
Alma Mater Studiorum · Università di Bologna
Campus di Cesena

Dipartimento di Ingegneria dell’Energia Elettrica e dell’Informazione
"Guglielmo Marconi"

Corso di Laurea magistrale in

Ingegneria Elettronica e Telecomunicazioni per l’Energia

TITOLO DELLA TESI:

DIGITAL DESIGN OF AN
EPC GEN2 CONTROLLER

FOR ENHANCED RFID TAGS

Tesi di laurea magistrale in
Elettronica dei sistemi digitali

Relatore:
ALDO ROMANI

Correlatori:
DAVIDE FABBRI
MATTEO PIZZOTTI

Presentata da:

NICHOLAS BATTISTINI

II Appello - II Sessione
Anno accademico 2018/2019

Contents

1 Introduction 3

2 RFID Technology 4

3 UWB positioning 7

4 EPC gen2 protocol 9
4.1 General features . 9
4.2 Physical Layer . 12

4.2.1 Interrogator to tag communications - Data encoding 12
4.2.2 Tag to interrogator communications - Data encoding 13

4.3 Logical interface . 13
4.3.1 Basic operations . 16
4.3.2 Tag states . 16
4.3.3 Reader commands . 17
4.3.4 Tag memory organization . 18

5 Tag architecture 20

6 Digital logic implementation 23
6.1 Open source code explanation . 23
6.2 Digital logic with Verilog synthesized memory 24
6.3 Digital logic with external FRAM, UWB localization, temperature

and humidity sensing . 27
6.3.1 Sensing and UWB localization features: 28
6.3.2 Digital logic explanation . 30

7 Simulation and test 34
7.1 Simulation with sampled reader signals 34
7.2 Simulation with generated reader signals 35
7.3 Test on FPGA . 39

1

CONTENTS 2

8 Chip design 45
8.1 Synthesis and simulation . 45
8.2 Placement . 48
8.3 Clock tree synthesis and Routing . 49

9 Conclusion 52

Bibliography 53

List of Figures 55

A Verilog code of main blocks implemented 58
A.1 spi_master.v . 58
A.2 FRAMcontroller.v . 62
A.3 SENSORcontroller.v . 69
A.4 localization.v . 78
A.5 readmem.v . 78
A.6 writemem.v . 80

Chapter 1

Introduction

This thesis presents an improvement of the long range battery-less UHF RFID
platform for sensor applications[1] which is based on the open source Wireless
Identification and Sensing Platform (WISP) project[2]. The purpose of this work is to
design a digital logic that performs the RFID EPC gen2 protocol[3] communication,
is able to acquire information by sensors and provide an accurate estimation of tag
location ensuring low energy consumption. This thesis will describe the hardware
architecture on which the digital logic was inserted, the verilog code developed, the
methods by which the digital logic was tested and an explorative study of chip
synthesis on Cadence.
Design has been based on a modular and easily extensible verilog open source code
[4] described in [5][6] which implements a part of RFID EPC gen2 protocol. This
code has been improved by interfacing an ultra wide band (UWB) backscattering
system, an external memory and a sensor through the serial protocol interface (SPI)
and adding the possibility of read and write data located in the external non volatile
memory.
UWB localization system has been chosen to obtain tag position with high accuracy.
UHF communication can ensure an estimate of tag location through the measurement
of round trip time or power strength received by the reader involved in the
communication. However, this technique provides only a one-dimension positioning
with an accuracy of some meters. Since the operative range of these tags is about
from 2 to 10 meters, the accuracy ensured by UHF communication isn’t sufficient for
a reliable localization. UWB systems offer a cm level accuracy and through the use
of at least three UWB transmitter, they guarantee a three-dimensional positioning.
However this implies the presence of a UWB on board antenna which increases tag’s
size.

3

Chapter 2

RFID Technology

Radio frequency identification (RFID) systems are based on the information
exchange between one or more interrogators (reader) and one ore more labels
(tag). In simplest application, information communicated by the tags are only
identifiers, whereas in advanced application tags are able to communicate memory
data. Memory data may be information obtained by sensors or data written by
readers.
RFID tags differentiate through:

• kind of power supply:

– Active: tags are equipped with a battery that supplies them entirely.
An active transmitter is used to amplify and send a response to reader’s
queries.

– Passive: tags have no battery and are supplied through the conversion
from RF to DC of reader’s transmitted signals. They use a passive
transmitter, that is a system which replies to reader’s queries by
backscattering the same signal sent by reader.

– Semi passive: Tags are equipped with battery that supplies the receiver
and the control logic. The transmitter is the same of passive tags.

• Operating principle:

– Electromagnetic: The communication occurs in far field region through
the transmission of electromagnetic waves.

– Inductive coupling: The communication occurs in near field region
through inductive coupling.

4

CHAPTER 2. RFID TECHNOLOGY 5

Figure 2.1: RFID technology summary features

• Operating frequency:

– LF 125/134.2kHz

– HF 13, 56MHz

– UHF 860÷ 960MHz

– Microwaves 2.4÷ 2.5GHz

The operating frequency is defined as reader’s transmission frequency, uplink and
downlink bit-rate may be different. On table 2.1 are summarized the information
about RFID technology.
Many industrial applications are conformed with the UHF EPC gen2 standard
because of the good trade off between cost, size and operative distance of tags.
Generally tag’s cost increases with the operating frequency, sizes depend mostly on
the antenna which scales with the working frequency. Operative distance depends
on supply, operating principle and frequency since the ability of electromagnetic
waves to cross obstacle decrease with increasing frequency.

CHAPTER 2. RFID TECHNOLOGY 6

Figure 2.2: Layout of a generic RFID tag [7]

A generic layout of an RFID tag is shown in figure 2.2. The silicon chip is placed
on a conductive, anisotropic, adhesive layer (ACA) which rests on a flexible substrate.
the chip is flip-chip assembled on the substrate, through the ACA, applying high
pressure at high temperature.

Chapter 3

UWB positioning

Ultra wide band (UWB) is a technology for short-range radiocommunication
which uses signals that spread over a large frequency range. UWB operates with
a low transmit power (0.5 mW) and signals involved ensure a low power spectral
density (-41.3dBm/MHz). The frequency range of UWB is between 3.1 and 10.6
GHz with a bandwidth of at least 500MHz. An example of UWB antenna, signal
waveform and spectrum are shows in figures 5.3, 3.1.
Thanks to its robustness against interference and its high channel capacity, UWB is
suitable for audio, video, data transmission and indoor positioning.
UWB localization can be performed through active and passive approach. Active
approach implies that the object to be located generates and transmits UWB signals.
In passive approach the object merely backscatters, with an appropriate modulation,
UWB signals received by an external transmitter. Thanks to the large bandwidth
of spectrum, UWB indoor positioning systems are able to pinpoint location in real
time with a cm level accuracy.
However these systems have several drawbacks, the most relevant are costs and
system synchronization. UWB hardware is about 10 times more expensive compared
to a Bluetooth low energy (BLE) positioning systems. To perform a correct
triangulation at least three receivers are necessary, time synchronization between
them is tricky because they must be precisely synchronized down to the picosecond to
calculate location accurately. Furthermore, even in UWB, systems have the potential
to interfere to each other (for more information see [8]).

7

CHAPTER 3. UWB POSITIONING 8

Figure 3.1: Example of UWB pulse waveform and related spectrum [8]

Chapter 4

EPC gen2 protocol

This section summarizes the main features of the protocol useful for the project.
Being a prototype, this project does not implement the entire protocol. For more
information about the protocol see [3].
The protocol is referred to all passive tags that work in the frequency range of
860÷960MHz. It defines the physical layer and the logic interface. The physical layer
sets the characteristic of signals exchanged by tag and reader. The logic interface
sets the behavior of tag and reader.

4.1 General features

• Reader driven communication: The communication is half-duplex and it’s
always started by readers, tags interact only when they are interrogated. This
is inefficient because it needs a constant polling by the reader in order to
obtained information from tags.

• No direct communication between tags: Because of tag’s low sensitivity
(max -20dBm) and low retransmitted power (generally lower than -20dBm),
the communication between tags can’t be demodulated. Obviously, tags can
exchange information between them by passing through the reader. However
this kind of communication is characterized by a low capacity because it
introduces high delays and an high overhead.

• Interferences between readers: Readers have active interfaces, so they are
characterized by high sensitivity (-80dBm) and they can transmit high power
signals (up to 2W for the european standard and 4W for USA). Therefore if
readers aren’t sufficiently spaced they require channel multiple access technique
to avoid interference between them.

9

CHAPTER 4. EPC GEN2 PROTOCOL 10

• Random multiple access to the channel: The policy of multiple access
to the channel for tags, provided by the protocol, is random without carrier
sensing (no channel state analysis). Readers broadcast a parameter Q which
initialize, with a number within the range (0, 2Q − 1), a counter on each
tags. Tags will not reply to queries until their counters won’t reach the value
0. The counter is decremented at each reception of command QueryRep (see
4.3.3). The Q value is chosen according to the expected tag population and
it’s modified, while performing the communication, in order to minimize the
replay time with a low collision probability.

• Identification of message recipient: The protocol provides the insertion of
a 16 bit sequence inside almost each message in order to identify the recipient
tag. This sequence is called RN16 or in some cases handle. Every message
received by tags, containing an incorrect identification sequence, is rejected.
The identification sequence is a random number that is communicated by tags
after several protocol phases.

• Error detection: The protocol makes use of a cyclic code belonging to the
binary Galois filed GF(2) for error detection. This code may be at 16 bit
(CRC-16) or 5 bit (CRC-5), it is used to verify the integrity of many messages
transmitted by readers or tags. Generator polynomials of cyclic code are used
to compute and verify the CRC. An example of CRC-5 encoder/decoder which
make use of parameters defined in figure 4.2, is shown in figure 4.3. The CRC
computation is performed by loading the preset value in registers and applying
sequentially data in DATA input. The output Q, which is the result of CRC
computation, represent the CRC code inserted in many protocol messages .
The CRC verification is performed as the computation, however the output is
different. If data are not affected by error then the output Q will assume the
residual value.
CRC codes allow to quickly and easily check the integrity of a message, however
they can’t detect an intentional alteration. A malicious user may modify the
message, compute the new CRC and include it into the message making the
error detection ineffective.

• Link timing: The protocol defines time slots where tags or readers shall reply.
These time slots are depicted in figure 4.1

CHAPTER 4. EPC GEN2 PROTOCOL 11

Figure 4.1: Link timing representation[3]

Figure 4.2: CRC Computation and verification parameters[3]

CHAPTER 4. EPC GEN2 PROTOCOL 12

Figure 4.3: Network example for computation and verification of CRC-5[3]

4.2 Physical Layer

Tags receive power while communicating with reader within the frequency range
from 860 to 960 MHz. The reader operational frequency depends on radio regulations
and on the local radio-frequency environment.
A reader communicates with one or more tags by modulating an RF carrier using
DSB-ASK, SSB-ASK or PR-ASK. Tags respond to an interrogator by backscattering
the modulating amplitude and or phase of the RF carrier. The data rate is set
through the preamble parameter RTcal and it depends on data encoding.

4.2.1 Interrogator to tag communications - Data encoding

Pulse interval encoding (PIE) describes how binary symbols are represented into
the interrogator to tag communications. PIE symbols are formed by TARI and PW
values. TARI is the time length of Data-0 symbol, while PW is the time length of
low logic level of both symbols. Data-0 and Data-1 symbols are shown in figure 4.4.

Preamble or frame-synch are concatenated at each command transmitted by
reader. A preamble is comprised by a start delimiter, a Data-0 symbol, an RTcal
symbol and a TRcal symbol as well as frame-sync but it doesn’t include the TRcal
symbol.
RTcal and TRcal are measured by tags. RTcal is used by tags to compute pivot =
RTcal/2. Every subsequences shorter than pivot are interpreted as Data-0 whereas
subsequences longer than pivot are translated as Data-1. Trcal, with divide ratio
(DR), is used to compute the backscatter link frequency (BLF).

BLF =
DR

TRcal
(4.1)

CHAPTER 4. EPC GEN2 PROTOCOL 13

Figure 4.4: PIE symbols[3]

DR is defined by reader as parameter of query command.
Preamble and framesync are represented in figure 4.5

4.2.2 Tag to interrogator communications - Data encoding

Tags use one of 4 data encoding types: FM0, Miller 2, Miller 4, or Miller 8. The
data encoding type is specified in the query command by the reader.
FM0 data encoding defines Data-0 through a middle-symbol phase inversion and
provides a phase inversion at every symbol boundary.
Miller data encoding provides phase inversion between two Data-0s in sequence and
phase inversion in the middle of Data-1 symbol. The transmitted waveform is the
baseband waveform multiplied by a square wave at M times the symbol rate for
M = 2,4,8. M value is specified in the Query command by the reader. Miller
encoding implies more transitions per bit compared to FM0 encoding. The number
of transition per bit increases with M but data rate consequently decreases. Therefore
miller encoding works better in presence of noise, however data rate is lower than
FM0 encoding. Both FM0 and Miller data encoding use preamble and dummy
symbol to synchronize the data transmission. In both cases preamble can be normal
or extended and is decided by the reader through TRext field in the query command
(see figure 4.6 and 4.7). Dummy symbol is introduced at the end of the sequences
and represents the stop symbol. In figure 4.8 and 4.9 are shown data and dummy
symbol for respectively FM0 and Miller encoding.

4.3 Logical interface

In this section are presented the main operations performed by tag and reader.
An example of communication flow is depicted in figure 4.10.

CHAPTER 4. EPC GEN2 PROTOCOL 14

Figure 4.5: Preamble and framesync of reader to tag communication[3]

Figure 4.6: FM0 preamble sequences[3]

CHAPTER 4. EPC GEN2 PROTOCOL 15

Figure 4.7: Miller preamble sequences with M=2[3]

Figure 4.8: Data and dummy symbols with FM0 encoding[3]

Figure 4.9: Data and dummy symbols with M=2 miller encoding[3]

CHAPTER 4. EPC GEN2 PROTOCOL 16

4.3.1 Basic operations

An Interrogator manages Tag populations using three basic operations:

• Select: Choosing a Tag population. This command allow to include or exclude
a subset of tag(s). An Interrogator may subsequently inventory and access the
chosen tag(s).

• Inventory: Identifying individual Tags. An Interrogator begins an inventory
round by transmitting a Query command. One or more Tags may reply on the
basis of parameters set with select command. The Interrogator detects a single
Tag reply and requests the tag’s Electronic Product Code (EPC).

• Access: Communicating with an identified Tag. The Interrogator may
perform a core operation such as reading, writing, locking, or killing the tag;
a security-related operation such as authenticating the tag; or a file-related
operation such as opening a particular file in the Tag’s User memory. Access
comprises multiple commands. An Interrogator may only access a uniquely
identified Tag.

4.3.2 Tag states

Tag response depends on command transmitted by interrogator and on tag state.
Some Tag states are listed herein:

• Ready: It can be viewed as a "holding-state" for energized tags that aren’t
participating in an inventory round. They remain until the reception of a query
command.

• Arbitrate: It can be viewed as a "holding-state" for tags that are participating
in the current inventory round whose counter holds nonzero value. Tag
decrements its slot counter at each queryrep command, when it reaches the
value 0000h tag transitions to reply state and backscatters an RN16

• Reply: In this state the tag is waiting for an ACK command. If tag receives
a correct ACK command then it transits to acknowledged state backscattering
a reply carrying the EPC. If this doesn’t happen, the tag returns to arbitrate
state. An ACK command is correct if it is received within time T2,max(see
figure 4.1) and with the same RN16 backscattered in the arbitrate state

• Acknowledged: It’s a transition state. If a tag, whose access password is
zero, received a Req_RN command then it backscatters a new random number

CHAPTER 4. EPC GEN2 PROTOCOL 17

denoted handle and transitions to secured state. If a tag receives a correct ACK
command then it reply as in the previous state. If a tag fails to receive a valid
command within time T2,max then it returns to arbitrate state.

• Secured In this state tag execute access command. If a tag receives a correct
ACK command (containing the correct handle) then it response as in the reply
state.

4.3.3 Reader commands

Some reader commands are:

• Query starts an inventory round. It defines:

– Divide Ratio (DR) is used to compute the BLF (see 4.1)

– M sets the type of tag data encoding

– TRext enables the transmission of extended preamble

– Sel, Target choose which tags respond to query command and participate
in the inventory round

– Session chooses a session for the inventory round. Sessions determines
when a tag will respond to a query from the reader and allows tags to
maintain independent states when communicating with multiple readers
at the same time

– Q sets the parameter that initializes tag counter

• QueryAdjust adjusts the parameter Q.

• QueryRep decrements Tags slot counter

• ACK used to acknowledge a single tag. If a tag is in the reply or
acknowledgment state then ACK echoes the RN16. Otherwise if a tag is in
the secured state then ACK echoes the handle.

• NAK is transmitted when somethings went wrong. It forces a tag to return
to arbitrate state unless the tag is in ready state.

• Req_RN instructs a tag to backscatter a new RN16. When issuing a Req_RN
to a Tag in the acknowledged state an interrogator shall include the tag’s
last backscattered RN16 as a parameter in the Req_RN. If a Tag receives a
Req_RN with a correct RN16 and a correct CRC-16 then it generate, store
and backscatter a handle, and transition to the secured state. Otherwise if a

CHAPTER 4. EPC GEN2 PROTOCOL 18

Figure 4.10: Example of inventory and access operations[3]

tag is in the secured state and receives the Req_RN with a correct handle and
a correct CRC-16 then it generate and backscatter a new RN16, remaining in
its current state

• Read allows an interrogator to read one or more words in tag’s memory.
Read command specify bank, address and number of words to be read in tag’s
memory. Tag’s reply comprise a 0-bit of header, memory words, handle and
CRC-16.

• Write allows an interrogator to write a word in tag’s memory. A tag execute
write command only in the secured state. If a tag receives a write command
and the immediately preceding command wasn’t a Req_RN then it treat the
command as invalid. If the command was successfully executed then tag reply
with a 0-bit of header, handle and CRC-16.

4.3.4 Tag memory organization

Tag memory is divided into four distinct memory banks as depicted in figure
4.11:

CHAPTER 4. EPC GEN2 PROTOCOL 19

Figure 4.11: Tag memory and EPC bank organization[3]

• Reserved memory contains the kill and access passwords, if passwords are
implemented on the tag

• EPC memory contain a storedCRC, a storedPC, the EPC and if tag
implements Extended protocol control then either one or two XPC word(s).

• TID memory contains the manufacturer class identifier, sufficient information
for an Interrogator to uniquely identify the custom commands and/or optional
features that a Tag supports.

• User memory is used to storage user data.

EPC memory contains a StoredCRC at addresses 00h to 0Fh, a StoredPC at 10h to
1Fh, an EPC beginning at 20h. The electronic product code (EPC) identifies the
object to which the tag is affixed, storedPC is a protocol control word and StoredCRC
is a CRC code stored every times a tag power up or when an interrogator writes in
the EPC and storedPC memory allocation.

Chapter 5

Tag architecture

The hardware platform on which the digital logic was built is a battery-less
UHF-RFID sensor tag for environmental monitoring [1]. This sensor is an
improvement of the last version of the open source WISP project [2].
In this project, the hardware architecture of the platform is modified by adding a
UWB system composed by an antenna and a switch, an external memory, replacing
the MCU with a custom digital logic and the TMP112 temperature sensor with
HTS221 temperature and humidity sensor as depicted in figure 5.1. The node is
based on a single UHF monopole used for both RF energy harvesting and Wake-up
radio capabilities. The RF path is split in two different parts through a capacitive
divider. The rectified voltage on the main power conversion output port is boosted
by the onboard DC/DC converter which performs a maximum power point tracking
(MPPT) of the RF source and supplies the load circuitry when sufficient energy is
available on the storage capacitor Cs. A voltage monitor embedded in the DC/DC
converter allows to perform the load power gating (SW1) between high and low
threshold voltages according to load requirements. On the RF side, a very limited
part of the incoming power is rectified to provide wake-up signals to a digital logic
that implement the EPC Gen 2 protocol. Data are stored in a low power consumption
Ferroelectric RAM (FRAM) which communicates with the digital logic through the
SPI protocol.
Tag communicates and spreads its position by backscattering the UHF and UWB
signals. The backscattering process is controlled by transistors connected to the
antennas. Switching transistors change antenna load impedance, in this way
backscattered signals can be modulated controlling the gate signals of transistors.
Tag localization could be in principle performed through the UHF backscattered
signals, however UWB signals ensure greater accuracy.
The memory choice is based on voltage supply, power consumption, type of

20

CHAPTER 5. TAG ARCHITECTURE 21

Figure 5.1: Hardware platform architecture

communication, read and write times. Since a non volatile memory is required and an
high storage capacity is not necessary, FRAM turns out to be the best choice. FRAM
ensure faster write operation compared to EEPROM and flash memory, providing
low power consumption, low voltage supply and fast read operation. Fast read and
write operation are required to satisfy reply timing defined by the protocol (see
4.1). Low power consumption is required since tags are battery-less, therefore little
power is generally available. Voltage supply is kept at 2.5V by the DC/DC converter
however, due to power fluctuations, voltage supply could fall below 2V therefore low
voltage supply is still significant to ensure tag operation. Serial communication was
chosen to reduce the number of interconnections between the memory and the digital
logic. SPI protocol was chosen because it is faster, does not require pull-up resistor
and is less power consuming compared to I2C protocol.

CHAPTER 5. TAG ARCHITECTURE 22

Figure 5.2: PCB Board of UHF-RFID tag. The MCU and temperature sensor have
been disabled to connect the digital logic[1]

Figure 5.3: Example of UWB antenna integrable with tag architecture

Chapter 6

Digital logic implementation

This chapter will present two implementations of the digital logic which
implement the EPC gen2 protocol. The first makes use of a Verilog synthesized
system memory, the second uses an external FRAM as system memory with
localization and sensing additional features. The first implementation is easier,
however verilog memory is volatile and inefficient because it’s synthesized with a
RTL approach.
Digital logic has been implemented starting from the open source verilog code of
WISP project[4],[5],[6].

6.1 Open source code explanation

The open source code available from the WISP project, used as base for the
project, is able to manage: Query, QueryAdjust, QueryRep, ACK, NAK, Req_RN
protocol commands. It doesn’t provide the use of a system memory, therefore the
write command has not been deployed and read command was managed in a different
way to that defined by the protocol. In particular, it uses read command to acquire
and transmit data collected by an ADC. Moreover, EPC identification code isn’t
stored in a non-volatile memory but is rather fixed with a Verilog code line as a
constant, therefore the EPC can’t be modified by readers.
It was developed in a modular way. It measures RTcal and TRcal parameters,
decodes data received, recognizes the command type, verifies the matching of RN16
or handle, decodes command parameters, computes the BLF and CRC code, sets
the data encoding type (FM0, Miller) and provides the correct reply sequence to the
passive transmitter.
The main Verilog blocks that compose the digital logic are (see 6.1):

23

CHAPTER 6. DIGITAL LOGIC IMPLEMENTATION 24

• top: The top level entity that connect all the functional blocks

• rx: decodes PIE symbols received by readers and measures how long is TRcal
symbol

• cmdparser: decodes the command bit sequence and provide, to txsettings
block, M, DR, TRext values transmitted inside the query command

• txsettings: stores M, DR, TRext values

• packetparser: decodes the other command’s field and verify if RN16 or handle
included in the command received match with what tag expects.

• controller: decides if and what to reply after a command reception. It also
manages the update of Q parameter, initialize and update the slot counter and
enables tag’s replay when the slot counter reaches 0 as value.

• txclkdivide: sets the BLF through the computation of 4.1

• sequencer: manages the data flow that will be provided to the transmission
block (tx). Data flow includes preamble, information, CRC16 and dummy 1
symbol.

• preamble: checks the TRext value and generates the preamble or extended
preamble sequence for FM0 or miller encoding.

• crc16: takes the sequence to be transmitted and compute the CRC-16.

• tx: converts the serial data stream, provided by the sequencer block, into a
miller or FM0 encoding.

• counter10: a simple counter used by rx block to perform time measurements.

• rng: generates random number used as RN16 or handle. It takes the LSB of
counter10 block and generates random numbers using the CRC algorithm.

• epc: used to generate response to an ACK command. It’s not a memory; it
assigns (through verilog line code) the storedPC and EPC values.

6.2 Digital logic with Verilog synthesized memory

It’s an improvement of the open source code. With this update the digital logic
is able to manage also Read and Write commands as described by the protocol.

CHAPTER 6. DIGITAL LOGIC IMPLEMENTATION 25

Figure 6.1: Simplified representation of main blocks and signals that compose the
open source digital logic

This new implementation also allows to change the EPC value by the reader since
it’s stored in the system memory as suggested by the protocol.

This improvement adds the following Verilog blocks:

• memory: a simple 128x16 synchronous parallel memory. It can be written
when write enable signal is high, otherwise it can be read. Whenever it received
the reset signal, it preloads the storedPC and EPC values.

• writemem: converts the serial data stream into a parallel one. It also manages
the memory addressing by adding an offset that select the correct memory area.
The offset value depend on the memory bank chooses by the reader.

• readmem: provides the address (added with the offset) to the memory and
converts the parallel data received into a serial one. It also builds the replays
for read or ACK commands and provide the serial data stream to the sequencer
block.

The following open source blocks are modified:

• epc: has been removed because storedPC and EPC are stored in memory block
and they are provided, as response of ACK command, by readmem block.

CHAPTER 6. DIGITAL LOGIC IMPLEMENTATION 26

• packeparser: introduced the write enable signal for memory and the selection
management of RN16 or handle as verification sequence.

• controller: introduced the storage of address and number of words received
during a read command. This feature was introduced because the packetparse
block is reset during a transmission operation while controller block is reset
only through system reset. Added some control flags used to control the other
blocks:

– ack_flag : select which kind of replay the readmem block should transmit.

– tagisopen: select the handle or RN16 used by packetparse to verify tags
identification

– selectRN : select the handle or RN16 to be transmitted by rng block.

– delay_tag_replay : flag that indicates if sequencer block should transmit
a delay tag replay.

Updated management of the following command:

– ACK : Modified the data source of command reply and added the raising
of ack_flag. EPC is now stored in the system memory therefore tag will
response to ACK command taking data from memory.

– REQ_RN : Introduced a control that allows tags to store a new handle
only if tag isn’t in the secured state and raises tagisopen flag.

– READ : Introduced the selection of system memory as data source for
command reply, the storage of address, memory bank and number of
words to be read and the raising of selectRN flag.

– WRITE : Introduced the selection of rng block as data source for command
reply and the raising of selectRN and delay_tag_replay flags.

• sequencer: introduced a new state (STATE_HEADER) in the state machine
that allows the transmission of an header bit when delay_tag_reply flag is
high.

• preamble: introduced a control that allow the transmission of extended
preamble when delay_tag_reply flag is high.

• rng: introduced the selection of RN16 or handle as output data flow through
the selectRN flag.

CHAPTER 6. DIGITAL LOGIC IMPLEMENTATION 27

Figure 6.2: Simplified representation of main blocks and signals involved in write
command with verilog synthesized memory

Write and read operations are set out in figures 6.2, 6.3.
When a tag receives a write command then the packetparse block communicates to
the writemem block the address, the memory bank and the data to be written. The
latter computes the correct memory address, parallelizes data received and writes
them when parallelization is complete. At the same time the sequencer block replies
to the command by transmitting a delay tag reply. The delay tag reply is built by
chaining an header bit, the handle and the CRC-16.
When a tag receives a read command then the controller block communicates to the
readmem block the address and the number of words to be read. The latter computes
the correct memory address, reads and serializes words and builds the reply through
the concatenation of an header bit, words read, the handle and the CRC-16.

6.3 Digital logic with external FRAM, UWB
localization, temperature and humidity sensing

This version is an improvement of the digital logic with Verilog synthesized
memory. With this update the system memory used by the digital logic is external
and non-volatile. The non-volatile memory allows to keep stored the EPC and user
data when power supply goes down.

CHAPTER 6. DIGITAL LOGIC IMPLEMENTATION 28

Figure 6.3: Simplified representation of main blocks and signals involved in read
command with verilog synthesized memory

6.3.1 Sensing and UWB localization features:

The UWB localization feature has been introduced with a passive approach.
The UWB localization is performed by backscattering an UWB signal transmitted
by an external UWB source. The digital logic modulates the UWB backscattered
signal through a clock signal given in output.
Moreover, temperature and humidity sensing have been introduced through
HTS221. This sensor requires a conversion of output data by means of calibration
parameters. Data conversion requires tricky operations for digital logic like division
or multiplications for decimal numbers. Since Tag should be less power consuming
as possible, data conversion is supposed to be executed by the reader. Calibration
parameters are set by the manufacturer and are different for each devices. To
perform data conversion the reader must read calibration parameters, temperature
or humidity acquired and then compute the converted value as depicted in figure 6.4
and described in equation 6.1.

TDegC = TOUT ·m+ q (6.1)

Where m and q are obtained with straigh line passing through two points equation:

CHAPTER 6. DIGITAL LOGIC IMPLEMENTATION 29

Figure 6.4: Graphic description of temperature data conversion[9]. TOUT is the
temperature acquired, TDegC is the temperature converted and the others are
calibration parameters.

m =
T0DegC − T1DegC

T0OUT − T1OUT
(6.2)

q =
T0OUT · T1DegC − T1OUT · T0DegC

T0OUT − T1OUT
(6.3)

Calibration parameters don’t change in time so reader must acquire them only once.
Obviously if the sensor is replaced they must be updated. Calibration parameters
are stored in reserved memory bank from address 40h to 130h in the following order:
H0_rH_x2, H1_rH_x2, T0_degC_x8, T1_degC_x8, T1/T0 msb, H0_T0_OUT,
H1_T0_OUT, T0_OUT, T1_OUT. Humidity and temperature are read and stored
in memory every time the reader transmits a query command and are respectively
available at 00h and 10h address of user memory bank.
Every time the sensor is powered on, some configuration parameters must be set as
described by the datasheet [9]. These parameters are set by writing its configuration
registers in order to control its behaviour.

CHAPTER 6. DIGITAL LOGIC IMPLEMENTATION 30

6.3.2 Digital logic explanation

Since the FRAM slots contain 8 bit whereas words to be written are 16 bit
length, the address received by readers does not correspond to physical memory
address. Physical memory address is computed through equation 6.4:

ADDRfram = ADDRreader · 2 + #BANK · 64 (6.4)

Where ADDRreader is doubling because every words need two memory slots, 64 is
twice the number of words per bank which reader’s software (Impinj Item Test)
admits, #BANK is respectively 0,1,2,3 for Reserved, EPC, TID, User memory
banks.
The features described above have been implemented with the following verilog
blocks:

• FRAMcontroller: interfaces the digital logic with the external SPI FRAM.
Through the spi_master block it manages the FRAM control signals and issues
commands to perform read and write operations. Specifically it provides to
spi_master block the data to be transmitted and starts or quits the SPI
communication. Commands expected by FRAM always start with an operation
code which identify the type of operation to be performed (write enable, write,
read ...). A write enable operation shall always precede a write operation.
The finite state machine implemented is described in figure 6.6. Cypress
FM25L04B FRAM automatically disable write enable latch after a write
operation. However write disable command is execute after a write operation,
in case of others FRAM models don’t implement this function. It also manages
the filling of fifo buffer block during read operation.

• spi_master: drives chip select, serial clock, data in and data out signals. It
also converts serial data received into a parallel one. It was developed through
an open source code [10]. This basic code has been modified to transmit a
serial stream of more than 8 bit until the reception of stop signal. Moreover
the maximum serial clock frequency has been increase to clock/2 instead of
clock/4.

• fifo: implements a first in firs out (fifo) buffer used to temporarily stores
data read from memory. it stores up to 64 words of 8 bit. This block was
implemented in the open source verilog code [4].

• localization: puts on output the system clock when readers transmit the

CHAPTER 6. DIGITAL LOGIC IMPLEMENTATION 31

Figure 6.5: Logical explanation of sensor controller’s finite state machine

ACK command. The length of localization window depends on system clock
frequency; with a system clock of 10 MHz it is given in output for 2÷ 3ms.

• SENSORcontroller: interfaces the digital logic with HTS221 sensor through
SPI communication protocol. By the spi_master block it issues commands
to write configuration registers and to perform temperature and humidity
readings. Specifically it provides to spi_master block the data to be
transmitted and starts or quits the SPI communication. Since tag is supplied
by energy harvesting, sensor may turn off in an unpredictable way. For this
reason configuration registers are written whenever the sensor is read, therefore
every time a query command is performed. Command expected by sensor are
composed by one address byte and one or more data bytes. The two MSB
of address byte are respectively used to select read or write operation and
to enable multiple readings or writings. During a multiple operation, the
communication is performed until the raising of chip select pin and address
in automatically increased by sensor’s internal logic. The finite state machine
implemented is described in figure 6.5.

The introduction of the external memory needs an update of the following main
blocks:

• memory: has been removed because external FRAM has become the system

CHAPTER 6. DIGITAL LOGIC IMPLEMENTATION 32

memory

• controller: introduced the read_rq flag which notify a read memory operation
to FRAMcontroller block. It also computes the physical memory address as
previously specified

• writemem: updated the physical address computation and removed the
increase of address since it is execute by FRAM internal logic.

• readmem: introduced the shift management of fifo buffer and removed the
increase of address since it is execute by FRAM internal logic.

• packetparse: added the announcement, during a Query command, of address,
memory bank and number of words to be read exploited by SENSORcontroller
block.

• top: added input and output signals to interface FRAM and sensor. Added
two combinational logic blocks to control the reset of FRAMcontroller and
SENSORcontroller blocks. The FRAMcontroller is reset whenever the tag
does not transmit and SENSORcontroller does not communicate with it or
reset is raised. SENSORcontroller is reset every time a query command isn’t
performed or reset is raised. Three multiplexer are added, one provides clock
signal to FRAMcontroller block, the others select data source for the previous
block.

A simplified representation of how FRAMcontroller and SENSORcontroller blocks
are connected in the digital logic is showed in figure 6.7.

CHAPTER 6. DIGITAL LOGIC IMPLEMENTATION 33

Figure 6.6: Logical explanation of FRAM controller’s finite state machine

Figure 6.7: Simplified representation of main blocks and signals that interact with
FRAMcontroller and SENSORcontroller blocks

Chapter 7

Simulation and test

This chapter will discuss the simulation and test approaches adopted and the
results obtained. Simulations were performed through the implementation of Verilog
testbenches while physical tests were executed on a FPGA, connected with the RFID
tag described in figure 5.1, controlled by a commercial reader.
Simulations were performed with Altera Modelsim 10.1d to verify if tag’s reply
sequences are correct, if tag’s response time meets the constraint defined by the
protocol and if tag implements correctly the SPI communication protocol.
FPGA test verifies if the entire physical system is working. Specifically it checks if
the tag interacts with the commercial reader, unrolls all the command imposed in a
real environment and communicates correctly with FRAM memory, temperature and
humidity sensor. Tests are conducted with an Altera Cyclone II FPGA programmed
via Quartus II, a Speedway R420 reader by Impinj connected to a Far Field antenna
(8.5dBi of gain) of the same company jointly with the Impinj Item Test software in
indoor environment. To be ETSI[11] compliant, the maximum transmitted power
of 2 W ERP has been used. The reader is initialized to perform Inventory rounds
with Single Tag Inventory mode in Session 0, which represents the maximum reading
throughput. However, the reader could change its configuration in run-time to ensure
reliable communication with the tag.

7.1 Simulation with sampled reader signals

The purpose of this simulation is to verify if tag works correctly with a real
sampled reader’s data stream received by tag platform.
The data stream is obtained enabling reader transmission and acquiring, by means
the oscilloscope Teledyne Lecroy WavePro 804HD, the output signal of the TS881
comparator placed on tag platform (see figure 5.1). A window of 3851µs has been

34

CHAPTER 7. SIMULATION AND TEST 35

Figure 7.1: Simulation with reader signal acquired

acquired with a sampling frequency of 100MSample/s, and the samples have been
saved in a text file. The testbench reads this test file, extrapolates the samples,
digitizes them by imposing a threshold and streams out the data flow to "demodin"
input. The results of simulation are shown in figure 7.1.
The sequence sampled is a series of query commands since during the acquisition
there weren’t any responding tags. Simulation highlights that tag is able to interpret
real reader’s data and reply within the T1 interval(see 4.1), in fact reply time results
to be about 47µs.

7.2 Simulation with generated reader signals

In this simulation the testbench generates a stream of PIE data which is put on
"demodin" input of digital logic. The stream of data was generated in a static way,
switching "demodin" input value after a defined time interval. This stream simulate
the interaction of reader during a communication, the data stream generated (shown
in 7.2) includes an inventory round and a write and read access operation.
Patterns of Data-0, Data-1 and preamble depend on Tari value as depicted in
figures 4.4, 4.5. Ranges of parameters are reasumed in Table 7.3, Table 7.4 shows
an example of parameter setting to generates the input data stream.

Tag backscatter link frequency (BLF) and intervals T1, T2, T5 are computed as defined
by the protocol[3]:

BLF =
DR

TRcal
(7.1)

Tmax
1 =MAX(RTcal, 10Tpri) · (1− | FrT |) + 2µs (7.2)

Tmin
1 =MAX(RTcal, 10Tpri) · (1− | FrT |)− 2µs (7.3)

CHAPTER 7. SIMULATION AND TEST 36

Figure 7.2: Generated signals by Testbench. To simplify the representation, different
zoom levels have been used for inventory and access waveforms. The input data
stream is obtained concatenating the three waveforms depicted.

Figure 7.3: Variability ranges of PIE data parameters

CHAPTER 7. SIMULATION AND TEST 37

Figure 7.4: PIE data parameters values set

CHAPTER 7. SIMULATION AND TEST 38

Figure 7.5: Waveforms of main signals involved during a write command simulation

Tmax
2 = 20Tpri (7.4)

Tmin
2 = 3Tpri (7.5)

Tmax
5 =MAX(RTcal, 10Tpri) · (1− | FrT |)− 2µs (7.6)

Tmin
5 = 20ms (7.7)

where FrT is the frequency tolerance that depends on DR and BLF (see [3]) equal
to 22% in this case study and Tpri:

Tpri =
1

BLF
=
TRcal

DR
(7.8)

The presence of FRAM memory has been simulated by generating (through the
testbench) a data stream on input "din". This stream simulate the data provided
by FRAM memory during a read operation. In this way the simulation shows if
tag interprets correctly data that memory will provide it. Similarly the presence of
temperature and humidity sensor has been simulated by generating a data stream
on "sensorDATA" interface during a read data operation. Since sensorDATA is an
inout pin, a tristate buffer is added in the testbench to control the data flow. Figures
6.7 and 6.2 help understanding the results of a write command simulation shown in
figure 7.5.

CHAPTER 7. SIMULATION AND TEST 39

Figure 7.6: Laboratory setup during hardware test

7.3 Test on FPGA

The purpose of this test is to verify if the entire physical system is working
correctly. The system tested is a prototype externally supplied in which the digital
logic is synthesized on a FPGA. It involves Cypress FM25L04B as external FRAM
memory, an STMicroelectronics HTS221 temperature and humidity sensor and
doesn’t include UWB antenna and switch. In future versions, the system will be
evolved by integrating the digital logic as a chip mounted on tag platform, by using
an FRAM with lower minimum voltage supply (e.g. like Lapis MR45V064B), with
all blocks entirely supplied by reader’s UHF signals through an on-chip RF power
harvesting circuit. The test setup is depicted in figure 7.6.
A feasibility assessment has been performed to add the external FRAM. Since

EPC gen2 protocol defines tag response time (see figure 4.1), the latency introduced
by FRAM serial communication should ensure that all replies meet link timing.
ACK and READ commands are more sensitive to link timing since their replies are
obtained by reading the external memory.
The number of bit to transmit within link timing is:

#bit = opcode+ address+ word = 8 + 8 + 16 = 32 (7.9)

In the worst case the system clock is 3MHz:

CHAPTER 7. SIMULATION AND TEST 40

SY Sclk = 3MHz (7.10)

SPIclk =
SY Sclk

2
= 1.5MHz (7.11)

TSPI =
1

SPIclock
= 0.66µs (7.12)

Time required to ensure tag reply:

tr = #bit · TSPI = 32 · 0.66 · 10−6 = 21.12µs (7.13)

tr turns out to be much shorter than link timing, therefore the uses of external
serial memory is feasible.
The number of words to be read doesn’t affect the response time. In fact FRAM
communication is faster compared to tag reply data rate and replies are made by
getting data from a fifo buffer which is in parallel filled up by FRAM read data.

The Impinj Item Test software was used to test the inventory process, the EPC
change, read and write commands. The test conditions adopted:

• Tag voltage supply: 1.9V

• Reader transmitted power: 1W ERP

• Reader in max throughput mode and session 0

• Frequency of system clock: 10MHz

• indoor environment with line of sight propagation

Some example of data exchange captured by oscilloscope are showed in figures 7.8,
7.9, 7.10, 7.11, 7.12, 7.13.
The number of Inventory, read and write rates per minutes are difficult to evaluate
since the system is only a prototype. The long flying wires used to connect the FPGA
to tag, FRAM memory and sensor, behave as antennas which interfere with UHF
signals transmitted by the reader, degrading performance. The interferences between
"demodin" and "demodout" lines are highlighted in figure 7.12. Moreover, since the
digital logic is implemented on FPGA which is externally supplies, even the tag is
externally supplied, therefore the tag’s working distance isn’t valuable. However
indicative measures have been performed to prove that the tag works correctly, the
results are showed in figure 7.7.

CHAPTER 7. SIMULATION AND TEST 41

Figure 7.7: Indicative number of operation per minute measured under the test
conditions previously defined

Figure 7.8: EPC transmitted by the tag with FM0 (top figure) and Miller (bottom
figure) encoding

CHAPTER 7. SIMULATION AND TEST 42

Figure 7.9: SPI signals during a read of external FM25L04B FRAM

Figure 7.10: SPI signals during humidity and temperature acquisition from HTS221
sensor

CHAPTER 7. SIMULATION AND TEST 43

Figure 7.11: uwbpos localization signal given on output during inventory operation

Figure 7.12: Data exchanged during a read command. "Demodout" interference on
"demodin" are pointed out

CHAPTER 7. SIMULATION AND TEST 44

Figure 7.13: Tag reply of a write command

Chapter 8

Chip design

This chapter will present some steps of the microelectronic design based of the
implemented digital logic on a 0.18 µm CMOS process. Cadence tools used for the
design are Genus for synthesis process and Innovus for placement, clock tree synthesis
and routing. Timing checks were performed after placement, clock tree synthesis and
routing to verify that time violating paths didn’t exist. This design does not aim
to be a final implementation but rather an explorative study, then a more accurate
setup should be performed to obtained the necessary performance for a final silicon
implementation.

8.1 Synthesis and simulation

In this operation the Verilog code has been imported into Cadence environment
and has been synthesized at register transfer level (RTL), applying some rules and
constrains, through the Genus tool.
In the first step the verilog code is imported and elaborated. After that, power
constraints are imposed on the design to ensure leakage and dynamic power
respectively below 20nW and 15µW . Dynamic power constraint has been chosen
through an evaluation of the available power on tag’s antenna.
Assuming the condition of free space propagation and unitary antennas gains:

Pav = Pt ·
(
λmax

4π · d

)2

(8.1)

45

CHAPTER 8. CHIP DESIGN 46

Since Pt = 2W , λmax = 0.345m and assuming an operating range of 2÷ 10m:

Pmax
av = 377µW (8.2)

Pmin
av = 15µW (8.3)

It can be deduced that the maximum allowed dynamic power was imposed as the
minimum available power. Obviously, the available power for digital logic is less than
Pav since some power is lost on the rectifier and DC/DC stages. However, 15µW
was chosen as initial parameter to avoid a too restrictive condition, which afterwards
will be modified to ensure better performance. The next step consisted in compiling
the constraints file. In this file generally are included:

• All signals on clock input of all registers of entire network

• The system clock skew admissible on setup and hold time

• The transition time range admissible of system clock

• All networks which won’t be modified or replaced during optimization.

• All paths on which timing constrain are disabled because are asynchronous
with system clock and don’t affect system operations

• The input delay range admissible of all logic’s input pins

• The transition time range admissible of all logic’s input pins

• The output delay range admissible of all logic’s output pins

• The expected driver resistance of all logic’s input pins

• The expected output capacitance of all logic’s output pins

These information are used to drive the tool during the synthesis process and to
check that the network working correctly during place and route process.
After that the synthesis was performed through the 180nm CMOS technology, the
result of this process is showed in figure 8.1.

A more accurate simulation was performed thanks to the mathematical model
included in the physical libraries. These model describe the physical behaviour
of each elementary block which composes the digital logic. During this phase each
elementary blocks is connected with ideal wires, therefore a more accurate simulation
will be executed after placement and routing operations. The simulation was

CHAPTER 8. CHIP DESIGN 47

Figure 8.1: Result of synthesis process and zoom on a small area

Figure 8.2: Post synthesis simulation. The simulation shows the FRAM signals
exchanged during a write command and the glitches that affect cs and done signals.

performed through the same testbench used previously. The result of post-synthesis
simulation showed the presence of some glitches on signals which did not emerge
during simulation on Altera Modelsim 10.1d. These glitches are shown in figures 8.2.
An estimate of power consumption and chip size has been performed after the
synthesis process. The estimate is based on the digital library made available with
the 180nm CMOS process design kit over a 12ms of simulation performed with the
usual testbench. The chip size obtained is 0.097mm2, the leakage and dynamic power
obtained are respectively 0.381µW and 141.7µW . Since this power values depend on
simulation time length, is appropriate to convert them in energy values. Therefore
leakage energy amounts to 4.6pJ and dynamic energy result to be 1.7µJ .

CHAPTER 8. CHIP DESIGN 48

Figure 8.3: Initial floorplan in which are defined only chip edges and I/O pins
position.

8.2 Placement

The purpose of this step is to build the floorplan of synthesized chip. The
floor-planning is a process in which the standard cells are placed in order to meet time
constraints and to occupy less area. Firstly, the tool estimates the chip dimension and
traces its borders. I/O pins were distributed on chip edges and after the placement
operation they were manually placed in order to simplify the I/O interconnection
and reduce their length. The initial floorplan is showed in figure 8.3.
Placement is a step of placing the standard cell in a standard cell rows in order to:

• minimize the total wirelength

• ensure that critical paths don’t exceed the the maximum specified delay

• avoid congested region in which excessive routing detours or make it impossible
to complete all routes

CHAPTER 8. CHIP DESIGN 49

Figure 8.4: Result of placement process and zoom on a small area

• minimize power consumption

The result of placement step is showed in figure 8.4.

8.3 Clock tree synthesis and Routing

After placing the cells, the clock tree has been synthesized. Clock Tree Synthesis
(CTS) is a process which makes sure that the clock gets distributed evenly to all
sequential elements in a design. The goal of CTS is to minimize the skew and
latency. Clock tree can be built including clock tree inverters so as to ensure clock
transition constrain. Clock tree balancing is done by clock tree buffers which tune
clock skew and latency to meet the requirements. For this reason neighboring cells
may have clock sources that have passed through a different number of buffers.
The result of this steps is showed in figure 8.5.

After that routing has been performed which is the process of establishing
physical connections between various components in the design. To correctly connect
the nets, routers should ensure that the design meets timing, has no crosstalk
problems, meets any metal density requirements, does not suffer from antenna effects,
and so on. Routing process is divided into three steps:

• Global Routing:It is done in the placement stage. In Global routing, the
core area is divided into Global Routing Cells (GRC). In this stage only routing
resources are allocated. Global routing assigns nets to specific GRC but it does
not define the specific tracks for each of them.

CHAPTER 8. CHIP DESIGN 50

Figure 8.5: Zoom on clock input port after CTS step. Yellow and green track added
represent the clock tree branches

• Track Assignment: Tracks will be assigning to all metal layers through each
GRC. Routing will be done but pin to pin connection isn’t yet executed.

• Detail routing: The actual routing takes place, the physical connections are
made i. e. it will create actual metal and via connections.

The chip configuration is showed in figure 8.6.

CHAPTER 8. CHIP DESIGN 51

Figure 8.6: Result of routing process and zoom on a small area

Chapter 9

Conclusion

The RFID system, initially developed only for identification, are becoming more
appealing over the years with the addiction of sensing and positioning capabilities
which makes this technology ready for a large number of application. A future
vision of RFID technology is provided by RAIN RFID global alliance[12] which
promoting the universal adoption of UHF RFID technology in a way similiar to
other wireless technology organizations including NFC Forum, WiFi Alliance and
Bluethoot SIG. The purpose of RAIN alliance is to connect items through RFID tag
to enable businesses and consumers to identify, locate, authenticate and engage it in
our everyday world.
The work presented in this thesis aims to develop the RFID technology in order to
reach the set future goals. In this work an existing firmware has been improved to
store data received by readers, data acquired by sensor in a non volatile memory
and to add the UWB localization. Many simulation and test on FPGA have been
performed to validate the work and finally a CMOS synthesis of HDL firmware has
been introduced. Many future developments are available for this projects:

• Optimize the verilog code of digital logic

• add CRC check by the tag

• add error replies by the tag in case of problem

• add the compatibility of all EPC gen2 protocol commands

• Optimize the chip synthesis on Cadence

• Integrate the entire tag platform on chip except the antennas

52

Bibliography

[1] D. Fabbri, E. Berthet-Bondet, D. Masotti, A. Costanzo, D. Dardari,
and A. Romani, Long Range Battery-Less UHF-RFID Platform for Sensor
Applications.

[2] “Wisp project.” Avaiable at http://www.wispsensor.net/home.

[3] EPC™ Radio-Frequency Identity Protocols Generation-2 UHF RFID. Available
at https://www.gs1.org/sites/default/files/docs/epc/Gen2_Protocol_

Standard.pdf.

[4] “Open source rfid sensor tag verilog code.” Avaiable at http://www.

wispsensor.net/rfid_verilog_code.

[5] D. Yeager, F. Zhang, A. Zarrasvand, N. T. George, T. Daniel, and B. P. Otis,
A 9uA, Addressable Gen2 Sensor Tag for Biosignal Acquisition. Vol. 45, IEEE
Journal of Solid-State Circuits (JSSC), No. 10, 2010.

[6] D. Yeager, Development and Application of Wirelessly Powered Sensor Nodes.
University of Washington, 2009.

[7] “Radio-frequency identification.” Avaiable at https://en.wikipedia.org/

wiki/Radio-frequency_identification.

[8] K. Ohno and T. Ikegami, Interference Mitigation Study for UWB RadioUsing
Template Waveform Processing. IEEE TRANSACTIONS ON MICROWAVE
THEORY AND TECHNIQUES, VOL. 54, NO. 4, APRIL 2006.

[9] STMicroelectronics, Capacitive digital sensor for relative humidity and
temperature. HTS221 Datasheet.

[10] G. Santhosh, “Master spi verilog.” Avaiable at https://opencores.org/

projects/spi_verilog_master_slave.

[11] “Etsi en 302 208 v3.1.0 (2016-02).” Avaiable at https://www.etsi.org.

53

http://www.wispsensor.net/home
https://www.gs1.org/sites/default/files/docs/epc/Gen2_Protocol_Standard.pdf
https://www.gs1.org/sites/default/files/docs/epc/Gen2_Protocol_Standard.pdf
http://www.wispsensor.net/rfid_verilog_code
http://www.wispsensor.net/rfid_verilog_code
https://en.wikipedia.org/wiki/Radio-frequency_identification
https://en.wikipedia.org/wiki/Radio-frequency_identification
https://opencores.org/projects/spi_verilog_master_slave
https://opencores.org/projects/spi_verilog_master_slave
https://www.etsi.org

BIBLIOGRAPHY 54

[12] “Rain rfid technology.” Avaiable at https://rainrfid.org.

[13] Characteristics of ultra-wideband technology. RECOMMENDATION ITU-R
SM.1755-0, avaiable at https://www.itu.int/dms_pubrec/itu-r/rec/sm/

R-REC-SM.1755-0-200605-I!!PDF-E.pdf.

[14] “Vlsi basic.” Avaiable at https://vlsibasic.blogspot.com.

[15] “Placement (electronic design automation).” Avaiable at https://en.

wikipedia.org/wiki/Placement_(electronic_design_automation).

[16] “Routing (electronic design automation).” Avaiable at https://en.wikipedia.
org/wiki/Routing_(electronic_design_automation).

[17] “Clock tree synthesis.” Avaiable at https://www.techdesignforums.com/

practice/guides/clock-tree-synthesis-distribution-strategies/.

https://rainrfid.org
https://www.itu.int/dms_pubrec/itu-r/rec/sm/R-REC-SM.1755-0-200605-I!!PDF-E.pdf
https://www.itu.int/dms_pubrec/itu-r/rec/sm/R-REC-SM.1755-0-200605-I!!PDF-E.pdf
https://vlsibasic.blogspot.com
https://en.wikipedia.org/wiki/Placement_(electronic_design_automation)
https://en.wikipedia.org/wiki/Placement_(electronic_design_automation)
https://en.wikipedia.org/wiki/Routing_(electronic_design_automation)
https://en.wikipedia.org/wiki/Routing_(electronic_design_automation)
https://www.techdesignforums.com/practice/guides/clock-tree-synthesis-distribution-strategies/
https://www.techdesignforums.com/practice/guides/clock-tree-synthesis-distribution-strategies/

List of Figures

2.1 RFID technology summary features 5
2.2 Layout of a generic RFID tag [7] . 6

3.1 Example of UWB pulse waveform and related spectrum [8] 8

4.1 Link timing representation[3] . 11
4.2 CRC Computation and verification parameters[3] 11
4.3 Network example for computation and verification of CRC-5[3] . . . 12
4.4 PIE symbols[3] . 13
4.5 Preamble and framesync of reader to tag communication[3] 14
4.6 FM0 preamble sequences[3] . 14
4.7 Miller preamble sequences with M=2[3] 15
4.8 Data and dummy symbols with FM0 encoding[3] 15
4.9 Data and dummy symbols with M=2 miller encoding[3] 15
4.10 Example of inventory and access operations[3] 18
4.11 Tag memory and EPC bank organization[3] 19

5.1 Hardware platform architecture . 21
5.2 PCB Board of UHF-RFID tag. The MCU and temperature sensor

have been disabled to connect the digital logic[1] 22
5.3 Example of UWB antenna integrable with tag architecture 22

6.1 Simplified representation of main blocks and signals that compose the
open source digital logic . 25

6.2 Simplified representation of main blocks and signals involved in write
command with verilog synthesized memory 27

6.3 Simplified representation of main blocks and signals involved in read
command with verilog synthesized memory 28

55

LIST OF FIGURES 56

6.4 Graphic description of temperature data conversion[9]. TOUT is the
temperature acquired, TDegC is the temperature converted and the
others are calibration parameters. 29

6.5 Logical explanation of sensor controller’s finite state machine 31
6.6 Logical explanation of FRAM controller’s finite state machine . . . 33
6.7 Simplified representation of main blocks and signals that interact with

FRAMcontroller and SENSORcontroller blocks 33

7.1 Simulation with reader signal acquired 35
7.2 Generated signals by Testbench. To simplify the representation,

different zoom levels have been used for inventory and access
waveforms. The input data stream is obtained concatenating the three
waveforms depicted. 36

7.3 Variability ranges of PIE data parameters 36
7.4 PIE data parameters values set . 37
7.5 Waveforms of main signals involved during a write command simulation 38
7.6 Laboratory setup during hardware test 39
7.7 Indicative number of operation per minute measured under the test

conditions previously defined . 41
7.8 EPC transmitted by the tag with FM0 (top figure) and Miller (bottom

figure) encoding . 41
7.9 SPI signals during a read of external FM25L04B FRAM 42
7.10 SPI signals during humidity and temperature acquisition from

HTS221 sensor . 42
7.11 uwbpos localization signal given on output during inventory operation 43
7.12 Data exchanged during a read command. "Demodout" interference

on "demodin" are pointed out . 43
7.13 Tag reply of a write command . 44

8.1 Result of synthesis process and zoom on a small area 47
8.2 Post synthesis simulation. The simulation shows the FRAM signals

exchanged during a write command and the glitches that affect cs and
done signals. 47

8.3 Initial floorplan in which are defined only chip edges and I/O pins
position. 48

8.4 Result of placement process and zoom on a small area 49
8.5 Zoom on clock input port after CTS step. Yellow and green track

added represent the clock tree branches 50

LIST OF FIGURES 57

8.6 Result of routing process and zoom on a small area 51

Appendix A

Verilog code of main blocks
implemented

A.1 spi_master.v

/∗∗∗
∗ Author : Nicho las B a t t i s t i n i
∗ Data : 25/10/2019
∗∗/

// Developed on the base o f :

//
//// ////
//// Pro j e c t Name : SPI (Ver i l og) ////
//// ////
//// Module Name : spi_master ////
//// ////
//// ////
//// This f i l e i s part o f the Ethernet IP core p r o j e c t ////
//// http :// opencores . com/ pro j e c t , sp i_ver i log_master_slave ////
//// ////
//// Author (s) : ////
//// Santhosh G (santhg@opencores . org) ////
//// ////
//// Refer to Readme . txt f o r more in fo rmat ion ////
//// ////
// ////
//// Copyright (C) 2014 , 2015 Authors ////
//// ////

58

APPENDIX A. VERILOG CODE OF MAIN BLOCKS IMPLEMENTED 59

//// This source f i l e may be used and d i s t r i b u t e d without ////
//// r e s t r i c t i o n provided that t h i s copyr ight statement i s not ////
//// removed from the f i l e and that any d e r i v a t i v e work conta in s
////
//// the o r i g i n a l copyr ight no t i c e and the a s s o c i a t ed d i s c l a ime r . ////
//// ////
//// This source f i l e i s f r e e so f tware ; you can r e d i s t r i b u t e i t ////
//// and/or modify i t under the terms o f the GNU Lesse r General ////
//// Publ ic L i cense as publ i shed by the Free Software Foundation ; ////
//// e i t h e r v e r s i on 2 .1 o f the License , or (at your opt ion) any ////
//// l a t e r v e r s i on . ////
//// ////
//// This source i s d i s t r i b u t e d in the hope that i t w i l l be ////
//// use fu l , but WITHOUT ANY WARRANTY; without even the impl i ed ////
//// warranty o f MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
//// PURPOSE. See the GNU Lesse r General Publ ic L i cense f o r more ////
//// d e t a i l s . ////
//// ////
//// You should have r e c e i v ed a copy o f the GNU Lesse r General ////
//// Publ ic L i cense along with t h i s source ; i f not , download i t ////
//// from http ://www. opencores . org / l g p l . shtml ////
////
//
/∗~~

SPI MODE 3
CHANGE DATA @ NEGEDGE
read data @posedge

RSTB−a c t i v e low asyn re s e t , CLK−c lock , T_RB=0−rx 1−TX,
mlb=0−LSB 1 s t 1−msb 1 s t
START=1− s t a r t s data t ransmi s s i on cd iv 0=c lk /4 1=/8 2=/16 3=/32

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~∗/

// D i f f e r e n c e s : 1) int roduced f e a tu r e to transmit t r eg un t i l stop = 1 .
// Thank that i t can transmit a s e r i a l stream of more than 8 b i t
// 2) Modif ied s e t t i n g s o f done , s s
//3) SCK can be a l s o c l k /2

module spi_master ( rstb , c lk , mlb , s t a r t , tdat , din , ss , sck , dout , done , rdata ,
stop ) ;

input rstb , c lk , mlb ;
input s t a r t ; // s t a r t data t ransmi s s i on or r e c ep t i on
input stop ; // stop data t ransmi s s i on or r e c ep t i on

input [ 7 : 0 ] tdat ; // transmit data
input din ;
output reg s s ;



APPENDIX A. VERILOG CODE OF MAIN BLOCKS IMPLEMENTED 60

output reg sck ;
output reg dout ;

output reg done ;
output reg [ 7 : 0 ] rdata ; // r e c e i v ed data

// FSM
parameter i d l e =2'b00 ;
parameter send=2'b10 ;
parameter f i n i s h =2'b11 ;
reg [ 1 : 0 ] cur , nxt ;

reg [ 7 : 0 ] treg , r r eg ; // temp r e g i s t e r to s t o r e data
reg [ 3 : 0 ] nb i t ;
reg [ 4 : 0 ] cnt ;
reg s h i f t ; // s h i f t = 1 −> s t a r t sck
reg data_val id ;

// SPI c l o ck genera to r
// setup f a l l i n g edge ( s h i f t dout ) sample r i s i n g edge ( read din )
always@ ( negedge c l k or posedge r s tb ) begin

i f ( r s tb ) begin
cnt=0; sck =1;

end e l s e begin
i f ( s h i f t ==1) begin

cnt=cnt+5'd1 ;
i f ( cnt==1) begin

sck=~sck ;
cnt=0;
end //mid

end // s h i f t
end // r s t

end // always

//FSM i /o
always @( s t a r t or cur or stop or data_val id or nb i t ) begin

case ( cur )
i d l e : begin

i f ( s t a r t==1) begin
nxt=send ;
s s =0;
done = 0 ;
s h i f t =1;

end e l s e begin



APPENDIX A. VERILOG CODE OF MAIN BLOCKS IMPLEMENTED 61

s s =1;
done = 0 ;
nxt=cur ;
s h i f t =0;

end
end // i d l e

send : begin
done = ( nb i t == 4 ' d8 ) ? 1 ' b1 : 1 ' b0 ;
i f ( stop && data_val id ) begin

nxt=f i n i s h ;
s h i f t =0;
s s =1;

end e l s e begin
nxt=cur ;
s h i f t =1;
s s =0;

end
end// send

f i n i s h : begin
s h i f t =0;
s s =1;
done = 0 ;
nxt=i d l e ;

end
de f au l t : begin

nxt=i d l e ;
s h i f t =0;
s s =1;
done = 0 ;

end
endcase

end// always

// s t a t e t r a n s i t i o n ( system c lock )
always@ ( negedge c l k or posedge r s tb ) begin

i f ( r s tb ) begin
cur <=i d l e ;
rdata <= 0 ;

end e l s e i f ( data_val id ) begin
cur <=nxt ;
rdata <= rreg ;

end e l s e begin
cur <= nxt ;

end
end



APPENDIX A. VERILOG CODE OF MAIN BLOCKS IMPLEMENTED 62

// sample @ r i s i n g edge ( read din )
always@ ( posedge sck or posedge r s tb ) begin // or negedge r s tb

i f ( r s tb ) begin
r r eg = 0 ;
data_val id = 0 ;

end e l s e begin
data_val id = ( nb i t == 4 ' d8 ) ? 1 ' b1 : 1 ' b0 ;
r r eg = (mlb == 0) ? {din , r r eg [ 7 : 1 ] } : { r r eg [ 6 : 0 ] , din } ;

end // r s t
end // always

// sample @ f a l l i n g edge ( wr i t e dout )
always@ ( negedge sck or posedge r s tb ) begin

i f ( r s tb ) begin
dout = 0 ;
t r eg = 0 ;
nb i t = 0 ;

end e l s e i f ( nb i t==0) begin // execute only at f i r s t s t a r t
t r eg=tdat ;
dout=mlb? t r eg [ 7 ] : t r eg [ 0 ] ;
nb i t=nbi t +4'd1 ;

end e l s e i f ( nb i t==8) begin
t r eg=tdat ;
dout=mlb? t r eg [ 7 ] : t r eg [ 0 ] ;
nb i t =4'd1 ;

end e l s e begin
nb i t=nbi t +4'd1 ;
t r eg = (mlb==0) ? {1 'b1 , t r eg [ 7 : 1 ] } : { t r eg [ 6 : 0 ] , 1 ' b1 } ;
dout = (mlb==0) ? t r eg [ 0 ] : t r eg [ 7 ] ;
end

end // always

endmodule

A.2 FRAMcontroller.v

// Author : Nicho las B a t t i s t i n i
// Data : 23/10/2019



APPENDIX A. VERILOG CODE OF MAIN BLOCKS IMPLEMENTED 63

module FRAMcontroller ( r e s e t , c lk , din , dout , sck , cs , wp, hold ,
readwords , rw_address , wdata , f i fo_dataout , write_rq , read_rq ,
next_out , new_data ) ;

input r e s e t , c l k ;
input din ; // s e r i a l data r e c e i v ed from FRAM
output dout ; // s e r i a l data t ransmit ted to FRAM
output sck ; // SPI c l o ck
output cs ; // FRAM chip s e l e c t
output wp ; // FRAM wr i t e p ro t e c t
output hold ; // FRAM hold
input [ 7 : 0 ] rw_address ; // read or wr i t e address
input [ 1 5 : 0 ] wdata ; // data to wr i t e in FRAM
output [ 7 : 0 ] f i f o_dataout ; // data reads from FRAM
input [ 7 : 0 ] readwords ;
input write_rq ; // wr i t e mode
input read_rq ; // read mode
input next_out ; // s h i f t o f f i f o bu f f e r
output new_data ;

// i n s t r u c t i o n b i t s
parameter WREN = 8 ' b00000110 ;
parameter WRDI = 8 ' b00000100 ;
parameter READ = 8 ' b00000011 ; // the A8 b i t i s always 0
parameter WRITE = 8 ' b00000010 ; // the A8 b i t i s always 0

// s t a t e
parameter IDLE = 3 ' d0 ;
parameter INSTRUCTION = 3 ' d1 ;
parameter ADDRESS = 3 ' d2 ;
parameter RX_DATA = 3 ' d3 ;
parameter TX_DATA = 3 ' d4 ;
parameter W_ENABLE = 3 ' d5 ;
parameter W_DISABLE = 3 ' d6 ;
parameter STOP = 3 ' d7 ;

reg next_in ;
wire [ 7 : 0 ] data_in ;
reg s t a r t ;
reg stop ;
reg new_data ;
wire done ;
wire [ 1 : 0 ] cd iv ;
reg [ 2 : 0 ] s t a t e ;
reg [ 4 : 0 ] count ;



APPENDIX A. VERILOG CODE OF MAIN BLOCKS IMPLEMENTED 64

reg [ 4 : 0 ] f i f o_count ;
reg [ 7 : 0 ] tdat ;
wire [ 7 : 0 ] f i f o_data in ;
wire [ 8 : 0 ] readbytes ;
reg flag_w_en ;
reg f lag_newstate ;
reg count_en ;
wire mlb ;
// F i f o unused p ins :
wire f i r s t b y t e , r e s t a r t , empty , f u l l ;

spi_master U_SPIM( re s e t , c lk , mlb , s t a r t , tdat , din , cs , sck , dout ,
done , f i f o_data in , stop ) ; // sck = c lk /2

f i f o U_FIFO( re s e t , f i f o_data in , f i fo_dataout , next_in , next_out ,
empty , f u l l , f i r s t b y t e , r e s t a r t ) ; // s t o r e s data read from FRAM

as s i gn f i r s t b y t e = 0 ;
a s s i gn r e s t a r t = 0 ;
a s s i gn hold = 1 ;
a s s i gn wp = 1 ;
a s s i gn mlb = 1 ; // s e t MSB f i r s t
a s s i gn readbytes = ( readwords == 0) ? 9 ' d10 : ( readwords << 1) ;

// Counter to mange next_in command
always @ ( posedge c l k or posedge r e s e t ) begin

i f ( r e s e t )
f i f o_count <= 5 ' d0 ;

e l s e i f ( count_en )
f i f o_count <= f i fo_count + 5 ' d1 ;

e l s e
f i f o_count <= 5 ' d0 ;

end

always @ ( posedge c l k or posedge r e s e t ) begin
i f ( r e s e t ) begin

s t a t e <= 0 ;
stop <= 0 ;
tdat <= 0 ;
count <= 0 ;
s t a r t <= 0 ;
next_in <= 0 ;
flag_w_en <= 0 ;
f lag_newstate <= 0 ;
count_en <= 0 ;



APPENDIX A. VERILOG CODE OF MAIN BLOCKS IMPLEMENTED 65

new_data <= 0 ;

end e l s e begin

case ( s t a t e )
IDLE : begin

i f ( read_rq ) begin
s t a t e <= INSTRUCTION;
f lag_newstate <= 1 ;

end e l s e i f ( write_rq ) begin
s t a t e <= W_ENABLE;
f lag_newstate <= 1 ;

end e l s e
s t a t e <= IDLE ;
f lag_newstate <= 0 ;

end

W_ENABLE: begin
i f ( done && ! f lag_newstate ) begin

s t a t e <= STOP;
f lag_newstate <= 1 ;
flag_w_en <= 1 ;
tdat <= 8 ' d0 ; //new data to transmit
count <= 0 ;
stop <= 1 ;

end e l s e begin
i f ( count == 5 ' d4 ) begin

s t a r t <= 0 ;
tdat <= WREN;
stop <= 0 ;
f lag_newstate <= 0 ;

end e l s e begin
s t a r t <= 1 ;
tdat <= WREN;
stop <= 0 ;
count <= count + 5 ' d1 ;
f lag_newstate <= 0 ;
end

end

end

STOP: begin
i f ( count == 5 ' d4 ) begin

stop <= 0 ;
count <= 0 ;



APPENDIX A. VERILOG CODE OF MAIN BLOCKS IMPLEMENTED 66

i f ( flag_w_en ) begin
s t a t e <= INSTRUCTION;
f lag_newstate <= 1 ;

end e l s e begin
s t a t e <= W_DISABLE;
f lag_newstate <= 1 ;

end
end e l s e begin

count <= count +5'd1 ;
stop <= 1 ;

end
end

INSTRUCTION: begin
i f ( done && ! f lag_newstate ) begin

s t a t e <= ADDRESS;
f lag_newstate <= 1 ;
tdat <= rw_address ; //new data to transmit
count <= 0 ;

end e l s e begin
i f ( count == 5 ' d4 ) begin

s t a r t <= 0 ;
stop <= 0 ;
f lag_newstate <= 0 ;
i f ( read_rq )

tdat <= READ;
e l s e i f ( write_rq )

tdat <= WRITE;
e l s e

tdat <= 8 ' d0 ;

end e l s e begin
s t a r t <= 1 ;
stop <= 0 ;
f lag_newstate <= 0 ;
count <= count + 5 ' d1 ;
i f ( read_rq )

tdat <= READ;
e l s e i f ( write_rq )

tdat <= WRITE;
e l s e

tdat <= 8 ' d0 ;
end

end

end



APPENDIX A. VERILOG CODE OF MAIN BLOCKS IMPLEMENTED 67

ADDRESS: begin
i f ( done && read_rq && ! f lag_newstate ) begin

tdat <= 8 ' d0 ; // nothing to transmit
s t a t e <= RX_DATA;
f lag_newstate <= 1 ;

end e l s e i f ( done && write_rq && ! f lag_newstate ) begin
tdat <= wdata [ 1 5 : 8 ] ;
s t a t e <= TX_DATA;
f lag_newstate <= 1 ;

end e l s e begin
tdat <= rw_address ;
stop <= 0 ;
f lag_newstate <= 0 ;

end
end

RX_DATA: begin
i f ( done && ! f lag_newstate ) begin

f lag_newstate <= 1 ;
count_en <= 1 ;
i f ( count == readbytes − 1 ' d1 ) begin

stop <= 1 ;
end e l s e begin

count <= count + 5 ' d1 ;
end

end e l s e begin
f lag_newstate <= 0 ;
i f ( f i f o_count == 2) begin

next_in <= 1 ;
count_en <= 0 ;

end e l s e
next_in <= 0 ;

end
end

TX_DATA: begin
i f ( done && ! f lag_newstate ) begin

f lag_newstate <= 1 ;

i f ( count [ 0 ] == 0) begin
tdat <= wdata [ 7 : 0 ] ;
count_en <= 1 ;

end e l s e tdat <= wdata [ 1 5 : 8 ] ;



APPENDIX A. VERILOG CODE OF MAIN BLOCKS IMPLEMENTED 68

i f ( count == readbytes − 1 ' d1 ) begin
tdat <= 8 ' d0 ; // nothing to transmit
flag_w_en <= 0 ;
count_en <= 0 ;
s t a t e <= STOP;

end e l s e begin
count <= count + 5 ' d1 ;
end

end e l s e begin
f lag_newstate <= 0 ;
i f ( f i f o_count == 2 && count [ 0 ] == 1) begin

new_data <= 1 ;
count_en <= 0 ;

end e l s e
new_data <= 0 ;

end
end

W_DISABLE: begin
i f ( done && ! f lag_newstate ) begin

tdat <= 8 ' d0 ; //no data to transmit
count <= 5 ' d31 ;
stop <= 1 ;
f lag_newstate <= 1 ;

end e l s e begin
i f ( count == 5 ' d4 ) begin

s t a r t <= 0 ;
tdat <= WRDI;
stop <= 0 ;
f lag_newstate <= 0 ;

end e l s e i f ( count == 5 ' d31 ) begin
tdat <= 8 ' d0 ; //no data to transmit
stop <= 1 ;
f lag_newstate <= 1 ;

end e l s e begin
s t a r t <= 1 ;
tdat <= WRDI;
stop <= 0 ;
f lag_newstate <= 0 ;
count <= count + 5 ' d1 ;
end

end

end

de f au l t begin



APPENDIX A. VERILOG CODE OF MAIN BLOCKS IMPLEMENTED 69

stop <= 0 ;
s t a t e <= IDLE ;
f lag_newstate <= 0 ;

end
endcase
end

end

endmodule

A.3 SENSORcontroller.v

// Author : Nicho las B a t t i s t i n i
// Data : 5/12/2019

module SENSORcontroller ( c lk , r e s e t , sensorCS , sensorSCK , sensorDATA ,
FRAM_access , oe , write_mem , next_out ) ;

input c lk , r e s e t ;
input next_out ; //
output sensorCS ; // chip s e l e c t per i l s en so r e SPI
output sensorSCK ; // chip s e l e c t per i l s en so r e SPI
output FRAM_access ;
output oe ;
output [ 1 5 : 0 ] write_mem ; // data reads from SENSOR
inout sensorDATA ;

wire sensorCS ;
reg FRAM_access ;
reg [ 2 : 0 ] s t a t e ;
reg [ 4 : 0 ] count ;
wire sensorSCK ;
reg s t a r t ;
reg f lag_newstate ;
reg [ 2 : 0 ] phase ;
reg oe ;
reg [ 1 5 : 0 ] H_OUT;
reg [ 1 5 : 0 ] T_OUT;
reg [ 1 5 : 0 ] write_mem ;

// SPI master connect i ons :
reg [ 7 : 0 ] tdat ;



APPENDIX A. VERILOG CODE OF MAIN BLOCKS IMPLEMENTED 70

reg stop ;
wire [ 7 : 0 ] rdat ;
wire mlb , done , din , cs , sck , dout ;

// s t a t e
parameter W_AV_CONF = 3 ' d0 ;
parameter W_CTRL_REG1 = 3 ' d1 ;
parameter W_CTRL_REG2 = 3 ' d2 ;
parameter W_CTRL_REG3 = 3 ' d3 ;
parameter R_STATUS_REG = 3 ' d4 ;
parameter R_HUM_TEMP = 3 ' d5 ;
parameter FINISH = 3 ' d6 ;

// Dati da s c r i v e r e
parameter AV_CONF_ADDRESS = 8 ' h10 ;
parameter AV_CONF_DATA = 8 ' h00 ;
parameter CTRL_REG1_ADDRESS = 8 ' h20 ;
parameter CTRL_REG1_DATA = 8 ' b10000101 ;
parameter CTRL_REG2_ADDRESS = 8 ' h21 ;
parameter CTRL_REG2_DATA = 8 ' b00000001 ; e
parameter CTRL_REG3_ADDRESS = 8 ' h22 ;
parameter CTRL_REG3_DATA = 8 ' b00000000 ;
parameter STATUS_REG_ADDRESS = 8 ' h27 ;
parameter HUM_TEMP_ADDRESS = 8 'hE8 ;

spi_master U_SPIM( re s e t , c lk , mlb , s t a r t , tdat , din , cs , sck , dout ,
done , rdat , stop ) ;

a s s i gn mlb = 1 ;
// s e r i a l c l o ck f o r SPI sensorCS
a s s i gn sensorSCK = sck ;
a s s i gn sensorCS = cs ;

a s s i gn sensorDATA = oe ? dout : 1 ' bz ;
a s s i gn din = ! oe ? sensorDATA : 1 ' bz ;

always @ ( negedge c l k or posedge r e s e t ) begin
i f ( r e s e t ) begin

FRAM_access <= 0 ;
count <= 0 ;
s t a r t <= 0 ;
f lag_newstate <= 1 ;



APPENDIX A. VERILOG CODE OF MAIN BLOCKS IMPLEMENTED 71

phase <= 0 ;
s t a t e <= W_AV_CONF;
oe <= 0 ;
stop <= 0 ;
tdat <= 0 ;
write_mem <= 0 ;
H_OUT <= 0 ;
T_OUT <= 0 ;

end e l s e begin
case ( s t a t e )

W_AV_CONF: begin
i f ( done && ! f lag_newstate ) begin

i f ( phase == 1) begin
phase <= phase +3'd1 ;
f lag_newstate <= 1 ;
tdat <= AV_CONF_DATA;
count <= 0 ;
stop <= 1 ;

end e l s e begin
phase <= phase +3'd1 ;
f lag_newstate <= 1 ;
tdat <= AV_CONF_DATA;
count <= 0 ;
stop <= 0 ;

end

end e l s e begin
case ( phase )

0 : begin // address
i f ( count == 5 ' d4 ) begin

s t a r t <= 0 ;
tdat <= AV_CONF_ADDRESS;
stop <= 0 ;
oe <= 1 ;

end e l s e begin
s t a r t <= 1 ;
tdat <= AV_CONF_ADDRESS;
stop <= 0 ;
oe <= 1 ;
count <= count + 5 ' d1 ;
f lag_newstate <= 0 ;
end

end



APPENDIX A. VERILOG CODE OF MAIN BLOCKS IMPLEMENTED 72

1 : begin // data
s t a r t <= 0 ;
tdat <= AV_CONF_DATA;
stop <= 0 ;
oe <= 1 ;
f lag_newstate <= 0 ;

end
2 : begin // stop communication

i f ( count == 5 ' d4 ) begin
stop <= 0 ;
count <= 0 ;
phase <= 0 ;
s t a t e <= W_CTRL_REG1;
tdat <= CTRL_REG1_ADDRESS;
f lag_newstate <= 1 ;
oe <= 0 ;

end e l s e begin
count <= count + 5 ' d1 ;
stop <= 1 ;
oe <= 0 ;

end
end

endcase
end

end

W_CTRL_REG1: begin
i f ( done && ! f lag_newstate ) begin

i f ( phase == 1) begin
phase <= phase +3'd1 ;
f lag_newstate <= 1 ;
tdat <= CTRL_REG1_DATA;
count <= 0 ;
stop <= 1 ;

end e l s e begin
phase <= phase +3'd1 ;
f lag_newstate <= 1 ;
tdat <= CTRL_REG1_DATA;
count <= 0 ;
stop <= 0 ;

end

end e l s e begin



APPENDIX A. VERILOG CODE OF MAIN BLOCKS IMPLEMENTED 73

case ( phase )
0 : begin // address

i f ( count == 5 ' d4 ) begin
s t a r t <= 0 ;
tdat <= CTRL_REG1_ADDRESS;
stop <= 0 ;
oe <= 1 ;

end e l s e begin
s t a r t <= 1 ;
tdat <= CTRL_REG1_ADDRESS;
stop <= 0 ;
oe <= 1 ;
count <= count + 5 ' d1 ;
f lag_newstate <= 0 ;
end

end
1 : begin // data

s t a r t <= 0 ;
tdat <= CTRL_REG1_DATA;
stop <= 0 ;
oe <= 1 ;
f lag_newstate <= 0 ;

end
2 : begin // stop communication

i f ( count == 5 ' d4 ) begin
stop <= 0 ;
count <= 0 ;
phase <= 0 ;
s t a t e <= W_CTRL_REG3;
tdat <= CTRL_REG3_ADDRESS;
f lag_newstate <= 1 ;
oe <= 0 ;

end e l s e begin
count <= count +5'd1 ;
stop <= 1 ;
oe <= 0 ;

end
end

endcase
end

end

W_CTRL_REG3: begin



APPENDIX A. VERILOG CODE OF MAIN BLOCKS IMPLEMENTED 74

i f ( done && ! f lag_newstate ) begin

i f ( phase == 1) begin
phase <= phase +3'd1 ;
f lag_newstate <= 1 ;
tdat <= CTRL_REG3_DATA;
count <= 0 ;
stop <= 1 ;

end e l s e begin
phase <= phase +3'd1 ;
f lag_newstate <= 1 ;
tdat <= CTRL_REG3_DATA;
count <= 0 ;
stop <= 0 ;

end

end e l s e begin
case ( phase )

0 : begin // address
i f ( count == 5 ' d4 ) begin

s t a r t <= 0 ;
tdat <= CTRL_REG3_ADDRESS;
stop <= 0 ;
oe <= 1 ;

end e l s e begin
s t a r t <= 1 ;
tdat <= CTRL_REG3_ADDRESS;
stop <= 0 ;
oe <= 1 ;
count <= count + 5 ' d1 ;
f lag_newstate <= 0 ;
end

end
1 : begin // data

s t a r t <= 0 ;
tdat <= CTRL_REG3_DATA;
stop <= 0 ;
oe <= 1 ;
f lag_newstate <= 0 ;

end
2 : begin // stop communication

i f ( count == 5 ' d4 ) begin
stop <= 0 ;
count <= 0 ;



APPENDIX A. VERILOG CODE OF MAIN BLOCKS IMPLEMENTED 75

phase <= 0 ;
s t a t e <= R_HUM_TEMP;
tdat <= HUM_TEMP_ADDRESS;
f lag_newstate <= 1 ;
oe <= 0 ;

end e l s e begin
count <= count +5'd1 ;
stop <= 1 ;
oe <= 0 ;

end
end

endcase
end

end

// READ HUMIDITY AND TEMPERATURE
R_HUM_TEMP: begin

i f ( done && ! f lag_newstate ) begin
i f ( phase == 0) begin

phase <= phase +3'd1 ;
f lag_newstate <= 1 ;
count <= 0 ;
stop <= 0 ;

end e l s e i f ( phase == 2) begin
phase <= phase +3'd1 ;
f lag_newstate <= 1 ;
count <= 0 ;
stop <= 0 ;

H_OUT[ 1 5 : 8 ] <= rdat ;
end e l s e i f ( phase == 3) begin

phase <= phase +3'd1 ;
f lag_newstate <= 1 ;
count <= 0 ;
stop <= 0 ;

H_OUT[ 7 : 0 ] <= rdat ;
end e l s e i f ( phase == 4) begin

phase <= phase +3'd1 ;
f lag_newstate <= 1 ;
count <= 0 ;
stop <= 1 ;
T_OUT[ 1 5 : 8 ] <= rdat ;

end e l s e begin
phase <= phase +3'd1 ;
f lag_newstate <= 1 ;
count <= 0 ;



APPENDIX A. VERILOG CODE OF MAIN BLOCKS IMPLEMENTED 76

stop <= 0 ;
end

end e l s e begin
case ( phase )

0 : begin // address
i f ( count == 5 ' d4 ) begin

s t a r t <= 0 ;
tdat <= HUM_TEMP_ADDRESS;
stop <= 0 ;
oe <= 1 ;

end e l s e begin
s t a r t <= 1 ;
tdat <= HUM_TEMP_ADDRESS;
stop <= 0 ;
oe <= 1 ;
count <= count + 5 ' d1 ;
f lag_newstate <= 0 ;
end

end
1 : begin // r e c e i v i n g f i r s t byte o f humidity

s t a r t <= 0 ;
stop <= 0 ;
oe <= 0 ;
FRAM_access <= 1 ;
f lag_newstate <= 0 ;

end

2 : begin // r e c e i v i n g second byte o f humidity

s t a r t <= 0 ;
stop <= 0 ;
oe <= 0 ;
FRAM_access <= 1 ;
f lag_newstate <= 0 ;

end

3 : begin // r e c e i v i n g second byte o f Temperature

s t a r t <= 0 ;
stop <= 0 ;
oe <= 0 ;
FRAM_access <= 1 ;



APPENDIX A. VERILOG CODE OF MAIN BLOCKS IMPLEMENTED 77

f lag_newstate <= 0 ;

end

4 : begin // r e c e i v i n g second byte o f Temperature

s t a r t <= 0 ;
stop <= 0 ;
oe <= 0 ;
FRAM_access <= 1 ;
f lag_newstate <= 0 ;

end

5 : begin // stop communication
i f ( count == 1) begin

T_OUT[ 7 : 0 ] <= rdat ;
s t a t e <= FINISH ;
write_mem <= H_OUT;
count <= 0 ;
oe <= 0 ;
stop <= 1 ;

end e l s e
FRAM_access <= 1 ;
count <= count +5'd1 ;
stop <= 1 ;
oe <= 0 ;

end
endcase

end
end

FINISH : begin
i f ( next_out ) begin

write_mem <= T_OUT;
stop <= 1 ;
oe <= 0 ;

end e l s e
stop <= 1 ;
oe <= 0 ;

end
endcase
end
end
endmodule



APPENDIX A. VERILOG CODE OF MAIN BLOCKS IMPLEMENTED 78

A.4 localization.v

// Author : Nicho las B a t t i s t i n i
// Data : 1/12/2019

module l o c a l i z a t i o n ( c lk , r e s e t , enable , uwbpos ) ;

input c lk , r e s e t , enable ;
output uwbpos ;

wire uwbpos ;
reg [ 1 3 : 0 ] c lkcount ;
reg count ing ;

a s s i gn uwbpos = ( count ing ) ? c l k : 1 ' b0 ;

always @ ( posedge c l k or posedge r e s e t ) begin
i f ( r e s e t ) begin

count ing <= 0 ;
c lkcount <= 0 ;

end e l s e i f ( c lkcount == 14 ' d10000 ) begin
count ing <= 0 ;
c lkcount <= 14 ' d0 ;

end e l s e i f ( enable ) begin
count ing <= 1 ;
c lkcount <= clkcount + 14 ' d1 ;

end e l s e i f ( count ing ) begin
c lkcount <= clkcount + 14 ' d1 ;

end // ~ r e s e t
end // always @ c lk

endmodule

A.5 readmem.v

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ F i l e : readmem . v
∗ Author : Nicho las B a t t i s t i n i
∗ Modules : readmem
∗ Desc r ip t i on : Block that reads data in to a memory at a p a r t i c u l a r
address and turns them to the t r an smi t t e r



APPENDIX A. VERILOG CODE OF MAIN BLOCKS IMPLEMENTED 79

∗ Data : 19/11/2019
∗ Vers ion : 1 . 0
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

module readmem( re s e t , r e adb i t c l k , datain , readbi tout , readbitdone ,
handle , readwords , ack_flag , f i f o_nextout ) ;

input r e s e t , r e adb i t c l k ;
output readbi tout , readbi tdone ;
output f i f o_nextout ;
input [ 7 : 0 ] data in ;
input [ 1 5 : 0 ] handle ;
input [ 7 : 0 ] readwords ; // number o f words to read
input ack_flag ;

wire [ 8 : 0 ] readbytes ;
a s s i gn readbytes = ( readwords == 0) ? 9 ' d10 : ( readwords << 1) ;

reg [ 8 : 0 ] bytecounter ;
reg [ 3 : 0 ] b i toutcounte r ;
reg header_f lag ;

wire readbi tout , readbitdone , bytecounterdone ;
reg f i f o_nextout ;

reg send_handle ;

a s s i gn readb i tout = ( bytecounter == 0 && ack_flag == 0) ? 1 ' b0 :
( ( send_handle && ack_flag == 0) ? handle [ b i t outcounte r ] :
data in [ b i t outcounte r [ 2 : 0 ] ] ) ;

a s s i gn bytecounterdone = ( bytecounter >= readbytes &&
( b i toutcounte r == 0 | | b i t outcounte r == 1 && ack_flag == 1) ) | |
send_handle ;

a s s i gn readbitdone = ( send_handle && bi toutcounte r == 0) ;

always @ ( posedge r e adb i t c l k or posedge r e s e t ) begin
i f ( r e s e t ) begin

b i toutcounte r <= 0 ;
bytecounter <= 0 ;
send_handle <= 0 ;

header_f lag <= 0 ;
f i f o_nextout <= 0 ;

end e l s e i f ( header_f lag == 0 && ack_flag == 0) begin



APPENDIX A. VERILOG CODE OF MAIN BLOCKS IMPLEMENTED 80

header_f lag <= 1 ;

end e l s e i f ( bytecounter == 0 && ( header_f lag == 1 | |
ack_flag == 1) ) begin

bytecounter <= 1 ;
b i toutcounte r <= 4 ' d7 ;

end e l s e i f ( ! send_handle ) begin

i f ( bytecounterdone ) begin
send_handle <= 1 ;

f i f o_nextout <= 1 ;

i f ( ack_flag == 1) b i toutcounte r <= 4 ' d0 ;
e l s e b i toutcounte r <= 4 ' d15 ;

end e l s e i f ( b i t outcounte r == 0) begin
b i toutcounte r <= 4 ' d7 ;
bytecounter <= bytecounter + 9 ' b1 ;

f i f o_nextout <= 1 ;

end e l s e begin
b i toutcounte r <= bi toutcounte r − 4 ' d1 ;

f i f o_nextout <= 0 ;

end
end e l s e i f ( ! readbi tdone ) begin

b i toutcounte r <= bi toutcounte r − 4 ' d1 ;
f i f o_nextout <= 0 ;

end e l s e begin

end // ~ r e s e t
end

endmodule

A.6 writemem.v

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ F i l e : writemem . v
∗ Author : Nicho las B a t t i s t i n i
∗ Modules : writemem
∗ Desc r ip t i on : Block that wr i t e s data in to a memory



APPENDIX A. VERILOG CODE OF MAIN BLOCKS IMPLEMENTED 81

∗ to a p a r t i c u l a r address
∗ Data : 02/12/2019
∗ Vers ion : 2 . 0
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

module writemem( clk , r e s e t , data_in , fu l l_reg , data_out ,
r eadwr i tept r , wr i t eaddres s , readwritebank ) ;

parameter N = 15 ;
parameter BANK_WORDS = 6 ' d32 ;

input c lk , r e s e t ;
input data_in ; // s e r i a l data
input [ 7 : 0 ] r eadwr i t ep t r ;
input [ 1 : 0 ] readwritebank ;
output [ 7 : 0 ] wr i t eaddre s s ;
output f u l l_r eg ; // f o r ex t e rna l c on t r o l
output [ 1 5 : 0 ] data_out ; // p a r a l l e l data

wire [ 7 : 0 ] r eadwr i t ep t r ;
// reg [ 7 : 0 ] wr i t eaddre s s ;
wire [ 7 : 0 ] wr i t eaddre s s ;
reg [ 1 5 : 0 ] data_reg ;
wire [ 1 5 : 0 ] data_out ;
reg [ 4 : 0 ] count_reg ;
reg f u l l_r eg ;

a s s i gn wr i t eaddre s s = ( r eadwr i t ep t r ∗ 8 ' d2 ) +
( readwritebank ∗ (BANK_WORDS ∗ 6 ' d2 ) ) ;

a s s i gn data_out = ( fu l l_r eg == 1) ? data_reg [ 1 5 : 0 ] : 16 ' d0 ;

// save i n i t i a l and next va lue in r e g i s t e r
always @( negedge clk , posedge r e s e t ) begin

i f ( r e s e t ) begin
count_reg <= 0 ;
f u l l_r eg <= 0 ;
data_reg <= 0 ;

end e l s e begin

data_reg [N−count_reg ] <= data_in ;

i f ( count_reg == 15) begin
count_reg <= 0 ;



APPENDIX A. VERILOG CODE OF MAIN BLOCKS IMPLEMENTED 82

f u l l_ r eg <= 1 ;

end e l s e begin // e l s e cont inue count
count_reg <= count_reg + 5 ' d1 ;
f u l l_ r eg <= 0 ;

end
end

end

endmodule


	Introduction
	RFID Technology
	UWB positioning
	EPC gen2 protocol
	General features
	Physical Layer
	Interrogator to tag communications - Data encoding
	Tag to interrogator communications - Data encoding

	Logical interface
	Basic operations
	Tag states
	Reader commands
	Tag memory organization


	Tag architecture
	Digital logic implementation
	Open source code explanation
	Digital logic with Verilog synthesized memory
	Digital logic with external FRAM, UWB localization, temperature and humidity sensing
	Sensing and UWB localization features:
	Digital logic explanation


	Simulation and test
	Simulation with sampled reader signals
	Simulation with generated reader signals
	Test on FPGA

	Chip design
	Synthesis and simulation
	Placement
	Clock tree synthesis and Routing

	Conclusion
	Bibliography
	List of Figures
	Verilog code of main blocks implemented
	spi_master.v
	FRAMcontroller.v
	SENSORcontroller.v
	localization.v
	readmem.v
	writemem.v


