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Introduction

Figure 1: Example of a personal radar [1].

The purpose of this thesis is to introduce the millimeter wave radar tech-
nology applied to the mapping and localization tasks in order to investigate
the feasibility of the recently proposed ”personal radar” concept.
More specifically, it has to be intended as a future feature of mobile devices
for estimating the maps of the indoor enviroments while exploiting the tech-
nology already in place for wireless communications, allowing the possibility
to realize infrastructure-free localization applications, such as guidance to
visually impaired people, etc. [1].
The personal radar operates as follows. It automatically scans the sur-
rounding enviroment and with the usage of radiating elements it collects
the backscattered response at each scan direction. After that by analysing
the collected data, the personal radar is able to infer the map of the environ-
ment. An example of personal radar application, is reported in figure 1.
Currently, the most adopted technologies are lidar (i.e., laser-based radar)
or camera-based solutions but usually these technologies might be expensive,
requiring mechanical steering and perfect visibility of the enviroment. For
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these reasons it becomes interesting to explore the millimeter wave radar
technology in order to overcome the aforementioned limitations. In fact, the
millimeter wave radar technology offers the possibility to pack a large number
of antennas into a small space and hence to realize narrow beam radiation
diagrams at the expense of some performance degradation with respect to
lidars.
For these reasons we decided to organize this thesis into the following chap-
ters.
In the first chapter a brief introduction to the theory of radar is reported,
with particular attention to the specific technology that is used in this thesis
that is the FMCW radar. For this family of radars an analysis of the main
parameters and how it works is reported. Finally a brief overview of the
Constant False Alarm Rate (CFAR) theory is given.
Then a summary on the SLAM theory, is desribed in chapter 2, with some
insights on its mathematical formulation and on examples of algorithms. In
particular more emphasis is put on the theory of Graph-based SLAM, which
will be exploited in the adopted Matlab algorithm.
After that an overview of the specific device that is used in this thesis, that
is the Texas Instuments IWR1443, is given in chapter 3, with a particular
attention on the data path chain and on how the device is able to determine
the (x,y,z) coordinates of the objects detected in an unknown enviroment.
In chapter 4, some cleaning algorithms are investigated in order to perform
the de-embedding of the radar’s antenna effect from the backscattered mea-
surements. At the end some numerical results that show merits and flaws of
each algorithm are reported as well as a discussion about their adoption in
practical applications.
Finally the numerical results obtained from dedicated experiments carried
out in real environments are illustrated and discussed in chapter 5 which is
then followed by conclusions and future investigations.
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Chapter 1

RADAR

1.1 Fundamentals of Radar

Figure 1.1: Radar schematic block

The acronym radar [2] means ”Radio Detection and Ranging” and identifies
any system designed to detect the presence of an obstacle using radio tech-
nology and measure its distance. Figure 1.1 shows the basic block diagram
of a generic radar in which the transmitter has the function to generate and
irradiate with a suitable waveform.
The receveir has the function to reveal and elaborate the returning echo from
an obstacle nearby the device. Apart from this, the device allows the esti-
mation of many other parameters such as position and velocity.
The main idea is to transmit a continuos wave, in the form
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x(t) = A cos(2πft) (1.1)

and to receive a signal that can be written as

r(t) = B cos(2πft− φ(t)). (1.2)

It is demonstrated that working in this way it is hard to recognize an echo
due to the fact that it might be overlapped to the transmitted signal that
has a higher power than the echo and hence it is usually adopted to detect
moving obstacles by exploiting the Doppler effect.
The previous descripted devices are part of the family of ”Continuos Wave
Radar”.
To avoid the discussed problem it is possibile to transmit a modulated sig-
nal. One option is using impulse-based radar, where a very short pulse is
transmitted in such a way the returning echo results to be not overlapped
to the transmitted signal. By measuring the round-trip time it is possible
to infer the distance of the target. Another option is to consider frequency
modulated carriers, as it will be described in the next section, from which
both the distance and the velocity of the target can be estimated.
In this sense, the radar equation helps at describing the behaviour of the
radar technology, thanks to its dependence on the target distance, the device
technology (i.e., antennas, etc) and on the propagation model of the consid-
ered enviroment. Consider the power density of the transmitted signal at
distance R, that can be written as

S =
PTGT

4πR2
(1.3)

where PT is the transmitted power and GT is the transmitter antenna gain.
The power that the obstacle backscatters to the radar depends on the Radar
Cross Section (RCS) of it. The radar cross section, σ, gives an idea of how
much an obstacle is detectable by a radar and it is measured in square meters.
The received power density is given by

SR =
PTGT

4πR2

σ

4πR2
. (1.4)

From the above relations it is possible to determine the received power
at the radar:

PR =
PTGT

(4π)3R2

σ

4πR2
AR (1.5)
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where AR = GRλ
2

4π
is the effective area of the receiving antenna, GR is the

receiver antenna gain and λ is the wavelength of the wave. Therefore, the
received power can be written as:

PR =
PTGTGRλ

2σ

(4π)3R4
(1.6)

It is important to notice that the received power depends on the inverse
of fourth power of the distance and on the second power of the wavelength
(this is one of the reasons that explains why the frequencies typically used
are of the order of GHz).

1.2 FMCW Radar theory

Figure 1.2: Example of a chirp [3].

The FMCW radar is very common in automotive and industrial appli-
cations and it usually measures range, velocity and angle of arrival of the
obstacles in front of it [3].
The basic signal of this kind of radar is called ”chirp”, that represents a
sinusoidal wave whose frequency is linearly increased within a time window
of duration Tc. Figure 1.2-top shows an example of chirp, whereas Figure
1.2-bottom puts in relevance its slope S, which is a straight line. The slope
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Figure 1.3: FMCW block diagram [3].

of the chirp S is an important parameter that defines the rate of increase
of the frequency and in the following it will be used to determine the range
resolution.

In figure 1.3 an example of a block diagram of a FMCW radar is reported.
In particular, the system synthetizes a chirp and transmits it over the air,
then an obstacole will reflect this chirp back to the system. After that there
is a mixer that multiplies the transmitted chirp and the received chirp. This
operation corresponds to the difference in the frequency domain thus gener-
ating a signal at intermediate frequency (IF). If in front of the radar there
is only one obstacole then the IF signal will be only one. The discussed
principle is reported in figure 1.4.

The main feature of this IF signal is that it has a constant frequency
that depends on the slope of the chirp and on the round-trip-time τ of the
reflected signal, where τ = 2R

c
, being c the speed of light, and it is given by

IF = Sτ. (1.7)

The higher is the number of obstacles in the enviroment, the higher is the
number of IF signals generated along their respective frequencies.
As discussed before, the radar can estimate some different parameters about
an obstacle, such as the range resolution [3], that is the capability to distin-
guish two closely spaced obstacles. A way to distinguish two obstacles could
be the increase of the observation window, at the prize of a larger occupied
bandwidth.
More precisely, let us focus on the relation between the resolution and the
bandwidth, which is given by
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Figure 1.4: One obstacle detection [3].

∆f =
S2∆d

c
. (1.8)

Due to the fact that ∆f = 1
Tc

and B = STc, equation (1.8) can be writtem
as follows:

∆d >
c

2B
. (1.9)

Equation (1.9) gives the range resolution as a function of the bandwidth
so that increasing the bandwidth improves the range resolution.
Another parameter that can be of interest for some applications is the veloc-
ity, so that is important to understand what is the principle followed for the
velocity estimation [4].
The idea is to transmit two or more chirps with a time separation of Tc and
then to capture the returning chirps coming from the obstacle. The result
on the receiver will be a sinusoidal tone at the same IF frequency but with
different phase for each transmitted chirp. This phase difference can be used
to estimate the velocity of a single obstacle.
The difference of the two phases, ω, corresponds to a precise spatial move-
ment of the obstacle in the radial direction of vTc:

ω =
4πvTc
λ

. (1.10)
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So from equation (1.10) it is possible to evaluate the velocity of the ob-
stacle as

v =
λω

4πTc
. (1.11)

Since the phase measurement is periodic of 2π, there could be an ambigu-
ity in velocity estimation meaning that the radar is not capable to understand
the obstacles’s velocity, since the constraint |ω| < π is not respected. From
the above explantion it is possible to set an upper bound to the velocity,
indeed if the phase difference is equal to π then the maximum velocity that
the radar can manage is:

vmax =
λ

4Tc
. (1.12)

It is clear that to increase the velocity bound it is necessary to have more
closely chirps, i.e., Tc should be decreased.
The previous equations take into account only a single obstacle, so that is
important to have just the idea of what the radar does if the obstacles are
more than one.
The principle is to transmit a window of N chirps, that is called frame
window, and the final result is very similar to an increase of the observation
window. An efficient way to processs the signal is by performing a Fast
Fourier Transform (FFT) along the various chirp signals thus obtaining the
so-called Doppler FFT. Obstacles at different distances/velocities will appear
as separated peaks in the Doppler FFT if the resolution is respected.
Also this kind of estimation has a resolution, that represents the minimum
velocity differerence of two objects that the radar can sense and it is given
by:

∆v =
λ

2NTc
. (1.13)

Since NTc represents the frame time Tf , the final velocity resolution is:

∆v =
λ

2Tf
. (1.14)

The last kind of information that this radar can manage is the estimation
of the angle of arrival [5] of a returning signal, with the knowledge that this
parameter can be estimated if multiple antennas are present (MIMO Radar)
only.
First of all let us consider the case in which there is only a single obstacle
in front of the radar. For this estimation at least two receiving antennas are
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Figure 1.5: One obstacle detection [5].

required so that it is possible to determine the angle of arrival using the phase
difference information of the receiving antennas. In few words the different
distance of the obstacle from the receiving antennas results in a phase change
ωa which is given by:

ωa =
2π∆d

λ
(1.15)

where ∆d is the difference between the distances of two consecutive trans-
mitting elements and λ is the wavelength of the signal. The transmitting
antenna transmits a frame of chirps and then at the receiving antennas the
2D-FFT, done accross the antennas, will show the peaks of the signal in the
same location but with different phase. The measured phase difference ω can
be used to estimate the angle of arrival. Due to that the phase difference will
be:

ω =
2πd sin θ

λ
(1.16)

and from the above equation it is possible to obtain the angle:

θ = sin -1 λω

2πd
. (1.17)

Unlike the previous estimates (range and velocity), now the relationship
is non linear and so is the accuracy which is lower for large angles.
Also this time there is an upper bound on the estimation to avoid the ambi-
guity, which is given by:

θmax = sin-1 λ

2d
. (1.18)
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Notably, if more obstacles are present, antenna arrays are required to dis-
criminate them in the angular domain. The higher is the resolution required,
the higher is the number of needed antennas.
Regarding the angle resolution it is possible to define it as the minimum angle
of separation for the obstacles to appear as separated peaks in the angular
domain, and it is given by:

θres =
λ

Nd cos θ
. (1.19)

In chapter 3, more details will be provided on how to process the received
signal usign FFT operations.

1.3 Constant False Alarm Rate (CFAR) the-

ory

The device that is used in this thesis is based on what has been discussed in
the previous sections and also on the CFAR theory.
This is a techinique with which a radar can decide whether the received signal
is the result of a signal backscattered by an obstacle.
CFAR means ”Constant False alarm Rate” and the purpose of this technique
is to determine the power threshold above which any returning echo can be
considered coming from a target. The value of this threshold determines
the number of obstacles that can be detected, indeed if the threshold is low
a larger number of obstacles can be detected, whereas, a high value of the
threshold reduces the number of detectable obstacles. In CFAR-based radars,
this value is choosen in order to achieve a specific false alarm rate. The false
alarm ratecan represents a projects requirement so the application needs to
satisfy a certain false alarm probability, so the number of false positive needs
to be less than the rate choose, in order to maintain a good quality of its
performances.
The value of the threshold depends on the receiver noise level as well as on the
clutter generated by the environment. For example if the enviroment presents
constant conditions then a constant threshold can be chosen. Conversely a
variable threshold is needed. The adaptation of the threshold will mantain
the false alarm rate constant.
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Chapter 2

SLAM theory

2.1 Fundamentals of SLAM theory

After a brief introduction to radar theory it is now possible to introduce the
next step of this Thesis.
One of the key methodologies necessary to enable the personal radar appli-
cation is SLAM.
SLAM [6] stands for ”Simultaneous Localisation And Mapping” and its pur-
pose is the concurrent construction of a model of the enviroment (the map),
and the estimation of the state of the robot or person moving within it. Be-
fore introducing the mathematical formulation of SLAM, we briefly describe
the current mapping methods and for which scenario they are suitable.
In the following, two kind of SLAM algorithms are introduced:

� Feature-Based: These kind of algorithms are used every time the
enviroment can be described by landmarks distinguishable from each
other. They are often used with some accurate sensing system such as
laser.

� Grid-Based: These kind of algortihms are used when there is the
necessity to handle with some less accurate sensor data or in general,
no well-defined landmarks are identifiable.

The most common formulation of a SLAM problem makes use of the
probability theory and in particular formulates it as a maximum a-posteriori
estimation problem [6].
Let X be the random vector that groups the trajectory of the device (as will
be seen later the trajectory is described by a succession of poses) and the
position of landmarks in the enviroment i.e., the state of the system. The
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random process gives also a set of measurements z1:T in which a general form
for the measurement at time instant k is:

zk = hk(xk) + εk (2.1)

in which h(xk) represents the measurement model and εk is the random
measurement noise.
The purpose of a SLAM algorithm is to estimate X, i.e., the position of the
landmarks (i.e., the map) and the trajectory of the mobile node, starting
from the collected mesurement Z. Within a Bayesian framework, this can
be carried out by computing the Maximum a Posteriori (MAP) estimate,
namely the belief, given by:

X∗ = argmax
x

[p(X|Z)] = argmax
x

[p(Z|X)p(X)] (2.2)

where p(Z|X) represents the likelihood of the measurements Z starting from
the assignement X and p(X) is the prior probability which includes any prior
information about the problem.
Assuming that the measurements in Z are indipendent, the formulation of
the problem can be modified by factorizing the probability as follows

X∗ = argmax
x

[p(X)
T∏
k=1

p(zk|X)]

= argmax
x

[p(X)
T∏
k=1

p(zk|xk)].

(2.3)

Assuming now that εk is a zero-mean Gaussian noise with information
matrix Ωk (inverse of the covariance matrix) and assuming that the prior

p(X) ∝ exp−
1
2
||h0(X)−z0||2 it is possible to rewrite equation (2.3) as:

X∗ = argmin
x
− log[(p(X)

T∏
k=1

p(zk|xk))]

= argmin
x

T∑
k=0

||hk(xk)− zk||2.

(2.4)

Equations (2.3) and (2.4) refer to the same problem because maximizing
the posterior probability is the same as minimizing the negative log poste-
rior.
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Due to the fact that equation (2.4) is not simple from the computational
point of view because one should check all possible combinations of the se-
quence of states, To counteract this effect, other algorithms under the family
of Bayesian filters have been proposed, that make use of the following Marko-
vian[7] properties:

� The state at step k depends only on the state at step k − 1, that is,

p(xk|x0:k−1, z1:k−1) = p(xk|xk−1) (2.5)

where x0:k = [x0, x1, ..., xk] is the set of system states in which the posi-
tions of the landmarks are also considered in order to realize the SLAM
application and z1:k = [z1, z2, ..., zk] is the set of noisy measurements.

� A current measurement zk is conditionally independent on the past
measurements and states

p(zk|x0:k−1, z1:k−1) = p(zk|xk) (2.6)

� In most practical cases, the measurements are also conditionally in-
dipendent.

There are some kind of approaches that can be followed:

� Filtering approach:real time estimate of the future position of the
device using the current measurement available.

� Smoothing approach: computation of the entire device trajectory
from the availablle complete set of measurements.

These two approaches try to simplify the SLAM problem with a recursive
solution as follows.
First of all the posteriori marginal at time step 0 is set to the prior then the
algorithm computes those two following operations recursevely:

� Prediction step ∫
p(xk|xk−1)p(xk−1|z1:k−1) dxk−1 (2.7)

� Update step
p(zk|xk)p(xk|z1:k−1)∫
p(zk|xk)p(xk|z1:k−1) dxk

. (2.8)
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At this point it is possibe to compute the estimation following a Minimum
Mean Square Error (MMSE) approach or a MAP approach:

xMMSE
k =

∫
xkp(xk|z1:k) dkn (2.9)

xMAP
k = argmax

xk

p(xk|z1:k−1) (2.10)

where if the a-posteriori distribution is Gaussian, equations (2.9) and (2.10)
coincide.
To keep the complexity affordable, there is a number of available algorithms
such as the Kalman Filter (KF) or Extended Kalman Filter (EKF) and
others, exist.

2.2 Graph-Based SLAM

This family of SLAM algorithms [8] exploits the graph theory in order to
build the map of the enviroment, representing the position of the device at
different points in time with nodes and the constraints between the poses with
edges. Such an information is obtained from observations of the enviroment.
Those informations create a graph that is the grapichal representation of the
evolution of the poses of the device.
Once a graph is constructed, the map can be computed by finding the spatial
configuration of the nodes that is mostly consistent with the measurements
modeled by the edges. This representation goes under ”Graph Based” or
”Network Based”.
In Graph Based SLAM, the mobile device poses are described with some
nodes in the graph that are labeled with their position in the enviroment.
The information about the physical limits of the enviroment are carried by
the edges between the nodes of the graph.
So it is clear that the SLAM problem is divided in two main tasks:

� Graph construction: Starting from the raw sensor data the algo-
rithm constructs the graph that models the problem.

� Graph optimization: After the first step the algorithm optimizes the
graph by computing the most likely configuration of the poses based
on the edges of the graph.

The first part of this process is sensor dependent so it means that changing
the features of the sensor could give different graph representations of the
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same enviroment.
In the following a general formulation of the graph based problem is given[8].
Let x = (x1, ..., xT )T be a vector in which each element describes the pose
of node i and let zij and Ωij be the real measurement and the information
matrix of a measurement between the node i and the node j.
Let ẑij(xij ) be the prediction of a measurement based on a configuration of
the nodes i and j. At this point it is possible to introduce e(xi, xj, zij) as the
difference between the expected value of ẑij and the actual measurement zij
provided by the robot. Just to simplify the notation the indices i and j are
connected to the error function:

eij(xi, xj) = zij − ẑij (2.11)

The purpose of this approach is to find the configuration of the nodes x∗

that minimizes the likelihood of all observations:

F (x) =
∑

<i,j>∈C

eij
TΩij eij (2.12)

where C is the set of pairs of indices for which a observation z exists.
Finally, the problem becomes the evaluation of the following equation:

x∗ = argmin
x

F (x) (2.13)

that can be solved in many different ways [8].

2.3 Matlab SLAM algorithm

The algorithm that is used in this project comes from Matlab libraries [9]
and it is an algorithm built for lidar’s applications. In the following a short
explanation of what the algorithm does regarding the graph-based theory is
proposed.
To build the map of the enviroment, the SLAM algorithm processes the
output of the scan operation i.e., the set of measurements related to an angle
scan of the lidar, and builds a pose-graph that links the scan.
First of all it is necessary to import the data coming from the lidar, after
some processing, to the matlab enviroment.
After that, the algorithm creates an object, called lidarSLAM, used as input.
Inside this object it is possible to set some parameters of the object such as
the map resolution and the maximum range that can be considered. It is
also possible to add an extra parameter that regards the maximum number
of scans that the algorithm can manage.
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At this point the algorithm inserts scans until the maximum number of scans
specified is reached.
An important task that this algorithm has to resolve is the so called loop
closure which has the purpose to recognize if a pose is already present and
then it tries to update it. The purpose is to iteratively improve the scan to
give a more precise map of the enviroment.
The last task is to contruct the occupancy map: in few words the algorithm
reads the produced data and the associated poses and builds a grid [x,y,θ],
where x and y represents the position and θ is the orientation of the scan,
and use it to build the occupancy map.
The matlab code of this algorithm is reported in the appendix A of this
thesis.
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Chapter 3

mmWave Radar Equipment

3.1 The Teaxs Instruments radar IWR1443

Figure 3.1: IWR1443

The IWR1443[10] [11] device is a millimeter wave sensor based on FMCW
technology that works in a frequency range of 77-81 GHz with 4 GHz of band-
width.
The device is equipped with 4 receiving antennas and 3 transmitting an-
tennas that allows to realize a virtual array with 1 TX and 12 antennas,
respectively. According to the considered arrays, 3D beamforming opera-
tions can be performed. The device has a DSP mounted on the same PCB
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Figure 3.2: E-plane and H-plane of the antenna pattern [10].

that allows a first raw elaboration of the data in order to obtain the main
information.
The main features of this device are:

� Azimuth range: a single radiating element of the azimuth plane of
the device presents a beamwidth of 110 degrees with a resolution of 15
degrees on the azimuth plane.

� Elevation range: Due to the fact that the device works with 3D
coordinates it is useful to consider also the elevation range, that for a
single antenna of the elevation plane of this device is in the order of 30
degrees with a resolution of 57 degrees.

Just for information in figure 3.2 is shown the antenna radiating diagram both
for the azimuth and for the elevation plane and it is possible to recognize the
beamwidth reached from the single antenna. These two angles form the so
called Field of View (FOV)of the radar, and represents the area where the
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Figure 3.3: Antennas configuration [10].

radar is capable to detect objects.
To understand the angle and coordinates estimation it is useful to focus on
the configuration of the antenna.
For this device it is possible to choose between the 2 and 3 transmitters
configuration, but in the following just for simplicity only the 3 transmitters
configuration is reported.
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Figure 3.4: Antennas working principle [11]

In the previous figure ωx represents the phase difference between consecutive
receiver azimuth antennas , ωz is the phase difference between azimuth and
the corresponding elevation antenna above the azimuth antenna and δ rep-
resents the contribution of the Doppler effect.
From figure 3.3 and figure 3.4 it is possible to see that the receiving anten-
nas are placed at a distance of λ

2
, where λ is the wavelength of the signal,

from each other and are placed in a horizontal plane while the transmitting
antennas are placed at a distance of λ but they are not on the same plane.
In particular transmitter number two is shifted up of a quantity of λ

2
. This

allows the device to give the user also 3D information.
The 3 TX antennas are activated in sequence at each chirp trasmission as
shown in figure 3.4. Indeed, from the received symbols on the virtual array
it is evidenced that the receiver indexed with number 1 on the virtual array
is the reference one, and the relative phase shifts between antennas can be
extracted.
Regarding the Detection and Localization chain it is important to pay atten-
tion on the data path chain and how the device works and gives to the user
the coordinates of the obstacles in the enviroment.

As it is shown in figure 3.5 the data processing is divided in some phases:
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Figure 3.5: Data path processing chain [11].

� 1st Dimension FFT Processing: This first FFT block elaborates
range data from raw data coming from the Analog-Digital Converter
(ADC) after a Blackman windowing operation. Every time the ADC
has a data stream it sends it to the datapath that processes it.

� 2nd Dimension FFT Processing: Successively, another FFT oper-
ation is performed, but this time in two dimensions with the goal to
get the Doppler informations. It is a trade-off between precision and
memory storage.

� CFAR Detection: At this stage, a CFAR-based procedure is per-
formed, and its output is the number of detected obstacles. Indeed the
higher is the threshold the lower is the number of detected obstacles
and vice-versa. The advantage of this technique is that the threshold
value is set, and its value can be variable in space and/or in time, in
such a way that the false alarm remains constant.

� Post processing: After CFAR processing it is possibile to do peak
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Figure 3.6: Coordinates geometry [11].

grouping and Doppler phase shift compensation. For example the de-
tected obstacles that are outside of the range specified by the configu-
ration are discarded.

� Direction of Arrival Estimation:

This is the crucial phase of data processing because here the goal is to
estimate the position (i.e., the (x, y, z) coordinates) of each detected
obstacle.
From figure 3.6, φ represents the elevation angle while θ represents the
azimuth angle of an obstacle.
Considering a single obstacle, the signal received by the 8 azimuth re-
ceiving antennas (there are 4 receiving antennas and 2 azimuth trans-
mitting antennas so we have 8 virtual antennas) is:

r = A1e
jψ ·
[
1ejωxej2ωxej3ωxej4ωxej5ωxej6ωxej7ωx

]
(3.1)

where A1 and ψ represent the amplitude and the initial phase at first
antenna, respectively and ωx is the phase shift of the signal between
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two consecutive antennas due to the angular position of the obstacle
(φ,θ). To be more clear ωx, ωx = π sin(θ) cos(φ), represents the phase
difference between consecutive receiver azimuth antennas of the 2D
FFT.
After a FFT of vector (3.1) a peak P1, present at ω = ωx with phase
ψ, is given by:

P1 = A1 · ejψ. (3.2)

Defining KMAX as the index associated to the FFT peak, the phase ωx
will be:

ωx =
2π

N
kMAX . (3.3)

Considering again a single obstacle the signal received by the elevation
antennas (there are 4 receiving antennas and 1 elevation transmitting
antenna so we have 4 virtual antennas) is:

r = A2e
j(ψ+2ωx−ωz) ·

[
1ejωxej2ωxej3ωx

]
(3.4)

Similar to what was done previously, by computing a FFT of the signal
(3.4) will get a peak P2 at ωx, as it follows:

P2 = A2 · ej(ψ+2ωx−ωz) (3.5)

Now, by multiplying P1 and P2 we get:

P1 · P ∗2 = A1 · A2 · ej(ψ−(ψ+2ωx−ωz)) (3.6)

From the previous equation ωz can be computed as follows:

ωz = ∠(P1 · P ∗2 · ej2ωx) (3.7)

where ωz represents the phase difference between azimuth and the cor-
responding elevation antenna above the azimuth antenna.
It is now possible to estimate the range, i.e., the distance of the obstacle
from the radar as it follows:
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R = kr
c · FSAMP

2 · S ·NFFT

. (3.8)

In the previous equation c stands for speed of light, kr is the range
index , FSAMP is the sampling frequency, S is the chirp slope and
NFFT stands for the FFT order. From the previous equation it is
finally possible to determine the (x,y,z) coordinates of the deteceted
obstacles as it follows:

x = R cosφ sin θ = R
ωx
π

(3.9)

z = R sinφ = R
ωz
π

(3.10)

y =
√
R2 − x2 − z2. (3.11)

� Information sent to the Host: Finally the packets containing the
data from the radar are built and sent to the host by UART protocol.
In figure 3.7 data structure sent to the host is shown. It is composed
of a Header which groups:

– Platform: Indicates SDK version over which the device is work-
ing.

– Frame Number: Indicates the number of frames that are col-
lected during the acquisition phase.

– Number of Detected Obstacles

– Number of TLVs: Indicates the number of the groups of
data.
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Figure 3.7: Packet format [11].

After the header there is the TLV field which discriminates the type of
data that will carry the payload. For example:

– Tag 1: contains obstacle information, i.e., the position, the Doppler
in case of movement etc..

– Tag 2: This tag contains the range profile information. The
range profile is a graph which relates the range with the relative
power, in dB, of detected obstacles. It is the graphical result of the
detection processing from which the user can see the peaks caused
by the obstacles in the received signal. It is an information that
does not consider the Doppler as it refers only to zero doppler
case.

– Tag 3: This tag keeps a similar information as tag 2, but this
time it refers to the noise profile of the enviroment.

– Tag 4: This tag refers to the static heatmap information, so
it keeps a matrix organized with antennas by row and range by
column and in which in every single cell there is an energy infor-
mation of the enviroment. Notably, there are two matrices of this
kind, one for each plane.
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– Tag 5: This tag refers to the range doppler heatmap. The concept
is the same as before, with the construction of a matrix with the
range information on the row, but this time columns contain the
Doppler information.

– Tag 6: This tag contains only some statistic information about
the device such as the DSP usage.

After each payload, a padding block used to adjust the entire lenght of
the packet to multiple of 32 bytes is included.

3.2 mmWave Demo Visualizer

The presented device has the possibility to be used through web-based in-
terface provided by Texas Instruments that is called mmWave Demo visual-
izer[12], with which it is possible to configure and change radar parameters
in runtime and then visualize the data provided by the radar.
The interesting thing is that the user can select the particular device with
the appropriate version of the SDK and also he/she can select the number
of transmitting antennas depending on the feature of the devices.
During the work it is also possible to modify in real time some parameters
and see how they affect the final scan of the surrounding of the device. For
example it is possible to modify the CFAR threshold or enable/disable the
range grouping or the doppler grouping or it is also possible to enable/disable
the static clutter removal algorithm.
Another important feature of this visualizer is that it is possible to record
all the data that the radar sends to the host which can be successively pro-
cessed by other software such as Matlab. So for this reason the mmWave
Demo visualizer played an important role during this thesis.
At last this visualizer is used as a comparator to make sure that the raw data
are elaborated in the right way by the Matlab software we developed in this
thesis that is described in the next chapter.
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Chapter 4

Measurement results

In this chapter we first show the design of ad-hoc algorithms to detect and
localize extended objects, as the previously described approach allows only
to retrieve the peaks of the signals backscattered by targets. Then, we report
the conducted measurement campaign and the attained results.

4.1 Extraction of angular information

In the following, we describe how the raw data coming from the radar have
been processed in order to obtain the angle-range matrix necessary to apply
a custom object detection algorithm. The raw data can be extracted from
the TLV tag 4.
Inside this tag there is the energy matrix that includes the I/Q samples of
the signal at different time bin and for each of the 12 virtual antennas. In the
following this energy matrix will be identified as arn where r = 1, 2, ..NFFT

refers to the indices of the ranges, with NFFT being the order of FFT made,
and n is column index spanning from 1 to 12. According to (3.8), from r it
is possible to extrapolate the range information.
As it is shown in figure 3.4 each antenna transmits a chirp separately and
then the four receivers get the relative symbols.
From figure 3.4, ωx represents the phase shift between the horizontal anten-
nas, ωz is the phase shift between the elevation antennas and δ is defined as
the doppler effect that for the moment will not be considered.
First of all the azimuth angle, θ, is divided into M portions, where M is the
number of angle positions. A high value of this parameter means a very
smooth representation of the energy matrix.
The elevation angle is, for the moment, set in each simulation to zero but it
is also possible to create some matrix with different elevation information.
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The main part of this process is represented by equation (4.1) that reprents
a Discrete Fourier Transform (DFT) of the received signal.

yrm =
3∑

n=0

arn · e−jπnsinθmcosφ

+
7∑

n=4

arn · e−jπ(n−2)sinθmcosφ−jπsinφ

+
11∑
n=8

arn · e−jπ(n−4)sinθmcosφ

(4.1)

with r = 1, 2, ...NFFT , m = 1, 2..M and θm = [−π
2
, π
2
] is the sweep of the

azimuth angle.
This DFT permits to obtain the angular information of the incoming signal
components starting from the signal received by each virtual antenna. In few
words the process executes a kind of rephasing in order to discover if in a
precise angle of arrival it could be present an obstacle. The final result is a
range-angle map in which obstacles determine the presence of peaks in the
corresponding angle-range in the azimuth plane.

Figure 4.1: Range-angle map in the presence of an obstacle close to the radar.
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Figure 4.2: Range-angle map in the presence of an obstacle at a larger dis-
tance from the radar.

Figure 4.2 reports an example of the map |yrm|. It can be noticed that
an obstacle is near to the device in the front direction, while figure 4.3 shows
the same obstacle at a slightly larger distance with respect to figure 4.2. The
difference in the distance is highlighted by the different indices of the range
in the matrix.
The small peaks around the obstacle’s peak are responsible for a bad de-
tection , because they are the result of the side lobes that are a source of
interference. So for this we decided to develop some cleaning algorithm in
order to erase their effects.

4.2 Cleaning Algorithms

In order to reconstruct an electromagnetic map of the environment, measure-
ments should be properly post-processed in order to remove the effect of the
array side-lobes. This process is necessary due to the fact that the main lobe
of the antenna pattern is very wide, so when the radar ”point” a particular
direction it is possible that the system receives also the echoes coming from
some obstacles near the direction pointed.
So in the following the cleaning algorithms that are used are described.
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Figure 4.3: Cleaning block diagram.

� Clean 1st approach: The first algorithm, whose block diagram is
reported in figure 4.3, uses the deconvolution process carried out in the
frequency domain in order to try to clean the map from the antenna
response.

The algorithm applies the following operation to each row of the energy
matrix yrm:

Yk =
M−1∑
m=0

ym · e−j2πk
m
M k=0,..,M-1 (4.2)

where Yk represents a generic sample of the DFT of a row of the energy
matrix and ym is a sample of the matrix yrm.
At the same time the same mathematical approach is applied to the
radiation pattern of the whole array xrm, previously obtained starting
from the radiation pattern of a single radiating element as it is shown
in figure 3.2. Just to be clear the whole radiation pattern is obtained
from the radiation pattern of a single element using the theory of the
Array Factor [13] defined as it follows:

AF =
N∑
n=1

ej(n−1)(kd cos θ+β) (4.3)

where k = 2π
λ

is the wave vector, θ represents the vector that includes
the angle positions from [−π

2
, π
2
], β = −kd sin(θ0) is the initial phase

and θ0 is the steering direction, d represents the distance between the
radiating elements and n is the index of the radiating elements. Then
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Figure 4.4: Array pattern for θ = 0, θ = −30 and θ = 30.

the Array Factor (AF) is multiplied by the gain of the radiating element
showed in figure 3.2 in order to obtain the whole array pattern diagram.

Figure 4.4 shows the array pattern for two different steering directions
and it shows correctly that the main lobe moves to the steering direction
and that outside the front direction the gain of the whole array is lower
that the front direction gain.
So the DFT of the whole antenna pattern is given by:

Xk =
M−1∑
m=0

xm · e−j2πk
m
M k=0,..,M-1 (4.4)

After that the folowing matrix-vector operation is computed:

Z = Y · 1

X
. (4.5)

The idea is to de-embed the contribution of the antenna array from
the received signal so that it will depend only on the actual obstacle-
channel response. The only thing that has to be checked is that the
DFT of the radiation pattern does not present any zero in order to
avoid noise enhancement.
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Finally a Inverse Discrete Fourier Transform (IDFT) is applied on equa-
tion (4.5) as it follows:

wm =
1

M

M−1∑
k=0

Zk expj2πk
m
M m=0,..,M-1 (4.6)

where wm ia generic element of the vector W that is the inverse DFT
of the equation (4.5).

� Clean 2nd approach: This clean algorithm works row by row in order
to clean the effects of the side lobes in a similar way as in [14].
First of all the algorithm applies a constant noise threshold, ξz to the
range-angle matrix in order to remove noisy components. Then the
algorithm for each row insert all non-zero elements into a temporary
vector. If the temporary vector is not empty, it is sorted from the high-
est to the lowest value defining the vector Er = [er1..., erm] in which r
stands for the row index and the elements of the vector are the energy
value sorted.
Then, for each distance we can assume that if at least one bin, one sam-
ple of the matrix, is above the noise threshold ξz, the current bin likely
correspond to the steering direction where the target is intercepted and
thus the corresponding energy level will be considered at the output.
Let also define the vector N as the difference between the energy bin
and the threshdol ξz previously set. So at this point the algorithm uses
the following energy test:

erm ≷D1
D0
ξ (4.7)

where ξ is the threshold set in this phase.
When D1 is satisfied, the corresponding energy bin erm is considered
at the outuput of the algorithm in addition to the energy bins that are
above the noise threshold ξz. The previous test is performed in order
to check if a component has been intercepted in a side lobe direction
and, consequently, it derives from a higher energy bin. Mathematically
the threshold ξ is given by:

ξ = argmax(ν ·Nrm) + ξz (4.8)

where Nrm is an element of the vector N and ν is a scaling factor which
puts in relation the antenna gain in the specific steering direction in
the form:
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ν =
Gk

Gmax

(4.9)

where Gk is the gain in the steering direction and Gmax is maximum
array gain. The result of this process is a cleaned matrix for which the
numerical results are showed in the following.

� Clean 3rd approach: This third approach is a little bit different from
the previous one even if the main idea is the same. Even this algorithm
tries to clean the map using the maximum values of it but in a different
way.
After the building of the energy matrix, in the same way as the pre-
vious cleaning approach, it applies a constant noise threshold in order
to erase the elements that, with high probability, are not something of
interest because due to noise and then starts to clean the matrix.
Then the algorithm finds the sample of the matrix with the maximum
energy and saves corresponding row (range) and column (angle) in-
dexes. Let us introuce the vector that will contain all of the maximum
values that the algorithm finds as L. Then it simulate the angular
effect of the whole array pattern as it follows:

P =
Li

maxx(θ0)
(4.10)

P = P · x(θ0) (4.11)

where Li is the current maximum value of the energy matrix included
in the vector L, x is the array pattern in a specific steering direction
and P is the power level of the maximum value cleaned from the an-
gular effect of the radiating pattern.
After that the algorithms substracts P from the sample of the row in
which is present the current maximum value. Clearly with this elab-
oration in correspondence of the maximum one gets a zero. Then the
algorithm evaluates the entire energy of the matrix, Emp, and compare
it with Li. ∑

i Li∑
i Li + Emp

> 0.9 (4.12)

If the inequality in (4.12) is satisfied, then the algorithm stops and
the matrix is finally cleaned otherwise, the algorithm continues in the
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same way until the comparison is succesfull or the matrix contains zero
elements only.

The Matlab code related to the 3 algorithms described is reported in Ap-
pendix A.

4.3 Threshold design

After the claning processing, regardless to which approach it is used, in order
to reconstruct the coordinates of the obstacles or in order to use the ranges
of them a threshold approach is adotped. In few word it is possible to choose
between two kind of threshold regardig to what is necessary to do.
A variable threshold, with respect to the range, is useful in order to permit
to the system to dectect objects that present the same RCS regardless the
distance from the radar. So to compute a threshold of this kind it is necessary
to know first of all the propagating law of the enviroment and then consider
the radar equation given in (1.6).
Due to the fact that some parameters are not under control we decided to
modify equation (1.6) as it follows:

P =
k

R4
(4.13)

where k contains every parameter of the radar equation. Then we decided
to fix a distance and try to find the value for k for which the obstacle at a
known distance is visible. The founded value it is used as a starting point
for the threshold and in the following will be k̃. So the power level for this
particular value will be P̃ and will be:

P̃ =
k̃

R4
. (4.14)

From the previous equation, considering S = P̃ as the threshold value, it is
possible to evaluate the threshold as it follows:

S =
k̃

R4
. (4.15)

so the threshold will be:

S[dB] = k̃[dB]− 4 · 10 · logR. (4.16)

It is also necessary to set a saturation level to the threshold.
There is another kind of threshold that can be used and this is a constant
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threshold value that allows the system to perform CFAR detection. So as
briefly discussed in the prevous sections a constant threshold value permit to
maintain the false alarm rate constant, so in order to choose the right value
for this threshold it is necessary first to model the enviroment and the noise
and then choose a level of false alarm rate that need to be satisfied, as a
project requirement, and then on those information it is possible to choose a
contant threshold value.

4.4 Preliminary Measurements in Controlled

Environment

In order to assess the validity of the cleaning algorithms explained before,
we performed ad hoc measurement campaigns in some reference scenarios.

4.4.1 First experiment

The first experiment shows how a peak of the energy matrix moves when a
high reflecting obstacle is moved along a circumference. In few words the
system collects the measurements for some positions (i.e. the front direction
and -30 degrees and 30 degrees) but with the attention to maintain the same
distance from the radar that is of the order of 2.5 meters. What is expected
is that the peak moves along the same row of the matrix due to the fact that
the distance between the radar and the obstacle is always the same.
From figure 4.5 it is possible to see how the radiation pattern affects the
energy matrix. In this example there is a single high reflecting obstacle
in front of the radar but due to the radiation pattern of the antenna and
due to the offline beamsteering some replicas of the obstacle are present
also in some positions in which actually it is not present any obstacle. The
purpose of the cleaning algorithms is to erase those replicas. Figure 4.6 shows
the cleaned image after the adoption of the Approach 1. Notably, several
artifacts, that are ascribed to the presence of side-lobes, are now removed.
Another important aspect is that the peak due to obstacle reflection is less
spread after deconvolution, since the patern effect is filtered out. Figures
4.5 and 4.7 show the comparison between the matrix before any processing
and after the adoption of the Approach 2. From figure 4.5 and figure 4.8 it
is possible to understand how the third algorithm works and it is possible
to appreciate the accuracy in determining the object position. Each one of
the 3 algorithms works well and the expected behaviour of the peak of the
matrix is demonstrated from figure figure 4.5 to figure 4.8 in which the row
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Figure 4.5: Energy matrix before any processing.

of the peak is always the same. Approach 1 and approach 3 seems to be the
ones that fits better this experiment.
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Figure 4.6: Energy matrix after the application of Approach 1.

Figure 4.7: Energy matrix after the application of Approach 2.
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Figure 4.8: Energy matrix after the application of Approach 3.

4.4.2 Second experiment

The last experiment introduces two high reflecting obstacles in order to
demonstrate that it is possible to distinguish their peaks in the matrix. The
obsatcles are placed in two different angular position (i.e. -30 degress and
30 degrees) and they are placed more or less 2.5 meters far from the radar.
Figure 4.9 shows the scenario before any cleaning processing. From figures
4.10,4.11 and 4.12 it is possible to see the different effetcts of the 3 algorithms
on the same scenario in which are present two different reflecting obstacle.
Indeed, obstacles can be well discriminated when the three approaches are
used.
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Figure 4.9: Energy matrix before any processing.

Figure 4.10: Energy matrix after the application of Approach 1.
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Figure 4.11: Energy matrix after the application of Approach 2.

Figure 4.12: Energy matrix after the application of Approach 3.
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Finally it is possible to say that approach 1 it is maybe the easiest one be-
cause it uses a standard operation, but it has the drawback that assumes that
the array radiating diagram is the same for each steering directions, while it
is demonstrated that the radiation pattern changes along the steering direc-
tions. The other two approaches are a little more complicated because they
require some steps before obtaining the map, but they have the advantage
that they consider the changes of the radiaton pattern along all the steering
directions.
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Chapter 5

SLAM Results

The goal of this chapter is to exploit measurement data in order to test the
possibility to realize a SLAM application.
If otherwise indicated, the following parameters have been considered:

� Frame per second (fps): 1

� Maximum Unambigous Range: 5 m

� Range Resolution: 0.098 m

� Maximum Radial Velocity: 3 m/s

� Radial Velocity Resolution: 0.38 m/s

� Sampling Frequency: 4.166 MHz

� Chirp Slope: 100 MHzµ s

� Chirps x Frame: 48

� Samples x Chirp: 64

The maximum unambiguos range set the maximum distance beyond which
a far obstacle could be confused for a near obsatcle due to the time of arrival
of the echos referred to the transmission time bin. The range resolution set
the minimum distance between two obsatcle for which the device is able to
distinguish them.
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Figure 5.1: Real scenario with two high reflecting obstacles and one human
obstacle.

5.1 Static Mapping

This case presents 2 high reflecting obstacles positioned approximately a
meter far from the radar and 1 human obstacle positioned between the two
high reflecting obstacles a little farther than the two obstacles. The scenario
is shown in figure 5.1, and the purpose of this example is to verify that the
system is able to recognize and discriminate the various obstacles. From
figures 5.3, 5.4 and 5.5 it is possible to see the comparison of the results of
the three algorithms on the same scenario. In yellow it is highlighted the
remaining side lobes contribution that is significantly reduced after the three
cleaning approaches. Each algorithm works well, in particular approach 3 is
able to distinguish with high accuracy the three obstacles and it reduces a
lot of the side lobes, approach 1 works similarly to approach 3. Approach 2
instead shows in figure 5.4 a less significant reduction of the side lobes than
the other two algorithms. Just for simplicity in the following, results will
refer only the adoption of the Approach 1.
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Figure 5.2: Static scenario before any processing.

Figure 5.3: Static scenario after approach 1.
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Figure 5.4: Static scenario after approach 2.

Figure 5.5: Static scenario after approach 3.
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Figure 5.6: Real scenario.

5.2 Single Obstacle Movement-First scenario

In this experiment the same high reflecting obstacle used for the previous
scenario is used this time in movement. In few words the obstacle moves
along a straight line in front of the radar at a distance of nearly 3 meters
from the radar. The purpose of this experiment is to demonstrate that the
radar is able to track a moving obstacle. Figure 5.6 shows the evolution of
the real experiment in which an obstacle moves in front of the radar following
a straigth line, simulating a real obstacle, for example a moving person, in a
possible real case.
Figures 5.7, 5.8, 5.9 and 5.10 show that the main peak follows the movement
of the object, in accordance with the considered scenario.
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Figure 5.7: Evolution of the scenario after processing.

Figure 5.8: Evolution of the scenario after processing.
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Figure 5.9: Evolution of the scenario after processing.

Figure 5.10: Evolution of the scenario after processing.
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Figure 5.11: Real scenario and example of the trajectory.

5.3 Single Obstacle Movement-Second scenario

For this experiment we used the same high reflecting obstacle and this time
we decided to move it in front of the radar from distance zero until the
maximum unambiguos range set for the experiment that is 5 meters. In
particular, the obstacle is always located within the radar reading range, so
that it is always detectable. The goal of this experiment is the same of the
previous one but this time we want to highlight that the obstacle moves in
an another direction but the radar is able to see it even if it is moving far
away.
From figure 5.12 it is possible to see in which way the peak that refers to the
obstacle moves backward until reaching more or less the unambiguos range (
more or less near 5 meters) and then the obstacle starts moving toward the
radar.
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Figure 5.12: Evolution of the scenario after the first approach.
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Figure 5.13: Example of the first experiment.

Figure 5.14: Mapping of a single wall.

5.4 MAPPING scenario

This experiment has the will to show that with this system is possible to
resolve some mapping problem, without any SLAM request.
For the first scenario we decided to try to map a single wall placing the
radar in front of it as close as possible. The distance that is considered stand
under the meter. Due to the fact that the wall is straight and it does not
presents any curvature we expect that the numerical result presents some
sample placed in the same way as the real obstacle. An example of what
discussed is reported in figure 5.14 in which a simply representation of the
scenario is given.

50



Figure 5.15: Mapping of a room.

Figure 5.14 shows the result of the mapping of a simple extended obstacle
in the scenario explained even if the distances are not so similar between the
real scenario and the representatio after the cleaning process.
Due to the fact that a simple mapping problem gives an acceptable result we
decided to try with an entire room in order to understand if the system is able
to map an enviroment with bigger dimension than the simple case considered
before. So we placed the radar more or less in the center of the room and
collects the measurements of the four walls. Then on matlab with a simple
rotation matrix and with some multiplication between the wall measurements
and the cited rotation matrix we adjust the four measurements in order to
create the walls of the room. This just because our system does not rotate
automatically so we decided to separate the four measurements.
What we expect is that the system is able to reconstruct each wall of the
room representing them with some straight lines and we expect that also the
distance between the real scenario and the numerical result corresponde.
Unfortunately referring to figure 5.15 the mapping process does not work well
and the final representation of a square room is circular. This phenomenon
is probably the effect of the fact that the number of radiating element is not
high and so the antenna pattern diagram is not so tight. So for this reason
even if in the previous sections we have demonstrated that the system works
in this case the system fails and it is necessary as a future development to
fix this problem.
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Figure 5.16: Evolution of the scenario after processing.

5.5 SLAM scenario

This scenario is similar to the one proposed for the static mapping, indeed
there are two high reflecting obstacles and instead of a human obstacle there
is a wall. In this case the radar moves along a straigth line directed to the
wall and passing through the two high reflecting obstacles. The purpose of
this experiment is to show that the system is able to track the position of
the radar and simultaneously create a map of the enviroment and place the
obstacles in it.
From figure 5.16 it is possible to have a look of the simple considered sce-
nario, that has been put in place in order to preliminary test the SLAM
performance. In particular the trajectory of the radar is not reported cor-
rectly and so the results are not consistent. This issue could come from the
fact that the radar has a limited number of radiating elements and the first
option is to enlarge the number of employed antennas, as done in [1]. An-
other possible source of issues is the fact that for simplicity in this thesis the
changings of the pattern along the steering direction are not considered so
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the final result will report this problem. This is the first characterization of a
personal radar using a commercial millimeter wave radar system and due to
that the performances are not as good as the performances of more expensive
measurement systems.
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Conclusions

The purpose of this thesis is to introduce the millimeter wave technology
applied to SLAM and mapping problems and to show the principal results of
the proposed algorithms. In addition, we report few considerations about the
difficulties arisen during the conducted activity, and we draw some possible
future direction.
For this thesis work we, first of all, studied the feature of the radar and then
fixed its set-up, then we made a measurement campaign that allowed us to
develop some cleaning algorithms and then we applied some mapping SLAM
algorithms.
According to section 5.4 and figure 5.15 it is clear that the mapping process
can be improved since the reconstruction of a square room presents some
inaccuracies (e.g., curve perimeter in some parts, etc). A possible reason to
explain this effect is that the radar is equipped with an array with a limited
number of antennas, and thus it does not allow to reach long distances and
presents side-lobes that might include unwanted signal components.
Refering to section 5.5 it has emerged that the system is able to compute a
simple SLAM problem obtaining interesting results. For simple SLAM prob-
lem we mean that the radar follows a straigth line trajectory and it never
changes its trajectory. But if the scenario becomes more complictated or the
trajectory of the radar considers a random movement the application fails
doing the tracking and the localization. Again, we ascribed this effect to
the limited number of involved antennas in the SLAM procedure. In a more
complicated case it is also important to test an enviroment with a several
number of high reflecting obstacles in order to help the SLAM algorithm to
work properly.
For those particular experiments it is also importan to initially test controlled
environments, where it is possible to well understand the quality of the per-
formance.
It is necessary to say that all the measurements and the processings done do
not take into account the Doppler phenomenon. This is of course a strong
approximation, especially in all those environments characterized by moving
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objects.
For a future development of the activity it could be useful to study the
Doppler effect and then compensate it.
For all the reasons discussed before the main future development that can
be done could be the usage of a different millimeter wave device with more
radiating elements in order to improve the antenna array pattern and thus
the quality of the measurements. In fact, despite we proposed algorithms
accounting for the side-lobes effect, their impact might be still appreciable,
thus affecting the overall SLAM performance.
Another possible development could be doing an ad hoc measurement cam-
paign, maybe keeping under control all the parameters discussed in this the-
sis, and maybe in an enviroment in which there are not interference sources.
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Appendix A

Matlab Code

A.1 Matlab SLAM algorithm

%load()
[scans]=DatiRadar IWR1443();

maxLidarRange = 10;
mapResolution = 20;

slamAlg = lidarSLAM(mapResolution, maxLidarRange);

slamAlg.LoopClosureThreshold = 200;
slamAlg.LoopClosureSearchRadius =8;

firstTimeLCDetected = false;

figure ();

for i=1:length(scans)
[isScanAccepted, loopClosureInfo, optimizationInfo]=addScan(slamAlg, scans{i});
if ˜isScanAccepted
continue;
end

show(slamAlg, 'Poses', 'off');
hold on;
show(slamAlg.PoseGraph);
hold off;
firstTimeLCDetected = true;
drawnow
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end
title('First loop closure');
xlabel('x [meters]')
ylabel('y [meters]')

figure ()
show(slamAlg);
title({'Final Built Map of the Environment', 'Trajectory of the Robot'});
xlabel('x [meters]')
ylabel('y [meters]')

[scans, optimizedPoses] = scansAndPoses(slamAlg);

map=buildMap(scans, optimizedPoses, mapResolution, maxLidarRange);

figure ();
show(map);
hold on
show(slamAlg.PoseGraph, 'IDs', 'off');
hold off
title('Occupancy Grid Map Built Using Lidar SLAM');
xlabel('x [meters]')
ylabel('y [meters]')

A.2 Deconvolution Algorithm

theta 0=0;
array pattern = ArrayPattern(theta 0);

range angolo dft=zeros(range bins num,M);

for i=1:range bins num
k=1;
for k=1:M
for j=1:M
range angolo dft(i,k)=range angolo dft(i,k)...

+range angolo medio(i,j)*exp(−1i*k*2*pi*(j/M));
end

end
end

array pattern dft=zeros(1,M);

for i=1:length(array pattern)
for j=1:M
array pattern dft(i)=array pattern dft(i)+array pattern(j)*exp(−1i*k*2*pi*(j/M));
end
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end

prod trasformate=range angolo dft./array pattern dft;
Deconvolution=zeros(range bins num,M);

for i=1:range bins num
k=1;
for k=1:M
for j=1:M
Deconvolution(i,k)=Deconvolution(i,k)

+prod trasformate(i,j)*exp(1i*k*2*pi*(j/M));
end

end
end

Deconvolution=abs(Deconvolution./M).ˆ2;
range angolo medio=Deconvolution;
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A.3 Clean 1st approach:

c=3e8;
Fsamp=4.166e6;
lambda=c/Fsamp;
d=lambda/2;

gain direction1=linspace(−10*log10(15.84893192),10*log10(1.584893),45);
gain direction2=linspace(10*log10(1.584893),10*log10(10),45);
gain direction3=linspace(10*log10(10),10*log10(1.584893),45);
gain direction4=linspace(10*log10(1.584893),−10*log10(15.84893192),45);
gain direction=[gain direction1 gain direction2 gain direction3 gain direction4];

N=12;

k=(2*pi)/lambda;
theta=linspace(−90,90,180).*pi/180;
theta 0=linspace(−90,90,180).*pi/180;
AF=zeros(length(theta 0),length(theta));

for l=1:length(theta 0)
beta=−k*d*sin(theta 0(l));

for i=1:length(theta)
for n=1:N

AF(l,i)=AF(l,i)+exp(1i*(n−1)*(k*d*sin(theta(i))+beta));
end

end
end

for l=1:length(theta 0)
for i=1:length(theta)

array pattern matrix(l,i)=abs(AF(l,i))*10ˆ(gain direction(i)/10);
end

end

Rx gain=10*log10(63095.73445);

i start=5;
i stop=20;
i self=3;

for i=1:range bins num
for j=1:M

if(10*log10(range angolo medio(i,j)) < sat level | i < i self)
range angolo medio(i,j)=0;

end
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end
end

temp=[];
temp index=[];
max value=[];
max index=[];
k=1;

for i=i start:i stop
for j=1:M

if(range angolo medio(i,j)˜=0)
temp(k)=range angolo medio(i,j);
temp index(k)=j;
k=k+1;

end
end

cont=length(temp);
l=1;

while (cont>0)
[max value(l),max index(l)]=max(temp);
temp(max index(l))=0;
cont=cont−1;
l=l+1;

end

if (length(max index˜=0))
P=max(max value)/max(array pattern matrix(max index(1),:));
P=P*array pattern matrix(max index(1),:);

for m=2:length(max value)
G SL=array pattern matrix(max index(m),:);
P SL=P.*(G SL);%+M;

if(max value(m) < P SL(max index(m)))
max value(m)=0;
range angolo medio(i,max index(m))=0;

end
end

k=1;
end

end
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A.4 Clean 2nd approach:

c=3e8;
Fsamp=4.166e6;
lambda=c/Fsamp;
d=lambda/2;

gain direction1=linspace(−10*log10(15.84893192),10*log10(1.584893),45);
gain direction2=linspace(10*log10(1.584893),10*log10(10),45);
gain direction3=linspace(10*log10(10),10*log10(1.584893),45);
gain direction4=linspace(10*log10(1.584893),−10*log10(15.84893192),45);
gain direction=[gain direction1 gain direction2 gain direction3 gain direction4];

N=12;

k=(2*pi)/lambda;
theta=linspace(−90,90,180).*pi/180;
theta 0=linspace(−90,90,180).*pi/180;
AF=zeros(length(theta 0),length(theta));

for l=1:length(theta 0)
beta=−k*d*sin(theta 0(l));

for i=1:length(theta)
for n=1:N

AF(l,i)=AF(l,i)+exp(1i*(n−1)*(k*d*sin(theta(i))+beta));
end

end
end

for l=1:length(theta 0)
for i=1:length(theta)

array pattern matrix(l,i)=abs(AF(l,i))*10ˆ(gain direction(i)/10);
end

end

i start=5;
i stop=20;
i self=3;

for i=1:range bins num
for j=1:M

if(10*log10(range angolo medio(i,j)) < sat level | i < i self)
range angolo medio(i,j)=0;

end
end

end
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fine ciclo=0;
M i=zeros(1,M);
pos i=zeros(1,M);
col i=zeros(1,M);
k=1;

while(fine ciclo==0)
[M i(k),col i(k)]=max(max(range angolo medio));
[M i(k),pos i(k)]=max(range angolo medio(:,col i(k)));

P=M i(k)/max(array pattern matrix(col i(k),:));
P=P.*array pattern matrix(col i(k),:);

for i=1:M
range angolo medio(pos i(k),i)=range angolo medio(pos i(k),i)−P(i);
if (range angolo medio(pos i(k),i)<0)

range angolo medio(pos i(k),i)=0;
end

end
E mp=sum(sum(range angolo medio));

if(sum(M i)/(sum(M i)+E mp) > 0.99)
fine ciclo=1;

else
k=k+1;

end
end
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per la comprensione.
Infine desidero ringraziare la persona più importante della mia vita, la per-
sona che mi sta dietro tutti i giorni e che mi sprona ad andare avanti per in-
cominciare a creare un nostro futuro insieme. Grazie perchè non è facile sop-
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