Documenti full-text disponibili:
      
        
          
            ![[thumbnail of Thesis]](https://amslaurea.unibo.it/style/images/fileicons/application_pdf.png)  | 
            
              
Documento PDF (Thesis)
   Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
 
              Download (14MB)
              
			  
			  
              
  
              
             | 
          
        
      
    
  
  
    
      Abstract
      Rare diseases pose particular challenges to patients, families, caregivers, clinicians and researchers. Currently, more than 6000 rare diseases are described (but up to 7000 are estimated) and more than 350 million people live with them (5\% of the world population). Due to the scarce availability of information and their disintegration, in recent years we are witnessing strong growth of patient communities on social platforms such as Facebook. The work presented in this thesis is intended to extract knowledge from the large availability of unstructured text generated by the users over time, in order to represent it in an organized way and to make logical reasoning above. Starting from the awareness of the need to integrate different methodologies in complex domains, the research shows a combined use of Text Mining and Semantic Web techniques, taking Esophageal Achalasia as a case study. In particular, an ontology is created to extend ORDO and introduce a patient-centered vision into the world of linked data. The significance of this development is that it potentially constitutes the basis of a project that can allow rapid access to many high-value information (in topics such as symptomatology, epidemiology, diagnosis, treatments, drugs, nutrition, lifestyle), responding to patients' questions and providing them with an additional tool for decision making, minimizing costs through the automatic retrieval of these data and increasing the productivity of investigators.
     
    
      Abstract
      Rare diseases pose particular challenges to patients, families, caregivers, clinicians and researchers. Currently, more than 6000 rare diseases are described (but up to 7000 are estimated) and more than 350 million people live with them (5\% of the world population). Due to the scarce availability of information and their disintegration, in recent years we are witnessing strong growth of patient communities on social platforms such as Facebook. The work presented in this thesis is intended to extract knowledge from the large availability of unstructured text generated by the users over time, in order to represent it in an organized way and to make logical reasoning above. Starting from the awareness of the need to integrate different methodologies in complex domains, the research shows a combined use of Text Mining and Semantic Web techniques, taking Esophageal Achalasia as a case study. In particular, an ontology is created to extend ORDO and introduce a patient-centered vision into the world of linked data. The significance of this development is that it potentially constitutes the basis of a project that can allow rapid access to many high-value information (in topics such as symptomatology, epidemiology, diagnosis, treatments, drugs, nutrition, lifestyle), responding to patients' questions and providing them with an additional tool for decision making, minimizing costs through the automatic retrieval of these data and increasing the productivity of investigators.
     
  
  
    
    
      Tipologia del documento
      Tesi di laurea
(Laurea magistrale)
      
      
      
      
        
      
        
          Autore della tesi
          Frisoni, Giacomo
          
        
      
        
          Relatore della tesi
          
          
        
      
        
          Correlatore della tesi
          
          
        
      
        
          Scuola
          
          
        
      
        
          Corso di studio
          
          
        
      
        
      
        
      
        
          Ordinamento Cds
          DM270
          
        
      
        
          Parole chiave
          Text Mining,Semantic Web,Knowledge Graphs,Rare Diseases,R
          
        
      
        
          Data di discussione della Tesi
          19 Marzo 2020
          
        
      
      URI
      
      
     
   
  
    Altri metadati
    
      Tipologia del documento
      Tesi di laurea
(NON SPECIFICATO)
      
      
      
      
        
      
        
          Autore della tesi
          Frisoni, Giacomo
          
        
      
        
          Relatore della tesi
          
          
        
      
        
          Correlatore della tesi
          
          
        
      
        
          Scuola
          
          
        
      
        
          Corso di studio
          
          
        
      
        
      
        
      
        
          Ordinamento Cds
          DM270
          
        
      
        
          Parole chiave
          Text Mining,Semantic Web,Knowledge Graphs,Rare Diseases,R
          
        
      
        
          Data di discussione della Tesi
          19 Marzo 2020
          
        
      
      URI
      
      
     
   
  
  
  
  
  
    
    Statistica sui download
    
    
  
  
    
      Gestione del documento: