Camera Based Localization for Indoor Optical Wireless Networks

Boldrini, Leonardo (2020) Camera Based Localization for Indoor Optical Wireless Networks. [Laurea magistrale], Università di Bologna, Corso di Studio in Telecommunications engineering [LM-DM270]
Documenti full-text disponibili:
[img] Documento PDF (Thesis)
Disponibile con Licenza: Creative Commons: Attribuzione - Non commerciale - Non opere derivate 3.0 (CC BY-NC-ND 3.0)

Download (9MB)


The main focus of this work is to implement device localization in an indoor communication network which employs short range Optical Wireless Communication (OWC) using pencil beams. OWC is becoming increasingly important as a solution to the shortage of available radio spectrum. In order to counter this problem, a radical new approach is proposed by performing wireless communication using optical rather than radio techniques, by deploying optical pencil beam technologies to provide users with access to an indoor optical fiber infrastructure. An architecture based on free-space optics has been adopted. The narrow infrared beam is considered a good solution because of its ability to optimally carry all the information which the optical fiber can transport, in an energy-efficient way. Beam Steered - Infrared Light Communication (BS-ILC) brings the light only where is needed. Multiple beams may independently serve user devices within a room, hence each device can get a non-shared capacity without conflicts with other devices. Infrared light beams, additionally, are allowed to be operated at a higher power than visible light beams, due to a higher eye safety threshold for infrared light. Together with the directivity of a beam, this implies that the received signal-to-noise ratio with BS-ILC can be substantially higher than with Visible Light Communication (VLC), enabling a higher data rate and longer reach at better power efficiency. Current BS-ILC prototypes allow multiple beams with over 100 Gbit/s per beam. This high performance can only be achieved with small footprints, hence the system needs to know the exact location of user devices. In this thesis, an accurate and fast localization/tracking technique using a low-cost camera and simple image processing is presented.

Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Boldrini, Leonardo
Relatore della tesi
Correlatore della tesi
Corso di studio
Ordinamento Cds
Parole chiave
camera based localization,optical wireless communication
Data di discussione della Tesi
11 Marzo 2020

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento