of Ctenosaura bakeri. It is also worth noting that in our calculation for
the observed adults’ densities in 2017, we divided the observed adults’ populations
by the habitat surface in 2000 (since we had assumed no habitat destruction events
to occur), this most likely yielded to lower densities than the actual ones since in
2017 we actually have a smaller habitat surface than the one in 2000.
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If the first case is to happen a possible, doable and currently implemented solution would
be trying to increase one or more of the parameters of the transition matrix L and thus
increasing the value of the dominating eigenvalue (which would eventually increase the
population’s growth). in practical terms this is currently impelmented by Útila Iguana
Research and Breeding Station (IRBS): the foundation coordinates a breeding program
with captive and wild female iguanas. Captive-hatched juveniles are released after one
year on the beaches where the females were captured and in other suitable areas. This
increses the mean hatchlings’ survival rate (qH→J1) and thus increases the dominating
eigenvalue.
Nevertheless, such a steep drop in the recorded adults’ densities and (mostly) such a
difference between the predicted densities and the recorded ones cannot be justified by
a small perturbation of the dominating eigenvalue, so the second case most likely has a
greater impact on the population dynamics of the species.

The second case is considering the fact that factors like hunting and habitat destruction
are actually playing a massive role on the population dynamics and then on the decline
of the total population. We will further investigate these factors in the next chapters.

From a biological point of view the situation is indeed critical but we can say that hope
still sparks: if factors like habitat destruction and hunting could be mitigated to the point
of having a negligible influence to the population dynamics (also thanks to the efforts of
the IRBS), the Ctenosaura bakeri would thrive, since from the proposition 2.1.1 we know
that the population would grow.



Chapter 4

Sex dependent hunting

4.1 Introduction and assumptions

In this chapter we will focus on the effects of sex selective hunting on the population
dynamics of Ctenosaura bakeri. As mentioned in the introduction, one of the main threat
to the survival of this species is the human poaching, especially if it specifically targets
gravid females. The biologists first arrived to the conclusion that the females were the
preferred targets of the poachers because of the incongruity of the recorded sex ratios in
comparsion with other species closely related to the Ctenosaura bakeri (for example, in
Ctenosaura similis was found a ratio of 0.63 males to 1 female, in Ctenosaura oedirhina
a ratio of 0.61 males to 1 female, while in Colombia for Iguana iguana there was found a
ratio of 0.40 males to 1 female).
We will approach this problem in two ways: at first we will consider the hunting effort
parameter to be constant, while secondly we will consider it to be dependent on time
to reflect the observed trend of increased number of poachers, mostly coming from the
mainland (see [12] and [23]).
Our main goals in this chapter are: showing how the sex dependent hunting affects the
change of the sex ratio of the iguana population switching from a slight female dominance
to a relevant male dominance over the years ([23]) and giving realistic predictions of the
evolution of the sex ratio (and of the total male and female populations) in the next years.

For the next models we will make the following assumptions:

• We consider the population to be uniformly distributed across its habitat.

• We consider all adult females to become gravid after every mating season.

• We consider the male and female death rates to be the same.

• We consider the whole sexually mature population to consist of mature breeders
only.

• We consider the Ctenosaura bakeri to be a Fisherian species (the ratio of the newborn
males to the newborn females is 1:1).

• We consider the hunting efforts occurring during the whole year to be negligible.

29
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• Mating (and thus egg laying) occurs at the same time for every sexual mature
individual.

• We consider the incubation period to be 6 months.

• When iguanas are 2.5 years they reach sexual maturity.

• We are not considering habitat destruction to occur.

• We consider the adult population to be far from its maximum, i.e., we consider the
carrying capacity of the system to be much bigger than the total adult population.

4.2 The model(s)

In this section we will set up the models to describe the dynamics of the population of
Ctenosaura bakeri starting from the Kendall and Goodman approach (see [13]), which, in
its simplest form reads (omitting the dependence on time):{

ṁ = −µmm+ bmΛ(f,m)

ḟ = −µff + bfΛ(f,m)

where m and f are the male and female populations, respectively, µf and µm are the
death rates of the female and male populations, respectively, bf and bm are the female
and male births per pregnancy (or more generally the female and male individuals that
reach sexual maturity) and Λ(f,m) are the successful matings.
We are using this kind of approach because a classical growth model in our case would
not be sufficient: those are mainly used for a population which reproduces asexually
or, in the case of a sexually reproducing population, only the female population or the
couple population are considered. In this chapter we want to understand better how the
dynamics of both sexes are affected differently by the hunting efforts. So we will mainly
use the above mentioned approach and since we are assuming the carrying capacity of
our system to be much bigger than the total adult population, we will not use a logistic
model, as our situation can be read to be in the first part of the curve (where the growth
is close to exponential).

Figure 4.1: Example of logistic growth.

The reasons behind this assumption are mainly due to the intention of focussing more on
the effects of hunting to the survival of the population rather than studying the stationary
points of ”coexistence” with the poachers.



4.2. THE MODEL(S) 31

4.2.1 First approach: constant hunting effort (I)

As previously mentioned, we start from the the Kendall and Goodman approach, leading
to the following system (omitting the dependence on time):{

ṁ = bmΛ(f,m)− µmm
ḟ = bfΛ(f,m)− µff

Λ(f,m) can assume different functions, depending on the situation. In [13], there are
some like: Λ(f,m) =

√
fm (the geometric mean), Λ(f,m) = min(f,m) or Λ(f,m) = 2fm

f+m

(the harmonic mean).
In our case, since we are starting from a 1.2 females to 1 male ratio and since the collected
data ([23]) tell us that as time progresses the ratio tends to a male dominance, considering
that the Ctenosaura bakeri, as many other reptile species, is polygamous and that we are
assuming that all the female adults successfully mate at every mating season; we will
consider Λ(f,m) = f . {

ṁ = bmf − µmm
ḟ = bff − µff

Now we introduce the hunting efforts in our system, which now reads:{
ṁ = bm(1− ĥf )f − µmm− h̃mm
ḟ = bf (1− ĥf )f − µff − (hf + h̃f )f

where h̃m and h̃f are the hunting efforts for both the male and female populations, re-
spectively (hunting which occurs during the whole year), while hf is the hunting effort
targetting the pregnant females which are migrating from the swamps to the nesting sites
on the beaches of Utila. This is also reflected on the growth rate where it is included the
fraction of survived gravid females: (1− ĥf ).
It is worth noting that we are taking 1 year as time unit so ĥf = hf · 1 year and we
have that 0 < h < 1 since, otherwise it would lead to a nonpositive solution, thus a
biologically non relevant case. So we can drop the hat and consider the model to be
non-dimensionalised.

Since we are assuming the hunting efforts h̃m and h̃f to be negligible (so we can consider
hf = h, omitting the subscript) and the natural mortality rates to be the same for both
the male and the female population (µm = µf = µ) the system reads:{

ṁ = bm(1− h)f − µm
ḟ = bf (1− h)f − µf − hf

Finally, since we are assuming the Ctenosaura bakeri to be a Fisherian species, we have
bm = bf = b, the system reads:{

ṁ = b(1− h)f − µm
ḟ = b(1− h)f − µf − hf = f(b(1− h)− µ− h)

(4.1)
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Before looking at the stationary points, we want to look at the consistency of the model,
i.e. we want to look at the positivity of the solutions (see [32] for more details):

m = 0 =⇒ ṁ = b(1− h)f ≥ 0

so the solution for m will not become negative. Now we consider the second equation:

f = 0 =⇒ ḟ ≥ 0

thus, also for f the solution will not become negative. Then our system is consistent.

Now, going back to our system (4.1), we want to study the stationary points: we can easily
see that (0,0) is the only stationary point for our model, alternatively the population grows
unlimitedly, since we decided not to consider the carrying capacity of our system. Now,
we want to study its stability.
We write down the Jacobian associated to the system which reads:

J(m,f) =

(
−µ b(1− h)
0 b(1− h)− (µ+ h)

)
= J(0,0)

We can see that the eigenvalues of the Jacobian matrix are:

λ1 = −µ

λ2 = b(1− h)− (µ+ h)

With little calculation we can see that λ2 < 0 for h > b−µ
b+1

and, of course, λ2 > 0 for

h < b−µ
b+1

. It is worth noting that all the parameters are positive and µ = 1− pMB = 0.04,
while b = eMBrhl(3) ≈ 0.11 (where pMB, eMB, rh and l(3) are the parameters we have
calculated in the previous chapter).It is important to note that since we are considering
one year to be our time unit the yearly adult survivorship (pMB) can be taken as a ”sur-
vival” rate, thus our death rate µ will be as above mentioned.
Keeping this in mind we can see that (0,0) is a stable node for h > b−µ

b+1
≈ 0.074 and a

saddle for h < b−µ
b+1
≈ 0.074.

Now we want to see the evolution of the female to male ratio in time:(
f

m

)′
=
ḟm− fṁ

m2
=
mf(b(1− h)− µ− h)− f(bf(1− h)− µm)

m2
=

=
mf(b(1− h)− h)− f 2b(1− h)

m2
=
f

m
(b(1− h)− h)− f 2

m2
b(1− h)

So we have that: (
f

m

)′
= (b(1− h)− h)

(
f

m

)
− b(1− h)

(
f

m

)2

(4.2)

Before looking at the explicit solution we study the stationary points of this ODE and
their stability. So we rewrite it in the following way:
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(
f

m

)′
= (b(1− h)− h)

(
f

m

)(
1− b(1− h)

b(1− h)− h

(
f

m

))
.
The stationary points read

(
f
m

)∗
= 0 and

(
f
m

)∗
= b(1−h)−h

b(1−h)
.

Now we look at their stability. Calling r :=
(
f
m

)
and r′ = g(r) we have:

g(r)′ = b(1− h)− h− 2b(1− h)r = b(1− h)(1− 2r)− h

For the trivial one, r∗ :=
(
f
m

)∗
= 0 , we have:

g(r∗)′ = b(1− h)− h− 2b(1− h)r∗ = b(1− h)− h

We have that if g(r∗)′ > 0, r∗ = 0 is an unstable stationary point, on the other hand,
if g(r∗)′ < 0, r∗ = 0 is a stable stationary point. With some calculation we have that
if h < b

b+1
we have that 0 is an unstable stationary point and if h > b

b+1
0 is a stable

stationary point.
Since we have slightly different conditions for the stability of the stationary points of (4.2)
compared to the conditions for stability of the stationary point of (4.1), we can take a
closer look especially to the conditions of stability of (0,0) and r∗ = 0:

• h < b
b+1
− µ

b+1
, then (0,0) and r∗ = 0 are unstable.

• b
b+1
− µ

b+1
< h < b

b+1
, then (0,0) is stable, while r∗ = 0 is still unstable.

• h > b
b+1

, then (0,0) and r∗ = 0 are stable.

It is interesting to see that we have an ”intermediate” case for b
b+1
− µ

b+1
< h < b

b+1
in

which we have (0,0) stable and r∗ = 0 unstable. This can be interpreted as h being strong
enough to lead the male and female adult populations to extinction but at almost the
same speed for both the males and females (hence the r∗ = 0 is unstable).

Now, looking at the nontrivial stationary point of (4.1), r∗ :=
(
f
m

)∗
= b(1−h)−h

b(1−h)
, we have:

g(r∗)′ = b(1− h)− h− 2b(1− h)r∗ = −(b(1− h)− h)

Repeating the previous argument we have that r∗ = b(1−h)−h
b(1−h)

is an unstable stationary

point if h > b
b+1

, while it is stable if h < b
b+1

.

Now we calculate the explicit solution of the ODE (4.2) (see A.2) which reads, calling
r(t) :=

(
f
m

)
(t) and r(0) = r0 :=

(
f
m

)
0
:

r(t) =
(b(1− h)− h)r0

e−(b(1−h)−h)t (b(1− h)(1− r0)− h) + b(1− h)r0

where r0 is the initial value of our female to male ratio.
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In [23] we have the collected data of the female to male ratio in 2000, 2006 and 2011
which read 1.2, 0.96 and 0.60, respectively. So if we set the starting point to be 1.2 and
the passage to the other two points at time 6 and 11 we can figure out two values for h:

h1 ≈ 0.031

h2 ≈ 0.081

In order to further use the few data we have and to better the estimation of h we set the
starting point to be 0.96 and the passage to 0.60 with a proper time rescaling, so we have:

h3 ≈ 0.118

If we do the mean of these values we find h ≈ 0.077.

Figure 4.2: Estimated evolution of sex ratios r(t) varying h.

Calculating b
b+1

with our parameters, we have b
b+1
≈ 0.099. Hence we have:

• For h1 we have that (0,0) for (4.1) is a saddle and r∗ = b(1−h1)−h1
b(1−h1)

for (4.2) is a stable
point. This means that for h1 the population will grow anyway and the ratio of
females to males will tend to b(1−h1)−h1

b(1−h1)
.

• For h2 we have that (0,0) is a stable point, while the nontrivial point r∗ is stable.

This means that the population will die out but the ratio will tend to b(1−h2)−h2
b(1−h2)

.

• For h3 we have that both (0,0) and r∗ = 0 are stable, i.e., both the populations will
die out and the female population will go exitinct faster than the male one.

• For the mean h, we are in the situation of h2.

With this result we have that the population will die out, since (0,0) under those condi-
tions is stable.

We want now to take a look at the evolution of the male, female and total populations
affected by the previously calculated hunting efforts. The total population estimated in
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year 2000 (see [12]) ranges from 57823 to 93826 mature individuals. Keeping in mind that
our starting sex ratio is 1 male to 1.2 females we can find the estimations of the starting
male and female populations:

m0+ : (f0+ +m0+) = 1 : (1 + 1.2) =⇒ m0+ : 93826 = 1 : 2.2 =⇒ m0+ ≈ 42648

m0− : (f0− +m0−) = 1 : (1 + 1.2) =⇒ m0− : 57823 = 1 : 2.2 =⇒ m0− ≈ 26283

f0+ : (f0+ +m0+) = 1.2 : (1 + 1.2) =⇒ f0+ : 93826 = 1.2 : 2.2 =⇒ f0+ ≈ 51178

f0− : (f0− +m0−) = 1.2 : (1 + 1.2) =⇒ f0− : 57823 = 1.2 : 2.2 =⇒ f0− ≈ 31540

So for h1, h2 and h3 we have the following prediction graphs:

(a) Hunting effort h1 (2000-2020) (b) Hunting effort h1 (2000-2100)

(c) Hunting effort h2 (2000-2020) (d) Hunting effort h2 (2000-2100)

(e) Hunting effort h3 (2000-2020) (f) Hunting effort h3 (2000-2100)

Figure 4.3: Estimated evolution of populations varying the hunting efforts.
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While for h we have:

(a) Hunting effort h (2000-2020) (b) Hunting effort h (2000-2100)

Figure 4.4: Estimated evolution of populations for the mean of the hunting efforts.

We can then compare the estimated values of the populations of our model with the values
of the populations estimated by the biologists in [18]. Our model for the mean value of
the hunting effort h gives us back an increased population compared to the starting one
(even though we know from the previous analysis that it will eventually die out), ranging
from 71780 to 116500 mature individuals, while the actual situation gives us a population
ranging from 3000 to 6000 mature individuals.
Thus it is likely that either a constant hunting effort approach is not very realistic or some
factors we omitted with our assumptions (like habitat destruction) play a greater role in
the dynamics of the population of Ctenosaura bakeri.

4.2.2 First approach: constant hunting effort (II)

Now we want to take a more realistic approach since it takes some time to the newly
hatched iguanas to reach sexual maturity. Thus we will introduce a delay τ in the growth
term of both equations of (4.1) which yields:{

ṁ(t) = b(1− h)f(t− τ)− µm(t)

ḟ(t) = b(1− h)f(t− τ)− (µ+ h)f(t)

In this section we will not delve into the analysis of the stationary points and their stabil-
ity since it will give us back the same results as for the nondelayed case (our model only
have the trivial stationary case).
We will take as our delay τ = 3 years, since he are assuming the Ctenosaura bakeri reaches
sexual maturity at 2.5 years old and has an incubation time of 6 months, thus it takes
3 years to form an adult individual from the moment the egg it hatched from had been laid.
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We take as our history functions the following:{
m+(t) = 42648, for− τ ≤ t ≤ 0

f+(t) = 51178, for− τ ≤ t ≤ 0

{
m−(t) = 26283, for− τ ≤ t ≤ 0

f−(t) = 31540, for− τ ≤ t ≤ 0

Furthermore, knowing b = 0.11, r(0) = 1.2, r(6) = 0.96, r(11) = 0.6 we can use a least
square minimum approach to give an estimation for h which reads h ≈ 0.1386. Thus we
have the following prediction graphs:

(a) Upper estimation (2000-2020) (b) Upper estimation (2000-2100)

(c) Lower estimation (2000-2020) (d) Lower estimation (2000-2100)

Figure 4.5: Estimated evolution of populations with delay for h constant.

These results, in contrast with the ones calculated in the previous section, give us back
a lower total population than the starting one. Even though it is still greater than the
estimated population calculated by the biologists, having introduced a delay let us see a
stronger impact of the poaching activity compared to the model without delay. This is
probably due to the fact that the hunting effort we calculated is bigger than the hunting
effort h3 we had calculated for the model without delay. Indeed, that hunting effort in
the model without delay would lead our starting populations to extinction in a very short
period of time, something that is exasperated in our delayed model, because of a greater
hunting effort and as a consequence of the delay (it takes longer for an individual to be
able to mate and thus reproduce).
So, like for the nondelayed model, the starting population will be driven to extinction,
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only that with this model in a shorter period of time.

In the next sections we will repeat the process of modelling a system for hunting starting
with a nondelayed one and then adding a delay, but this time we will take our hunting
effort to be time dependent.

4.2.3 Second approach: time dependent hunting effort (I)

In this section we will give a more realistic approach dropping the assumption of the
hunting effort to be constant in time. Indeed, over the years an increasing number of
hunters (mainly coming from the inland) was recorded, thus we will take h(t) to be time
dependent.
Because of the arguments previously stated in this chapter we assume that 0 ≤ h(t) ≤ 1.
Furthermore, to reflect the competition among the poachers we will use a logistic approach
to describe the hunting effort:

ḣ(t) = ah(t)(1− h(t))

where a is an opportune constant which reflects the increase of the hunting effort in time.
Recalling the argument for (4.2) we can give an explicit solution for h(t) which reads:

h(t) =
h0

e−at(1− h0) + h0

as for h0 we take h1 calculated in section 3.2.1, i.e., h0 = 0.031. So we can set the following
system of two equations:{

ṙ(t) = (b(1− h(t))− h(t))r(t)− (b(1− h(t)))r2(t)

h(t) = h0
e−at(1−h0)+h0

where the first equation is (4.2) with a time dependent hunting effort and r(t) = f(t)
m(t)

.

Knowing b = 0.11, h(0) = 0.031, r(0) = 1.2, r(6) = 0.96 and r(11) = 0.6, we can use a
least square minimum approach to give an estimation for a which reads a ≈ 0.1384.
Our system of two equations for the male and female populations is the same as (4.1) but
this time we have h to be time dependent, thus a non-autonomous system. Thus we have
the following prediction graphs:

(a) Evolution of popula-
tions from 2000 to 2020.

(b) Evolution of popula-
tions from 2000 to 2100.

Figure 4.6: Estimated evolution of populations for the time dependent hunting effort.
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Again, as for the constant h approach (without delay) the model gives us back an increased
total population in year 2017 compared to the starting one, ranging from 60440 to 98070
mature individuals. Nevertheless, the population will soon die out because of the hunting
effort and the disproportionated sex ratio caused by the former.

4.2.4 Second approach: time dependent hunting effort (II)

Now, repeating the argument given in section 4.2.2 and keeping the h(t), we will introduce
a delay in the growth term of the equations for the dynamics of both the male and the
female populations, thus yielding:{

ṁ(t) = b(1− h(t))f(t− τ)− µm(t)

ḟ(t) = b(1− h(t))f(t− τ)− (µ+ h(t))f(t)

where our hunting effort is the same of the previous section: h(t) = h0
e−at(1−h0)+h0

.

Setting h(0) = 0.031 (like in the previous section) and knowing b = 0.11, r(0) = 1.2,
r(6) = 0.96 and r(11) = 0.6, we can use a least square minimum approach to give an
estimation for a which reads a ≈ 0.1747.
With such results we have the following prediction graphs:

(a) Upper estimation (2000-2020) (b) Upper estimation (2000-2100)

(c) Lower estimation (2000-2020) (d) Lower estimation (2000-2100)

Figure 4.7: Estimated evolution of populations with delay for the time dependent hunting
effort.

Here, the model gives us back an increased total population in year 2017 compared to
the starting one, just like the previous nondelayed model with a time dependent hunting
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effort. In this case it is even greater than the predicted population of the nondelayed
model: here we have a total population ranging from 79490 to 129000 mature individuals,
in contrast with the population of the previous model which ranged from 60440 to 98070
mature individuals. This is due to the fact that the females have to reach sexual maturity
before being hunted, since we are assuming the poachers target sexual mature female
individuals only.
However, like the previous cases, we have again the total population to die out in the near
future because of the hunting pressure and the disproportionated sex ratio caused by the
former.

4.3 Conclusions

In this chapter we have analyzed the population dynamics of the Ctenosaura bakeri fo-
cussing on the hunting effects on the whole population and the sex ratio of the latter.
Our most realistic models (the last two) gave us back an increased total population in
year 2017 compared to the starting one (dated year 2000). This is in contrast with what
was found by the biologists in [18], where the estimated population ranged from 3000 to
6000 mature individuals which is much less than the one predicted by our models.
This can be explained by the fact that we probably have not considered other effects in
our initial assumptions (most likely the habitat destruction effect, which we will further
investigate in the next chapter).

Nevertheless, all the models we have considered in this chapter lead to the extinction of
the total population because of the pressure of poaching itself and mostly because of the
induced disproportion in the sex ratio because of the latter.

The models we have considered can, of course, be modelled by, for example in the time
dependent hunting effort, taking a, the growing parameter of the hunting effort, to be
itself time dependent (or other parameter dependent, like the female population).



Chapter 5

Habitat destruction and Carrying
Capacity

5.1 Introduction and assumptions

In this chapter we will focus on how the habitat destruction affects the population dynam-
ics of Ctenosaura bakeri. As mentioned in the introduction, the most likely main threat
to the survival of this species is the habitat destruction of both the mangrove forests and
swamps (the juveniles and adults habitat) and the beaches (which are the nesting sites).
By habitat destruction we do not only mean the actual levelling of both the swamps and
nesting sites but we also take into consideration the use of the formers as dumpsites and
the oceanic plastic pollution and the invasion of allochthonous plants of the latters (see
[9], [12] and [18]).
In the year 2000 it was predicted that the realization of the development plans on Utila
would have lead to a 50% decrease in the mangrove area (which at the time measured
10.91km2) and to a loss of around 80% of all nesting sites (which at the time measured
1.09km2) (see [12]). Even though a more recent study dated 2017 (see [18]) reports the
mangrove area to be less than 8km2 (so it might be that the previous predictions were
slightly exaggerated), in this chapter we will consider the habitat destruction to be as it
was predicted in 2000.
Furthermore, the degradation of the swamps due to the development plans, for example
the building of the island airport, could lead to the fragmentation of the habitat and con-
sequently to different subpopulations (which jeopardizes the genetic pool of Ctenosaura
bakeri).

From a mathematical point of view, we will approach this problem setting up a contin-
uous model with a system of two ordinary differential equations. Firstly, we will check
the consistency of the model and we will study the stationary points and their stability.
Secondly, we will give some estimations for the habitat degradation and the carrying ca-
pacity, comparing them with the observed data. Afterwards, we will give predictions for
the dynamics of the populations and lastly we will introduce a delay in our model in order
to give a more realistic prediction taking into account the time an newly hatched iguana
takes to become sexually mature and we will esimate the dynamics of the population with
such delay.

41
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For the next models in this chapter we will make the following assumptions:

• We consider the population to be uniformly distributed across its habitat.

• We consider all adult females to become gravid after every mating season.

• Mating (and thus egg laying) occurs at the same time for every sexual mature
individual.

• We consider the incubation period to be 6 months.

• When iguanas are 2.5 years they reach sexual maturity.

• We consider the whole sexually mature population to consist of mature breeders
only.

• We consider the male-female ratio to be 1:1.

• We consider the Ctenosaura bakeri to be a Fisherian species (the ratio of the newborn
males to the newborn females is 1:1).

• We are not considering (human) hunting to occur.

• We consider the habitat destruction to occur uniformly (it does not create isolated
habitats).

• We consider the habitats (swamps and beaches) not to overlap.

• Once an individual reaches sexual maturity they mate every year until their natural
death.

• We consider the habitat destruction to be linear in time (from 2000 to 2020).

• We consider the densities of both the adults and the nests to be constant in time.

5.2 The model(s)

In this section we will set up the models to describe the dynamics of the population of
Ctenosaura bakeri starting from a simple logistic model approach:

u̇(t) = r(t)u(t)

(
1− u(t)

K(t)

)
where u(t) is the total population or the population’s density, r(t) is the growth rate and
K(t) is the carrying capacity. Since we are considering a sexually reproducing species we
will only consider the female population instead of the toal population.
In this chapter the habitat destruction effect will be reflected on the carrying capac-
ity, since the latter can be interpreted as D · A where D is the maximum density of a
population in the habitat taken into consideration, while A is the total area of the habitat.
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In our case we are considering two different and non overlapping habitats: the swamps
and the beaches. So our model will consist of a system of two different logistic equations
(taking now the r and the K as costants):ẋ = r1x

(
1− x

KS

)
ė = r2e

(
1− e

KB

)
where x is the adult female population, r1 is the growth rate of former and KS is the
carrying capacity of the swamps, while e is the number of eggs laid, r2 is the growth rate
of the egg ”population” and KB is the carrying capacity of the beaches.

Of course, it does not make much sense to consider an egg ”population”, let alone con-
sider a growth rate of such egg population. Moreover, the growth rate of the adult female
population must depend on the number of eggs laid.
So for the second equation we will set r2e = rx, where r is the yearly rate of eggs laid
per individual. For the first equation we will split the growth rate into the death rate of
the adult population (µx) and the ”birth” rate of the adult population (which of course
depends on the egg ”population”). We set the latter to be be, where b is the rate of
hatchlings (dependent on the number of eggs) which reach adulthood.

Thus our system reads: ẋ = be
(

1− x
KS

)
− µx

ė = rx
(

1− e
KB

) (5.1)

It is worth noting that all the parameters b, r, µ, KS and KB are strictly positive. As we
did in the previous chapter, we look at the consistency of the model:

x = 0 =⇒ ẋ = be ≥ 0

so the solution for x will not become negative. Now we consider the second equation:

e = 0 =⇒ ė = rx ≥ 0

so, also in this case, the solution for e will not become negative.
Thus, if our initial conditions are positive (and they should be positive to be biologically
relevant), then our solutions cannot become negative.

5.2.1 Stationary points and their stability

Before we start studying the stationary points and their stability we want to exclude the
existence of closed orbits using the negative criterion of Bendixson (see 2.2.4).
We take as BM := {(x, e) ∈ R2; x, e ≥ 0} which is the set of the biologically meaningful
points of our system (this set is simply connected), thus setting:{

ẋ = f(x, e)

ė = g(x, e)
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we look at the div(f, g):

div(f, g) :=
∂f

∂x
+
∂g

∂e
= − be

KS

− µ− rx

KB

we can easily see that div(f, g) is not identically zero and it does not change sign in
{(x, e) ∈ R2; x, e ≥ 0}, then our system has no closed orbits lying entirely in BM .

Now, going back to (5.1) we study its stationary points and their stability, setting:0 = be
(

1− x
KS

)
− µx

0 = rx
(

1− e
KB

)
Thus this leads us to two biologically meaningful stationary points: (0,0) and (x̄, ē), where
x̄ = bKSKB

bKB+µKS
and ē = KB (both the stationary points are biologically relevant regardless

of the values of the parameters).
Their stability is determined by calculating the Jacobian matrix at the respective points.
The general Jacobian reads:

J(x,e) =

 − be
KS
− µ b

(
1− x

KS

)
r
(

1− e
KB

)
− rx
KB


For (0,0) the Jacobian reads:

J(0,0) =

(
−µ b
r 0

)
and its eigenvalues read λ1,2 =

−µ±
√
µ2+4rb

2
. We can easily see (since all the parameters

are strictly positive) that 0 /∈ Re σ(J(0,0)), thus we can apply 2.2.3. Then, again, because
all the parameters are strictly positive, the eigenvalues are discordant, thus (0,0) is a
saddle.
(0,0) being a saddle means that if we have our starting population being of 0 females
(or couples) and 0 eggs, if we slightly perturbate it, like (idealistically speaking) with the
introduction of an adult subpopulation or some eggs we will have our solution curve step
away from (0,0). Furthermore, because of this, our model does not include the possibility
(if at least one between the starting x and e is strictly positive) of the population going
extinct.

For the nontrivial stationary point (x̄, ē) =
(

bKSKB

bKB+µKS
, KB

)
the Jacobian reads:

J(x̄,ē) =

(
−µ− bKB

KS
b
(

1− bKB

bKB+µKS

)
0 −r bKS

bKB+µKS

)

its eigenvalues read λ1 = −µKS+bKB

KS
and λ2 = −r bKS

bKB+µKS
. Both are negative and real,

which means, by applying 2.2.3, that the nontrivial stationary point (x̄, ē) is a stable node.
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We can conclude that the trivial point (0, 0) is always a saddle point, while (x̄, ē) is always
an exponentially asymptotically stable point.

If we assume our starting egg ”population” e0 = e(0) ≤ KB, recalling that KB = DB ·AB
(where DB is the maximum density of eggs in the beaches and AB is the total surface
of the nesting sites) we can give an estimation of the maximum density of the nests
DNest = DB

r
, where r is the number of eggs laid per individual which will give birth to a

female individuals.
To calculate the starting egg ”population” we need to take the hatchling densitiy estimated
in Chapter 2 which ranges from 105/ha = 10500/km2 to 200/ha = 20000/km2. If we
multiply the densities (h(0)±) by the surface of the mangrove areas (AS) we get the
estimations for the hatchlings’ population (which we call H− and H+):

H− = h(0)− · AS = (10500)(10.91) = 114555

H+ = h(0)+ · AS = (20000)(10.91) = 218200

Then, if we multiply them by 1
rh

, where rh is the hatching rate we find the estimations
for the starting population:

e0− =
H−
rh
≈ 124111

e0+ =
H+

rh
≈ 236403

Recalling that r = 5.6 (calculated in Chapter 2) and since we have AB = 1.09km2 (from
[12]), we can give an estimation of DNest:

e0±

rAB
≤ DNest

thus splitting the cases we have the ranges of the estimations of DNest:

DNest− ≥
e0−

rAB
=

124111

(5.6)(1.09)km2 =
124111

(5.6)(1.09)106m2
≈ 0.02/m2

DNest− ≥
e0+

rAB
=

236403

(5.6)(1.09)km2 =
236403

(5.6)(1.09)106m2
≈ 0.04/m2

We have, then, as lower estimations forDB, 0.02/m2 and 0.04/m2. The data collected from
biologists point to a lower statistical estimation of 0.02/m2 (see [12]). This estimation is
consistent with the estimation from the model; thus we can conclude that the estimations
of e0± are realistic.
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5.2.2 Time dependent carrying capacity

In this section we will consider the habitat destruction to occur which means that our
carrying capacities are time dependent, i.e., KB = KB(t) and KS = KS(t). So our
previous system (5.1) now reads:ẋ = be

(
1− x

KS(t)

)
− µx

ė = rx
(

1− e
KB(t)

) (5.2)

Since we are assuming habitat destruction to occur linearly from 2000 to 2020 and the
densities to be constant in time we can rewrite the carrying capacities in the following
way:

KS(t) = DS · AS(t) = DS(AS(0) + cSt)

KB(t) = DB · AB(t) = DB(AB(0) + cBt)

The study [12] (dated year 2000) gave us a prediction of how much surface of both habitats
would be lost (because of Utila’s development plans) in the following years: 50% decrease
in the mangrove area and the loss of around 80% of all nesting sites.
This can give us an estimation of both cS and cB (having assumed a linear destruction in
time):

cS =
AS(20)− AS(0)

20
=

1
2
AS(0)− AS(0)

20
= −10.91

40
≈ −0.27km2/year

cB =
AB(20)− AB(0)

20
=

1
5
AB(0)− AB(0)

20
= −1.09

25
≈ −0.0436km2/year

Hence our system (5.2) reads:ẋ = be
(

1− x
DS(AS(0)+cSt)

)
− µx = be

(
1− x

DS(AS(0)−(0.27)t)

)
− µx

ė = rx
(

1− e
DB(AB(0)+cBt)

)
= rx

(
1− e

DB(AB(0)−(0.0436)t)

) (5.3)

It is important to note that the stationary points we calculated in the previous section are

not stationary points for this model, but the point (x̄(t), ē(t)) =
(

bKS(t)KB(t)
bKB(t)+µKS(t)

, KB(t)
)

acts as an attractor for the solution curve of the system (5.2), because its corresponding
point for the system (5.1) is a stable node.

Now, before giving the predictions for the evolution of the population we need to find
some estimations for the parameters in (5.3). For this purpose we will assume that

(x(0), e(0)) = (x̄(0), ē(0)) =
(

bKS(0)KB(0)
bKB(0)+µKS(0)

, KB(0)
)

.

We have already calculated the values in which the total eggs range, thus we can have
the estimations for KB(0), which are:

KB−(0) = e−(0) = 124111
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KB+(0) = e+(0) = 236403

Now, knowing x+(0) = 46913 and x−(0) = 28912 (we calculated those values in Chapter

2) we can give an estimation for KS±(0), since x±(0) = x̄±(0) = bKS±(0)KB±(0)

bKB±(0)+µKS±(0)
, KB±(0),

thus:

KS− =
bKB−x−

bKB− − µx−
=

71765944.64

2482.22− 1156.48
=

71765944.64

1325.74
≈ 54132.8

KS+ =
bKB+x+

bKB+ − µx+

=
221807478.78

4728.06− 1876.52
=

221807478.78

2851.54
≈ 77785.15

We know AS(0) = 10.19km2 and AB(0) = 1.09km2 thus we can give estimations for DS

and DB:

DB+ =
KB+

AB
=

236403

1.09km2 ≈ 216884/km2 DB− =
KB−

AB
=

124111

1.09km2 ≈ 113863/km2

DS+ =
KS+

AS
=

77785.15

10.91km2 ≈ 7130/km2 DS− =
KS−

AS
=

54132.8

10.91km2 ≈ 4962/km2

We already know from previous calculations b = 0.02 and µ = 0.04 . Thus we have the
following prediction graph:

Figure 5.1: Evolution of adult and egg populations with habitat destruction occuring.

As we can see the predicted adult population in year 2017 ranges from 22350 to 35500
(female) individuals which is far from the observed data (the total adult population in
year 2017 ranged from 3000 to 6000 mature individuals).
In the next section we will implement the model including a time delay and we will see
whether this approach can lead us to a more realistic result.
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5.2.3 Time dependent carrying capacity with delay

Now we want to implement our model (5.1) including a time delay which reflects the years
needed to reach adulthood starting as eggs. Thus we have:ẋ(t) = be(t− τ)

(
1− x(t)

KS

)
− µx(t)

ė(t) = rx(t)
(

1− e(t)
KB

) (5.4)

Before linearizing the system, it is worth noting that the stationary points of the delayed

system are the same of the nondelayed one: (0,0) and (x̄, ē) =
(

bKSKB

bKB+µKS
, KB

)
.

Now to linearize the system, we first perform a Taylor expansion around the nontrivial
stationary point , dropping all terms of second or higher order, which yields as for the
nondelayed case (calling ẋ = f(x, e) and ė = g(x, e)):

f(x, e) ≈ f(x̄, ē) + (x− x̄)∂f
∂x

(x̄, ē) + (e− ē)∂f
∂e

(x̄, ē) = (x− x̄)
(
− bē
KS
− µ

)
+ (e− ē)

(
b− bx̄

KS

)
g(x, e) ≈ g(x̄, ē) + (x− x̄) ∂g

∂x
(x̄, ē) + (e− ē)∂g

∂e
(x̄, ē) = (x− x̄)

(
r − rē

KB

)
+ (e− ē)

(
− rx̄
KB

)
Since, by definition, f(x̄, ē) = 0 = g(x̄, ē).
Now putting these results back in our system (5.4) and expliciting again the time delay:ẋ(t) =

(
− bē
KS
− µ

)
x(t) +

(
b− bx̄

KS

)
e(t− τ) + 2 bx̄ē

KS
+ µx̄− bē

ė(t) =
(
r − rē

KB

)
x(t)− rx̄

KB
e(t) + 2rx̄ē

KB
− rx̄

Our linearized system in matrix notation reads:(
ẋ(t)
ė(t)

)
= A

(
x(t)
e(t)

)
+B

(
x(t− τ)
e(t− τ)

)
where A and B are the following:

A =

(
− bē
KS
− µ 0

r − rē
KB

− rx̄
KB

)
B =

(
0 b− bx̄

KS

0 0

)

where A contains the non-delayed and B the delayed terms.
The characteristic equation in terms of A and B is given by:

det(λI − A−Be−λ) = 0

The matrix λI − A−Be−λ is the following:(
λ+ bē

KS
+ µ ( bx̄

KS
− b)e−λ

rē
KB
− r λ+ rx̄

KB

)
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recalling that (x̄, ē) =
(

bKSKB

bKB+µKS
, KB

)
we have:

(
λ+ bKB

KS
+ µ

(
b2KB

bKB+µKS
− b
)
e−λ

rKB

KB
− r λ+ rbKS

bKB+µKS

)
=

(
λ+ bKB

KS
+ µ

(
b2KB

bKB+µKS
− b
)
e−λ

0 λ+ rbKS

bKB+µKS

)

which yields the following characteristic equation:(
λ+

bKB

KS

+ µ

)(
λ+

rbKS

bKB + µKS

)
= 0

In contrast to most other DDE systems, it’s still a polynomial, not a transcendental
equation and so we can easily read out the eigenvalues which are λ1 = − bKB

KS
− µ and

λ2 = − rbKS

bKB+µKS
. Since, all parameters are strictly positive we have that λ1,2 < 0, thus

(x̄, ē) is a stable node as for the nondelayed model.

Just like in chapeter 3 we will take as our delay τ = 3 years, since he are assuming the
Ctenosaura bakeri reaches sexual maturity at 2.5 years old and has an incubation time of
6 months, thus it takes 3 years to form an adult individual from the moment the egg it
hatched from had been laid.
Now, taking the parameters we calculated in the previous section and taking as history
functions the following:{

x+(t) = 46913, for− τ ≤ t ≤ 0

e+(t) = 236403, for− τ ≤ t ≤ 0

{
x−(t) = 28912, for− τ ≤ t ≤ 0

e−(t) = 124111, for− τ ≤ t ≤ 0

This gives us the following prediction graph for both the lower and the upper estimations:

(a) Lower estimation for the starting population. (b) Upper estimation for the starting population.

Figure 5.2: Evolution of adult and egg populations with habitat destruction occuring
(with delay included).
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The predicted adult population in year 2017 ranges from 17410 to 27630 (female) mature
individuals. This result, even though is lower than the nondelayed case (whose predicted
population ranged from 22350 to 35500 female mature individuals), it is still much greater
than the observed data (the total adult population in year 2017 ranged from 3000 to 6000
mature individuals). Thus other effects may be relevant and should be included into the
model approach.
We will introduce a different approach in the next section.

5.2.4 Response type death rate

The problem with the previous models was mainly due to the fact that the death rate
stayed constant in time which, if we have a situation where habitat destruction is occurring
(and thus we have a decrease of the carrying capacity), is not very realistic.
Thus, if we have K̇(t) = f(t), where K(t) is the carrying capacity of an habitat and f is
a continuous function we can define the following:

µ̄(t) = µe−γ(t,x(t))f(t−τ) (5.5)

Where γ(t, x(t)) is an opportune function which should depend on the fraction x(t)
K(t)

.

Indeed, if we have the number of individuals x(t) to be much smaller than the carrying
capacity they should not be too bothered by events of habitat destruction.
We can easily see that if K(t) is constant in time we have back our old death rate µ.
Furthermore we put a delay for it seems more realistic: for example, if we have a large
area of habitat destroyed the survived individuals will need some time to adapt (including
a decrease of the population) to the new habitat.
Hence our systems (5.2) and (5.4) read:

ẋ(t) = be(t)
(

1− x
KS(t)

)
− µe−γ(t,x(t))f(t)x(t)

ė(t) = rx(t)
(

1− e
KB(t)

) ẋ(t) = be(t− τ)
(

1− x(t)
KS

)
− µe−γ(t,x(t))f(t−τ1)x(t)

ė(t) = rx(t)
(

1− e(t)
KB

)
without and with delay, respectively (which is not necessarily the same as the delay τ for
the population growth).
In our case, since we do not have a huge gap between the values of the carrying capacity
and the total population, we can assume γ to be locally constant. We will take γ ≈ 10.5

DS

for our nondelayed system and γ ≈ 5.65
DS

for the delayed one. Furthermore, since we are
assuming the habitat destruction to occur linearly we have f(t) = (DS)(cs) = f(t − τ1).
Thus, taking all the parameters we used for our previous models, as history functions the
same we took for (5.4) and as starting points the same we took for (5.2) we have the
prediction graphs (Figure 5.3 and Figure 5.4).

We can see that with this response type death rate approach we get as predicted female
adult populations values that range from 1859 to 3490 individuals (for the nondelayed
model) and values that range from 1927 to 3090 individuals (for the model with delay).
Compared to the biologists’ estimations (the total adult population was estimated to
range from 3000 to 6000 individuals in 2017) we have that these models’ estimations are
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(a) Overall look at the total populations. (b) Focus on the adult population.

Figure 5.3: Evolution of adult and egg populations with habitat destruction occuring.

(a) Lower estimation for the starting population. (b) Upper estimation for the starting population.

Figure 5.4: Evolution of adult and egg populations with habitat destruction occuring
(with delay included).

very realistic.

Nevertheless, assuming our function γ to be a constant can be quite reductive, thus it
is something that needs to be further investigate on in order to have a more generalized
formulation of the previously mentioned function.

5.3 Conclusions

In this chapter we have investigated the effects of habitat destruction only on the overall
adult population of Ctenosaura bakeri, not taking into cosiderations other factors like sex
selective hunting.
Our last approach in this chapter gave us estimations very close to the ones observed
by biologists and compared to the the models of the previous chapter (which gave us a
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greater total population in 2017 than the starting one) we can conclude that the major
factor that caused this decrease of the population is attributable to the habitat loss.
However, it is interesting to stress that this model, in contrast with the sex dependent
models, does not directly lead to the extinction of the whole population since (x̄(t), ē(t)) 6=
(0, 0) acts as an attractor for our solution curve. Nevertheless, this should not lead to the
false belief that the habitat destruction effects cannot push the population to extinction
for the following reasons:

• If limt→∞(KS(t), KB(t)) = (p, q), where at least one between p and q is 0, we will

have limt→∞ x̄(t) = limt→∞
bKS(t)KB(t)

bKB(t)+µKS(t)
= 0, which means that our solution curve

(x(t), e(t)) will tend to (0,0).

• If we will have a relatively small population, then stochastic effects (which we did
not take into consideration since all the models we have considered so fare are
deterministic ones) will play a major role and could lead to the extinction of the
population even if it is not predicted by our model.

• Lastly, the lack of genetic variance in the population, if the latter is small, jeopardies
the survival of the species since it becomes more vulnerable to possible drastic
changes (like climate change).

Hence it is vital to preserve the habitat of Ctenosaura bakeri if we want to see them
bouncing back to healthier numbers.



Chapter 6

Hybridization

6.1 Introduction and assumptions

As mentioned in the Introduction chapter the Ctenosaura bakeri is one the few saurian
species to produce fertile hybrids when mating with the other native iguana species of the
island: the Ctenosaura similis. This event is not usual since the two species share differ-
ent ecological niches but where the two habitats overlap, at the niches’ borders, matings
between the two species are observed.

This chapter will only provide a first approach to the problem by giving a general model
based on the theory of compartment models (see [20]). We will take a system of two ordi-
nary differential equations which will describe the dynamics of the three different species,
by looking at their growth rate and the competition among themselves in the area of the
overlapping habitats.
However, we will not deepen the analysis of possible stationary points and their stability
and we will not provide simulations like we did in the previous chapter mainly because
many aspects of this phenomenon are still unclear from a biological point of view, like:
are the offsprings of the hybrids fertile too? Can an hybrid individual mate with a non
hybrid individual? Are hybrids whose mother is a Ctenosaura bakeri and whose father
is a Ctenosaura similis different from hybrids whose mother Ctenosaura similis is a and
whose father is a Ctenosaura bakeri?

That being said we will make the following assumptions:

• We consider the populations to be uniformly distributed across their habitats.

• We consider all adult females to become gravid after every mating season.

• Mating (and thus egg laying) occurs at the same time for every sexual mature
individual.

• We consider the whole sexually mature populations to consist of mature breeders
only.

• We are not considering (human) hunting and habitat destruction to occur.
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• Once an individual reaches sexual maturity they mate every year until their natural
death.

• We consider the densities of both the adults and the nests to be constant in time.

• We consider the hybrids only to mate with hybrids.

• We consider hybrid individuals not to leave the overlapping habitats.

• Ctenosaura bakeri individuals can move from their habitats to the overlapping one
and back.

• Ctenosaura similis individuals can move from their habitats to the overlapping one
and back.

6.2 The model

With the given assumptions we can sketch a simple draw to rep-
resent the situation of the different habitats with the overlapping
ones, which can be summarized in the following way:

• The ”B” labelled habitat is the one for Ctenosaura bakeri
only.

• The ”H” labelled habitat is the one for the overlapping habi-
tats, thus hybrids can only appear and live here.

• The ”S” labelled habitat is the one for Ctenosaura similis
only.

Having this in mind we can give the following system to model our problem:

ḃ1 = rbb1(1− b1
Kb

)− t1→2b1 + t2→1b2

ḃ2 = (rb − ε)b2(1− b2+khh+kss2
Kh

) + t1→2b1 − t2→1b2

ḣ = rhh(1− h+kbb2+kss2
Kh

) + εb2s2

ṡ2 = (rs − ε)s2(1− s2+khh+kbb2
Kh

) + v1→2s1 − v2→1s2

ṡ1 = rss1(1− s1
Ks

)− v1→2s1 + v2→1s2

We have that b1 stands for the Ctenosaura bakeri population living in habitat B, b2 stands
for the Ctenosaura bakeri population living in the overlapping habitat H, h is the hybrid
population (of course living in the overlapping habitat H), s2 stands for the Ctenosaura
similis population living in the overlapping habitat H, while s1 stands for the Ctenosaura
similis population living in habitat S.

Kb, Kh and Ks are respectively, the carrying capacities of habitat B, H and S.

The first and the fifth equations have a logistic growth term and two other terms, char-
acterized by the parameters t and v which describe the movement of the subpopulations,
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respectively of the Ctenosaura bakeri and the Ctenosaura similis, from the original habitat
to the overlapping one and back (1→ 2 indicates the movement the former while 2→ 1
indicates the latter).

The second, the third and the fourth equations describe the situation in the overlapping
habitats where we have competition among the three populations (like in a Lotka-Volterra
competition model).
In the second and fourth equations we have, as for the first and fifth equations the pa-
rameters t and r which describe the movement of the subpopulations with opposite sign
compared to the latters.

The parameters rb, rh and rs are the growth rates for the population of Ctenosaura bakeri,
the hybrids and Ctenosaura similis, respectively.

The ε parameter describes the mating rate between the Ctenosaura bakeri and the Ctenosaura
similis at which hybrids are generated. It is worth noting that we have considered the
growth rate of the hybrids due to the mating of the different species to follow the law
of mass action. Furthermore, we can see that the growth rate of the subpopulations of
Ctenosaura bakeri and Ctenosaura similis living in the overlapping habitats is lower than
that of the populations living in their own habitats, because of that.

As mentioned in the introduction we will not study this model, nevertheless it is important
to stress that hybridization combined with habitat loss could pose a threat in the future
for the Ctenosaura bakeri, for this species will likely be forced to live in the overlapping
niche, thus competing with two other populations of iguanas (the Ctenosaura similis and
the hybrids) and having a lower growth rate as a direct consequence of hybridization.



56 CHAPTER 6. HYBRIDIZATION



Chapter 7

Conclusions and open questions

We formulated and studied three different models to approach the study of the population
dynamics of Ctenosaura bakeri.

We first studied the intrinsic growth of the Ctenosaura bakeri, i.e. excluding hunting and
habitat destruction, via a discrete time linear model, using a transition matrix approach.
We gave estimations for the parameters and we calculated the dominating eigenvalue
which we saw it was bigger than 1. Thus we concluded that, if both hunting and habitat
destruction would cease the population would bounce back in numbers.

Secondly, we approached the effects of sex selective huning on the dynamics of the species.
We mainly used this time a contiunous time linear model, i.e. we did not consider the
carrying capacity of the system, since we wanted to focus more on the effects that hunting
has on the growth term of the population (being far away from any limitation of growth).
We started considering our hunting effort to be constant and we studied the stability of
the trivial stationary point and we also gave an estimation of the hunting effort knowing
the evolution of sex ratio over the years. Then we gave a prediction for the population
dynamics having calculated the hunting effort, before. We repeated the same procedure
for the same model (with a constant hunting effort), this time including a delay in our
model (to reflect the time needed for an individual to reach sexual maturity).
Afterwards, we changed the model not considering our hunting effort to be constant any-
more, rather than we considered it to be time dependent. At first we thought about
considering it being dependent on the population of the hunted individuals (i.e. the fe-
males of Ctenosaura bakeri), but then, since the number of poachers was reported to be
increasing in the years and also considering the illegal market behind the trade of this
iguana’s meat, we decided to move to a time dependent hunting effort. This unfortunately
is more detrimental to the iguana’s population than a female population dependent hunt-
ing effort, since in the latter case we could reach an equilibrium like in the Lotka Volterra
predator prey model and grant the survival of the species. However, historically this is
not true, since many times numerous animal species have been driven to extinction also
because of economic interests (thus independently from the number of animals left of the
species).
We approached this problem as we did for the constant hunting effort: we first take a
nondelayed model and then we considered the same model with delay. We assumed our
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hunting effort to be less than 1 and to follow a logistic growth over time (this also to
reflect the competition between hunters). What was left to estimate was the growth rate
of the hunting effort and we did it using a least square sum approach, then we gave a
prediction for dynamics of the total population.
It is worth noting that as history functions, because of the lack of older data, we took
the starting populations as constants for the interval −τ ≤ t ≤ 0 (where τ is our delay).
However, it is likely that the females of Ctenosaura bakeri have been heavily poached even
before the year 2000, since if we compare the sex ratio of this species in the year 2000
with that of other similar species we can see that for the Ctenosaura bakeri the sex ratio
was slightly biased towards a female dominance, while for the other species it is heavily
biased towards a female dominance. Having said so, it could be that our predictions are
more optimistic than what the situation actually is.
However, we were quite surprised on how greatly hunting impacts on the dynamics of
Ctenosaura bakeri, since for all the four approaches we got as results that the population
will die out due to overhunting.

Thirdly, we approached the effects of habitat destruction (without considering hunting to
occur) on the survival of the species. We first approached this problem setting up a model
consisting of two logistic like differential equation, with two different carrying capacities:
one for the nesting beaches and the other for the mangrove forests (the habitat of the
adult iguanas). We decided that the effects of habitat destruction would have affected the
carrying capacity, considering it to be the product of the maximum density of the habitat
by the surface of the same.
We first studied the stationary points and their stability and we found out that extinction
was not contemplated by the model.
Then we set the habitat destruction to occur linearly and after having estimated the
parameters we gave the predictions for the population dynamics. We repeated the same
process but considering a delayed model (again taking into consideration the time needed
for an individual to reach sexual maturity).
Both these approaches failed to give us a prediction coherent with the collected data,
thus we introduced a response type death rate, dependent on the variation of the carrying
capacity and this approach granted predictions consistent with the estimated data.
It is worth noting that it is realistic to assume this type of death rate to exist, furthermore
having considered that the hunting models gave us an increased population and thus, for
at least this near future the huge decrease of the numbers of the Ctenosaura bakeri should
be blamed on the habitat destruction effect.

Finally we set a basic model for the hybridization effects and we left it still to be stud-
ied. This lead us to start stating the open questions left by this study of the population
dynamics of Ctenosaura bakeri. Firstly, of course this model for the hybridization should
be studied.

Secondly, it should be worth if some biologists and real world observationscould give us
insights on the estimations of the parameters for the intrisic growth of the population.

Then, for the sex dependent hunting model, it could be interesting to delve into the study
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of the growth parameter for the time dependent hunting effort: we considered it to be a
constant but it could also be time dependent to reflect possible measure to fight illegal
poaching.

For the habitat destruction model, it could be very interesting to further analyse the
response type death rate and to see whether it could be bettered or applied to other
situations.

Also, we used only determinsitic models to study these problems and it could be inter-
esting to see if a stochastic approach would lead to different results or if it could give us
different insights.

Finally, our predictions for the population dynamics of Ctenosaura bakeri are very dire
and something should be done as soon as possible, since we predicted a great decrease in
the total population in the next years, a population which is already small in numbers. If
through law enforcement and sensibilisation, this situation could be reversed we will see
the population to bounce back at greater numbers, since we know that it would intrinsi-
cally grow.

Indeed the mathematical models, in this case applied to study the population dynamics of
an endangered species, provied possibilities to better estimate the effects of certain actions,
even quantitatively and by that, can help the biologists and the politicians to decide which
actions maybe should be taken first or where to put effort in most efficiently.From this
point of view, our wish is that this study could help the fight for the survival of this
species.
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Appendix A

Basic proofs

A.1 Starting population

The following proposition is needed for giving insights to the structure of the starting
population in section 3.2.3

Proposition A.1.1. For large enough n ∈ N we have

N(n) = (0, h(n), 0, j2(n), 0, nb(n),mb(n))T

Proof. As we have already seen in the latter part of section 3.2.3 if we start with N(0) =
(e(0), h(0), j1(0), j2(0), j3(0), nb(0),mb(0))T we will have that N(4) is already of the form
(0, h(n), 0, j2(n), 0, nb(n),mb(n))T , so we want to prove that for every n ≥ 4 we have
N(n) = (0, h(n), 0, j2(n), 0, nb(n),mb(n))T . We will prove it by induction:

1. (Base case) We have already seen that (in 3.2.3) for n = 4 we have N(4) =
(0, h(4), 0, j2(4), 0, nb(4),mb(4))T

2. (Inductive step) Now we suppose (for every n ∈ N greater or equal than 4) that we
have N(n) = (0, h(n), 0, j2(n), 0, nb(n),mb(n))T and we have to show that N(n+ 1)
is of the form N(n+ 1) = (0, h(n+ 1), 0, j2(n+ 1), 0, nb(n+ 1),mb(n+ 1))T .

N(n+ 1) = LN(n) =



0 0 0 0 0 0 0
0 0 0 0 0 4.02 5.17

0.16 0 0 0 0 0 0
0 0.06 0 0 0 0 0
0 0 0.17 0 0 0 0
0 0 0 0.39 0 0 0
0 0 0 0 0.73 0.92 0.92





0
h(n)

0
j2(n)

0
nb(n)
mb(n)


=

=



0
(4.02)nb(n) + (5.17)mb(n)

0
(0.06)h(n)

0
(0.39)j2(n)

(0.92)(nb(n) +mb(n))


=:



0
h(n+ 1)

0
j2(n+ 1)

0
nb(n+ 1)
mb(n+ 1)


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A.2 Ratio equation for costant hunting effort (I)

We will refer to f
m

(t) as r(t), from now on.

ṙ(t) = (b(1− h)− h)r(t)− b(1− h)r(t)2 = (b(1− h)− h)r(t)(1− b(1− h)

b(1− h)− h
r(t))

So we can write this equation in the following way, calling a = b(1 − h) − h and K =
b(1−h)−h
b(1−h)

:

ṙ(t) = ar(t)(1− r(t)

K
)

We introduce a new variable (assuming that the population never vanishes) v(t) = 1
r(t)

.

Without loss of generality let t0 = 0, v0 = 1
u0

. Hence we get:

v̇(t) = − ṙ(t)

r(t)2
= −

ar(t)(1− r(t)
K

)

r(t)2
= −a

(
1

r(t)
− 1

K

)
= −av(t) +

a

K

This is a linear inhomogeneous ODE, so we apply the variation of costants which yields:

v(t) = v0e
−A(t) +

∫ t
0
e−(A(t)−A(s)) a

K
ds where A(t) =

∫ t
0
a ds = at

Returning to the variable r(t) = 1
v(t)

we get:

r(t) =
r0

e−A(t) + r0

∫ t
0
e−(A(t)−A(s)) a

K
ds

=
r0e

A(t)

1 + r0
a
K

∫ t
0
eA(s) ds

So, since we have a and K constant, we get the following explicit solution:

r(t) =
r0

e−at + r0
a
K
e−at

∫ t
0
eas ds

=
r0

e−at + r0
K

(1− e−at)
=

r0

e−at(1− r0
K

) + r0
K

Thus, our solution reads:

r(t) =
r0K

e−at(K − r0) + r0

=
r0

(b(1−h)−h)
b(1−h)

e−(b(1−h)−h)t
(
b(1−h)−h
b(1−h)

− r0

)
+ r0

r(t) =
r0(b(1− h)− h)

e−(b(1−h)−h)t(b(1− h)(1− r0)− h) + r0b(1− h)
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Code

B.1 Calculation of characteristic polynomial and eigen-

values and corresponding eigenvectors of the Tran-

sition matrix

1 >> L=[0 0 0 0 0 0 0; 0 0 0 0 0 4.02 5.17; 0.16 0 0 0 0 0 0; 0 0.06 0 0 0 0 0; 0 0 0.17 0 0 0 0; 0 0 0 0.39 0 0 0;

0 0 0 0 0.73 0.92 0.92]

3
L =

5
0 0 0 0 0 0 0

7 0 0 0 0 0 4.0200 5.1700

0.1600 0 0 0 0 0 0

9 0 0.0600 0 0 0 0 0

0 0 0.1700 0 0 0 0

11 0 0 0 0.3900 0 0 0

0 0 0 0 0.7300 0.9200 0.9200

13
>> charpoly(L)

15
ans =

17
1.0000 -0.9200 0 -0.0941 -0.0248 0 0 0

19
>> [V,D]=eig(L)

21
V =

23
Columns 1 through 6

25
0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i

27 -0.9819 + 0.0000i 0.9569 + 0.0000i 0.9569 + 0.0000i 0.7321 + 0.0000i 0.0000 + 0.0000i -0.0000 + 0.0000i

0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i

29 -0.0571 + 0.0000i 0.0169 - 0.1592i 0.0169 + 0.1592i -0.2353 + 0.0000i -0.0000 + 0.0000i 0.0000 + 0.0000i

0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.2161 + 0.0000i -0.2161 + 0.0000i

31 -0.0216 + 0.0000i -0.1702 - 0.0365i -0.1702 + 0.0365i 0.4916 + 0.0000i -0.7708 + 0.0000i 0.7708 + 0.0000i

-0.1790 + 0.0000i 0.1393 + 0.0944i 0.1393 - 0.0944i -0.4087 + 0.0000i 0.5993 + 0.0000i -0.5993 + 0.0000i

33
Column 7

35
0.0000 + 0.0000i

37 0.0000 + 0.0000i

0.0000 + 0.0000i

39 -0.0000 + 0.0000i

0.2161 + 0.0000i

41 -0.7708 + 0.0000i

0.5993 + 0.0000i

43

45 D =

47 Columns 1 through 6

49 1.0311 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i

0.0000 + 0.0000i 0.0378 + 0.3567i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i

51 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0378 - 0.3567i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i

0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i -0.1867 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i

53 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i

0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i

55 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i

57 Column 7

63
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59 0.0000 + 0.0000i

0.0000 + 0.0000i

61 0.0000 + 0.0000i

0.0000 + 0.0000i

63 0.0000 + 0.0000i

0.0000 + 0.0000i

65 0.0000 + 0.0000i

B.2 Calculation of a± of 2.1.1

1 >> N0min =[105;49;0;10;16]

N0max =[200;79;0;19;26]

3 Vtilde =[0 0.7321 0.9569 0.9569 -0.9819; 0 -0.2353 0.0169+0.1592i 0.0169 -0.1592i -0.0571; -0.2161 0 0 0 0;

0.7708 0.4916 -0.1702+0.0365i -0.1702 -0.0365i -0.0216; -0.5993 -0.4087 0.1393 -0.0944i 0.1393+0.0944i -0.1790]

5 solvecmin=linsolve(Vtilde , N0min)

solvecmax=linsolve(Vtilde , N0max)

7
N0min =

9
105

11 49

0

13 10

16

15

17 N0max =

19 200

79

21 0

19

23 26

25
Vtilde =

27
Columns 1 through 3

29
0.0000 + 0.0000i 0.7321 + 0.0000i 0.9569 + 0.0000i

31 0.0000 + 0.0000i -0.2353 + 0.0000i 0.0169 + 0.1592i

-0.2161 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i

33 0.7708 + 0.0000i 0.4916 + 0.0000i -0.1702 + 0.0365i

-0.5993 + 0.0000i -0.4087 + 0.0000i 0.1393 - 0.0944i

35
solvecmin =

37
1.0e+02 *

39
-0.0000 + 0.0000i

41 -0.2615 + 0.0000i

-0.3277 - 1.0392i

43 -0.3277 + 1.0392i

-1.9031 + 0.0000i

45

47 solvecmax =

49 1.0e+02 *

51 -0.0000 + 0.0000i

-0.3386 + 0.0000i

53 -0.4774 - 1.7042i

-0.4774 + 1.7042i

55 -3.2199 + 0.0000i

B.3 Plot of Figure 3.1

1 function [N_tp1] = transition_matrix(L, N_t)

%product of L and N(t) to get N(t+1)

3 N_tp1=L*N_t;

end

Nmin_0 =[0; 105; 0; 49; 0; 10; 16];

2 Nmax_0 =[0; 200; 0; 79; 0; 19; 26];

L=[0 0 0 0 0 0 0; 0 0 0 0 0 4.02 5.17; 0.16 0 0 0 0 0 0; 0 0.06 0 0 0 0 0; 0 0 0.17 0 0 0 0;

4 0 0 0 0.39 0 0 0; 0 0 0 0 0.73 0.92 0.92];

tmax =18;

6 Nmin_t=zeros(7,tmax);
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Nmax_t=zeros(7,tmax);

8 Nmin_t (: ,1)= Nmin_0;

Nmax_t (: ,1)= Nmax_0;

10
for t=1:tmax -1

12 Nmin_t(:,t+1)= transition_matrix(L, Nmin_t(:,t));

Nmax_t(:,t+1)= transition_matrix(L, Nmax_t(:,t));

14 end

16 % Calculation of adult ’s densities per year

ADmin_t=zeros(1,tmax);

18 ADmax_t=zeros(1,tmax);

20 ADmin_t (1)= Nmin_0 (6)+ Nmin_0 (7);

ADmax_t (1)= Nmax_0 (6)+ Nmax_0 (7);

22
for t=1:tmax -1

24 ADmin_t(t+1)= Nmin_t(6,t+1)+ Nmin_t(7,t+1);

ADmax_t(t+1)= Nmax_t(6,t+1)+ Nmax_t(7,t+1);

26 end

28 figure

30 plot (2000:2017 , ADmax_t (1,:), ’r.’, 2000:2017 , ADmin_t (1,:), ’b.’, 2000, ADmax_t (1), ’ro’,

2000, ADmin_t (1), ’bo’, 2017 ,2.75 , ’ro’, 2017 ,1.38 , ’bo’)

32 xlabel(’Year’)

ylabel(’AD(t)’)

34 legend ({’Upper bound pred.’,’Lower bound pred.’,’Upper bound obser.’, ’Lower bound obser.’},’Location ’,’northwest ’)

B.4 Plot of Figure 4.1

t=[1:3000];

2 tmax=length(t);

r=zeros(1,tmax);

4 r(1)=0.5;

for t=2: tmax

6 r(t)=(0.5*1000)/(( exp ( -(0.005)*(t)))*(1000 -0.5)+0.5);

end

8 figure

10 plot (1:3000 , r(1,:))

B.5 Calculation of the hunting effort in 4.2.1

>> vpasolve (((0.11*(1 -x)-x)*1.2)/(( exp ( -(0.11*(1 -x)-x)*6))*(0.11*(1 -x)*(1 -1.2) -x)+0.11*(1 -x)*1.2) -0.96)

2
ans =

4
0.030568593480773906424046634600962

6
>> vpasolve (((0.11*(1 -x)-x)*1.2)/(( exp ( -(0.11*(1 -x)-x)*11))*(0.11*(1 -x)*(1 -1.2) -x)+0.11*(1 -x)*1.2) -0.60)

8
ans =

10
0.081067205595275305846646984307853

12
>> vpasolve (((0.11*(1 -x)-x)*0.96)/(( exp ( -(0.11*(1 -x)-x)*5))*(0.11*(1 -x)*(1 -0.96) -x)+0.11*(1 -x)*0.96) -0.60)

14
ans =

16
0.11777132821752242227578714112776

B.6 Plot of Figure 4.2

function [r] = sexconstratio(b,r_0 ,h,t)

2 r=((b*(1-h)-h)*r_0 )/(( exp(-(b*(1-h)-h)*(t)))*(b*(1-h)*(1-r_0)-h)+b*(1-h)*r_0)

end

1 t=[2000:2011];

tmax=length(t);

3 b=0.11;

r_0 =1.2;

5 h_1 =0.031;
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h_2 =0.081;

7 h_3 =0.118;

h=0.077;

9 r_1=zeros(1,tmax);

r_2=zeros(1,tmax);

11 r_3=zeros(1,tmax);

r=zeros(1,tmax);

13 r_1 (1)= r_0;

r_2 (1)= r_0;

15 r_3 (1)= r_0;

r(1)= r_0;

17 for t=2: tmax

r_1(t)= sexconstratio(b,r_0 ,h_1 ,t-1);

19 r_2(t)= sexconstratio(b,r_0 ,h_2 ,t-1);

r_3(t)= sexconstratio(b,r_0 ,h_3 ,t-1);

21 r(t)= sexconstratio(b,r_0 ,h,t-1);

end

23
figure

25
plot (2000:2011 , r_1 (1 ,:) ,2000:2011 , r_2 (1 ,:) ,2000:2011 , r_3 (1 ,:) ,2000:2011 ,r(1,:), 2000,1.2 , ’ro’, 2006 ,0.96 ,’ro’, 2011,0.6 , ’ro’ )

27 xlabel(’Year’)

ylabel(’r(t)’)

29 legend ({’Prediction for h_1’,’Prediction for h_2’,’Prediction for h_3’, ’Prediction for h’, ’Collected data’},’Location ’,’northeast ’)

B.7 Plot of Figure 4.3

1 function yp = huntingconsth(t,y)

b=0.11;

3 h=0.031;

mu =0.04;

5 yp =[ b*(1-h)*y(2)-mu*y(1); (b*(1-h)-h-mu)*y(2)];

end

function yp = huntingconsth(t,y)

2 b=0.11;

h=0.081;

4 mu =0.04;

yp =[ b*(1-h)*y(2)-mu*y(1); (b*(1-h)-h-mu)*y(2)];

6 end

function yp = huntingconsth(t,y)

2 b=0.11;

h=0.118;

4 mu =0.04;

yp =[ b*(1-h)*y(2)-mu*y(1); (b*(1-h)-h-mu)*y(2)];

6 end

t0=0;

2 tfinal =20;

y0max =[42648;51178];

4 y0min =[26283;31540];

[t,y1]=ode45(@huntingconsth , [t0 tfinal], y0min );

6 [t,y2]=ode45(@huntingconsth , [t0 tfinal], y0max );

t=t+2000;

8 figure

plot(t,y1,t,y2,t,y1(: ,1)+y1(:,2),t,y2(: ,1)+y2(:,2))

10 xlabel(’Year’)

ylabel(’Population ’)

12 legend(’Low. Estim. Males’,’Low. Estim. Females ’,’Upp. Estim. Males’, ’Upp. Estim. Females ’, ’Low. Estim. Tot. Population ’,

’Upp. Estim. Tot. Population ’,’Location ’,’Northeast ’)

1 t0=0;

tfinal =100;

3 y0max =[42648;51178];

y0min =[26283;31540];

5 [t,y1]=ode45(@huntingconsth , [t0 tfinal], y0min );

[t,y2]=ode45(@huntingconsth , [t0 tfinal], y0max );

7 t=t+2000;

figure

9 plot(t,y1,t,y2,t,y1(: ,1)+y1(:,2),t,y2(: ,1)+y2(:,2))

xlabel(’Year’)

11 ylabel(’Population ’)

legend(’Low. Estim. Males’,’Low. Estim. Females ’,’Upp. Estim. Males’, ’Upp. Estim. Females ’, ’Low. Estim. Tot. Population ’,

13 ’Upp. Estim. Tot. Population ’,’Location ’,’Northeast ’)

B.8 Plot of Figure 4.4
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1 function yp = huntingconsth(t,y)

b=0.11;

3 h=0.077;

mu =0.04;

5 yp =[ b*(1-h)*y(2)-mu*y(1); (b*(1-h)-h-mu)*y(2)];

end

t0=0;

2 tfinal =100;

y0max =[42648;51178];

4 y0min =[26283;31540];

[t,y1]=ode45(@huntingconsth , [t0 tfinal], y0min );

6 [t,y2]=ode45(@huntingconsth , [t0 tfinal], y0max );

t=t+2000;

8 figure

plot(t,y1,t,y2,t,y1(: ,1)+y1(:,2),t,y2(: ,1)+y2(:,2))

10 xlabel(’Year’)

ylabel(’Population ’)

12 legend(’Low. Estim. Males’,’Low. Estim. Females ’,’Upp. Estim. Males’, ’Upp. Estim. Females ’, ’Low. Estim. Tot. Population ’,

’Upp. Estim. Tot. Population ’,’Location ’,’Northeast ’)

1 t0=0;

tfinal =20;

3 y0max =[42648;51178];

y0min =[26283;31540];

5 [t,y1]=ode45(@huntingconsth , [t0 tfinal], y0min );

[t,y2]=ode45(@huntingconsth , [t0 tfinal], y0max );

7 t=t+2000;

figure

9 plot(t,y1,t,y2,t,y1(: ,1)+y1(:,2),t,y2(: ,1)+y2(:,2))

xlabel(’Year’)

11 ylabel(’Population ’)

legend(’Low. Estim. Males’,’Low. Estim. Females ’,’Upp. Estim. Males’, ’Upp. Estim. Females ’, ’Low. Estim. Tot. Population ’,

13 ’Upp. Estim. Tot. Population ’,’Location ’,’Northeast ’)

B.9 Estimation of hunting effort in section 4.2.2

1 function dmfdt = mfequation(t,mf,Z)

%function to evaluate trajectories

3 global h b mu

%first component: dm/dt , m is mf (1)

5 %second component : df/dt , f is mf (2)

7 mf_lag2 = Z(: ,1); %lag for f

dmfdt = [(b*(1-h))* mf_lag2 (1)-mu*mf(1); (b*(1-h))* mf_lag2 (1)-(mu+h)*mf(2)];

9 end

1 function [leastsquare_rh] = compute_least_squares(x0)

%here we compute the least square of the data points and the function

3 %values.

global h b mu

5 %given values:

h=x0;

7 b=0.11;%fixed

mu = 1;

9 tau =3;

m_0 =42648;

11 f_0 =51178;

tmax =11;%end of observation (locked here as it is the last observation time)

13
%m is mf (1)

15 %f is mf (2)

%solve the ODE system. I used a stiff solver , could also try different solvers here

17 sol = dde23(@mfequation ,tau ,@ddex1hist ,[0 tmax ]);

19 %the problem now is that the solution values are on a non -integer

%timescale. We need to shift them to be able to compare computed values

21 %with the data points. This happens in the following :

t=sol.x;

23 y=sol.y;

new_amountscale = zeros(tmax +1 ,2);%"new" population matrix with r in the first row and h in the second row

25 %shift solution time course to integer time values

for i=0: tmax

27 [minValue ,closestIndex] = min(abs(i-t));

new_timescale(i+1) = t(closestIndex );

29 new_amountscale(i+1,:) = y(:, closestIndex );

closestValue(i+1) = t(closestIndex );

31 end

33 %compute least squares (as we have only three values , I did not set up a

%sum. The first square is zero , as we start our computations with that value

35 meas1=new_amountscale (6 ,2)/ new_amountscale (6,1);

meas2=new_amountscale (11 ,2)/ new_amountscale (11 ,1);
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37
leastsquare_rh = (meas1 -0.96)^2+( meas2 -0.60)^2;

39
end

41

43 function s = ddex1hist(t)

% Constant history function for DDEX1.

45 s = [42648 51178];

end

%clean up

2 clear all

close all

4 clc

%a is adjusted in the computations . Set as global to make those

6 % computations faster and easier. Cave: Can cause errors though.

global h b mu

8 tic

10 %starting value for the algorithm. This is the initial value of a to be

%"tested"

12 x0 = 0.5;

14 lb = [0.000001]; %lower boundary of rate to be tested

ub = [1]; %upper boundary of rate to be tested

16
%some settings , also to visualize what happens.

18 options = optimoptions(@fmincon ,’Algorithm ’,’sqp’,’StepTolerance ’,1e-20,’ConstraintTolerance ’,1e-15,

’MaxFunctionEvaluations ’ ,5000,’PlotFcn ’,@optimplotfval );

20 nonlcon = [];

[x,fval ,exitflag ,output ]= fmincon(@compute_least_squares ,x0 ,[],[],[],[],lb ,ub,nonlcon ,options)

22 toc

24 %compute ODE system with found value

%given values:

26 h=x;

b=0.11;%fixed

28 mu = 1;

tau =3;

30 m_0 =42648;

f_0 =51178;

32 tmax =11;%end of observation (locked here as it is the last observation time)

34 %m is mf (1)

%f is mf (2)

36 %solve the ODE system. I used a stiff solver , could also try different solvers here

sol = dde23(@mfequation ,tau ,@ddex1hist ,[0 tmax ]);

38
%the problem now is that the solution values are on a non -integer

40 %timescale. We need to shift them to be able to compare computed values

%with the data points. This happens in the following :

42 t=sol.x;

y=sol.y;

44
%plot results

46 figure

plot(t,y)

48 hold on

%plot (0,r_0 ,’b*’,6,r_6 ,’b*’,11,r_11 ,’b*’)

50 legend(’m(t)’,’f(t)’)

xlabel(’time’)

52 ylabel(’value ’)

54 fraction_y = zeros(1,length(y));

for i=1: length(y)

56 fraction_y(i) = y(2,i)./y(1,i);

end

58
figure

60 plot(t,fraction_y)

hold on

62 plot(0,1.2,’b*’ ,6,0.96,’b*’ ,11,0.60,’b*’)

legend(’f(t)/m(t)’,’Data’)

64 xlabel(’time’)

ylabel(’value ’)

66
%save all the results.

68 save(’results_h ’)

70
function s = ddex1hist(t)

72 % Constant history function for DDEX1.

s = [42648 51178];

74 end

B.10 Plot of Figure 4.5
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1 function dydt = ddehuntingconst(t,y,Z)

b=0.02;

3 h=0.1386;

mu =0.04;

5 ylag2=Z(: ,1);

dydt =[ b*(1-h)* ylag2(1)-mu*y(1);

7 b*(1-h)*ylag2 (1)-(mu+h)*y(2)];

end

function s = historyhuntingmin(t)

2 s = [26283;31540];

end

1 function s = historyhuntingmax(t)

s = [42648;51178];

3 end

1 t0=0;

tfinal =20;

3 lags =[3];

sol = dde23(@ddehuntingconst , lags , @historyhuntingmax , [t0 tfinal ]);

5 a=linspace(t0 ,tfinal ,(tfinal -t0)*5);

b=deval(sol ,a,1);

7 c=deval(sol ,a,2);

d=deval(sol ,17 ,1);

9 e=deval(sol ,17 ,2);

figure

11 plot(sol.x, sol.y);

hold on

13 plot(a, b+c)

hold on

15 plot(17, e+d, ’bo’)

legend(’Males’,’Females ’,’Total’,’Location ’,’North’)

17 xlabel(’Year’)

ylabel(’Population ’)

B.11 Plot of Figure 4.6 and estimation of a

function drhdt = rhequation(t,rh)

2 %function to evaluate trajectories

global a b

4 %first component: dr/dt , r is rh (1)

%second component : dh/dt , h is rh (2)

6 drhdt = [(b*(1-rh(2))-rh (2))*rh(1) - (b*(1-rh (2)))* rh(1)*rh(1); a*rh(2)*(1 -rh (2))];

end

1 function [leastsquare_rh] = compute_least_squares(x0)

%here we compute the least square of the data points and the function

3 %values.

global a b

5 %given values:

a=x0;

7 b=0.11;%fixed

h_0 =0.031;%fixed

9 r_0 =1.2;%fixed

r_6 =0.96;%fixed

11 r_11 =0.6;%fixed

tmax =11;%end of observation (locked here as it is the last observation time)

13
%r is rh (1)

15 %h is rh (2)

[t,y] = ode23s(@rhequation ,[0 tmax],[r_0 h_0]);

17
%the problem now is that the solution values are on a non -integer

19 %timescale. We need to shift them to be able to compare computed values

%with the data points. This happens in the following :

21
new_amountscale = zeros(tmax +1 ,2);%"new" population matrix with r in the first row and h in the second row

23 %shift solution time course to integer time values

for i=0: tmax

25 [minValue ,closestIndex] = min(abs(i-t));

new_timescale(i+1) = t(closestIndex );

27 new_amountscale(i+1,:) = y(closestIndex ,:);

closestValue(i+1) = t(closestIndex );

29 end

31 %compute least squares (as we have only three values , I did not set up a

%sum. The first square is zero , as we start our computations with that value

33 leastsquare_rh = (r_0 -new_amountscale (1 ,1))^2+(r_6 -new_amountscale (7 ,1))^2+( r_11 -new_amountscale (12 ,1))^2;

35 end
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1 %clean up

clear all

3 close all

clc

5 %a is adjusted in the computations . Set as global to make those

% computations faster and easier. Cave: Can cause errors though.

7 global a

tic

9
%starting value for the algorithm. This is the initial value of a to be

11 %"tested"

x0 = 0.00005;

13
lb = [0.000001]; %lower boundary of rate to be tested

15 ub = [1]; %upper boundary of rate to be tested

17 %some settings , also to visualize what happens.

options = optimoptions(@fmincon ,’Algorithm ’,’interior -point’,’StepTolerance ’,1e-20,

19 ’ConstraintTolerance ’,1e-15,’MaxFunctionEvaluations ’ ,5000,’PlotFcn ’,@optimplotfval );

nonlcon = [];

21 [x,fval ,exitflag ,output ]= fmincon(@compute_least_squares ,x0 ,[],[],[],[],lb ,ub,nonlcon ,options)

toc

23
%compute ODE system with found value

25 %given values:

a=x;

27 b=0.11;

h_0 =0.031;

29 r_0 =1.2;

r_6 =0.96;

31 r_11 =0.6;

t0=0;

33 tmax =11;

35 %r is rh (1)

%h is rh (2)

37
[t,y] = ode23s(@rhequation ,[t0 tmax],[r_0 h_0]);

39
%plot results

41 figure

plot(t+2000 ,y)

43 hold on

plot (2000,r_0 ,’bo’ ,2006,r_6 ,’bo’ ,2011,r_11 ,’bo’)

45 legend(’r(t)’,’h(t)’,’Collected data’)

xlabel(’Year’)

47 ylabel(’Value ’)

49 %save all the results.

save(’results_a ’)

B.12 Estimation of a in section 4.2.4

1 function dmfdt = mfequation(t,mf,Z)

%function to evaluate trajectories

3 global a h0 b mu

%first component: dm/dt , m is mf (1)

5 %second component : df/dt , f is mf (2)

7 mf_lag2 = Z(: ,1); %lag for f

h = h0/((exp(-a*t))*(1 -h0)+h0);

9 dmfdt = [(b*(1-h))* mf_lag2 (1)-mu*mf(1); (b*(1-h))* mf_lag2 (1)-(mu+h)*mf(2)];

end

function [leastsquare_rh] = compute_least_squares(x0)

2 %here we compute the least square of the data points and the function

%values.

4 global a b mu h0

%given values:

6 h0 =0.031;

a=x0;

8 b=0.11;%fixed

mu = 0.04;

10 tau =3;

m_0 =42648;

12 f_0 =51178;

tmax =11;%end of observation (locked here as it is the last observation time)

14
%m is mf (1)

16 %f is mf (2)

%solve the ODE system. I used a stiff solver , could also try different solvers here

18 sol = dde23(@mfequation ,tau ,@ddex1hist ,[0 tmax ]);

20 %the problem now is that the solution values are on a non -integer

%timescale. We need to shift them to be able to compare computed values

22 %with the data points. This happens in the following :
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t=sol.x;

24 y=sol.y;

new_amountscale = zeros(tmax +1 ,2);%"new" population matrix with r in the first row and h in the second row

26 %shift solution time course to integer time values

for i=0: tmax

28 [minValue ,closestIndex] = min(abs(i-t));

new_timescale(i+1) = t(closestIndex );

30 new_amountscale(i+1,:) = y(:, closestIndex );

closestValue(i+1) = t(closestIndex );

32 end

34 %compute least squares (as we have only three values , I did not set up a

%sum. The first square is zero , as we start our computations with that value

36 meas1=new_amountscale (6 ,2)/ new_amountscale (6,1);

meas2=new_amountscale (11 ,2)/ new_amountscale (11 ,1);

38
leastsquare_rh = (meas1 -0.96)^2+( meas2 -0.60)^2;

40
end

42
function s = ddex1hist(t)

44 % Constant history function for DDEX1.

s = [42648 51178];

46 end

%clean up

2 clear all

close all

4 clc

%a is adjusted in the computations . Set as global to make those

6 % computations faster and easier. Cave: Can cause errors though.

global a b mu h0

8 tic

10 %starting value for the algorithm. This is the initial value of a to be

%"tested"

12 x0 = [0.02];

14 lb = [0.000001]; %lower boundary of rate to be tested

ub = [1]; %upper boundary of rate to be tested

16
%some settings , also to visualize what happens.

18 options = optimoptions(@fmincon ,’Algorithm ’,’interior -point’,’StepTolerance ’,

1e-20,’ConstraintTolerance ’,1e-15,’MaxFunctionEvaluations ’ ,5000,’PlotFcn ’,@optimplotfval );

20 nonlcon = [];

[x,fval ,exitflag ,output ]= fmincon(@compute_least_squares ,x0 ,[],[],[],[],lb ,ub,nonlcon ,options)

22 toc

24 %compute ODE system with found value

%given values:

26 h0 =0.031;

a=x;

28 b=0.11;%fixed

mu = 0.04;

30 tau =3;

m_0 =42648;

32 f_0 =51178;

tmax =11;%end of observation (locked here as it is the last observation time)

34
%m is mf (1)

36 %f is mf (2)

%solve the ODE system. I used a stiff solver , could also try different solvers here

38 sol = dde23(@mfequation ,tau ,@ddex1hist ,[0 tmax ]);

40 %the problem now is that the solution values are on a non -integer

%timescale. We need to shift them to be able to compare computed values

42 %with the data points. This happens in the following :

t=sol.x;

44 y=sol.y;

46 %plot results

figure

48 plot(t,y)

hold on

50 %plot (0,r_0 ,’b*’,6,r_6 ,’b*’,11,r_11 ,’b*’)

legend(’m(t)’,’f(t)’)

52 xlabel(’time’)

ylabel(’value ’)

54
fraction_y = zeros(1,length(y));

56 for i=1: length(y)

fraction_y(i) = y(2,i)./y(1,i);

58 end

60 figure

plot(t,fraction_y)

62 hold on

plot(0,1.2,’b*’ ,6,0.96,’b*’ ,11,0.60,’b*’)

64 legend(’f(t)/m(t)’,’Data’)

xlabel(’time’)

66 ylabel(’value ’)

68 %save all the results.
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save(’results_h ’)

70
function s = ddex1hist(t)

72 % Constant history function for DDEX1.

s = [42648 51178];

74 end

B.13 Plot of Figure 4.7

1 function s = historyhuntingmax(t)

s = [42648;51178];

3 end

1 function s = historyhuntingmin(t)

s = [26283;31540];

3 end

1 function dmfdt = delhuntinghnonconst(t,mf,Z)

h0 =0.031;

3 a=0.1334;

b=0.11;

5 mu =0.04;

mf_lag2 = Z(: ,1); %lag for f

7 h = h0/((exp(-a*t))*(1 -h0)+h0);

dmfdt = [(b*(1-h))* mf_lag2 (1)-mu*mf(1); (b*(1-h))* mf_lag2 (1)-(mu+h)*mf (2)];

9 end

1 t0=0;

tfinal =20;

3 lags =[3];

sol = dde23(@delhuntinghnonconst , lags , @historyhuntingmax , [t0 tfinal ]);

5 a=linspace(t0 ,tfinal ,(tfinal -t0)*5);

b=deval(sol ,a,1);

7 c=deval(sol ,a,2);

d=deval(sol ,17 ,1);

9 e=deval(sol ,17 ,2);

figure

11 plot(sol.x, sol.y);

hold on

13 plot(a, b+c)

hold on

15 plot(17, e+d, ’bo’)

legend(’Males’,’Females ’,’Total’,’Location ’,’North’)

17 xlabel(’Year’)

ylabel(’Population ’)

B.14 Plot of Figure 5.1

function yp = habitatmax(t,y)

2 b=0.02;

r=5.6;

4 mu =0.04;

k=10.5;

6 D=[7130;216884];

A=[10.91; 1.09];

8 yp =[ b*y(2)*(1 -y(1)/(D(1)*(A(1) -0.27*t)))-mu*y(1); r*y(1)*(1 -y(2)/(D(2)*(A(2) -0.0436*t)))];

end

1 function yp = habitatmin(t,y)

b=0.02;

3 r=5.6;

k=10.5;

5 mu =0.04;

D=[4962;113863];

7 A=[10.91; 1.09];

yp =[ b*y(2)*(1 -y(1)/(D(1)*(A(1) -0.27*t)))-mu*y(1); r*y(1)*(1 -y(2)/(D(2)*(A(2) -0.0436*t)))];

9 end

1 t0=0;

tfinal =20;

3 y0max =[46913;236403];

y0min =[28912;124111];

5 Dmax =[7130;216884];

[t1 ,y1]=ode45(@habitatmax , [t0 tfinal], y0max);

7 [t2 ,y2]=ode45(@habitatmin , [t0 tfinal], y0min);
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t1=t1 +2000;

9 t2=t2 +2000;

plot(t1 ,y1,t2,y2)

11 xlabel(’Year’)

ylabel(’Population ’)

13
legend(’Upp. Estim. Adults ’,’Upp. Estim. Eggs’,’Low. Estim. Adults ’,’Low. Estim. Eggs’,’Location ’,’Northeast ’)

B.15 Plot of Figure 5.2

function s = historyhabitmin(t)

2 s = [28912;124111];

end

1 function dydt = ddehabitatmin(t,y,Z)

b=0.02;

3 r=5.6;

mu =0.04;

5 D=[4962;113863];

A=[10.91; 1.09];

7 ylag2=Z(: ,1);

dydt =[ b*ylag2 (1)*(1 -y(1)/(D(1)*(A(1) -0.27*t)))-mu*y(1);

9 r*y(1)*(1 -y(2)/(D(2)*(A(2) -0.0436*t)))];

end

t0=0;

2 tfinal =20;

tspan=[t0 tfinal ];

4 lags =[3];

sol= dde23(@ddehabitatmin , lags , @historyhabitmin , tspan);

6 a=deval(sol ,17 ,1);

figure

8 plot(sol.x, sol.y);

hold on

10 plot(17, a,’bo’)

xlabel(’Year’);

12 ylabel(’Population ’);

legend(’Adults ’,’Eggs’,’Location ’,’North’)

1 function s = historyhabitmax(t)

s = [46913;236403];

3 end

1 function dydt = ddehabitatmax(t,y,Z)

b=0.02;

3 r=5.6;

mu =0.04;

5 D=[7130;216884];

A=[10.91; 1.09];

7 ylag2=Z(: ,1);

dydt =[ b*ylag2 (1)*(1 -y(1)/(D(1)*(A(1) -0.27*t)))-mu*y(1);

9 r*y(1)*(1 -y(2)/(D(2)*(A(2) -0.0436*t)))];

end

t0=0;

2 tfinal =20;

tspan=[t0 tfinal ];

4 lags =[3];

sol= dde23(@ddehabitatmax , lags , @historyhabitmax , tspan);

6 a=deval(sol ,17 ,1);

figure

8 plot(sol.x, sol.y);

hold on

10 plot(17, a,’bo’)

xlabel(’Year’);

12 ylabel(’Population ’);

legend(’Adults ’,’Eggs’,’Location ’,’North’)

B.16 Plot of Figure 5.3

1 function yp = habitatmax(t,y)

b=0.02;

3 r=5.6;

k=10.5;

5 mu =0.04;
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D=[7130;216884];

7 A=[10.91; 1.09];

yp =[ b*y(2)*(1 -y(1)/(D(1)*(A(1) -0.27*t)))-mu*exp(k*0.27)*y(1); r*y(1)*(1 -y(2)/(D(2)*(A(2) -0.0436*t)))];

9 end

1 function yp = habitatmin(t,y)

b=0.02;

3 r=5.6;

k=10.5;

5 mu =0.04;

D=[4962;113863];

7 A=[10.91; 1.09];

yp =[ b*y(2)*(1 -y(1)/(D(1)*(A(1) -0.27*t)))-mu*exp(k*0.27)*y(1); r*y(1)*(1 -y(2)/(D(2)*(A(2) -0.0436*t)))];

9 end

1 t0=0;

tfinal =20;

3 y0max =[46913;236403];

y0min =[28912;124111];

5 Dmax =[7130;216884];

[t1 ,y1]=ode45(@habitatmax , [t0 tfinal], y0max);

7 [t2 ,y2]=ode45(@habitatmin , [t0 tfinal], y0min);

t1=t1 +2000;

9 t2=t2 +2000;

plot(t1 ,y1,t2,y2)

11 xlabel(’Year’)

ylabel(’Population ’)

13
legend(’Upp. Estim. Adults ’,’Upp. Estim. Eggs’,’Low. Estim. Adults ’,’Low. Estim. Eggs’,’Location ’,’Northeast ’)

B.17 Plot of Figure 5.4

function s = historyhabitmin(t)

2 s = [28912;124111];

end

1 function dydt = ddehabitatmin(t,y,Z)

b=0.02;

3 r=5.6;

mu =0.04;

5 k=5.65;

D=[4962;113863];

7 A=[10.91; 1.09];

ylag2=Z(: ,1);

9 dydt =[ b*ylag2 (1)*(1 -y(1)/(D(1)*(A(1) -0.27*t)))-mu*exp (0.27*k)*y(1);

r*y(1)*(1 -y(2)/(D(2)*(A(2) -0.0436*t)))];

11 end

1 t0=0;

tfinal =20;

3 tspan=[t0 tfinal ];

lags =[3];

5 sol= dde23(@ddehabitatmin , lags , @historyhabitmin , tspan);

a=deval(sol ,17 ,1);

7 figure

plot(sol.x, sol.y);

9 hold on

plot(17, a,’bo’)

11 xlabel(’Year’);

ylabel(’Population ’);

13 legend(’Adults ’,’Eggs’,’Location ’,’North’)

1 function s = historyhabitmax(t)

s = [46913;236403];

3 end

1 function dydt = ddehabitatmax(t,y,Z)

b=0.02;

3 r=5.6;

mu =0.04;

5 k=5.65;

D=[7130;216884];

7 A=[10.91; 1.09];

ylag2=Z(: ,1);

9 dydt =[ b*ylag2 (1)*(1 -y(1)/(D(1)*(A(1) -0.27*t)))-mu*exp (0.27*k)*y(1);

r*y(1)*(1 -y(2)/(D(2)*(A(2) -0.0436*t)))];

11 end
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1 t0=0;

tfinal =20;

3 tspan=[t0 tfinal ];

lags =[3];

5 sol= dde23(@ddehabitatmax , lags , @historyhabitmax , tspan);

a=deval(sol ,17 ,1);

7 figure

plot(sol.x, sol.y);

9 hold on

plot(17, a,’bo’)

11 xlabel(’Year’);

ylabel(’Population ’);

13 legend(’Adults ’,’Eggs’,’Location ’,’North’)
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