
ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA  

CAMPUS DI CESENA  

DIPARTIMENTO DI  

INGEGNERIA DELL’ENERGIA ELETTRICA E DELL’INFORMAZIONE 

 “GUGLIELMO MARCONI” 

 

 

CORSO DI LAUREA MAGISTRALE IN INGEGNERIA BIOMEDICA 

 

 

TITOLO DELLA TESI 

KNEE MONITOR: MOTION AND PHYSICAL ACTIVITY MONITORING IN DAILY 

LIFE USING A NOVEL DUAL SENSOR WEARABLE  

 

Tesi in  

BIOINGEGNERIA DELLA RIABILITAZIONE 

 

 

   

                        Relatore                                                                                 Presentata da 

       Ch.mo Prof. Lorenzo Chiari                                                                   Daniele Testa 

                                                                                                          Matr. 0000852598 

 

 

 

Anno Accademico 2019/2020 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



INDEX 
 

1 Introducion ............................................................................................................................ 5 

     1.1 Risks and Assessment of knee health in clinic  ........................................................... 5 

 1.2 Gait analysis ................................................................................................................. 7 

         1.3 State of art ................................................................................................................... 9 

         1.4 Inertial Measurements Unit  ...................................................................................... 11 

      1.5 IMUs’ problems  ....................................................................................................... 13 

      1.6 Quaternion  ............................................................................................................... 15 

      1.7 Our project  ............................................................................................................... 15 

 

2 Methods ................................................................................................................................ 24 

       2.1 Home-made sensors ................................................................................................. 24 

       2.2 Algorithm and Computer App  ................................................................................ 27 

       2.3 Adaptation phase  .................................................................................................... 32 

       2.4 Validation  ............................................................................................................... 35 

                2.4.1 Plausability  tests ............................................................................................. 35 

                2.4.2 Motion Tests  ................................................................................................... 36 

                2.4.3 Position of sensors ........................................................................................... 40 

                2.4.4 Motion laboratory ............................................................................................ 41 

             2.5 Comparison and statistical analyses performed  ................................................... 41 

             2.6 Usability ................................................................................................................ 41 

 

3 Results .................................................................................................................................. 44 

             3.1 Results of plausibility test ..................................................................................... 44 

             3.2 Results of motion tests .......................................................................................... 46 

                 3.2.1 Squatting and walking .................................................................................... 47 

                 3.2.2 Sit-to-stand-to-sit transitions .......................................................................... 58 

                 3.2.3 Running .......................................................................................................... 62 



             3.4 Results statistical analyses  ................................................................................... 67 

             3.5 Results usability test  ............................................................................................. 69 

4 Discussion ............................................................................................................................. 71 

             4.1 Plausibility test ...................................................................................................... 71 

             4.2 Motion test ............................................................................................................. 72 

                    4.2.1 Qualitative features ..................................................................................... 72 

                    4.2.2 Quantitative features ................................................................................... 73 

                    4.2.3 Inner calibration features ............................................................................. 74 

                    4.2.1 Statistical features ....................................................................................... 75 

             4.3 Limitations ............................................................................................................ 75 

             4.4 Possible solutions to our problem and future works ............................................. 78 

             4.5 Discussion about usability ..................................................................................... 81 

5 Conclusions .......................................................................................................................... 83 

6 Appendix .............................................................................................................................. 84 

             6.1 Quaternion theory .................................................................................................. 84 

             6.1 Results of other motion tests ................................................................................. 88 

   

 

  



INTRODUCTION  

1.1 Risks and Assessment of knee health in clinic 

It is well known in the scientific literature that a good level of movement has a positive impact 

on our overall health. Physical activity (PA) can be used as a parameter for the diagnosis, 

treatment or evaluation of the results of correct health care. Moreover, in orthopaedics, physical 

activity is a fundamental parameter in the analysis as the movement apparatus is directly 

affected [1]. A very important concept in human motion analysis is 

that of functional mobility. Functional mobility means the ability to 

walk safely in a free-living environment. This translates into the 

ability to walk, run, climb, even when handling support devices such 

as walkers, crutches and sticks [2] [3] [4]. Unfortunately, a large 

number of illnesses and/or accidents can compromise an 

individual’s level of mobility and especially the gait function. In 

general, gait pathologies can be classified into four major 

categories: rehabilitation-related gait patterns, neurological gait 

disorders, psychiatric gait abnormalities, and gait degradation due 

to ageing. Of all these injuries, the musculoskeletal ones and chronic 

conditions are prevalent [5] [6] [7].  

In this thesis elaboration, we will concentrate our discussion on a 

fundamental joint for human locomotion, the knee. The most 

frequent problems affecting this joint are:  

• Osteoarthritis (OA), is a type of joint disease caused by a 

progressive deterioration of joint cartilage and underlying 

bone. The most affected body areas are hands (at the ends of the fingers and thumbs), 

neck, lower back, knees, and hips as shown in Figure 1.1. Often occurs in subjects 

between 40 and 50 years of age. Bolik et al. [8] reported that the OA disables 

approximately 10% of persons over the age of 60 years. For end stage knee OA, total 

knee replacement (TKR) has developed into a successful treatment option and it is one 

of the most performed elective surgical procedures nowadays. However the high 

impact on quality life of the disease is well documented [9] [10]; 

• Knee injuries, like anterior cruciate ligament (ACL) and/or meniscus rupture [11] [12]; 

Figure 1.1 Osteoarthritis most 

often occurs in the hands (at 

the ends of the fingers and 

thumbs), neck, lower back, 

knees, and hips. 



All these types of injury can have different levels of severity based on several factors like 

subject’s age, his/her clinical history, weight, etc. but all of them introduce, in the patient’s life, 

a certain grade of disability for a period of time. Vargas-Valencia et al. [4]  reported that about 

15% of the world’s population live with some disability condition, of which 2%–4% suffer 

significant functional problems [13]. In this scenario, clinicians and physiotherapists’ aim is to 

reduce the number of patients, or at least to improve their living conditions, through 

neuromuscular rehabilitation. An efficient rehabilitation program, in fact, can improve subjects’ 

mobility, especially after lower limbs surgery. In the first 2-3 weeks after the intervention, the 

patient has to regain the gait function and to restore the range of motion (RoM) of the 

articulation (i.e. differences between maximum knee angle and the minimum knee angle) at 

pre-surgery levels, in order to avoid mobility problems in the future [14]. Clinicians can 

determine the patient's level of autonomy and the optimal care he should receive based on 

assessments of functional activities, such as walking. [15]. ]. Therefore, it is essential to 

improve diagnosis, treatments and measure patient evolution, to understand and systematically 

characterize movement disorders [4]. For the diagnosis and management of knee health (e.g., 

following an acute knee injury during rehabilitation), it is now a standard procedure to use is a 

combination of physical exams and medical imaging, where imaging provides information 

limited for rehabilitation planning (e.g. duration of therapeutic interventions), the management 

of which is usually based on repeated physical examinations focused on subjective measures of 

pain, RoM, edema, and rattle during the execution of examination maneuvers (for example front 

drawer test, pivot test, etc.) [16]. More in general, in clinical practice there are some subjective 

tools like patient reported outcome measures (PROMs), clinician-administered scales (CAS), 

and also by performance tests such as the Timed Up-and-Go (TUG) [17], or the 6-Minute Walk 

test (6MWT) [18]. These tests have positive predictive values below 20%  [19]. during the 

rehabilitation period, the medical team and the patient rely mainly on subjective analysis, on 

the symptoms reported by the patient and on the levels of functional activity of daily life, to 

best calibrate the treatment regimen to be adopted. These variations are unique and exclusive 

for each clinical case analysed. This necessitates the creation/adoption of a more sensitive and 

objective method to monitor the rehabilitation process after joint injuries [16] and, most in 

general, for knee monitoring. In response to this need to objectively judge patients' performance 

the motion analysis is extensively used for the quantitative and qualitative assessment of motor 

function in basic research as well as clinical and sport applications. The estimation of joint 

angular displacements is a fundamental part of human motion analysis and involves the 

detection of joint position and spatial orientation [20]. As reported by Vargas et al. in [4] :“The 



relevance of these parameters is observed in many clinical scenarios such as gait training after 

surgery and rehabilitation in patients with stroke, Parkinson’s disease and cerebral palsy [21] 

[22] [23]”.  

1.2  Gait analysis  

The health status of a subject’s musculoskeletal apparatus can be evaluated by extracting from 

the gait some parameters that allow certifying the level of mobility and/or which a certain 

pathology affects the mobility of the subject. The gait is one of the most natural action for the 

human being but, at same time, one of the most complex one to analyze under the 

clinical/engineeristic aspects. During the gait many muscles, in different areas of the body and 

with specific aims, are involved: some muscles avoid the pure movement (for example the 

muscles of leg), meanwhile others promote the balance and the rhythmicity of the gait (for 

example the oscillatory movement of the arms). Since is not possible to quantify the contribute 

of the single muscle or body segment to the general gait, for the clinical and engineeristic 

analysis of the gait, the necessary information is extracted by global data (speed, moments, 

accelerations, displacements, etc). This data can be global or belonging to a specific body 

segment (i.e. a joint, upper limbs, lower limbs, etc). Each of these parameters, known as “gait 

measures”, describe a particular aspect of subject’s gait. There are a lot of gait measures and 

they do not necessarily all need to be used when doing gait analysis, it depends by on each case. 

In the article [7] a table with the most general parameters available in gait analyses in literature 

are reported.  

Table 1.  Quantifiable gait measures for clinical use [7] 

 

Quantifiable Gait Measures Gait Disorders 

  

Gait speed Slow walking 

Step length Parkinson gait, small 

steps, gait with little 

steps 

Step frequency (cadence) Slow walking, gait 

efficiency 

Stride-stride variability Abnormal rhythm of 

gait 



Step width Cerebellar gait (ataxic 

gait), wide base, 

extremely narrow base 

  

Step height, in the sense of vertical displacement  

of the center of mass 

Peripheral neuropathic 

gait, foot drop, high 

stepping gait 

Transverse plane signal amplitude Hemiplegic gait, 

diplegic gait, 

circumduction, scissor 

gait 

Knee joint angle Crouch gait, drop foot, 

equine gait, stiff knee 

Ankle joint angle Equine gait, crouch gait 

Number of steps during turning Difficulty with turning 

Hip flexion Myopathic gait, 

waddling gait, excessive 

hip sway, drop of pelvis 

Heel-strike amplitude, ground reaction  

forces 

Sensory gait, stomping, 

stamping 

Motion signal distribution  Tremor 

Stance time Antalgic gait, hesitation 

Swing time Difficulty in clearing off 

at toe off, difficulty in 

swinging 

Double support time Steadiness 

Bilateral sensor comparison Gait asymmetry 

Gait stability measure Wobbly gait, unstable 

gait 

Gait complexity measure Choreiform gait, 

hyperkinetic gait, jerky 

gait 

Gait regularity measure Reduced gait variability 

Moment Weakness during toe off 

Muscle force from EMG Muscle weakness, 

abnormal muscle 

activity 

                  



 

 

1.3 State of art 

 

Other parameters very used in the gait analysis are the maximal knee flection, the maximal 

knee extension and tibial acceleration. In the field of motion analysis the gold standard is 

represented by the three-dimensional (3D) optical motion capture systems, such as the 

VICON (Oxford Metrics Limited, Oxford, United Kingdom)  shown in figure 1.2 [24]. 

 

Figure 1.2 A typical set-up for gait analyses with optical motion capture system [25]  

With infrared cameras capturing body motion defined by the reflective markers, these systems 

track spatial information and human motion, and provide high-precision data at a sampling 

rate of 100–200 Hz. Although such systems can deliver highly accurate human movement 

analysis, they are relatively expensive and require expert operation [26]. It means that only 

some specialized centers and clinics have adopted this standard gait analysis tool. Usually, 

these systems are used in combination with force plates (like in Figure 1.2) and 

electromyography (EMG) systems, that are two other quantitative gait analysis tools 

commonly used in those specialized centers. Force plates measure ground reaction forces 

(GRFs) during walking, and when synchronized with kinematic information recorded by 

optical motion capture systems, can provide kinetic information based on inverse dynamics.  



Figure 1.3 Surface electrodes for EMG                                      Figure 1.4 Force plates 

EMG systems measures the electrical activity (i.e., whether the muscle is at rest or firing at a 

certain time) of a contracting muscle via either surface electrodes or fine wire electrodes. The 

surface electrodes are attached to the skin, though such a setup is subject to noise from the 

near by muscles. The more accurate and precise measurement approach is to insert fine wire 

electrodes into the muscle using a hypodermic needle, but it is highly invasive and can even 

be painful.  

Either approach can only give information about whether and when the muscle is firing, but not 

quantitative information such as muscle forces or the amplitude of the muscle activity. 

However, with mathematical modelling, muscle forces can also be extracted from EMG signals 

[27]. EMG measurements can be critical to clinical gait assessment. Gage et al. [28] used EMG 

data to guide surgery for children with cerebral palsy, during which a muscle tendon may be 

transferred to a different location in order to correct the action of the muscle. For such surgery, 

EMG must be used in advance, so muscular contraction is corrected accordingly. EMG can also 

be used with neuroconduction studies to test peripheral neuropathy. During such tests, the EMG 

electrodes release an electric shock in order to stimulate the nerves of the subject, and the speed 

of the signals of the nerve response (i.e., nerve conduction speed) is measured. A significant 

delay and weakness in the response signals indicates peripheral neuropathy [29]. 

 

 

 

 

 



1.4 Inertial Measurements Unit  

It is essential to replace the current gait analysis systems that provide kinematic information 

and EMGs, with easier to use, more economical, and portable platforms. For more than twenty 

years, scientific research in this field has moved towards the development and validation of a 

new class of wearable devices. The result was a new technology, well-known as Micro Electro 

Mechanical Systems (MEMS), that in its most general form can be defined as miniaturized 

mechanical and electro-mechanical elements (i.e., devices and structures) that are made using 

the techniques of microfabrication [30]. MEMS sensors are usually low-cost, small in size, and 

can be manufactured into a wrist watch size [31], which is suitable for the data collection of 

wearable devices. This technology was used to build, on the same integrated circuits a multi-

axial combination of accelerometers, gyroscopes and eventually magnetometers that are widely 

available and used for orthopaedic outcome assessment [32]. This new class of wearable sensors 

are the Inertial Measurements Units (IMU), commonly referred to as IMUs or inertial sensors. 

In contrast to camera-based laboratory systems for measuring joint angles, wearable sensors 

present advantages of lower cost, higher flexibility, portability and adaptability [14], [33]. 

These sensors are which can be attached to different body segments to estimate joint kinematics.  

Using the inertial/magnetic measurement technique, several advantages can be achieved. The 

two main advantages are: 

1. Missing of intrinsic latency (all delays are attributed to data transmission), making 

it the measurement technique suitable for real-time measurements 

 

2. In contrast with electromagnetic, acoustic and optical devices, that require a source 

of emissions to be able to trace objects, IMUs can be used on the object/subject 

without any kind of self-emission source  [34] [35] .  

 

Considering their usability in indoor and outdoor environments, in addition to a reduced 

dressing time, these sensors represent a technology, becoming an alternative to high-cost 

optical systems [4] [36] [37] [38] [39] [40] .  

Among the quantifiable gait measures above mentioned in Table I, one of the most important 

is the knee joint angle. The RoM of this joint is a functional parameter related to the outcome 

along the rehabilitation path and the level of mobility of both a patient undergoing surgery and 

a healthy subject. In fact, restricted RoM of the lower limb joints hinders the performance of 

activities of daily living (ADL) [41] such as walking, standing up, and climbing stairs. [42], 

[43], [44] Patients may also have difficulty with activities such as dressing, using the toilet, 

bathing, picking up objects, crouching, tying shoelaces, and clipping toenails. [42], [43], [45], 



[46]. Other important parameters, linked to RoM, are max knee extension and max knee flexion. 

In literature, there are many different approaches to calculating this parameter that differ to use 

accelerometers, gyros and magnetometers individually or combined. We have provided some 

interesting examples below that could, shortly, be used in clinical evaluations: 

1. The “DynaPort Knee Test” (DPKT) produces mobility parameters during 

predetermined activities using accelerometers (e.g. walking, sit-stand), which are 

correlated with knee function, and evaluates execution quality based on an ordinal scale 

[47]. 

2. Eric Allseits et al. [48] have developed a novel gyroscope only (GO) algorithm  which 

calculates knee angle from integration of a gyroscope derived knee angular velocity 

(KAV) signal. As explained in [49], the main characteristics of this algorithm is “To 

eliminate drift in the integral of angular velocity, a zero-angle update (ZAU) derived 

from a characteristic point in the knee angular velocity is applied to every stride. This 

point is identified using gait phase knowledge provided by a previously published noise-

zero crossing (NZC) gait phase algorithm”.  

3. The system KINEMATICWEAR – developed by M. Schulze et al. [50] in close 

collaboration of computer scientists and physicians performing knee arthroplasty - 

consists of two sensor nodes with combined tri-axial accelerometer, gyroscope and 

magnetometer to be worn under normal trousers. 

In many applications described in the literature, 3 or more sensors are used that are not 

necessarily IMU but are often miniature accelerometers or gyroscopes made using MEMS 

technology. Even when the IMUs are used, however, the information is extracted from one of 

the devices and the data of the other two are used for corrections or for obtaining outline 

information. Using only the accelerometer or gyroscope has the advantage of easily 

understanding the output data, but also the following disadvantages: the accelerometers data 

are sensitive to placement variability and can contain significant amounts of Gaussian noise and 

gait cycle-dependent noise from vibratory modes, while with gyroscopes data are affected by 

drift problem and by gimbal lock problem. The gimbal lock problem can be described as the 

loss of information by one plane of gyroscope. This happens when, during movement, two 

rotating axes align towards the same direction and the gyroscope lose one degree of freedom. 

Magnetometers are often used to derive the orientation respect to the Earth's magnetic field and 

therefore allow to establish the position in a global three-dimensional reference system if there 

is not the presence of electromagnetic source that can alter the measurements. This topic has 



evolved into a wide and solid field of research, but clinical applications involving the use of 

IMUs are still largely unexplored in the literature, despite many research groups have spent 

resources and efforts to introduce, over the years, a lot of different approaches and algorithms 

based on the use of IMUs. Although there are a few commercial offerings such as GaitUp 

(Renens, Switzerland), Dynaport (Den Haag, Netherlands), Xsens (Enschede, Netherlands), 

Delsys (Natick, MA) and Shimmer (Dublin, Ireland) also offer proprietary software algorithms 

for motion analysis or activity monitoring the most published studies in orthopedic have used 

self-developed algorithms.  

 

1.5 IMUs’ problems 

Recently, a systematic review [51] was done to compare the performance of 17 algorithms 

present in scientific literature based on influence of sensor position, analysed variable and 

computational approach in gait timing estimation. The authors’ conclusions at the end of this 

review was that no proposed algorithm can be, generally, preferred over the others.  

The lack of supremacy by an algorithm, type of sensor or approach has two reasons:  

1. Only a few manufacturing companies produce sensitive units for data collection (for 

example Bosch, Invensene, STM). This means that few manufacturers supply almost all 

manufacturers of hardware devices for IMUs. The consequence of this market condition 

is the low variability between features of a lot of different devices, like for example 

basic sensor resolutions, ranges and accuracies. Generally, they differentiate themselves 

in: 

• design (shape, size, weight influencing patient compliance, skin movement 

artefact 

• functionality (for example control switches and LED, battery life, charging, 

configuration options, data output format) 

•  connectivity (cable, wireless) 

• data pre-processing which can produce derived parameters or use sensor fusion 

in combination with e.g. Kalman filters to increase accuracy [52]. 

 

2. No standardized guidelines both for placing sensors on body segments and defining 

joint coordinate systems (JCS) are defined. Also, there are some studies that questioned 

the accuracy of these systems [53] [54] [55] [56] [57]. The conclusions were that the 



calibration stages of the individual sensors (i.e., accelerometer, gyroscope, and 

magnetometer), biases, sensibilities and different noise types, in addition to sensor 

fusion algorithm issues, influence significantly the accuracy of the orientation 

estimation. 

 

Against this background, a fundamental problem of the IMU-based gait analysis is to how 

define an appropriate measurement protocol and to draw up a common protocol for the placing 

of the sensors on the body segments [58]. Different research teams have presented in the 

literature different methods to determine the sensor frame’s orientation, after they have been 

applied to the human body [29-31] [59]. However, those approaches suffer from some 

limitations linked to which sensor is mostly used. For example, with algorithms based only on 

data from accelerometers and gyroscopes [27] [29] [60] [61] the difficulty is to measure 3D 

angles directly and, to solve this problem, a second global reference axis is necessary. This 

second global reference system is usually along with the gravity vector. Another important 

problem within systems that involve only accelerometers and gyroscopes is the heading drift. 

The approaches presented in literature to overcome this issue and to correctly define the axis of 

joint motion are: 

• the performing of predefined movements by the subject [27] 

•  use supplementary devices such as cameras [41], anatomical landmark pointers [28] or 

exoskeleton harnesses [29] 

• performing complex movements while keeping some specific postures [29, 30, 39] 

•  maintaining the same orientation or joint angle between two postures [11, 41] 

However, these approaches are not optimal because they need additional tools, experienced 

personnel and they increase the experiment duration, without considering that may not be 

applicable to subjects with motor disabilities. Some solutions to easily align the sensors to the 

body segments are proposed [62] [63] but none are incorporated into a standardized clinical 

procedure.  

A possible solution to the problems of alignment and positioning into a 3D space seems to be 

the use of quaternions in the analysis of movement.  

 

 



1.6 Quaternion 

The quaternion is a mathematical entity discovered by William Rowan Hamilton in 1843. 

Recently it has become widely used in fields like 3D graphics, virtual reality, robotics, theorical 

physic and human motion because they particularly indicated for the calculate or the simulation 

of movements. 

A more complete discussion, with all mathematical definitions and proprieties about this topic, 

is reported in the Appendices. 

The quaternion is a complex number and it can describe the orientation and the rotation of a 

body in 3D space. Every rotation, in 3D space, can be defined as a combination of an axis and 

a rotation angle. The quaternion is a simpler way to represent it than rotation matrix but is less 

intuitive for the user.  

In the article [64] , Lee JK and Jung WK presented a new quaternion-based local frame 

alignment method has been proposed, where the equations of angular velocity transformation 

are used to determine the frame alignment orientation in the form of quaternion. Although the 

IMU sensor was not attached to the body above a plastic ruler of the right triangle, the 

alignment was almost perfect (an error less than 3° degrees), showing that with the use of this 

mathematical tool it is possible to overcome the alignment problem 

 

1.7 Our project  

Almost all the articles and papers in the literature aim to make parameter calculation methods 

more precise, trying to obtain the same results as the state-of-the-art tools but with wearable 

and less expensive technologies. All validation tests are performed in well-controlled 

environments that do not mimic the real conditions of daily human activities well, without 

considering the well-known fact that supervised patients in a laboratory environment strive to 

walk particularly well, thus presenting themselves with artificial gait patterns. To assess the 

real status of knee health, it would be necessary to matching motion laboratory measurements 

with continuous knee monitoring in real life. To our knowledge, several projects, in the 

scientific literature and the commercial field, has been developed to monitor the knee function 

outside the environment of motion laboratory, such for example [49] [64] [65] [65]. Although 

all these projects have achieved promising results (like a high correlation with motion capture 

system) and have interesting aspects (sensor placement, extraction of gait features, 



applications to daily life), they use commercial sensors (some projects are commercial 

solutions covered by copyright) and algorithms based on gyroscope and accelerometer, 

incurring in the above-mentioned problems. 

In order to overcome all the limitations linked to the acquisitions in a well-controlled 

environmental, cover the clinical needs of biomechanical monitoring of knee motions in daily 

life and to provide simple solution for knee monitoring in real life conditions, a team research 

of the Luxembourg Institute of Health (LIH) is carrying on  a project to develop, validate and 

apply a knee monitoring solution based on such wearable sensors. The candidate was 

involved in the initial phase of this project and, in this master thesis work, the selected 

methodologies and the results obtained will be describe. 

It is the aim of this phase of the project to:  

1)  make a low-cost (few tens of euros), self-assembled IMU/Arduino system operational 

to be used as a developmental dual-IMU activity monitoring platform (by e.g. software for 

connection, communication, configuration, etc.).  

2)  Write, adapt and develop further a pre-existing algorithm to calculate knee angles, 

primarily flexion angles based on the quaternion outputs. 

3)  Test and take steps towards validating the output of the sensor/algorithm set-up 

against a gold standard (3-D motion capture) for several activities relevant for patients with 

knee pathologies and outcomes. 
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2. METHODS  

From the fusion and adaptation of two previous solutions for the calculation of the knee angle, 

the project described in this thesis work was created. One solution consists of two sensors, built 

with Arduino components, and a Computer App, all developed by Professor Lukasz Lapaj 

(Department of General Orthopaedics, Musculoskeletal Oncology and Trauma Surgery, Poznan 

University of Medical Sciences, Poland). The other one consists of two commercial sensors and 

an algorithm, based on the use of quaternions, developed by professor Matthijs Lipperts 

(AHORSE, Department of Orthopaedics, Zuyderland Medical Centre, The Netherlands). Since 

we want to create a new, low expensive, user friendly and simple solution, we take, from these 

two solutions, the most interesting aspects.   

 

 

In the first and second sections of this chapter, we make a detailed explanation of all the 

elements that compose our project. Then we explain what we did in development phase of our 

solution.  

 

2.1 Home-made sensors  

Each one of these sensors is made by: 

Knee 
Motion 
Project

Home-
made 

sensors

Computer 
App

Algorithm 
based on 

quaternion



1) 1 WeMos TTGO T-Base esp8266 Wi-Fi wireless module 4mb flash I2c for Arduino, for the 

connection with other devices 

2) 1 Adafruit bno055 absolute orientation sensor as IMU 

3) 2 black plastic boxes with dimensions 6,5 cmx4,5 cmx3,0 cm (2,56”x1,77”x1,18”), for the 

protection against falls, shocks and atmospheric agents 

4) 1 FB75254 OHP battery (500 mAh and 3.7V) as electric surgent 

All the materials above mentioned are shown in the Figure 2.1. 

 

Figure 2.1 All elements of Professor Lapaj's sensor. From left to right: a black plastic box 

empty (down), a black plastic box with esp8622 Wi-Fi board glued inside (up), FB75254 OHP 

battery and Adafruit bno055 absolute orientation sensor. 

 

All the commands that the board must do are included in a sketch, created with software 

Arduino IDE. When the sketch is upload on the board, via USB input, the code is compiled by 

esp8266 mini processor. A schematic diagram, with all the actions performed by these sensors, 



is shown below.  The functioning of the sensor can be assimilated to a switch: when the battery 

is plugged in, the sensors are connected to a Wi-Fi network and are sending data, independently 

if the app on the computer or the computer itself are ready to receive them. When there is no 

source to power the boards, they are completely switched off. Once loaded the sketch, the user 

does not have the possibility to modify the features as for example sample rate, Wi-Fi network 

or speed of transmission. The only way to modify the functioning is by uploading a new sketch, 

with different instructions, on the board. From a general point of view, we can distinguish, in 

all sensors, a sensitive part composed by an accelerometer, gyroscope and/or magnetometer and 

a processing part where all libraries are included, and all operations are performed. As specified 

in the chapter “Introduction”, the sensitive part of most part of sensor have comparable 

performance (the sensitive part in black sensors is made with Bosh components), so we assumed 

that the accuracy of raw data are comparable with other commercial solution. What make a 

difference is the different approaches implemented in processing part. In our experimental 

solution all algorithm of sensor fusion are unknow because implemented directly by the use of 

Arduino libraries.  

In Figure 2.2 shows how the sensor looks like with and without all protection, respectively. 

 

Figure 2.2 Professor’s Lapaj sensors assembled (on the left) and with all protection (on the 

right) 



 

2.2 Algorithm and Computer App  

The app was created with the integrated development environmental Microsoft Visual Studio 

2017 version 3.9 with which the user can select the type of internet connection, manage the 

streaming of data, (when it begins and ends), check if all sensors are connected and save the 

date received. 

 All these actions can be done thanks to the user-interface, shown in Figure2.3. The correct use 

of the app consists of 5 steps: 

1) To select the type of network with the drop-down list under “Network”. After that, the 

IP address and IP broadcast will appear besides “IP” and “bcast”, respectively. During 

all tests performed in this project, we used a smartphone as hotspot, so the option 

“Wireless Network Connection” was chosen (Figure 2.4). However, the names on the 

list depend on the laptop       where the app is used, it means that the same type of 

connection could have different names on different laptops.  

2) To find connected devices. A necessary condition of this experimental set-up is that all 

sensors must be connected to the same Wi-Fi network. The app on the computer detects 

all the devices connected to the selected network, except the computer itself, and shows 

their IP addresses into the window “Console”. If one of the sensors was missed, the user 

can repeat research with the button “Search”. When all devices are connected, the app 

is ready for the data streaming. 

 

3) To start data streaming with button “Start”. These raw data, coming from all sensors, 

were displayed in different parts of the interface, especially in the window under 

“Incoming data counter”. This version of the app was programmed to receive from the 

sensors the following output: 

• Eulerian angle respect X-axis (X) 

• Eulerian angle respect Y-axis (Y) 

• Eulerian angle respect Z-axis (Z) 

• Calibration of the gyroscope (gyr) 

• Calibration of the accelerometer (acc) 

• Calibration of the magnetometer (mag) 



 

Figure 2.3 Initial version of user interface professor Lapaj’s computer app 

 

As reported by the official website of Adafruit (Adafruit, s.d.) [1]. “The BNO055 includes internal 

algorithms to constantly calibrate the gyroscope, accelerometer and magnetometer inside the 

device. The exact nature of the calibration process is a black box and not fully documented, but you 

can read the calibration status of each sensor using the “.getCalibration” function in the 

Adafruit_BNO055 library. The four calibration registers -- an overall system calibration status, as well 

individual gyroscope, magnetometer and accelerometer values -- will return a value between '0' 

(uncalibrated data) and '3' (fully calibrated). The higher the number the better the data will be”.  

In other words, the library allows having a scale of values, from 0 to 3, that shows to the user the 

inner level of calibration of each sensor and the user can check, in each sample, the status of 

accelerometer, gyroscope and magnetometer.  



 

Figure 2.4 An example of connections available on a computer 

The Euler angles, such as quaternions, are provided directly from the sensors thanks 

to         Arduino library “utility/imumaths”. They are calculated by an inner sensor-

fusion algorithm that uses data from the gyroscope, accelerometer and 

magnetometer. Similar to the calibration procedure, this process is a not well-

documented. 

4) To end the acquisition with button “Stop”. 

5) To save the data in the window under “Incoming data counter” by pressing the button 

“SAVE TXT FILE”. The name of the file can be changed by the user or it is 

automatically changed by the app to avoid the risk to overwrite the files. Professor 

Matthijs Lipperts shared with us his self-made algorithm created to analyse the results 

coming from commercial sensors GCDC Human Activity Monitor (HAM) that are a 

compact self-recording data logger available with several sensor variants. Data from the 

digital sensors are time-stamped using a real-time clock and stored to a microSD card 

in simple text format. When connected via the USB to a personal computer, the HAM 

appears as a standard mass storage device containing the comma-delimited data files 

and the user setup file. The HAM includes an internal 250mAh lithium-polymer 

rechargeable battery, which recharge using USB power. The sensors and their general 

features are shown below  



 

Figure 2.5 GCDC Human Activity Monitor (HAM) IMU sensors 

General Features of HAM-IMU 

• Compact size (2.21” L 1.55” W 0.60” H, 0.9 oz) 

• User selectable sample rates of 50, 100 and 200 Hz 

• Accurate time stamped data using Real Time Clock (RTC) 

• Data recorder to internal 8 GB flash memory  

• Easily readable comma separated text data files 

• Internal hardwired rechargeable Lithium-Polymer battery, charges via USB 

• Data transfer compatible with Windows/Linus/mac via USB interface (no special 

software required) 

• 3-axis accelerometer, gyroscope, magnetometer 

• Quaternion orientation based on accelerometer and gyroscope data 

 

The code of the algorithm is developed in the programming language MATLAB, version 9.4. 

The algorithm allows the extraction of the raw data in CSV format and, before the post-

processing operations, as for example filtering and operations with quaternions, is performed 

on a preliminary stage for the synchronization between the sensors and the calibration on the 

subject. For each sample the outcome parameters given by GCDC HAM are tri-axial 

accelerations, tri-axial angular speed, tri-axial values of magnetic field and its quaternion, 

calculated by an inner algorithm based on the sensor fusion. The core of the elaboration is the 



product between every quaternion and the first one, in order to obtain a new quaternion. As 

explained in the chapter “Introduction”, this new quaternion represents the new position of the 

sensor in 3D space. Then is executed a conversion from quaternion to Euler angle is executed 

for each quaternion calculate in this way. This operation is done on both sensors. At the end of 

this part of the algorithm, the positions occupied by both sensors, in the subject’s leg reference 

system, during all the duration of motion test are calculated and it is easily possible to add them 

or subtract them to calculate the subject’s knee angle (the choice to add or to subtract the angles 

depends on the orientation of the sensor, in particular by the orientation of Z-axis. If the Z-axis 

of sensors have the same direction and, the angles will be subtracted, in the other case they will 

be added). An illustration about how the algorithm calculate knee angle is show in figure 

alongside. 

  

Figure 2.6. Illustration procedure performed in Lipperts’s algorithm 



 

2.3 Adaptation phase 

We tried to combine these two different approaches in a unique solution to create a new 

experimental set up to achieve our purposes. We made changes in the Arduino Sketch, in the 

computer app and in the algorithm. A detailed list of all our changes, with their respective 

motivations, is reported in table below. 

Table 2.1. List of all changes made in Professor Lipperts and Professor Lipaj’s solutions. 

New Elements Where  Reason of the change 

Sample rate (from 10 Hz 

to 63 Hz) 

In the Arduino 

sketch 

 The continuous monitoring of 

movements requires higher sample rate 

than the one previously set, to avoid 

loss of information in faster movements 

 

 

 

Output variables from 

sensors: 

• Timestamp 

• Triaxial 

accelerations 

• Triaxial angular 

speed 

• Quaternions 

• Inner calibration 

• Triaxial magnetic 

disturbs 

In the Arduino 

sketch 

 We increased the number of output 

variables for two reasons: 1) to compare 

IMUs outcomes; 2) to use them in 

future upgrade of the algorithm. This 

argument is well explained in the 

section “Conclusion and future 

developments” 

 



 

 

User Interface 

 

In the 

Computer app 

  

To make it more intuitive and easier to 

use for the user. The new version of the 

app can be seen in Figure 2.7 

 

Saving data in CSV format 

 

In the 

Computer app 

 

  

The CSV format is easier to use not 

only with MATLAB but also with other 

programming language, as for example 

RStudio 

 

 

Cleaning of previous 

acquisitions 

 

In the 

Computer app 

  

To the user is given the choice to hold 

the old data from previous acquisitions 

or to delete them to have a clean sheet 

with button “CLEAR ALL “ 

 

 

Adding of title 

 

In the 

Computer app 

  

In this way the user can immediately 

understand the meaning of the numbers 

that appear on the interface 

 

 

Calibration on subject 

 

 

In the 

algorithm 

  

 

In professor Lipperts’s algorithm there 

is a part dedicated to subject’s specific 

calibration. A well-controlled 

movement, performed before any type 

of motion test, is used as reference, (in 

professor Lipperts’s it is a slow squat 

performed in front of a wall). 

This part is missing in our set-up. 

 

 

 

Offset elimination 

 

 

In the 

algorithm 

  

 

Because of their nature, quaternions 

take the initial position as system of 

reference, so the knee angle calculate 

with the algorithm always starts from 

0°. To consider the real subject’ knee 

angle in the erect position, it was 

calculated the offset between two 

signals, and it was removed. 

    

 

Selection of data In the 

algorithm 

 Since quaternions that IMU sent to 

computer app are the result of an inner 

combination of accelerometer, 

gyroscope and magnetometer data, if 

one of these tools is not well calibrated, 



the quaternion of that moment could be 

erroneous. For this reason, we 

established selection criteria for the 

samples: the value of inner calibration 

of accelerometer, gyroscope and 

magnetometer must be at least 2, in 

order to work only with quaternions 

coming from calibrated data.  

 

 

Synchronization between 

sensors 

In the 

algorithm 

 In professor Lipperts’s algorithm, there 

is a part dedicated to synchronization 

between sensors. The user must 

perform a well-defined event, like a 

double tap on the sensors or a jump, 

before to start the motion test in order 

to easily identify it in the signal. In our 

set-up this part is completely automatic. 

Thanks to Arduino library 

“TimeClient”, we synchronize inner 

clock of the sensors with Internet and 

then the algorithm finds the closest 

samples from two sensors. 

 

Figure2.7. New version of professor Lapaj’s app used in our project. 

 

As can be seen on the above illustrated table, we adapted and changed the pre-processing part 

of Professor Lippert’s algorithm because it was strictly linked to GCDC HAM-IMU, whereas 

we did not modify post-processing analyses. In order to clarify the functioning of the sensors 

in our project a little diagram with all steps performed, is reported below.  

 



Figure 2.8 Diagram about functioning of home-made sensors (after adaptation) 

 

At the end of this adaptation process and fusion of different approaches, we developed our knee 

monitoring systems based on two IMUs, consisting of a hardware part (two sensors made with 

Arduino component by Professor Lapaj) and an adapted version from Matthijs’ algorithm part.  

From now on in this thesis work, we will refer to our experimental set-up (algorithm + sensors) 

as black sensors (because of the colour of their protection) in order to make notation lighter. 

2.4 Validation 

2.4.1 Plausibility test 

In order to assess the goodness and the quality of the outcome coming from our solution, we 

made a preliminary test to control the plausibility of our results. We attached our sensor at the 

endings of a plastic goniometer. We attached the goniometer at the wall in vertical position, so 
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that between the sensors there was an angle of 180°, i.e. 0° in clinical system of reference. Then 

we moved the sensor attached at the upper ending of goniometer toward the other sensor, from 

0° to 90° and from 90° to 0° in all human anatomical planes (frontal, sagittal, transverse) , in 

order to assess sensibility of our system and to simulate, only for the movement in sagittal plane, 

the physiological RoM of a human knee. In figure 2.7 are shown different moments of this test. 

 

Figure 2.9. The position of sensors and goniometer while simulating stand up position (left), 

sit-down position (right)  

2.4.2 Motion Tests 

To assess the performance of our monitoring system, a series of very common daily movements 

were chosen. The movements selected are walking, squatting, sit-to-stand transitions, stair 



climbing, going downstairs and running.  With these movements we planned the following 

motion tests: 

1. 5 squat and then 30 seconds walking 

2. 1-minute sit-to-stand transitions with 3 seconds of rest after every change of position 

3. 1-minute squatting changing every 3 squats the speed and intensity of movement 

4. Stair climbing 4 steps, placing one foot on one step and the other foot on the next step 

5. Stair climbing 4 steps, placing both feet on same step before to proceed to the next one 

6. Going downstairs 4 steps, placing one foot on one step and the other foot on the next 

step 

7. Going downstairs 4 steps, placing both feet on same step before to proceed to the next 

one 

8. 1 minutes running at 10km/h speed 

From now these tests will be called Motion Test 1 (MT1), Motion Test 2 (MT2), Motion Test 

3 (MT3), Motion Test 4 (MT4), Motion Test 5 (MT5), Motion Test 6 (MT6) Motion Test 7 

(MT7), Motion Test 8 (MT8), respectively. In all motion tests we assessed the sensibility of our 

solution, some of these tests were performed more than one time because we were also 

interested in the reliability of measurements. How many times each test was performed is shown 

in Table 2. 

Table 2.2. Little resume of all motion tests executed 

 

 

 

 

 

 

 

 

 

 

 

MOTION TEST REPETITIONS 

MT1 5 

MT2 1 

MT3 1 

MT4 3 

MT5 1 

MT6 3 

MT7 1 

MT8 2 



 

 

 

Figure 2.10 Global view of sensor position         Figure 2.11 Specific length of each segment 

It is important to specify that in the first repetition of MT8, the subject started the run on a 

treadmill from a standing position. After one minute, this repetition ended, and we started a 

new acquisition without stopping subject running. So, the second acquisition started while the 

subject was still running.  

2.4.3 Position of sensors 

We decided to attach the sensor on the right leg because is subject’ dominant leg. We measured 

the length of the leg (80 cm), from the hip to the sole of foot, with a meter, as shown in Figure 

2.8. We considered the total leg divided in two segments, upper (from the hip to the knee) and 

lower one (from knee to the foot). We measured the length of both, taking, respectively, as 

anatomic reference the distance lateral femoral epicondyle-anterior iliac spines, lateral femoral 

epicondyle-lateral malleolus (Figure 2.9). The black sensors were fixed at the same position on 

the segments, i.e. at 50% of length of single segment during all motion tests that corresponds 

at 20 cm from the lateral femoral epicondyle for upper segments and at 20 cm from the lateral 

femoral epicondyle for the lower one. 

 

 



2.4.4 Motion Laboratory 

The above-mentioned motion tests were performed in the human motion laboratory of 

Luxembourg Institute of Health (LIH) with a high-speed (200 Hz) motion analysis system 

consisting of four CX1 3D scanner units (CODAmotion, Charnwood Dynamics, UK) placed 

on all four sides of the treadmill. It was used to track knee and ankle joints as well as 

shoe/ground angles during the tests. The subject wore shoes that were pre-equipped with two 

markers on the calcaneus area and on the top of the shoe (base of shoelace). Two more markers 

were placed on the shoes on palpable anatomical locations at the 1st and 5th metatarsophalangeal 

joints. Ten markers (5 per leg were placed on the following anatomical landmarks: tibial and 

fibula malleoli, femoral condyles and greater trochanters. Finally, four rigid clusters equipped 

with four markers each were placed on the shanks and the thigh. A static calibration record was 

done using the full set of 34 markers with participant standing in a neutral pose. During all tests, 

only the clusters and the markers placed at the shoes (n=24) were tracked at 200 Hz. Kinematic 

data were analysed using Visual3D (V.5.02.19, C-Motion, USA). Joint angles were normalised 

with respect to the standing trial [2]. The knee flexion in sagittal, frontal and transvers plane 

was calculated. 

2.5 Comparison and statistical analyses performed  

Black sensors and motion laboratory estimated separately the knee angle. From these two 

signals, max knee flection and max knee extension were extracted for each single movement 

(i.e. a squat, a step, a gait cycle, etc.), in order to estimate the RoM. For each motion test, the 

values and time of these two parameters are compared. In the next chapter of this master thesis 

will be presented only the results about MT1, MT2 and MT8, in order to describe the quality 

of our monitoring system in three different condition of speed, (respectively: middle, low, high). 

Furthermore, a Bland-Altman plot is performed on the results of MT1 because is the motion 

test performed several times, in order to visualise the difference between our solution and the 

gold standard. 

2.6 Usability 

Another important parameter that was investigate in this project was the usability of the black 

sensors. We were interested about the usability of both hardware and software. In the scientific 

literature, there are a lot of questionnaires for the assessment of usability but, because of very 

low number of participants (n=2 for the app and n=1 for sensors) and lack of time, it was not 

deemed necessary submit one of them. We just limited to report the impressions and the 



experience of the participant. To assess the usability of the app we took inspiration from 

Questionnaire for User Interaction Satisfaction (QUIS), developed in 1989 at the Human 

Computer Interaction Laboratory (HCIL), in the College Park of Maryland University by Kent 

Norman e Ben Schneiderman and the criteria selected by this questionnaire were: 

• Screen design and layout 

• Learnability 

• Overall reaction to the software 

To assess the usability of the sensors, we placed one sensor at 25%, 50% and 75% of the 

distance hip-knee and the other sensor 25%, 50% and 75% of the distance knee-foot. The 

measurements are illustrated in the following table 

Table 2.3. Distance, in cm, at which the sensors were positioned during the usability tests 

Segment of leg 25% of length 50% of length 75% of length 

Upper (hip-knee) 10 20 30 

Lower (knee-foot) 10 20 30 

 

The sensors were worn by the subject for at least 4 hours in each position and he valued the 

comfort/discomfort during daily life activities. During the acquisition of experimental data, the 

placement of black sensors did not change, and we did not assess if sensor placement influence 

outcomes. 
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3 RESULTS 

3.1 Results of plausibility test 

When performing six distinct movements (ca. 90deg turns by hand in 3 orthogonal planes and 

in both directions) in sequence using the black sensor set-up mounted to a plastic goniometer, 

the output for the relative angle between both sensor units followed qualitatively and 

quantitatively the expected signal.  In this stage of calibration, we were not interested to assess 

if our system was able to detect physiological movements, in fact only one movement could be 

considered physiological (from 0° to – 90° and go back), but rather its sensibility.

 

Figure 3.1 Black sensor’s knee angle output for various distinct movements as an initial 

plausibility test (no gold standard). 

As can be seen in Figure 3.1, black sensors outcomes followed the expected patterns, except 

for movements in transversal plane (they simulated the intra/extra rotations of knee). It is visible 

that, during the movements, in sagittal and frontal planes, there were large angular changes in 

values only in the expected plane. 

A table with all range of motions (expected and calculated) is reported below. 

Table 3.1. Successive movements of the black sensors on a goniometer to compare output to 

the theoretically expected plausible value 

Type of 

Movement 

Expected 

range in 

Range in 

frontal 

Expected 

range in 

Range in 

sagittal 

plane 

Expected 

range in 

Range in 

transverse 

Plane 



frontal 

plane 

(degrees) 

plane 

(degrees) 

sagittal 

plane 

(degrees) 

(degrees) transverse 

plane 

(degrees) 

(degrees) 

0°to -90° in 

frontal 

plane 

 

[-90,0] [-94.75-0] 0 [0-6.37] 0 [-11.4,0] 

-90° to 0° in 

frontal 

plane 

 

[-90,0] [-93.38-0] 0 [1.7-5.2] 0 [-6.6,2.3] 

0°to 90° in 

frontal 

plane 

 

[0,90] [0, 80.32] 0 [-13.8, 

0.72] 

0 [-9.8,1.3] 

90° to 0° in 

frontal 

plane 

 

[0,90] [0, 80.32] 0 [-13.7, -0.9] 0 [-1.2, -

11.7] 

0°to 90° in 

sagittal 

plane 

 

0 [-8.13, -

0.13] 

[0,90] [-0.6,91.3] 0 [-5.4,-0.55] 

90° to 0° in 

sagittal 

plane 

 

0 [-3, -1.82] [0,90] [0.11,91.3] 0 [-3.2, -0.7] 

0°to -90° in 

sagittal 

plane 

 

 

0 [-0.5, 6.7] [-90,0] [0.11, -

90.63] 

0 [-0.7, -8.4] 

-90° to 0° in  

sagittal 

plane 

 

0 [3.1, -0.7] [-90,0] [-

89.34,0.21] 

0 [-12.14, -

8.7] 

0°to 90° in 

transverse 

plane 

 

0 [0.73, 

34.09] 

0 [0.57, 38] [0,90] [-

10.56,81.8] 

90°to 0° in 

transverse 

plane 

 

0 [0.39,34] 0 [-0.57,36.8] [0,90] [-2.2, 82] 

0°to -90° in 

transverse 

plane 

 

0 [0.93, 

158.6] 

0 [-163.8, -

0.29] 

[-90,0] [-2.2, -84] 



-90°to 0° in 

transverse 

plane 

0 [-158.1, 

0.13] 

0 [-163.4-

0.13] 

[-90,0] [-85,3, 3] 

To make the notation lighter from now on, we will refer to the movement made from 0 ° to 90 

° as "clockwise movement", while the other will be redefined as "counterclockwise movement". 

For the discussion of the results of this initial test we distinguish two cases: 

1. Angles calculated in the same plane in which the movement was made (eg sagittal angle 

in movements in the sagittal plane, etc.) 

2. Angles calculated in planes perpendicular to that in which the movement was made 

(front and transverse angle in movement in the sagittal plane, etc.) 

In the first case, the system has proven to be quite accurate. The absolute value of the difference 

between the expected angle and the estimated angle was less than: 

• 2° in both movements in the sagittal plane 

• 5 ° in the counterclockwise movement and 10 ° in the clockwise movement in the frontal 

plane 

• 6 ° in the counterclockwise movement and 10 ° in the clockwise movement in the 

transverse plane 

 

3.2 Results of motion tests 

We are comparing the black sensor’s angles for various movements to values generated 

simultaneously from an optical marker-based motion capture system (MoCap) used as gold 

standard (see Methods 2.4.4). For each motion test, results will be shown as: 

1. Superimposition of both signals (black sensors, motion capture) against time  

2. Scatter plot for maximum knee flexion values for both measurement methods  

3. Scatter plot for maximum knee extension values for both measurements methods 

After these plots, a table is reported containing the mean values of following parameters:  

• Maximum knee flexion values for MoCap 

• Maximum knee flexion values for black sensors 

• Maximum knee extension values for MoCap 

• Maximum knee extension values for black sensors 

• Difference between MoCap and black sensors in maximum flection measurements 



Difference between MoCap and black sensors in maximum extension measurements 

During all the motion tests, only results concerning the sagittal plane of the subject were taken 

into consideration, since it is the main objective of this research project.  

3.2.1 Squatting and walking 

In this section we show the results of the five repetitions of MT1 (see Methods 2.4.2) 

performed by the subject. Because of the presence of two different movements in this test, in 

this subsection we will show also values for squatting and for walking.  

MT1- 1° Repetition 

 

Figure 3.2 MoCap (red) and black sensors (blue) knee angle in MT1-1° Repetition for 

squatting followed by walking 

Superimposition of the continuous signal traces from the black sensors and MoCap gold 

standard for squatting and walking show that the black sensors output qualitatively and 

quantitatively reflects the gold standard measurements. The deep and smooth squat 

movements are described as well as the sharper and lower flexion peaks during walking as a 

more dynamic movement. Both the shape of the curve and the difference between peak values 

allows the clear characterisation of the squatting and walking movement. One can also clearly 



identify the increase of knee flexion during the first strides of walking on the treadmill until a 

gait rhythm and steady state is reached. 

It can also be seen that over time no noticeable signal drift can be detected. There is only an 

initial delay (time shift) between the MoCap values and the black sensors angles trailing 

behind the gold standard measurements right from the start. The reason why this time shift 

exists and if or how it could be improved/removed, shall be treated in the discussion. This 

time shift is close to the stride time, so that the simultaneous knee flexion peaks during 

walking are indeed shifted by one stride. This delay is slightly increased during the motion 

test because black sensor’s clock makes small leaps forward. An example can be seen in 

figure 3.2, obtained zoom-in the curve of previous figure. However, this behaviour is not 

common, and it can be found just few times in all motion test performed.  

 

 

Figure 3.3 Temporal jump in black sensors in MT1-1° Repetition 

The transition phase between squats is well defined in both systems and both the duration and 

value calculated by the two systems are very close. 

When squatting, where knee flexion is large and slow, the black sensors peak values differ 

from MoCap peak values by a mean of 8.8 deg (see Table 3.2), whereas during walking the 

black sensors peak flexion angles differ by a mean of 5.6 deg (see Table 3.2). 



  

Figure 3.4 MoCap (blue) and black sensors (red) maximum values knee flection for each 

squat (5 values from left) or step in MT1-1° Repetition 

At the end of each squat, where knee extension is maximum, the black sensors values are less 

by ca. 1 degree whereas during the midstance phase of gait, the difference between MoCap 

knee extension and black sensors knee extension become higher but still less than 10 degrees.  



 

Figure 3.5 MoCap (blue) and black sensors (red) maximum values knee extension for each 

squat or step in MT1-1° Repetition 

 

Table 3.2. Mean values of experimental data, calculated by both system and compared, 

during MT1-1° Repetition  

Type of 

movement  

Mean 

value of 

max knee 

flection in 

MoCap 

(degrees) 

Mean 

value of 

max knee 

flection in 

black 

sensors 

(degrees) 

Mean 

value of 

max knee 

extension 

in MoCap  

(degrees) 

Mean 

value of 

max knee 

extension 

in black 

sensors  

(degrees)  

Mean 

difference 

between 

MoCap 

and black 

sensors in 

max knee 

flection  

(degrees) 

Mean 

difference 

between 

MoCap 

and black 

sensors in 

max knee 

extension 

(degrees) 

Global -74.3 ± 13.9 -76.8 ± 9.0 -5.2 ± 1.4 -6.7 ± 1.7  -5.7 ± 2.7  2.1 ± 1.3  

Squatting -110.9 ± 4.4 -100.4 ± 1.6 -7.2 ± 1.5 -8.3 ± 1.0 10.5 ± 4.0 1.3 ± 0.8 

Walking -68.4 ± 3.5 -71.0 ± 3.8 -4.4 ± 0.6 -5.6 ± 2.1 3.6 ± 1.6 2.0 ± 1.1 

 

As can be noted by plots and by the values in Table 3.2, black sensors knee flexion is closer to 

MoCap values during walking and black sensors extension is closer to MoCap values during 

squatting. In this repetition, black sensors systematically underestimate knee flexion in slower 

movement (squatting), whereas systematically overestimating knee angle both in flection and 

in extension in faster movement (walking).  



Since the variability of the results among all repetitions in this motion test is very low, we will 

present only the third and the fifth repetition, in order to show the temporal trend of our system. 

In fact, between the first and the third repetition, as well as the third and the fifth, at least ten 

minutes have passed.  

MT1- 3° Repetition 

 

Figure 3.6 MoCap (red) and black sensors (blue) knee angle in MT1-3° Repetition 

Also in this case, the continuous knee angle signal traces from the black sensors and MoCap 

gold standard are very similar both qualitatively and quantitatively. As in the previous 

repetition, there is an initial temporal delay between two knee angle signals but this time black 

sensor’ clock worked perfectly. So, the initial temporal delay has not been increased and all 

peaks, both in extension and in flection, are closer to each other.  

Even during this repetition, the different system accuracy depending on movement. The black 

sensors better estimate the flection peak during walking, whereas the system extension values 

have a higher accuracy during the squatting. Moreover, as can be seen by Table 3.4, the absolute 

mean difference, both in maximum knee flexion and in maximum knee extension, is lower that 

MT1-1° repetition 



 

 

Figure 3.10. MoCap (blue) and black sensors (red) maximum values knee flection for each 

squat (peak 1-5) or step (peaks >6) in MT1-3° Repetition 



 

Figure 3.11 MoCap (blue) and black sensors (red) maximum values knee extension for each 

squat (peak 1-5) or step (peaks >6) in MT1-3° Repetition 

 

Table 3.4. Mean values of experimental data, calculated by both system and compared, 

during MT1-3° Repetition 

Type of 

movement  

Mean value 

of max 

flection in 

MoCap 

(degrees) 

Mean value 

of max 

flection in 

black 

sensors 

(degrees) 

Mean value 

of max 

extension in 

MoCap  

(degrees) 

Mean value 

of max 

extension in 

black 

sensors  

(degrees)  

Mean 

difference 

between 

MoCap and 

black 

sensors in 

max flection  

(degrees) 

Mean 

difference 

between 

MoCap 

and black 

sensors in 

max 

extension 

(degrees) 

Global -77.1 ± 12.4 -76.3 ± 10.6 -4.6 ± 1.3 -3.1 ± 2.1 1.9 ± 2.3 1.8 ± 1.1 

Squatting -106.8 ± 4.0 -100.5 ± 3.6 -7.2 ± 1.3 -6.5 ± 1.4 6.3 ± 3.6 0.8 ± 0.4 

Walking -72.7 ± 4.0 -72.7 ± 4.8 -4.2 ± 0.7 -2.6 ± 1.6 1.2 ± 0.9 1.9 ± 1.1 

 

 

 

 



 

 

MT1-5° Repetition 

 

Figure 3.12 MoCap (red) and black sensors (blue) knee angle in MT1-5° Repetition 



 

Figure 3.13 Time jump in black sensors in MT1-5° Repetition 

In the fifth, and last, repetition of this trial performed in MT1, one can observe the same 

features as during previous two repetitions. As with the first repetition, the black sensor 

system curve presents a temporal jump forward, at the beginning of acquisition (Figure 3.13). 

From figure 3.12, it is more evident than the others that the two knee angle curves differ this 

by a systematic error, since before the time jump the two curves were superimposed. The 

plateau of maximum knee flexion during squat 3 and the variations occurring holding this 

position as shown by the gold standard method are represented also in the IMU black sensor 

system. 

The trend, coming out during previous two repetitions, to estimate flexion peaks with minor 

error during the walking is confirmed also here.  

The plateau of maximum knee flexion during squat 3 and the variations occurring holding this 

position as shown by the gold standard method are represented also in the IMU black sensor 

system. 



 

Figure 3.14. MoCap (blue) and black sensors (red) maximum values knee flection for each 

squat (peaks 1-5) or step (peaks >=6) in MT1-5° Repetition 

 

The knee extension values have been estimated with smaller absolute error during squatting than 

during walking, as had already happened in the first and in the third repetition. However, mean values 

of the absolute error both in max knee flection and in max knee extension decreases respect the first 

repetition of MT1 presented, showing an improvement of system performance. 



 

Figure 3.15. MoCap (blue) and black sensors (red) maximum values knee extension for each 

squat or step in MT1-5° Repetition 

 

Table 3.6. Mean values of experimental data, calculated by both system and compared, 

during MT1-5° Repetition 

Type of 

movement  

Mean 

value of 

max knee 

flection in 

MoCap 

(degrees) 

Mean 

value of 

max knee 

flection in 

black 

sensors 

(degrees) 

Mean 

value of 

max knee 

extension 

in MoCap  

(degrees) 

Mean 

value of 

max knee 

extension 

in black 

sensors  

(degrees)  

Mean 

difference 

between 

MoCap 

and black 

sensors in 

max knee 

flection  

(degrees) 

Mean 

difference 

between 

MoCap 

and black 

sensors in 

max knee 

extension 

(degrees) 

Global -74.1 ± 16.5 -73.5 ± 13.1 -4.5 ± 1.6 -3.1 ± 2.8 2.7 ± 3.3 1.8 ± 1.2 

Squatting -111.1 ± 

13.7 

-101.5 ± 

11.3 

-7.4± 1.1 -7.9 ± 1.5 9.6 ± 3.9 0.7 ± 1.1 

Walking -67.9 ± 4.4 -68.9 ± 4.9 4.0 ± 1.1 -2.3 ± 2.0 1.6 ± 1.2 2 ± 1.2 

 

 

 



3.2.2 Sit-to-stand-to-Sit transitions 

In this section we show the results of the only repetition of MT2 (see Methods 2.4.2) performed 

by the subject.  

MT2 

 

Figure 3.15. MoCap (red) and black sensors (blue) knee angle in MT2 

In this motion test is possible the sensibility of black sensor system. Zooming in the first 

stand-to-sit cycle, one can note two little peaks in both signals, one in the moment of sitting 

and the other when the subject is fully stand (Figure 3.16).  



 

Figure 3.16. Little motion features at the end of sitting (black circle) and at the end of standing 

(yellow circle) in both knee angles curves  

This is a small detail which both systems capture showing that this is a distinct movement 

feature. That means that black sensor system is also able to detect such small features which 

may be part of a real-life monitoring assessment of sit-to-stand movements.   

 



 

Figure 3.17. MoCap (blue) and black sensors (red) maximum values knee flexion for each squat 

or step in MT2 

 

In the slow movements, our experimental set up significantly underestimated flection values, 

as can be seen in figure 3.15. Nevertheless, knee angle curve of black sensors system strictly 

follows the MoCap knee angle curve. The estimation of extension values was performed very 

well by black sensors system, since the mean difference is less than 1 degree.   

 



 

 

 

Figure 3.18. MoCap (blue) and black sensors (red) maximum values knee extension for each 

squat or step in MT2 

 

Table 3.7. Mean values of experimental data, calculated by both system and compared, 

during MT2 

Mean value 

of max 

flection in 

MoCap 

measureme

nts (degrees) 

Mean value 

of max 

flection in 

black 

sensors 

measureme

nts (degrees) 

Mean value 

of max 

extension in 

MoCap 

measureme

nts 

(degrees) 

Mean value 

of max 

extension in 

black 

sensors 

measureme

nts 

(degrees)  

Mean 

difference 

between 

MoCap and 

black 

sensors in 

max flection 

measureme

nts 

(degrees) 

Mean 

difference 

between 

MoCap and 

black 

sensors in 

max 

extension 

measureme

nts 

(degrees) 

-99.9 ± 2.3 -87.9 ± 1.0 -8.4 ± 1.2 -7.6 ± 1.1 11.9 ± 1.9 0.8 ± 0.2 

 

 



3.2.3 Running 

In this section we show the results of the two repetitions of MT8 (see Methods 2.4.2) performed 

by the subject. The two repetition of these motion test belong to the same test run.  

MT8-1° Repetition (Starting from a standstill) 

 

Figure 3.19. MoCap (red) and black sensors (blue) knee angle in MT8-1° Repetition 

Due to the high number of samples, the curves can be difficult to read, which is why we have 

zoomed in the first 15 seconds in order to give a general idea of the patterns of both curves. 

One can also clearly identify the increase of knee flexion during the first strides of running on 

the treadmill from standstill including the transitions from walking to fast walking to slow 

running and fast running, until a rhythm and steady state is reached. By peak flexion values, 

by peak-to-peak distance and other features one can identify all these categories and surely 

identify walking and running and transitional phases.  

 In this test it is clearly visible that all knee flexion peaks calculated by black sensors were 

overestimated during the running, whereas, during the transition phase from fast walking to 

running, black sensors knee flection peak values were closer to the MoCap ones. 



 

Figure 3.20. Sagittal angles (knee flexion) during treadmill running from standstill for the first 

15 seconds of MT8-1° Repetition 

 

Figure 3.21. MoCap (blue) and black sensors (red) maximum values knee flection each squat 

(peak numbers) or step (peak numbers, can we label walking/running) in MT8-1°Repetition 



  

Figure 3.22. MoCap (blue) and black sensors (red) maximum values knee extension for each 

squat or step in MT8-1°Repetition  

 

Table 3.8. Mean values of experimental data, calculated by both system and compared, during 

MT8-1° Repetition 

Mean value 

of max 

flection in 

MoCap 

measureme

nts (degrees) 

Mean value 

of max 

flection in 

black 

sensors 

measureme

nts (degrees) 

Mean value 

of max 

extension in 

MoCap 

measureme

nts 

(degrees) 

Mean value 

of max 

extension in 

black 

sensors 

measureme

nts 

(degrees)  

Mean 

difference 

between 

MoCap and 

black 

sensors in 

max flection 

measureme

nts 

(degrees) 

Mean 

difference 

between 

MoCap and 

black 

sensors in 

max 

extension 

measureme

nts 

(degrees) 

-84.3 ± 8.4 -90.2 ± 10.9 -9.7 ± 2.9 -7.9 ± 3.4 6.1 ± 3.1 2.1 ± 1.3 

 

MT8-2° (Started running) 

Contrary to MT 8-1 ° repetition, it is visible that the blue curve, while continuing to qualitatively 

follow the pattern of the curve of the MoCap system, underestimates the angle of the knee. Due 



to the large number of samples, as in MT8-1°, the first 15 seconds of both signals were zoomed 

in. This time, black sensors clock made two mistakes, introducing a time delay.  

 

Figure 3.23.  MoCap (red) and black sensors (blue) knee angle in MT8-2° Repetition 

As the previous repetition of this test, in order to make it easier to evaluate we have zoomed in 

the first 15 seconds of this motion test.  



 

Figure3.24. First 15 seconds of MT8-2° Repetition 

 

Figure 3.25. MoCap (blue) and black sensors (red) maximum values knee flection for each 

squat or step in MT8-2°Repetition 



 

Figure 3.26. MoCap (blue) and black sensors (red) maximum values knee extension for each 

squat or step in MT8-2°Repetition 

 

Table 3.9. Mean values of experimental data, calculated by both system and compared, 

during MT8-2° Repetition 

Mean value 

of max 

flection in 

MoCap 

measureme

nts (degrees) 

Mean value 

of max 

flection in 

black 

sensors 

measureme

nts (degrees) 

Mean value 

of max 

extension in 

MoCap 

measureme

nts 

(degrees) 

Mean value 

of max 

extension in 

black 

sensors 

measureme

nts 

(degrees)  

Mean 

difference 

between 

MoCap and 

black 

sensors in 

max flection 

measureme

nts 
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-88.2 ± 3.6 -84.9 ± 4.4 -9.4 ± 2.1 -4.7 ± 2.4 3.5 ± 1.9 4.8 ± 1.5 

 

3.3 Results of statistical analyses 

From the parameters extracted in each repetition of MT1, we calculated the RoM in each single 

movement (i.e. a squat, a step, a gait cycle, etc.). All these values are collected in two tables 



with size 32x5 (32 RoMs calculated for each repetition, 5 repetitions performed). In order to 

build the Bland-Altman plot, we calculated the mean of each row of each table and we reported 

it in Table 6.11 in the Appendix. 

From Table 6.11, we calculated: 

𝑥 𝑎𝑥𝑖𝑠 = (log2( Mean values from MoCap Table)

+ log2( Mean values from Motion Sensor Table))/2 

𝑦 𝑎𝑥𝑖𝑠 = log2( Mean values from MoCap Table)

− log2( Mean values from Motion Sensor Table) 

𝑀𝑒𝑎𝑛 = 𝑚𝑒𝑎𝑛(𝑦 𝑎𝑥𝑖𝑠) 

𝑈𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑡 𝑜𝑓 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 = 𝑀𝑒𝑎𝑛 + 1.96 ∗ 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝑦 𝑎𝑥𝑖𝑠) 

𝐿𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑡 𝑜𝑓 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 = 𝑀𝑒𝑎𝑛 − 1.96 ∗ 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝑦 𝑎𝑥𝑖𝑠) 

 

The results are shown in Figure 3.26.  

There are some very important features, in clinical terms, in this Bland-Altman plot. First, the 

distribution of points is not casual, and this gives us information about the systematic over- and 

underestimation. Then, the mean difference between systems (i.e. bias) is very close to the zero 

and most parts of points lie close to the bias line. It means that there is a high level of agreement 

between the MoCap system and black sensor system. Also, the limits of agreement are not wide 

that gives us information on interchangeability. It does not seem to be a trend in the scattering 

of points. A deeper discussion about the information given by the Bland-Altman plot is reported 

in the next chapter. 

 



 

Figure 3.27. Bland-Altman plot of all repetitions performed in MT1 

 

3.4 Results of usability test 

The usability of both the software and hardware parts of our experimental system has been 

evaluated. 

The usability of the software was assessed by two operators experienced in the analysis of 

movement who did not attend the adaptation phase of the app. From here on they will be 

indicated as operator A and operator B. This evaluation was carried out using the criteria 

selected and mentioned previously (see Methods 2.6). Operator comments are followed under 

their respective criteria.  

1) Screen Design and layout  

 

 Operator A: “Appropriate, clean interface, all relevant information 

displayed, self-explanatory operating button” 

 



Operator B: “Efficient screen design, technical layout for a professional 

operator, self-explanatory to some but not all degree, could be improved 

by stepped advise or prompts”  

 

2) Learnability:  

 

Operator A: “very easy to master for naïve experimenters, 

accommodation time less than 5 minutes” 

 

Operator B: “Not fully self-explanatory but easy to learn. Quick-Start 

instructions may help to refresh user experience” 

 

1) Overall reaction to the software  

 

Operator A: “it serves the purpose of data acquisition well”  

 

Operator B: “Purposeful, lean, contains required plus some additional 

features, good solution at this prototype stage and a good basis for 

further development” 

 

As for the wearability of the sensors, it was assessed by the same subject of the acquisitions. 

The sensors were worn under informal clothing in the way which is described in the methods 

chapter (see methods 2.6). The first assessment of wearability was carried out by placing both 

sensors 30 cm from the lateral femoral epicondyle (i.e. 75% of the length of the upper and lower 

segments). 

The subject experienced after an initial sensation of discomfort, which continued for about 30 

minutes. Later, he began not to perceive the presence of sensors during static daily activities 

(sitting for a long time, lying down, etc.). Instead, in dynamic activities (walking, climbing 

stairs, etc.) it happened that the hand hit the sensor located in the upper segment of the leg, due 

to its arm swinging movement. 

During the subsequent evaluations, carried out respectively at 20 cm and 10 cm (i.e. at 50% and 25% 

of the length of the upper and lower segment), the subject had a lower discomfort time interval (i.e. 



15 minutes). In these two evaluations, there were no difficulties in movements, both static and 

dynamic, due to the sensors.  

The only problem common to all assessments of wearability occurred during the dressing and 

undressing of the subject, due to the attachment to the skin used to limit the movement of the 

sensors themselves. 

As a final assessment, the subject said he was more comfortable when the sensors were placed 

20 cm from the lateral femoral epicondyle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 DISCUSSION  

A prototype knee monitor was build using 2 IMU units and an adapted algorithm to measure 

knee joint angles during motion based on the quaternion outputs. The new system was 

evaluated in a plausibility test, in a gait laboratory against gold standard 3D video motion 

capture and in a usability survey all showing feasibility, acceptable motion feature recognition 

and accuracy for some movement parameters and limitations for others for which solutions 

appear possible and are partially suggested. 

4.1. Plausibility Test  

What was expected, during the execution of the plausibility test, is that our experimental 

system followed the angles that were formed between the two sensors. What emerged from 

the results is that the sensors managed to qualitatively and quantitatively describe the 

movement made, albeit with varying degrees of accuracy for which in this simple test no 

ground truth value was measured but was assumed by position. It should be borne in mind 

that the theoretically intended movement paths between the sensors was performed by a 

human operator, which introduces some deviations and slight inaccuracy due to handshake. 

During sagittal plane movements, the "black sensors" estimated the angles in that same plane 

with a minimum difference between measurement output and intended movement, (less than 

2 °), which, in our simulation, represents the flexion/extension angle of the patient's knee, the 

most important degree of freedom the “black sensors” system is designed to capture and 

monitor.  

During sagittal plane movements, our knee monitoring system calculated also the angles in 

frontal and in transverse plane. The values expected in these two planes were very close to 0° 

but, instead, we have maximum angle measurements recorded for the frontal and transversal 

plane, during the movement above mentioned. They were less than 9°. Due to sagittal plane 

movement is performed manually, there will be some movement also in the two other planes 

as the devices are not mounted on a fixed arm or robot. Thus, some part of this value is true, 

and the plausibility test showed that this aspect can be captured at plausible values, but how 

much of this is due to error cannot be calculated without a ground truth. 

In the angles calculated during the movements performed in the frontal plane, the system 

showed a slightly lower accuracy (an error <5 ° in the range of the frontal plane and an error 

<12 ° in the ranges of the other two planes). Our experimental system failed to correctly 

calculate angles in the sagittal and frontal plane during movements in the transverse plane, 



especially in the counterclockwise movement. During manual operation, one would create 

some rotations in the other axis but not that high in the transversal plane. The cause of this is 

due to the way the angles in the gyroscope are calculated. In fact, in the gyroscope, the angles 

are calculated in a range from -180 ° to 180 °. This issue is called influences the calculation of the 

quaternions and, consequently, the estimate of the angle.  

In the literature there are several articles that present algorithms capable of overcoming the 

“flip” issue due to the -180 to 180 degrees definitions, starting from raw data of accelerometer, 

gyroscope and magnetometer. A possible solution for a better estimate of the angles during 

movements in the transverse plane would be to implement one of these particular algorithms. 

In fact, using the Arduino library, all quaternions describe angles in the range [-180°, 180°], 

instead, with the implementation of one of these particular algorithms, the quaternions leaving 

our knee monitoring system will describe angle in a range [0°, 360°], giving to the user 

(clinicians, physiotherapists) a more intuitive idea of knee angle. 

However, some movements paths manually simulated in this test, such as excursion of ± 90 ° 

in the transverse plane reflect completely unnatural pathways and could only in theory be 

caused by a severe traumatic event. Considering this, we identified this particular issue as a 

secondary system error and less relevant for the intended solution and clinical needs, which 

thus did not significantly affect the performance in our system invalidation during tests. 

4.2 Motion tests 

4.2.1 Qualitative features 

In general, our experimental system managed to give a probable estimate of the angles assumed 

by the patient's knee during all the motion tests performed. The black sensors output proved to 

closely follow the changes in motion patterns characteristic for each movement and the 

transition between them (for example from squatting to slow walking, from slow walking to 

fast walking or from fast walking to running). Moreover, the capacity of the black sensor system 

to also capture e.g. near-static posture such as a deep-flexion position during a squat (as for 

example the 3° squat during MT1-3° Repetition), including the variations during holding the 

postures, indicate that the system in a real-life monitoring situation could classify and /or count 

these situations as behaviour and analyse the stability of it as a potential digital mobility 

biomarker of knee function during a demanding task. The results show that the “black sensors“ 

system possesses the characteristics and sensitivity required for monitoring the knee angle. 

From its knee angle curve both general parameters, (maximum knee flexion, maximum knee 



extension, RoM, etc), and more specific events, (as for example the little peaks highlighted in 

MT2), can be detected. Moreover, all movements performed during the motion test are clearly 

recognizable as well as the transition phases between them. In real-life monitoring this could 

be very helpful e.g. in recovery or return-to-sports. While the knee flexion angle curves of the 

black sensor system qualitatively follow the gold standard well in shape and acceptably well in 

peak values, they are apparently slightly asynchronous, a feature explained in more detail under 

4.3. limitations. From the plots and angle values calculated in the sagittal plane, our 

measurements do not seem to be affected by the drift problem. At least two hours have passed 

between the start and the end of the acquisitions,(as can clearly be seen from the plots 

timestamps), and even in the latest motion tests performed in chronological order (MT8-1° 

Repetitions and MT8-2° Repetitions), the black sensor system signal does not show any 

particular slope or anomalous value. The main reason of the lack of drift in values, but not the 

only one, is the direct use of the data coming from the gyroscope in the quaternions, without 

any integration process. The absence of this problem in our calculations avoids further post-

processing operations and/or control procedures on the results. However, we cannot assume 

that “black sensors” system will be  totally not affected by the values drift problem in longer 

acquisitions but, based on these results, we may suppose that if this problem will appear in 

future acquisition it will have a less impact on the quality of outputs.  

There is a drift problem in the time vector of black sensors, but this aspect is treated in details 

in the “4.3. Limitations”. 

 

4.2.2 Quantitative features 

A measure of how quantitatively close the two systems are, is given by the average absolute 

mean difference calculated, both in extension and in flexion, in each motion test. What emerged 

clearly from the results of the acquisitions is that the calculation of the knee extension by the 

black sensor system is not influenced by the movement speed. In fact, for this parameter, the 

absolute mean difference between the two systems is less than 5 ° in all the motion tests 

performed. On the other hand, the accuracy of knee flection estimation is linked to movement 

speed. Indeed, during slow movements (squats and sit-to-stand-to-sit transitions), the absolute 

mean difference between values of MoCap system and black sensors system becomes higher 

than in fast movements (walking and running).  



The best estimation by black sensors system of maximum knee flexion was in walking, where 

the mean absolute difference is less than 4°. The estimation of this parameter is the better in 

walking than in running probably because during the running the vibrations and skin artifacts 

are more consistent and that compromise the goodness of measurements  

More generally, one can notes that knee angle flexion peaks are systematically underestimated 

in slower movements and knee angles values, both in flexion and in extension, are 

systematically overestimated in all motion tests performed. 

The reasons of this behaviour are unclear. A possible cause of this behaviour could be the 

placement of the sensors on the subject's body segments, which could make the system very 

sensitive to speed movements. Another possible cause could be the lack of any filtering process, 

which could make the results too influenced by noise at low and high frequencies. In this case, 

the results could improve after applying an appropriate filter (i.e. a 4 order Butterworth low 

pass filter or a band-pass filter). Finally, a reason of this behaviour could be the Arduino 

quaternions, since we do not know how they are calculated from BNO055. In this case the 

implementation of quaternion calculation in our algorithm could reduce or even solve the 

problem. However, this behaviour must be studied in the subsequent stages of the project 

development, in order to fully understand the cause and look for optimal solution.  

 

4.2.3 Inner calibration features 

 

Looking at the values of the absolute mean errors reported in the tables below the tests, it can 

be deduced that the performances of black sensors prototype system have improved with time. 

In fact, the calculated average error, both in flexion and in the extension of the knee, decreased 

with the succession of tests. Increasing of absolute mean errors in MT8, the last motion test 

performed in time, is caused by artificial shaking during running. This trend is because the 

accelerometer, the gyroscope and the magnetometer inside each sensor achieve better 

calibration if they are kept in motion. The accelerometer, the gyroscope and the magnetometer 

are able to keep the level of calibration achieved for long time. We do not investigate the time 

request to lose one (or more) “level” of inner calibration (we remember that the inner calibration 

status is expressed between a scale from 0 to 3 in which 0 means “no calibration” and 3  means 

“ fully calibrated”), so we can only discuss about what happened during our acquisitions in gait 

laboratory. The maximum level of inner calibration was achieved by all tools in IMU unit after 



few minutes from the turning on the sensors and before the beginning of MT1-1° Repetition. 

During motion tests, all levels of inner calibration never decreased because the subject moved 

the dominant leg, where the sensors were attached, also when he was not performing a motion 

test. In our opinion, little movements are enough to keep the accelerometer, gyroscope and 

magnetometer in BNO055 well calibrated. Moreover, these three tools can recalibrate 

themselves, so any calibration loss is not a problem in long activity monitoring applications. 

Better internal calibration of the single instruments implies a better calculation of the 

quaternions and, consequentially, a more precise evaluation of the knee angle. Performance 

improvement over time is a feature that perfectly matches with needs of knee monitoring in 

daily life.  

 

4.2.4 Statistical features 

 

A further evidence about the goodness of our new system comes from statistical analyses 

performed through Bland-Altman plot. The proximity of most points in the graph to the bias 

line indicates that there is a good agreement between two methods, i.e. gold standard MoCap 

system and our experimental black sensors system for the knee kinematic movement parameters 

chosen (maximum knee extension, maximum knee flexion and range-of-motion per movement 

cycle). The concentration of points in specific areas of plot indicates some movement specific 

systematic error beyond the random effect and confirms that the two methods are not 

interchangeable. We aim to create a continuous knee monitoring system that is as valid as the 

optical motion capture systems, but which does not replace them.  

The last aspect investigated during motion test was the duration of battery life. Battery life was 

tested both during acquisitions and outside the analysis laboratory. The result was that the 

battery, if at maximum charge, kept the device on for at least 16 consecutive hours. 

 

4.3 Limitations 

Currently, our experimental system suffers some limitations, as can also be seen from the 

acquisitions, both at a design and performance level. At this stage, the variability introduced by 

various subjects was not a priority as the principles to be developed and studies here are 

sufficiently well represented by a single test subject and a certain number of tests and 

repetitions. 



The first limitation of black sensors system is the inability to correctly measure the subject’s 

turning during the activities. Fast and sudden turning are wrong-calculated by black sensors 

because of the above-mentioned “flip” angle issue (from -180° to 180°). Turning is a very 

common event in daily life and it is evident that representing angles in this range is completely 

unsuitable for daily activity monitoring. Moreover, turning events modify the reference system 

against which the knee angle is calculated, so the movement estimation after turning is 

compromise. There are no problems in estimating the angle of the knee if the turning is 

performed very slowly or you remain motionless for a few seconds before restarting any activity 

As it has been widely shown in the "Results" section, the second limitation is the time delay 

between the two signals. To clearly explain the origin of this problem, the diagram in Figure 

4.1. was created.  

The time shift seen in the graphs is caused by two factors: 

1) the lack of synchronization between the clock of the motion analysis laboratory and that of 

the sensors 

2) from an anomaly that sometimes occurs in one of the sensors. 

a) Furthermore, it is sometimes increased by the "time jumps" that occur in the black 

sensors’ timeline.  

As previously explained in the methods chapter, when the sensors acquire a sample, they also 

record the time in HH: MM: SS format. As already explained in table 2.1, (see “Methods- 2.3 

Adaptation phase”), the black sensors timeline is calculated starting from the capture moments 

of the two sensors. Since the sketches are loaded into the two sensors at different instants, the 

clocks of the two sensors are not synchronized. We have this situation:  

𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 𝑓𝑟𝑜𝑚 𝑆𝑒𝑛𝑠𝑜𝑟 1 ≠ 𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 𝑓𝑟𝑜𝑚 𝑆𝑒𝑛𝑠𝑜𝑟 2 

For this reason, we created an artificial timestamp taking the mean time from each sample of 

each sensor. Of course, this operation introduces an error in comparison with MoCap signal. 

The anomaly in the timeline of the black sensors consists in an incorrect recording of the time 

at which date is sampled. The cause of this anomaly remains unclear for now. This malfunction 

of the microprocessor could be due to the high number of operations required in a few 

milliseconds. The error committed every time this anomaly occurs is <1 second and the 

combination of these factors determines an incorrect calculation of the timeline vector of our 

experimental system. While this non-constant (thus linearly non-correctable), time shift affects 

the exact timing of specific events, this is of less or no interest/effect in long-term monitoring, 



where activity classification is central and the timing of events refers to their duration which 

remains highly accurate and not on their exact clock time. Thus, the black-sensor system as is, 

seems usable for monitoring applications.   

 

 

 

 

 

 

 

Figure 4.1. Diagram to schematize the time delay problem 

 

From a general point of view, the two major limitations that prevent using this prototype in 

monitoring daily activities are: 

• the dependence of a wi-fi network 

• the lack of a storage system for the data collected 

These two problems are closely related since the need to establish a Wi-fi connection for the 

transmission of data from the sensors to the computer arises from the lack of memory inside 

the sensors. The flash EPROM memory built into the microprocessor board is too small (4 MB) 

No synchronization
MoCap-black sensor

black sensor's 
timeline vector

no synchronization 
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black sensors 's clock 
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TIME DELAY 



to be useful for this project. Due to the high number of samples stored every second, the card 

would run out of memory space within a few seconds. Besides, saturating the EPROM memory 

would make the entire card unusable. 

 

4.4 Possible solutions to our problems and future works 

As it is possible to see the definition of the angles in the gyroscope between -180 and 180 causes 

problems and inaccuracies both in the estimate you need intra / extra rotational movements and 

in turning. To redefine the angle range, in order to delete the “flip” issue”, through the 

implementation of a new algorithm for calculation of quaternions could solve both, increasing 

the performance of the black sensors monitoring system. 

As part of a monitoring project such as ours, having a correct timing of events is very important 

for evaluation. It is essential to avoid the possibility that the shift over time between the two 

systems increases. The problem of temporal mismatch between the MoCap system and the 

black sensors has been carefully analysed, and several possible approaches have been proposed. 

It is necessary to implement a synchronization procedure between the two systems so that the 

time difference is reduced or even cancelled. The "time jump forward" problem could be solved 

in the post-processing phase. The designed solution consists of a function inserted within the 

Matlab algorithm, which has as input the raw timeline coming from the sensors and as output a 

new timeline without this calculation error. The function should recognize the presence of a 

"time jump" and replace it with a new time. The new time can be obtained through interpolation 

between the time preceding the anomaly and the following one. In order to eliminate the 

dependence on the computer, it was thought to implement a 64 GB micro-SD card. The 

implementation of this solution required the change of some hardware components and the 

addition of new components. The WeMos TTGO T-Base esp8266 board has been replaced by 

LOLIN D1 mini, a mini wifi board with 1MB flash based on ESP-8266EX, shown in figure 

4.1. This new card, smaller in size than the previous one, has the following characteristics: 

• 11 digital IO, interrupt / pwm / I2C / one-wire supported (except D0) 

• 1 analog input (3.2V max input) 

• a Micro USB connection 

• Compatible with MicroPython, Arduino, Nodemcu 

• Size: 34.2x25.6 mm 



• 1M Bytes FLASH inside 

• Weight: 3 g 

 

 

Figure 4.1. The new Wi-fi board LOLIN D1 mini 

The new components that we used to build the new version of our monitoring system are:  

1) A micro SD card shield  

2) Dual base shield for Wemos D1 mini  

3) 2 male connectors  

4) A battery shield with following features: 

a) Charging Voltage: max: 10V, recommend: 5V 

b) Charging Current: max: 1A 

c) Lithium Battery voltage: 3.3-4.2V 

d) Boost Power Supply: 5V (max: 1A) 



In Figure 4.2 is shown how the new version of our experimental sensors looks like.  

 

Figure 4.2. Lolin D1 mini and the battery shield welded on dual base shield (left down) with 2 

male connectors, the Adafruit BNO055 absolute orientation sensor and the micro SD shield 

(right down), all component assembled together (up) 

With the elimination of the Wi-fi connection, the Arduino sketch was also changed. The part 

that managed the sending of data to the computer has been replaced with lines of code that 

allow writing the data directly on the micro-SD card. This solution will allow storage capacity 

compatible with the needs of long-term monitoring, making the use of an additional device 

unnecessary. Unfortunately, it was not possible to test this new version of the experimental 

system in the context of this thesis project. The experimentation of this new set-up will be 



carried. Furthermore, it can be assumed that by reducing the number of operations entrusted to 

the microprocessor, the "time jump" events are also significantly reduced. 

However, the dimensions of this new prototype of the knee angle monitoring system black 

sensors are too large to allow comfortable and prolonged use by the subjects. sensor 

miniaturization is one of the next objectives. Nevertheless, the black sensors system developed 

here was meant as a low cost, highly adaptable platform for algorithm development and 

validation and not yet a commercial product, so that these usability aspects do not matter yet as 

much. 

The black sensors’ performance will be tested in free-living environmental with a high number 

of subjects. Despite we tested during our acquisitions the most part of daily life movements, we 

tested them separately and in well-defined way. Indeed, in daily life conditions, there are rapid 

and sudden changes in motion patterns, as well as long periods of rest (sleep) that have not been 

simulated in our motion tests. So, the next step of validation process of this knee angle 

monitoring system will be the assessment of performance in real life conditions with a wide 

number of subjects. Once the problems listed above have been resolved, the performance of the 

black sensor monitoring system will also be evaluated on the frontal and transverse planes, to 

be able to perform a complete and 3D analysis of the movement of the knee. The next step will 

be the design of support for the assessment of knee motion. Once the black sensor system will 

be able to record the variations on all three anatomical planes, an algorithm for recognizing 

specific events (steps taken, stopovers, sitting-standing transitions, running) or events abnormal 

in the patient's motor activity (turns, falls, reduction for prolonged periods, hyperextensions) 

will be elaborated. This will provide clinicians and physiotherapists an additional tool for 

assessing knee mobility. 

 

4.5 Discussion about usability 

The computer app was rated positively by the two experts. From the reported comments (see 

Results 3.4), the design and organization of the user interface have been deemed clear and 

efficient. The system proved to be very easy to use, although not completely intuitive, thanks 

to the button descriptions. The system did not generate any problems for the operators at the 

time of use. Despite the positive opinion, the usability of the app can be improved by using 

prompts and pop-ups in the various stages of use. As for the usability of the sensors, it depends 

on the positioning on the subject's leg. Although they did not limit or obstruct daily physical 



activities, they aroused a feeling of discomfort in the subject, especially when the sensors were 

closer to the hip and ankle. This is a problem related exclusively to the design and shape of the 

sensors, it can be solved in the subsequent phases of the project, with the miniaturization of 

both the hardware components of the sensors and the protections. 

However, there is a need to perform a more objective and accurate assessment of the usability 

of our experimental system. This can be done using standardized questionnaires and the 

increase in the number of users. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 Conclusion 

The aim of this thesis was to show the development and results achieved in the initial phase of 

a project for the development of a new knee monitoring system. The goal in this initial phase 

of the project was to create a knee monitoring system that had performance comparable to the 

MoCap system in a wide range of daily activity and specific movements. In this thesis work 

the bases on which the project was developed, and the subsequent adaptation phases were 

explained. Finally, the results obtained following the validation phase were exposed and 

discussed. The new experimental system designed has been evaluated concerning the current 

gold-standard reference instruments and has managed to obtain, in any movement performed 

on the sagittal plane, comparable results, especially in evaluating the extension of the knee in 

any movement performed, with an absolute error less than 5°. 

Although these results relate to acquisitions on a single subject, they provide promising 

indications on the possible applications and performances that the new experimental system 

can obtain. The prototype of the black sensor system has numerous aspects that must be 

developed both in the software part (such as the creation of the time vector, the 

implementation of a low-pass/band-pass filtering and subject-specific self-calibration 

procedures) and in the hardware part (miniaturization of components, waterproofing of 

sensors, improvement of battery life). In the future, this device could also be validated for 

further populations, adapted to be used for the monitoring of other joints and further 

developed in order to operate even without calibration and adaptation  

The final goal is to create a tool for daily monitoring of knee activity in daily living 

conditions that is reliable and that can help correct any errors. The areas in which the use of 

this tool is applied are rehabilitation, but also, shortly, that of prevention. 

 

 

 

 

 

 

 



6. APPENDICE 

6.1 Quaternion theory 

A quaternion is an extension of complex numbers. As is known, a complex number is made up 

of two components, that is, a real part and an imaginary part; it can be mapped in a Cartesian 

plane and therefore represented as a vector. If you have a complex number of type x + i⋅y in a 

plane you will get the value x as the coordinate of the abscissa, as the value y is ordered. 

Operations between these numbers are performed with the known rule i2 = −1. Quaternions are 

an extension of complex numbers to the purpose of mapping the space, only that unlike the 

complex field, the dimensions used are four, one real and three imaginaries. This peculiarity 

makes them difficult to visualize in their entirety since they consist of a four-dimensional 

abstraction that satisfies properties similar to those related to complex numbers. A quaternion 

can be described by the formula: 

𝒕 +  𝒙 ⋅ 𝒊 +  𝒚 ⋅ 𝒋 +  𝒛 ⋅ 𝒌 

where t, x, y and z are real numbers and i, j and k are imaginary components. If y and z are 

equal to 0, an imaginary number is trivially obtained, while if x, y and z are equal to 0 there is 

a real number. Sum and product of two quaternions are defined taking into account the relations: 

𝒊𝟐 = 𝒋𝟐 = 𝒌𝟐 = −𝟏 

          

i⋅j=k 

j⋅k=i 

k⋅i=j 

j⋅ i=−k 

k⋅j=−i 

i⋅k=−j 

Can be seen from the previous expression the analogies with the rule i2 = −1, which governs 

complex numbers. Unlike these, the product of quaternions is not, in general, commutative, 

precisely for the rules which indicate a very precise order in the operations to be performed. 



Quaternions have many characteristics similar to complex numbers, such as the norm and the 

conjugate, however they differ in not having a commutative product as mentioned above. The 

main properties of the quaternions are shown below: 

1. Non-commutative product. The product can be applied to two quaternions 

considering them as polynomials. In general, considering two quaternions q1 

and q2, the product of q1 by q2 usually differs from the product of q2 by q1 

(q1⋅q2 ≠ q2⋅q1). Since the product of the quaternions before the simplifications 

of the imaginary components always have the same structure, the resulting 

quaternion can be obtained directly by immediately operating on parameters a, 

b, c and d, therefore if we consider for example the quaternions: 

 

Q1=t1+x1⋅ i+y1⋅j+z1⋅k, Q2=t2+x2⋅ i+y2⋅j+z2⋅k 

Q1⋅Q2= Qris=tris+xris⋅ i+yris⋅j+zris⋅k 

With 

tris=t1⋅ t2 − x1⋅x2− y1⋅y2 − z1⋅z2 

xris=t1⋅x2 +x1⋅ t2 + y1⋅z2 − z1⋅y2 

yris=t1⋅y2 + y1⋅t2 + z1⋅x2 − x1⋅z2 

zris=t1⋅z2 + z1⋅ t2 + x1⋅y2 − y1⋅x2 

 

This product definition is extremely convenient from the computational point 

of view since it allows to obtain a direct result without further refinements. 

 

2. Associativity 

 

This feature does not only concern the product of quaternions, but can also be 

extended to the sum, in fact the quaternions can be added and multiplied with 

each other like complex numbers (as long as the order of the multipliers is 

maintained in the product as it is not commutative) and they enjoy the 

associative property with respect to these two operations, so given three 

quaternions Q1, Q2, Q3 we can say that: 

Q1 + (Q2 + Q3) = (Q1 + Q2 )+ Q3 

 

and that  



 

Q1 * (Q2 * Q3) = (Q1 * Q2 )* Q3 

 

3. Identity 

 

Consider a particular type of quaternion useful in multiplications, that is the 

quaternion with a real part equal to 1 and imaginary parts equal to 0 (therefore 

comparable to the real number 1). A quaternion thus formed is referred to as 

identity and is formulated through the following writing: 

 

Qid=1+0⋅i+0⋅j+0⋅k 

 

This quaternion has the characteristic of being the neutral element for 

multiplication, that is, for any quaternion, it is valid that: 

 

Qid *Q = Q* Qid =Q 

 

4. Conjugate  

 

A conjugate quaternion is defined as following  

 

Q= t – x*i -y*j -z*k 

 

that is, the sign of the parameters of the imaginary components is inverted.  

from this, it can be understood that the conjugate produces a contrary rotation 

of the quaternion from which it derives. 

 

5. Norm 

 

The norm of a quaternion is thus defined: 

 

|Q|=√𝒕𝟐 + 𝒙𝟐 +  𝒚𝟐 + 𝒛𝟐 

 



Unit quaternions will be considered later, and this subset will be referred to. 

There are also formulas for using normal quaternions for rotations, only that 

they will not be taken into consideration since their operation is similar to that 

reported for the unit subset.  

The fixed reference system depends on the initial position of the sensor, and that the system 

integral with the platform has the x, y and z axes defined directly by the hardware. 

The gyroscope, when scanned, simultaneously provides measurements of rotations of the 3 

axes. This data can be transformed into yaw, pitch and roll rotation angles. The order of 

insertion of the rotations is a crucial point for obtaining the correct quaternion, in fact, if you 

first insert a rotation in one axis (e.g. a rotation of yaw) and then a rotation in another axis (of 

roll) you get a different quaternion than what would be obtained if the order were reversed. In 

this regard, it is necessary to have an insertion formula (and then, as we will see, its 

extraction) that can manage these values simultaneously. The formula for all the Arduino 

platforms is similar to that for the Eulerian angles, it differs only from the position of the X, 

Y, Z axes of reference of the Cartesian space as mentioned above. Given the yaw, pitch and 

roll rotation angles, we define the following intermediate angles: 

p= pitch/2     y= yaw/2     r=roll/2  

we also define the following intermediate results, useful for obtaining the rotation formulas: 

a=cos(p)⋅cos(y)  

b=sin(p)⋅cos(y)  

c=sin(p)⋅sin(y)  

d=cos(p)⋅sin(y) 

Formulas that transform rotation into angles into a quaternion are defined as: 

 

t=a⋅cos(r)+c⋅sin(r) 

x=a⋅sin(r)−c⋅cos(r) 

y=b⋅sin(r)+d⋅cos(r) 

z=b⋅cos(r)−d⋅sin(r) 

 



The system created in this project will provide the position of the sensors in the form of a 

quaternion that will be elaborated and reconverted in eulerian angles through the formulas 

inverse to those shown. 

 

6.2 Results of other motion tests  

MT1-2° Repetition 

 

Figure 6.1. MoCap (red) and black sensors (blue) knee angle in MT1-2° Repetition 

In this motion test there are not significative differences respect the previous one. Despite this 

time black sensor’ clock worked perfectly, a delay between two signals still remains. The 

shapes of knee angle signals remain qualitatively very close. Even in this repetition, during 

squatting, black sensors knee sensors peak values underestimate the real values of knee angle 

by ca. 10 degrees 



 

Figure 6.2. MoCap (blue) and black sensors (red) maximum values knee flection for each squat 

(peak 1-5) or step (peaks >6) in MT1-2° Repetition 

     



Figure 6.3. MoCap (blue) and black sensors (red) maximum values knee extension for each 

squat (peak 1-5) or step (peaks >6) in MT1-2° Repetition 

Table 6.1. Mean values of experimental data, calculated by both system and compared, 

during MT1-1° Repetition 

Type of 

movement  

Mean value 

of max knee 

flection in 

MoCap 

(degrees) 

Mean value 

of max knee 

flection in 

black sensors 

(degrees) 

Mean value 

of max knee 

extension in 

MoCap  

(degrees) 

Mean value 

of max knee 

extension in 

black sensors  

(degrees)  

Mean 

difference 

between 

MoCap and 

black sensors 

in max knee 

flection  

(degrees) 

Mean 

difference 

between 

MoCap 

and black 

sensors in 

max knee 

extension 

(degrees) 

Global -74.5 ± 15.5 -75.8 ± 10.8 -4.8 ± 1.3 -6.0 ± 2.2 4.6 ± 3.2 1.9 ± 1.1 

Squatting -110.9 ± 4.4 -100.3 ± 1.6 -7.2 ± 1.5 -8.3 ± 1.0 10.5 ± 4.0 1.1 ± 1.1 

Walking -68.4 ± 3.5 -71.7 ± 3.8 -7.2 ± 1.5 -8.3 ± 1.0 3.3 ± 2.1 1.2 ± 2.0 

 

MT1- 4° Repetition 

 

Figure 6.4 MoCap (red) and black sensors (blue) knee angle in MT1-4° Repetition 



 

Figure 6.5. MoCap (blue) and black sensors (red) maximum values knee flection for each squat 

(peak 1-5) or step (peaks >6) in MT1-4° Repetition 

           



Figure 6.6. MoCap (blue) and black sensors (red) maximum values knee extension for each 

squat (peak 1-5) or step (peaks >6) in MT1-4° Repetition 

Table 6.1. Mean values of experimental data, calculated by both system and compared, 

during MT1-1° Repetition 

Type of 

movement  

Mean value 

of max knee 

flection in 

MoCap 

(degrees) 

Mean value 

of max knee 

flection in 

black sensors 

(degrees) 

Mean value 

of max knee 

extension in 

MoCap  

(degrees) 

Mean value 

of max knee 

extension in 

black sensors  

(degrees)  

Mean 

difference 

between 

MoCap and 

black sensors 

in max knee 

flection  

(degrees) 

Mean 

difference 

between 

MoCap 

and black 

sensors in 

max knee 

extension 

(degrees) 

Global -79.6 ± 14.4 -76.2 ± 10.9 -5.1 ± 1.6 -2.1 ± 2.5 3.6 ± 4.2 3.2 ± 1.3 

Squatting -112.1 ± 4.3 -98.7 ± 2.3 -7.6 ± 1.1 -6.6 ± 1.3 13.4 ± 2.5  1.0 ± 0.7 

Walking -74.5 ± 6.3 -72.6 ± 6.5 -4.7 ± 1.3 -1.4 ± 1.7 2.1 ± 1.4 3.5 ± 1.0 

 

MT3  

MoCap system failed the acquisition in this motion test. A numeric comparison is not possible 

for these motion test. Otherwise, the qualitative pattern can be evaluated by blue curve of black 

sensor system. 

 



Figure 6.7. MoCap (red) and black sensors (blue) knee angle in MT2 

MT4- 1° Repetition 

 

Figure 6.8. MoCap (red) and black sensors (blue) knee angle in MT4-1°Repetition 

 



Figure 6.9. MoCap (blue) and black sensors (red) maximum values knee flection for each 

step in MT4-1°Repetition 

 

 

 

Figure 6.10. MoCap (blue) and black sensors (red) maximum values knee extension for each 

step in MT4-1°Repetition 

 

 

Table 6.2. Mean values of experimental data, calculated by both system and compared, 

during MT4-1° Repetition 

Mean value 

of max 

flection in 

MoCap 

measureme

nts (degrees) 

Mean value 

of max 

flection in 

black 

sensors 

measureme

nts (degrees) 

Mean value 

of max 

extension in 

MoCap 

measureme

nts 

(degrees) 

Mean value 

of max 

extension in 

black 

sensors 

measureme

nts 

(degrees)  

Mean 

difference 

between 

MoCap and 

black 

sensors in 

max flection 

measureme

nts 

Mean 

difference 

between 

MoCap and 

black 

sensors in 

max 

extension 



(degrees) measureme

nts 

(degrees) 

-97.6 ± 7.9 -93.8 ± 8.1  -8.8 ± 2.0  -1.4 ± 0.9 3.7 ± 3.0 5.8 ±2.3 

 

MT4- 2° Repetition 

 

 

Figure 6.11. MoCap (red) and black sensors (blue) knee angle in MT4-2°Repetition 



 

Figure 6.12. MoCap (blue) and black sensors (red) maximum values knee flection for each 

step in MT4-2°Repetition 

 



 

Figure 6.13. MoCap (blue) and black sensors (red) maximum values knee extension for each 

step in MT4-2°Repetition 

 

Table 6.3. Mean values of experimental data, calculated by both system and compared, 

during MT4-2° Repetition 

Mean value 

of max 

flection in 

MoCap 

measureme

nts (degrees) 

Mean value 

of max 

flection in 

black 

sensors 

measureme

nts (degrees) 

Mean value 

of max 

extension in 

MoCap 

measureme

nts 

(degrees) 

Mean value 

of max 

extension in 

black 

sensors 

measureme

nts 

(degrees)  

Mean 

difference 

between 

MoCap and 

black 

sensors in 

max flection 

measureme

nts 

(degrees) 

Mean 

difference 

between 

MoCap and 

black 

sensors in 

max 

extension 

measureme

nts 

(degrees) 

-94.4 ± 9.9 -83.8 ± 7.6 -11.5 ± 3.3 10.1 ± 2.2 10.6 ± 3.1 2.0 ± 1.5 

 

 

MT4- 3° Repetition 

 



 

 

Figure 6.14. MoCap (red) and black sensors (blue) knee angle in MT4-1°Repetition 

 



 

Figure 6.15. MoCap (blue) and black sensors (red) maximum values knee flection for each 

step in MT4-3°Repetition 

 

 

 



 

Figure 6.15. MoCap (blue) and black sensors (red) maximum values knee extension for each 

step in MT4-3°Repetition 

 

Table 6.4. Mean values of experimental data, calculated by both system and compared, 

during MT4-3° Repetition 

Mean value 

of max 

flection in 

MoCap 

measureme

nts (degrees) 

Mean value 

of max 

flection in 

black 

sensors 

measureme

nts (degrees) 

Mean value 

of max 

extension in 

MoCap 

measureme

nts 

(degrees) 

Mean value 

of max 

extension in 

black 

sensors 

measureme

nts 

(degrees)  

Mean 

difference 

between 

MoCap and 

black 

sensors in 

max flection 

measureme

nts 

(degrees) 

Mean 

difference 

between 

MoCap and 

black 

sensors in 

max 

extension 

measureme

nts 

(degrees) 

-92.8 ± 6.7 -91.2 ± 4.6 -8.5 ± 2.0  -14.0 ± 2.2 2.4 ±1.1  5.5 ± 2.5 

 

 

 

MT5 



 

Figure 6.17. MoCap (red) and black sensors (blue) knee angle in MT5 

 

 



Figure 6.18. MoCap (blue) and black sensors (red) maximum values knee flection for each 

step in MT5 

 

Figure 6.19. MoCap (blue) and black sensors (red) maximum values knee extension for each 

step in MT5 

 

Table 6.5. Mean values of experimental data, calculated by both system and compared, 

during MT5 

Mean value 

of max 

flection in 

MoCap 

measureme

nts (degrees) 

Mean value 

of max 

flection in 

black 

sensors 

measureme

nts (degrees) 

Mean value 

of max 

extension in 

MoCap 

measureme

nts 

(degrees) 

Mean value 

of max 

extension in 

black 

sensors 

measureme

nts 

(degrees)  

Mean 

difference 

between 

MoCap and 

black 

sensors in 

max flection 

measureme

nts 

(degrees) 

Mean 

difference 

between 

MoCap and 

black 

sensors in 

max 

extension 

measureme

nts 

(degrees) 

-89.9 ± 8.3 -84.6 ± 10.6 -6.3 ± 4.3 -11.0 ± 1.7 5.3 ± 3.1 4.7 ± 4.4 

 

 



 

MT6- 1° Repetition 

 

 

 

Figure 6.20. MoCap (red) and black sensors (blue) knee angle in MT6-1°Repetition 



 

Figure 6.21. MoCap (blue) and black sensors (red) maximum values knee flection for each 

step in MT6-1°Repetition 

 

 



 

Figure 6.22. MoCap (blue) and black sensors (red) maximum values knee extension for each 

step in MT6-1°Repetition 

 

Table 6.6. Mean values of experimental data, calculated by both system and compared, 

during MT6-1° Repetition 

Mean value 

of max 

flection in 

MoCap 

measureme

nts (degrees) 

Mean value 

of max 

flection in 

black 

sensors 

measureme

nts (degrees) 

Mean value 

of max 

extension in 

MoCap 

measureme

nts 

(degrees) 

Mean value 

of max 

extension in 

black 

sensors 

measureme

nts 

(degrees)  

Mean 

difference 

between 

MoCap and 

black 

sensors in 

max flection 

measureme

nts 

(degrees) 

Mean 

difference 

between 

MoCap and 

black 

sensors in 

max 

extension 

measureme

nts 

(degrees) 

-77 ± 22.2 -70.3 ± 20.2 -11.3 ± 0.4 -9.9 ± 1.5 6.9 ± 2.3 1.4 ± 1.2 

 

MT6- 2° Repetition 



 

Figure 6.23. MoCap (red) and black sensors (blue) knee angle in MT6-2°Repetition 

 

 



Figure 6.24. MoCap (blue) and black sensors (red) maximum values knee flection for each 

step in MT6-2°Repetition 

 

Figure 6.25. MoCap (blue) and black sensors (red) maximum values knee extension for each 

step in MT6-2°Repetition 

 

Table 6.7. Mean values of experimental data, calculated by both system and compared, 

during MT6-2° Repetition 

Mean value 

of max 

flection in 

MoCap 

measureme

nts (degrees) 

Mean value 

of max 

flection in 

black 

sensors 

measureme

nts (degrees) 

Mean value 

of max 

extension in 

MoCap 

measureme

nts 

(degrees) 

Mean value 

of max 

extension in 

black 

sensors 

measureme

nts 

(degrees)  

Mean 

difference 

between 

MoCap and 

black 

sensors in 

max flection 

measureme

nts 

(degrees) 

Mean 

difference 

between 

MoCap and 

black 

sensors in 

max 

extension 

measureme

nts 

(degrees) 

-77.1 ± 21.5 -68.3 ± 19.0 -14.3 ± 4.2 -11.4 ± 3.9 8.8 ± 3.5 2.9 ± 2.4 

 

MT6- 3° Repetition 



 

Figure 6.26. MoCap (red) and black sensors (blue) knee angle in MT6-3°Repetition 

 

 



Figure 6.27. MoCap (blue) and black sensors (red) maximum values knee flection for each 

step in MT6-3°Repetition 

 

 

Figure 6.28. MoCap (blue) and black sensors (red) maximum values knee extension for each 

step in MT6-3°Repetition 

 

Table 6.8. Mean values of experimental data, calculated by both system and compared, 

during MT6-3° Repetition 

Mean value 

of max 

flection in 

MoCap 

measureme

nts (degrees) 

Mean value 

of max 

flection in 

black 

sensors 

measureme

nts (degrees) 

Mean value 

of max 

extension in 

MoCap 

measureme

nts 

(degrees) 

Mean value 

of max 

extension in 

black 

sensors 

measureme

nts 

(degrees)  

Mean 

difference 

between 

MoCap and 

black 

sensors in 

max flection 

measureme

nts 

(degrees) 

Mean 

difference 

between 

MoCap and 

black 

sensors in 

max 

extension 

measureme

nts 

(degrees) 

-76.9 ± 18.0  -71.6 ± 18.6 -9.0 ± 1.6 -6.6 ± 1.0 5.3 ± 2.1  2.5 ± 2.1 

 



MT7-1° Repetition 

 

Figure 6.29. MoCap (red) and black sensors (blue) knee angle in MT7-1°Repetition 

 



 

Figure 6.30. MoCap (blue) and black sensors (red) maximum values knee flection for each 

step in MT7-1°Repetition 

 



Figure 6.31. MoCap (blue) and black sensors (red) maximum values knee extension for each 

step in MT7-1°Repetition 

 

Table 6.9. Mean values of experimental data, calculated by both system and compared, 

during MT7-1° Repetition 

Mean value 

of max 

flection in 

MoCap 

measureme

nts (degrees) 

Mean value 

of max 

flection in 

black 

sensors 

measureme

nts (degrees) 

Mean value 

of max 

extension in 

MoCap 

measureme

nts 

(degrees) 

Mean value 

of max 

extension in 

black 

sensors 

measureme

nts 

(degrees)  

Mean 

difference 

between 

MoCap and 

black 

sensors in 

max flection 

measureme

nts 

(degrees) 

Mean 

difference 

between 

MoCap and 

black 

sensors in 

max 

extension 

measureme

nts 

(degrees) 

-51.3 ± 2.5 -47.6 ± 3.3 -7.3 ± 3.4 -9.2 ± 2.1 3.7 ± 1.4 3.0 ±4.3  

 

 

MT7-2° Repetition 

 

Figure 6.32. MoCap (red) and black sensors (blue) knee angle in MT7-2°Repetition 



 

 

Figure 6.33. MoCap (blue) and black sensors (red) maximum values knee flection for each 

step in MT7-2°Repetition 



 

Figure 6.34. MoCap (blue) and black sensors (red) maximum values knee extension for each 

step in MT7-2°Repetition 

Table 6.10. Mean values of experimental data, calculated by both system and compared, 

during MT7-2° Repetition 

Mean value 

of max 

flection in 

MoCap 

measureme

nts (degrees) 

Mean value 

of max 

flection in 

black 

sensors 

measureme

nts (degrees) 

Mean value 

of max 

extension in 

MoCap 

measureme

nts 

(degrees) 

Mean value 

of max 

extension in 

black 

sensors 

measureme

nts 

(degrees)  

Mean 

difference 

between 

MoCap and 

black 

sensors in 

max flection 

measureme

nts 

(degrees) 

Mean 

difference 

between 

MoCap and 

black 

sensors in 

max 

extension 

measureme

nts 

(degrees) 

-52.5 ± 4.9 -48.5 ± 5.6 -8.6 ± 3.0 -8.4 ± 3.2 4.0 ±0.8 1.9 ± 2.2 

 

 

 

 

 



 

 

 

 

BLAND-ALTMAN GRAPH CALCULATION TABLE 

Table 6.11. Table with mean of each row of the matrix explained in Results 3.3  

Range of Motion n° Mean values from MoCap Table Mean values from Sensor Table 

1 -96.7500   -87.1674 

2  -107.6268   -95.1901 

3  -105.4140   -95.7643 

4  -100.0655   -90.2543 

5   -99.2341   -91.0253 

6   -52.7816   -50.5936 

7   -63.0548   -63.1307 

8   -67.5400   -68.5365 

9   -68.8570   -71.0501 

10   -68.5661   -72.6745 

11   -69.7655   -73.4637 

12   -67.2335   -71.4151 

13   -67.9903   -72.4688 

14   -67.8017   -71.3648 

15   -65.3856   -67.9962 

16   -65.5794   -67.9224 

17   -65.9549   -68.4109 

18   -65.9607   -68.2863 

19   -65.2620   -68.3511 

20   -64.7399   -68.0004 

21   -64.1216   -67.6740 

22   -64.7444   -66.1852 

23   -65.0629   -67.6481 

24   -64.8663   -67.1238 

25   -64.8005   -67.1616 

26   -65.0793   -67.2652 

27   -64.5945   -66.7152 

28   -66.2151   -68.9452 

29   -66.3522   -67.9736 

30   -68.3634   -69.3455 

31   -68.2592   -70.9081 

32   -67.1795   -68.6779 

 

 

 


