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Abstract

In this thesis work we analyze a wide class of 1+1 dimensional integrable scat-

tering theories with Uq(sl(2)) quantum group symmetry, whose asymptotic

states are multiplets of particles with iso-spin k/2. Their two-body S-matrices

have been recently found in terms of the R matrix of the quantum group. Since

they satisfy Yang-Baxter equation, unitarity and crossing symmetry, they rep-

resent a consistent integrable factorized scattering theory. The question of

finding the corresponding underlying QFT can be addressed once the Ther-

modynamic Bethe Ansatz (TBA) is obtained. In this work we get the TBA

equations and we compare them to previous known results of S. R. Aladim e

M. J. Martins for the particular case when q → 1.



Sommario

In questo lavoro di tesi analizziamo una vasta classe di teorie integrabili di

scattering con simmetria di quantum group Uq(sl(2)), i cui stati asintotici sono

multipletti di particelle con iso-spin k/2. Le loro matrici S a due corpi sono

state recentemente trovate in termini della matrice R del quantum group. Dato

che soddisfano l’equazione di Yang-Baxter, unitarietà e crossing symmetry,

esse descrivono una teoria di scattering consistente. Il problema di trovare la

corrispondente teoria di campo quantistica può essere investigato una volta

noto il Thermodynamic Bethe Ansatz (TBA). In questo lavoro le equazioni

di TBA sono ricavate e vengono confrontate con precedenti risultati di S. R.

Aladim e M. J. Martins per il particolare caso in cui q → 1.
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Introduction

“The field of integrable systems is born together with classical mechanics” O. Babe-
lon, D. Bernard and M. Talon write in [1] and it is probably true. It is believed that
the main aim of Physics has always been that of describing with more or less elegant
mathematical formulas the behaviour of Nature, but this is not enough. Once the
fundamental law is found, one has to look for its solutions and then compare this
solution with empirical data, i.e. the experiments.

One of the first examples in the history of physics of the application of this process
is given by gravitation: in 1687 Sir I. Newton understood the law that describes the
mutual gravitational attraction between two massive bodies, which can be exactly
solved and these solutions were in perfect accordance with the Kepler’s observations
done in the beginning of the same century. One could try to do the same thing
with other theories but unfortunately it is not easy to find the solution of a given
equation that describes some phenomena.

To make matter worse it was later understood, thanks to more precise measure-
ments and the advent of modern physics such as quantum mechanics and special
relativity, that generally Nature works in a more complicated way than expected.
For these reasons many theories, such as Maxwell electromagnetism, were discovered
to be special cases of a more general theory called quantum field theory, or to go
back to our example, the Newton theory of gravitation was corrected and improved
by A. Einstein in 1915 with his General Theory of Relativity.

These laws that describe the behaviour of Nature turn out to be mathematically
very complicated and they are almost impossible to solve exactly. However, in many
cases, the parameters that describe those theories are small enough such that one can
safely perform a perturbative expansion of the interesting quantities and therefore
an approximate solution can be computed. Given the stunning results obtained, for
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Introduction

a large part of the last century this method had been the cutting edge of theoretical
physics. Just to give an insight of the precision of this idea, in the framework of
Quantum Electrodynamics (QED), whose the coupling constant is the fine structure
constant α ' 1/137 = 0.007, the anomalous magnetic moment of the electron was
measured with a precision of 12 significant digits, making this result one of the most
accurately verified predictions in the history of physics (see e.g. [2]).

However, physicists soon understood that there are phenomena that cannot be
described in terms of a perturbative theory, e.g. the problem of quarks confinement,
strongly correlated systems, string theory and AdS/CFT: this reignited the interest
in the study of exact solutions, i.e. the property of integrability.

Meanwhile from the front of Statistical Mechanics, after the outstanding ideas
of H. Bethe to exactly solve the Heisenberg model, scientists like R. Baxter, B.
Sutherland and M. Takahashi just to name a few, started to analyze a huge number of
spin chain models, making progress towards a new way to intend integrability in the
quantum realm. Another step was done in the late ’80s by brothers Zamolodchikov,
who were able to find the exact expression for the S-matrix of the sine-Gordon model
(SGM), together with other theories with O(n) symmetry [3].

In particular it was understood that in the SGM there is a precise value of the
coupling constant, namely β =

√
8π, where the underlying symmetry is SU(2),

making the model equivalent to the chiral Gross-Neveu model, instead of just U(1),
which holds for all the other values of β.

D. Bernard and A. LeClair then showed in [4] that considering non-local currents
it was possible to extend the SU(2) symmetry to every value of β introducing a
quantum deformation of its universal enveloping algebra: with this seminal work,
the concept of quantum group made his entrance in the integrability world (see e.g.
[5] for a review). This led in 1995 V. A. Fateev, E. Onofri and Al. B. Zamolodchikov
to study the O(3) ' SU(2)/Z2 sigma model [6] and in particular its quantum group
deformation, the so-called sausage model, the name coming from the shape of the
target space once the deformation is considered.

The natural question is whether this construction holds also at higher spin rep-
resentation, namely 3/2, 2, etc. A first attempt was was made by S. R. Aladim and
M. J. Martins [7], who constructed a class of rational S-matrices based on SU(2)k

symmetry (where k is the order of the representation of the algebra, i.e. k = 2s
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Introduction

where s is the iso-spin) and performed their TBA. Recently C. Ahn and F. Ra-
vanini [8] were able to obtain the exact S-matrix for the quantum deformation of
the rational case just mentioned.

The aim of this thesis is to understand how TBA equations work in the rational
case and then generalize this result in the deformed one in order to have an insight
on the critical behaviour of these theories.

Having outlined the framework, we have organized the work into the following
chapters:

• in Chapter 1 we are going to introduce the concept of integrability starting
from the classical point of view, which can be precisely defined via Liouville
theorem, until we arrive to the quantum world. In this case there is not a
unique definition of integrable model, except for 1 + 1 integrable models. In
these theories, the S-matrix is severely constrained by some basic requirement
and can be therefore exactly computed. We know that any physical QFT
theory admits a scattering operator but unfortunately, knowing an S-matrix
does not mean that it describes a real physical theory. The powerful tool used
to verify whether it is true or not is the Thermodynamic Bethe Ansatz (TBA).

• In Chapter 2 we are going to describe the Thermodynamic Bethe Ansatz
method. In particular, in the first part we are going to analyze the TBA
for diagonal scattering theories, where an elegant structure related to Lie alge-
bras appear. In the second part we are going to study the case of non-diagonal
scattering theories and in particular we are going to focus on the sine-Gordon
model as an example. In this case the TBA calculations become more compli-
cated than in the previous one, since new degrees of freedom appear, related
to the appearance of new non-physical particles called magnons.

• In Chapter 3 we are going to analyze with the TBA method two classes of
scattering theories. In the first part we are going to focus on theories which
describe particles of arbitrary spin k/2 with SU(2) symmetry, introduced in
[7]. These particular models are very useful in the study of integrable models at
particular values of the coupling constant. It is then possible to generalize these
theories by deforming the underlying Lie algebra into the so called quantum
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group Uq(sl(2)). In the last part of this chapter we are going to derive the TBA
equations of these models, in order to compare them with the undeformed case.
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1

Classical And Quantum

Integrability Theory

In this chapter we are going to introduce the concept of integrability in physics. In
the first part we are going to introduce the formalism of classical mechanics and then
we will focus on the most important result for our purposes, which is the Liouville
theorem. Then a brief overview on classical field theories will be presented, in order
to better understand the more complex topic of quantum field integrability, which
is described in the second part of the chapter.

In particular, in the last section, we are going to describe the object of biggest
interest in the quantum integrability realm, which is the S-matrix. Indeed, it can
be shown that in 1 + 1 dimensions, by only exploiting its defining properties, it is
possible to define the scattering matrix without knowing anything of the related
QFT: this method is known as bootstrap program.

1.1 Classical Integrability

In classical mechanics, the state of a system with n degrees of freedom is uniquely
determined by the position qi and its canonically conjugated momentum pi where
i = 1, . . . , n. The evolution in time is given by Hamilton equations

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, (1.1)

5



1. Classical And Quantum Integrability Theory

where H(qi, pi) is the Hamiltonian of the system. For two arbitrary dynamical
functions F and G one can define the Poisson brackets

{F,G} =
n∑
i=1

(
∂F

∂pi

∂G

∂qi
− ∂F

∂qi

∂G

∂pi

)
(1.2)

such that the evolution of any function defined on the phase space becomes

Ḟ = {H,F}. (1.3)

Thanks to this definition it is clear that H doesn’t change in time, i.e. {H,H} = 0.

We say that a dynamical system is Liouville integrable if it possesses n indepen-
dent conserved quantities Q1, . . . , Qn which are in mutual involution, namely

{H,Qi} = 0 = {Qi, Qj} for all i, j = 1, . . . , n. (1.4)

If these requirements are fulfilled, the equation of motion of the system can be
suitably solved by “quadratures”, i.e. by a series of nested replacements.

A key concept in the modern approach to integrability is that of the Lax pairs.
Suppose that it is possible to find two matrices M(qi, pi) and L(qi, pi) such that the
equations of motion can be written in the following form

dL

dt
= [M,L]. (1.5)

In this case it is possible to define

Ik = TrLk, k ∈ N, (1.6)

which is easy to prove to be conserved in time for every k, İk = 0. It is even possible
to formulate the same problem in terms of Lax pairs that depend on a non-dynamical
parameter, L(λ), M(λ): this becomes very useful in the study of integrability in
classical field theories, since it gives an infinite number of pairs parametrized by λ.

However, this method has some intrinsic problem: first of all, it is not guaran-
teed that the set of conserved quantities is linearly independent and in involution,
therefore the Liouville theorem is not automatically satisfied; secondly there is not
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1. Classical And Quantum Integrability Theory

a standard procedure to find the Lax pairs able to recast the equation of motion in
the form (1.5) so, even if very powerful, this method is difficult to apply.

It is possible to show (see [1] for the proof) that the involution between the
conserved charges (1.6) is equivalent to the existence of a matrix r such that

{L1, L2} = [r12, L1]− [r21, L2], (1.7)

where L1 = L⊗ 1 and L2 = 1⊗ L. Moreover, since the Poisson brackets (1.7) have
to satisfy the Jacobi identity, the form of the r matrix is constrained, namely

[L1, [r12, r13] + [r12, r23] + [r13, r23] + {L2, r13} − {L3, r12}] + cyclic perm. = 0. (1.8)

In particular, if r is independent of the dynamic variables and it is anti-symmetric,
equation (1.8) is trivially satisfied when

[r12, r13] + [r12, r23] + [r13, r23] = 0. (1.9)

Equation (1.9) is called classical Yang-Baxter equation, and r is the classical R-
matrix, in analogy to what happens in the quantum spin chain case.

A more interesting situation is given by classical field theories1. In this case the
system has infinite degrees of freedom, therefore, referring to the Liouville theorem,
one should find infinitely many conserved charges in involution to ensure the inte-
grability of the system, which is clearly a difficult task. For this reason the Lax
formalism introduced above turns out to be a powerful tool.

As an example let us analyze the Korteweg-de Vries (KdV) equation, which is the
perfect prototype of integrable field theory, introduced at the end of 19th century
to describe the motion of water waves and then borrowed by the most diverse fields
of physics. The equation reads

∂tu(t, x) = 6u(t, x)∂xu(t, x)− ∂3
xu(t, x). (1.10)

1We will restrict to the case of 1+1 dimensional theories, meaning that one dimension represent
the time t and the other the space x.
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1. Classical And Quantum Integrability Theory

It admits a Lax pair representation, namely

L = −∂2
x + u(t, x), (1.11a)

M = 4∂3
x − 3[u(t, x)∂x + ∂xu(t, x)]. (1.11b)

Thanks to equation (1.6) it is possible to find an infinite amount of conserved charges
(see e.g. [9]). For example the first three read

I1 =

∫
dx u(t, x), (1.12a)

I2 =

∫
dx u(t, x)2, (1.12b)

I3 =

∫
dx

(
u(t, x)3 +

(∂xu(t, x))2

2

)
. (1.12c)

An interesting feature of many integrable field theories, including the discussed
KdV equation, is that they admit solutions of the equation of motion that are
well-localized in space and which preserve their shape in the time evolution, called
solitons. In the scattering processes between these solutions, the fact that the theory
admits infinite conserved quantities, constraints the number and the nature of such
particles to be conserved. Therefore the collision is always of elastic nature and,
additionally, it turns out that the scattering of more than two solitons can always be
factorized in a sequence of pairwise interaction. This feature is of crucial importance
in the quantum world, that we are going to analyze in the next section.

1.2 Quantum Integrability

Giving a precise definition of quantum integrability is a difficult task, given the wide
variety of cases that it is possible to encounter. Usually one starts by considering spin
chains, or the quantum counterpart of some classical integrable systems described
above, but for our purposes we are going to describe the situation for a very specific
case: quantum field theories in 1+1 dimensions.

The reasons why we focus on 2-dimensional systems are multiple, but one hint
comes from the renown Coleman-Mandula theorem [10]. This fundamental result,
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1. Classical And Quantum Integrability Theory

which is based on several assumptions2, states that the most general symmetry
underlying any massive QFT in 3+1 dimensions, can be expressed as the direct
product of the Lorentz-Poincaré group A and a group of internal symmetry I,
namely

A⊗ I. (1.13)

In particular the authors showed that any theory in 1 + d dimensions (d > 1) which
admits a conserved charge with spin higher that 1 have a trivial S-matrix, i.e. there
is no interaction between particles. But these arguments surprisingly do not apply
in the (1+1)-dimensional case: here space-time and internal symmetries can be
combined in a non trivial way and in particular conserved charges of arbitrary spin
do not affect the nature of the S-matrix.

It becomes clear that the S-matrix has a relevant role in the study of integrable
systems and for this reasons we are going to review some theory about the scattering
processes.

1.2.1 The S-Matrix

Let us consider a theory defined in generic space-time dimensions with a short range
interaction: this always allows to consider the particles in an asymptotic state, i.e.
far enough from the other particles for which the interaction can be neglected.
Since in scattering processes the particles involved are only of physical nature with
momentum pµ, they must be on-shell, namely

pµp
µ = m2. (1.14)

The scattering matrix is defined as the unitary and invariant operator that trans-
forms an incoming state into an outgoing state, namely

|f〉 = S |i〉 . (1.15)

2In the years the assumptions of the theorem have been relaxed, for example if one allows also
anticommutation relations between the generators, will obtain the supersymmetry algebra, see [11].
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1. Classical And Quantum Integrability Theory

To prove unitarity, one can consider a superposition of basis vectors |n〉 of the Hilbert
space,

|ψ〉 =
∑

n
αn |n〉 , (1.16)

then the conservation of total probability leads to the following relation

1 = | 〈ψ′|S |ψ〉 |2 =
∑

m,n
α∗mαn 〈m|S†S |n〉 , (1.17)

which holds true only if the S-matrix is unitary:

S†S = 1. (1.18)

Since it is reasonable to think that transition amplitudes do not change under a
generic Lorentz transformation, we expect the S-matrix to be an invariant itself,
which means that it is a function of Lorentz scalars only. These scalars are nothing
but the Mandelstam variables s, t and u.

In the 2-dimensional case, it is convenient to describe the energy and momentum
of particles (p0, p1) in terms of rapidities,

p0
i = mi cosh θ, p1

i = mi sinh θi, (1.19)

and for the Lorentz invariance property, the S-matrix will be a function of the
difference θi − θj only.

The incoming and outgoing states are generated by the iterative action of some
vertex operator Va(θa) on the vacuum,

|Va1(θ1) . . . Van(θn)〉 = V †a1(θ) . . . V
†
an(θn) |0〉 . (1.20)

These operators are generalization of the usual creation/destruction operator
which satisfy the so called Faddeev-Zamolodchikov algebra:

Va(θ1)Vb(θ2) =
∑

cd
Scdab(θ12)Vd(θ2)Vc(θ1), (1.21a)

V †a (θ1)V †b (θ2) =
∑

cd
Scdab(θ12)V †d (θ2)V †c (θ1), (1.21b)

Va(θ1)V †b (θ2) =
∑

cd
Scdab(−θ12)Vd(θ2)Vc(θ1) + 2πδabδ(θ12). (1.21c)

10



1. Classical And Quantum Integrability Theory

In particular for the incoming particles θ1 > θ2 > · · · > θn while for the outgoing
ones θ1 < θ2 < · · · < θn. This prescription on the rapidities can be understood
looking at figure 1.1.

t

θ1 θ2 θn

θn θ2 θ1

S

Figure 1.1: n-body collision event with rapidity ordering prescription.

If the considered theory is also integrable, and therefore there exist infinite con-
served charges Qi, several constraints are induced on the form of the S-matrix.

In particular in 1980 S. J. Parke [12] proved the so-called Parke theorem, which
states that the presence of at least two higher-spin charges ensures two fundamental
properties of the scattering process:

• Absence of particle production, meaning that the masses mi and rapidities θi
are conserved before and after the collision process;

• Factorization of the S-matrix, i.e. the property that a n particle collision can
be completely factorized in n(n−1)/2 subsequent 2-particles scattering events.

These results can be written in a single condition as

Sb1b2...bma1a2...an
(θa1 , . . . , θan ; θb1 , . . . , θbn) = δnm

×
n∏
i=1

δ(θai − θbi)
n∏

i,j,k,l=1
i<j,k<l

Sblbkaiaj
(θai − θaj).

(1.22)

The proof of Parke theorem is particularly long and cumbersome, and we are
not going to present it here, but the important fact on which it is based is that the
absence of particle production allows to formulate the problem in a “classical” way,

11



1. Classical And Quantum Integrability Theory

i.e. it is possible to introduce a wave function to describe the set of asymptotic
particles: in this way it is for example possible to prove the equivalence between the
two amplitudes of the 3→ 3 processes depicted in figure 1.2. This equivalence leads
to the renown Yang-Baxter equation

Sαβa1a2(θ12)Sb1γαa3
(θ13)Sb2b3βγ (θ23) = Sγb3a1α

(θ12)Sβαa2a3(θ12)Sb1b2γα (θ12), (1.23)

where θij = θi − θj.

t

a1 a2 a3

b1b2 b3

α
β

γ

a1 a2 a3

b1b2 b3

α
β

γ

Figure 1.2: Two different but equivalent amplitudes of the 3→ 3 scattering process:
their equivalence leads to the Yang-Baxter equation.

1.2.2 2-Particle S-Matrix

Since in every integrable QFT the factorizability of the S-matrix is always guaran-
teed by Parke theorem, it is important to understand better the general properties
of the 2-particles S-matrix. For what said above,

|Va(θ1)Vb(θ2)〉in = Scdab(θ12) |Vc(θ1)Vd(θ2)〉out , θ1 > θ2. (1.24)

Since momenta are conserved in 1+1 dimensional scattering theories, the Mandel-
stam variable u = 0, while the other two are linearly dependent t(θ12) = s(iπ− θ12),
therefore the S-matrix elements are function of s (or t) only.

The S-matrix should be invariant under discrete symmetries C, P and T, leading
to the following relations:

• charge conjugation C:
Scdab(θ) = S c̄d̄āb̄(θ), (1.25)
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1. Classical And Quantum Integrability Theory

t

Va(θ1)

Vc(θ1)Vd(θ2)

Vb(θ2)
θ12

iπ − θ12 s channel

t channel

Figure 1.3: Situation in a two-particle scattering in 1+1 dimensions. The two
available channels are related by a rotation of an angle π.

i.e. the scattering amplitude does not change by replacing every particle with
its own antiparticle;

• parity P:
Scdab(θ) = Sdcba(θ); (1.26)

• time reversal T:
Scdab(θ) = Sbadc(θ). (1.27)

The unitarity condition (1.18) still holds, and in this case can be rewritten in
terms of the components of S, namely

∑
cd
Scdab(θ)S

ef
cd (−θ) = δeaδ

f
b . (1.28)

Another property called crossing symmetry comes from the equivalence that can be
established between the two possible scattering channel t and s, as can be seen in
figure 1.3, namely

Scdab(θ) = S b̄cd̄a(iπ − θ). (1.29)

Finally one is interested in the analiticy properties of the S-matrix, which can
be studied by writing the Mandelstam variable s in terms of rapidities

s = (pa + pb)
2 = m2

a +m2
b + 2m1mb cosh θ12. (1.30)

13



1. Classical And Quantum Integrability Theory

If one performs an analytic continuation on the real variable s, two branch cuts will
arise for s > (ma + mb)

2 and s < (ma −mb)
2. The physical region is represented

by the values of s that lies above the branch cut on the right, i.e. s+ = s + i0

with s > (ma + mb)
2. Since S is a real analytic function, one can assume complex

conjugate values at complex conjugate points,

Scdab(s
∗) = (Scdab(s))

∗. (1.31)

Imposing unitarity condition (1.18) for this physical sheet, one obtain

Scdab(s
+)(Sefdc (s+))∗ = δeaδ

f
b , (1.32)

and employing the real analicity property one finds that

Scdab(s
+)Sefcd (s−) = δeaδ

f
b . (1.33)

where s− = s− i0. It is now possible to translate this condition for the θ variable.
Inverting equation (1.30) one finds

θ12 = log
s−m2

a −m2
b +

√
(s− (ma +mb)2)(s− (ma −mb)2)

2mamb

. (1.34)

This relation maps the physical sheet of the s-plane into the physical strip 0 ≤
Im{θ12} ≤ π. Other strips are mapped periodically on the strips nπ ≤ Im θ ≤
(n + 1)π where n = . . . ,−1, 0, 1, . . . . The integrability of the theory implies that
S(θ) is a meromorfic function and it assumes real values only on the imaginary
θ-axis.

So far we have analysed the property of the S-matrix, without talking about the
particle content of the theory. It turns out that the presence of a simple pole in the
physical strip is the signal of the presence of a bound state in the particle spectrum
of the theory. Let us suppose that the S-matrix present a pole of the form iukab. The
amplitude corresponding to this pole is

Scdab ' i
PkabR

kPcdk
θ − iukab

, (1.35)
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a

b

cucab

ucab

ucab

Figure 1.4: Graphical representation of the fusing angles.

where Rk is the residue which has been projected through the operator P from the
1-particle space onto the bound state space. From the definition of s, the mass of
the bound state reads

m2
k = m2

a +m2
b + 2mamb cosukab. (1.36)

The quantity ucab is called fusing angle and employing the crossing symmetry prop-
erty it is possible to find the other angles obtained from different channels.

Looking at figure 1.4, the relation that connects these three numbers is clearly

uabc + ubac + ucab = 2π. (1.37)

If these bound states are considered on the same footing of the other particles, then
the amplitudes for bound states can be written in terms of those of the particles,
and vice versa, namely

Scd(θ) = Sad(θ + iūbac̄)Sbd(θ − iūabc̄), (1.38)

where ū = π − u. This relation can be graphically visualised by the equivalence of
the two processes represented in figure 1.5.

This is the renown bootstrap equation, and it represent one of the most powerful
tool in the integrability realm. One can start by finding all the poles of an S-matrix,
which means finding all the bound states of the theory. Then, using equation (1.38)
and equation (2.36) one can evaluate all the scattering amplitudes of the theory.
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Figure 1.5: The two scattering processes described by the bootstrap equation (2.38).

Finally, one has to check if the theory has been correctly “bootstrapped”, i.e. if the
particle spectrum just found is the one which reproduces correctly the set of poles
of the starting S-matrix. This procedure has been widely used in the ’80s to find
the exact S-matrices of numerous models, see e.g. [13], [14], [15], [3].
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2

Thermodynamic Bethe Ansatz

In this chapter we are going to discuss the Thermodynamic Bethe Ansatz method
(TBA), introduced for the first time in 1969 by C. N. Yang and C. P. Yang [16]
to study the thermodynamic of a one-dimensional system of bosons which interact
through a δ-potential and then generalized to the relativistic case in the early ’90s
by the work of Al. Zamolodchikov [17, 18] and R. Klassen and E. Melzer [19, 20].

The power of TBA consists in the fact that knowing an S matrix, which can be
built up in two dimensions using few general assumptions, namely unitarity (1.28),
crossing symmetry (1.29) and the fulfillment of Yang-Baxter equation (1.23), one
can inspect the thermodynamic of a theory in an infinite volume i.e. computing
quantities such as energy or entropy. Finally, considering integrable QFTs as par-
ticular perturbations of CFTs with some relevant fields preserving integrability as
shown in [13], one can see the CFT as the high-energy (or UV) limit of the corre-
sponding QFT. We will analyze two different situations, first when the S-matrix of
the theory is diagonal i.e. it describes purely elastic scatterings and then when it is
not diagonal.

In the former case, as it was noticed by Al. Zamolodchikov in [21] and then
formalized in [22], there is a close connection between these theories and A, D, E
Lie algebras: in particular it can be shown that the structure of the TBA equations
emerges directly from the Dynkin diagram of an underlying algebra.

In the latter case instead, there is no such a clear connection between the two
and one has to find the TBA equations of the problem using more subtle methods.
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2. Thermodynamic Bethe Ansatz

2.1 Diagonal S-matrix Theories

To begin with, let us consider a purely elastic scattering theory, i.e. a QFT in 1 + 1

dimensions described by a factorizable diagonal S-matrix. In particular, one can
consider N particles1, distributed in the positions x1 < x2 < · · · < xN on a circle of
length L large enough so that they can be considered in an asymptotic state, which
means that their mutual interaction is neglectable. For this reason, it is possible to
describe the whole system with a wave function which is the sum of plane waves
with unknown amplitudes, also known as Bethe ansatz wave function, which was
introduced by H. Bethe in [23]. Defining the N momenta that still have to be
determined with pj, one can explicitly write

Ψ(x1, . . . , xN ;Q) =
∑
P

AP(Q)ei
∑
j pPjxj , (2.1)

where P is a permutation of the quasi-momenta, Q is the permutation that specifies
the particle order, also called simplex and AP(Q) is the unknown amplitude.

If one tries to interchange two of the particles on the circle {. . . , i, j, . . . } →
{. . . , j, i, . . . }, i.e. changes the simplex Q → Q′, the wave function construction
would be broken, since the interaction becomes significant; however in this situation
all the informations needed to describe the scattering event are encoded in the well
known scattering matrix Sij(pi, pj).

Therefore for consistency one gets

AP(Q′) = Sij(pi, pj)AP ′(Q), (2.2)

which means that the amplitude obtained by exchanging two particles is equivalent
to the amplitude relative to the initial simplex but with the momenta exchanged
and multiplied by the corresponding scattering element. As discussed in the pre-
vious chapter, it is convenient to introduce the rapidities θi, which are a useful
parametrization for particles’ momenta in 1 + 1 dimensions

(p0
i , p

1
i ) = (mi cosh θi,mi sinh θi), (2.3)

1The generalization to the case of different types of particles is straightforward.
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2. Thermodynamic Bethe Ansatz

such that Sij is a function of the difference θi − θj only. Since the spacial variable
is compactified on the circle, periodic (anti-periodic) boundary conditions can be
imposed if the particles are bosons (fermions):

Ψ(x1, . . . , xi, . . . , xN ;Q) = ±Ψ(x1, . . . , xi + L, . . . , xN ;Q), (2.4)

for every i = 1, . . . , N and every simplex Q.
However, bringing the particle from the initial position xi to the final xi + L on

the circle, one has to take into account all the scattering processes that take place,
as shown in figure 2.1 , thus

Ψ(x1, . . . , xi + L, . . . , xN ;Q) = eipiL
∏
j 6=i

Sij(θij)Ψ(x1, . . . , xi, . . . , xN ;Q), (2.5)

where, for the sake of brevity, θij = θi − θj.

Figure 2.1: Imposing (anti)periodic boundary conditions the the i-th particle scat-
ters with the other particles on the circle and the wave function doesn’t change.

Therefore, considering equations (2.3), (2.4) and (2.5) one finally gets the quan-
tization condition for the rapidities:

eiLmi sinh θi
∏
j 6=i

Sij(θij) = ±1 for, i = 1, . . . , N (2.6)
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2. Thermodynamic Bethe Ansatz

also known as Bethe Equations, whose solutions are the admissible rapidities of the
particles, also called roots. Since the theory is relativistic, once equation (2.6) is
solved the energy and the spatial momentum of the system are given by:

E =
N∑
i=1

mi cosh θi, P =
N∑
i=1

mi sinh θi. (2.7)

Taking the logarithm on both sides of equation (2.6) one gets

Lmi sinh θi +
∑
j 6=i

δij(θi − θj) = 2πni (2.8)

where δij(θi− θj) = −i lnSij(θi− θj) represent the phase shift of the wave function.
The numbers {ni}Ni=1 can be understood as occupation numbers denoting the acces-
sible states and they are integers in the bosonic case or half-integers in the fermionic
one. Together with the rapidities, they denote each possible state of the system:

|n1, θi; . . . ;nN , θN〉 (2.9)

Furthermore, if particles are identical, one has to take into account additional
section rules on the set of rapidities {θ1, . . . , θN} since if particle are bosons, the
Bethe wave function must be symmetric under the exchange of two of them, while
if they are fermions, the function must be anti-symmetric. Since the S-matrix has
to be unitary, see equation (1.28), one has two possible cases:

• In the first case
Sij(0) = −1, (2.10)

which means that the wave function becomes anti-symmetric under exchange
of two particles. This is clearly not compatible with Bose-Einstein statistic:
this means that if one is dealing with bosons, each value of the rapidity can
be taken by one particle only (in some sense it is possible to say that they
have a fermion-like behaviour), thus all integers ni are different. Otherwise,
if one is dealing with fermions this case is in perfect agreement with Fermi-
Dirac statistic and there are no restrictions on the values of the ni (that is a
boson-like behaviour).
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2. Thermodynamic Bethe Ansatz

• In the second case
Sij(0) = 1, (2.11)

which is the opposite of the previous situation: bosons behave like bosons and
fermions behave like fermions.

2.1.1 Thermodynamics and Finite Size Effects

The next step to fully develop the TBA, is to deform the cylindrical geometry of the
two-dimensional space-time by imposing periodic boundary conditions also on the
time dimension. Since the space dimension was already compactified, one is now
dealing with the topology of a torus generated by two geodesic of circumference R
and L respectively, as shown in figure 2.2.

Figure 2.2: Graphical representation of the torus generated by the two circumfer-
ences CR and CL.

It is easy to see that the old geometry can be re-obtained by considering the cylinder
as a limiting case of the torus, where the CL circumference is sent to infinity.

There are two possible topologically equivalent ways to quantize such a theory,
based on the choice one takes for the axes:

• x as space dimension and y as time dimension. In this case quantum states
which live in the Hilbert space HR are evolved by the Hamiltonian

HR =
1

2π

∫
CR
dx Tyy. (2.12)
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2. Thermodynamic Bethe Ansatz

Considering the partition function, in the L→∞ limit, the main contribution
is given by the lowest value of the energy E0(R),

Z(R,L) ' lim
L→∞

TrHRe
−HRL ' e−E0(R)L (2.13)

• y as space dimension and −x as time dimension2. In this case quantum states
which live in the Hilbert space HL are evolved by the Hamiltonian

HL =
1

2π

∫
CR
dy Txx. (2.14)

Taking now the same L → ∞ limit, the length R can be understood as the
inverse of a temperature and for this reason the leading term of the partition
function is

Z(R,L) ' lim
L→∞

TrHLe
−HLR ' e−Lf(R)R, (2.15)

where f(R) is the free energy per unit length at temperature 1/R.

Comparing the two results (2.13) and (2.15) one finds the fundamental relation

E0(R) = Rf(R), (2.16)

which shows the link between the vacuum energy of the theory and the thermody-
namics of the system.

It is possible to parametrize the ground state energy as (see [24])

E0(R) = −πc̃(r)
6R

, (2.17)

where r = mR is a dimensionless parameter and c̃(r) is a scaling function that can
be directly computed via TBA. The most important property of this function is its
ultraviolet limit, i.e. r → 0, for which the behaviour of (2.17) is controlled by the
underlying conformal field theory. Indeed, it is possible to show that

E0(R) =
2π

R

(
∆min + ∆̄min −

c

12

)
, (2.18)

where ∆min is the scaling dimension of the lowest operator. If then ∆min = ∆̄min,
2The negative sign is to preserve the frame orientation
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2. Thermodynamic Bethe Ansatz

the function c̃(r) tends to the effective central charge of the theory

ceff = c− 24∆min. (2.19)

E0 represents the Casimir energy of the model, which is described in more detail in
Appendix A.

2.1.2 Thermodynamic Limit

Since the system of transcendental equations (2.8) is in general difficult to solve, one
can try to study them in the thermodynamic limit3, i.e.

L→∞ N →∞ with N/L = constant. (2.20)

In this situation the number of particles grows ∼ L as L → ∞ and for this
reason the spectrum of the rapidities tends to become dense, the distance between
two consecutive levels being of order |θi+1 − θi| ∼ 1/mL. Therefore it is convenient
to introduce a continuous rapidity density of particles and of available states

σ(θ) = lim
TD

mi+1 −mi

θi+1 − θi
, σtot(θ) = σ(θ) + σ̃(θ) = lim

TD

ni+1 − ni
θi+1 − θi

(2.21)

respectively, where mi+1−mi is the number of particles in a given interval of rapidi-
ties θi+1 − θi, while ni+1 − ni is the number of allowed states, not necessarily filled
with particles, in the same interval. In equation (2.21) the holes density σ̃ has been
introduced for later purposes.

In fact, in the thermodynamic limit, one can estimate discrete sums over rapidi-
ties as integrals: ∑

i

f(θi)
TD−→

∫
dθ f(θ)σ(θ) (2.22)

For example, thanks to this fact, one can compute the energy defined in (2.7) as

E [σ(θ)] =

∫ +∞

−∞
dθm cosh θσ(θ). (2.23)

It is now possible to study the thermodynamic limit of equation (2.8), replacing
3In the following, we denote by TD this limiting procedure.
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2. Thermodynamic Bethe Ansatz

the sum with the integral as shown in (2.22)

mL sinh θi +

∫ +∞

−∞
dθ′ σ(θ′)δ(θi − θ′) = 2πni. (2.24)

Subtracting this result by the same equation obtained for i − 1 and dividing by
θi − θi−1, together with equation (2.21), in the continuum limit one finds

mL cosh θ + (ϕ ∗ σ)(θ) = 2πσtot(θ), (2.25)

where the kernel has been introduced

ϕ(x) =
dδ(x)

dx
= −id lnS(x)

dx
. (2.26)

The convolution of two functions is defined in the usual way

(f ∗ g)(θ) =

∫ +∞

−∞
dθ′ f(θ − θ′)g(θ′) (2.27)

To study the thermodynamic at the equilibrium one has to minimize the free Helmholtz
energy

F [σ, σ̃] = E [σ]− TS[σ, σ̃]. (2.28)

where the energy has been already defined in (2.23) and, as mentioned before, since
the theory is defined on a compactified time direction of circumference R, one can
identify 1/R as the temperature T of the system. The last ingredient is the entropy
S, which can be calculated starting from the number of ways of distributing mi

particles among ni levels:
ΩF =

mi!

ni!(mi − ni)!
(2.29)

if the particles are fermions or

ΩB =
(ni +mi + 1)!

ni!(ni − 1)!
(2.30)

if they are bosons. In the thermodynamic limit the number of levels can be approx-
imated with ni ∼ Lρ(θi)∆θ and that of particles with mi ∼ Lσ(θi)∆θ, therefore,
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since S = ln ΩB/F , the entropies in the two cases are

SF [σ, σ̃] =

∫
dθ [(σ + σ̃) ln(σ + σ̃)− σ lnσ − σ̃ ln(σ̃)], (2.31)

SB[σ, σ̃] =

∫
dθ [(σtot + σ) ln(σtot + σ)− σtot lnσtot − σ lnσ]. (2.32)

To minimize the free energy (2.28) one can introduce the Lagrange multiplier ξ(θ)
and define the functional

Φ[σ, σ̃, ξ] = RE [σ]− S[σ, σ̃] + ξ(θ)V [σ, σ̃], (2.33)

where V [σ, σ̃] is the constraint equation (2.25). In the fermionic case one will find

Φ[σ, σ̃, ξ] =

∫
dθ [mR cosh θσ − (σ + σ̃) ln(σ + σ̃) + σ lnσ + σ̃ ln(σ̃)

+ ξ(2π(σ + σ̃)−mL cosh θ − (ϕ ∗ σ)].

(2.34)

Taking functional derivatives with respect to σ, σ̃ and ξ and setting them equal to
zero one gets the extremal conditions

δΦ

δσ
= mR cosh θ − ln(σ + σ̃) + log σ + 2πξ − (ϕ ∗ ξ) = 0, (2.35a)

δΦ

δσ̃
= − ln(σ + σ̃) + ln σ̃ + 2πξ = 0, (2.35b)

δΦ

δξ
= 2π(σ + σ̃)−mL cosh θ − ϕ ∗ σ = 0. (2.35c)

Using equation (2.35b), one can solve for ξ and then substituting into (2.35a) one
finds

mR cosh θ − ln
σ̃

σ
−
(
ϕ ∗ 1

2π
ln
σ + σ̃

σ̃

)
= 0. (2.36)

This equation can be written in a more elegant way introducing the pseudoenergy
defined as follows

ε(θ) = log
σ̃(θ)

σ(θ)
, (2.37)

obtaining
ε(θ) = mR cosh θ − 1

2π

(
ϕ ∗ ln

(
1 + e−ε(θ)

))
. (2.38)
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The calculations in the bosonic follow the same steps, introducing another pseu-
doenergy

ε(θ) = log
σtot + σ

σ
. (2.39)

It is possible to collect the two result in one equation, keeping in mind that the
upper sign refers to fermion and the lower to bosons:

ε(θ) = mR cosh θ ∓ 1

2π

(
ϕ ∗ ln

(
1± e−ε(θ)

))
, (2.40)

which is a non linear integral equation called Thermodynamic Bethe Ansatz Equation
whose solutions are the pseudoenergies of the particles. For example, starting from
(2.16) and (2.28) and using (2.23) and (2.32) or (2.33), it is possible to calculate the
Casimir energy E0 in the fermionic case in terms of the pseudoenergies:

E0(R) =
RF(R)

L
=

1

L

∫
dθ RE(R)− SF

=
1

L

∫
dθ
(
mRσ cosh θ − (σ + σ̃) ln(σ + σ̃) + σ lnσ + σ̃ ln(σ̃)

=
1

L

∫
dθ
[
σ
(
mR cosh θ + ln

(
σ

σ + σ̃

))
+ σ̃ ln

(
σ̃

σ + σ̃

)]
=

1

2πL

∫
dθ ln

(
σ̃

σ + σ̃

)
(2π(σ + σ̃) + (ϕ ∗ σ))

= −m
2π

∫
dθ cosh θ ln

(
1 +

σ

σ̃

)
=
m

2π

∫
dθ cosh θ ln

(
1 + e−ε(θ)

)
,

(2.41)

where equations (2.35a), (2.35c) have been used. In the second last line the order of
convolution has been changed4. Performing similar calculations one finds the result
for the bosonic case:

E0(R) =
m

2π

∫
dθ cosh θ ln

(
1− e−ε(θ)

)
. (2.42)

At this point it becomes clear that once one has found the solutions of TBA equation
(2.40), one can potentially solve exactly the thermodynamic of the problem, in the
sense that no perturbative expansions are needed (see e.g. [16]). However, the main
problem that arise is that equation (2.40) in a non-linear integral equation and for
this reason, difficult to solve, but apart from that it still gives a lot of informations

4Namely,
∫
h(x)(f ∗ g)(x) = g(x)(f ∗ h)(x), which holds whether f(x) = f(−x), as in this case.
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about the considered theory as it will be shown in the next sections.

2.1.3 Ultraviolet and Infrared Regimes

The first attempt of solution that can be done of equation (2.40), is by studying
its two asymptotic regimes, namely the high-energy limit, or UV limit, or even
conformal limit, and the low energy limit, or IR limit. Let us firstly analyze the
ultraviolet regime5. The TBA equation is

ε(θ) = r cosh θ − 1

2π
(ϕ ∗ L)(θ), (2.43)

where r = mR is the dimensionless scaling length, while

L(θ) = ln
(
1 + e−ε(θ)

)
(2.44)

Note en passant that both ε(θ) and L(θ) are even function. To study the UV regime,
where the mass scale goes to zero, or equivalently the correlation length tends to be
infinite, one can send r → 0.

In this case it is possible to notice that the solutions tend to flatten in a central
region, known as plateau region as shown in figure 2.3.

In this interval, which can be roughly estimated to be [− ln(2/r), ln(2/r)], the
function becomes constant and this constant value is known as plateau value, given
by the transcendental equation

εa =
n∑
b=1

Nab ln
(
1 + e−εb

)
, (2.45)

where
Nab = − 1

2π

∫
dθ ϕab. (2.46)

To study the conformal limit one can compare equations (2.17) and (2.41) to define

5We will now focus on particles of fermionic type, i.e. with S(0) = −1. This because there is
strong reason to think these interacting theories are the only fully consistent, since in the bosonic
case negative pseudoenergies, that is to say complex rapidities, can appear and we can’t give any
physical interpretation
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Figure 2.3: Plots of L(θ) for different values of r for the 3-Potts model, computed
numerically with MATLAB. One can clearly see that while r becomes small, the
plateau region starts to form.

the scaling function
c̃(r) =

3r

π2

∫
dθ cosh θL(θ). (2.47)

Looking at the behaviour of this function in the r → 0, one can extract informations
about the underlying conformal field theory, i.e. it is possible to find the value of
the effective central charge, thanks to equation (2.18). For example in Figure 2.4 the
scaling function for the 3-Potts model has been plotted, where it is possible to see
that for r = 0, the function seems to approach the expected value c̃(0) = 2/5 = 0.4.

Since, as mentioned before, ε(θ) and L(θ) are even function in θ, it is possible to
replace the lower boundary of the integral in equation (2.43) with zero, multiplying
by 2. Furthermore, it is easy to see that when r → 0, the r dependence is encoded
in a displacement of the falloff of the plateau. For this reason, when studying the
UV limit, one can shift the θ variable to the edge and approximate cosh θ with eθ

2
6,

finding a new TBA equation

εkink(θ) =
1

2
reθ − 1

2π
(ϕ ∗ Lkink(θ)), (2.48)

6This is valid only in the θ � 0 limit, that is outside the central plateau region.
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2. Thermodynamic Bethe Ansatz

Figure 2.4: Behaviour of c̃(r) in the 3-Potts model, obtained by iterative method on
TBA equation (2.40).

where we defined the shifted quantities, or kink quantities as

εkink(θ) = ε(θ + ln(2/r)), (2.49a)

Lkink(θ) = L(θ + ln(2/r)). (2.49b)

The scaling function (2.47) in the deep UV regime reads

c̃(0) =
6

π2
lim
r→0

∫ ∞
0

dθ Lkink(θ)r
eθ

2
. (2.50)

One can take the derivative with respect to θ of equation (2.48) to rewrite the last
factor of the previous equation, finding

c̃(0) =
6

π2
lim
r→0

∫ ∞
0

dθ Lkink(θ)

[
dεkink(θ)

dθ
+

(
ϕ ∗ eεkink

1 + eεkink

dεkink
dθ

)]
. (2.51)

After a series of integrations by parts and using again equation (2.48) one finds

c̃(0) =
6

π2
L
(

1

1 + eεa

)
=

6

π2

∫ ∞
0

dx
x+ εP/2

ex+εP + 1
, (2.52)

where L(x) is the Rogers dilogaritmic function (see Appendix B):

L(x) = −1

2

∫ x

0

dx

[
ln(1− t)

t
+

ln t

1− t

]
. (2.53)
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To end this section let us mention what happens reaching the IR regime, r →∞.
In this case it is easy to see that equation (2.43) reduces to ε(θ) ' r cosh θ and
consequently one can approximate L(θ) ' e−r cosh θ. Substituting into (2.47) one
finds

c̃(r) ' 6r

π2

∫ ∞
0

dθ cosh θe−r cosh θ =
6r

π2
K1(r), (2.54)

whereK1(x) is the modified Bessel function of the second kind (see e.g. [25], §8.432).

2.1.4 Universal TBA and Y -System

Since for many integrable systems the S-matrix is known, it is possible to study
their thermodynamic properties through the TBA analysis and try to understand
some general features of the underlying theories. Indeed, it was noticed [21, 20] that
there is a class of systems, that has a common and elegant structure for their TBA.

Such kind of systems, called ADE theories, are described by a set of non linear
integral equation, as shown before, for unknown pseudoenergies εα(θ) where a =

1, 2, . . . , n is the number of species of particles.

This number turns out to be equal to the rank of some Lie algebra A of the
class An7, Dn and En (see Appendix C for more details); in particular each particle
can be graphically represented by a node of the Dynkin diagram of A to which is
associated the so called driving term νa = maR cosh θ8.

Let us now consider the TBA equation

εα(θ) = να(θ)− 1

2π

∑
b

(ϕab ∗ Lb)(θ), (2.55)

where ϕab is related through (2.26) to the S-matrix Sab(θa − θb) which describe the
scattering of particle a with particle b and Lb has the usual definition (2.44). It is
possible to use the fundamental matrix identity (see e.g. [22] for the proof)(

δab −
1

2π
ϕ̂ab(ω)

)−1

= δab −
1

2 cosh(ω/h)
Iab. (2.56)

7There is a special reduction of the class A2n, namely the Tn = A2n/Z2 algebras, that should
be treated separately. A complete discussion can be found in [22].

8The vector that collect all the mass terms is called the Perron-Frobenius vector, which is the
eigenvector of the algebra’s incidence matrix with all positive entries: it correspond to the highest
eigenvalue.
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where h is the dual Coxeter number, I is the incidence matrix of some Dynkin
diagram9 and

ϕ̂(ω) =

∫
dθ eiωθϕab(θ) (2.57)

is the Fourier transform of the scattering kernel (2.26). Computing this identity for
ω = 0, one recovers the known matrix relation

N = C(2− C)−1, (2.58)

where N is the matrix defined in equation (2.46) and C is the Cartan matrix of A.
Thanks to this identity and defining εa = ln ya, (2.45) can be rewritten as

y2
a =

∏
b

(1 + yb)
Iab . (2.59)

Taking the Fourier transform of equation (2.55) and multiplying it by δab− IabR̃(θ),
with R̃(θ) = (2 cosh(πθ/h))−1 one gets

εa(θ) = νa(θ)−
1

2π

∑
b

Iab(ϕh ∗ (νb − log
(
1 + e−εb

)
))(θ), (2.60)

where
ϕh(θ) =

h

2 cosh(hθ/2)
. (2.61)

The fundamental fact about equation (2.60) is that the TBA equation follows once
one fixes the Dynkin diagram of an algebra and its incidence matrix. In particular,
it turns out that the kernel (2.61), which is the anti-Fourier transform of R̃, is
universal, i.e. it does not depend on the specific system one is considering, but just
on the Coxeter number h.

For example let us consider the Lie algebra A = D5. Its Dynkin diagram and
incidence matrix read

9The incidence matrix element Iab is 1 whether node a is connected to node b, 0 if they are not
linked.
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1 2 3

4

5 ID5 =



0 1 0 0 0

1 0 1 0 0

0 1 0 1 1

0 0 1 0 0

0 0 1 0 0


. (2.62)

Therefore, putting this matrix into equation (2.60), one will directly find the TBA
equation that can be solved in the two regimes with the methods presented in the
previous section.

Another way to approach the problem is to recast (2.55) into a series of functional
equation, performing an analytical continuation on the variable θ → θ ± iπ/h10.
After some manipulation, one can rewrite the equation in the following form

Ya

(
θ + i

π

h

)
Ya

(
θ − iπ

h

)
=

r∏
b=1

[1 + Yb(θ)]
Iab , (2.63)

where
Ya(θ) = eεa(θ), (2.64)

which is called Y -system. One important aspect of this equation is that its stationary
solutions, i.e. θ-independent, are the ya that appear in equation (2.59): for this
reason it is believed that this formulation encodes more information than the usual
TBA. Moreover, Y -functions fulfill certain periodicity conditions

Ya(θ + iπP ) = Yā(θ), P =
h+ 2

h
(2.65)

where ā represents the antiparticle of a, as shown in figure 2.5.

Moreover, as noticed in [21], the periodicity P is strictly related to the conformal
dimension of the perturbing field in the various cases

∆ = 1− 1/P. (2.66)

10This is highly nontrivial, since one has to know the position of the poles of the pseudoenergies
in the complex plane. However calculations become easier when the ground state is considered
because it is know that it posses a strip where no poles or zeros are present.
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Figure 2.5: On the left the Dynkin diagrams for ADE Lie algebras. On the right
the particle-antiparticle relations described by equation (2.66).

However the classification of these systems is independent of h: this means that
it is possible to choose other values for it, loosing the property of being the Coxeter
number of some algebra.

This fact was employed by Al. B. Zamolodchikov in the beginning of the ’90s
to describe the renormalization group flow between minimal models [26, 27]. He
noticed that the TBA on these systems can be written in a simple and elegant way
considering also massless Dynkin nodes, i.e. introducing a new definition of the
driving term νa(θ) = δakmR cosh θ. These massless nodes are relative to fictitious
particles called magnons, which have to be introduced in the process of diagonaliza-
tion of the S-matrix (for more details see section § 2.2.1). The most relevant fact
is that even though one is dealing with a completely different problem, the ADE
classification of Y -systems still holds also in the magnonic case. Therefore, as an
example, it is possible consider the theory A = (D5)1 where the label 1 indicates the
position of the massive node. The corresponding “Dynkin diagram” and incidence
matrix are
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1 2 3

4

5 I(D5)4 =



0 1 0 0 0

1 0 1 0 0

0 1 0 1 1

0 0 1 0 0

0 0 1 0 0


(2.67)

Even though the incidence matrices is the same of (2.62), the nature of the nodes
give rise to completely different TBA results.
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2.2 Non-Diagonal S-Matrix Theories

So far, the TBA techniques for theories which are described by a diagonal S-matrix
have been presented. The next step is to discuss what happens when the scattering
matrix of a given theory is non-diagonal. In this case the TBA equations for rapidi-
ties –the analog of equation (2.40)– are much more difficult to derive, since every
time a given particle make a trip around the circle, its state can change. There-
fore, one has to deal with the diagonalization of a certain number of non-diagonal
S-matrices, a problem that can be solved by the method that goes under the name
of Algebraic Bethe Ansatz, discussed briefly in the next section.

Then, as representative of non-diagonal theories, the sine-Gordon model will be
presented and the computation of the TBA will be developed.

2.2.1 Algebraic Bethe Ansatz

The Algebraic Bethe Ansatz (ABA) is a very useful tool in the study of spin chains
integrability and it can be thought as the second quantization version of the Coordi-
nate Bethe Ansatz, which was essentially the version used by Bethe in [23] to solve
the isotropic Heisenberg chain.

The main idea of this method is enlarging the space one is working with, in order
to “decouple” the interaction between physical degrees of freedom and leaving just
that with the auxiliary ones. One can think of this auxiliary degree of freedom as a
new particle, a sort of a probe, that propagates through the chain, which lives in a
Hilbert space Va, where a labels different auxiliary particle’s spaces, if needed.

First of all, given an operator Lij, called Lax operator, one can build up the so
called monodromy matrix

Ma(λ|θ) = LN,a(λ− θN)La,N−1(λ− θN−1) . . .La,1(λ− θ1), (2.68)

where λ is the rapidity of the auxiliary particle and θ = {θ1, . . . , θN}. It is easy to
see that equation (2.68) basically represent the scattering of the auxiliary particle
with all the particles of the chain. Now one has to trace over the auxiliary space in
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order to get the so called colour transfer matrix

T (λ|θ) = TraMa(λ|θ) (2.69)

which is equivalent to impose periodic boundary conditions. Since the monodromy
matrix is an operator Ma : Va ×H → Va ×H, it can be represented in a matrix
form11

T (λ|θ) =

(
A(λ|θ) B(λ|θ)

C(λ|θ) D(λ|θ)

)
, (2.70)

where every entry of the matrix is an operator acting on the H space. In this
formulation,

T (λ|θ) = A(λ|θ) +D(λ|θ). (2.71)

One can now introduce a pseudo-vacuum state |Ω〉 which hosts no particles excita-
tion, which is annihilated by the C(λ|θ) operator and from which one can generate
a generic state by the application of B(λ|θ):

C(λ|θ) |Ω〉 = 0,
M∏
j=1

B(λj|θ) |Ω〉 = |Ψ〉 . (2.72)

At the end, having defined all these quantities one is interested in solving the fol-
lowing eigenvalue equation

T (λ|θ) |Ψ〉 = [A(λ|θ) +D(λ|θ)] = Λ(λ|θ) |Ψ〉 , (2.73)

which can be worked out using the commutation relation between operators A, B,
C and D coming from the Yang-Baxter equation, satisfied by the S-matrix itself.

In particular, one will find that developing the calculations, non-diagonal terms
will appear in equation (2.73), which shouldn’t be present in an eigenvalue equation.

Setting them to zero, will produce a series of equations, called the Bethe equa-
tions, which represent a sort of constraints on the auxiliary rapidities λi.

In the TBA framework, the introduction of such an equation, necessary for the
diagonalization of the S-matrix, bring the presence of additional massless excita-
tions, called magnons.

11For simplicity we now take dimVa = 2
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2.2.2 Sine-Gordon Model

The sine-Gordon model is described by the following action

S =

∫
d2x

[
1

2
(∂µφ(x))2 +

µ2

β2
cos (βφ(x))

]
, (2.74)

and is widely used in the most various fields of physics such as the study of crystals,
light and superconductivity. Thanks to Euler-Lagrange equation one can find the
equation of motion,

∂2
t φ(x)− ∂2

xφ(x)− µ2

β
sin (βφ(x)) = 0, (2.75)

from which it becomes clear where the name of the model come from.
From the point of view of this thesis the most important feature of the sine-

Gordon model is the fact that it possesses an infinite number of integrals of motion
in involution, and this property ensures both its classical and quantum integrability.

If one looks at the potential, V [φ] = µ2/β2 cos(βφ) it is easy to understand
that this model presents an infinite series of degenerate minima, each placed at
φ = 2πni/β, where i = 1, 2, . . . . The quantum interpretation of this feature is that
they correspond to an infinite family of vacua, whose excitation can be thought as
particles of mass µ. Together with them, there are also topological excitations, asso-
ciated to the field configuration between two vacua. Without going into details, the
solution with topological charge ±1 are called solitons and antisoliton respectively,
their name coming from the fact that they are well-localized functions without dis-
persion. Using the method of the Bäklund transformations, it is possible to generate
multiparticle solutions12: one of these is the soliton-antisoliton solution, also called
breather.

2.2.3 S-Matrix And Bethe-Yang Equations

The S-matrix of the sine-Gordon model was first calculated by brothers Zamolod-
chikov in 1979; here I will briefly summarize the main results, the explicit calcula-
tions can be found in [3].

12It is not possible to simply create a linear combination of solutions since the sine-Gordon model
is non-linear.
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(a) (b)

Figure 2.6: A graphical representation of a soliton solution 2.6a, and a breather
bound state 2.6b, considering a system of pendula, which represent the discrete
version of the sine-Gordon theory. Simulated with Mathematica, adapted from [28].

In the following, it is useful to introduce a renormalized coupling constant:

ξ =
β2/8π

1− β2/8π
. (2.76)

One can define the two particles of the O(2) model as A1 and A2, but to reveal
the structure of the scattering theory it is more useful to define the complex linear
combinations

A(θ) = A1(θ) + iA2(θ), Ā(θ) = A1(θ)− iA2(θ). (2.77)

In terms of these excitations, the scattering equations become

A(θ1)Ā(θ2) = ST (θ)Ā(θ2)A(θ1) + SR(θ)A(θ2)Ā(θ1),

A(θ1)A(θ2) = S0(θ)A(θ2)A(θ1),

Ā(θ1)Ā(θ2) = S0(θ)Ā(θ2)Ā(θ1).

(2.78)

and the amplitudes can be collected into the 4× 4 matrix

S(θ) =


S0(θ)

ST (θ) SR(θ)

SR(θ) ST (θ)

S0(θ)

 = S0(θ)
a(θ)


a(θ)

b(θ) c(θ)

c(θ) b(θ)

a(θ)

 , (2.79)

where ST and SR are the transmission and reflection amplitudes in the soliton-
antisoliton scattering process, while S0 is the transmission amplitude in the soliton-
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soliton interaction (or the antisoliton-antisoliton one via charge conjugation). In
the second equality the matrix R(θ) has been highlighted since it correspond to the
spin 1/2 R-matrix coming from the study of the quantum group Uq(sl(2)) while the
prefactor is due only to the property of unitarity and crossing symmetry satisfied
by the S matrix itself.

Using the the Yang-Baxter equation (1.23), it is possible to find the explicit
expression for the different elements:

S0(θ) = e−iχ(θ), χ(θ) =

∫ +∞

0

dk
sin(kθ)

k

sinh(k(π − ξ)/2)

sinh(ξk/2) cosh(πk/2)
, (2.80)

a(θ) = sinh
π

ξ
(θ − iπ), b(θ) = − sinh

πθ

ξ
, c(θ) = − sinh

iπ2

ξ
. (2.81)

The particle spectrum of this model can be organized in two regimes:

1. ξ > π. In this regime no poles of the S-matrix fall into the physical strip and
soliton-antisoliton bound states cannot be created, therefore it is sometimes
called the repulsive regime of the theory and the only possible particles are

s+, s− of mass µ.

2. ξ < π. In this regime, the ba = (s+s−) bound states, the breathers, can appear
and for this reason it is called the attractive regime. The possible particles are

ba, a = 1, . . . , bπ/ξc13 of mass ma = 2µ sin
aξ

2
.

Together with the soliton-soliton scattering amplitude, using the bootstrap equa-
tions one can calculate the S-matrix relative to the scattering of a soliton and a
breather

SaAaA(θ) =
sinh θ + i cos(aξ/2)

sinh θ − i cos(aξ/2)

a−1∏
l=1

sin2(a−2l
4
ξ − π

4
+ i θ

2
)

sin2(a−2l
4
ξ − π

4
− i θ

2
)
, (2.82)

13The symbol bxc represent the integer part of x.
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and between two breathers

Sabab(θ) =
sinh θ + i sin

(
a+b

2
ξ
)

sinh θ − i sin
(
a+b

2
ξ
) sinh θ + i sin

(
a−b

2
ξ
)

sinh θ + i sin
(
a−b

2
ξ
)

×
min(a,b)−1∏

l=1

sin2( b−a−2l
4

ξ + i θ
2
) cos2( b+a−2l

4
ξ + i θ

2
)

sin2( b−a−2l
4

ξ − i θ
2
) cos2( b+a−2l

4
ξ − i θ

2
)
.

(2.83)

The procedure to get TBA equation from these amplitudes is very similar to the
one described in section 2.1. Following the ABA method discussed in section 2.2.1,
without repeating the calculations, the diagonalization of the colour transfer matrix
leads to the following Bethe equation for magnon rapidities

N∏
l=1

sinh π
ξ
(θl − λj − iπ/2)

sinh π
ξ
(θl − λj + iπ/2)

=
M∏
l=1

sinh π
ξ
(λl − λj − iπ)

sinh π
ξ
(λl − λj + iπ)

. (2.84)

It is straightforward to check that both members of equation (2.84) are periodic
in the imaginary part of λ, with period p0 = ξ, for this reason it is convenient to
consider −p0 < Imλj ≤ p0. This value will play a central role in the study of
theories with a trigonometric S-matrix such as sine-Gordon. Then, denoting with
Ns the number of solitons and with Na the number of breathers on the line, such
that N = Ns +

∑
aNa, one can send a particle of rapidity θj through the chain

making it scatter with the other particles, distinguishing the case in which a soliton
takes the trip

eiµL sinh θj

bπ/ξc∏
a=1

Nb∏
l=1

Sa(θj − θl) Trj

Ns∏
l=16=i

S(θj − θl) = 1, (2.85)

from the case when a breather does

eimaL sinh θj

bπ/ξc∏
b=1

Nb∏
j=16=i

Sab(θj − θl)
Ns∏

l=16=i

Sa(θj − θl) = 1, (2.86)

where ma is the mass of the bound state and i = 1, . . . , N . Once the trace is
computed via ABA, one finally gets the quantization equations for solitons and
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breathers rapidities:

e−iµL sinh θj =

bπ/ξc∏
a=1

Nb∏
l=1

Sa(θj−θl)
Ns∏
l=1

S0(θj−θl)
M∏

k=16=l

sinhπ/ξ(θl − λk − iπ/2)

sinhπ/ξ(θl − λk + iπ/2)
, (2.87)

eimaL sinh θj

bπ/ξc∏
b=1

Nb∏
l=1

Sab(θj − θl)
Ns∏
l=1

Sa(θj − θl) = 1, (2.88)

2.2.4 Thermodynamic Limit And Bethe Strings

The thermodynamics of the model has been studied in [29], making use of the dual-
ity between the sine-Gordon model and the massive Thirring model (MT), demon-
strated by Coleman in [30]. It has also been shown in [31] that under a precise
scaling limit, the sine-Gordon model is equivalent to the XY Z anisotropic spin 1/2
quantum chain analysed by Takahashi and Suzuki in [32].

As example we will develop the calculations in the repulsive regime (ξ > π),
where the particle spectrum is purely solitonic. Proceeding with the analysis sim-
ilarly to section 2.1.2, one can take the thermodynamic limit, which in this case
means

Ns,M,L→∞ with Ns/L = const = M/L. (2.89)

Sending the number of magnonic excitations to infinity, a very particular phe-
nomenon happens to the solutions of Bethe equation (2.88): they start to organize
themselves in the complex plane into bound states called strings, defined as follows

λ(m)
α = λ(m) +

iπ

2
(m+ 1− 2α), (2.90)

where α = 1, 2 . . . ,m and the real part λ(m) is called the center of the string. For
this reason, every time one comes across the product over all magnons, it is possible
to write

M∏
l=1

−→
∏
m∈M

ξm∏
l=1

m∏
α=1

, (2.91)

where M represent the set of all types of strings, ξm is the number of strings of type
m and α runs over all the elements of the given string.

Remembering that these solutions have a periodicity p0, different situations can
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occur: one is when p0 is an irrational number, another when it is a rational number
or finally when it is an integer. The first two situations are, not surprisingly, more
complicated to study and they were attacked by Takahashi and Suzuki in [32], using
the notion of continued fraction. Their results were then applied to solve quantum
system via TBA: for example Tateo in [33] solved the sine-Gordon model in the
rational p0 case. As shown below, in the rational and especially in the integer limit,
things becomes particularly simpler since the number of TBA non linear coupled
equations for the pseudoenergies εa becomes finite, with a = 0, . . . , N . For these
reasons, from now on, we will consider p0 = N , where N ∈ N.

At this point it is possible to repeat the same calculation as in section 2.1.2,
with some minor modifications. First of all, since in the thermodynamic limit the
rapidities become dense, it is necessary to introduce the density of roots and the
density of strings:

σ̄0(θ) =
ni − ni−1

θi − θi−1

σ̄n(θ) =
mi −mi−1

λi − λi−1

. (2.92)

where the ni and mi are sorts of quantum numbers that come from the logarithm
of equations (2.87) and (2.84), a similar procedure of (2.20). Here the bar indicate
that one is dealing with the total density, i.e. the sum of the particle density and
the hole density, since it is impossible to say whether a level ni for particles or mi

for magnons is occupied. Taking the logarithm, the thermodynamic limit and the
derivative of (2.87) and (2.84) one finds

µL

2π
cosh θ + (φ ∗ σ0)(θ)−

N∑
n=1

(ψn ∗ σn)(θ) = σ0(θ) + σ̃0(θ), (2.93)

(ψm ∗ σ0)(λ)−
N∑
n=1

(Anm ∗ σn)(λ) = σ̃m(λ). (2.94)

where the convolution is defined in the usual way as (f ∗g)(x) =
∫
dy f(x−y)g(y). It

becomes useful to introduce, following the notation introduced in [19], the functions

fα(x) =
sinh

(
π
ξ
(x+ iπ

2
α)
)

sinh
(
π
ξ
(x− iπ

2
α)
) . (2.95)
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The integral kernels read

φ(θ) =
1

2πi

d

dθ
logS0(θ), ψn(θ) =

1

2πi

n∑
α=1

d

dθ
log f1(θ − λ(n)

α ), (2.96a)

Anm(λ− λ′) = δ(λ′)δnm +
1

2πi

m∑
β=1

n∑
α=1

d

dλ
log f2(λ

(m)
β − λ′(n)

α ) (2.96b)

where the dependence on the string internal quantum numbers α or β has been
highlighted since thanks to equation (2.90) the sums can be drastically simplified.

At this point, as discussed in the previous section, one has to define the energy
and the entropy of the system and then define the free energy. Varying the latter
with respect to the various densities of particles and holes (both in the real and
magnon case) one finally gets the TBA equations. They can be further simplified
employing the relation between the kernels in the Fourier space, and eventually come
to the final Y -system.

In particular, in the special case when the coupling constant is a multiple of
an integer number, the model becomes reflectionless and therefore the S-matrix
becomes diagonal. Therefore the TBA equations can be recast into a Y -system and
one finds that the related Dynkin diagram is of the Dn type, ash shown in figure
2.7.

0 1 2 N − 3
N − 2

N − 1

N

Figure 2.7: Graphical representation of TBA equations for the sine-Gordon model.
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3

TBA Analysis

In this chapter we are going to analyze a wide class of scattering theories: in partic-
ular in the first section we will focus on those which can be built up exploiting the
SU(2)k symmetry of the system, where k is the order of the considered representa-
tion. This construction is of great interest since many models, such as sine-Gordon
or the O(3) non-linear sigma model turn out to develop such symmetry for some
specific value of the coupling constant.

In the second part of the chapter we are going to study a new class of scattering
theories, namely those obtained by requiring the Uq(sl(2)) symmetry. This idea was
first introduced by D. Bernard and A. LeClair in [4]: they showed that in 1 + 1D
integrable QFT it is possible to find certain non-local currents, whose existence is
due by some underlying q-deformed algebra. As it happens in the “underformed”
case, one can then exploit this symmetry to build from scratch the S-matrix. Using
this new scattering matrices we are going to derive the TBA equations and we will
try to understand the relation between the two cases.

3.1 SU(2)k Factorizable S-Matrix Theories

These theories were first analyzed in a paper by S. R. Aladim and M. J. Martins
[7]; here we are going to report the result with some minor correction.

In order to construct the S-matrix one uses the standard procedure of study-
ing the corresponding lattice model, which in this case is represented by the spin
k/2 Heisenberg chain, whose Boltzmann weights and relative R-matrix were already
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computed in [34]. Imposing then unitarity (see equation (1.28)) and crossing sym-
metry (see equation (1.29)), one finds the exact form of the S-matrix:

S(θ) =
k∏

l=even

θ + ilπ

θ − ilπ
R(θ, π) for k even,

= S0(θ)
k∏

l=odd

θ + ilπ

θ − ilπ
R(θ, π) for k odd,

(3.1)

where
S0(θ) =

Γ(1/2− iθ/2π)Γ(iθ/2π)

Γ(1/2 + iθ/2π)Γ(−iθ/2π)
(3.2)

is the prefactor coming from imposing unitarity and crossing symmetry, while

R(θ, π) = P0 +
k∑

α=1

α∏
l=1

θ − ilπ
θ + ilπ

Pα, (3.3)

is the R-matrix obtained from the spin chain model, Pj being the projectors over
the j state of the Hilbert space. Without going into further details, using the
ABA method described in § 2.2.1, one can diagonalize the inhomogeneous transfer
matrix T (θ1, . . . , θL) whose elements are defined as the product of S-matrices (the
computation in the homogeneous case has been done in [35], the generalization is
straightforward):

Tj(θ!, . . . , θL)
α′
1...α

′
L

α1...αL =
∑
γ,s

S
αj+1α

′
j+1

αjγj (θj − θj+1) . . . S
αj+1α

′
j+1

αjγj (θj − θj−1). (3.4)

As described in the previous chapter, the first step to get informations about the
thermodynamics of the system, is to take a physical particle and perform a complete
trip on a circle of length L. Every time the particle scatters with another particle,
the wave function acquire an additional term, which is nothing but the eigenvalue
of the inhomogeneous transfer matrix discussed earlier. Therefore in this situation,
the analogous of equation (2.6) reads

eimL sinh θj

L∏
l=1

S̃0(θj − θl)
M∏
l=1

θj − λl + iπk/2

θj − λl − iπk/2
= 1. (3.5)
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where S̃0 is a function that depends on the spin representation, namely

S̃0(θ) =
k∏

l=odd

θ − ilπ
θ + ilπ

for k even,

= S0(θ)
k∏

l=even

θ − ilπ
θ + ilπ

for k odd.

(3.6)

Together with this equation one must consider the defining equation for magnon
rapidities λi, obtained during the ABA diagonalization

M∏
l=1

λj − λl − iπ
λj − λl + iπ

= −
L∏
l=1

λj − θl − iπk/2
λj + θl + iπk/2

. (3.7)

To investigate the thermodynamics of the models, one has to take the thermo-
dynamic limit, N,L → ∞ with M/L = const. In this regime, it is known that the
solutions of equation (3.7) organize themselves into strings in the complex λ plane,
following equation (2.90) and as already pointed out one can express the product
over magnon rapidities as in formula (2.91).

Considering first equation (3.7) and defining the functions

fα(x) =
x− iπα/2
x+ iπα/2

, (3.8)

one gets

−
∞∏
n=1

ξn∏
l=1

n∏
α=1

f2(λ
(m)
β,j − λ

(n)
α,l )

L∏
l=1

f−k(λ
(m)
β,j − θl) = 1. (3.9)

The surprising fact is that it is always possible to get rid of the α and β dependencies,
i.e. it is always possible to express the equations only in terms of the centers of
strings. To see this fact let us take the product over β = 1, . . . ,m,

−
∞∏
n=1

ξn∏
l=1

m∏
β=1

n∏
α=1

f2(λ
(m)
β,j − λ

(n)
α,l )

L∏
l=1

m∏
β=1

f−k(λ
(m)
β,j − θl) = 1. (3.10)

Then, expressing λ(n)
α using its string definition (2.90), one can simplify the products
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that appear in (3.10), namely

m∏
β=1

f±k(λ
(m)
β,j − θl) =

min(k,m)∏
i=1

f±(m+k−2i+1)(λ
(m)
j − θl), (3.11a)

m∏
β=1

n∏
α=1

f2(λ
(m)
β,j − λ

(n)
α,l ) = f|m−n|(λ

(m,n)
jl )

×
min(m,n)−1∏

i=1

f 2
|m−n|+2i(λ

(m,n)
jl )f|m−n|+2 min(m,n)(λ

(m,n)
jl ),

(3.11b)

where in the last equation, for sake of brevity, we put λ(m,n)
jl = λ

(m)
j − λ

(n)
l . At

this point, using these results and introducing the particles and holes densities for
physical particles (σ0 and σ̃0) and magnons (σn and σ̃n) as defined in equation (2.92),
one can compute the logarithmic derivative, obtaining

−
∞∑
n=1

∫
dλ′Knm(λ− λ′)σn(λ′) +

∫
dθ ψm(λ− θ)σ0(θ) = σ̃m(λ). (3.12)

where we have introduced the integral kernels

Knm(λ− λ′) = δ(λ− λ′)δmn +
1

2πi

d

dλ
log
[
f|m−n|(λ− λ′)

×
min(m,n)−1∏

i=1

f 2
|m−n|+2i(λ− λ′)f|m−n|+2 min(m,n)(λ− λ′)

]
,

(3.13a)

ψm(λ− θ) = − 1

2πi

d

dλ
log

min(k,m)∏
j=1

f−(m+k−2j+1)(λ− θ), (3.13b)

The explicit expressions of these kernels is quite complicated, however things
become simpler when one takes their Fourier transform.

From definition (3.8) one finds

F

(
1

2πi

d

dx
log f±α(x)

)
(ω) = ±e−πωα/2, (3.14)

it is possible to show after cumbersome calculations that

K̃mn(ω) = coth

(
π|ω|

2

)[
e−π|ω||m−n|/2 − e−π|ω|(m+n)/2

]
, (3.15a)
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ψ̃m(ω) =
1

2 cosh(πω/2)
coth

(
π|ω|

2

)[
e−π|ω||m−k|/2 − e−π|ω|(m+k)/2

]
. (3.15b)

In particular it is important to notice that the ψ̃m kernel can be expressed in term
of the K̃mn one, namely

ψ̃m(ω) = p̃(ω)K̃mk(ω), (3.16)

where we have introduced the universal kernel

p̃(ω) = (2 cosh(πω/2))−1. (3.17)

This fact, which will will be true also for the φ̃ kernel (coming from the other
equation), is of fundamental importance to obtain the universal form of the TBA.
Using the standard definition of convolution (2.27), the equation takes the simple
form

σ̃m(λ) = (ψ̃m ∗ σ0)(λ)−
∞∑
n=1

(K̃mn ∗ σn)(λ) m = 1, 2, . . . (3.18)

Considering now equation (3.5) and repeating similar calculations, one finds

Lm

2π
cosh θ+

∫
dθ′ φ(θ− θ′)σ0(θ′) +

∞∑
n=1

∫
dλψn(θ−λ)σn(λ) = σ0(θ) + σ̃0(θ), (3.19)

where the kernel ψn is the same of equation (3.15b) and

φ(θ − θ′) =
1

2πi

d

dθ
log S̃0(θ − θ′), (3.20)

which in Fourier transform reads

φ(ω) =
1

4 cosh2(πω/2)
(1− eπ|ω|k) = p̃2(ω)K̃kk(ω). (3.21)

both in even and odd k cases (see Appendix D for more details), therefore one finally
gets

σ0(θ) + σ̃0(θ) =
mL cosh(θ)

2π
+ (φ ∗ σ0)(θ)−

∞∑
n=1

(ψn ∗ σn)(θ). (3.22)

It is possible to compute the equilibrium condition for the free energy defining
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the function

Φ[σ, σ̃, ξ, µi] = E − TS + ξV(1) +
∞∑
j=1

µiV(2)
j (3.23)

where E and S are the energy and the entropy of the model (see equations (2.23) and
(2.31)), wile V(1) and V(2) are equations (3.18) and (3.22) interpreted as constraints,
ξ(θ) and µj(λ) being the Lagrange multipliers. Varying the result obtain with respect
to the various densities and multipliers and imposing the the equilibrium condition,
i.e. setting the resulting equations equal zero, one finally gets the TBA equations

ε0(θ) = mR cosh θ − (φ ∗ L0)(θ)−
∞∑
m=1

(ψm ∗ (log(1 + eεm)))(θ), (3.24a)

log
(
1 + e−εm(λ)

)
= (ψm ∗ L0)(λ) +

∞∑
n=1

(Kmn ∗ log(1 + eεn))(λ), (3.24b)

where we have introduced

ε0(θ) =
σ̃0(θ)

σ0(θ)
, εn(λ) =

σn(λ)

σ̃n(λ)
n = 1, 2, . . . (3.25)

which represent the pseudoenergies of particles and magnons, respectively.

In order to obtain the universal form of the TBA, which encode the Dynkin
structure of the model, one has to invert the Kmn kernel (3.15a), defining a matrix
K−1
mn such that ∑

n′
(K−1

mn′ ∗Kn′n)(λ) = δ(λ)δmn. (3.26)

This matrix is given by

K−1
mn(λ) = δ(λ)δmn − p(λ)(δm,n+1 + δm,n−1). (3.27)

Taking the convolution of K−1
im (λ) with equation (3.24b) and then summing over

the m index, one finds

εi(λ) = δik(p ∗ L0)(λ) + (p ∗ ((1− δ1i)Li−1 + Li+1)) i = 1, 2, . . . , (3.28)

where the Kronecker delta has been introduced to take into account that the first
node, i = 1, cannot be linked to the zeroth magnonic node, since there is no zero-
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magnonic node.
Considering now (3.24b) for m = k one finds

εk(λ) + Lk(λ) = (ψk ∗ L0)(λ) +
∞∑
n=1

(Kk,n ∗ Ln)(λ). (3.29)

Taking the convolution of p(x) with this result and exploiting properties (3.16) and
(3.21), one finds the relation

− (φ ∗ L0)(λ)−
∞∑
n=1

(ψm ∗ log(1 + eεm))(λ) = −(p ∗ Lk)(λ). (3.30)

Using this relation it is possible to replace the last two terms in equation (3.24a),
obtaining

ε0(θ) = mR cosh θ − (p ∗ Lk)(θ). (3.31)

As explained in the previous chapter, these universal equation can be graphically
represented with a Dynkin diagram, as shown in figure 3.1.

ε1 ε2 ε3 εk

ε0

εk+1 εk+2

Figure 3.1: Graphical representation of the TBA equations for an arbitrary spin
s = k/2 scattering theory with rational S-matrix.

The result we just derived correctly predict that massless magnonic nodes with
pseudoenergy εi (equation (3.28)) are physically coupled only to the preceding and
following nodes and also that the k-th of them (where k = 2s) is coupled with the
massive term L0. On the other side (see equation (3.31)), the massive node turns
out to be coupled only to the k-th node. This is exactly what we expected from the
already known cases, namely the k = 1 and k = 2 models [36, 6].
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3.2 Uq(sl(2)) Factorizable S-Matrix Theories

In this section we are going to derive TBA equations for the q-deformed S-matrices
at arbitrary spin computed in [8], exploiting the Uq(sl(2)) symmetry.

Diagonalizing these matrices using the ABA method presented in § 2.2.1 we have
the following equations

eimL sinh θj

L∏
l=1

S̃0(θj − θl)
M∏
l=1

sinh γ(θj − λl + iπk/2)

sinh γ(θj − λl − iπk/2)
= 1, (3.32)

which describes the situation in which a particle of rapidity θj and spin s = k/2

is scattered with all the particles of the chain and brought back to the starting
position. The parameter γ is the deformation parameter, which is related to the
quantum group parameter q by the relation q = e2iπγ.

The prefactor S̃0 appearing in (3.32) is the factor due to the request of unitarity,
crossing symmetry and the fulfillment of Yang-Baxter equation. It can be shown
that the prefactor is given defined as

S̃0(u) =
k∏

l=odd

sinh γ(θ − ilπ)

sinh γ(θ + ilπ)
for k even,

= S0(θ)
k∏

l=even

sinh γ(θ − ilπ)

sinh γ(θ + ilπ)
for k odd.

(3.33)

It is easy to see that the k = 2 case correctly reproduces the known results on the
sausage model [6, 37]. We also assume that the term S0(θ) can written in an integral
form, such that when k = 1 one obtain the renown sine-Gordon prefactor obtained
by brothers Zamolodchikov in [3], reproduced in (2.80).

As in the undeformed case, the diagonalization of the S-matrix via ABA leads
to the presence of a number of M magnonic rapidities λl, which can be thought as
auxiliary non-physical particles. These rapidities turn out to be solutions of a series
of Bethe constraint equations

M∏
l=1

sinh γ(λj − λl − iπ)

sinh γ(λj − λl + iπ)
= −

L∏
l=1

sinh γ(λj − θl − iπk/2)

sinh γ(λj + θl + iπk/2)
. (3.34)
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As already mentioned in § 2.2.4, the periodicity p0 = π/γ of equation (3.34) in
the imaginary λ direction, can impose several constraint on the length of strings as
explained in the most general case in [32].

It is useful to introduce the functions fα,

fα(x) =
sinh γ(x− iαπ/2)

sinh γ(x+ iαπ/2)
, (3.35)

which are the “trigonometrized” version of definition (3.8), with the property that
f−α(x) = fα(−x). Following the usual steps, one can define

Pα(x) =
d

dx
log fα(x) = 2iγ

sin(γπα)

cosh(2γx)− cos(γπα)
, (3.36)

whose Fourier transform can be easily computed (see e.g. [38], §7.7).,

P̃α(ω) =

∫ +∞

−∞
dx eiωxPα(x) = iπ

sinh
(
πω
2γ

(1− γα)
)

sinh
(
πω
2γ

) . (3.37)

This Fourier transform holds only when 0 < π(1− γα) < π, namely when α < 1/γ:
this means that this analysis is valid only in the regime in which the periodicity p0

is larger than the length of the string. At this point, following the usual procedure,
we can take the logarithm of equation (3.32) while performing the thermodynamic
limit,

imL sinh θj +

∫ +∞

−∞
dθ′ log S̃0(θj − θ′)σ0(θ′)

+
N−1∑
n=1

∫ +∞

−∞
dλ

n∑
α=1

log fk(θj − λ(n)
αl )σn(λ) = 2πinj.

(3.38)

Subtracting this result to the same equation substituting j with j − 1 and dividing
by 2πi(θj − θj−1) we get

mL

2π
cosh θ +

1

2πi

∫ +∞

−∞
dθ′

d

dθ
log S̃0(θ − θ′)σ0(θ′)

+
1

2πi

∞∑
n=1

∫ +∞

−∞
dλ

n∑
α=1

d

dθ
log fk(θ − λ(n)

α )σn(λ) = σ̄0(θ),

(3.39)
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where σ̄0(θ) = σ0(θ)+ σ̃0(θ) is the total density, expressed as the sum of the particles
density and the holes one, as defined in (2.92).

Using definition (2.27) we can write the previous equation in a more compact
form

σ0(θ) + σ̃0(θ) =
mL

2π
cosh θ + (φ ∗ σ0)(θ)−

∞∑
n=1

(ψn ∗ σn)(θ), (3.40)

where the integral kernels have been introduced, namely

φ(x) =
1

2πi

d

dx
log S̃0(x), (3.41a)

ψn(x) = − 1

2πi

n∑
α=1

d

dx(n)
log fk(x

(n)
−α) =

min(n,k)∑
i=1

P−(n+k−2i+1)(x
(n)). (3.41b)

where in the last equality we have used the property (3.11a) (which is surprisingly
valid also when f is defined as in equation (3.35)). Considering now equation (3.34)
summed over β = 1, . . . ,m and repeating the same steps, we obtain

σ̃m(λ) = −
∞∑
n=1

(Kmn ∗ σn)(λ) + (ψm ∗ σ0)(λ), (3.42)

where ψm is defined as in (3.41b) while Kmn is

Kmn(x) = δ(x)δmn +
1

2πi

m∑
β=1

n∑
α=1

d

dx(m)
log f2(x

(m)
β − x(n)

α ), (3.43)

= δ(x)δmn + P|m−n|(x
(m,n)) + 2

min(m,n)−1∑
i=1

P|m−n|+2i(x
(m,n))

+ P|m−n|+2 min(m,n)(x
(m,n)),

(3.44)

where again in the last equality equation (3.11b) in its trigonometric version has
been used.

Computing explicitly this last kernel in the Fourier space one finds

K̃mn(ω) = coth
(πω

2

) sinh
(
πω
2γ

(1−max(m,n)γ)
)

sinh
(
πω
2γ

) sinh
(πω

2
min(m,n)

)
. (3.45a)

It is clear that even in this case it is possible to express every kernel in term of the
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Kmn one: again this will ensure the possibility of recasting the equations in their
universal form. Indeed,

ψ̃m(ω) = p̃(ω)K̃mk(ω), (3.46a)

φ̃(ω) = p̃2(ω)K̃kk(ω). (3.46b)

Moreover, even if the kernels look more complicated than those obtained in the
previous case, it can be shown that in the γ → 0 limit they correctly reproduce
their undeformed counterparts (3.15a), (3.15b) and (3.21), indeed in this limit there
is a term in the numerator of the three equations that never vanishes and that once
combined with the ending hyperbolic sine gives Aladim and Martins result.

The next step is to define the energy as we did in the diagonal case (see equation
(2.23)),

E [σ0] =

∫ +∞

−∞
dθ cosh θσ0(θ), (3.47)

and the entropy, which this time will contain also the contribution of the magnon
densities:

S[σn, σ̃n] =
∞∑
n=0

∫ +∞

−∞
dx [σn(x) + σ̃n(x)] log[σn(x) + σ̃n(x)]

− σn(x) log σn(x)− σ̃n(x) log σ̃n(x).

(3.48)

so that we can build up the free energy, defined as in equation (2.28). To get
informations about the equilibrium configuration, we need to vary this function with
respect to the various densities, keeping equations (3.40) and (3.42) as constraints,
which means that we need to introduce ξ(θ) and µj(λ) as Lagrange multipliers,
as done in the undeformed case. The calculation at this point are straightforward
and they basically reproduce the steps done in the previous section, with the only
notable modification being the explicit expression of the integral kernels.

Finally we end up with the TBA equations

ε0(θ) = r cosh θ − (φ ∗ L0)(θ)−
∞∑
m=1

(ψm ∗ log(1 + eεm))(θ), (3.49a)

Ln(λ) = (ψn ∗ L0)(λ) +
∞∑
m=1

(Kmn ∗ log(1 + eεm))(λ), (3.49b)
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where r = mR is the relevant dimensionless parameter, εi are the pseudoenergies
defined as in (3.25) (the index 0 is relative to the physical particle while n refers to
the magnons) and the integral kernel L is defined as in (2.44).

Even in this case one can find a relation in order to invert the Kmn kernel (3.45a)
and as in the trigonometric case, it is given by

K−1
mn(λ) = δ(λ)δmn − p(λ)(δm,n+1 + δm,n−1). (3.50)

where p(λ) has the usual Fourier transform (3.17).

Taking the convolution of K−1
im (λ) with equation (3.49b) and then summing over

the m index, one finds

εi(λ) = δik(p ∗ L0)(λ) + (p ∗ (Li−1 + Li+1)) i = 1, 2, . . . , (3.51)

and repeating the same reasoning of the previous section, the other equation reads

ε0(θ) = mR cosh θ − (p ∗ Lk)(θ). (3.52)

Therefore we have just shown that in the trigonometric case the structure of the
Dynkin diagram given by these TBA equations is identical to the rational one.

However, as already mentioned, the periodicity p0 = π/γ of equations (3.32) and
(3.34) in the imaginary λ direction plays a crucial role. Indeed, it can be shown
that the irreducible representations of a quantum group are in 1-1 correspondence
with the Bethe strings forming in the thermodynamic limit. In fact, when the
deformation parameter q is not a root of unity, i.e. when γ is an irrational number,
the infinitely many representations of the quantum group are those of the group and
therefore we get a situation similar to the undeformed case, with an infinite number
of magnonic nodes. However, when one considers γ to be a rational multiple of π,
which correspond to the case when q is a root of unity, it is possible to show that
among all the possible representation of the quantum group only a finite number is
irreducible and therefore we expect a finite amount of allowed strings in the TBA
analysis. This will lead to a closure of the diagram, meaning that it will end after a
certain node. In particular, when 1/γ is π divided by some integer N , the number of
allowed strings is N . In the latter case one possibility for the final diagram could be
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the one represented in figure 3.2, where the magnonic part of it becomes a DN -type
Dynkin diagram .

ε2 ε2 εk

ε0

εk+1 εk+2

εN−3

εN−2

εN−1

εN

Figure 3.2: Potential graphical representation of TBA equations for the deformed
scattering theories. We assume that γ = π/N .

In particular we note that this is the same result that we obtain in the two
known cases namely k = 1, which is the sine-Gordon model (see figure 2.7) and
k = 2, which is the sausage model [37].
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In this thesis we investigated two different families of scattering theories at arbitrary
spin by means of the Thermodynamic Bethe Ansatz method.

At first we considered a set of models introduced by S.R Aladim and M. J.
Martins [7], described by non diagonal S-matrices which are invariant under SU(2)

symmetry acting on the multiplets of particles that lie in the s = k/2 representation.
These theories are of great importance as many quantum field theories present this
type of symmetry (e.g. the sine-Gordon model at β =

√
8π where it becomes

a SU(2) Gross-Neveu model or the O(3) sigma model). Since these models are
described by non-diagonal S-matrices, we had to take into account the presence of
magnons rapidities, which can be considered as a mathematical artefact of fictitious
massless particles, allowing to diagonalize the transfer matrix of the model: these
additional objects make the analysis more complex with respect to the diagonal case.
However, in the thermodynamic limit, the magnonic solutions tend to organize into
Bethe strings and it is then possible to simplify the calculations.

We then obtained the “raw” TBA equations of these models, which turned out
to be defined through three different integral kernels: one describing the magnon-
magnon scattering, one the magnon-particle scattering and one the particle-particle
one. Surprisingly these three object are all related, and thanks to this relation it
has been possible to further simplify the system, resulting in a universal form of the
TBA equations.

This result is of great importance since it is the starting point to analyze the
critical behaviour of these theories, for example by computing their central charge,
which we know to be wrong in [7].

It is known that it is possible to deform the SU(2)k symmetry algebra underlying
these theories preserving integrability in order to obtain a new set of scattering
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matrices with a quantum group symmetry Uq(sl(2)): these exact S-matrices has
been recently found in [8]. At this point the natural question to be answered was
how to describe the TBA of these new models and whether they are related to their
undeformed counterparts. Analyzing these new scattering theories we understood
that the structure of the equations remains basically the same with new definitions
of the three integral kernels previously mentioned. Additionally, taking the q → 1

limit, i.e. the undeformed limit, the two results are equal.
Finally, we computed the TBA equations for this class of theories: as expected,

it reproduces the same result as the undeformed case. However in this situation the
number of total magnons may be finite, depending on the periodicity of the TBA
equations, leading to different results.

This is just a first step in the analysis of these new theories, and there are still
things to do to fully understand their physical meaning:

• first of all, once the universal form is derived, one should compute the central
charge, in order to have a first insight on the critical behaviour of these models
in their UV limit.

• Once it is understood what kind of CFT these models are describing, one
should perform a conformal perturbation preserving integrability, by some
relevant field, as explained in [13], in order to obtain the massive QFTs that
would be equivalent to the studied scattering models.

• If this analysis is able to put in relation the deformed S-matrices with a physi-
cal QFT, it is then possible to try to establish a duality between these theories
and some sigma models, as proposed in recent papers by V. A. Fateev et al.
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The Casimir Effect

Let us briefly describe how to derive the expression of the Casimir energy in terms
of conformal parameters, such as the central charge and the scaling dimensions of
fields.

First of all we consider an euclidean theory defined on a cylinder C of width R,
parametrized by the coordinates τ = (−∞,∞) and σ, such that σ = σ + 2π. Every
point of this space can be written as

ζ = τ + iσ. (A.1)

Next one can introduce the radial conformal mapping

ρ : C −→ C

ζ 7−→ z = e2π(τ+iσ)/R
(A.2)

which maps slices at equal τ of C into concentric circumferences in C, in particular
τ = −∞ to mapped into the origin and τ = ∞ in the point at infinity of the
complex plane. The stress-energy tensor of the theory changes under local conformal
mappings z → η,

T (z) = T (η)

(
dη

dz

)2

+
c

12
{η, z} (A.3)

where {·, ·} is the Schwartz derivative (for more detail see e.g. [39]).
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In the case we are analysing we have

TC(ζ) =

(
2π

R

)2 [
TC(z)z2 − c

24

]
. (A.4)

and a similar expression for the anti-holomorfic component T̄ . Combining equation
(A.4) and the definition of the Virasoro generators

L0 =
1

2πi

∮
dz zT (z), L̄0 = − 1

2πi

∮
dz̄ z̄T̄ (z). (A.5)

it is possible to calculate the Hamiltonian of the system

H =
1

2π

∫ R

0

dσ (T (σ)− T̄ (σ)) =
2π

R
(L0 + L̄0)− πc

6R
. (A.6)

The minimum value of the energy is thus

E0 = −πceff
6R

(A.7)

with
ceff = c− 24∆min, (A.8)

c being the central charge of the theory and ∆min the lowest eigenvalue of L0.
Equation (A.7) is a particular case of (2.17) and it represents the definition of
Casimir energy: it is inversely proportional to the width of the cylinder and vanishes
when R → ∞, i.e. when it reduces to a plane, therefore it is a purely topological
quantity that depends on the geometry of the system.

For unitary theories it turns out that ceff = c and c > 0, while for non-unitary
ones ∆ and c can be both negative. However it can be shown that the effective
central charge of every minimal model, unitary or not, is always positive.
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Rogers Dilogarithms

In this appendix we will briefly summarize some of the properties of the Rogers
dilogarithm function, which is ubiquitous in the TBA calculations and in general in
the study of integrable systems, see e.g. [40].

B.1 Definition

The Rogers dilogarithm function can be defined via its integral representation

L(x) = −1

2

∫ x

0

dt

(
log(1− t)

t
+

log t

1− t

)
. (B.1)

where 0 ≤ x ≤ 1. It turns out that it is deeply connected to the Euler dilogarithm,

Li2(x) = −1

2

∫ x

0

log(1− t)
t

=
∞∑
n=1

x2

n2
, (B.2)

since it is possible to show that

L(x) = Li2(x) +
1

2
log x log(1− x). (B.3)
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B.2 Properties

Among a huge number of identities (which can be found e.g. in [41]), we have that

L(x) + L(1− x) =
π2

6
, (B.4)

and
L(x) + L(y) = L(xy) + L

(
x(1− y)

1− xy

)
+ L

(
y(1− x)

1− xy

)
, (B.5)

where x > 0 and y < 1. This last identity, calculated for x = y leads to the Abel
duplication formula

L(x2) = 2L(x)− 2L
(

1

1 + x

)
. (B.6)

Using these properties, it is possible to evaluate the dilogarithm for some special
values, which are very useful in TBA analysis:

L(0) = 0, (B.7) L(1) =
π2

6
, (B.8)

L(−1) = −π
2

12
, (B.9) L

(
1

2

)
=
π2

12
, (B.10)

L

(√
5− 1

2

)
=
π2

10
, (B.11) L

(
3−
√

5

2

)
=
π2

15
. (B.12)
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C

Lie Algebras

A Lie algebra A of dimension n is a vector space equipped with a binary anti-
symmetric operation [·, ·] : A × A −→ A, called Lie bracket, that must satisfy the
Jacobi identity;

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0, x, y, z ∈ A. (C.1)

It is possible to relate every element of a Lie algebra with one element of the con-
nected part of a Lie group containing the unit element via the exponential map:

exp : A −→ G

x 7−→ g = eiax
(C.2)

for some parameter a. A Lie algebra can be defined by specifying a set of generators
{Ja}na=1, such that

[Ja, J b] =
∑
c

ifabc J
c. (C.3)

The number n of these generators is called the dimension of the algebra, while the
constants fabc are the structure constants, which turns out to be real if the generators
are self-adjoint. A map that associate every element of A to a linear operator acting
on some vector space V is called a representation of the algebra, the dimension of
V being the dimension of the representation. Among all the Ja is always possible
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C. Lie Algebras

to find r generators1 H i, i = 1, . . . , r, such that

[H i, Hj] = 0. (C.4)

This set of generators forms the Cartan subalgebra H. The other generators can
always be chosen as particular combination of the starting Ja that satisfy

[H i, Eα] = αjEα. (C.5)

Therefore for a given Eα it is possible to define an object α = (α1, . . . , αr) which
naturally maps everyH i ∈ H to the relative number αi of equation (C.5) by α(H i) =

αi. These objects are called roots and by virtue of what said above they are element
of the dual Cartan subalgebra H∗. Since equation (C.5) is invariant under Hermitian
conjugation, one can infer that if α is a root, −α is a root too. Moreover the roots
are generally linearly dependent. Therefore one can introduce a basis for H∗, and
express every root as

β =
r∑
i=1

niα
i2, (C.6)

where αi are called simple roots. These roots are positive roots3 that cannot be
expressed as the sum of two positive roots.

It is possible to define a Killing form in the algebra A, by

K(x, y) = Tr(ad(x)ad(y)), (C.7)

where ad(·) represents the adjoint representation, i.e. the representation that maps
the elements of the algebra into itself and where the action of the generator x on y
is represented by ad(x)y = [x, y].

The fundamental role of the Killing form is that it induces a Killing form in the
dual Cartan subalgebra (for a detailed discussion see e.g. [39] ch. 13), i.e. a scalar
product which allows to compute lengths and angles between simple roots, defined

1r is the rank of the algebra.
2From now on, the superscript does not refer to the i-th component of a root, but it indicates

the i-th simple root.
3A positive root is a root for which its first element is positive.

66



C. Lie Algebras

as
(α, β) = K(Hα, Hβ), such that (α, α) = |α|2. (C.8)

It is possible to define the Cartan matrix, whose elements are defined as

Cij =
2(αi, αj)

|αj|2
. (C.9)

It can be shown that the diagonal elements of this matrix are equal to 2, while the
non diagonal ones are necessarily negative integers. Moreover the Schwarz inequality
implies that the product CijCji < 4, thus the elements can take the values 0, -1, -2
or -3 only.

From these considerations it is possible to show that there are only two possible
root lengths (long and short) and the angles between them can be d 90◦, 120◦,
130◦ and 150◦. Since it is possible to uniquely define an algebra only knowing
the Cartan matrix, i.e. the relations between the various roots, it is possible to
introduce a diagrammatic notation, known as Dynkin diagram, which encodes all
the informations about the system of roots of a given algebra. The rules are simple:

• A root of long length is represented by an empty circle , while a short root
by a filled circle ;

• Two circles are connected by 1, 2 or 3 lines whether the angle between them
is 120◦, 130◦ and 150◦ respectively. If they are not connected, the two roots
are orthogonal.

Therefore, all the possible simple Lie algebras can be classified as in table C.1.

67



C. Lie Algebras

Algebra Group Dimension Dynkin diagram h

Ar SU(r + 1) r(r + 2), r ≥ 1 r+1

Br O(2r + 1) r(2r + 1), r ≥ 2 2r

Cr Sp(2r) r(2r + 1), r ≥ 2 2r

Dr O(2r) r(2r − 1), r ≥ 3 2r-2

G2 14 6

F4 52 12

E6 78 12

E7 133 18

E8 248 30

Table C.1: Classification of simple Lie algebras.
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Computation of φ Kernel

As mentioned in Chapter 3, the φ kernel is the one which comes from the prefactor
of the S-matrix, obtained from unitarity, crossing symmetry and Yang-Baxter equa-
tion. It is the one of biggest interest, since it is directly related to the scattering
properties of the theory. We are going to prove here the fact that the φ kernel is
identical both in the even and odd k case.

The prefactor is defined as follows

S̃0(θ) =
k∏

l=odd

θ − ilπ
θ + ilπ

for k even, (D.1a)

= S0(θ)
k∏

l=even

θ − ilπ
θ + ilπ

for k odd, (D.1b)

where
S0(θ) =

Γ(1/2− iθ/2π)Γ(iθ/2π)

Γ(1/2 + iθ/2π)Γ(−iθ/2π)
. (D.2)

D.1 Even Case

The calculation in the even case are rather simple. Indeed, taking the logarithmic
derivative of the right hand side of equation (D.1a) one gets

k/2−1∑
l=0

d

dx
log f2(2l+1)(x) =

k/2−1∑
l=0

P2(2l+1)(x), (D.3)
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where fα(x) is the function defined in equation (3.8). To explicitly compute the sum,
it is useful to perform the calculation in momentum space. The Fourier transform
of Pα(x) reads

P̃α(ω) = −2πieπ|ω|α/2. (D.4)

Therefore equation (D.3) becomes

F

(
k/2−1∑
l=0

d

dx
log f2(2l+1)(x)

)
(ω) = −2πi

k/2−1∑
l=0

eπ|ω|(2l+1)

= 2πi

[
1

4 cosh2(πω/2)
coth

(
π|ω|

2

)
(1− eπ|ω|k)

]
.

(D.5)

This is exactly the result of equation (3.21). The factor 2πi is simplified by the right
hand side of equation (3.5) once the logarithm is taken.

D.2 Odd Case

In this case calculations are a bit more cumbersome, due to the presence of the
prefactor (D.2). The logarithm of the right hand side of equation (D.1b) is

logS0(θ) +

(k−1)/2∑
l=1

log f4l(x). (D.6)

Let us now focus on the first term of this sum, indeed using the well-known relation
Γ(1 + z) = zΓ(z) one can rewrite it as

− log
Γ
[
1 +

(
iθ
2π
− 1

2

)]
Γ
[
1 +

(
iθ
2π
− 1

2

)
+ 1

2

] + log
Γ
[
1 +

(
− iθ

2π
− 1

2

)]
Γ
[
1 +

(
− iθ

2π
− 1

2

)
+ 1

2

] (D.7)

Now it is possible to use the following integral representation (see e.g. [25], §3.427,
10)

log
Γ(1 + α)

Γ(1 + α + γ)
=

∫ ∞
0

dx

x

[
e−αx

(1− e−γx)
ex − 1

− γe−x
]
, (D.8)

which holds whether Reα > −1 and Re γ > 0.
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Therefore after changing the integration variable x→ 2πω, it becomes

−
∫ ∞

0

dω

ω

(
1− e−πω

eπω − e−πω

)
e−iωx +

∫ ∞
0

dω

ω

(
1− eπω

eπω − e−πω

)
eiωx. (D.9)

Using some trigonometric manipulations and a change of integration variable in the
second integral ω → −ω one finds

−
∫ ∞

0

dω

2ω

e−πω/2

cosh(πω/2)
e−iωx −

∫ 0

−∞

dω

2ω

eπω/2

cosh(πω/2)
e−iωx, (D.10)

which can be rewritten in a more compact form as

−
∫ ∞
−∞

dω

2ω

e−π|ω|/2

cosh(πω/2)
e−πωx. (D.11)

Taking the derivative of this result, as customary in this kind of calculations, one
gets

d

dx
logS0(x) =

∫ ∞
−∞

dω

2π

[
iπ

e−π|ω|/2

cosh(πω/2)

]
e−iωx, (D.12)

where we have highlighted in square brackets the expression of the Fourier transform
of the term under analysis.

Let us now compute the x-derivative of the second term of equation (D.6), namely

(k−1)/2∑
l=1

log
d

dx
f4l(x) =

(k−1)/2∑
l=1

P4l(x). (D.13)

Using the Fourier expression of Pα(x) given in (D.4), one gets

F

(k−1)/2∑
l=1

log
d

dx
f4l(x)

 (ω) = 2πi

(k−1)/2∑
l=1

e−2π|ω|l

= πi

[
e−π|ω| − e−π|ω|k

sinh(π|ω|)

]
.

(D.14)

Therefore, combining the two results, one finds∫ ∞
−∞

dω

2π
e−iωx2πi

[
e−π|ω|/2

2 cosh(πω/2)
+
e−π|ω| − e−π|ω|k

2 sinh(π|ω|)

]
. (D.15)
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Again, manipulating this result with some simple trigonometric identities, it follows
that ∫ ∞

−∞

dω

2π
e−iωx2πi

[
1

4 cosh2(πω/2)
coth

(
π|ω|

2

)
(1− eπ|ω|k)

]
(D.16)

As already pointed out in the even case, the factor 2πi will cancel out once this
expression is put into the equation.

As claimed, the results in the even and odd case are equal: this will lead to a
unique TBA analysis for both cases.
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