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Abstract

String theory is at the moment our best candidate for a unified quantum theory of gravity, aiming
to reconcile all the known (and unknown) interactions with gravity as well as provide insights for
currently mysterious phenomena that the Standard Model and the modern Cosmology are not
able to explain. In fact, it is believed that most of the problems associated to the Standard Model
can indeed be resolved in string theory. Supersymmetry is supposed to be an elegant solution
to the Hierarchy problem (even though more and more stringent bounds in this direction are
being placed by the fact that we have been unable to experimentally find supersymmetry yet),
while all the axions that compactifications bring into play can be used to resolve the strong CP
problem as well as provide good candidates for Dark Matter. Inflationary models can also be con-
structed in string theory, providing, then, the most diffused solution to the Horizon problem.
This work, in particular, is formulated in type IIB string theory compactified on an orientifolded
Calabi-Yau three-fold in LARGE Volume Scenario (LVS) and focuses on the stabilisation of all
the moduli in play compatible with the construction of a hidden gauge sector whose gauge bo-
son kinetically mixes to the visible sector U(1), acquiring a mass via a completely stringy process
resulting in the Stückelberg mechanism. The "compatibility" regards the fact that certain experi-
mental bounds should be respected combined with recent data extrapolated by Coherent Elastic
Neutrino-Nucleus Scattering (CEνNS) events at the Spallation Neutron Source at Oak Ridge Na-
tional Laboratory. We are going to see that in this context we will be able to fix all the moduli as
well as present a brane and fluxes set-up reproducing the correct mass and coupling of the hidden
gauge boson. We also get a TeV scale supersymmetry, since the gravitino in this model will be of
order O(TeV), with an uplifted vacuum to reproduce a de Sitter universe as well.
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Abstract (in Italiano)

La Teoria delle Stringhe al momento rappresenta la nostra migliore canditata per una teoria uni-
ficata della gravità quantistica, cerca infatti di riconciliare tutte le interazioni conosciute (e non)
con la gravità, così come fornire qualche intuizione per fenomeni al momento misteriosi che il
Modello Standard e la Cosmologia moderna non sono in grado di spiegare. Si pensa infatti che la
maggior parte dei problemi del Modello Standard possano essere risolti nel contesto della teoria
delle stringhe. La supersimmetria dovrebbe essere una soluzione elegante al problema della ger-
archia (anche se sempre più stringenti vincoli sperimentali in questa direzione si stanno venendo
a fissare dato che ad oggi la supersimmetria non è ancora stata verificata sperimentalmente), men-
tre gli assioni che compaioni a seguito di compattificazioni possono essere usati per risolvere il
problema della CP forte, così come fornire dei possibili candidati per la Materia Oscura. Mod-
elli inflazionari possono essere costruiti in teoria della stringhe, fornenddo in questo modo la
più diffusa soluzione al problema dell’orizzonte. Il seguente lavoro, in particolare, è formulato
nel contesto di teoria delle stringhe di tipo IIB compattificata su un orientifolded Calabi-Yau
three-fold in "Large Volume Scenario" (LVS) e si focalizza sulla stabilizzazione di tutti i moduli
presenti in modo compatibile con la costruzione di un settore di gauge nascosto, il quale bosone
di gauge si mescola cinematicamente con il settore visible U(1), acquistando una massa tramite un
processo completamente frutto della teoria delle stringhe e risultante nel meccanismo di Stückel-
berg. La "compatibilità" riguarda il fatto che certi vincoli sperimentali devono essere rispettati,
combinati con dei recenti dati estrapoli da eventi di Diffusione Coerente di Neutrini da parte di
Nuclei (CEνNS che sta per Coherent Elastic Neutrino-Nucleus Scattering) alla Spallation Neu-
tron Source all’Oak Ridge National Laboratory. Vedremo come in questo contesto riusciremo a
fissare tutti i moduli ed a presentare una configurazione di flussi e brane riproducendo la corretta
massa e accoppiamento del bosone di gauge nascosto. Avremo inoltre una scala di supersimme-
tria del TeV, dato che il gravitino in questo modello sarà dell’ordine O(TeV), con, in aggiunta, un
vuoto "uplifted" per riprodurre un universo di de Sitter.
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Introduction

When David Hilbert, in his 1930’s retirement speech, declared that for him there was no Ignora-
bimus1 in natural sciences, namely that there was no unsolvable problem, he was unaware of the
Incompleteness Theorem that Gödel was about to announce in the same conference. Gödel’s work
shook the scientific community, since the positivism pervading scientists starts to be undermined
by the fact that if even formal systems cannot be proved within themselves to be consistent, how
can one be sure if the context within they are working is consistent or not if mathematical logic
should be indeed at the heart of science and of the scientific reasoning? One could argue that
physics, biology and chemistry are all experimental based sciences, and our knowledge is indeed
constructed starting from experiments. However, we clearly have to build a consistent model,
namely a theory or framework, in order to make predictions and to make use of the knowledge
we assimilate from experimental data. Thus, as physicists, we are trying to find a theory which
could explain all the natural phenomena within itself, with no overlying structures. However,
as Freeman Dyson pointed out, referring to the Gödel’s incompleteness theorems, in a review of
the book "The Fabric Of Cosmos" written by Brian Greene, "Pure mathematics is inexhaustible,
(because of this) physics is inexhaustible too since the laws of physics are a finite set of rules and in-
clude the rules for doing mathematics". If the physical laws are expressed in an axiomatic system S
including the axioms of arithmetic and physical notions, then there will be undecidable proposi-
tions (of higher arithmetic) in S if S is consistent. As Solomon Feferman pointed out, however,
one does not need Gödel’s theorem to infer that physics is inexhaustible and his reasoning can
be summarised as follows. All applied mathematics is formulated in the context of Zermelo-
Fraenkel axiomatic set theory, as a matter of fact one can also employ an even weaker system in
scientific applications. Regardless the axiomatic system S one employs as the foundation of their
work, there will be a potential infinity of propositions which could be demonstrated in S, and
at any given time only a finite set will be established. In Feferman’s words: "Experience shows
that significant progress at each such point depends to an enormous extent on creative ingenuity in
the exploitation of accepted principles rather than essentially new principles". This means that the
journey in the search of physical laws may never come to an end, for every new theory we con-
struct, more questions and possibilities arise and we may never be able to achieve a real Theory of
Everything. At the moment, the best candidate that we have is String Theory. As was originally
formulated in the 1970s, string theory was a theory of propagating strings, even though initially
presented to describe strong interactions, now it has become our best framework to incorpo-
rate gravity with the other interactions well described by the Standard Model. In our modern
understanding of string theory, the fundamental objects are no more only strings, but the pres-
ence of higher dimensional extended objects known as D-branes are also allowed and, in fact,
essential to construct phenomenological viable models, since they can support gauge theories

1Ignoramus et Ignorabimus was a Latin expression meaning "we do not know and we will not know" used in this
sense for the first time around 1870s to express the attitude towards the scientific knowledge.
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Figure 1: Pictorial representation of the dualities between string theories. The vertices are the
type I, type IIB, type IIA, E8 × E8 heterotic and SO(32) heterotic string theories. At the same
level we put the eleven dimensional supergravity theory thought to be the low-energy effective
field theory of the M-theory. The dualities are T -duality, S-duality, compactification on S1 and
compactification on S1/Z2. We see that all the different string theories are connected, and starting
from a chosen one, we can reach whichever other theory we want by means of the above dualities.

(necessary to implement the interactions in the Standard Model). In order to have a consistent
theory, supersymmetry must be incorporated in the description, leaving a theory of superstrings
propagating in a ten dimensional spacetime. In the early years, five different superstring theo-
ries were constructed and at first they seemed to be disconnected from one another. What was
found in the early ’90s [Wit95], however, is that all different string theories are indeed part of the
same web, interlaced by dualities as can be appreciated in figure (1). All these theories of strings
are then thought to be derived from an overlying eleven dimensional theory, named M-theory.
This awareness set off the second superstring revolution (the first happened a decade earlier after
recognising an anomaly cancellation in type I string theory), reanimating physicist’ souls in be-
lieving that string theory could be indeed a very promising candidate of quantum gravity. The
study of string theory has gone a long way, and thanks to the work of many brilliant minds in the
communities of physics and mathematics, these two disciplines have begun (again) to closely talk
to each other. In fact, in order to construct vacua in string theory, algebraic geometry has been
demonstrated to be a very powerful tool and thanks to physical intuitions, mathematical results
have acquired a new flavour and some of them have also been proved due to the profound inti-
macy with physics related concepts. During the last decades lots of seemingly consistent vacua
have been constructed, and the order of magnitude of the believed number of these is thought to
be something like 10hundreds. Physicists have then started to wonder what kind of arguments one
could use to see if a low-energy effective supergravity theory could be UV completed to a theory
of quantum gravity. This is known as the Swampland Program (for a review see [Pal19]), where
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the effective field theories which cannot be completed are said to be in the Swampland, while
those that can be completed are said to be in the Landscape. Various conjectures have been laid
down, for example it is believed that effective field theories with global symmetries belong to the
swampland (when coupled to gravity), or that for every gauge theory all possible charged states
must appear, so no free Maxwell-like theory belongs to the landscape. There are lots of these
type of conjectures which, as the name suggests, have not been proved yet and they are guided
mostly by considerations in string theory and on black holes physics. In this thesis we are not
going to analyse the swampland program, rather we are going to focus on the phenomenology
of string theory, namely the construction of models which could explain experimental data that
the Standard Model is not able to describe. These ranges from cosmological observations, like
the presence of Dark Matter or the horizon problem (solved by inflationary models which can
be represented in string phenomenology), to more Standard Model’s related phenomena, like
the hierarchy problem, the strong CP problem, the anomalous magnetic moment of the muon,
etcetera. Since there are still no experimental evidences supporting string theory (in particular
there is still no experimental evidence of supersymmetry which is essential for string theory), all
the works that are being (and have been) done in the string phenomenology direction are indeed
trying to construct models compatible with current data and with maybe some kind of predic-
tion testable in the near-future experiments. In this regard we should mention that a context
where it could be possible to make testable string models is in cosmology, that because of all
the newly precision measurements that are indeed being made in this direction. However, here
we will concentrate on a context closer to Standard Model building in string theory rather than
cosmological models. This thesis has been divided in four chapters, and in the following we are
going to summarise the main topics covered in each of these:

1. The first chapter is devoted to present some of the current lacks in our understanding of
nature (namely the problems that the Standard Model faces), as well as to introduce the
foundations of string theory. All superstring theories live in ten spacetime dimensions and
in order to meet the phenomenological requirement of a visible four dimensional "world",
as well as having no more than one supersymmetry (a greater number of supersymmetries
would not allow a chiral spectrum, in contrast with the Standard Model), six dimensions
must be compactified on a special compact manifold which goes under the name of Calabi-
Yau manifold [Can+85].

2. As we shall see in the second chapter, these Calabi-Yau manifolds are Kähler manifolds2

with vanishing first Chern class (namely they are Ricci flat, of SU (3) holonomy and there
exists a nowhere vanishing covariantly constant spinor). The second chapter is also de-
voted to study the moduli space of these manifolds [CO91]. This is the space of all pos-
sible deformations of the metric leaving unchanged the Ricci-flatness property, and, as we
are going to show, these deformations are closely related to Dolbeault cohomology classes
(which themselves are related to harmonic forms thanks to the Hodge decomposition the-
orem), in particular there will be two kind of deformations, one of the Kähler structure
(shape deformations) and one of the complex structure. The arrival into the scene of these
algebraic/topological/geometric related concepts, motivated the presence of some mathe-
matical sections in chapter 2 in which these ideas are presented in a more formal way. Even
though in the first chapter we present all string theories, in the next chapters we concen-

2Kähler manifolds are complex and symplectic manifolds with the symplectic structure compatible with complex
structure, namely it is possible to define a Riemannian metric on the manifold using these structures.
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trate only on type IIB, since the phenomenological models are better understood in this
context. In the compactification of type IIB on a Calabi-Yau, the number of supersymme-
tries in the resulting four dimensional supergravity will be two, and in order to break them
down to one, an orientifold projection is employed [GL04; Gri05], cutting (clearly) also
the spectrum in which there will be some bosonic fields, called moduli fields, for which no
potential term will be generated, leaving these directions completely flat. If left unfixed,
these moduli fields would give rise to unwanted fifth forces due to their coupling to matter
particles. We should mention here that the imaginary part of the Kähler moduli are called
axions, and indeed as their name suggests, they are good candidates to represent the Peccei-
Quinn axion proposed to resolve the strong CP problem, also they could serve as ALPs
(axion-like particles) providing also possible dark matter candidates [CGR12].

3. Chapter three is then devoted to explore how in type IIB string theory it is possible to gen-
erate a potential for all the moduli allowing to fix them at their vacuum expectation values.
The complex structure moduli can be fixed by turning on gauge fluxes for some of the fields
in the spectrum, this in fact generates a superpotential for these moduli [GVW00]. How-
ever, due to the no-scale property of the tree-level Kähler potential, the Kähler moduli will
still be unfixed, since no potential for them is generated by the above mentioned superpo-
tential. This will bring us to introduce non-perturbative corrections to the superpotential
[Gor+04] and higher order corrections of the Kähler potential [Bec+02], the latter coming
from the reduction of the ten dimensional action. These, in the context of LARGE Vol-
ume Scenario (LVS)3 [Bal+05], allows to fix some of the Kähler moduli. For many models,
however, some Kähler moduli directions will still be left flat and other perturbative cor-
rections (string loop corrections) [BHP07] must be taken into account. In LVS models,
one inevitably lands on an Anti-de Sitter vacuum, this means that an uplift method must
be employed to get a de Sitter (which will be presented in chapter four) [Gal+17].

4. Once the stabilisation techniques have been presented, the chapter four will be dedicated to
explicit models in which we will stabilise the moduli at some required values to match some
experimental data. In particular we take into account a recent paper [Dut+19] in which
the authors analysed the data extracted by the COHERENT collaboration [Aki+17] and
observed a ∼ 2σ deviation from the Standard Model prediction. A possible NSI (non-
standard interaction) between neutrinos and a hidden gauge boson could explain this devi-
ation and in chapter four, after a brief introduction on the COHERENT experiment and
the data that we would like to reproduce, we are going to see that these kind of interactions
in string models can arise via kinetic mixing between the hidden gauge boson and the vis-
ible U (1) [Abe+08; Goo+09]. As we have said, gauge theories are supported on higher
dimensional extended objects called Dp-branes (where the p stands for the spatial dimen-
sions of the brane), in particular a single Dp-brane support a U (1) gauge theory and when
a stack given by N of them is put together, then non-abelian gauge theories SU (N ) arise. In
order to give a mass to the hidden gauge boson we will be using a completely stringy pro-
cess (turning on appropriate fluxes) which will result in the Sückelberg mechanism thanks
to which the hidden gauge boson will acquire a new degree of freedom becoming massive
(it will "eat" an axion). Then, In order to give a mass to the hidden gauge boson, some

3The LARGE Volume Scenario is a stabilisation framework in which one is able to stabilise the volume of the
Calabi-Yau to an exponentially large value, in particular as the exponential of the blow-up moduli which are required
by the LVS claim, the other moduli are also fixed by using different perturbative and non-perturbative corrections.
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fluxes must be turned on, and this will also result in the appearance of a D-term potential
named Fayet-Iliopoulos term [JL05]. This can destabilise the process we outlined in chap-
ter three, in this regard some considerations will be needed. After that, we will present a
model with a Calabi-Yau given by an extension of a 2-parameter K3-fibred Calabi-Yau given
as an hypersurface in the weighted projective space P4

(1,1,2,26) defined as the vanishing locus
of a 12-degree homogeneous polynomial. After discovering that this model will not allow
to obtain values compatible with the searched data, we will consider a different Calabi-Yau
embedded on a toric ambient space with a triple K3 fibration and a small blow-up mode.
This, will have the right form and enough freedom to allow a nice stabilisation of the mod-
uli with an uplift to a de Sitter reproducing the data we were seeking, as well as TeV scale
supersymmetry.
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Chapter 1

Foundations of String Theory

1.1 An Outstanding Century for Physics

The last century has been the centre of various revolutionary ideas which changed the way we
should think about our physical world. In the 1900 Max Planck, seeking a mathematical way
which would have led to a fit of the black body’s radiation spectrum, introduced the idea that
energy might be exchanged only in quantised form and its implementation was put forward by
making these quanta only multiple of a constant h, which has taken its name and became the well
known Planck constant. He himself didn’t believe that it had some physical meaning, stating that
it was just "a purely formal assumption...", which, however, led to a spectacular fit between the
theoretical prediction and the experimental data. As is well known, this gave birth to Quantum
Mechanics which nowadays is still an astonishing "world" to explore and still hard to become
used to, because of all its counter-intuitive predictions and results, which, nevertheless, are exper-
imentally tested with high precision. In developing the structure of Quantum Mechanics new
mathematical ideas were brought into physics and its accepted axiomatic framework has a rather
formal structure and implements Measure theory, Functional analysis, Complex analysis, Probabil-
ity theory and much more.

In the same years a new theory was being developed, namely Special Relativity. Making use
of the work of Handrik Lorentz and Hermann Minkowski, Albert Einstein in 1905 managed
to revolutionise our thinking. Space and time were no more distinct entities but somewhat in-
tertwined and related to one another defining a new structure: the spacetime. Postulating the
invariance of the speed of light in inertial reference frames, it turned out that observers might be
viewed in different inertial frames by making use of a Lorentz transformation and fancy thinks
happen when the limiting speed (which is found to be the light speed) is approached (like time
dilatation and length contraction). But this was only the tip of the iceberg since some years later,
with an incredibly simple but at the same time remarkable assumption, Einstein came up with
General Relativity. By analysing the Newton’s equation of an object in a gravitational field, he
realised that its acceleration might be independent of the inertial and gravitational masses pro-
vided that these were equal. Its famous Equivalence Principle in fact states that the inertial mass is
exactly the same as the gravitational mass, in such a way that a gravitational force is indistinguish-
able from an apparent force in a suitable non-inertial reference frame. This equivalence between
gravity and non-inertial reference frames led to a new conception of our spacetime, it being a ge-
ometrical object (differentiable manifold) in principle flat. Masses, however, curve the spacetime
and their motion is driven along geodesics (provided there are no other forces in play) obeying
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the Einstein’s field equations (in natural units c = ħh = 1):

Rµν − 1
2

Rgµν +Λgµν = 8πGTµν (1.1.1)

where Rµνρσ is the Riemann curvature tensor defined in function of the metric g of the spacetime
manifold, Rµν is the Ricci curvature, R is the Ricci scalar, Λ is the Cosmological constant, Tµν is
the Stress-Energy tensor and G is the Newton’s constant. The Einstein’s field equations can be
interpreted in two ways: (i) The object with energy-momentum Tµν deforms the spacetime and
the resulting spacetime metric g will be given by the solution of the differential equations above;
(i i ) how the mass-energy Tµν moves in presence of a gravitational field given by the metric g .
These interpretations are perfectly captured in a quote by John Wheeler: "Spacetime grips mass,
telling it how to move... Mass grips spacetime, telling it how to curve".

1.1.1 Dawn of Quantum Field Theory

Along the development of General Relativity, in the physics community some problems regard-
ing nuclear physics were debated. After the discovery of radioactivity by Henri Becquerel in
1896 and the discovery of the electron in 1897 by J. J. Thomson - once it was realised that beta
radiation was nothing but the particles discovered by Thomson - soon it became experimentally
evident (in 1911) that the spectrum of radioactive decays was not constant but varied continu-
ously. Moreover as Ernest Rutherford pointed out in 1920 it seemed that some nuclei had the
wrong statistics, which in modern words, meant that the atomic number of some nuclei suggested
that these should have obeyed a Fermi-Dirac statistics while experimentally they behaved as Bose-
Einstein particles. These problems held tight until the remarkable and ingenious idea that came
up in Wolfgang Pauli’s mind in 1930, which was expressed in a letter addressed to Lise Meitner.
In order to make sense of the continuous spectrum of beta radioactive decays, he proposed that
maybe there could be another neutral particle with spin 1/2 inside nuclei and emitted during a
beta decay. His insight led Enrico Fermi in 1934 to propose a Hamiltonian which would have
described the radioactive process:

HF =
GFp

2
(p(x)γµn(x))(ν(x)γµe(x))+ c .c . (1.1.2)

where GF is the Fermi’s constant, γµ the Dirac matrices and p(x), n(x), ν(x) and e(x) the spinor
fields of the proton, neutron, neutrino and electron respectively (with the bar over them mean-
ing the Dirac conjugation). Nowadays we know that the Fermi’s theory is an Effective theory,
in particular it is a low-energy approximation of the well-established Glashow-Weinberg-Salam
electroweak theory. A lot of work had to be made by remarkable physicists in order for Steven
Weinberg and Abdus Salam in 1967 to be to able to apply the Englert-Brout-Higgs-Guralnik-
Hagen-Kible mechanism of spontaneous symmetry breaking (1964) to the model of Sheldon Lee
Glashow (1961). The accomplishment of a unified gauge theory of electromagnetism and weak
interactions has been a mile stone in the history of modern physics. By the subsequent imple-
mentation of the Strong interaction, the last century gave birth to the Standard Model of Particle
Physics which is a SU (3)C×SU (2)L×U (1)Y gauge theory and describes all the known forces (ex-
cept gravity) within the formalism of Quantum Field Theory (QFT). This is a framework which
aims to unify Quantum Mechanics and Special Relativity and the first pioneer in this regard was
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Paul Dirac in 1928 when he wrote down the well-known Dirac equation which describes the
dynamical evolution of a spin 1/2 fermion compatible with Special Relativity.

Quantum Field Theory has a very rich structure, but it is also very constrained, everything
fit almost in a perfect way and since the experiments confirm it with an incredible precision, not
much can be changed in the theory without spoiling it.

1.1.2 A Long Standing Dichotomy

Einstein’s Gravity was formulated in a classical and geometrical way and when QFT was being
developed, it was fair to wonder what kind of bosonic particle should have carried the gravity
force in trying to transpose Einstein’s work in QFT’s language. Spin 0 particles, i.e. scalar parti-
cles, cannot be the gravity mediators since they couple to the trace of the stress-energy tensor Tµν
(since scalar particles do not carry any Lorentz-index) of the matter fields, but since the energy-
momentum’s trace of relativistic matter vanishes, it would mean that gravity couldn’t couple to
light for example, which is clearly in contrast with experimental evidences. For spin 1 particles
we already know the behaviour of the resulting theory following Quantum Electrodynamics and
it would result in the existence of two kinds of "mass charges" making objects repel or attracting
each other based on their "mass charge", and this too is clearly phenomenologically ruled out.
The last1 possibility is spin 2 particles and this theory was indeed proposed by Markus Fierz and
Wolfgang Pauli in 1939 for a massless spin 2 particle:

S =
∫

d 4x
�
−1

2
∂λhµν∂

λhµν + ∂µhνλ∂
νhµλ− ∂µhµν∂νh +

1
2
∂λh∂ λh

�
(1.1.3)

where h = tr(hµν) and hµν should be thought of as the metric fluctuation, i.e. a small perturbation
of the Minkowski metric gµν = ηµν + hµν . The above action is the unique action describing the
low-energy effective theory of the Einstein-Hilbert action (with k = 8πG):

S =
1

2k

∫
d 4x
p

g R (1.1.4)

which describes the Einstein’s gravity from an action-principle point of view since the equations
of motion for the metric g are precisely the Einstein’s field equations (1.1.1) (without the cosmo-
logical constant term which can be added in the action: −∫ d 4xpg 2Λ). The Einstein-Hilbert
action is, however, non-renormalisable as can be seen by the naïve power counting criterion since
the dimension in mass of the coupling constant is [k] = eV −2 (in natural units ħh = c = 1). The
fact that the coupling constant of the theory is dimensionful leads to the appearance of more
and more new divergent loop integrals in the perturbative expansion in such a way that it would
require an infinite amount of counterterms to renormalise the theory, making it in turn non-
predictive.

The lesson that should be learnt is that the Einstein-Hilbert action has to be seen as a low-
energy effective field theory of a UV completed theory of gravity. If one believes that gravity
should be, at the end, treated on the same footing as the other interactions in the Standard Model,
then it can be conveyed that a Quantum Theory of Gravity is indeed needed. Otherwise it can
be believed that spacetime is classical, i.e. continuous and one can embed the Standard Model in a

1No spin n ≥ 3 particles are able to describe interacting theories. This no-go theorem was due to Steven Wein-
berg.
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general curved spacetime, which means in a semi-Riemannian manifold (M , g ). This framework
is known as Quantum Field Theory on Curved Spacetimes (QFTCS) and it is the generalisation of
QFT in a general curved background spacetime. Even if our spacetime is quantised, we live in
a curved one (even though our local curvature is quite low) and hence the best approximation
that we should use in order to treat matter as quantum fields is to consider QFTCS. This frame-
work gives rise to very interesting results and its insights lead also to a better understanding of
almost automated procedures one uses in Quantum Field Theory without maybe wondering
why. The best example is the existence of a unique vacuum state in Minkowski spacetime which
every observer can agree upon, and in turn this leads to a well-posed definition of particle states.
Considering a Klein-Gordon field expanded in normal modes φ(x) =

∫
d ~k (â~k u~k(x)+ h.c .)with

â~k , â†
~k

annihilation/creation operators and u~k(x) normalised plane-waves, in QFT we define the

Poincaré-invariant vacuum state |0〉 by requiring â~k |0〉 = 0 and particle states are defined by the
creation operators |k1k2 · · ·kn〉 = â†

~kn

· · · â†
~k2

â†
~k1

|0〉. In a curved spacetime we are not allowed to

define a unique vacuum state since Poincaré invariance is lost. Every observer will see a different
vacuum state and this ambiguity is what in turn gives rise to the Hawking effect.

The Einstein-Hilbert action is then a low-energy effective field theory of a more complete
and universal quantum theory of gravity. Here is where String Theory comes in play. Its task is
to reconcile the Standard Model with the Einstein’s gravity. Moreover in particle physics there
are some mysterious experimental facts that the Standard Model cannot account for. Therefore
there are various reasons to look for a more complete "theory of everything" and they will be
explained in the following, after a very concise review of the Standard Model.

1.1.3 The Standard Model

The Standard Model is a SU (3)C × SU (2)L ×U (1)Y gauge theory were C stands for colour, L
stands for left and Y for Hypercharge and they are the quantum numbers conserved under these
symmetries. Fermionic particles are divided among quarks and leptons depending on whether
they strongly-interact (quarks) or not (leptons). The classification of particles is based on rep-
resentations of these gauge groups, there are 3 families of quarks and leptons described as 2-
components Weyl spinors and the classification based on the electroweak gauge group is as fol-
lows:

QL =

U i
L

D i
L

 U i
R, D i

R L=

 ν i
L

E i
L

 E i
R (1.1.5)

where U i = (u, c , t ) are up-quarks, D i = (d , s , b ) are down-quarks, ν i = (νe , νµ, ντ) are neutrinos
and E i = (e ,µ,τ) are electron, muon and tauon. The subscript L and R stands for left and right
and identifies fermions which can interact electroweakly (left fermions), while right fermions are
in fact singlets with respect to SU (2)L. Including the strong force we can exemplify the classifi-

20



An Outstanding Century for Physics

cation of particles in the following table:

SU (3)C SU (2)L U (1)Y

Q i
L = (U

i , D i )L 3 2 1/6
U i

R 3̄ 1 −2/3
D i

R 3̄ 1 1/3
Li = (ν i , E i )L 1 2 −1/2

E i
R 1 1 1

φ= (φ−,φ0) 1 2 −1/2

(1.1.6)

where it has been added the Higgs doubletφ and the numbers are indeed the representations the
matter fields belong to.

The Lagrangian of the Standard Model can be compactly written as follows:

L =−1
4
FµνF µν +Ψ /DΨ +(Yi jΨiΨ jφ+ h.c .)+ (Dµφ)

∗Dµφ−V (φ) (1.1.7)

whereFµν contains the kinetic terms of the gauge bosons, Ψ contains the matter fields of leptons
and quarks, D is the covariant derivative,Y contains the Yukawa couplings, φ is the Higgs field
and V (φ) is the potential of the Higgs which allows for the symmetry breaking effect, generating
the masses for the matter fields and for the weak gauge bosons. Matter fields in the Standard
Model are in fact massless until the symmetry breaking effect takes place and SU (2)L ×U (1)Y
is broken into U (1)EM . The number of gauge bosons is given by the dimension of the various
gauge groups. There are 8 strong gauge bosons called gluons, 3+ 1 electroweak gauge bosons
(Z0,W±) +A and at low energies, when the symmetry is broken, it appears the electromagnetic
mediator: the photon Aγ as the "new" gauge boson of U (1)EM .

1.1.4 Lacks In Our Current Understanding Of Nature
The Standard Model is undoubtedly the highest intellectual achievement that mankind has ever
attained. The spectacular matching between predictions and experiments and the final experi-
mental discovery of the Higgs boson after roughly 50 years of its first proposal, contribute to
make the Standard Model our best theory of particle physics. The assembling of the Standard
Model in the years from 1940s to 1980s is described by people who worked on it as a thrilling
process. In those years more and more particles were discovered continuously and finding the
classification principles was not a simple, but surely engaging, task. The final theory has for
sure a nice appeal. Thinking of how our physical laws are able to describe processes in so small
spacetime regions is really astonishing and breathtaking. However, despite all these good feel-
ings, the Standard Model presents some unattractive peculiarities. First of all, every calculation
is made perturbatively, Feynman diagrams are very powerful tools but still perturbative in nature
and then not fundamental. Quantum Chromodynamics (QCD) is non-perturbative in the large
scale (low energy) limit because of its underlying asymptotic freedom character. Even though
there are methods for studying this limit, only recently the AdS/CFT duality seems to pro-
vide some help in the study of QCD at intermediate scales between the strong coupling limit
and the perturbative limit (using integrability). Secondly, the renormalisation procedure has
still a somewhat unclear physical meaning. Infinities arise everywhere in perturbative Quan-
tum Field Theory, and in renormalisable theories, new Feynman diagrams can be introduced
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to cancel the divergent quantities, leading to renormalised coupling constants, which will be,
ultimately, the real physical parameters measurable in experiments. Carrying out this process
leads to lots of arbitrary constants, various procedures can be employed to get rid of them and
all of these should at the end give the same physical result. The renormalisation group equations
allow to inspect the relations between all possible renormalisation prescriptions. Coupling con-
stants are found to be dependent on the scale of the process in consideration and this "running"
is parametrised by so-called β-functions. In order to get a physical intuition of the renormalisa-
tion procedure one can exploit Statistical Mechanics and its close connection to Quantum Field
Theories. A renormalisable QFT can, in fact, always be represented as a Many Body System
at a critical point. The critical point is a fixed point for the renormalisation group, since in a
critical point the correlation length grows to infinity, making the system scale-invariant. The
idea behind the renormalisation group in Statistical Mechanics is that in correspondence to a
change of the length-scale, it corresponds a change of the coupling constants, and the continu-
ous family of transformations providing this correspondence goes under the name of, indeed,
Renormalisation Group. In the vicinity of a critical point, it is natural to use field theory and
the action will be of the formS [φ] = ∫ d d x[1/2 (∂iφ)

2+ g1φ+(g2/2)φ
2+ · · · (gn/n!)φn+ · · · ].

The couplings {g} = (g1, ..., gn, ...) define a space over which the renormalisation group acts.
Under an infinitesimal rescaling x → x ′ = x/b ' x/(1+δ`), the couplings will transform as:
ga → g ′a = ga + (d ga/d`)δ`+ o(δ`). The first derivatives d ga/d` will be the β-functions, and
they can be interpreted as the vector fields that fix the renormalisation group flow.

Even though Statistical Mechanics may help in getting some physical justification, it is just a
formal correspondence and all the renormalisation machinery in QFT seems to be quite inelegant
also because finite couplings result from infinite Lagrangians (not well defined in our, apparently
4-dimensional, spacetime).

Thirdly, in the Standard Model there are roughly 20 free parameters which can be determined
only through experiments. This huge arbitrariness in our description of particle physics, which
can be fixed only empirically, does not seem to meet the elegance and beauty that a physicists
would hope for a theory describing Nature. Even though it can be argued whether beauty does
or does not provide a good guidance in the intrigant realm of physical laws, still 20 free parameters
seems to be too much.

Fourthly, the biggest puzzle that since the mid of the last century leaves physicists baffled, is
that gravity cannot be implemented in the Standard Model. At the Plank scale general relativity
breaks down, and the behaviour of physical laws in this realm are completely obscure to us (at
least from a general relativity point of view).

Despite the above arguments, which regarding them as problems or not could be a matter of
taste, there are some unresolved questions which plague the Standard Model and things that it
does not manage to explain. They can be summarised as follows:

• Cosmological Constant Problem

In order to account for an accelerating expanding universe, the cosmological constant term
in the Einstein’s field equations is undoubtedly needed but everything that contributes to
the vacuum energy act as a cosmological constant. Following Weinberg [Wei89] Lorentz
invariance tells us that in vacuum the stress-energy tensor of matter fields must take the
form 〈Tµν〉= 〈ρ〉gµν . In this way, the effective cosmological constant term can be defined
as Λeff =Λ+8πG〈ρ〉 and in the same way it can be thought that the Einstein cosmological
constant term contributes to the vacuum energy as ρV = 〈ρ〉+Λ/8πG. Experimental data
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tell us that ρV ∼ 10−47GeV 4 but the vacuum energy due to matter fields is extremely huge
if we believe general relativity up to the Planck scale Λcut-off ' (8πG)−1/2. In fact:

〈ρ〉=
∫ Λcut-off

0
d k

4πk2

(2π)3
1
2

p
k2+m2 ' Λ

4
cut-off

16π2
' 1071GeV4 (1.1.8)

and this means that |〈ρ〉+Λ/8πG| should cancel with a precision of more than 118 decimal
places.

• Strong CP Problem

The QCD Lagrangian admits a violation of the CP discrete symmetry, which, however,
isn’t found experimentally. The CP violation would lead to an electric dipole moment
of the neutron comparable to 10−18e · m while the current upper bound is roughly 10−9

times lower. One of the candidate solutions are due to Peccei and Quinn. In order to
explain this phenomenon they introduce pseudo-scalar particles called axions which come
up as Goldstone bosons of a spontaneous symmetry breaking of a U (1)PQ symmetry called
Peccei-Quinn symmetry. The resulting mass of these axions in order for them to explain the
absence of the CP violation in the strong sector should be of the order® 10−2eV and their
coupling with normal matter should be very small ® 10−11. These characteristics make
axions good candidates to be identified as possible Dark Matter particles (as we shall see
soon).

• Electroweak Hierarchy Problem

Electroweak scale is fixed by the Higgs mechanism, in particular by its Vacuum Expecta-
tion Value (VEV): 〈φ〉 = 1p

2

�0
v

�
with v = µ2/λ and the Higgs potential given by V (φ) =

−µ2φ†φ+λ(φ†φ)2. The mass term, however, receives divergent quantum loop corrections
from fermions, leading the parameterµ towards the cut-off of the theory: δµ2 ' α

4πΛ
2
cut-off.

This cut-off could be the Planck scale, the string scale or the GUT (Grand Unified Theory)
scale. In any case it should be quite big and in order to trigger the electroweak spontaneous
symmetry breaking, those corrections should cancel within an enormous precision.

• Dark Matter

Dark matter constitutes roughly 26% of the mass-energy of the Universe and its existence
can be inferred from the deviation of the galaxies rotation curves from their theoretical
prediction. The adjective "dark" refers to the fact that this kind of matter seems to interact
very weakly with the Standard Model, making it still undetected (directly) at the present
day. Dark Matter (DM) is also required to be very cold in order to allow for galaxies and
structure formation. Its abundance (5 times more than baryonic matter), made it dominate
the evolution of the Universe from the end of radiation era (7 ·104 years after the Big-Bang)
until something like 9.4·109 years. Currently there are lots of possible candidates proposed
to be DM, some of them have also been ruled out thanks to cosmological measurements
with high precision. The following is a list of some these candidates and their currently
state of affairs:

(i) Massive Compact Halo Objects (MACHO). These are any kind of astronomical body
(brown dwarfs, lonely planets, black holes, etc...) which could explain the presence
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of Dark Matter in galaxies halo. The not enough microlensing effects found by ex-
periments suggests, however, that they cannot account for all the Dark Matter in the
Universe.

(ii) Primordial Black Holes (PBH). From small density fluctuations and inhomogeneities
in the early Universe, some regions could very well have undergone a gravitational
collapse forming these PBH. Even though there is no actual evidence for their exis-
tence, the fact that some of them could have evaporated (those with masses ∼ 1015 g )
through Hawking effect, resulted in some speculation regarding their possible role
in the Dark Matter problem. Whether they provide Dark Matter or not is still un-
known (like every other candidates though). It seems [CKS16] that some ranges of
PBH masses are excluded by cosmological observations while others remain still in
play.

(iii) Weakly Interacting Massive Particles (WIMPs). These particles are one of the most
promising candidates to Dark Matter even though experiments have been trying to
find them for thirty years. A good review of the current status of WIMPs can be
found in [RST18]. In short, these particles arise naturally in some Beyond Standard
Model (BSM) physics, as for example, lightest supersymmetric particles (LSP) or light-
est Kaluza-Klein particles (LKP) in suitable models. These particles would have been
thermally created in the early Universe and their large mass would have allowed for
a progressing cooling making them non-relativistic and cold at the present day.

(iv) Sterile Neutrinos. In the Standard Model, neutrinos are massless even after the spon-
taneous symmetry breaking effect caused by the Higgs mechanism and this is due
to the fact that there are no right-handed neutrinos, only left-handed neutrinos and
right-handed anti-neutrinos (their anti-particles). However, after the discovery of
neutrino oscillation, it is now clear that they are indeed massive and to take this into
account one has to introduce right-handed neutrinos but the fact that they would be
neutral under every kind of interaction in the Standard Model (for this reason are
called "sterile"), makes them still somewhat speculative since the only way in which
they could be observed directly is via gravitational interaction. As was argued by Sha-
poshnikov and Tkachev [ST06], the introduction of three right-handed neutrinos and
the implementation of inflation could explain at once the Dark Matter problem, the
Baryon asymmetry and generate masses for neutrino oscillation to take place. In their
work the right-handed neutrinos are of Majorana type, however it is still to be decided
whether these would be Dirac spinor or Majorana spinor, experiments searching for
neutrinoless doubleβ-decays are trying to figure out exactly this fact. A recent review
of the status of Sterile neutrinos as DM candidates can be found in [Boy+18].

(v) Axions and Axion-Like Particles (ALP). The possible solution of the strong CP prob-
lem, namely the axions, are also potential candidates for Dark Matter. In contrast to
WIMPs, they would have small masses but would still be non-relativistic as a cold ax-
ion population could results from vacuum realignment [DB09] (also called misalign-
ment mechanism [NS11]). This process can be summarised as follows. In the early
universe, the scalar axionic field would be stuck, with no quantum oscillations due to
the fact that they would be effectively massless, with a Compton wavelength greater
than the horizon (this can be inferred from its equation of motion in a Friedmann-
Robertson-Walker metric). As the Hubble constant starts to decrease (after the end
of inflation), the field starts to oscillate and its quantisation would lead to particles.
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The left-over energy density could be thought of as a coherent state of extremely cold
and non-relativistic particles. Given that string compactifications naturally produce
many axions, the investigation of their possible existence has started to flourish (even
because WIMPs are still undetected after many years). A good account of axions in
type IIB string theory can be found in [CGR12].

• Anomalous Magnetic Moment of the Muon

In contrast with the spectacular agreement between experimental data and theoretical pre-
diction of the anomalous magnetic moment of the electron (which represents the most
accurate prediction in the history of physics and a precision test of QED), the anomalous
magnetic moment of the muon measured by experiments deviates from the theoretical pre-
diction by a factor of∼ 3.5σ [Her16]. This could be very well a signal of Beyond Standard
Model physics which has to be investigated. There has been a recent paper by Morishima,
Futamase, and Shimizu [MFS18], claiming that the deviation of the anomalous magnetic
moment of the muon from the Standard Model prediction could be caused by the inter-
action with the gravitational field of the Earth. However, a subsequent paper by Visser
[Vis18] argues that in their work, Morishima et al., implemented the principles of General
Relativity in a wrong way. Another work of László and Zimborás [LZ18], through a fully
general-relativistic calculation, points out that the General Relativity corrections should
be too small for our current experimental apparatuses to measure. Proposals to solve the
problem involve non-standard interactions (NSI) carried by possible hidden gauge bosons
and experiments like PADME (Positron Annihilation into Dark Matter Experiment) or
COHERENT are indeed trying to figure out if these kind of NSI are realised or not.

That being said, string theory tries to furnish a framework in which all these problems could
be somehow resolved. Though it was initially developed to describe strong interactions, string
theory was found to be suitable, instead, in unifying particle physics with gravity. In string
theory, the graviton emerges as a massless field in the string spectrum and the background metric
in which strings are supposed to be propagating can be viewed as a coherent superposition of
these gravitons. In the context of string compactification, the Standard Model and/or eventually
other gauge sectors (GUT-models, hidden gauge sectors, etc...) can be constructed by means of
Dp-branes, which are submanifolds embedded in spacetime where open strings could end. In the
next chapter these topics will be analysed, while in the following we are giving a brief historic
account of the birth of string theory and then present the various possible theories of strings.

1.2 Fundamentals of String Theory
The theory of strings was born thanks to the pioneering work of Nambu [Nam70] (which was
never published, however a selected collection of his papers can be found in [NEN95]) in an
attempt to study the dynamical properties of hadrons induced by the conjectured s − t duality
proposed by Dolen, Horn, and Schmid [DHS68] and mathematically implemented by Veneziano
[Ven68]. String theory was then firstly proposed to explain behaviours connected to strong inter-
actions. In his paper, Nambu proposed an action for the relativistic string, as a generalisation of
the relativistic and manifestly Lorentz covariant action for a massless point-like particle. Quarks
in hadrons were thought to be connected by such strings. The theory was further refined by
the works of Susskind [Sus70] and Nielsen and Olesen [NO73], however, as experiments were
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carried over, it started to be clear that this view had to be abandoned in favour of a new emergent
theory: Quantum Chromodynamics (QCD), strongly supported by the discovery of asymptotic
freedom in non-abelian gauge theories by Gross and Wilczek [GW73b; GW73a] and Politzer
[Pol73] (they were awarded the Nobel prize in physics in 2004). In fact, the Veneziano model
was accurate in the Regge region (large s , fixed t ), but failed in the high-energy scattering (at fixed
angle) region (s →∞, t →∞) in which the behaviour was instead well understood in parton
model terms. In 1973-1974, thanks to QCD which did implement parton-like behaviours, the
formulation in terms of strings slowly fell into oblivion.
In those years (and nowadays too) another problem was also in physicists’ mind: the unification
of gravity with other interactions. The first attempt was put forward by Kaluza [Kal21] inspired
by the "courageous attack" (with his words) of Hermann Weyl [Wey18] in trying to reconcile
Einstein’s gravity with Maxwell’s electromagnetism (the dawn of gauge theories). Kaluza pro-
posed a unification of these two by formulating general relativity not in four dimensions but in
five. This hint was taken up by Klein [Kle26], which managed to reproduce the first dimensional
reduction obtaining a tower of massive four-dimensional states starting from a massless five di-
mensional one. This wonderful theory (called from there on Kaluza-Klein theory) predicted the
existence of a new massless scalar field and at the time this was quite an inconvenient, since there
were not experimental results pointing to the existence of such a particle. However around the
1950s, thanks to the work of Jordan, Brans and Dicke these scalars started to be seen as interesting
theoretical prediction that should be experimentally tested. Even with this new interpretation
those particles were rather evanescent and there seemed to be no way to reveal them. These par-
ticles were connected to the "dual model" (Veneziano model), since even there a massless scalar
field was present (dilaton field).
As we have already said, the Veneziano model was presented to explain the Regge trajectories and
it didn’t received much credibility since it was not able to include fermions and a tachyonic parti-
cle was also predicted. The former inconvenience was bypassed by Ramond [Ram71] and Neveu
and Schwarz [NS71] which managed to create a two-dimensional world-sheet supersymmetric
string model. This model was further generalised to four-dimensional space-time supersymme-
try by Wess and Zumino [WZ74], putting the foundation for all the works that has been done in
this sector of theoretical physics. With superstrings in hand the tachyon existence problem was
finally solved by Gliozzi, Scherk, and Olive [GSO77] by employing a parity projection under
which the tachyon was finally projected out. The real break through was realising that this the-
ory of strings should have been used for a more aulic purpose, namely unifying gravity with all
other interactions. This awareness was reached by Scherk and Schwarz [SS74] and this led to the
development of bosonic string theory (and all subsequent work in string theory). The theory
which started to come out was free of ultraviolet divergences at one loop, but in string theory
problems come from anomalies and other inconsistencies which have to be carefully checked in
order to make a sensible theory.

1.2.1 Bosonic strings

Bosonic string theory is a theory of 1-dimensional objects, called strings, propagating in a gen-
eral D -dimensional spacetime (actually higher dimensional extended objects called D-branes are
also part of the theory as we shall see). The action describing such an object is the Polyakov ac-
tion (an extension of the Nambu-Goto action), which is the generalisation of the relativistic and
manifestly Lorentz covariant action of a pointlike particle, by extending it to be a string which
sweeps out a surface in the spacetime called Worldsheet (WS). In D spacetime dimensions, we can
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embed the worldsheet (Σ, h) (endowed with an intrinsic metric h) into the Minkowski spacetime
(R1,D−1,η) with X :Σ→R1,D−1 and write the Polyakov action as:

S[X µ,Gµν , hαβ] =−T
2

∫
Σ

d 2ξ
p−h ηM N∂αX M hαβ∂βX N (1.2.1)

where T is the tension of the string, α,β runs over the worldsheet’s coordinates ξ = (τ,σ), while
M ,N = 0,1, ..., D − 1 are spacetime indices. This action presents various symmetries, namely
diffeomorphisms invariance, Weyl invariance (implying conformal symmetry of the worldsheet)
and Poincaré invariance, and after a suitable gauge fixing (conformal gauge) the equations of mo-
tion are nothing but d’Alembert wave equations for left/right bosonic modes propagating in the
worldsheet. Since these are differential equations, boundary conditions need to be chosen and
open or closed strings can indeed be considered, leading to a different spectrum of massless states
when the quantisation procedure is taken into account. In order to have full Lorentz invariance,
the critical dimension D of the spacetime in which bosonic strings can propagate is 26. Another
way to retrieve this critical dimension is by means of the conformal anomaly: in order to not
have negative norm states (ghost fields) in the spectrum, the conformal anomaly must be equals
to 26 and for bosonic strings the anomaly is exactly equals to the spacetime dimension in which
the string is embedded.

The massless spectrum of a closed bosonic string consists of a tachyon T , a traceless symmet-
ric 2-tensor GM N (graviton), an antisymmetric 2-tensor BM N (B-field) and a scalar particleφ called
dilaton. Massive modes can be discarded when working at energies below the string mass Ms :

Ms =
1
`s

=
1

2π
p
α′

(1.2.2)

where `s is the string length and α′ is the Regge slope, and it is equals to T = 1/2πα′. In fact,
when energies are below Ms , it is not possible to perceive the extra spatial extent of strings and
thus they behave as pointlike particles. This limit is in fact called the Pointlike limit. The scale
Ms can be as big as the Planck scale MP , but it depends on the model considered and can also be as
low as T eV scale for particular models. The D = 26 effective action of the closed bosonic string
involves the above massless fields and can be written as [IU12]:

S26D =
1

2k2
26

∫
d 26x

p−G e−2φ
�

R− 1
12

HM N P H M N P + 4∂Mφ∂
Mφ

�
(1.2.3)

where G is the determinant of GM N , R is its Ricci scalar and HM N P = ∂[M BN P ] is the field strength
of BM N (in general, the B-field is written as a 2-form B = BM N d xM ∧d xN , in this way its curvature
will be H = dB , with d the exterior derivative). The constant k26 is related to the 26-dimensional
Newton’s constant G26 and string length `s as follows:

16πG26 = 2k2
26 =

1
2π
(2π`p)

24 (1.2.4)

The action (1.2.3) is said to be written in the string frame, since its fields are naturally related to
string excitations. From spacetime point of view, it is however convenient to redefine the fields
and write the action in the so-called Einstein frame by making an appropriate Weyl rescaling of
the metric GM N → G̃M N = e (φ0−φ)/6GM N and φ→ φ̃=φ−φ0:

S26D =
1

2k2

∫
d 26x

Æ
−G̃

�
R̃− 1

12
e φ̃/2HM N P H M N P − 1

6
∂M φ̃∂

M φ̃
�

(1.2.5)
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where k = k0eφ0 .
The role of the dilaton field φ is very important in string theory. Its Vacuum Expectation

Value (VEV) will give the string coupling constant:

gs = e 〈φ〉 (1.2.6)

This means that in string theory the only free parameter is the string tension T (or Regge slope
α′, or string length `s =

p
α′ or string mass Ms = 1/`s ). The fact that the dilaton gives the string

coupling constant can be seen as follows. The low-energy effective action (1.2.3) contains 3 fields
GM N ,BM N and φ. We can think to couple the string action (1.2.1) with these background fields.
What is obtained is an action describing strings propagating in a curved spacetime given by the
metric GM N and two additional pieces:

SB ,φ =
1

4πα′

∫
Σ

d 2ξ
�
εαβBM N∂αX M ∂βX N +

p−h α′Rφ
�

(1.2.7)

where εαβ is the Levi-Civita symbol in 2 dimensions. These two terms are Topological Invariants.
The first, if we write B2 = 1/2BM N DX M ∧DX N , can be recast as:

1
2πα′

∫
Σ

B2 (1.2.8)

and this is a generalisation for a 2-dimensional worldsheet of the minimal coupling of a charged
particle worldline to an electromagnetic potential. This means that strings are electrically charged
under the field B2. The other term, taking φ to be constant (its VEV), can be seen to be a topo-
logical invariant by the fact that under a Weyl rescaling of the metric hαβ → e2ω(ξ )hαβ, ω can
always be chosen in such a way to bring R→ 0. This can be translated in the fact that 2D grav-
ity is always non-dynamical. In mathematical language this fact is the result of the Gauss-Bonet
theorem, which says that the integration over the whole manifold of its Euler class is given by
its Euler characteristic (see appendix A for a review of Characteristic classes and more specific for
Euler classes): ∫

Σ

e(R) = χ (M ) (1.2.9)

For a closed Riemann surface Σ (our worldsheet), with Riemannian (semi-Riemannian) metric
hαβ, we have that (1.2.9) is translated exactly in:∫

Σ

e(R) =
1

2π

∫
Σ

d 2ξ
p−h R= χ (Σ) (1.2.10)

Given that (1.2.10) is a constant, the coupling to the dilaton will then be:

Sφ =φχ (Σ) (1.2.11)

In the Euclidean functional integral, the background fieldφwill weight each worldsheet diagram
by a factor of e−φχ , justifying our claim (1.2.6).
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1.2.2 Superstrings
If we want to add worldsheet supersymmetry, we can introduce fermionic degrees of freedom
as D Majorana fermions ψ =

�ψ−
ψ+

�
belonging to the vector representation of the Lorentz group

SO(1, D − 1). In the conformal gauge (hαβ = ηαβ = diag(−1,1)) we obtain:

S[X µ,ψµ] =−T
2

∫
d 2ξ

�
∂αXµ∂

αX µ+ψµρα∂αψµ
�

(1.2.12)

where ρα are the Dirac matrices in 2 dimensions and fermionic world sheet fields ψµ satisfy
anti-commutation relations {ψµ,ψν}= 0. The action is invariant under a supersymmetry trans-
formation: ¨

δεX
µ = εψµ

δεψ
µ = ρα∂αX µε

(1.2.13)

where ε is the infinitesimal Majorana spinor (anticommuting) parametrising the supersymmetry
transformation.

The action (1.2.12) is, however, not manifestly supersymmetric. In order to resolve that, it
can be employed the Superspace formalism at worldsheet level. Taking (ξ α,θA) with ξ 0 = τ,
ξ 1 = σ and A= 1,2 be the coordinates of the worldsheet superspace (with θA anticommuting),
we can define the Superfields Y µ(ξ α,θA) and expand it with respect to the Grassmann variables
θA obtaining (considering θψ=ψθ and θAθB = 0):

Y µ(ξ α,θA) =X µ(ξ α)+θψµ(ξ α)+
1
2
θθB(ξ α) (1.2.14)

where B is an auxiliary field which do not change the content of the theory (its equations of
motion will be Bµ = 0) but makes it possible to have a manifestly supersymmetric formulation.
The generators of supersymmetry transformations are the Supercharges:

QA=
∂

∂ θA
− (ραθ)A∂α (1.2.15)

and these acts on worldsheet coordinates as:¨
δεθA= [εQ,θA] = εA

δε ξ
α = [εQ,ξ α] = θραε

(1.2.16)

By inspecting the action of the supercharge on the superfield δεY µ = [εQ,Y µ] and matching
powers of θA with the variations of X µ,ψµ and B we get:

δεX µ = εψµ

δεψ
µ = θρα∂αX µε+θBµε

δεB
µ = ερα∂αψ

µ

(1.2.17)

As we can see, these transformations match those (1.2.13), with the addition of the field Bµ, which
disappears when employing its equations of motion. In the superspace language, we can define
a supersymmetric covariant derivative DA, in such a way that DAY µ will transform exactly as
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Y µ, making combinations of the type DAY µDAYµ manifestly supersymmetric. The derivative
is defined as:

DA=
∂

∂ θA
+(ραθ)A∂α (1.2.18)

and in this way the action (1.2.12) is rewritten as:

S[Y µ] = iT
∫

d 2ξ d 2θDAY µDAYµ (1.2.19)

(the −i comes from the fact that
∫

d 2θθθ=−2i ).
When inspecting the equations of motion, we must impose the vanishing of the boundary

term. In this regard we have to distinguish two cases:

• Open String:

In this case, on one end of the string (in units of the string length `s , we consider σ ∈ [0,π])
it can always be chosen:

ψµ+|σ=0 =ψ
µ
−|σ=0 (1.2.20)

while on the other end we have actually two choices:

(i) Ramond boundary conditions:

ψµ+|σ=π =ψµ−|σ=π (1.2.21)

(ii) Neveu-Schwarz boundary conditions:

ψµ+|σ=π =−ψµ−|σ=π (1.2.22)

• Closed String:

When the strings are closed, there are two possible choices too, which are called again
Ramond and Neveu-Schwarz boundary conditions, but this time, the Ramond (R) refers to
the periodic condition:

ψµ±(τ,σ) =ψµ±(τ,σ +π) (1.2.23)

while the Neveu-Schwarz (NS) refers to the anti-periodic condition:

ψµ±(τ,σ) =−ψµ±(τ,σ +π) (1.2.24)

Since the (R) and (NS) conditions can be imposed separately on left/right movers (ψ±),
there will be 4 possible sectors given by the combinations R-R, NS-R, R-NS and NS-NS.
States coming from the R-R and NS-NS sectors will contain bosons, while states coming
from NS-R and R-NS will contain fermions.

The spectrum of the superstrings can be inspected by making use of Superconformal Field
Theory (SCFT) because the worldsheet action (1.2.12) presents superconformal gauge symmetry.
After fixing the gauge, the action can be written in complex coordinates and the Operator Product
Expansion (OPE) of the energy-momentum tensor will enable us to infer the critical dimension
of the spacetime in which superstrings could live. The Supeconformal Anomaly (central charge of
the superconformal theory) can be seen to be exactly equals to the spacetime dimension D , and
in order to not have negative norm states, the critical dimension must be equals to 10.
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Aside (Conformal Field Theory)

Conformal transformations in 2-dimensions can be easily seen to be generated by holomor-
phic functions:

xµ→ x ′µ = xµ+ εµ(x ν) (1.2.25)

in fact, the εµ (with µ= 1,2) must satisfy the Cauchy-Riemann equations:¨
∂1ε

2 =−∂2ε
1

∂1ε
1 = ∂2ε

2 (1.2.26)

and in complex coordinates z = x1+ i x2 and ε= ε1+ iε2 (and respectively z = x1− i x2 and
ε= ε1− iε2) we simply have: ¨

∂zε(z, z) = 0
∂zε(z, z) = 0

(1.2.27)

which means indeed that ε= ε(z) is a holomorphic function and ε= ε(z) is an anti-holomorphic
function. It is known that if we consider a complex planeC compactified by adding the point
at infinity, it becomes the Riemann Sphere C ∪ {∞} (or C∞ or P). On a Riemann sphere,
the only possible global and invertible holomorphic transformations are given by the Möbius
Group SL(2,C) (more precisely it must be quotientized byZ2 = {−1,1}, namely SL(2,C)/Z2).
Locally, the holomorphic transformations are generated by the Lie algebra given by the Witt
Algebra. In the physics community it is said that the local conformal group in 2 dimensions is
infinite dimensional, which is, however, incorrect. First there exists no infinite dimensional
group of conformal transformations in the Euclidean plane (R2 'C) and second, when physi-
cists talk about local conformal transformations, they are actually referring to the space of
Conformal Killing vector fields. These vector fields generate an infinite dimensional Lie Alge-
bra called Witt Algebra and it is not possible to find an infinite dimensional Lie group with the
Witt algebra as its Lie Algebra (for more information see [Sch08]). Mathematically speaking
a conformal transformation is a diffeomorphism φ :M →M ′ from two semi-Riemannian
manifolds (M , g ) and (M ′, g ′) such that there exists a smooth functionΩ :M →R such that
φ∗ g ′ =Ω2 · g (where φ∗ is the pull-back of g ′ with respect to φ). Now, for semi-Riemannian
manifoldsM ,M ′ = Rp,q , a conformal killing vector field is a vector field X , such that its
flow ϕX

t is conformal for all t in a neighbourhood of 0. In a local chart (U , x), we can expand
the vector field as X =X µ∂µ and it will be a conformal killing vector field provided that there
exists a smooth function k :M →R such that ∂νXµ+∂µXν = k · gµν . Now, this X µ is what we
called in (1.2.25) εµ for the case of M =R2,0 'C. In fact, in view of the fact that the Lie algebra
of the group Di f f+(M ) is the algebra of smooth vector fields Lie(Di f f+(M )) =X(M ) and
that for a Lie algebra the flux of an element is exactly the exponential map giving an element of
the group (we have that ϕX

t = exp(tX )), we can, roughly speaking, say that conformal killing
vector fields generate conformal local transformations. In this regard, if we consider an in-
finitesimal, holomorphic (analytic) transformation: z 7→ z + ε(z) = z +

∑
n∈Z εn zn, then we

can informally define the vector field generating this transformation as X =
∑

n∈Z εn zn+1∂z .
The elements Ln := z1−n∂z span a subgroup ofX(M )which is exactly the Witt Algebra, with
commutation relations given by: [Ln, Lm] = (n −m)Lm+n (due to a natural automorphism

31



Foundations of String Theory

of the Witt Algebra, the Ln can also be written as Ln = −zn+1∂z , which is more used in the
physics community). For the Euclidean plane, only those infinitesimal transformations Ln
with n = −1,0,1 can actually be extended to global ones, giving the right conformal group
SL(2,C)/Z2 (considering also Ln :=−zn+1∂z and L−1, L0, L1).

A conformal killing vector field X =X α∂α on the worldsheetΣ brings with it a conserved
current J α = T αβXβ (with α,β= τ,σ ) where T αβ is the energy-momentum tensor given by
the variation of the Polyakov action with respect to the metric T αβ =−(2/p−h)δS/δhαβ.
The fact that J α is conserved can be easily seen by using the fact that ∂αXβ+ ∂βXα = k · gαβ,
and also that T αβ is symmetric and traceless (due to Weyl invariance). The charge associated
to J α is given by the integration Q =

∫
dσ J τ, and the action of X on fields φ is given by

the commutator δXφ= [Q,φ]. Because X can be thought of as generating local conformal
transformations, the charge Q generates local conformal transformations on fields φ.

In order quantise the theory on the Euclidean plane it used the Radial Quantisation. One
direction must be compactified and the resultant space will be a cylinder with coordinates
(τ,σ) = (τ,σ + 2πL) (the compact direction is the space direction and L is the radius of the
cylinder). We can now map the cylinder to the complex plane by identifying z = e (τ+iσ)2π/L.
In order to give well-defined quantities and in analogy to the time ordering in QFT, if we
consider that the time direction in the C-plane is given by the radial direction, then Radial
Ordering is defined as:

R(φ(z)φ(w)) =
¨
φ(z)φ(w) if |z |> |w|
φ(w)φ(z) if |z |< |w| (1.2.28)

(if τ1 < τ2 then |z1|= e2πτ1/L < |z2|= e2πτ2/L).
With this prescription it is possible to define commutators of operators A=

∮
(d z/2πi)a(z)

and B =
∮
(d w/2πi)b (w) (with a(z) and b (w) holomorphic fields) as:

[A,B] =
∮

0

d w
2πi

∮
w

d z
2πi
R(a(z)b (w)) (1.2.29)

and also:

[A, b (w)] =
∮

w

d z
2πi
R(a(z)b (w)) (1.2.30)

(the w in the integration sign
∮

w
means that we are integrating over a closed path containing

w).
Now, the Energy-Momentum tensor will have two components Tz z and Tz z , which will

be holomorphic and anti-holomorphic respectively and usually they are denoted as Tz z(z) :=
T and Tz z(z) := T . The current will, therefore, be given by J := J z(z) = T (z)X (z) and
J := J z = T (z)X (z). Focusing only on the holomorphic part of the theory (since the anti-
holomorphic part is completely analogous), the holomorphic part of the charge will then be
given by Q =

∮
(d z/2πi)T (z)X (z). If we expand in Laurent series X =

∑
n∈ZXn zn+1, then

we can see that the charge will be given by:

Q =
∮

d z
2πi

∑
n∈Z

Xn zn+1T (z) =
∑
n∈Z

XnLn (1.2.31)

where the modes Ln have been defined as:

Ln =
∮

d z
2πi

T (z)zn+1 (1.2.32)
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and it can be seen that Ln are the modes of the Energy-Momentum tensor as T =
∑

n∈Z =
Ln/zn+2. Using the definition of the commutator (1.2.29), and also the Operator Product
Expansion (OPE):

T (z)T (w) =
c/2

(z −w)4
+

2T (w)
(z −w)2

+
∂ T (w)
z −w

+ regular terms (1.2.33)

a direct calculation (using Residue theorem), shows that the Ln satisfies the Virasoro Algebra,
which is nothing but the central extension of the Witt algebra:

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2− 1)δn+m,0 (1.2.34)

The constant c is called Central Charge or Conformal Anomaly. The term "anomaly" comes
from the fact that it appears as a consequence of a breaking by quantum corrections of the
classical conformal invariance. Classically, in fact, the generators of the local conformal sym-
metry satisfies the Witt algebra, but when one quantise the system, the symmetry is broken
and it appears the conformal anomaly c as the result of an introduction of a scale in the sys-
tem.

There are various superstring theories which can be constructed given these ingredients.
Closed strings are called Type II Strings, while a theory with unoriented open and closed strings
is called of Type I. Due to RR-tadpole cancellations, it is not possible to construct a theory with
only unoriented open strings or only unoriented closed strings. Their combination can, how-
ever, produce a consistent theory which is indeed the type I string theory. As we shall see, type
II strings are divided in type IIA and type IIB after a suitable projection (GSO-projection) which
allows to project out the tachyonic particle (which will be otherwise present in the theory) and to
reproduce a supersymmetric spectrum, which is required given that the NS-R and R-NS sectors
contain each a gravitino ψµα . It can also be defined a theory with different left and right degrees
of freedom, namely it can be considered 8 bosonic + 8 fermionic right movers and 24 bosonic
left movers. This is the Heterotic String and its peculiarity is a "miraculous" anomaly cancel-
lation. Heterotic string theory comes with two possible gauge symmetries at the perturbative
level (within the massless spectrum): E8×E8 or SO(32). The number of possible string theories
rises thus to five. This proliferation of string theories made physicists wonder which one was the
correct one since at first all these theories seemed to be completely unrelated. During the early
’90s, the Second Superstring Revolution2 took place, it was realised that those string theories are all
related to one another through so-called dualities, and, in fact, derive from an 11-dimensional the-
ory called M-theory, firstly proposed by Witten [Wit95]. In the same years the discovery by Dai,
Leigh, and Polchinski [DLP89] of Dp-branes (Dirichlet surfaces with p-spatial dimensions, thus
with a world-volume (p+1)-dimensional) as submanifolds onto which open strings could end and
the subsequent realisation of Polchinski [Pol95] that Dp-branes actually carry Ramond-Ramond
charges, gave a strong encouragement to the physics community in continuing to pursue the path
of string theory since these charges were (are) required by string dualities.

2The first superstring revolution happened a decade earlier, when it was discovered an anomaly cancellation in
type I strings via the Green-Schwarz Mechanism and the subsequent year it was discovered the Heterotic string.
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1.3 Dirichlet Branes
After employing the conformal gauge in the Polyakov action, the metric of the worldsheet is
brought into a Minkowski form ηαβ = diag(−1,1) and the resultant action is:

S =−T
2

∫
d 2ξ ∂αX M∂ αXM (1.3.1)

When varying the above action in trying to find the equations of motion, a boundary term of
the form:

T
∫

dτδX M∂σXM

��
σ=0,π (1.3.2)

appears. If we want this term to vanish, we can impose δX M |σ=0,π = 0 and/or ∂σX M |σ=0,π = 0.
The former are called Dirichlet Boundary Conditions while the latter are Neumann Boundary
Conditions. In principle there 4 possible combinations that one can choose, however, mixed
boundary conditions are also a possibility, for example, for σ = 0 choosing ∂σX i = 0 with i =
0, ..., p and δX j = 0 for j = p+1, ..., D−1 is possible. The latter Dirichlet conditions imply that
the position of the string ends are fixed in the j = p + 1, ..., D − 1 spacetime directions. The end
points are then allowed to move on a (p + 1)-dimensional surface. These surfaces are called Dp-
branes, which are dynamical extended objects with a (p + 1)-worldvolume which clearly break
Poincaré invariance SO(1, D − 1)→ SO(1, p)× SO(D − 1− p). When the spacetime R1,D−1 is
compactified intoR1,3×Y (withY a suitable 6-dimensional compact manifold), then Dp-branes
can be defined provided their world-volumes extend to all 4-dimensional spacetime manifoldR1,3

and eventually wrap some cycles in the compact dimensions.
Under T-duality, Neumann boundary conditions are mapped into Dirichlet boundary con-

ditions, and if the D-brane was wrapping a circle, in the dual theory it will not and vice versa.
The open string spectrum, when employing mixed boundary conditions, i.e. when strings

end on Dp-branes, should be retrieved considering that states must fall into representations of
SO(1, p)×SO(D− p−1). Massless states in the light-cone gauge will be given by a massless vector
field Aα (α = 0,1, ..., p) and (D − p − 1)-scalar fields φa (a = p + 1, ..., D − 1). The low-energy
effective action is in fact given by:

SD p ∝
∫

d p+1x
�
−1

4
F αβFαβ+

1
2
∂αφ

a∂ αφa + ...
�

(1.3.3)

The scalarsφa are in a number equals to the number of transverse directions of the Dp-brane and
in this regard they can be interpreted as the fluctuations of the Dp-brane in transverse directions.
This is translated in the fact that these membranes are actually dynamical objects rather than just
being static boundary conditions when quantisation is employed.

As is well known, the electromagnetic field encoded in the 4-potential Aµ couples to charge
particles with an action given by:

Sint = e
∫

Aµ
d xµ

dτ
dτ (1.3.4)

This means that a 0-dimensional object (pointlike particle) which sweeps out a 1-dimensional
worldline, couples to a 1-form A = Aµd xµ. Taking into consideration now a p + 1-form, this
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will couple to an object with a (p + 1)-dimensional worldvolume. These objects are indeed Dp-
branes:

Sint =µp

∫
W
φ∗Ap+1 (1.3.5)

where φ∗Ap+1 stands for the pull-back of the (p + 1)-form Ap+1 to the worldvolume W of the
Dp-brane by means of the embedding φ : W →M of the Dp-brane into the spacetime manifold
M . This is translated in the fact that Dp-branes are electrically charged under Ap+1 gauge fields
as can be seen by using Gauss’s law: µp =

∫
SD−p−2 ?Fp+2, where Fp+2 = dAp+1 is the field strength

of the gauge field Ap+1 and we are integrating over a (D−2− p)-dimensional sphere SD−2−p . The
Hodge star-operator ? (we shall describe it in §2.1.4) appears in analogy with the electromagnetic
case, where, integrating the Maxwell equation d ? F = ?J , with F = dA (where A=Aµd xµ) and

J = Jµd xµ (where Jµ = (ρ, ~J ) and ρ= eδ (3)(ξ ) for a pointlike particle of charge e), over a volume
Ω bounded by the 2-sphere ∂ Ω= S2 with the particle inside it, we get∫

Ω

d ? F =
∫
Ω

J
Stokes︷ ︸︸ ︷⇐⇒ ∫

S2

?F = e (1.3.6)

If a magnetic charge g is brought into play, it will carry a magnetic 4-current Jm, the first pair of
Maxwell equations d F = 0 is then modified to d F = ?Jm and as before we will get:∫

S2

F = g (1.3.7)

As was first pointed out by Dirac [Dir31], the existence of a magnetic charge, i.e. a magnetic
monopole, would result in a quantisation of both the electric and magnetic charges, they would,
in fact, obey the following Dirac quantisation condition:

e · g = 2πn n ∈Z (1.3.8)

All these facts from electromagnetism are transposed and generalised to arbitrary gauge fields,
namely for p-forms fields. A (p+1)-form Ap+1 will couple electrically to a p + 1-dimensional
object (a Dp-brane), and the resulting interaction will be:

Sint =
∫
W
φ∗Ap+1 (1.3.9)

whereW is the world-volume a Dp-brane (i.e. it is (p+1)-dimensional) and φ :W →M is the
embedding of the world-volume into the spacetime. The electric charges will be given by an
integration over the spheres SD−p−2 (surrounding the Dp-brane) for a D -dimensional spacetime
M :

e =
∫

SD−p−2

?Fp+2 (1.3.10)

The magnetic dual branes that couple to a p-form field are given by (D− p−4)-branes, since these
branes can be surrounded by S p+2 spheres so that the magnetic charge will be correctly given by:

g =
∫

S p+2

Fp+2 (1.3.11)

To sum up, in D = 10 spacetime dimensions, p-form gauge fields Ap couple electrically to (p−1)-
branes and magnetically to (7− p)-branes.
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1.3.1 World-Volume Action for Dp-Branes
Until 1988, membranes - which were found as static solutions to supersymmetric gauge theo-
ries - weren’t connected to string theory, and the real revolution was started by Dai, Leigh, and
Polchinski [DLP89], where the authors recognized for the first time that Dirichlet boundary con-
ditions on open strings could give rise to static membranes, which, after quantisation, can become
dynamical. Immediately after that, Leigh [Lei89] realised that the Dirac-Born-Infeld (DBI) action
for the D-brane reproduces correctly its equations of motion. After these pioneering works, Ced-
erwall et al. [Ced+97] constructed a full supersymmetric and k-symmetric3 action for D3-branes,
including their coupling to background superfields of 10D type IIB supergravity. A completion
of this work was done by almost the same authors [Ced+96] for general Dp-branes, with p even
or odd for type IIA or type IIB backgrounds respectively.

The dynamics of the bosonic part of a Dp-brane is then governed by a low-energy effective
action given by the Dirac-Born-Infled action plus a Wess-Zumino (or Chern-Simons) term:

SD p = SDBI + SW S (1.3.12)

As we mentioned in §1.2.1, the low-energy effective field theory of a bosonic string contains
a graviton G, a dilaton φ and a 2-form field B2. As we shall see in the next chapter, also the
superstring theories contains these fields. In particular they appear in the NS-NS sector. This
means that the action we are constructing for Dp-branes must include these background fields
and also, as we pointed out before, it will contains the U (1) world-volume gauge field Aα (with
α= 0, ..., p). The Dirac-Born-Infled action will then take the following form:

SDBI =−Tp e−φ
∫
W

d p+1ξ

√√√−det
�

i ∗(G+B2)+
`2

s

2π
F2

�
(1.3.13)

where Tp is the tension of the Dp-brane,W is the world-volume, i is the embedding of the Dp-
brane into the spacetime and `s is the string length (1.2.2). The Wess-Zumino part is needed in
order to have a supersymmetric action and it is defined by means of other fields which appear
in the R-R sectors of the various string theories. These fields are p-forms and are denoted as Cp .
The action is then given by:

SW S =µp e−φ
∫
W

∑
p

i ∗Cp ∧ e i∗B2+
`2

s
2π F2 (1.3.14)

Whereµp is the R-R charge of the brane, given that Dp-branes couple to the R-R forms Cp of the
bulk. Since stable4 Dp-branes are BPS objects, the R-R charge µp must be equals to the tension
Tp .

3This is a symmetry that supermembrane presents. When the action for a supermembrane was firstly constructed
in [HLP86] the requirement of the complete action to posses a local fermionic symmetry, introduces a fermionic
local SUSY parameter: k.

4In type II string theories the stable Dp-branes have p even for type IIA and p odd for type IIB. This stability
condition is obtained by considering the fact that in type IIA string theory (as we shall see later on) the R-R sector
contains n-form gauge fields with n = 1 and n = 3. These fields couple electrically to D0-branes and D2-branes
respectively, while they couple magnetically to D4-branes and D6-branes respectively. For type IIB string theory,
the R-R sector is given by n-form gauge fields with n = 0, n = 2 and n = 4. In this way, the stable Dp-branes should
be those with p =−1 (interpreted as a D-instanton), p = 3, p = 5 and p = 7.
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Dp-branes then support gauge theories and the crucial fact is that a stack of coincident N
branes support a U (N ) gauge theory. Including D-branes in string theory then allows to imple-
ment gauge theories, meaning that the Standard Model can be constructed in this context. The
construction of the Standard Model is, however, not a simple task. The Standard Model building
requires lots of consistency checks in order for it to be well-defined. In our construction of §4
we will not worry about it, we will suppose that it could be constructed without incurring in
inconsistencies and anomalies.

1.4 Type II Superstrings
As we said at the beginning of §1.2, the formulation of superstrings in terms of the action (1.2.12)
is attributed to Ramond [Ram71] and Neveu and Schwarz [NS71], and for this reason they are
generally called then RNS strings. As it is, the ground state is tachyonic and the spectrum is
not supersymmetric. To get around these problems, Gliozzi, Scherk, and Olive [GSO77] came
up with a solution which enabled to get rid of the tachyonic state and to achieve a spacetime
supersymmetric spectrum by means of a suitable projection, now called GSO-projection. This
truncation is done by keeping in the NS sector only states with positive G-parity, where G is the
operator G = (−1)F+1 and F is the fermionic number, i.e. the number of fermionic excitations.
In the R sector, the ground state is a fermion, more precisely it is a Majorana-Weyl spinor and
it can have positive or negative chirality, in particular, the left and right moving modes in the R
sector can have the same or opposite chirality. Based on this concordance, two different types of
theories arise: Type IIA and Type IIB superstrings.

1.4.1 Type IIA Strings

The massless spectrum of D = 10 type IIA superstring theory after the GSO projection is given
by:

Sector Representation of SO(8) 10-dimensional field

NS-NS 1+ 28V + 35V φ,B2,G
NS-R 8C + 56C λ1,ψ1

R-NS 8S + 56S λ2,ψ2

R-R 8V + 56V C1,C3

Where 8S and 8C represents two representations of opposite chirality. The fields in NS-NS
sector are the dilaton φ, the 2-form field B2 and the graviton G. In the NS-R and R-NS sec-
tors there are two dilatinos λi and two Rarita-Schwinger gravitinos ψi . Finally, the R-R sector
contains a 1-form field C1 and a 3-form field C3. The low-energy effective supergravity theory
(SUGRA) in 10 spacetime dimensions is then encoded in a bosonic action composed of three
pieces:

SI I A= SN S + SR+ SC S (1.4.1)

The first piece refers to the NS-NS sector and is given by (in string frame):

SN S =
1

2k2
10

∫
e−2φ

�
R ?1+ 4dφ∧ ?dφ− 1

2
H3 ∧ ?H3

�
(1.4.2)
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where we are employing the p-form formalism and H3 = dB2 while the constant k10 is given by
the obvious generalisation of (1.2.4) to 10 spacetime dimensions. The other two pieces SR and
SC S contain the R-R fields and are given by:

SR =− 1
4k2

10

∫ �
F2 ∧ ?F2+ F̃4 ∧ ?F̃4

�
(1.4.3)

SC S =− 1
4k2

10

∫
B2 ∧ F4 ∧ F4 (1.4.4)

where F2 = dC1, F4 = dC3 and F̃4 = F3 +A1 ∧H3 is a gauge-invariant combination. Recalling
from §1.2.1 that the dilaton field weights each worldsheet diagrams with Euler Characteristics χ
by e−χφ and that for a sphere the Euler Characteristic is χ = 2, then we see that the terms in the
SN S action describe the leading order of the expansion in gs (spherical world-sheet). It can also be
noted that in SR and SC S there is not the dilaton-dependent term. This is because of the definition
of our R-R fields and, by a proper rescaling, a factor of e−2φ could be factorised out. However
this rescaling is never employed in practice and we will leave the actions above as they are.

1.4.2 Type IIB Strings
The massless spectrum of D = 10 type IIB superstring theory after the GSO projection is given
by:

Sector Representation of SO(8) 10-dimensional field

NS-NS 1+ 28V + 35V φ,B2,G
NS-R 8S + 56S λ1,ψ1

R-NS 8S + 56S λ2,ψ2

R-R 1+ 28C + 35C C0,C2,C4

We can see that the NS-NS sector is exactly the same as that of type IIA. For NS-R and R-NS
sectors the unique difference is that the fields have the same chirality instead of the opposite, type
IIB superstring theory is, in fact, a theory with a chiral spectrum. The R-R sector is composed
of a 0-form field C0, a 2-form field C2 and a 4-form field C4. The peculiarity of C4 is that it has
a self-dual field strength (actually a gauge-invariant combination of it is self-dual as we are going
to see shortly). In principle this wouldn’t allow to define an action in a manifestly covariant
form. However, it is still possible to write down an action which, when supplemented with the
self-duality constraint, reproduce the correct equations of motion (for details see §8 of [BBS07]).
The action will then be again composed of three pieces:

SI I B = SN S + SR+ SC S (1.4.5)

where SN S is the same as that of type IIA, namely (1.4.2). The other pieces are given by:

SR =− 1
4k2

10

∫ �
F1 ∧ ?F1+ F̃3 ∧ ?F̃3+

1
2

F̃5 ∧ ?F̃5

�
(1.4.6)

SC S =− 1
4k2

10

∫
C4 ∧H3 ∧ F3 (1.4.7)
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where F1 = dC0, F3 = dC2, F5 = dC4 and the gauge-invariant combinations have been defined:
F̃3 = F3−C0H3 and F̃5 = F5− 1

2C2 ∧H3+
1
2B2 ∧ F3. The self-duality condition is satisfied by the

field F̃5:
F̃5 = ?F̃5 (1.4.8)

and this condition has to be imposed as a constraint on the equations of motion.
A very useful formulation of the type IIB action is given by noticing that this supergravity

theory has a global SL(2,R) symmetry. The manifestly SL(2,R) invariant action is particularly
useful when considering compactifications from F-theory. Let’s define the axio-dilation as the
complex field defined by the following combination of the dilaton φ and the R-R 0-form C0
(which is called axion due to its shift-symmetry in the SUGRA approximation):

τ =C0+ i e−φ (1.4.9)

and under SL(2,R):
τ 7→ aτ+ b

cτ+ d
∀
�

a b
c d

�
∈ SL(2,R) (1.4.10)

Let’s also define the combined three-flux:

G3 = F3−τH3 (1.4.11)

which transforms as:

G3 7→ G3

cτ+ d
(1.4.12)

Using these quantities, the type IIB supergravity action can be rewritten in the following mani-
festly SL(2,R) invariant form (in the Einstein frame GE = e−φ/2GS ):

SI I B =
1

2k2
10

∫ �
R ?1− dτ ∧ ?dτ

2(Im(τ))2
− G3 ∧ ?G3

2Im(τ)
− F̃5 ∧ ?F̃5

4

�
+

1
8k2

10

∫
C4 ∧G3 ∧G3

Im(τ)
(1.4.13)

This formulation and the transformation of the axio-dilaton τ, recall the modular invariance of
the modular parameter of a torus. This is not an accident since compactification of M-theory
on a torus leads, through a series of dualities, to type IIB theory. Also, from a different, but
equivalent, point of view, type IIB supergravity compactified on a complex n-dimensional space
Bn as:M =R1,9−2n×Bn and in the presence of 7-branes, leads to a structure of an elliptic fibration
over the compactification space [Wei18]. The axio-dilaton field τ, in fact, is not a constant, but
varies in the direction normal to the 7-brane and this is because of the backreaction of the 7-branes
on the geometry and on the supergravity background. This variation of the axio-dilaton field, in
turn, gives rise to an elliptic fibration over the compactification space. This is the principle of F-
Theory, firstly proposed by Vafa [Vaf96], and then studied by both physicists and mathematicians
because of all the relations between different branches of mathematics that it brings with. In the
following sections we are going to point out the main features of M-theory and then how F-theory
can be seen as arising form M-theory compactified on a torus T 2.

1.5 M-Theory
M-theory was firstly proposed by Witten [Wit95] while he was analysing the strong coupling
limit of type IIA string theory. What he found was that the strong coupling behaviour of type
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IIA theories was an eleven dimensional supergravity. The M-theory would then be the hypo-
thetical eleven dimensional complete theory which would have, as its low-energy effective field
theory, the eleven dimensional supergravity dual to the strong coupling limit of type IIA/IIB
supergravity. His reasoning was roughly the following. In type IIA/IIB string theories the R-R
sector gives rise to some anti-symmetric fields. Focusing on the type IIA there will be a 1-form A
and a 3-form A3. Considering the charge of the field A to be W , then a state of mass M charged
under the gauge field A will obey the following condition:

M ≥ C
λ
|W |

which is saturated for the so-called BPS-states: M = C/λ|W |, where C is a constant and λ is the
string coupling constant i.e. the dilaton VEV: 〈eφ〉= λ. However in the elementary string spec-
trum the charge W is identically zero because only massless states are considered. Nevertheless
BPS-black hole solutions can be constructed. It can be assumed that in the theory these sates do
indeed exist, and there will be a tower of states given by M = c |n|/λwhere n is an arbitrary inte-
ger. What is found is that an 11-dimensional supergravity theory will reproduce this spectrum,
which consists of the spectrum of type IIA and these massive BPS-sates. This 11-dimensional
supergravity is the low-energy effective action of a "new theory": the M-theory, which is not a
theory of strings, but, however, is connected to string theories. In fact, type IIA supergravity is
retrieved from 11-dimensional supergravity (which means from M-theory) by compactification
on a circle:�

11-dim SUGRA on S1 with radius R
�' �Type IIA with coupling gs = R/

p
α′
�

And considering the T-duality between type IIA and type IIB:�
Type IIA strings on S1 with radius R

�' �Type IIB strings on S1 with radius R̃= α′/R
�

we can also get from M-theory to type IIB supergravity.
What is interesting is then the 11-dimensional supergravity theory, which, remarkably, is

unique. Its construction process goes as follows. First, it must contains gravity, namely a gravi-
ton which will be a symmetric traceless tensor of SO(D − 2) (the little group for a massless
particle). This means that it will have (D−2)(D−1)

2 = 44 degrees of freedom (polarisation states).
By supersymmetry, the graviton should possess a superpartner, i.e. the gravitino ΨM

α of spin
3/2 (Rarita-Schwinger field with one spacetime index M and one spinor index α). The gravitino
will have a total of 128 degrees of freedom. Since the bosonic degrees of freedom should match
the fermionic ones because of supersymmetry, there is a gap of 84 degrees of freedom that must
be filled. This is done by introducing a gauge invariant 3-form field A3. In this way the eleven
dimensional supergravity action can be readily written down:

S11D =
1

2k2
11

∫ �
R11 ?1− 1

2
F4 ∧ ?F4

�
− 1

12k2
11

∫
A3 ∧ F4 ∧ F4 (1.5.1)

whereR11 is the Ricci scalar of the eleven dimensional graviton G11, F4 is the field strength of A3
and 4πk2

11 = (2π`p)
9.

The above action is the only one that can be written down given the following constraints
(requirements) that the supergravity theory must satisfy:
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• Invariance under gauge transformation A3 7→A3+ dΛ;

• General coordinates invariance;

• Local Lorentz invariance;

• Local Supersymmetry.

In the period when it was firstly constructed (late ’70s), the 11-dimensional supergravity wasn’t
thought to be really representing the fundamental theory of nature due to the fact that it is not
renormalisable and it is non-chiral. However, within the context of string theory, if the 11-
dimensional supergravity is viewed as an effective field theory, we do not need the renormalis-
ability condition and the chiral spectrum can be recovered by either introducing branes or com-
pactify on appropriate manifolds.

1.5.1 Kaluza-Klein Reduction of 11-Dimensional SUGRA

As we mentioned a the beginning of this section, the 11-dimensional supergravity is related to the
10-dimensional type IIA supergravity by means of a compactification of a single direction into a
circle and by Kaluza-Klein reducing the fields content into the lower dimensional theory. Let’s
denote by Latin letters M ,N ,O, P, ... the eleven dimensional spacetime indices, while with Greek
letters µ, ν ,ρ,σ , ... the ten dimensional indices. The compactified direction will be the M = 10,
so that µ= 0,1,2, ..., 9, 11. The metric inM11 is given by (in local coordinates):

G11 =GM N d xM ⊗ d xN (1.5.2)

By employing the Kaluza-Klein dimensional reduction the metric can be written in term of 10-
dimensional fields in the following form:

GM N = e−2φ/3

�
gµν + e2φAµAν e2φAµ

e2φAν e2φ

�
(1.5.3)

so that we get a 10-dimensional metric gµν , a U (1) gauge field Aµ and the dilaton φ. The line
element take the form:

d s 2 =GM N d xµd x ν = e−2φ/3 gµνd xµd x ν + e4φ/3(d x11+Aµd xµ)2 (1.5.4)

The three-form A3 = A(11)
M N P d xM ∧ d xN ∧ d xP in the eleven dimensional theory will be decom-

posed into a 3-form and a 2-form:

A(11)
µνρ =Aµνρ A(11)

µν11 = Bµν (1.5.5)

And the field strengths will be F4 and H3 for A(10)
3 and B2 respectively.

Once the integration over the compact coordinate of the circle is performed, the 10-dimensional
type IIA supergravity action (1.4.1) is recovered.
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1.6 F-Theory
As we mentioned in §1.4.2, F-theory can be thought of as the non-perturbative formulation
of type IIB theory when the backreaction of 7-branes on the geometry is taken into account.
The construction of F-Theory is made by recognising that the type IIB theory possesses a global
SL(2,R) symmetry, and in particular it is believed that the full theory (not only the effective
field theory given by the action (1.4.5), but the full non-perturbative type IIB string theory)
is left invariant by the subgroup SL(2,Z). In this way, one can see that the action of SL(2,Z)
on the axio-dilaton τ = C0 + e−φ can be interpreted as an SL(2,Z) monodromy. In fact, let’s
consider a compactification of the 10-dimensional background spacetime into:M =R1,9−2n×Bn
with Bn a compact and complex n-dimensional manifold. Take also a D7-brane extended onto
the Minkowski R1,9−2n (in order to preserve Poincaré invariance) and wrapping an holomorphic
cycle in the compact dimensions, so that its world-volume will be given by: W = R1,9−2n ×
Σn−1. If we take the compact dimension to be the Riemann sphere, namely the complex plane
compactified by the addition of the point at infinity, we can writeM =R1,7×C, so that the D7-
brane will have a world-volumeW =R1,7. The complex plane is perpendicular to the directions
into which the D7-brane extends. If we recall that Dp-branes couple electrically to (p−1)-forms
and magnetically to (7− p)-forms, then we can immediately recognise that D7-branes couple to
the R-R 0-form C0 (i.e. the axio-dilaton τ). If we consider the flux of the 0-form out of a sphere
S1 in the complex plane C around the D7-brane, then because the brane is a magnetic source of
C0, the integral: ∫

S1

dC0 = 1 (1.6.1)

is not zero, and can be non-vanishing only in presence of a brunch cut. If the brane sits at z = z0,
then by supersymmetric requirements the only possible form that τ(z) can take is:

τ(z) =
1

2πi
ln(z − z0)+ regular terms at z0 (1.6.2)

and this brunch cut will induce a monodromy:

τ→ τ+ 1 (1.6.3)

This means that a D7-brane induces a monodromy:

M[1,0] =
�

1 1
0 1

�
(1.6.4)

This set-up can be appreciated in figure (1.1). Given these considerations, the natural thing to do
is to try to generalise branes and strings accommodating general monodromies given by SL(2,Z)
transformations.

1.6.1 (p,q) Strings and (p,q) 7-branes
Under a transformation of the axio-dilaton τ of the type (1.4.10) but with a, b , c , d ∈ Z, the
doublet of fields Φa =

�C2
B2

�
must transform as MΦ with M ∈ SL(2,Z) defined clearly by: M =�

a b
c d

�
, which by a simple computation can be proved to be equivalent to the transformation
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Figure 1.1: Representation of the factorisation of the spacetime manifoldM into R1,7×C, with
the brane sitting at z0 and seen as a point in the complex plane C, while extending in the non-
compact directions R1,7.

(1.4.12). Considering these facts, we can define a new kind of strings and branes, mainly fol-
lowing [Wei18]. The fundamental string couples to the 2-form B2 (as we have seen in §1.2.1,
more precisely the coupling was given by (1.2.8)), i.e. it is electrically charged with respect to
B2. These strings can end on D7-branes, which are magnetically charged under C0. But in the
type IIB supergravity action, there are two scalar fields which can be rearranged in a doublet:
(C0,φ). A D7-brane is then called a (1,0) 7-brane and the fundamental strings which end on
these branes are called (1,0) strings. More generally we can construct (p, q) 7-branes where
(p, q) strings could end. These strings couple to pB2 + qC2 with p and q coprime integers,
in fact, defined the row charge doublet Qa = (q , p), we can construct the SL(2,Z)-invariant com-
bination QaΦ

a := εab Q bΦa with εab the invariant anti-symmetric tensor of SL(2,Z) given by:

εab =
�

0 −1
1 0

�
. In this way, we see that a (p, q) string, with charge column vector given by

Qa =
� p
−q

�
(we raise/lower indices with εab/εab ), is retrieved from an SL(2,Z) transformation of

the (1,0) string:

Qa =
�

p
−q

�
=
�

p r
−q s

��
1
0

�
= g(p,q)

�
p
−q

�
(1.6.5)

In this way, the SL(2,Z) monodromy generated by the backreaction of a (p, q) 7-brane can be
found by calculating the action of g(p,q) onto the the monodromy (1.6.4) of the (1,0) 7-brane:

M[p,q] = g(p,q)M[1,0] g
−1
(p,q) =

�
p r
−q s

��
1 1
0 1

��
p r
−q s

�−1

=
�

1+ pq p2

−q2 1− pq

�
(1.6.6)

Every (p, q) 7-brane can also be brought back to a D7-brane by the inverse transformation of
the above one. This means that locally every single 7-brane can be thought of as a D7-brane.
However, when more 7-branes with different p and q are considered, then it may be the case that
these cannot be brought simultaneously into the (1,0) form. Nevertheless there are some bound
states that can be constructed and that reproduce the ADE Lie groups (see [Wei18]).

As we will see in the next chapter, the structure that is brought by the introduction of 7-
branes which backreact on the supergravity geometry is that of an Elliptic Fibration. The ten
dimensional spacetime is in general compactified on a Calabi-Yau manifold (see §2), however, the
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compact space Bn appearing inM = R1,9−2n × Bn cannot be Ricci-flat (we are going to show it
in §2.2.2) and therefore cannot be a Calabi-Yau. Nevertheless, it is seen that the structure that
one obtains when considering the variation of τ is a holomorphic line bundleL over Bn. Now,
the choice of sections of L 4 and L 6 uniquely defines an elliptic fibration over Bn with varying
elliptic parameter τ:

Eτ→Yn+1→ Bn (1.6.7)

where the above is a fibration sequence with Eτ an elliptic curve5 with elliptic parameter τ, Yn+1
is the total space and Bn is the base space of the fibration. We shall come back to these topics in
more details in chapter §2.

1.6.2 F-Theory from M-theory

F-theory can be interpreted geometrically by making use of the duality between M-theory on
a torus and type IIB string theory on a circle. When this context is analysed, the structure of
an elliptic fibration is seen to arise. In order to do that, we consider the low-energy effective
supergravity action of M-theory given by (1.5.1) plus an additional topological higher curvature
term [Den08; Wei18], giving:

S11D =
1

2k2
11

�∫
R11 ?1− 1

2

∫
F4 ∧ ?F4− 1

6

∫
A3 ∧ F4 ∧ F4+ `

6
s

∫
C3 ∧ I8

�
(1.6.8)

with:
I8 =

1
(2π)4

�
− 1

768
(tr(R2)2)+

1
192

tr(R4)
�

(1.6.9)

(for details of where this term comes from see [DLM95]).
We can now compactify the spacetime intoM9×T 2 and the metric will split:

d s 2 =
v
τ2

((d x +τ1d y)2+τ2
2 d y2)+ d s 2

9 (1.6.10)

where x, y are periodic coordinates on the torus with periodicity 1 and correspond to a T 2 with
complex structure modulus τ = τ1+ iτ2 and area of v. If we let τ and v vary in the non-compact
directions ofM9, we obtain a fibration: T 2 → Y → M9. Now, the torus is homeomorphic
to S1 × S1 and the idea is to reduce along one circle to get type IIA string theory and then T-
dualise along the other circle to get type IIB. Following [Den08]we see that in general the relation
between M-theory compactified on a circle and type IIA is encoded in the metric:

d s 2
M = L2e4χ/3(d x +C1)

2+ e−2χ/3d s 2
I I A (1.6.11)

where the C1 is the 1-form in type IIA, L is the length of the circle and x is the periodic coordinate
of the circle. Comparing (1.6.10) and (1.6.11), we get the following identifications:

C1 = τ1d y e4χ/3 =
v

L2τ2

d s 2
I I A=

p
v

Lpτ2

(vτ2d y2+ d s 2
9 ) (1.6.12)

5An elliptic curve is a "punctured torus". If we consider in the upper-half plane H := {z ∈ C | Im(z) ≥ 0} a
parameter τ ∈ H, the lattice Λ := {z ∈ H | z = a + bτ, with a, b ∈ Z} is used to generate the elliptic curve as the
quotient space: Eτ =C/Λ. The origin is identified with the point z = 0.
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We want now to T-dualise along the other circle. T-duality maps the circle in type IIA of length
LA to a circle in type IIB of length LB = `s/LA, the R-R 0-form will be given by C0 = (C1)y and

the string coupling g I I B
s = `s

L g I I A
s . The type IIB metric and axio-dilaton in terms of v,τ and `M

are given by:

τ =C0+
i

g I I B
s

d s 2
I I B =

p
v g I I B

s

L

�
`6

M

v2
d y2+ d s 2

9

�
(1.6.13)

As we can see, this duality explain why the axio-dilaton in type IIB presents an SL(2,Z) symme-
try, in fact, it arises as a complex structure modulus of a torus which enjoys the same symmetry.

Considering M-theory onM =R1,8−2n×Yn+1 withYn+1 a torus fibration with base space Bn,
supersymmetry requiresYn+1 to be Calabi-Yau (see §2) and the dual type IIB will be compactified
on a locally Bn × S1 with metric:

d s 2 = d s 2
R1,8−2n + d s 2

Bn
+
`4

s

v
d y2 (1.6.14)

with y periodic coordinate of S1 with periodicity 1 and in the limit in which the area of the torus
vanishes v→ 0, we recover type IIB compactified on Bn.

1.7 Type I Strings
When one tries to construct a theory of open and oriented superstrings coupled to closed ones,
they will inevitably incur in an inconsistency called RR Tadpole Cancellation Condition. The RR
tadpole can be thought of as a charge of the R-R fields, in particular of the 10-form C10 present
in the spectrum and is given by the emission of a closed string out of the vacuum. The same is
true if one tries to construct a theory of closed and unoriented strings. However, the key idea
is to try to construct a theory of unoriented open and closed strings such that their RR tadpoles
cancel out. The massless spectrum that is found is the following:

Closed Sector Representation of SO(8) 10-dimensional field

NS-NS 1+ 35V φ,G
NS-R + R-NS 8S + 56S λ,ψ

R-R 28C B2

Open Sector Representation of SO(8) 10-dimensional field

NS 8V A1

R 8C λ

The closed spectrum contains a dilaton φ, a graviton G, a 2-form field B2, a dilatino λ and a
gravitino ψ. In open sector, instead, there are a 1-form field A1 and a fermion λ which are gauge
boson and gaugino of the SO(32) spacetime gauge symmetry. The theory possesses various local
symmetries, namely the diffeomorphism invariance with G as the graviton, gauge invariance of
the R-R 2-form B2, the SO(32) gauge symmetry under which A1 and ψ transform in the adjoint
representation and localN = 1 10-dimensional supersymmetry (there is in fact a single gravitino
ψ).
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The low-energy effective action is given by:

SI =
1

2k2
10

∫
e−2φ

�
R ?1+ 4dφ∧ ?dφ− 1

2
F̃3 ∧ ?F̃3

�
− 1

2g 2
10

∫
e−φtr(F2 ∧ ?F2) (1.7.1)

where:

g 2
10 = k2

10(2π)
7/2α′ F2 = dA1 F̃3 = dB2− k2

10

g 2
10

(ω3−ωgrav) (1.7.2)

andω3,ωgrav the Chern-Simons forms for the gauge field A1 and the gravitational field:

ω3 = tr(A1 ∧ dA1− 2
3

A1 ∧A1 ∧A1) ωgrav = tr(ω∧ dω+
2
3
ω∧ω∧ω) (1.7.3)

withω the spin-connection6.

1.8 Heterotic Strings

Heterotic string theory is the theory of closed strings which is characterised by different right
and left moving degrees of freedom. The left ones are of the bosonic theory and the right are
of superstrings. In the light-cone gauge, the right sector will contain 8 bosons X i

R(τ− σ) and 8
fermions ψi

R(τ−σ) for i = 2, ..., 9, while the left sector will contain 24 bosons split as X i
L(τ+σ)

and X I
L (τ + σ) with i = 2, ..., 9 and I = 1, ..., 16. The physical dimensions are only 10 and are

given by the degrees of freedom:

X i (τ,σ) =X i
L(τ+σ)+X i

R(τ−σ) (1.8.1)

while the other 16 degrees of freedom should be thought as compactified on a 16-dimensional
torus. How and why this can be made possible? When inspecting the modes expansion for
the bosonic theory compactified on a circle, one can see that the right sector can be frozen by
imposing the radius of the circle to take the critical value of R=

p
α′. In this way, the right sector

will not have a dynamics, while the left sector is left with a non-trivial dynamics. Glueing the left
and right sector’s spectrum, GSO-projecting the right states and employing the level matching
condition M 2

L =M 2
R, we obtain the following massless spectrum [IU12]:

6The spin connection is introduced when considering spinors in a gravitational field. Taking the Dirac equation
on a general curved background spacetime, the partial derivative will no longer be a tensor. One can introduce the
covariant derivative:

∇µψ=
�
∂µ− i

4
ωab
µ σab

�
ψ (1.7.4)

where σab is given by the commutator of gamma matrices, a, b are "flat" spacetime indices, while µ is a "curved"
spacetime index and ωab

µ is the spin connection. Everything is defined with respect to vierbeins (or tetrads), which
are defined as:

gµν = ea
µe b
ν ηab (1.7.5)

where gµν is the spacetime metric and ηab is the Minkowski metric. This means that g is locally flat when written in
the basis ea

µ. The vierbeins, from a geometrical point of view, are nothing but local reference frame of the cotangent
bundle and the spin connection is the connection induced by the Levi-Civita connection on the Spin Bundle.
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Sector Representation of SO(8) 10-dimensional field

NS 1+ 28V + 35V φ,B2,G
R 8S + 56S λ,ψ

NS 8V A(I )

NS 8V A(M )

R 8C λ(I )

R 8C λ(P )

In the upper part of the table we see the dilaton φ, the graviton G, the 2-form field B2, the
gravitinoψ and the dilatino λ. In the bottom part, instead, we have NS and R fields Aand λwhich
corresponds to gauge bosons with respect to a spacetime non-abelian gauge symmetry (with the
corresponding gauginos). These gauge bosons realise the algebra E8 × E8 or SO(32) depending
on which roots of these Lie algebras the momentum vectors I and P corresponds to. This means
that there are two possible type of heterotic strings, the one with gauge group E8 × E8 and the
one with SO(32). This difference can also be grasped when analysing modular invariance of the
theory where two different lattices emerge.

The theory enjoys various symmetries, the first is clearly the local change of coordinates in
spacetime with G the graviton, then there is the gauge transformations of B2, the SO(32) or
E8× E8 gauge symmetry and the local 10-dimensionalN = 1 supersymmetry corresponding to
a single gravitino field.

The low-energy effective action is given by:

Shet =
1

22
10

∫
e−2φ

�
R ?1+ 4 dφ∧ ?dφ− 1

2
H3 ∧H3− α

′

4
tr(F ∧ ?F )

�
(1.8.2)

where tr is the gauge trace of SO(32) or SO(16) subgroup of E8 in the E8× E8 theory. Also, as
for type I theory, we have defined:

H3 = dB2− α
′

4
(ω3−ωgrav) (1.8.3)

whereω3 andωgrav are given by (1.7.3).
After its proposal, heterotic string theory became shortly the physicists’ favourite theory

of strings thanks its wonderful anomaly cancellation which was baptised as "miraculous". In
fact, from one-loop hexagon diagrams (namely for a closed string which closes into itself, with a
worldsheet homeomorphic to a torus, and six leg out of the worldsheet), gravitational, gauge and
mixed anomalies could arise since the theory is chiral. Because no anomaly could be possible, the
contribution of this diagram should cancel against another one with the same topology. Indeed
this is what Green and Schwarz [GS84] found in their work, triggering also what is called the first
superstring revolution. Their work, in fact, contributed to make string theory one of the most
active research field at that time.
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Chapter 2

String Compactification

All superstring theories live in 10 space-time dimensions and have a different number of super-
symmetries. In order to make contact with our world and with the Standard Model of Particle
Physics, the vacuum state of these theories must be of the form:

M =M4×M6 (2.0.1)

Which means that some of these dimensions must be compactified, in the sense that the back-
ground manifoldM over which the superstrings are supposed to be propagating, is assumed to be
decomposable into a product of a 4-dimensional non-compact manifoldM4 and a 6-dimensional
internal compact manifoldM6. Taking the compactification manifoldM6 to be the 6-torus T 6,
for example, it implies that no supersymmetries are broken, and the resulting 4-dimensional the-
ory will haveN = 4 or N = 8 supersymmetries for heterotic/type I and type IIB/IIA string the-
ories respectively. From a phenomenological point of view a compactification which preserves
all supersymmetries does not seem to be that promising for reproducing the current spectrum
of particles. In 1985, Candelas et al. [Can+85] studied for the case of heterotic strings (which
seemed to be the most promising theory of strings at that time due to the anomaly cancellation)
what kind of manifold shouldM6 be in order to preserve only N = 1 supersymmetry. The
result is that suchM6 should be a manifold of SU (3)-holonomy which in turn means that it
should be Ricci-flat and Kähler. This kind of manifolds are known as Calabi-Yau manifolds. In
order to describe in details these spaces, a good understanding of some mathematical structures,
like Kähler manifolds, Hodge theory and Cohomology is needed. In the next section we are
going to present the main features of these mathematical theories.

2.1 Mathematical Preliminaries

2.1.1 Complex Manifolds
Definition 2.1.1 (Almost Complex Structure). Let M be a 2n-dimensional manifold and J :
T M → T M a smooth tensor field of degree

�1
1

�
, where T M is the tangent bundle on M . The pair

(M , J ) is said to be an Almost Complex Manifold if

J 2 =−1
In other words, ∀p ∈M we have that Jp : Tp M → Tp M and ∀vp ∈ Tp M it must be true that:

(Jp ◦ Jp)(vp) =−vp
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String Compactification

This almost-complex structure can be made a complex structure by requiring that J is Inte-
grable. So that we have:

Definition 2.1.2 (Complex Structure). Let (M , J ) be an almost complex manifold. If J is integrable
then it is called a Complex Structure and (M , J ) is said to be a Complex Manifold. The integrability
of the almost complex structure J is defined as:

P− [P+X , P+Y ] = 0

where P± =
1
2 (1∓ i J ) are the projectors onto the holomorphic/anti-holomorphic bundles 1and the

brackets [·, ·] are the Lie brackets between two vector fields X ,Y ∈X(M ).
The integrability condition means that the Lie brackets between two holomorphic vectors

must be again an holomorphic vector. This condition can be restated in terms of the Nijenhuis
Tensor which is required to vanish in order for an almost complex structure to be a complex
structure:

NJ (X ,Y ) = [X ,Y ]+ J [ J X ,Y ]+ J [X , J Y ]− [ J X , J Y ] (2.1.1)

Along with this definition of complex manifold, there is an equivalent classical definition in terms
of transition functions:

Definition 2.1.3 (Complex Manifold). An Hausdorff and connected topological space (M ,τ) -
where M is a set and τ is a topology on it - is a n-dimensional complex manifold if ∀p ∈M exists an
open neighbourhood U of p and a functionφ : U →φ(U )⊆Cn such thatφ is an homeomorphism,
moreover the pair (U ,φ) is called a chart and taken a collection of charts {(Uα,φα)}α∈A (A is an index
set) with {Uα} an open cover, the transition functions between two overlapping charts:

φα ◦φ−1
β

:φβ(Uβ ∩Uα)→φα(Uα ∩Uβ)

must be biholomorphic.

These two definitions are equivalent, in fact it can be proved that the requirement of biholo-
morphicity of transition functions induces on the tangent spaces of the manifold an almost com-
plex structure J which is integrable. Conversely a complex structure allows to define charts with
biholomorphic transition functions. These two definitions emphasize two different point of
views which can be taken when looking at complex manifolds.

1These bundles are obtained after the complexification of the tangent bundle T M ⊗C by tensoring it with the
complex plane C. This space splits into (±i)-eigenspaces of J as:

T M ⊗C= T M 1,0⊕T M 0,1

which are the holomorphic and anti-holomorphic vector bundles defined as:

T M 1,0 = {v ∈ T M ⊗C | J v = i v}

T M 0,1 = {v ∈ T M ⊗C | J v =−i v}
More will be said later.
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2.1.2 Kähler Manifolds
It is known that classical mechanics can be rephrased in a geometrical way by employing Sym-
plectic Manifolds. The natural symplectic structure that the Tangent Bundle of every real differen-
tiable manifold admits, makes it possible to express Lagrangian and Hamiltonian mechanics in a
geometrical way. If X is a real n-dimensional differentiable manifold, then the cotangent bundle
T X ∗ =: M together with the natural symplectic formω (i.e. a non-degenerate and closed 2-form
on M ) defined locally in each chart with Darboux coordinates (x,ξ ) as ω =

∑
i d x i ∧ dξ i form

a real 2n-dimensional symplectic manifold (M ,ω). An Hamiltonian is a function H ∈ C∞(M )
such that the 1-form d H , with d the external derivative, is given by the contraction of the sym-
plectic form with respect to a Vector Field XH :

iXH
ω = d H

where iXH
ω = ω(XH , ·) is the contraction. Now, every Hamiltonian vector field XH can be

expressed in a local chart (q , p) of the tangent bundle T M = T (T X ∗) as:

XH =
∑�

∂ H
∂ pi

∂

∂ q j

− ∂ H
∂ qi

∂

∂ p j

�
in this way, every integral curve (q(t ), p(t ))must satisfy the Hamilton equations:

d qi

d t
=
∂ H
∂ pi

d pi

d t
=−∂ H

∂ pi

(2.1.2)

Moreover, Poisson brackets can be defined for each f , g ∈C∞(M ) as { f , g}=ω(X f ,Xg ).
Symplectic manifolds are essential in describing classical mechanics from a geometrical point

of view and in generalising them. The same applies to Quantum Mechanics where here instead of
considering real manifolds, complex ones are taken into consideration. In this way, if a manifold
possesses a symplectic structure and a complex structure, then it is natural to ask whether these
two are compatible (in some sense) or not. The symplectic form ω on a symplectic manifold M
resembles a lot a metric and in fact if M admits also a complex structure J on it, then it can be
constructed a bilinear form usingω and J in the following way, ∀X ,Y ∈X(M ):

g (X ,Y ) =ω(X , J Y )

More correctly we should say that the 2-form ω induces a
�0

2

�
tensor field g ∈ X0

2(M ) on the
manifold by means of the above mentioned formula. If at each point p in the manifold M the
bilinear form gp : Tp M ×Tp M →R is symmetric and positive definite, we say that the symplectic
form and the almost complex structure are compatible and the triple (M ,ω, J ) is called a Kähler
Manifold. We then have:

Definition 2.1.4 (Kähler Manifold (1)). A Kähler manifold is a triple (M ,ω, J ) where M is a man-
ifold, ω is a symplectic form and J a complex structure where these are compatible in the sense that
the bilinear form:

gp(·, ·) =ωp(·, Jp ·)
is symmetric and positive definite for all p in M .
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If we consider a complex Riemannian manifold (M , g ), then in a local patch with holomor-
phic coordinates (za, z b ), the metric tensor will be given by:

g = gab d za ⊗ d z b + gā b̄ d za ⊗ d z b + gab̄ d za ⊗ d z b + gāb d za ⊗ d z b

When the pure parts vanish: gab = gā b̄ = 0, the metric is said to be an Hermitian Metric. For a
Kähler manifold the metric induced by the symplectic and complex structure is Hermitian and in
fact a Kähler manifold can also be defined as a complex Riemannian manifold with an hermitian
metric g = gab̄ d za ⊗ d z b such that the induced Kähler Form:

ω =
p−1

2

∑
gab̄ d za ∧ d z b (2.1.3)

is closed:
dω = 0 (2.1.4)

This means that indeed a Kähler manifold defined in this way is also a symplectic manifold. An
alternative definition of a Kähler manifold can then be given:

Definition 2.1.5 (Kähler Manifold (2)). Let (M , J ) be a complex manifold with an Hermitian met-
ric g expressed locally as g =

∑
gab̄ d za⊗d z b . Then if the associated 2-formω =

p−1/2
∑

gab̄ d za∧
d z b is closed, then (M , J ,ω) is called a Kähler manifold and the metric g is called a Kähler metric.

Thanks to the closeness of the Kähler formω, the metric satisfies ∂a gb c̄ = ∂b gac̄ and its com-
plex conjugate relation, in this way, in a local patch, it is always possible to express this metric in
terms of a scalar function K(z, z):

gab̄ =
∂ 2K(z, z)
∂ za∂ z b

(2.1.5)

The function K is called Kähler Potential. This function is not unique, in fact if we consider
K ′(z, z) =K(z, z)+ f (z)+ g (z̄), where f , g are two holomorphic and anti-holomorphic function
respectively, then this Kähler potential gives the same metric. This entails the fact that it may be
the case that different potentials are needed in different charts to reproduce the Kähler metric.

2.1.3 De Rham Cohomology

What can we say about the topology of a complex manifold? We know that for a real differen-
tiable manifold M the study of its Cohomology groups gives some clue regarding its topology.
The same study can be made for complex manifolds.

Following Cattani [Cat10], a complex structure J on a manifold M induces a decomposition
of the complexification2 of the tangent bundle into two orthogonal spaces, at each point p ∈M :

(Tp M )C ' T 1,0
p M ⊕T 0,1

p M (2.1.6)

2Taken a real n-dimensional vector space V we can define its complexification as VC :=V ⊗C by v⊗ (a+ i b ) =
av+b (v⊗i) and formally identify v⊗i =: i v in such a way that V ⊕iV :=V ⊗C. If (V , J ) is a complex vector space
with J the complex structure (i.e. a linear map such that J 2 =−1) it can be seen that VC can be decomposed into two
orthogonal components which are nothing but the eigenspaces of J with respect to the eigenvalues ±i . Written the
decomposition as VC =W+⊕W−, there will also be a decomposition of its dual V ∗C ((VC)

∗ = (V ∗)C =: V ∗C) induced
by the dual complex structure J ∗ as V ∗C =W ⊥+ ⊕W ⊥− .
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Also its dual space, namely the cotangent bundle, decomposes into two pieces and (since for a
vector space (VC)

∗ = (V ∗)C these parenthesis can be dropped by writing V ∗C) we obtain:

(Tp M )∗C ' T 1,0
p M ∗⊕T 0,1

p M ∗ (2.1.7)

This decomposition induces an Hodge Structure on the k-th exterior power of the cotangent space
at a given point, namely:

Λk((Tp M )∗C) =
⊕

a+b=k

Λa,b
p M (2.1.8)

with:

Λa,b
p M := T 1,0

p M ∗ ∧ · · · ∧T 1,0
p M ∗︸ ︷︷ ︸

a times

∧
b times︷ ︸︸ ︷

T 0,1
p M ∗ ∧ · · · ∧T 0,1

p M ∗ (2.1.9)

By making the disjoint union of these spaces, as it is customary in defining the tangent and cotan-
gent bundle, the smooth vector bundle ΛkT M ∗C =

⋃
p Λ

k((Tp M )∗C) decomposes into:

ΛkT M ∗C =
⊕

a+b=k

Λa,b M (2.1.10)

If we take a section ω : M → ΛkT M ∗C then in a local chart with holomorphic coordinates
(U ,{z1, ..., zn}) it will be given by:

ω =
∑

I ,J

ωI J d z I ∧ d z J (2.1.11)

where I = (i1, ..., ia) and J = ( j1, ..., jb ) are two multi-indices for some a, b ∈N such that a+b = k
and d z I ∧ d z J = d z i1 ∧ · · · ∧ d z ia ∧ d z j1 ∧ · · · ∧ d z jb are a local frame for the bundle Λa,b M .

We can now define the module of local sections asA k(M ) which, due to (2.1.10), will split
into:

A k(M ) =
⊕

a+b=k

A a,b (M ) (2.1.12)

Taking Λa,0M we note that this is an holomorphic vector bundle of dimension
�n

a

�
and we will

denote the module of holomorphic sections as Ωa(M ). If we define:

A (M ) =
∞⊕

k=0

A k(M ) (2.1.13)

then this is a C∞(M )−Graded Algebra with multiplication given by the wedge product∧ between
different forms. UponA (M ) it acts a unique differential operator d called Exterior derivative,
which takes an element ofA k(M ) and returns an element ofA k+1(M ):

d :A k(M )→A k+1(M ) (2.1.14)

This operator is defined uniquely by 4 properties:

(i) d is C-linear

(ii) ∀ f ∈ C∞(M ,C) ≡A 0(M ) then d f is the usual differential, i.e. ∀vp ∈ Tp M it is true that
(d f )vp = vp( f )
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(iii) d satisfies the Leibniz rule, namely ∀ω ∈ A k(M ) and ∀η ∈ A l (M ) it is true that: d (ω ∧
η) = (dω)∧η+(−1)kω∧ (dη)

(iv) d ◦ d = 0

The second property tells us that if M is a complex manifold, in a local patch (U ,{z1, ..., zn}),
then:

d f =
∑�

∂ f
∂ x i

d x i +
∂ f
∂ y i

d y i
�
=
∑�

∂ f
∂ z i

d z i +
∂ f
∂ z i

d z i
�

(2.1.15)

The last property defines the so-called de Rham Cohomology in the following way: in the ring
A (M ) a k-form ω is said to be exact if there exists a (k − 1)-form η such that dη = ω, while a
k-form µ is called closed if dµ = 0. It is clear that an exact form is also closed by means of the
(i v) property above, while it is not always true that a closed form is also exact. This allows to
define a quotient space called the k-th de Rham Cohomology group:

H k
dR(M ,C) := Closed k-forms on M

Exact k-forms on M
(2.1.16)

Alternatively, considering the induced de Rham Complex by the exterior derivative:

C ,−→A 0(M ) d−→A 1(M ) d−→ ·· · d−→A 2n(M ) (2.1.17)

(with n the complex dimension of M ) then it is possible to re-write the k-th de Rham Cohomol-
ogy group:

H k
dR(M ,C) := ker{d :A k(M )→A k+1(M )}

Im{d :A k−1(M )→A k(M )} (2.1.18)

where ker is the kernel and Im is the image of the underlying linear map.
Now, from (2.1.15), we see that the exterior derivative d is not of a pure bidegree but can be

split into its (1,0) and (0,1) components by noticing that:

d (A a,b (M ))⊂A a+1,b (M )⊕A a,b+1(M ) (2.1.19)

In this way we might write d = ∂ + ∂ and from d ◦ d = 0 we obtain: ∂ 2 = ∂ 2 = 0 and ∂ ◦ ∂ +
∂ ◦ ∂ = 0 so that the Dolbeault Complex can be defined for all p such that 0≤ p ≤ n:

A p,0(M ) ∂−→A p,1(M ) ∂−→ ·· · ∂−→A p,n(M ) (2.1.20)

As we did for the de Rham cohomology we can define the Dolbeault Cohomology:

H p,q

∂
(M ) :=

ker
¦
∂ :A p,q(M )→A p,q+1(M )

©
Im
¦
∂ :A p,q−1(M )→A p,q(M )

© (2.1.21)

and can easily be proved that H p,0

∂
(M ) is isomorphic to the space of Holomorphic p-formsΩp(M ).
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2.1.4 Hodge Theory
Hodge Theory on Compact Real Manifolds

Consider now a real and compact Riemannian manifold (M , g ). The metric g induces a dual
metric on the cotangent bundle T M ∗ viewed as an inner product between 1-forms 〈·, ·〉 :A 1(M )×
A 1(M ) → R. On an Orientable Riemannian manifold (M , g ) of dimension n, there can be
defined a volume form vol ∈A n(M ) as a normalised top form and in local coordinates (U , x) it
can be written as vol =pg d x1 ∧ · · · ∧ d xn with g = det(gi j ) and gi j = g ( ∂∂ x i ,

∂
∂ x j ). With these

in hand we can define:

Definition 2.1.6 (Hodge ?-operator). Let (M , g ) be an Orientable Riemannian manifold of di-
mension n. For each p ∈M , the map ? :

∧k Tp M ∗→∧n−k Tp M ∗ defined by ∀α,β ∈∧k Tp M ∗:

α∧ ?β= 〈α,β〉p volp (2.1.22)

is called the Hodge ?-operator.

Theorem 2.1.1

The ?-operator is an isomorphism of vector spaces and ?2 = (−1)k(n−k)id.

With the ?map we can define an inner product on the space of k-forms:

Definition 2.1.7. Let (M , g ) be an orientable and compact Riemannian manifold of dimension n.
For each α,β ∈A k(M ) we define:

(α,β) :=
∫

M
α∧ ?β=

∫
〈αp ,βp〉p volp (2.1.23)

This bilinear form is positive and symmetric, making it indeed an inner product onA k(M ).
A very useful operator that can be defined now is the formal adjoint of the exterior derivative
with respect to this inner product. We define:

δ :A k+1(M )→A k(M ) (2.1.24)

such that ∀α,β ∈A k(M ):
(dα,β) = (α,δβ) (2.1.25)

By direct inspection and making use of theorem (2.1.1) it can be seen that δ is given by:

δ = (−1)nk+n+1 ? d? (2.1.26)

We can now define the Laplace-Beltrami operator which is an elliptic operator generalising the
Laplace operator4 = ∂ 2

x + ∂
2

y + ∂
2

z in 3D Euclidean space to a general orientable and compact
Riemannian manifold:

4 :A k(M )→A k(M )
α 7→4α := (d ◦δ +δ ◦ d )α

(2.1.27)

The Laplace-Beltrami operator is formally self-adjoint and commutes with the exterior derivative
d and with δ.
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Also 4α = 0 if and only if dα = δα = 0. A k-form α such that 4α = 0 is called Harmonic
and the space of all harmonic forms is defined as:

H k(M ) :=
�
α ∈A k(M ) | 4α= 0

	
(2.1.28)

The Laplace-Beltrami operator allows to proceed from the geometrical to the topological since
it is also a source of topological information thanks to the celebrated Hodge-de Rham theory. In
particular the famous Hodge Decomposition theorem can be used to identify the de Rham coho-
mology group with the group of harmonic functions.

Theorem 2.1.2 (Hodge Decomposition)

Let (M , g ) be an orientable and compact Riemannian manifold, then:

(i) H k(M ) is finite dimensional;

(ii) we have the following orthogonal decomposition:

A k(M ) =4(A k(M ))⊕H k(M )

= dδ(A k(M ))⊕δd (A k(M ))⊕H k(M )

= d (A k−1(M ))⊕δ(A k+1(M ))⊕H k(M )

(2.1.29)

The proof of this theorem can be found in [War10]. As we already said, using this theorem, it
can be proved that each de Rham cohomology class contains a unique harmonic representative,
making the group of harmonic k-forms and the k-th de Rham cohomology actually isomorphic:

Corollary 2.1.1

H k
d R(M ,R)'H k(M ) (2.1.30)

Hodge Theory on Compact Complex Manifolds

Consider now a compact and complex n-dimensional manifold M with a Hermitian metric h.
In this context we are going to consider complex-valued k-formsA k(M ,C) and we can extend
the Hodge ?-operator by linearity to

∧k Tp M ∗C for each p ∈M and the inner product 〈·, ·〉 to this

complexification denoting it as 〈·, ·〉h , obtaining ∀α,β ∈∧k Tp M ∗C:

α∧ ?β= 〈α,β〉h vol (2.1.31)

which gives a positive definite Hermitian inner product on the complex-valued k-formsA k(M ,C):

(α,β)h =
∫

M
α∧ ?β (2.1.32)

The formal adjoint of ∂ :A p,q(M )→A p+1,q(M ) and ∂ :A p,q(M )→A p,q+1(M ) can be defined
as ∂ ∗ := − ? ∂ ? and ∂ ∗ := − ? ∂ ? respectively. These will satisfy (∂ α,β)h = (α,∂ ∗β)h and
(∂ α,β)h = (α,∂ ∗β)h .
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As for real manifolds, we can define the Laplace-Beltrami operators:

4∂ := ∂ ◦ ∂ ∗+ ∂ ∗ ◦ ∂ (2.1.33)

4∂ := ∂ ◦ ∂ ∗+ ∂ ∗ ◦ ∂ (2.1.34)

and the kernel of4∂ will be as before the set of harmonic (p, q)-forms:

H p,q

∂
(M ) :=

�
α ∈A p,q(M ) | 4∂ α= 0

	
(2.1.35)

The Hodge decomposition theorem now reads:

Theorem 2.1.3

Let (M , g , J ) be a compact Kähler manifold, then:

(i) H p,q

∂
(M ) is finite dimensional;

(ii) we have the following orthogonal decomposition:

A p,q(M ) =4∂ (A p,q(M ))⊕H p,q

∂
(M )

= ∂ (A p,q−1(M ))⊕ ∂ ∗(A p−1,q(M ))⊕H p,q

∂
(M )

(2.1.36)

As a corollary, we have an isomorphism between the Dolbeault cohomology group (2.1.21)
and the set of harmonic (p, q)-forms:

Corollary 2.1.2

H p,q

∂
(M )'H p,q

∂
(M ) (2.1.37)

Moreover the k-th cohomology with complex coefficients get decomposed as:

H k
d R(M ,C)' ⊕

p+q=k

H p,q

∂
(M )' ⊕

p+q=k

H p,q(M ) (2.1.38)

If we define the Hodge numbers to be the dimensions of the Dolbeault cohomologies (or analo-
gously the number of harmonic (p, q)-forms):

dim(H p,q

∂
(M )) = h (p,q) = dim(H p,q(M )) (2.1.39)

and the Betti numbers to be the dimensions of the de Rham cohomologies:

dimC(H
k
d R(M ,C)) = bk (2.1.40)

then by (2.1.38) we get:
bk =

∑
p+q=k

h (p,q) (2.1.41)

For a Kähler manifold, the Hodge and Betti numbers satisfy the following relations. Let (M , g , J )
be a n-dimensional compact Kähler manifold, then:
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(i) h (p,q) = h (q , p);

(ii) the betti numbers bk for k odd are even;

(iii) h (p,q) = h (n−p,n−q).

The first is a consequence of the fact that H p,q(M ) = H (p,q)(M ) since 4∂ is a self-adjoint op-
erator, the second is a consequence of the first and (2.1.40) while the third is due to the Hodge
star ? duality (remember that ? :

∧k V →∧n−k V is an isomorphism and this in turn induces an
isomorphism between cohomology groups).

All these cohomologies can be realised in a more general context, namely in Sheaf Cohomol-
ogy, where the fundamental mathematical objects are Sheaves. We shall show that suitable sheaf
cohomologies will be isomorphic to the de Rham and Dolbeault cohomologies. This means
that on one hand we have an object completely defined in terms of the differentiable structure,
while on the other hand we have a term completely defined in terms of the topological structure.
This profound link will be given by Dolbeault theorem and de Rham theorem. A very exhaustive
treatment can be found in the spectacular book of Kodaira [Kod08]. In what follows we are go-
ing to outline the structure of sheaf theory, pointing out the main results, leaving the details to
[Kod08][GQ19].

2.1.5 Sheaves
De Rham and Dolbeault cohomology groups can also be realised as Sheaf Cohomology Groups. In
mathematics, sheaves are very general and abstract objects defined in order to inspect and keep
track of locally defined data. Their use varies from algebraic geometry to differential geometry
and provides the natural context which allows to deal with the problem of how to pass from
local data on a given space to global data on that space. The non-triviality of this passage is
usually measured by a sheaf cohomology group. Sheaves are indeed the natural framework which
allows to generalise cohomology theory and it provides important links between topological and
geometrical properties of complex manifolds.

Presheaves formalise the situation in which one wants to localise or restrict themselves to open
subset of a given space, so that one can restrict, for example, the space of functions to an open set
of that space.

Definition 2.1.8. A PresheafP on a topological space M is an assignment to each open set U ⊂ M
of a group of so called sections P (U ), such that to each open subset V of U it is given a map called
restriction map r U

V : P (U ) → P (V ) such that r U
U = idU and for U ⊂ V ⊂ W we have that

r U
W = r U

V ◦ r V
W .

The latter property can be represented graphically, demanding that the following diagram
commutes:

P (U ) P (V )

P (W )

r U
V

r U
W

r V
W

As an example, consider a topological space M , we can define the presheaf of continuous func-
tions C by considering the group of sections as the group of continuous functions, for U ⊂ M :
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C (U ) := { f : U → R | f is continuous} and the restriction maps r U
V : C (U )→C (V ) will be

the usual restriction of functions3 and will, therefore, satisfy the properties above.

Definition 2.1.9. A SheafF on a topological space M is a Presheaf such that for each U ∈M and an
open covering of U =

⋃
Ui , then given two sections s1, s2 ∈ F (U ) such that ∀i : r U

Ui
(s1) = r U

Ui
(s2)

then s1 = s2. Moreover if ∀i , j : r U
Ui∩Uj

(si ) = r U
Ui∩Uj

(s j ) then there is a unique section s ∈F such that

r U
Ui
(s) = si .

The first property asserts that if two sections agree on each open subset of the open cover,
then these must be equal. The second property, instead, says that if sections agree on the overlap
of their domains, then it is possible to assemble them in a unique section defined on the covered
open set. This last property allows the passage from local data to global data, while the first
says that every section is determined by its restriction, allowing the passage from global to local.
These are clearly the property possessed by Sheaves that we pointed out before. Roughly speak-
ing, sheaves can be seen as some sort of parametrised family of functions.

Remark
The definition given above of a sheaf is given in the context of Category Theory even if we didn’t
mention any category4. Reformulating it in this language, a presheaf is a Contravariant Functor
between the category O(M) whose objects are open sets of M and whose morphisms are inclu-
sions and the general category C which in our case is the category of groups Grp. A presheaf
will then be a map P : O(M) → Grp such that to each object U in O(M) it associates an
object P (U ) in Grp and to each morphism f : U → V in O(M) it associates a morphism
P ( f ) : P (U ) → P (V ) in Grp such that P (idU ) = idP (U ) and P ( f ◦ g ) = P (g ) ◦ P ( f )
(contravariant functors reverse the order of composition). This P ( f ) is the restriction map r U

V
defined before and everything is retrieved in a natural way.

3For f : A→ B and C ⊂ A, the usual restriction is denoted as f |C and considering formally a function as a
univalent and total relation and its graph defined by:

G( f ) := {(x, y) ∈A×B | y = f (x)} (2.1.42)

then the restriction is defined as:
G( f |C ) := {(x, y) ∈G( f ) | x ∈C } (2.1.43)

4Category theory is a branch of mathematics where its fundamental constituents are collection of objects linked
by a collection of morphisms. A category C consists of a class5of objects ob(C) and a class of morphisms „m(C)
between the objects. Each morphism f ∈ „m(C) has a source object, say A, and a target object, say B and it is written
as f : A→ B . The class of all morphisms between A and B is defined as „m(A,B). For every three objects A,B and
C , there exists a composition map ◦ : „m(A,B)×„m(B ,C )→ „m(A,C ) such that it is associative and for every object
X there exists a morphism 1X : X →X called the identity morphism such that for each f : A→X and g : X → B it
is true that 1X ◦ f = f and g ◦ 1X = g .

5In the context of Zermelo-Fraenkel-Choice axiomatic set theory (ZFC), which is the nowadays accepted collection
of axioms properly defining sets, classes are not defined in a formal way. They are, however, brought into play in an
informal manner [Jec06] by defining them as consisting of all the sets satisfying a certain property:

C = {x :φ(x, p1, ..., pn)} (2.1.44)

where φ(x, p1, ..., pn) is a formula.
Classes are, instead, properly defined in the Neumann-Bernays-Gödel (NBG) system. In this system, classes are the

basic objects and when a class is an element of another class, it is called a set. A proper class is, instead, a class that is
not a set [Men15].
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From a maybe more practical point of view, a sheaf can be defined (following Kodaira [Kod08])
as a triple (F ,$, M )whereF is a topological space, M is a differentiable manifold ,$ :F →M
is a local homeomorphism (called projection) such that:

(i) ∀x ∈M ,ϕ−1(x) =:Fx is aK-Module (withK equals to R, C or Z);

(ii) ∀c1, c2 ∈K and∀φ,ψ ∈F , it is true that c1φ+c2ψ and$(φ) =$(ψ) depends continuously
on φ,ψ.

The module Fx is called the Stalk of F over x ∈ M . The stalk will be fundamental in defining
cohomology of sheaves. Later we are going to define it in the context of our first definition of
sheaves and it will require some additional mathematical concepts.

Taking M to be a differentiable manifold, we can then define, following the example treated
before, the sheaf of smooth functions as E . Sections on U ⊂ M are C∞ functions on U and
the group structure is given by the pointwise addition of functions ∀ f , g ∈ F (U ),∀x ∈ U :
( f + g )(x) = f (x) + g (x). Similarly, by substituting the smoothness with real-analyticity we
obtain the sheaf of Analytic functionsA and by requiring M to be a complex manifold of com-
plex dimension n, the sheaf of Holomorphic functions O is obtained by taking as sections the
Holomorphic functions on M .

The evocative name "section" is not a coincidence, if we consider a bundle (fibre bundle, vec-
tor bundle, principal bundle, etc...) E

π−→ M then a map σ : M → E such that π ◦ σ = idM
is called section and the set of sections is defined as Γ (M , E). On a bundle, it is then naturally
defined a sheaf F by setting ∀U ⊂ M : F (U ) := Γ (U , E). If we now let E be the tangent
T M/cotangent T M ∗ bundle of M (provided that M is a differentiable manifold), then the sec-
tions Γ (M ,T M )/Γ (M ,T M ∗) will be the vector fields/1-forms on M . We get naturally a sheaf
of vector fields/1-forms. By taking the exterior product of T M ∗ as usual we obtain the bun-
dle

∧k T M ∗ whose sections are k-forms Γ (M ,
∧k T M ∗) and we get a sheaf denoted by E k if we

impose E k(U ) := Γ (U ,
∧k T M ∗).

Before continuing with sheaf cohomology and as it was hinted in the remark above, we have
to define the Stalk in the context of the definition (2.1.9).

Definition 2.1.10. Let F be a sheaf over a topological space (M ,τ) (with τ its topology) and let
x ∈M . The Stalk ofF over x is5 given by:

Fx := lim−→
U3U
F (U ) (2.1.45)

whereU := {U ∈ τ | x ∈U } (the set of all open neighbourhoods of x) and lim−→ is the direct limit.

Aside - Direct Limit
The direct limit can be defined in the context of category theory, where it takes the most

general form. Here we are going to present its form when applied to algebraic structures, since
if F is a sheaf over M and U ⊂ M , then F (U ) is a group as required by the definition (2.1.8).
Before doing that, we need some preparatory mathematical concepts:
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Definition 2.1.11 (Directed Set). We will say that a pair (I ,≤) is a Directed Set provided that I is
a set and ≤ is a binary relation on I satisfying:

(i) Reflexivity: ∀i ∈ I : i ≤ i ;

(ii) Transitivity: ∀i , j , k ∈ I if i ≤ j and j ≤ k then i ≤ k;

(iii) "Boundness": ∀i , j ∈ I ,∃k ∈ I such that i ≤ k and j ≤ k.

With a directed set we can construct a Direct System in the following way:

Definition 2.1.12 (Direct System). Let (I ,≤) be a directed set, {Ai | i ∈ I } a family of objects
indexed by I and fi j : Ai → Aj a family of homomorphisms. We will say that (Ai , fi j ) is a Direct
System if:

(i) ∀i ∈ I : fi i = idAi
;

(ii) ∀i ≤ j ≤ k : fi k = f j k ◦ fi j .

We are now ready to define the Direct Limit of a direct system:

Definition 2.1.13 (Direct Limit). Let (Ai , fi j ) be a direct system with respect to the directed set
(I ,≤). The Direct Limit of (Ai , fi j ) is given by:

lim−→Ai :=

◦⋃
Ai

∼ (2.1.46)

where
◦∪ is the disjoint union and the equivalence relation ∼ is defined as follows: ∀ai ∈ Ai ,a j ∈ Aj

we have that:

ai ∼ a j ⇐⇒ ∃k ∈ I with i ≤ k and j ≤ such that fi k(ai ) = f j k(a j ) (2.1.47)

Let’s apply this formalism to the definition of the Stalk (2.1.10). The directed set which we
are considering is the pair (U , ⊆̃) whereU is the set of all open neighbourhoods of x ∈ M and
⊆̃ is given by the reversed inclusion, i.e. for two open sets A,B we have that A⊆̃B ⇐⇒ B ⊆ A.
All the properties of a directed set can be proved to be satisfied. Our direct system will then be
the pair of families (F (U ), r U

V ) indexed by the directed set (U , ⊆̃). To see that this is the case,
by definition r U

U are the identities on F (U ) and the composition r U
W = r V

W ◦ r U
V holds also by

definition of restriction maps. In this context we can then define the stalk to be the direct limit:

Fx = lim−→
U3U
F (U ) :=

◦⋃F (U )
∼ (2.1.48)

and the equivalence relation is translated in the fact that taken two elements of the disjoint union

(s , U ), (s ′, U ′) ∈ ◦⋃F (U ) then these are equivalent (s , U ) ∼ (s ′, U ′) provided that there exists
W ∈U with W ⊆U and W ⊆U ′ (which is U ⊆̃W and U ′⊆̃W ) such that the sections coincide
in W : r U

W (s) = r U ′
W (s

′). Requiring W ⊆ U and W ⊆ U ′ is the same as requiring W ⊆ (U ∩U ′).
That being said, the stalk of a sheafF over x ∈M , will be given by equivalence classes of sections
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(indexed sections due to the disjoint union) [(s , U )] where two sections in an equivalence class
are equivalent if they coincide in some open neighbourhood of x ∈M . Given the quotient space,
there is a natural map F (U ) → Fx associating to each section its equivalence class. This is a
generalisation of the concept of germs of functions. If we take the sheaf of continuous function,
the stalk at a point will exactly coincide with the germs of functions passing through that point.

Sheaf Cohomology

Cohomology is a measure of how far from trivial some sequences are. We must introduce exact
sequences of sheaves. In order to do that we need the notion of morphisms between sheaves.

Definition 2.1.14 (Sheaves Morphism). Let E andF be two sheaves over the topological space M .
A Sheaves Morphism is a collection of maps m : E →F between sections mU : E (U )→F (U ) with
mU homomorphism of groups, such that:

r̃ U
V ◦mU = mV ◦ r U

V (2.1.49)

where r U
V : E (U )→E (V ) and r̃ U

V :F (U )→F (V ) are the restriction maps.

This can be restated by requiring the commutativity of the following diagram:

E (U ) F (U )

E (V ) F (V )

mU

r U
V r̃ U

V

mV

Let’s now take E ,F ,G to be sheaves over the same topological manifold M and e , f to be
sheaves morphisms:

E e−→F f−→G (2.1.50)

The sequence above is called exact if e , f induces maps ex , fx (with x ∈ M ) between the Stalks
such that the following sequence is exact6:

Ex
ex−→Fx

fx−→Gx (2.1.52)

As an example consider the following sheaves: Z (constant sheaf of integers), O (sheaf of holo-
morphic functions) and O ∗ which is the sheaf of non-zero holomorphic functions. In order for
O ∗(U ) to be a group, we have to take the group operation to be the point-wise multiplication of
functions ( f � g )(x) = f (x)g (x), in this way the neutral element will be the identity map and

6In the context of algebraic structures (groups, algebras, vector spaces, etc...) a sequence:

G0
f0−→G1

f1−→G2
f2−→G3

f3−→→ ·· · fn−→Gn (2.1.51)

is said to be exact if ∀i : ker( fi+1) = Im( fi ).
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(O ∗,�) will be a well-defined group. Consider the following Short Exact Sequence:7

0→Z i−→O exp−→O ∗→ 0 (2.1.54)

where i is the inclusion map and exp takes f (z) ∈ O (U ) (for some U ) into exp(2πi f (z)). This
sequence is indeed exact since (exp◦i)(n) = exp(2πi n) = 1 and 1 is the identity element in O ∗
(i.e. its "zero" since O ∗ is a multiplicative sheaf).

Remark

The exactness of a sequence:

E e−→F f−→G (2.1.55)

does not imply the exactness of the sequence of global sections:

E (M ) eM−→F (M ) fM−→G (M ) (2.1.56)

However, if the sheaf E is a Soft Sheaf, namely a local section on U can always be extended
to a global section (which means that the restriction maps r M

U : E (M )→E (U ) are surjective),
then the sequence (2.1.56) is exact.

Sheaf cohomology can be defined in the context of category theory and it is the most general
construction that one can provide. Another cohomology that can be constructed in sheaf theory
is Čech Cohomology and since these two cohomologies are actually isomorphic for paracompact
spaces [GQ19], we won’t go into cohomology theory in the context of categories, in fact we will
remain on the more "intuitive" land of chains and cochains in Čech Cohomology.

Čech Cohomology

Given a sheaf F on M and an open covering U = {Uα}α∈A (with A index set) of M , we can
take the collection 4 := (U1, ..., Uq+1) with 4 :=

⋂q+1
i=1 Ui 6= ; and define the set of all (Čech)

q-cochains:
Č q(U ,F ) :=F �4� (2.1.57)

and such a collection4 of open sets is referred to as a q-simplex ofU .
On the set of q -cochains we can define a Coboundary operator:

δq : Č q(U ,F )→ Č q+1(U ,F )
f (4) 7→ δq( f (4)) :=

q+2∑
i=1

(−1)i r4i

4 f (4i )
(2.1.58)

where4i = (U1, ..., Ûi , ...Uq+1) and the "hat" means that the element is missing.

7A short exact sequence is a sequence of the form:

0→A
f−→ B

g−→C → 0 (2.1.53)

such that it is exact. In this kind of sequences, the map f should be injective while the map g surjective. Given these
properties, A can be thought of as "embedded" in B and C be isomorphic to the quotient B/Im( f ).
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Since for all q the composition δq+1 ◦δq vanishes, we can build a complex {Č •(U ,F ),δ}
(where Č •(U ,F ) =⊕q Č q(U ,F )):

· · · δq−1−→ Č q(U ,F ) δq−→ Č q+1(U ,F ) δq+1−→ ·· · (2.1.59)

and therefore a cohomology:

Ȟ q(U ,F ) := ker(δq)

Im(δq−1)
(2.1.60)

Notice that the cohomology is defined with respect to the open cover U and not over all the
topological base space M . In order to get rid of the covering we employ again the direct limit and
the cohomology over the hole space M will be the Čech Cohomology:

Ȟ q(M ,F ) = lim−→U
Ȟ q(U ,F ) (2.1.61)

The direct limit is taken with respect to all open coverings and Ȟ q(M ,F ) is usually referred to
as the q -cohomology group of M with coefficients in the sheaf F . The 0-th Čech cohomology
will just be the set of global sections:

Ȟ 0(M ,F ) =F (M ) =: Γ (M ,F ) (2.1.62)

where the last definition clearly reminds the notation used in defining sections of bundles.
An important fact about short exact sequences of sheaves is that they induce long exact se-

quences in cohomology. Consider the following short exact sequence of sheaves over M :

0−→E e−→F f−→G −→ 0 (2.1.63)

this will induce a short exact sequence in the associated complexes Č •(U ,E ), Č •(U ,F ) and
Č •(U ,G ) [GQ19]:

0−→ Č •(U ,E )−→ Č •(U ,F )−→ Č •(U ,G )−→ 0 (2.1.64)

That is because (2.1.63) by definition is true if for all U ∈ M the following sequence is exact

0 −→ E (U ) eU−→ F (U ) fU−→ G (U ) −→ 0 and considering that the space of Čhech q -cochains
(2.1.57) can also be written as a direct product:

Č q(U ,E ) = ∏
i1<i2<···iq

E (Ui1
∩ · · · ∩Uiq

) (2.1.65)

then the following sequence is exact:

0−→E (Ui1
∩ · · · ∩Uiq

)−→F (Ui1
∩ · · · ∩Uiq

)−→G (Ui1
∩ · · · ∩Uiq

)−→ 0 (2.1.66)

and the direct product preserves this exactness, recovering (2.1.64). When there is a short exact
sequence of complexes, one can construct a long exact sequence in the cohomologies by the fact
that the following exact sequence:
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0 Č •(U ,E ) Č •(U ,F ) Č •(U ,G ) 0

0 Č •(U ,E ) Č •(U ,F ) Č •(U ,G ) 0

e

δE

f

δF δG

e f

induces maps called Connecting Morphisms between Ȟ q(M ,G ) and Ȟ q+1(M ,E ), yielding the fol-
lowing long exact sequence

0−→ Ȟ 0(M ,E )−→ Ȟ 0(M ,F )−→ Ȟ 0(M ,G )−→
−→ Ȟ 1(M ,E )−→ Ȟ 1(M ,F )−→ Ȟ 1(M ,G )−→ ·· ·
...

−→ Ȟ q(M ,E )−→ Ȟ q(M ,F )−→ Ȟ q(M ,G )−→ ·· ·

(2.1.67)

This result is very important in order to make computations in sheaf cohomology. For a soft
sheaf E , its higher cohomology groups vanish Ȟ q(M ,E ) = 0 for q > 0. Taking E p to be the
sheaf of p-forms on a differentiable manifold M , since it is a soft sheaf its higher cohomology
groups vanish Ȟ q(M ,E p) = 0 for q > 0. TakingZ p to be the sheaf of closed p-forms, i to be the
inclusion map, d the exterior derivative (Z 0 =R the constant sheaf of real numbers) and noting
that E 0 =C (sheaf of smooth functions), we can consider the following short exact sequences:

0−→R i−→E 0 d−→Z 1 −→ 0

0−→Z 1 i−→E 1 d−→Z 2 −→ 0
...

0−→Z p i−→E p d−→Z p+1 −→ 0

(2.1.68)

These will induce long exact sequences in cohomologies:

0−→Ȟ 0(M ,Z 0)−→ Ȟ 0(M ,E 0)−→ Ȟ 0(M ,Z 1)−→ Ȟ 1(M ,Z 0)−→ ·· ·
0−→Ȟ 0(M ,Z 1)−→ Ȟ 0(M ,E 1)−→ Ȟ 0(M ,Z 2)−→ Ȟ 1(M ,Z 1)−→ ·· ·

...

0−→Ȟ 0(M ,Z p)−→ Ȟ 0(M ,E p)−→ Ȟ 0(M ,Z p+1)−→ Ȟ 1(M ,Z p)−→ ·· ·

(2.1.69)

However Ȟ i (M ,E j ) = 0 for i , j > 0 and this means that out of every cohomology sequence, we
can take out shorter exact sequences. For the first long exact sequence, we will have:

0−→ Ȟ 0(M ,Z 0)−→ Ȟ 0(M ,E 0)−→ Ȟ 0(M ,Z 1)−→ Ȟ 1(M ,Z 0)−→ 0

0−→ Ȟ q−1(M ,Z 1)−→ Ȟ q(M ,Z 0)−→ 0 for q = 2,3, ...
(2.1.70)

And the last sequence simply tells us that the two groups in the sequence are isomorphic:

Ȟ q−1(M ,Z 1)' Ȟ q(M ,Z 0) (2.1.71)

65



String Compactification

Repeating the process for all the long exact sequences in (2.1.69), we eventually obtain:

Ȟ q−1(M ,Z 1)' Ȟ q(M ,Z 0)

Ȟ q−1(M ,Z 2)' Ȟ q(M ,Z 1)
...

Ȟ q−1(M ,Z p+1)' Ȟ q(M ,Z p)

(2.1.72)

Following the chain of isomorphisms, inductively it can be obtained:

Ȟ q(M ,Z 0)' Ȟ q−1(M ,Z 1)' · · · ' Ȟ 1(M ,Z q−1) (2.1.73)

Also, taking the first part of the penultimate sequence of (2.1.69), namely:

0−→ Ȟ 0(M ,Z p−1)−→ Ȟ 0(M ,E p−1)−→ Ȟ 0(M ,Z p)−→ Ȟ 1(M ,Z p−1)−→ 0 (2.1.74)

it will be true that:

Ȟ 1(M ,Z p−1)' Ȟ 0(M ,Z p)
Im(d )

' Z p(M )
Im(d : E p−1(M )→E p(M ))

=H p
d R(M ) (2.1.75)

where we have indicated with the same symbol d the map E p d−→Z p+1 and its associated map

between cohomologies Ȟ q(M ,E p) d−→ Ȟ q(M ,Z p+1). We see that, by using the results (2.1.75)
and (2.1.73), we get the famous de Rham theorem, which we have already mentioned previously,
linking differentiable data to topological data:
Theorem 2.1.4 (de Rham)

Ȟ q(M ,R)'H q
d R(M ) (2.1.76)

Of course the same construction can be replicated for the sheaf of (p, q)-forms E p,q on a
complex topological space M . E p,q is defined by imposing on every open set U ⊂M its sections
to be the (p, q)-formsA p,q(U ) = E p,q(U ). Taking i to be the inclusion Z p,0 i−→ E p,0 and the

∂ -differential operator E p,q ∂−→E p,q+1, we have the following exact sequences:

0−→Z p,0 i−→E p,0 ∂−→Z p,1 −→ 0

0−→Z p,1 i−→E p,1 ∂−→Z p,2 −→ 0
...

0−→Z p,q i−→E p,q ∂−→Z p,q+1 −→ 0

(2.1.77)

Making the same reasoning as before, the associated long exact sequences, together with the fact
that the sheaf E p,q is soft for each p and q , we get:

Ȟ q(M ,Z p,0)' Ȟ q−1(M ,Z p,1)' · · · ' Ȟ 1(M ,Z p,q−1) (2.1.78)

Because Z p,0 =Ω p (the sheaf of holomorphic p-forms) and analogously to before:

Ȟ 1(M ,Z p,q−1)' Ȟ 0(M ,Z p,q)

Im(∂ )
' Z p,q(M )

Im(∂ : E p,q−1→E p,q)
=H p,q

∂
(M ) (2.1.79)

we can state the Dolbeault theorem:
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Theorem 2.1.5 (Dolbeault)

Ȟ q(M ,Ω p)'H p,q

∂
(M ) (2.1.80)

2.1.6 Poincaré Duality
An important tool in algebraic topology is the Poincaré duality, which relates elements in the co-
homology to elements in the homology. Homology and Cohomology are duals to one another,
constructed the Homology of a given topological space, one can construct its Cohomology by
an appropriate process of dualisation. Poincaré duality will play a crucial role in the study of
Calabi-Yau manifolds since their moduli space is parametrised by elements of their cohomology
and it will be useful to have basis for cohomologies and their dual basis of cycles in homology.

Homology and Cohomology

Homology was firstly developed in order to have a tool which could define and classify "holes"
in a manifold. Homotopy Theory seems to do exactly this task. By studying loops in topological
spaces it is able, through the fundamental groups π1(X ) and higher homotopy groups πi (X ),
to give a good classification of topological spaces. The problem with homotopy theory is that
higher homotopy groups are quite difficult to compute, even for spheres, the calculation ofπi (S

n)
turns out to be a very hard problem. Homology saves the day, since even if its definition may
seems to be more obscure, at the end all the computational methods developed, allow for useful
calculations and insights.

There are various homology theories that can be developed. Examples are: Simplicial Homol-
ogy, Singular Homology, Cellular Homology and others. The most general context in which it can
be defined is clearly category theory where it will take the form of a covariant functor (in con-
trast with cohomology which will be a contravariant functor) from the category of topological
spaces to the category of abelian groups (for singular homology).

In the following we are going to consider Singular Homology, where, roughly speaking, the
n-th singular homology group counts the n-dimensional holes in a given space. In order to con-
struct it, we need some preliminary concepts. If we consider a 2-dimensional polygon, it can be
decomposed into smaller building blocks, in particular into triangles in a process called Triangu-
lation. In EuclideanRn, we can try to generalise the concept of a triangle by defining a k-simplex.
This is the smallest convex set in Rn containing k + 1 points v0, ..., vk :

Definition 2.1.15. Given v0, ..., vk ∈Rn such that v1−v0, ..., vk−v0 are linearly independent, then
the simplex C ⊂Rn defined by them is the convex combination:

s :=
¨

a =
k∑

i=0

λi vi

���� k∑
i=0

λi = 1 and λi ≥ 0 ∀i

«
(2.1.81)

and it is generally indicated by s =: [v0, ..., vk].

A 0-simplex is simply a point, 1-simplex is a segment joining the 2 points, a 2-simplex is a
triangle, a 3-simplex is a tetrahedron and so on.

There is also the Standard Simplex given by vertices which are the unit vectors in the coordi-
nates axis:
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Definition 2.1.16. A standard k-simplex is defined as:

4k :=
¨
(a0, ...,ak) ∈Rk+1

���� k∑
i=0

ai = 1 and ai ≥ 0 ∀i

«
(2.1.82)

A continuous map between a standard k-simplex and a topological space M :

σ :4k→M (2.1.83)

is called Singular k-simplex. Consider a group G and the formal sums of singular k-simplices with
respect to G:

c =
∑
σ

cσσ (2.1.84)

these are called Singular k-chains and the Free Abelian Group generated by taking as a basis the set
of all singular k-simplices:

Ck(M ,G) := spanG{σ | σ is a singualar k-simplex} (2.1.85)

is the group of all singular k-chains. On this space we can construct a boundary map ∂ : Ck(M ,G)→
Ck−1(M ,G)which maps a singular k-chain in its boundary components. The boundary operation
is defined for a singular k-simplex by:

∂kσ =
k+1∑
i=0

(−1)iσi (2.1.86)

where σi is the i -th face of the singular k-simplex σ , namely the map σi : 4k−1 → M where
4k−1 is the standard (k − 1)-simplex given by the removal of the i -th vertex from the starting
k-simplex4k . As an example, consider the 1-simplex s = [v0, v1] (segment joining v0 and v1). Its
boundary will be given by ∂ s = (−1)0[v̂0, v1]+ (−1)1[v0, v̂1] = [v1]− [v0] (the hat signifies the
missing element), which are the two boundary points with an eventual ± sign following from
the orientation of the simplex.

Theorem 2.1.6

∂k−1 ◦ ∂k = 0 (2.1.87)

The proof of the theorem follows very easily from the definition of the boundary map, in
fact if we represent the i -th face of a singular k-simplex by σ |[v0,...,v̂i ,...,vk ]

, then:

∂k−1(∂kσ) =
k∑

i=0

(−1)i∂k−1(σ |[v0,...,v̂i ,...,vk ]
)

=
k∑

i=0

(−1)i
 ∑

j<i

(−1) jσ |[v0,...,v̂ j ,...,v̂i ,...,vk ]
+
∑
j>i

(−1) j−1σ |[v0,...,v̂i ,...,v̂ j ,...,vk ]

!
= 0

(2.1.88)

where the last equality is retrieved by noting that the second summation is the opposite of the
first when i↔ j are exchanged. Thanks to the nilpotency (2.1.6) of the boundary map, the exact
singular chain complex:

· · · ∂−→Ck(M ,G) ∂−→Ck−1(M ,G) ∂−→ ·· · ∂−→C0(M ,G)−→ 0 (2.1.89)
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gives rise to the Singular Homology Groups:

Hk(M ,G) :=
ker(∂ : Ck(M ,G)→Ck−1(M ,G)
Im(∂ : Ck−1(M ,G)→Ck(M ,G))

(2.1.90)

Elements in ker(∂ ) are called Cycles while the elements in Im(∂ ) are Boundaries. The nomencla-
ture is quite clear, since a cycle is a singular chain which do not have boundaries (∂ σ = 0) and a
boundary can be viewed as, indeed, the boundary of another singular chain α= ∂ β.

Following Hatcher [Hat01], consider now for each chain group Ck(M ,G) its dual cochain
group C k(M ,G) :=Hom(Ck(M ,G),G), namely the group of homomorphisms from Ck(M ,G)
to G. Replace the boundary map with its dual coboundary map δ = ∂ ∗ :C k(M ,G)→C k(M ,G)
and notice that the direction of δ is reversed with respect to the direction of ∂ and this is because
the dual map of α : A→ B is α∗ : Hom(B ,G)→ Hom(A,G) and it is defined by α∗(φ) = φ(α).
Since ∂ ◦ ∂ = 0 even its dual map will satisfy δ ◦ δ = 0 and there will be an associated exact
sequence:

· · · δ−→C k(M ,G) δ−→C k+1(M ,G) δ−→ ·· · (2.1.91)

which gives rise to the Cohomology Groups:

H k(M ,G) :=
ker(δ :C k(M ,G)→C k+1(M ,G))
Im(δ :C k−1(M ,G)→C k(M ,G))

(2.1.92)

Similarly to the homology case, the elements of ker(∂ ) are called Cocycles whereas those of Im(δ)
are Coboundaries.

Cup and Cap Products

On the singular cohomology groups H k(M ,G), it can be defined a product giving it a structure
of a graded-commutative Ring and it is called Cup Product. This kind of product can also be
given to de Rham cohomology groups and it will be inherited from the wedge product between
k-forms. Here, the product on cohomology is inherited from a cup product between cochains
defined on a given ring R (instead of a group G):

Definition 2.1.17 (Cup Product). The Cup Product between cochains is the map:

^:C k(M , R)×C l (M , R)→C k+l (M , R)
(φ,ψ) 7→ [σ 7→ (φ^ψ)(σ) :=φ(σ |[v0,...,vk ]

)ψ(σ |[vk+1,...,vk+l ]
)]

(2.1.93)

where σ :4k+l →M is a singular (k+ l )-chain, the restrictions are defined as before and the product
between φ and ψ is clearly the ring-product.

If we recall the action of exterior differentiation on a wedge product of k-forms, then an
analogous property is satisfied by the coboundary mapδ with respect to the cup product, namely
∀φ ∈C k(M , R) and ψ ∈C l (M , R) it is true that:

δ(φ^ψ) = δφ^ψ+(−1)kφ^δψ (2.1.94)

Now, given this property, it is immediate to see that the cup product between cocycles is again a
cocycle, in fact taken φ ∈C k(M , R) : δφ= 0 and ψ ∈C l (M , R) : δψ= 0 we simply have:

δ(φ^ψ) = δφ^ψ+(−1)kφ^δψ= 0^ψ+(−1)kφ^ 0= 0 (2.1.95)

69



String Compactification

Moreover the cup product between a cocycle and a coboundary is a coboundary. The cup product
(2.1.17) then define a product on the singular cohomology groups as:

^: H k(M , R)×H l (M , R)→H k+l (M , R)
([φ], [ψ]) 7→ [φ]^ [ψ] := [φ^ψ]

(2.1.96)

and because of the properties mentioned above, this is indeed well defined. We then have the
graded-commutative ring (H •(M , R),+,^)with H •(M , R) =

⊕
k H k(M , R) and the graded-commutativity

comes from the fact that the cup product is graded-commutative, namely for φ ∈C k(M , R) and
ψ ∈C l (M , R):

φ^ψ= (−1)k l (ψ^φ) (2.1.97)

which is valid for commutative rings R (for a proof see [Hat01]).
Along with the cup product, and in a close connection with it, a pairing between chains and

cochains can be defined. This pairing takes the form of Cap Product:

Definition 2.1.18 (Cap Product). For a topological space M and a ring R, the R-bilinear pairing
for k ≥ l :

_: Ck(M , R)×C l (M , R)→Ck−l (M , R)
(σ ,φ) 7→ σ _φ :=φ(σ |[v0,...,vl ]

)σ |[vl ,...,vk ]
(2.1.98)

is called Cap Product.

Since φ ∈ C l (M , R) := Hom(M , R) the product is well defined, because φ(σ)σ will be an
element of the free abelian group Ck−l (M , R). Also, this will induce a Cap Product between
homology and cohomology:

_: Hk(M , R)×H l (M , R)→Hk−l (M , R)
([σ],[φ]) 7→ [σ]_ [φ] := [σ _φ]

(2.1.99)

Finally we can state the Poincaré duality theorem, which, thanks to the cap product, allows to
identify k-chains with (n− k)-cochains on a suitable manifold. The first instance of the theorem
was due to Poincaré itself who realised that the k-th and (n − k)-th Betti numbers (2.1.40) of
a closed and orientable manifold were actually the same. In modern times Poincaré duality is
formulated in terms of homology and cohomology:

Theorem 2.1.7 (Poincaré Duality)

Let M be a n-dimensional orientable and closed manifold with fundamental class [M ] ∈
Hn(M , R) and R a ring. Then the map:

D : H k(M , R)→Hn−k(M , R)
[φ] 7→D([ψ]) := [M ]_ [φ]

(2.1.100)

is an isomorphism ∀k.

The fundamental class of a n-dimensional orientable and closed manifold is an element of the ho-
mology group Hn(M , R)which, roughly speaking, characterises its orientability. We then have a
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way to pair elements in the cohomology with elements in the homology (pair cycles with cocy-
cles). If M is a compact n-(complex)-dimensional Kähler manifold, we can consider its de Rham
cohomology H k

d R(M ,C) and its homology Hk(M ,C) groups. Taking a basis for the cohomology
[ωi] there will be an associated basis in the homology [Ωi] via Poincaré duality, namely for each
[ωi] ∈H k

d R(M ,C) there will be a (n− k)-cycle [Ωi] ∈Hn−k(M ,C) such that ∀[α] ∈H k
d R(M ,C):∫

Ω j

[α] =
∫

M
α∧ωi (2.1.101)

And this will re-appear in the next section in the study of moduli space of Calabi-Yau manifolds.

2.2 Calabi-Yau Manifolds
The study of complex manifold and in particular Kähler manifolds were thoroughly developed
in the early/mid decades of the last century, but until 1977 there was an unresolved conjecture
stated by Calabi [Cal55] in 1955 which can be presented as follows:

Conjecture 1 (Calabi 1955)

Let M be a compact Kähler manifold with metric tensor given by g and in local coordinates

g = gi j̄ d x i ⊗ d z j , with first Chern class c1(T M ) =
p−1
2π

R̃i j̄ d z i ∧ d z j . Then it is possible

to find a Kähler metric g̃ = g̃i j̄ d z i ⊗ d z j such that R̃i j̄ d z i ∧ d z j is its Ricci tensor and such

that the corresponding Kähler formsω =
p−1

2
gi j̄ d z i ∧ d z j and ω̃ =

p−1
2

g̃i j̄ d z i ∧ d z j are

in the same Cohomology class.

In particular, if the first Chern class vanishes, then this conjecture would imply that the underly-
ing Kähler manifold should be Ricci-flat. The proof of this statement was announced in [Yau77]
and given by Yau [Yau78]. Nowadays a Kähler manifold with vanishing first Chern class is called
a Calabi-Yau manifold, so we can define:

Definition 2.2.1 (Calabi-Yau manifold). Let Y be a compact Kähler manifold. It is said to be a
Calabi-Yau manifold if it has a vanishing first Chern class:

c1(TY ) = 0

For an account of what Chern classes are, and more in general Characteristic classes, we
refer the reader to the appendix A. As we have hinted before, the compactification manifold
of superstring theories should be a Calabi-Yau manifold and it brings within itself a complex
structure inasmuch as it is a Kähler manifold. But at this point the interesting question is how
do, indeed, Calabi-Yau manifolds emerge in string theory and what are the consequences of it.

2.2.1 Emergence of Calabi-Yau Manifolds in String Theory

As we mentioned earlier, Calabi-Yau manifolds arise in the compactification of superstring the-
ories in order to break some supersymmetries and leaving just one or at least two unbroken
supersymmetries. In order to see that a Calabi-Yau manifold (as internal manifold) is needed to
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obtain this reduction of supersymmetries, we first have to make an assumption regarding the
compactification ansatz (2.0.1). We shall, in fact, require the 4-dimensional manifold to be Maxi-
mally Symmetric which means Homogeneous and Isotropic. This requirement restrict the form of
the Riemann tensor onM4 to be [BBS07]:

Rµνρσ =
R
12
(gµρ gνσ − gµσ gνρ)

where R = gµρ g νσRµνρσ is the constant Ricci scalar curvature. The space-timeM4 is then con-
strained to be Minkowski (R = 0), Anti-de Sitter (R < 0) or de Sitter (R > 0). Let’s now restrict
ourselves to Heterotic string theory. Since our task is to obtain a vacuum state of the form (2.0.1)
in whichN = 1 supersymmetry inM4 is preserved, then we must have that the SUSY charges
Qε generates a SUSY transformation with parameter ε in such a way that the variation of the
fermionic fields vanishes:

δεψ= 0 (2.2.1)

The invariance of the bosonic fields in the 10-dimensional action is trivial, since a supersymme-
try transformation acting on them will generate fermions but - in a classical background - these
vanish, i.e. the vacuum expectation value of a fermion must be zero in order to preserve Lorentz-
invariance. The fermionic spectrum of Heterotic strings contains one gravitinoψM , one dilatino
λ and the adjoint fermion χ (in the super Yang-Mills multiplet). By looking at the supersym-
metry transformations of these fields, it is found that a non-trivial covariantly constant spinor η
must exists on the internal manifoldM6 once Hmnl is put equals to zero (for a complete account
of this fact see [Can+85]):

∇mη= 0 (2.2.2)

Now, this condition is very restrictive on the form of the internal manifold which in fact will be
a Ricci-flat and Kähler manifold, but also on the space-time manifold, which is restricted to be
Minkowski. As far as the internal manifold is concerned, the Ricci-flatness is seen by considering
the following (which is a direct computational result considering the covariant derivative in terms
of the spin connection∇m = ∂m + 1/4ωm pqγ

pq ):

[∇m,∇n]η=
1
4

Rmn pqγ
pqη= 0

Contracting with γ n and using the identity γ nγ pq = γ n pq + g n pγ q − g nqγ p we obtain:

Rmn = 0 (2.2.3)

So thatM6 is indeed a Ricci-flat manifold. Our task now is to prove that it also admits a complex
structure, in particular a Kähler structure, by constructing the Kähler form from the covariantly
constant spinor η. This spinor can be decomposed into two parts of opposite chirality η− and
η+ and taking the following bilinears to be normalised: η†

+η+ = η
†
−η− = 1, we can use them to

construct an Almost Complex Structure:

J n
m = iη†

+γ
n

m η+ =−iη†
−γ

n
m η− (2.2.4)

in fact:
J p

m J n
p =−δn

m
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as it is required for J to be an almost complex structure. Moreover it can be seen that J is indeed
a Complex Structure by noting that ∇m J p

n = 0 (from the fact that η is a covariantly constant
spinor) and that the Nijenhuis tensor8 vanishes, making it possible to introduce local complex
coordinates za and za in such a way that we can define the Kähler form:

J = Jab̄ d za ∧ d z b = i gab̄ d za ∧ d z b (2.2.5)

which indeed can be demonstrated to be closed: dJ = 0.
Remark

For a compact Kähler manifold with Kähler form J = i gab d za∧d z b , its volume will be given
by:

V = 1
6

∫
J ∧ J ∧ J (2.2.6)

This can be seen by noticing that for complex coordinates expressed as za = xa + i ya, the
volume form is just:

vol =
p

g d x1 ∧ · · · ∧ d y3 =
1
6

J ∧ J ∧ J (2.2.7)

The requirement of aN = 1 supersymmetry on a maximally symmetric space-time manifold
M4 has led to the fact thatM4 must be Minkowski and a covariantly constant spinor must exists
on the internal compact manifoldM6 which in turn implies that this manifold should be Ricci-
flat and Kähler. The existence of a non-trivial covariantly constant spinor, implies that the spin
connection is a SU (3) gauge field instead of SU (4) (which is isomorphic to O(6) and would be
the general holonomy group of a 6-dimensional manifold). This means thatM6 should be a
manifold of SU (3) holonomy.

Now, the catch of the Calabi’s conjecture stated at the beginning of this section is that in
general it is very hard to compute/find a metric of SU (3) holonomy. Nevertheless thanks to Yau
[Yau78] we now know that given a compact Kähler manifold with vanishing first Chern class
then it is indeed Ricci-flat and of SU (3) holonomy.

Using the spinor η it can be constructed a no-where vanishing holomorphic (3,0)-form whose
components will be the unique spinor bilinear that can be constructed (because of chirality and
symmetry constraints):

Ωab c = η
T
−γab cη− (2.2.8)

and the (3,0)-form will be:
Ω=Ωab c d za ∧ d z b ∧ d z c (2.2.9)

This holomorphic form is closed but not exact. The closeness follows from the fact that the
bilinear with which it is constructed is covariantly constant and the non-exactness can be deduced
from the fact that the combination Ω∧Ω is proportional to the volume form of the Calabi-Yau
which clearly has a non-vanishing integral. In fact, a useful formula is:

Ω∧Ω :=−i ||Ω||2vol (2.2.10)
8As we saw in the previous section, this tensor defines the "obstruction" of an almost complex structure to be a

complex structure. In local coordinates it takes the form:

N p
mn = J q

m ∂ [q J p
n] − J q

n ∂ [q J p
m]
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with:
||Ω||2 = 1/6 g a1 b1 g a2 b2 g a3 b3Ωa1a2a3

Ωb1 b2 b3
= 1/6Ωab cΩ

ab c (2.2.11)

In §2.1.4 we mentioned some properties that Betti and Hodge numbers possess on a given
compact Kähler manifold. Since a Calabi-Yau is Kähler, these will hold even for Hodge and Betti
numbers of Calabi-Yau manifolds. To these, however, we should add more constraints given
by the extra structure that a Calabi-Yau possesses. For simply connected Calabi-Yau 3-folds (3-
complex dimensional)Y the number of independent and non-trivial Hodge numbers drastically
decreases to 2. The additional relations to that of §2.1.4, in fact, are:

(i) b1 = h (1,0)+ h (0,1) = 0 =⇒ h (1,0) = h (0,1) = 0 for simply connected Y ;

(ii) h (p,0) = h (n−p,0) due to Serre Duality and the fact thatY admits a unique holomorphic (3,0)-
form, making the canonical bundle

∧3 TY ∗ trivial [Hub92].

Using all the relations between Hodge numbers, we can conclude that:

(i) h (1,0) = h (0,1) = 0;

(ii) h (2,3) = h (3,2) = 0 (from the above relation and Hodge star duality);

(iii) h (2,0) = h (0,2) = 0 (from the first relation and Serre duality);

(iv) h (1,3) = h (3,1) = 0 (from the above relation and Hodge star duality);

(v) h (1,2) = h (2,1);

(vi) h (1,1) = h (2,2);

(vii) h (3,0) = h (0,3) = 1;

(viii) h (0,0) = 1 (from the above relation and Serre duality);

(ix) h (3,3) = 1 (from the above relation and Hodge star duality).

In a more compact and useful way, these numbers are represented in the following Hodge Dia-
mond:

h (3,3)

h (3,2) h (2,3)

h (3,1) h (2,2) h (1,3)

h (3,0) h (2,1) h (1,2) h (0,3)

h (2,0) h (1,1) h (0,2)

h (1,0) h (0,1)

h (0,0)

−→

1
0 0

0 h (2,2) 0
1 h (2,1) h (1,2) 1

0 h (1,1) 0
0 0

1

(2.2.12)

So we can see that the only non trivial Hodge numbers are h (1,1) = h (2,2) and h (1,2) = h (2,1). Later
on, we are going to show that these numbers give the dimensions of the moduli space, with
h (1,1) giving the number of Kähler moduli parametrising the shape of the Calabi-Yau volume and
h (1,2) giving the number of complex structure moduli parametrising deformations of the complex
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structure. Since the Euler characteristic χ is defined as the alternating sum of betti numbers, we
have that for a Calabi-Yau three-fold:

χ = b0− b1+ b2− b3+ b4− b5+ b6

= 1− 0+ h (1,1)− (2+ 2h (2,1))+ h (1,1)− 0+ 1

= 2
�
h (1,1)− h (2,1)� (2.2.13)

and clearly of the given Calabi-Yau three-fold has h (1,1) > h (2,1), then its Euler characteristic will
be positive, while, vice versa for h (1,1) < h (2,1) the Euler characteristic will be negative.

2.2.2 Emergence of Elliptic Fibrations in Type IIB Compactifications with
7-branes

If we come back to the compactificationM =R1,9−2n×Bn with Bn a compact and n-dimensional
complex manifold and with a (p, q) 7-brane wrapping a holomorphic cycle Σn−1 in the compact
manifold, as we saw in §1.6, due to the backreaction of the 7-brane, the axio-dilaton is not con-
stant, but it is allowed to vary in the directions perpendicular to the 7-brane with a monodromy
given by (1.6.6). This means that the dilaton contributes to the Einstein Field Equations, in such
a way that Bn cannot be Ricci-flat and hence a Calabi-Yau. In order to see that, consider the
trace-reversed Einstein’s equations in 10 spacetime dimensions:

RM N = 8πG10

�
TM N − 1

2
GM N T

�
(2.2.14)

Using the compactification ansatz:

d s 2 = gµνd xµd x ν + gab d xad x b (2.2.15)

(where µ, ν = 0,1, .., 9−2n and a, b = 1, ..., n), the Einstein’s equations for the compact space are
the equations of motion for the metric gab , and are found by varying the type IIB action with
respect to the metric and imposing the vanishing condition:

δSI I B

δ g ab
= 0 ⇐⇒ Rab = Tab − 1

2
gab T (2.2.16)

And the energy-momentum tensor is just:

Tab =−
2k2

10p−g
δSI I B

δ g ab
=

=− 2k2
10p−g

δ

δ g ab

�
1

2k2
10

∫
d 2n x

p−g 4 g cd∇cφ∇dφ

�
=

=− 1p−g

∫
d 2n x

�
δ(
p−g )

δ g ab
4g cd∇cφ∇dφ+

p−g 4
δ(g cd )

δ g ab
∇cφ∇dφ

�
=

=− 1p−g

�
2
p−g gab g cd∇cφ∇dφ+ 4

p−g∇aφ∇bφ
�
=

=−∇aφ∇bφ− 1
2

gab∇cφ∇cφ

(2.2.17)
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In this way, the Einstein’s equations become:

Rab =−∇aφ∇bφ (2.2.18)

proving our claim that the compact space Bn in the presence of 7-branes cannot be a Calabi-Yau
manifold.

Now, the variation of the axio-dilaton τ defines a Holomorphic Line BundleL over Bn. The
construction goes as follows [Wei18; BCM11]. Consider the 1-form:

A=
i
2

d (τ+τ)
τ−τ =

i
2
(∂ φ− ∂ φ) (2.2.19)

which can be seen to transform as a connection, so that we can identify it as the connection of a
complex line bundle L over Bn. As we encircle the 7-brane in its normal direction, we saw that the
axio-dilaton develops a monodromy depending on the type of the 7-brane. This means that we
cannot define type IIB fields globally, but we can define them in different patches in which they
are in a certain SL(2,Z) "frame". The transition functions between these patches can be identified
with exp(i arg(cτ + d )). Also, to every complex line bundle with curvature of type (1,1), one
can associate a holomorphic line bundle L with, then, holomorphic transition functions. The
Einstein equations (2.2.18) implies that the first Chern class of the compact space Bn should equals
that of the holomorphic line bundle:

c1(Bn) = c1(L ) (2.2.20)

in this way one can see that the non-triviality of the line bundleL is directly related to the failure
of Bn to be a Calabi-Yau manifold.

Now, the line bundle L over the compact space Bn together with a choice of sections for
L 4 and L 6 uniquely defines an elliptic fibration over Bn with varying elliptic parameter τ. In
fact, the transition functions’ transformations resemble the behaviour of the parameters in the
Weierstrass Model [Wei18].

Aside

The Weierstrass model is a way to represent an elliptic curveEτ =C/Λ as the vanishing locus
of a homogeneous polynomial PW ∈ P2

(231) (see definition (B.0.1) of the weighted projective
space and the following discussion of weighted homogeneous polynomials):

PW = y2− (x3+ f x z4+ g z6) (2.2.21)

The map from the elliptic curve to the Weierstrass model is given by:

C 3 w 7→
¨|42/3℘(w;τ) : 2℘(w;τ)′ : 1| w /∈Λ
|1 : 1 : 0| w ∈Λ (2.2.22)

where℘ is the Weierstrass’s elliptic function and it is the unique meromorphic function dou-
bly periodic (namely ℘(w;τ) =℘(w +τ;τ)) on C/Λ with double poles at the lattice points:

℘(w;τ) :=
1

w2
+

∑
(m,n)∈Z2 6=(0,0)

�
1

(w +m+ nτ)2
− 1
(m+ nτ)2

�
(2.2.23)

It also satisfies a differential equation of the form:

(℘′)2 = 4℘3− g2℘− g3 (2.2.24)
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where g2 and g3 are functions of the elliptic parameter τ and are given by the Eisenstein’s
series:

g2(τ) = 60
∑

(m,n)∈Z2 6=(0,0)

(m+ nτ)−4

g3(τ) = 140
∑

(m,n)∈Z2 6=(0,0)

(m+ nτ)−6
(2.2.25)

Now, if we define:
f (τ) =−41/3 g2(τ); g (τ) :=−4g3(τ) (2.2.26)

then by a straightforward substitution it can be seen that the differential equation satisfied by
the Weierstrass’s function ℘ becomes:

y2− (x3+ f x z4+ g z6) = 0 (2.2.27)

There is also a correspondence in the other way, namely given a Weierstrass model it is pos-
sible to deduce the elliptic parameter τ from the functions f and g (we leave the details to
[Wei18]). What is important, though, is that under an SL(2,Z) transformation τ 7→ aτ+b

cτ+d ,
the functions f and g of the Weierstrass model are mapped to:

f 7→ (cτ+ d )4 f

g 7→ (cτ+ d )6 g
(2.2.28)

So, what we have found is that specifying the complex structure of an elliptic curve Eτ is
equivalent to specify the complex parameter f and g of the Weierstrass model, parameters
that transforms according to (2.2.28), which are also the transformations of the transition
functions of the bundlesL 4 andL 6.

In order to construct the elliptic fibration associated with L , let’s promote the coordinates |x :
y : z | of the Weierstrass model and the functions f and g to sections of a suitable line bundle over
Bn in such a way that the elliptic curve Eτ varies over Bn to form an elliptic fibration. Given the
transformations of f and g , it is then natural to identify them as:

f ∈ Γ (Bn,L 4); g ∈ Γ (Bn,L 6) (2.2.29)

This means that, once the coordinates x, y and z of the Weierstrass’s equation are taken as sections
of suitable bundles in order to respect the homogeneity property of PW , an elliptic fibration is
obtained:

π :Eτ→ Yn+1→ Bn (2.2.30)

and it is readily find that the first Chern class of Yn+1 vanishes:

c1(Yn+1) = c1(Bn)− c1(L ) = 0 (2.2.31)

making Yn+1 a Calabi-Yau manifold elliptically fibred over the base space Bn. What we have found
is that even though the compact space Bn over which we compactify our type IIB theory is not
Calabi-Yau, its elliptic fibration is.

2.2.3 Some Algebraic Geometry
The problem that we would like to address in this section is the following: when should we
regard two Calabi-Yau manifolds as equivalent? This question is naturally embedded in the do-
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main of mathematics dealing with the problem of Classification. If one has a class of mathematical
objects what is desirable to obtain is a notion of when two of them should be treated as equiva-
lent, i.e. some notion of equivalence relation should be defined. In this regard Moduli Spaces can
be thought of as geometric solutions to geometric classification problems [Ben08]. These kind
of spaces arise in various fields of mathematics such as Algebraic/Differential Geometry and Al-
gebraic/Differential Topology (in topology moduli spaces are in general called classifying spaces).
The idea is to consider all the objects that we want to classify and give them a geometric structure
which will allow to a deeper study of the objects themselves by studying how these are related in
the overall set of objects.

The origin of the study of Moduli Spaces can be traced back to Riemann in trying to classify
Riemann Surfaces. These are complex manifolds of complex dimension one and are also Algebraic
Varieties, which means that they can be represented as the loci of zeros of a collection of homoge-
neous polynomials. Algebraic varieties are connected to the Complex Projective Space CP n since
it is naturally endowed with homogeneous coordinates. A general criterion to determine when
a compact complex manifold is an algebraic variety is given by the Kodaira embedding theorem:

Theorem 2.2.1 (Kodaira)

A compact complex manifold M is an algebraic variety if and only if it has a closed, positive
(1,1)-formω such that the cohomology class [ω] ∈H 2(M ,Q).

This is a useful tool since algebraic varieties can be studied in the context of algebraic geometry
which allows to apply the powerful formalism and theorems of algebraic geometry.

How should we identify two Riemann surfaces? Answering this question will lead to the def-
inition of the Moduli Space of a Riemann surface which will be crucial to understand what really
goes on when one talks about the Moduli Space of a Calabi-Yau. Let’s first give two equivalent
definitions of what a Riemann surface is.

Definition 2.2.2 (Riemann Surface).

(i) A Riemann surface is a one-dimensional complex manifold, which means that it is a 2-dimensional
real manifold M such that its atlasA is defined by charts (Uα,φα) where the homeomorphisms
φα : Uα → D1 are glued together in a biholomorphic9 way (D1 is the unit open disk in C). In
other words, the transition functions of the manifold must be biholomorphic.

(ii) A Riemann surface is a two-dimensional, real and oriented manifold together with a conformal
structure.

The last statement of the first definition is a very strong condition since holomorphic func-
tions are more "rigid" than smooth functions and in fact complex manifolds are closer to algebraic
varieties than differentiable manifolds. In the following we are going to define the conformal
structure and give a heuristic argument explaining why these two definitions are equivalent.

Now that we have properly defined a Riemann surface we shall start to examine when we
should regard two such Riemann surfaces as equivalent. There are various ways in which we can
make this identification. With respect to the topology we could say that two Riemann surfaces
are equivalent if they are homeomorphic. This will be however pretty useless since we would
completely forget about the complex structures of such objects. There are even stronger condi-
tions that one could employ, for example if we regard these surfaces as the loci of some algebraic

9A biholormorphic function is a bijective function whose inverse is also holomorphic.
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equations in a suitable projective space, we could say that these Riemann surfaces are equivalent if
they are equals as subset. Even this identification would be useless in practical applications since
what we are interested in is the intrinsic geometry of Riemann surfaces and not such incidental
features emerging due to the particular way in which we represent them.

As already hinted we should focus on the complex structure of the Riemann surfaces and
define an equivalent relation among them by means of a suitable geometrisation. Our main
reference for the next sections will be [Nas91].

2.2.4 Teichmüller Space
Consider a Riemannian metric on a Riemann surface Σ which locally would look like:

d s 2 =Ad x2+ 2Bd xd y +C d y2

It is always possible to recast this metric in terms of complex coordinates (z, z) using appropriate
functions λ > 0,µ as follows:

d s 2 = λ|d z +µd z |2
It is clear that a Weyl transformation g → e2ω g does not change the complex structure of the
Riemann surface inasmuch as what it accomplish is a volume rescaling. In this regard it is sug-
gested that there should be a one-to-one correspondence between conformal classes and complex
structures (which is the equivalence between the two definitions of a Riemann surface). Let us
rephrase this statement in a more geometrical way. Consider the set of all metrics on a given
Riemann sphere Σ:

M (Σ) := �g ∈X0
2(Σ) | g is a Riemannian metric on Σ

	
whereX0

2(Σ) is the set of all
�0

2

�
-tensor fields onΣ (which are sections of the

�0
2

�
-tensor bundleT 0

2 Σ
and in this way they can also be denoted as Γ (Σ,T 0

2 Σ)). Calling C∞+ (Σ) the set of all smooth and
positive functions on Σ, two metrics g1, g2 are conformally equivalent if ∃ f ∈ C∞+ (Σ) such that
g1 = f g2. The action of such smooth functions can be defined as:

A : C∞+ (Σ)×M (Σ)→M (Σ)
( f ,g ) 7→ [x 7→A( f (x), g (x)) := f (x) ·R g (x)]

where ·R denotes the multiplication on the Field of real numbers R and the conformal structure
will be given by:

C on f (Σ) :=
M (Σ)
C∞+ (Σ)

(2.2.32)

What we do not want to is consider two metrics as distinct if they are related by a diffeomorphism
φ :Σ→Σ. These kind of diffeomorphisms are called Isometries and the infinitesimal generators
of such isometries are named Killing vector fields. Diffeomorphisms act on tensor fields with their
pull-back in the following way:

φ∗ : X0
2(Σ)→X0

2(Σ)
g 7→φ∗ g
[p 7→(φ∗ g )p]
[(vp , wp) 7→ (φ∗ g )p(vp , wp) := gφ(p)(Tpφ · vp ,Tpφ ·wp)]
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Figure 2.1: Representation of three different surfaces with genera p = 0,1,2. The sphere "has no
holes", meaning that its genus is exactly zero. A torus has one hole, meaning that p = 1, while
the third surface is easily seen to be the connected sum of two tori, meaning that its genus will
be equals to 2.

where p is a point in Σ, vp and wp are tangent vectors at the point p, i.e. vp , wp ∈ TpΣ and
Tpφ is the tangent map of φ, i.e. its "differential". We shall focus on orientation preserving
diffeomorphisms, in this regard we will call this Group10 Di f f +(Σ). We are now ready to give
our first "restricted" definition of Teichmüller space.

Definition 2.2.3 (Restricted Teichmüller Space). Given a closed Riemann surfaceΣ of genus p ≥ 2,
its Teichmüller space Tp≥2 is defined as:

Tp≥2 :=
C on f (Σ)
Di f f0(Σ)

where Di f f0(Σ) is the subset of Di f f +(Σ) which is continuously connected to the identity.

The genus p of an orientable surface, roughly speaking, counts the number of handles/holes.
In a more precise way the genus for a connected and closed surface can be defined using the
Classification Theorem of Closed Surfaces, which states that if a surface is connected, closed and
orientable, then it is homeomorphic to either a sphere or a connected sum11 of p ≥ 1 tori; while
a non-orientable, closed and connected surface is homeomorphic to the connected sum of k ≥ 1
real projective spaces. Now, the number p (which for a sphere is p = 0) is called the genus of
the surface, and in figure (2.1) there are shown some surfaces with different genera p. Using this
theorem and the definition of the Euler Characteristic as the alternating sum of Betti numbers:

χ =
∑

i

(−1)i bi

10Since (Di f f (Σ),◦) is a Group in order to prove that Di f f +(Σ)⊂ Di f f (Σ) is a subgroup (and hence a group
itself) it suffices to prove that it contains the identity and that it is closed under the restriction of the ◦-operation. The
first requirement is fulfilled since the identity does not change the orientation. The second is also clearly verified
since the orientation cannot change by a composition of two orientation-preserving functions. These statements
can be made rigorous considering that for a n-dimensional differentiable manifold M an orientation is given by an
equivalence class [ω] of top forms ω ∈ Γ (M ,

∧n T M ∗) where two of them ω1,ω2 are equivalent if there exists a
positive function f ∈C∞+ (M ) such thatω1 = f ω2.

11A connected sum between two manifolds, roughly speaking, is a manifold formed by deleting a ball inside each
manifold and gluing together the resulting boundary spheres.
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it can be proved that for an orientable and closed connected surface, the Euler characteristic can
be recast as:

χ = 2− 2 p (2.2.33)

Coming back to the Teichmüller space we see that the definition is valid only for genera p ≥ 2 and
this is so because for p = 0,1 the quotient space becomes singular due to the fact that Di f f0(Σ)
does not act freely anymore. This fact manifests itself with the presence of fixed points which is
equivalent to say that there exists metrics inM (Σ)which are mapped to a conformally equivalent
one by a non-trivial element of Di f f0(Σ), i.e. there exists φ ∈Di f f0(Σ) such that φ∗[g ] = [g ].

How should we deal with the genera p = 0,1 then? A key insight which will enable us to give
a more general definition of the Teichmüller space valid for all p is the Riemann uniformisation
theorem.
Theorem 2.2.2 (Riemann Uniformisation)

Let M be a simply connected 12Riemann surface of genus p. Then M is conformally equiva-
lent to Σ̃, where Σ̃ is one of the following Riemann surfaces:

Σ̃=


S2 if p = 0;
C if p = 1;
H 2 if p ≥ 2.

(where H 2 is the upper-half C-plane, Im(z)> 0, also called hyperbolic plane).
The conformal equivalence stated in the theorem means that given a simply connected Rie-

mann surface Σwith metric g there is a Σ̃ surface given as in the theorem with metric g̃ , in such
a way that there exists a C∞+ (Σ) function f such that g = f g̃ . Another way to formulate the the-
orem is to say that every compact Riemann surface Σ admits a simply connected universal cover
Σ̃ of the form given above. Since each of these Σ̃ has a unique complex structure determined
by a metric of constant curvature, then the covering projection π : Σ̃ → Σ induces a constant
curvature metric on Σ too. In this way, we can characterise Riemann surfaces in terms of their
constant curvature metrics. If we denote R(g ) the Gaussian curvature of a metric g ∈ M (Σ),
then we can define the space:

Mcons t (Σ) =


{g ∈M (Σ) : R(g ) = 1} if p = 0
{g ∈M (Σ) : R(g ) = 0, vol (Σ) = 1} if p = 1
{g ∈M (Σ) : R(g ) =−1} if p ≥ 2

where in the p = 1 case it must be specified the volume of Σ since it is the Torus T 2 and with
a vanishing Euler characteristic (2.2.33) the Gauss-Bonnet theorem imposes no normalisation re-
striction on its volume [Nas91]. We are now able to give a complete definition for the Teichmüller
space valid for all genera p.

Definition 2.2.4 (Teichmüller Space). Given a closed Riemann surface Σ of genus p ∈N, its Teich-
müller space Tp is defined as:

Tp :=
Mcons t (Σ)
Di f f0(Σ)

12A simply connected manifold is a path-connected manifold such that each closed loop is homotopic to a point,
where a path-connected manifold is a manifold in which every pair of points can be joined by a path.
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2.2.5 Moduli Space
Having defined the Teichmüller space Tp for all genera p ∈N, we can now turn our attention to
the more general case in which we do not restrict ourselves to the connected component of the
identity Di f f0(Σ) but consider the complete group of orientation-preserving diffeomorphisms
Di f f +(Σ). In this way we will take into consideration all the possible complex structures on
the given Riemann surface Σ.

Definition 2.2.5 (Moduli Space). The Moduli SpaceMp of a closed Riemann surface Σ of genus
p ∈N is given by:

Mp =
Mcons t (Σ)
Di f f +(Σ)

If we define the Mapping Class Group ΓΣ as the quotient of the Di f f +(Σ) with respect to
Di f f0(Σ) then it can be readily seen that a relation between the Moduli space and the Teichmüller
space arises:

Mp =
Tp

ΓΣ
(2.2.34)

with

ΓΣ :=
Di f f +(Σ)
Di f f0(Σ)

(2.2.35)

Remark

We can say that the mapping class group ΓΣ is a discrete group which counts the number of
connected components of the orientation-preserving diffeomorphisms Di f f +(Σ). What we
have tacitly assumed when we introduced the connected to the identity component Di f f0(Σ),
is that Di f f +(Σ) admits a topology in the first place (if we want to talk about connectedness).
The construction of the mapping class group is completely general and can be defined for an
arbitrary compact, closed and orientable surface S endowed with a topology given by a met-
ric d on it. If we define the set of all orientation-preserving Homeomorphisms H omeo+(S),
it can be made a topological space by defining the so called compact-open topology induced by
the metric d on S in the following way:

δ : H omeo+(S)×H omeo+(S)→R
( f ,g ) 7→ δ( f , g ) := sup

x∈S
d ( f (x), g (x))

Once defined the topology, τ say, induced by this distance then it is fair to consider the normal
subgroup13of it consisting of the connected component to the identity H omeo0(S) and then
define the mapping class group of the surface S as:

ΓS =
H omeo+(S)
H omeo0(S)

If we replace the H omeo with Di f f in the context of differential topology, then we obtain
the previous (2.2.35).

13A subgroup H of a group (G,◦) is said to be a Normal subgroup if ∀g ∈G and ∀h ∈H it is true that g ◦ h ◦ g−1

lies in H .
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The moduli space is then the complete space of complex structures of a given Riemann surface
Σ. Since the mapping class group ΓΣ does not act freely onMp , the moduli space will have some
fixed points, making it not a manifold but what is called an Orbifold.

The work need to obtain the dimension of the moduli space is quite involved and it can be
found by working out the dimension of its tangent space (for details we re refer the reader to
Nash [Nas91]). The result is the following:

dimC(Mp) =


0 p = 0
1 p = 1
3 p − 3 p ≥ 2

(2.2.36)

String Geometry

An important application of the construction of Moduli Spaces is in the quantisation of the
Polyakov action SP through functional integral. It will involve an integration over the space of
worldsheet metrics with measureD g and an integral over the space of embeddings with measure
DX for a worldsheet of genus p:

Zp =
∫
D gDX e−SP (2.2.37)

This partition function, in mathematical sense, is a trace and in quantum theory it represents
the vacuum-to-vacuum amplitude where an object is emitted from the vacuum and re-absorbed.
The worldsheet will then be a closed surface, namely a Riemann surface Σ. In this way, in the
functional integral we must also sum over all possible genera p:

Z =∑
p

∫
D gDX e−SP =

∞∑
p=0

Zp (2.2.38)

As we said in §1.2.1, the Polyakov action presents various symmetries, and in particular it is
invariant under diffeomorphisms and Weyl transformations. This means that there is an action
over the configuration space C := E mb (Σ,RD) ×M (Σ) where E mb (Σ,RD) is the space of
embeddings from the worldsheet to the spacetime andM (Σ) is the usual space of metrics on the
worldsheet:

A : (Di f f +(Σ)×C∞+ (Σ))×C →C
((φ, f ),(X , g )) 7→ [x 7→ (X (φ(x)), f (x)g (φ(x)))]

(2.2.39)

In the functional integral, the integration over the embeddings can be resolved, since the fields
X µ enters quadratically and it can be used a Gaussian integration to take out a suitable infinite
dimensional determinant. The measure onM (Σ), instead, given the symmetries of the Polyakov
action, should be thought of as:

D g =
DM (Σ)

vol(Di f f +(Σ))vol(C∞+ (Σ))
(2.2.40)

This is because if we do not quotient out the volumes of the orbits of the invariance groups,
we will always have a divergent functional integral since in the integration we are over counting
the effective elements by taking into consideration all their orbits. This measure D g will then
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be defined on a suitable quotient space, which is nothing but the moduli space (2.2.5) defined
previously. On the space of metrics there is a natural metric:

〈·, ·〉me t : TgM (Σ)×TgM (Σ)→R (2.2.41)

defined by:

〈X ,Y 〉me t :=
∫
Σ

〈X I ,Y I 〉g (x)pg d x (2.2.42)

where in a local patch (U , g 1, ..) ofM (Σ) the tangent vectors are expanded as X = X J ∂
∂ g I and

the inner product 〈·, ·〉p on Σ is defined as: 〈X I ,Y I 〉g (x) := g mn(x)g pq(x)X I
m p(x)Y

I
nq(x).

In this way (M (Σ), 〈·, ·〉) can now be regarded as an infinite dimensional Riemannian mani-
fold.

The moduli space (2.2.5) is defined using theMcons t (Σ) space, namely considering the sub-
space ofM (Σ) consisting of constant curvature metrics, which can be regarded as the conformal
space of metrics valid for all genera p. If we restrict the metric 〈·, ·〉me t to the spaceMcons t (Σ) and
denote it by (we are indicating gcons t the metrics inMcons t (Σ) and the meaning of the subscript
is that they are of constant curvature, not that they are themselves constant):

〈·, ·〉cons t : Tgcons t
Mcons t (Σ)×Tgcons t

Mcons t (Σ)→R (2.2.43)

then the pair (Mcons t (Σ), 〈·, ·〉cons t ) will be a Riemannian submanifold of (M (Σ), 〈·, ·〉). Con-
nected to identity diffeomorphisms (Di f f0(Σ)) acts onMcons t (Σ) as Isometries, in fact, given
the definitions of 〈·, ·〉 and 〈·, ·〉cons t , it can be readily verified that ∀α ∈ Di f f0(Σ) and ∀X ,Y ∈
Mcons t (Σ) it is true that 〈α∗X ,α∗Y 〉cons t = 〈X ,Y 〉cons t .

On the Teichmüller space Tp =Mcons t (Σ)/Di f f0(Σ) there will be an induced metric from
〈·, ·〉cons t and it is the Weil-Petersson metric and it’s written as 〈·, ·〉W P . Given the projection π
fromMcons t (Σ) to its quotient spaceTp , the Weil-Petersson metric is defined as follows, ∀U ,V ∈
T[gcons t ]

Tp and X ,Y ∈Mcons t (Σ) such that π∗X =U and π∗Y =V :

〈U ,V , 〉W P = 〈X ,Y 〉cons t (2.2.44)

and because for X ′,Y ′ ∈ Tg ′cons t
Tp , satisfying π∗X ′ =U and π∗Y ′ =V , with g ′cons t = α∗ gcons t for

some α ∈Di f f0(Σ) (which means [gcons t ] = [g
′
cons t ]), we have that X ′ = α∗X and Y ′ = α∗Y and

because diffeomorphisms are isometries, then 〈X ′,Y ′〉cons t = 〈X ,Y 〉cons t which tells us that the
Weil-Petersson metric is well-defined since it is independent of the representative gcons t chosen
in its class [gcons t ].

The tangent space TgM (Σ) can be regarded as the space of small perturbations δ g of the
metric g ∈M (Σ). A combined action of diffeomorphisms Di f f (Σ) and Weyl transformations
C∞(Σ) leaves the Polyakov action invariant and the resultant variation of the metric under such
a transformation is of the form:

δ gmn =∇mεn +∇nεm + 2ρgmn

= 2ρ̃gmn +(Pε)mn
(2.2.45)

where ε is the infinitesimal parameter associated to the action of the Di f f (Σ) group, ρ is the
parameter associated to a Weyl transformation, ρ̃= ρ+1/2∇pεp and P is an operator associating
to each vector a symmetric traceless 2-tensor of the form:

(Pε)mn =∇mεn +∇nεm − (∇pεp)gmn (2.2.46)
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When we try to construct the Teichmüller space, the action of Di f f +(Σ) and C∞+ (Σ) must be
projected out, and as we can see from the expression above, the metric transformations which
cannot be reversed by Di f f (Σ)×C∞(Σ) should be of the form (Im(P ))⊥ (perpendicular with
respect to the metric (2.2.41)). The set of small perturbations, namely the tangent space TgM (Σ)
can then be decomposed into:

TgM (Σ) = {ρ gmn}⊕ Im(P )⊕ (Im(P ))⊥ (2.2.47)

but (Im(P ))⊥ = ker(P †) so that:

TgM (Σ) = {ρ gmn}⊕ Im(P )⊕ker(P †) (2.2.48)

Elements of ker(P †) are indeed moduli deformations as it can be read from the variation of the
curvature with respect to a variation of the metric [DP88]:

δR=−1
2

g mnδ gmn R− 1
2
∇p∇p(g

mnδ gmn)+
1
2
∇m∇n(δ gmn) (2.2.49)

Deformations in ker(P †) does not change the curvature and hence are tangent toMcons t (Σ) and
in particular define the tangent space of the moduli space:

T[g ]Mp = ker(P †) (2.2.50)

Using these facts, the measure on the space of metrics can be decomposed according to:

DM (Σ) =N DρD(Pε)dTp (2.2.51)

where N is a normalising constant depending on the frames used.
For p ≥ 2 the measure D(Pε) can be written as:Æ

det(P †P )Dε (2.2.52)

in this way, the string partition function (2.2.37) can be recast as an integral over the Teichmüller
space and then over the moduli space [Nas91]:

Zp =
1
|ΓΣ|

∫
dµ(Tp)

�
det(4g/2)

〈1,1〉g

�−13Æ
det(P †P )

=
∫

dµ(Mp)
�

det(4g/2)

〈1,1〉g

�−13Æ
det(P †P )

(2.2.53)

where the determinant factor comes from the integration14 of the Polyakov action with respect
to the embeddings X µ, the power −13 comes from the dimension D = 26 in which the bosonic
string lives and |ΓΣ| is the cardinality of the mapping class group (2.2.35).

14The Polyakov action on a Riemann surface worldsheet, can be written using complex coordinates on the world-
sheet as:

SP =−T
2

∫
Σ

d zd z
p

g gαβ ∂αX m∂βXm =−T
2

∫
Σ

〈∂ X ,∂ X 〉g = T
2

∫
Σ

〈X ,4g X 〉g (2.2.54)
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2.2.6 Calabi-Yau Moduli Space

We have seen how the classification of Riemann surfaces is not a trivial task and the concepts of
Teichmüller and Moduli spaces have to be introduced. These spaces allows to study the complex
structure of complex manifolds in a systematic way by analysing the space of conformal met-
rics, in particular by defining a suitable equivalence relation which enables to extrapolate this
"complex behaviour" out of our given complex manifold.

String theory phenomenology requires compactifications of the 10-dimensional spacetime
M into a Calabi-Yau manifold (Y , g ), this vacuum allows for a reduction of supersymmetries
in the 4-dimensional effective supergravity theory on the non-compact Minkowski space R1,3.
However, parameters like the size and shape of the Calabi-Yau manifold appears as massless scalar
fields in the 4-dimensional supergravity action. Their appearance is dictated by the fact that there
is a whole continuous degeneracy of possible backgrounds (Y ′, g ′) which differs from (Y , g ) in
shape and complex structure but which leave the conditionR[g ] =R[g ′] = 0 unchanged. These
fields are called Moduli Fields and in order to avoid long-ranged unobserved forces in the effective
field theory, it should be employed a mechanism to generate a potential and let them acquire a
non-zero mass.

We have said that moduli fields arise as deformations of a Calabi-Yau manifold leaving un-
changed its structure and in fact they can also be interpreted as transformations of background
fields mapping vacuum configurations in our theory to other vacuum configurations.

If we consider a Calabi-Yau manifold Y - i.e. a Kähler manifold with Kähler metric given
on a local patch by

∑
gi j̄ d x i ⊗ d x j (and Kähler form J =

p−1gi j̄ d x i ∧ d x j ) and such that the
Ricci (1,1)-formR[g ] =p−1/2πRi j̄ [g ]d x i∧d x j (which is equals to the first Chern class ofY )
vanishes - and consider a small variation of the metric such that it does not spoil the Ricci-flatness:

R[g ] =R[g +δ g ] = 0 (2.2.57)

then this condition leads to the Lichnerowicz equation for the variation of the metric once the
gauge condition15 ∇mδ gmn = 1/2∇nδ g m

m is imposed on (2.2.57), obtaining:

∇k∇kδ gmn + 2R i j
m n δ gi j = 0 (2.2.58)

Due to the properties of a Calabi-Yau manifold, the equations for the mixed type δ gi j̄ and pure
type δ gi j ,δ gī j̄ decouple. The Lichnerowicz equation with metric variation of the mixed type
is equivalent to say that

p−1δ gi j̄ d x i ∧ d x j is a harmonic form (lies in H 1,1(Y )) while with

with α,β= z, z and4g = ∂ ∂
∗+ ∂ ∗∂ . In the partition function (2.2.37) there will be a term like:∫

E mb (Σ,RD )
DX exp

�
−T

2

∫
〈X ,4g X 〉g

�
(2.2.55)

Now, this term can be integrated to give an infinite dimensional determinant, using, for example, zeta function
regularisation. The result will be:∫

E mb (Σ,RD )
DX exp

�
−T

2

∫
〈X ,4g X 〉g

�
=
�

det(4g/2)

〈1,1〉g

�D/2

(2.2.56)

where 〈1,1〉g is the volume of the worldsheet Σ with respect to the metric g .
15It eliminates coordinate changes which are not of interest.
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the metric variation of the pure type it is equivalent to say that Ω k̄
i j δ gk̄ l̄ d x i ∧ d x j ∧ d x l is a

harmonic form (lies inH 2,1(Y )), where Ω=Ωi j k d x i ∧d x j ∧d xk is the holomorphic (3,0)-form
of the Calabi-Yau (2.2.1). The first case can be seen as deformations of the Kähler structure since
the Kähler form is nothing but J =

p−1gi j̄ d x i ∧d x j . The second case can be regarded instead as
a modification of the complex structure and this can be seen by noticing that due to the fact that
on a Kähler manifold components of the pure type gi j are identically zero, in order to remove
this variation, a non-holomorphic coordinate change has to be performed (since holomorphic
coordinate transformations do not change the index structure). This means that we have to study
separately Kähler structure deformations and Complex structure deformations.

As we have seen previously in §2.2.5, the moduli space is given by the space of metrics of
constant curvature quotientized with the group of diffeomorphisms. On the space of metrics it
can be defined a metric (2.2.41) which we called 〈·, ·〉g , in particular over the constant curvature
metrics we had 〈·, ·〉cons t , i.e. (2.2.43). We saw that this latter metric allows to define a metric in
the Teichmüller space (and hence in the moduli space) called the Weil-Petersson metric (2.2.44).
Moreover, the small metric deformations which we would like to inspect belong to the tangent
space of the Teichmüller/moduli space and a line element in these spaces will then be given by
following Candelas, Green, and Hübsch [CGH89][CGH90] and Candelas and Ossa [CO91]:

ds2 =
1

4V
∫
Y

d 6x
p

g
�
δ gi jδ gk l +δBi jδBk l

�
g i k g j l (2.2.59)

where V is the volume of the Calabi-Yau.
The first to introduce such a metric was DeWitt [DeW67] and analogous formulations can be
recovered using our, previously defined, Weyl-Petersson metric or the Zamolodchikov metric
(in [CHS90] the authors indeed proved that all these metrics are equivalent in this case). The
appearance of the 2-form B is due to the fact that every SUGRA low-energy effective action of
the five different string theories contains a NS-NS 2-form bosonic field B2. This field get split in
the compactification leaving a background 2-form B = Bi j̄ d xa∧d x b on the internal manifoldY
with i , j = 1, ..., h (1,1) which is related to the metric by supersymmetry transformations. In turn
this means that if we want the most general metric on the moduli spaceM we must take also the
variation δB into consideration.
The line element (2.2.59) can be recast in a more suggestive form using the fact that gi j = gī j̄ = 0
for a Calabi-Yau, obtaining:

ds2 =
1

4V
∫
Y

d 6x
p

g
�
δ gi jδ gk̄ l̄ +

�
δ g j k̄δ gi l̄ +δB j k̄δB l̄ i

��
g i k̄ g j l̄ (2.2.60)

What can be noted is that the metric is block diagonal allowing us to factorise the moduli space
into two blocks (as it was hinted before):

M =M cs×M ks

allowing us to study separately the Riemannian manifold (M ks,Gks) of the Kähler structure de-
formations and (M cs,Gcs) of the complex structure deformations. Actually the spaceM ks is not
a moduli space since technically speaking the moduli space is constructed considering conformal
classes of metrics and the only truly moduli space should beM cs. However in the physics litera-
ture the term "moduli space" turns out to take an enlarged meaning, incorporating also the space
of Kähler deformations.
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Kähler Structure Deformations

By considering a Kähler structure deformation gi j̄ +δ gi j̄ the resulting metric should be positive
definite and this can be seen as a set of constraints on the Kähler form J =

p−1gi j̄ d x i ∧ d x j as
follows: ∫

Mr

J ∧ · · · ∧ J︸ ︷︷ ︸
r -times

> 0 (2.2.61)

where Mr is any complex r -dimensional submanifold of the Calabi-Yau Y . These set of con-
straints define the so-called Kähler cone which is the subset of metric transformations leading to
a positive definite metric.
We want now to recast the metric (2.2.60) in terms of Cohomology classes (which are equivalent
to harmonic forms thanks isomorphisms between Dolbeault cohomology and harmonic forms
(2.1.2)) in order show that (M ks,Gks) is a Kähler manifold. The inner product on H 1,1

∂
(Y ) de-

fined by (2.2.60) is then:

Gks(ρ,σ) =
1

2V
∫
Y

d 6x
p

g ρ j k̄σi l̄ g i k̄ g j l̄ ≡ 1
2V

∫
Y
ρ∧ ?σ (2.2.62)

where ρ,σ ∈H 1,1

∂
(Y ) are real (1,1)-forms. If we define the cubic form:

k(ρ,σ ,ζ ) =
∫
ρ∧σ ∧ ζ

as was shown by Strominger [Str85], we can recast the inner product as:

Gks(ρ,σ) =−3
�

k(ρ,σ , J )
k(J , J , J )

− 3
2

k(ρ, J , J )k(σ , J , J )
k2(J , J , J )

�
where we recall that by its definition k(J , J , J ) = 3!V .
Let now {D̂i}i=1,..,h(1,1) be a basis of H 1,1

∂
(Y ) and consider the Complexified Kähler coneJ = J+iB2

expanded in this basis:
J = v i D̂i (2.2.63)

with v i = t i + i b i parametrising the complexified Kähler cone. It is easy to see that the metric
is generated by a Kähler potential of the form:

Gks
i j̄
=

1
2

Gks
�
D̂i , D̂ j

�
=− ∂

∂ v i

∂

∂ v j̄
ln(k(J , J , J )) =−6

∂

∂ v i

∂

∂ v j̄
ln(V ) = ∂

∂ v i

∂

∂ v j̄
Kks (2.2.64)

meaning that the scalars v i span the moduli space of Kähler deformations andM ks is a Kähler
manifold. Moreover, if we define the Intersection numbers as:

ki j k := k
�
D̂i , D̂ j , D̂k

�
=
∫
Y

D̂i ∧ D̂ j ∧ D̂k (2.2.65)

then we can see that the Kähler potential is determined by a holomorphic prepotential F :

Kks =−ln(k(J , J , J )) =−ln(ki j k t i t j t k) =−ln(F (t ))

which makesM ks a Special Kähler manifold. The parameters v i are indeed moduli fields of the
Kähler structure (note that v i :Y →C).
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Complex Structure Deformations

As it has already been said, the Lichnerowicz equation (2.2.58) corresponds to the fact that the
(2,1)-form Ω k̄

i j δ gk̄ l̄ d x i ∧ d x j ∧ d x l is a harmonic form, i.e. it belongs toH 2,1(Y ). We can set
[CGH89; CGH90; CO91] (following Tian [Tia87]):

(χα) j k l̄ :=−1
2
Ω m̄

j k

δ gm̄ l̄

U α
χα =

1
2
(χα) j k l̄ d x j ∧ d xk ∧ d x l

withα= 1, ..., h (2,1) and in this way we have that the complex structure deformations of the metric
will take the following form:

δ gab =
i
||Ω||2 (χ α)ab cΩ

b c
b U α (2.2.66)

where we recall (2.2.11) for ||Ω||2 and {[χα]}α=1,...,h(2,1) is a basis for H 2,1

∂
(Y ), while the U α are local

coordinates spanning the complex structure moduli spaceM cs. {U α}α=1,...,h(2,1) are the Complex
Structure Moduli Fields andM cs is a Kähler manifold as can be seen by the fact that its metric is
given by [CO91; Gri05]:

Gcs
αβ
=−

∫
Y χα ∧χβ∫
Y Ω∧Ω

=
∂ 2K cs

∂ U α∂ Uβ

=
∂ 2

∂ U α∂ Uβ

�
− ln

�
−i
∫
Y
Ω∧Ω

�� (2.2.67)

with K cs the Kähler potential (2.1.5). Recalling the decomposition (2.1.38) coming from the
Hodge theorem (2.1.3), we have that H 3(Y ) = H 3,0(Y )⊕H 2,1(Y )⊕H 1,2(Y )⊕H 0,3(Y ).
Moreover, from §2.2.1, the hodge numbers h (3,0) = h (0,3) (and hence the dimensions of the har-
monic/cohomology groups) are known to be exactly 1, which means that the dimension of
H 3(Y ) is equals to 2h (2,1) + 2. On this space it is possible to define a real symplectic basis
{(αI ,β

J )}I ,J=1,...,h(2,1)+1 and its Poincaré dual basis on the Homology H3(Y ) as {(AI ,BJ )}I ,J=1,...,h(2,1)+1

and these will indeed satisfy (using (2.1.101)):∫
AJ

αI =
∫
Y
αI ∧βJ = δ J

I

∫
BI

βJ =
∫
Y
βJ ∧αI =−δ J

I (2.2.68)

Using this basis, we can construct the Periods of the holomorphic (3,0)-form Ω as follows:

Z I (U α) =
∫

AI

Ω(U α) =
∫
Y
Ω(U α)∧βI (2.2.69)

F I (U α) =
∫

BI

Ω(U α) =
∫
Y
Ω(U α)∧αI (2.2.70)

It was shown by Bryant and Griffiths [BG83] that the complete Hodge structure {H p,q(Y )}
is fully determined by the Z I (U α) (locally), namely the F I can be regarded as functions of Z I .
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Now, the holomorphic (3,0)-form can be expanded in the symplectic basis, and its expansion
coefficients will be exactly the periods defined above:

Ω= Z I (U α)αI − FI (Z
J (U α))βI (2.2.71)

Using this form for Ω, the Kähler potential defined in (2.2.67) can be recast as:

K cs =− ln
�
i
�
Z I FI −Z I F I

��
(2.2.72)

Because the periods F I can be written as the Z I -derivative of a holomorphic prepotential F =
Z I FI , the Kähler potential is completely determined byF in terms of the new coordinates Z I :

K cs =− ln
�

i
�

Z I ∂F
∂ Z I
−Z I ∂F

∂ Z I

��
(2.2.73)

In turn this means thatM cs is a Special Kähler manifold likeM ks.
As we already noted in §2.1.2, the Kähler potential is not uniquely defined, in particular, in

this case if we rescale the holomorphic (3,0)-form with respect to a holomorphic function e−h(U )

as:
Ω→Ωe−h(U ) (2.2.74)

then the Kähler potential will undergo the following Kähler transformation:

K cs→K cs+ h + h (2.2.75)

This sort of symmetry makes one of the periods unphysical, since we can always put Z0 = 1. The
result is that the complex structure deformations can be identified with the remaining h (2,1) peri-
ods by defining affine coordinates uα = Zα/Z0, in terms of which the Kähler potential becomes
[CO91]:

K cs =− ln

�
i

�
2(F −F )− (uα− uα)

�
∂F
∂ uα

+
∂F
∂ uα

���
(2.2.76)

In the 4-dimensional low-energy supergravity effective theory, the parameters U α spanning
the complex structure moduli space and the parameters t i spanning the Kähler moduli space will
become moduli fields when the graviton will be expanded in the Kaluza-Klein reduction process.
These, together with other fields arising in the expansion of the 10-dimensional gauge-potentials,
will give rise toN = 2 multiplets for our type IIB supergravity theory.

2.2.7 Mirror Symmetry

Among the dualities pervading string theory, mirror symmetry is maybe one of the most inter-
esting but also enigmatic duality that relates different Calabi-Yau manifolds. The mathematical
results that have been proved thanks to mirror symmetry were long standing problems in math-
ematics, like the counting of rational curves on a generic quintic [Can+91; MT12]. The work
made by Candelas, Lynker, and Schimmrigk [CLS90] in analysing the Euler characteristics of
different Calabi-Yau manifolds, in particular taking into consideration manifolds arising as van-
ishing polynomials in Weighted Projective Spaces (see appendix B), led to the discovery of an
approximate symmetry under χE → −χE , which can be appreciated in the figure (2.2). More
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Figure 2.2: Plot of the sum of the hodge numbers h (1,1) + h (2,1) versus the Euler Characteristics
χE = 2(h (1,1)− h (2,1)) for different Calabi-Yau manifolds, making manifest the approximate sym-
metry between hodge numbers.

precisely, the mirror map associates with almost any Calabi-Yau three-fold Y another Calabi-
Yau three-fold Ŷ such that:

H p,q

∂
(Y ) =H 3−p,q

∂
(Ŷ ) (2.2.77)

and in particular this relates the hodge numbers in the following way:

h (1,1)(Y ) = h (2,1)(Ŷ ); h (2,1)(Y ) = h (1,1)(Ŷ ) (2.2.78)

namely

(h (1,1), h (2,1))
Mirror Map−−−−−→ (h (2,1), h (1,1)) (2.2.79)

These observations led to the conjecture that type IIA superstring theory compactified on a
Calabi-Yau three-foldY should be the same as type IIB string theory compactified on the mirror
manifold Ŷ . Since moduli spaces are generated by elements of the above cohomologies, mir-
ror symmetry exchanges the complex structure deformations and Kähler structure deformations
moduli spaces. How then can we make use of this symmetry? What has to be noted is that the
Yukawa couplings of the low-energy effective field theory (once the string theory has been com-
pactified on the Calabi-Yau) depends independently on the complex structure deformations and
on the Kähler structure deformations. The former vary with the parameters, while the latter
are topological numbers, and since both Y and its mirror Ŷ corresponds to the same supercon-
formal field theory and the role of the two moduli spaces are exchanged, one can combine the
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calculations to obtain exact results. In their paper, Greene and Plesser [GP90] managed to con-
struct and study the mirror of the quintic (see §3.4) by constructing a quotient of the quintic by
a suitable group and then resolving the singularities to obtain a Calabi-Yau manifold (this can be
appreciated in [Can+91; Can+94]), they also managed to establish that mirror pairs when used
as a basis for Calabi-Yau σ -models give the same string theory.

2.3 Type IIB String Theory on Calabi-Yau
We are going to consider only compactifications of type IIB string theory, this is because our
models will be in this context and in string phenomenology type IIB string theory is the most
used string framework to construct string vacua reproducing the Standard Model and eventually
Beyond Standard Model physics. In §1.4.2 we have seen the low-energy type IIB supergravity
action in 10-spacetime dimensions retrieved by considering the point-particle limit of the super-
string theory (namely taking into consideration only massless modes) and by GSO-projecting
onto a chiral spectrum. The resulting theory was a D = 10 andN = 2 supergravity with mass-
less spectrum divided into 4 sectors: two bosonic (NS-NS and R-R) and two fermionic (NS-R
and R-NS). What we would like to achieve now is a dimensional reduction by compactify 6 di-
mensions into a Calabi-Yau manifold. For type II theories, this kind of compactification, leaves a
D = 4 andN = 2 supergravity theory where the zero modes of the Calabi-Yau have to assemble
into massless multiplets. Now, in order for our theory to reproduce a chiral Standard Model, the
supersymmetries have to be reduced toN = 1, sinceN > 1 cannot reproduce a chiral spectrum.
The way this reduction is done is by making an orientifold projection, in this manner half of the
supersymmetries are projected out leaving a N = 1 supergravity theory in 4 spacetime dimen-
sions. Let’s analyse first the Kaluza-Klein dimensional reduction when compactifying the theory
onto a Calabi-Yau and then we are going to how to orientifold projects the theory.

2.3.1 4-Dimensional N = 2 Type IIB Supergravity
Let’s compactify the type IIB string theory on a Calabi-Yau manifold Y , in this way the 10-
dimensional spacetime will be factorised according to:

M =R1,3×Y (2.3.1)

where we are going to denote the coordinates byM 3 xM = (xµ, (y m, y m)) ∈ R1,3×Y , namely
M = 0, ..., 9, µ= 0,1,2,3 and m = 1,2,3.

The metric onM is supposed to be block-diagonal by making the ansatz (in local coordi-
nates):

d s 2 = ηµνd xµd x ν + gmn d y m d yn (2.3.2)

where ηµν is the Minkowski metric on the Minkowski space R1,3 and gmn is the metric on the
Calabi-Yau, namely a Kähler metric with a Kähler form given by J =

p−1gmnd y m ∧ d yn. The
reduction of the 10-dimensional metric then gives a 4-dimensional graviton gµν , a scalar V0, h (1,1)

Kähler structure moduli t i and h (2,1) complex structure moduli U α. The fields t i were introduced
in the expansion of the Kähler deformations of the metric δ gmn =−

p−1 t i (D̂i )mn =−
p−1 Jmn

(since both
p−1δ gmn d y m∧d yn and J belong to the same cohomology group H 1,1

∂
(Y )'H 1,1(Y )),

while the fields U α were introduced to parametrise deformations δ gmn of the complex structure
which can be expanded in a basis of the cohomology group H 2,1

∂
(Y )'H 2,1(Y ).
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The other bosonic fields in type IIB are also expanded in terms of cohomology classes of the
Calabi-Yau Y according to (the hats on the fields indicate the 10-dimensional ones):

• NS-NS sector:
φ̂=φ(x) B̂ = B(x)+ b i (x)D̂i (2.3.3)

with i = 1, ..., h (1,1).

• R-R sector:
Ĉ0 =C0(x) Ĉ2 =C2(x)+ c i (x)D̂i (2.3.4)

Ĉ4 =Q i
2(x)∧ D̂i +V I (x)∧αI − ṼI (x)∧βI +ρi (x)D̃

i (2.3.5)

where we recall that {D̂i}i=1,...,h(1,1) is a basis for the cohomology group H 1,1

∂
(Y ) (or analogously

a basis of harmonic (1,1)-form due to the isomorphism (2.1.2)), while {D̃ i}i=1,...,h(1,1) is a basis of
H 2,2

∂
(Y ) (which is dual to H 1,1

∂
(Y ) due to the Hodge star isomorphism (recall h (p,q) = h (n−p,n−q))).

Also {(αI ,β
J )}I ,J=0,...,h(2,1) is the symplectic basis of H 3(Y ). The 4-dimensional fields b i (x), C0(x),

c i (x) and ρi (x) are scalars while V I (x) and ṼI (x) are 1-forms and Q i
2(x) are 2-forms. Now as we

saw in §1.4.2, the F̃5 is self-dual and this translates in the fact that half of the degrees of freedom
of Ĉ4 can be eliminated. Conventionally we choose to keep ρi and V I . All these fields can be
reorganized inN = 2 multiplets as follows (only the bosonic components):

• 1 gravity multiplet: (gµν ,V0);

• h (2,1) vector multiplets: (V α, U α);

• h (1,1) hypermultiplets: (t i , b i , c i ,ρi );

• 1 double-tensor multiplet: (B2,C2,φ,C0).

The tree-level effective action can then be written in the standardN = 2 supergravity form
as [Cic10; GL04; Gri05]:

S4D
I I B =−

∫ �
1
2
R ?1− 1

4
Re(Mαβ)F

α ∧ F β− 1
4
Im(Mαβ)F

α ∧ ?F β

+gαβ d U α ∧ ?d Uβ+ hAB d qA∧ ?d qB
� (2.3.6)

The matrix Mαβ is the gauge kinetic matrix and depends on the complex structure moduli U α

and can be found for example in [Gri05]. F α = dV α and gαβ is the metric on the moduli space of
complex deformations which has been introduced in (2.2.67) with a slightly different notation.
Finally we have defined the vector qA as the collection of the scalar fields in the hypermultiplets
and hAB as the metric on the space of these 4(h (1,1)+ 1)moduli fields [Gri05].
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2.3.2 Orientifolding and N = 1 Type IIB Supergravity
In order to break some supersymmetries and get a 4-dimensionalN = 1 supergravity theory an
orientifold projection is employed. This consists in gauging a discrete symmetry of the form:

O = (−1)FLΩpσ
∗ (2.3.7)

where FL is the left-moving fermion number, Ωp is the worldsheet parity operator and σ :Y →
Y is an isometric and holomorphic involution of the Calabi-Yau (with σ∗ its pull-back acting on
k-forms). Fixed pointsΣ of the involution σ will give rise to orientifold planes of topologyR1,3×
Σ. Given our orientifold projection (2.3.7) these planes will only be O3/O7-planes, meaning
that σ leaves invariant a zero- or two-complex dimensional submanifold of the Calabi-Yau Y
(because the involution leaves the Minkowski spaceR1,3 invariant, the orientifold planes must be
spacetime filling). There is another projection which can be employed, namely O ′ = Ωpσ

∗ and
this will carry O5/O9-planes, however we will not get into it since we are going to use the first
orientifold projection.

Since σ is a holomorphic isometry, it leaves unchanged the metric and the complex structure
of the Calabi-Yau and this means that also the Kähler form J is left invariant due to the compati-
bility condition (see §2.1.2) with respect to metric:

σ∗J = J (2.3.8)

Also, the fact that σ is holomorphic, implies that it respects the Hodge decomposition (2.1.3)
which for Calabi-Yau manifolds is explicated by the Hodge diamond (2.2.12). In particular this
means that σ∗H 3,0

∂
(Y ) = H 3,0

∂
(Y ). With our definition of O , the holomorphic (3,0)-form Ω of

the Calabi-Yau (2.2.1) transforms according to:

σ∗Ω=−Ω (2.3.9)

Since σ2 = 1, the other possibility would be σ∗Ω = Ω, which as we said, would bring into play
O5/O9-planes and represents the other possible orientifold projection.

The orientifold planes naturally carry R-R charges since they couple to the R-R forms of the
theory. This means that in order to cancel these charges one has to introduce also Dp-branes and
in this case D3/D7-branes.

Since σ is a holomorphic involution, the Dolbeault cohomology groups H p,q

∂
(Y ) split into

even and odd eigenspaces according to [Gri05; Cic10]:

H p,q

∂
(Y ) = (H p,q

∂
(Y ))+⊕ (H p,q

∂
(Y ))− (2.3.10)

and their dimensions are given by:

dim(H p,q

∂
(Y )+) = h (p,q)

+ dim(H p,q

∂
(Y )−) = h (p,q)

− (2.3.11)

The Hodge numbers are then constrained in the following way:

(i) Because σ preserves the orientation and the metric, the Hodge ?-operator commutes with
σ∗ so that h (1,1)

± = h (2,2)
± ;

(ii) The holomorphicity of σ implies that h (2,1)
± = h (1,2)

± ;
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(iii) Due to (2.3.9) we have h (3,0)
+ = h (0,3)

+ = 0 while h (3,0)
− = h (0,3)

− = 1;

(iv) The volume form vol = iΩ ∧ Ω/||Ω||2 (see (2.2.10)) is invariant under σ∗, thus h (0,0)
+ =

h (3,3)
+ = 1 and h (0,00)

− = h (3,3)
− = 0.

Spectrum of type IIB Orientifolded with O3/O7-planes

Type IIB string theory in 10 spacetime dimensions has a bosonic spectrum which consists of
NS-NS fields: (φ̂, B̂2, Ĝ) and R-R fields (Ĉ0, Ĉ2, Ĉ4). Under (−1)FL the NS-NS states are even
while R-R ones are odd. Conversely, the world-sheet parity operator Ωp maps φ̂, Ĝ and Ĉ2 to

themselves while B̂2, Ĉ0 and Ĉ4 to their opposite. These parity behaviours can be summarised as
follows:

10D Field (−1)FL Ωp (−1)FLΩp

φ̂ + + +
B̂2 + - -
Ĝ + + +
Ĉ0 - - +
Ĉ2 - + -
Ĉ4 - - +

The orientifolded spectrum consists of states which are left invariant under the orientifold
projection O and so it is constructed by throwing away those who are not invariant. From the
above table it is clear that we should keep for the NS-NS and R-R fields only those which obey:

• NS-NS sector:
σ∗φ̂= φ̂ σ∗B̂2 =−B̂2 σ∗Ĝ = Ĝ (2.3.12)

• R-R sector:
σ∗Ĉ0 = Ĉ0 σ∗Ĉ2 =−Ĉ2 σ∗Ĉ4 = Ĉ4 (2.3.13)

The expansions (2.3.3), (2.3.4) and (2.3.5) are then recast in the following form:

• NS-NS sector:
φ̂=φ(x) B̂ = b i−(x)D̂i− (2.3.14)

with i− = 1, ..., h (1,1)
− .

• R-R sector:
Ĉ0 =C0(x) Ĉ2 = c i−(x)D̂i− (2.3.15)

Ĉ4 =Q i+
2 (x)∧ D̂i+

+V I+(x)∧αI+
− ṼI+

(x)∧βI+ +ρi+
(x)D̃ i+ (2.3.16)

where i+ = 1, ..., h (1,1)+ , I+ = 1, ..., h (2,1)
+ .
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Here {D̃ i+}i+=1,...,h(1,1)
+

is a basis of the cohomology H 2,2

∂
(Y )+ dual to {D̂ i+}i+=1,...,h(1,1)

+
and {(αI+

,βI+)}I+=1,...,h(2,1)
+

is a symplectic basis for H 3
d R(Y ,C)+ 'H 2,1

∂
(Y )+⊕H (1,2)

∂
(Y )+ (there is no H 3,0

∂
(Y )+ and H 0,3

∂
(Y )+

because as we said earlier h (3,0)
+ = h (0,3)

+ = 0).
Finally, the Kähler form J , since it left invariant under σ∗, is expanded as:

J = t i+D̂i+
(2.3.17)

while, due to the fact that the holomorphic (3,0)-form takes a negative sign upon acting on σ∗,
the only surviving modes in complex structure deformations (2.2.66) will be:

δ gab =
i
||Ω||2 (χ α−)ab c Ω

b c
b U α− (2.3.18)

These give the following spectrum:

Multiplet Number Fields

Gravity Multiplet 1 gµν
Vector multiplets h (2,1)

+ V I+

Chiral multiplets h (2,1)
− U α−

h (1,1)
− (b i− , c i−)
1 (φ,C0)

Chiral/linear multiplets h (1,1)
+ (t i+ ,ρi+

)

The low-energy effective action for orientifolded type IIB string theory can be obtained from
the N = 2 action (2.3.6) by means of the truncation mentioned above and it can be written in
the standardN = 1 supergravity form by first rearranging the fields in the spectrum and define:

• Axio-dilaton: S = e−φ− iC0 (we have already encountered it when F-theory was discussed,
at that time it took a slightly different form, namely τ =C0+ i eφ);

• 2-form moduli: G i− = c i− − i S b i− ;

• Complex structure moduli: U α− ;

• Kähler moduli: Ti+
= τi+
− 1

2(S+S)
ki+ j−k−G j−(G−G)k− + iρi+

, where τi+
are implicit func-

tions of ti+
and ki j k are the intersection numbers given by (2.2.65).

The orientifold projections which we will employ will be such that h (1,1)
− = 0 meaning that h (1,1) =

h (1,1)
+ so that the fields B2 and C2 will be projected out and the Kähler moduli will simply be given

by:
Ti = τi + i bi (2.3.19)

where we have simply redefined bi := ρi .
If we consider the expansion:

J = t i D̂i (2.3.20)
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then the volume of the Calabi-Yau Y will be given by (in Einstein frame and in units of `s ):

V = 1
6

∫
J ∧ J ∧ J =

1
6

∫
t i D̂i ∧ t j D̂ j ∧ t k D̂k =

1
6

t i t j t k ki j k (2.3.21)

The τi turns out to be the volume of the cycle Di ∈H4(Y ) Poincaré dual to D̂i . This means that:

τi =
1
2

∫
Di

J ∧ J =
1
2

∫
Y

J ∧ J ∧ D̂i =
1
2

t j t k ki j k =
∂ V
∂ t i

(2.3.22)

and its axionic partner bi will be the component of the R-R form C4 along the cycle Di , namely:
bi =

∫
Di

C4.

Tree-Level Effective Action

TheN = 1 supergravity action will be:

S4D
I I B =−

∫ �
R ?1+KI J̄ DΦI ∧ ?DΦ J̄ +

1
2
Re( fab )F

a ∧ ?F b

+
1
2
Im( fab )F

a ∧ F b +V ?1
� (2.3.23)

whereΦI denotes all the scalar fields in the theory, i.e. the axio-dilaton S = e−φ−iC0, the complex
structure moduli U α (with α = 1, ..., h (2,1)

− ) and the Kähler structure moduli T i = τ i + i b i (with
i = 1, ..., h (1,1)):

ΦI = (S, U α,T i )

F a are the field strength of the vector fields in the vector multiplet dV a = F a (with a = 1, ..., h (2,1)
+ ),

whileR is the Ricci (1,1)-form given with respect to the metric g and fab are the gauge-kinetic
functions. The Kähler metric is given by the Hessian of the Kähler potential K (recall (2.1.5)):

KI J̄ = ∂I∂J̄ K(S, U ,T ) (2.3.24)

while the scalar potential V is given by two factors V =VF+VD , the first is called F-term potential
while the second D-term potential and these are expressed in function of the superpotential W
and Kähler potential K in the following form:

VF = eK
�
K I J̄ DI W DJ̄ W − 3|W |2� (2.3.25)

where the covariant derivatives are given by:¨
DI W = ∂I W +W ∂I K
DJ W = ∂J W +W ∂J K

(2.3.26)

while the D-term is:

VD =
1
2
(Re( f ))−1ab Da Db (2.3.27)
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with:

Da =
�
∂I K +

∂I W
W

�
(Ta)I J∂JΦ

At the lowest order in perturbation theory with respect to (α′) and (gs ) expansions, the Kähler
potential takes the following tree-level form (in MP units):

Kt r ee =−2ln(V )− ln(S + S)− ln
�
−i
∫
Ω∧Ω

�
(2.3.28)

where Ω depends implicitly on the complex structure moduli U α, whereas the volume mode
V depends on the real part τi of the Kähler moduli Ti . This Kähler potential gives rise to a
block-diagonal metric, the moduli space has in fact the factorised form:

M =M cs
h(2,1)
−
×M ks

h(1,1)+1 (2.3.29)

In absence of internal fluxes, the superpotential W is identically zero and thus no scalar potential
V is generated, making (S, U α,T i ) completely flat directions in the Moduli space and in order
to provide a sensible framework in which try to make phenomenologically testable models, we
must give them a non-zero potential term allowing to fix their VEVs and ruling out unobserved
long-range forces from our theory. This procedure is called Moduli stabilisation and the process
leading to the stabilisation of all the moduli is quite involved and we are going to explore it in the
next chapter.
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Chapter 3

Moduli Stabilisation in Type IIB

In the previous chapters we have seen how various consistent theory of superstrings can be de-
fined on a 10-dimensional background manifold. In the point-particle limit, namely for energies
lower that the string scale Ms , massive modes on the worldsheets can be discarded and a con-
sistent low-energy effective supergravity theory with a number of supersymmetries depending
on the string theory considered can be recovered. The fact that it seems like we are living in
a 4-dimensional spacetime, suggests that we should find vacuum solutions of these theories in
which the 10-dimensional spacetime is factorised into a non-compact 4-dimensional Minkowski
space and a compact 6-(real)dimensional manifold. In the compactification, Kaluza-Klein reduc-
tion can be used to retrieve the 4-dimensional spectrum. For general compactification spaces,
the number of supersymmetries in the 4-dimensional theory can be as big as N = 8. In fact,
N = 2 supersymmetry in D -dimensions means that there are 2 supercharges Q i

α (i.e. 2 Majorana
spinors), with i = 1,2 and α = 1, ..., 2[D/2]−1 which implement the supersymmetry transforma-
tions. In particular, in D = 10 the spinor index takes the values α= 1, ..., 16 for each supercharge.
When reducing the theory on a 4-dimensional spacetime by means of the Kaluza-Klein reduc-
tion, if no supersymmetries are broken, then all these 32 components will rearrange intoN = 8
supersymmetry in D = 4. This very large number of supersymmetries is not very appealing
for phenomenology. Calabi-Yau compactifications for type II superstring theories leave N = 2
supersymmetries which is more acceptable but still cannot reproduce a chiral spectrum. The
orientifold projection is what is needed to truncate further the spectrum leaving finally N = 1
supersymmetry in 4-dimensions. As we have seen, the compactification on a Calabi-Yau manifold
brings in the spectrum some scalar fields, called Moduli Fields, whose potential is completely flat.
Phenomenologically trustable models should then implement a procedure under which these
fields get fixed at their vacuum expectation values, giving them large enough masses to overcome
their potential coupling to matter particles which would lead to fifth forces not yet observed. In
order to stabilise these moduli it is necessary to generate a superpotential Wtree at the tree-level
and this was firstly proposed by Gukov, Vafa, and Witten [GVW00] in the context of compact-
ifications of M-theory. When the 4-form dA3 acquire a non-zero flux due to the introduction of
membranes, for example, a superpotential of the form:

W ∼
∫

dA3 ∧Ω (3.0.1)

is generated, and in type IIB the field strength dA3 becomes the combined 3-form flux G3 = F3−
i SH3. The superpotential can thus be generated by turning on gauge fluxes and in the next section
we are going to inspect in more details this process. Also, because the superpotential generated in
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this way cannot fix the Kähler moduli due to the No Scale Structure, other mechanisms should be
employed to deal with these moduli and the other sections will be dedicated to these processes.

3.1 Axio-Dilaton and Complex Structure Moduli Stabilisation

In order to fix the axio-dilaton S and the complex structure moduli U α with α = 1, ..., h (2,1)
− we

turn on internal gauge fluxed for the NS-NS 3-form dB2 =H3 and for the R-R 3-form dC2 = F3.
Let’s then study first these generalised fluxes and then inspect how these exactly fix the axio-
dilaton and the complex structure moduli.

3.1.1 Generalised Fluxes

As we have already seen in §1.3 one can generalise the definition of a flux for an arbitrary p-form
field strength Fp . In this case, through a p-cycle γp in the Calabi-Yau manifold Y , we will have
the following flux: ∫

γp

Fp = n (3.1.1)

If we turn on non-zero electric and magnetic fluxes for the R-R 3-form F3 = dC2 and NS-NS 3-
form H3 = dB2 on 3-cycles (γI ,γ

J )which are Poincaré duals1 to the symplectic basis {(αI ,β
J )}I ,J=1,...,h(2,1)+1

of H 3
d R(Y ), we obtain: ∫

γI

F3 = nR
I

∫
γ J

F3 = mR, J∫
γI

H3 = nN S
I

∫
γ J

H3 = mN S, J

These numbers nR
I , nN S

I and mR, J , mN S , J are constrained to be integers from the Dirac quantisa-
tion condition and can be thought of as the coefficients in the expansion of the 3-forms F3 and
H3 in the symplectic basis {(αI ,β

J )}I ,J=1,...,h(2,1)+1:

F3 = mR, IαI + nR
J β

J

H3 = mN S , IαI + nN S
J βJ

Using these expansion, the 3-form flux G3 becomes:

G3 = F3− i SH3 = (m
R, I − i S mN S, I )αI +(n

R
J − i SnN S

J )β
J (3.1.3)

1Recall that by Poincaré duality (from §2.1) we can associate to each element [ω] in the cohomology H k
d R(Y )

an element Ω in the homology Hn−k (Y ) such that ∀[α] ∈H k
d R(Y ):∫

Ω

[α] =
∫
Y
α∧ω (3.1.2)

in particular, if we take a symplectic basis for the cohomology group H 3
d R(Y ) and its dual basis, we will have the

relations (2.2.68).

100



Axio-Dilaton and Complex Structure Moduli Stabilisation

The effect of these non-vanishing background fluxes is to generate a scalar potential of the form:

V (U , S) =−(n−M ·m)I (Im(M ))−1 I J (n−M ·m)J (3.1.4)

where M is the gauge kinetic matrix appearing in (2.3.6). As can be noted, this potential depends
only on the axio-dilaton S and the complex moduli U α. The superpotential generated by it is of
the Gukov-Vafa-Witten form:

Wtree(S, U )∼
∫
Y

G3 ∧Ω (3.1.5)

Now, when the orientifold projection is taken into account, the 3-form flux G3 will be projected
onto:

G3 = (m
R, I− − i S mN S, I−)αI− +(n

R
J− − i SnN S

J− )β
J− (3.1.6)

with I−, J− = 0, ..., h (2,1)
− (there are then 2(h (2,1)

− +1) flux coefficients since H 3
d R(Y )− =H (3,0)

∂
(Y )−⊕

H (2,1)

∂
(Y )−⊕H (1,2)

∂
(Y )−⊕H (0,3)

∂
(Y )−).

The backreaction of these fluxes on the internal geometry causes the metric to warp, so that
locally the metric becomes:

d s 2 = e2A(y) gµνd xµd x ν + e−2A(y) gmnd y m d yn (3.1.7)

where A(y) is the warp factor which is allowed to vary in the compact space Y in order to not
break the Poincaré invariance in R1,3.
Remark

Before the discovery of Dp-branes by Dai, Leigh, and Polchinski [DLP89], there was a no-
go theorem due to Wit, Smit, and Hari Dass [WSH87] which didn’t permit the existence of
fluxes in supergravity theories since they would have led to a warped background metric and
then to inconsistent equations of motion. This can be seen as follows: take the type IIB action
(1.4.13) in the manifestly SL(2,Z)-invariant form and consider a warped metric of the form
(3.1.7). For this scope we come back to the definition of the axio-dilaton as τ = C0+ i e−φ.
Now, the 5-form field F̃5 (defined in §1.4.2) was self-dual, and this self-duality condition has
to be imposed on the equations of motion as a constraint. Bianchi identities and Poincaré
invariance restrict the 3-form flux G3 to have only components along the compact directions
[GKP02] while the self-dual F̃5 should take the form:

F̃5 = (1+ ?)dα∧ d x0 ∧ d x1 ∧ d x2 ∧ d x3 (3.1.8)

where α(y) is a function of the compact coordinates and ? is the Hodge ?-operator. Now, the
Einstein’s equations trace reversed are:

RM N = k2
10(TM N − 1

8
GM N T ) (3.1.9)

with TM N the stress-energy tensor given by the variation of the type IIB action with respect
to the 10D metric GM N . By inspecting the explicit form of the Einstein’s equations one gets
[GKP02]:

4A= e−2A |G3|2
8Im(τ)

+
e−6A∂mα∂

mα

4
(3.1.10)
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with |G3|2 = 1/3!GABC GM NOGAM GBN GC O and4 the Laplace Beltrami operator in the com-
pact space, i.e. using the metric gmn.

Integrating both sides of (3.1.10), since the LHS (left-hand side) vanishes and the RHS
(right-hand side) is the sum of two non-negative contributions, then the only possible solu-
tions are those with A,α constant and vanishing G3.

The interesting consideration which allows to bypass this no-go theorem was made by
Giddings, Kachru, and Polchinski [GKP02] and consists in realising that localised sources
such as D3-branes, wrapped D7-branes and eventually O3-planes, generate a contribution
to the equations of motion (3.1.10) which can balance non-zero G3 and non-constant warp
factors. The above mentioned localised sources are in fact of negative tension and their con-
tribution to the RHS of (3.1.10) will be of the form:

k2
10e−2A

8
(T m

m −T µ
µ )

For a Dp-brane︷︸︸︷
=

k2
10e−2A

8
(7− p)Tpδ(Σ) (3.1.11)

where δ(Σ) is the delta function on the cycle Σ which is wrapped by the Dp-brane. Then,
for p ≤ 7, negative tension sources give the negative required contribution. The consistency
condition can be translated in the Tadpole-Cancellation Condition: the Bianchi identity (equiv-
alent to the equations of motion for self-dual fields) for F̃5 in presence of localised sources is
modified according to:

d F̃5 =H3 ∧ F3+ 2k2
10T3ρ3 (3.1.12)

where T3 is the tension of a D3-brane and ρ3 is the D3 charge density form from the localised
sources. Integrating the above Bianchi identity, one gets to the tadpole-cancellation condition
for type IIB strings:

1
2k2

10T3

∫
Y

H3 ∧ F3+Q3 = 0 (3.1.13)

where Q3 is the total charge associated with ρ3. A more useful form exploits the lifting to
F-theory of type IIB. In this context the condition is given by:

ND3+
1

2k2
10T3

∫
Y

H3 ∧ F3 =
χ (Y )

24
(3.1.14)

In the F-theory interpretation, χ (Y ) is the Euler characteristic of the fibred Calabi-Yau 4-
fold Y and ND3 are the number of (D3−D3) branes. In type IIB language, χ (Y ) counts the
D3 charge coming from O3-planes and D7-branes, while the term ND3 counts the net charge
from transverse branes and fluxes.

When turning on NS-NS and R-R fluxes, the metric becomes warped and the 3-form flux G3 can
be seen to become imaginary self-dual:

?G3 = iG3 (3.1.15)

Also, the localised sources needed to cancel the tadpole are precisely D3/D7-branes and/or O3-
planes.
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3.1.2 Stabilisation of S and U α

With this set-up, consider again the form of the F-term potential VF in (2.3.23):

VF = eK
�
K I J DI W DJ W − 3|W |2� (3.1.16)

Expanding this expression considering that I indexes the moduli fields, namely the axio-dilaton
S, the Kähler structure moduli T i (with i = 1, ..., h (1,1) since we are considering orientifolds with
h (1,1)
− = 0 so that h (1,1)

+ = h (1,1)) and the complex structure moduli U α (with α = 1, ..., h2,1
− ), and

using also the factorisation of the moduli space (2.3.29) making the Kähler metric block-diagonal,
we obtain:

VF = eK
�
KT i T j

DT i W DT j W +K SS DSW DSW +K UαUα
DUαW DUαW − 3|W |2� (3.1.17)

Now, taking into consideration the Gukov-Vafa-Witten superpotential generated through non-
zero fluxes:

Wtree(S, U α)∼
∫

G3 ∧Ω (3.1.18)

we can see that:
DT i Wtree = ∂T i Wtree+Wtree∂T i K =Wtree∂T i K (3.1.19)

By plugging this back into the F-term potential we get:

VF = eK
�
K SS DSW DSW +K UαUα

DUαW DUαW +(KT i T j
∂T i K ∂T j K − 3)|W |2� (3.1.20)

At this point what can be noted is that at the classical level the Kähler potential Ktree given by
(2.3.28) enjoys the No-Scale Structure for the Kähler moduli:

Proposition 3.1.1 (No-Scale)

The tree-level Kähler potential Ktree satisfies the No-Scale identity:

3
�
∂ 2Ktree

∂ T i T j

�
=
∂ Ktree

∂ T i

∂ Ktree

∂ T j
(3.1.21)

In order to prove that, we will use the Euler’s theorem for homogeneous functions and the fact
that the volume mode V of the Calabi-Yau is a homogeneous function of degree 3/2 in the τi .

Theorem 3.1.1 (Euler’s theorem)

Let f : Rn → R be a homogeneous function of degree n, namely ∀λ ∈ R, f (λ~x) = λn f (~x).
Then:

~x · ~∇ f (~x) = n f (~x) (3.1.22)

Proof 1. Consider the characterising property of homogeneous functions and derive with respect to the
parameter λ both sides, obtaining (using chain rule):

~x ·∇~x ′ f (~x ′) = nλn−1 f (~x) (3.1.23)

Now, by taking the particular case in which λ= 1, we get the desired result. �
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Lemma 3.1.1

The volume mode V of the Calabi-Yau is a homogeneous function of degree 3/2 with respect
to the 4-cycle volumes τi .

Proof 2. Recalling the formulae (2.3.21) and (2.3.22) furnishing the volume of the Calabi-Yau and the
volumes of its 4-cycles:

V = 1
6

t i t j t j ki j k ; τi =
∂ V
∂ t i

=
1
2

ki j k t j t k (3.1.24)

we can see that:
V = 1

3
t iτi (3.1.25)

and by defining Ai j = t k ki j k , we have the following relations:

t i Ai j t j = 6V ; Ai j t j = t j t j ki j k = 2τi ⇐⇒ 1
2

t j =Aj iτi (3.1.26)

where Ai j is the inverse of Ai j .
Now, since the Euler’s theorem (3.1.1) is actually an "if and only if" (we have only stated and proved

it as an implication =⇒ ), it will suffices to prove that there exists a number n ∈R such that τi
∂ V
∂ τi
= nV

in order to prove that V is a homogeneous function of degree n. Consider then:

∂ V
∂ τi

=
∂ V
∂ t j

∂ t j

∂ τi
= τ j A

j i ⇐⇒ τi
∂ V
∂ τi

= τi A
j iτ j =

1
2

t jτ j =
3
2
V (3.1.27)

�
We can now finally prove the no-scale property of Ktree:

Proof 3 (3.1.1). Recall that τi = 1/2(Ti +T i ) and V depends only on τi (not on the axionic part of Ti ),
in this way:

Ki j =
∂

∂ T i

∂

∂ T j
(Ktree) =

∂

∂ T i

∂

∂ T j
(−2 ln(V ))

=
1
4
∂

∂ τ i

∂

∂ τ j
(−2 lnV )

=−1
2
∂

∂ τ i

�
1
V
∂ V
∂ τ j

�
=

1
2V 2

∂ V
∂ τ i

∂ V
∂ τ j
− 1

2V
∂ 2V
∂ τ i∂ τ j

(3.1.28)

Contract with τ iτ j to obtain:

τ i Ki jτ
j =

1
2V 2

�
τ i ∂ V
∂ τ i

��
τ j ∂ V
∂ τ j

�
−τ iτ j 1

2V
∂ 2V
∂ τ i∂ τ j

=
1

2V 2

3
2
V 3

2
V −τ iτ j 1

2V
∂ 2V
∂ τ i∂ τ j

=
9
8
−τ iτ j 1

2V
∂ 2V
∂ τ i∂ τ j

(3.1.29)

Consider now:

τ i ∂ V
∂ τ i

=
3
2
V

∂

∂ τ j−→ ∂ τ i

∂ τ j

∂ V
∂ τ i

+τ i ∂ 2V
∂ τ j∂ τ i

=
3
2
∂ V
∂ τ j
⇐⇒ ∂ V

∂ τ j
+τ i ∂ 2V

∂ τ j∂ τ i
=

3
2
∂ V
∂ τ j

(3.1.30)

104



Axio-Dilaton and Complex Structure Moduli Stabilisation

and contract the last term with τ j so that we get to an expression for the second derivate:

τ iτ j ∂ 2V
∂ τ j∂ τ i

=
3
2
τ j ∂ V
∂ τ j
−τ j ∂ V

∂ τ j
=

3
2
· 3

2
V − 3

2
V = 3

4
V (3.1.31)

Plugging the above expression into (3.1.29) we get:

τ i Ki jτ
j =

9
8
− 3

8
=

3
4

(3.1.32)

If we compute now:

τ i ∂ Ktree

∂ T i
=

1
2
τ i ∂ Ktree

∂ τ i
=− 2
V τ

i ∂ V
∂ τ i

=−3 (3.1.33)

then we can see that:

τ iτ j
�

3Ki j −
∂ Ktree

∂ T i

∂ Ktree

∂ T j

�
= 3τ i Ki jτ

j − τ
i

2
∂ Ktree

∂ τ i

τ j

2
∂ Ktree

∂ τ j
=

9
4
− 9

4
= 0 (3.1.34)

Since this must be true for all τ i and τ j , then:

3Ki j −
∂ Ktree

∂ T i

∂ Ktree

∂ T j
= 0 (3.1.35)

which is exactly the no-scale property. �
Thanks to this cancellation at tree level, the F-term potential is reduced to:

VF = eK
�
K SS DSW DSW +K UαUα

DUαW DUαW
�

(3.1.36)

Since it is positive definite, we can locate the minima for S and U α by imposing and solving:¨
DSW |〈S〉,〈Uα〉 = 0
DUαW |〈S〉,〈Uα〉 = 0 ∀α ∈ {1, ..., h (2,1)

− }
(3.1.37)

Once their Vacuum Expectation Values have been found, these moduli can be integrated out at
tree level by fixing them at their VEVs. This stabilisation, even if at tree level, can be trusted even
when quantum corrections are taken into account since these will be only subleading corrections
to their VEVs. In this way, we get:

W0 :=
�∫
Y

G3 ∧Ω
�

(3.1.38)

and:

Ktree =−2 ln(V )− ln
�

2
gs

�
+Kcs (3.1.39)

where: 
gs :=

�
2

S + S

�
= e 〈φ〉

Kcs :=− ln
�
−i
∫
Y
Ω∧Ω

� (3.1.40)
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The resulting potential V is completely flat in the Kähler moduli directions, making these
moduli still non-stabilised due to the no-scale property of the Käahler potential. These solutions
are however non-supersymmetric, in fact, the F -terms FT i := DT i W do not vanish in general.
Also the no-scale structure can be - and in fact is - broken by both string loop corrections and
sigma model corrections ((α′)-corrections). These corrections are what is needed to fix the other
moduli in the theory together with non-perturbative corrections to the superpotential. In the
next section we are going to inspect these mechanisms which will allow us to, at the end, fix all
the moduli fields in play.

3.2 Kähler Structure Moduli Stabilisation

The tree-level Kähler potential Ktree and the tree-level superpotential Wtree do not allow to fix de-
formations of the Kähler structure, namely the shape deformations of the Calabi-Yau upon which
we compactify our type IIB string theory. Our vacuum is still degenerate in those directions (in
the T i -directions on the moduli space of Kähler deformationsMks) and in order to fix them and
uplift these directions we will make use of non-perturbative corrections of the superpotential (by
wrapping D7-branes which undergo gaugino condensation or by employing Euclidean D3-brane
instantons) and perturbative corrections in (α′) and (gs ) to the Kähler potential. These processes,
however, are not painless and consistency checks must be made in order to not run into prob-
lems. Before presenting how the aforementioned mechanisms are implemented we are going to
list the issues that could arise in this process, mainly following [CMV12]:

(i) Tension between Kähler moduli stabilisation via non-perturbative effects and chirality:

Problem:
Non-perturbative effects for the superpotential can be generated by gaugino conden-
sation on D7-branes wrapping a blow-up mode or by Euclidean D3-brane instantons.
Now, chiral intersections between instanton and visible sector divisors induces a pre-
factor for the non-perturbative superpotential. Since this will depend on the vacuum
expectation values of chiral matter, in order to not break any visible sector gauge sym-
metry, these VEVs have to vanish, killing the instanton contribution to the superpo-
tential (see [BMP08]).

Solution:
The D7-branes supporting the standard model should not be wrapped around the same
divisor wrapped by the stack of branes giving the non-perturbative effects.

(ii) Tension between Kähler moduli stabilisation via non-perturbative effects and the cancella-
tion of Freed-Witten anomalies:

Problem:
The Freed-Witten anomaly is a global anomaly of the worldsheet path integral first
pointed out by Freed and Witten [FW99]. ConsiderM to be the 10-dimensional space-
time and Q ⊂M be an oriented subset given by a D-brane, so that strings can end on
Q. Take X : Σ→M as the embedding of the string worldsheet onto the spacetime
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which maps its boundary to the D-brane, namely X (∂ Σ) ⊂ Q. The worldsheet mea-
sure will contain a term of the form (with NS-NS field B2 = 0):

Pfaff(D) · exp
�

i
∮
∂ Σ

A
�

(3.2.1)

where D is the Dirac operator on the world-sheet, (Pfaff(D))2 = det(D) is the Pfaffian
of D and A is the gauge field on the D-brane (remember that in order to have spinors
defined in the space-time manifoldM , the first and second Stiefel-Whitney classes have
to vanish w1(M ) = w2(M ) = 0, i.e. M must admit a Spin-structure). The Pfaffian,
however, is not well-defined inasmuch as it possesses a sign ambiguity. This ambiguity
is compensated if exp

�
i
∮
∂ Σ

A
�

also possesses the same "sign behaviour". This fact leads
to the conclusion that spinors charged under A are defined as sections of the tensor
bundle S(Q)⊗ L where S(Q) is the Spinor bundle of Q and L is the Line bundle on
which A is a connection and this defines a S pi nc -structure of Q. The conclusion is
that in order for a D-brane to give rise to a well-defined string theory, it must possess
a S pi nc -structure which is captured by the vanishing of its third Stiefel-Whitney class
w3(Q) = 0. Moreover it is seen that in order to not have this anomaly, non-Spin D-
branes must support a U (1) gauge field with half-integral flux. Sadly these fluxes create
problems in the stabilisation procedures which rely on more than one non-perturbative
correction to the superpotential. Turning on Freed-Witten fluxes makes the instanton
configuration (generating the non-perturbative effect) no more orientifold-invariant.
This can be dealt with by adjusting the B2-field in order to compensate these fluxes
in such a way that the combination F = F2 − B2 is still invariant (F2 is the field on
the D-brane). Since B2 can be fixed only once, there cannot be more than one non-
perturbative instantons contributions since these would be, indeed, not orientifold-
invariant.

Solution:
The moduli stabilisation technique called "LARGE Volume Scenario" (LVS), which
we are going to inspect later on, naturally solve the problem since it relies on just one
non-perturbative effect which allows to fix the small blow-up mode (small Kähler mode
which contributes negatively to the total volume mode).

(iii) D-term problem:

Problem:
In type IIB string theory, GUT or MSSM-like visible sectors are built through stacks of
spacetime filling D7-branes wrapping holomorphic 4-cycles Di in the compact internal
space. These divisors (cycles which are of complex codimension one, i.e. 4-cycles for
a Calabi-Yau manifold) are chosen to be rigid in order to avoid unwanted matter in
the adjoint representation. Chiral matter is obtained at the intersection with a second
stack of D7-branes via turning on an internal gauge fluxFi = f̃ k

i D̂k (where D̂i are the
Poincaré duals to the 4-cycles Di ). Gauge fluxes generate a Fayet-Iliopoulos (FI) term
ξi which will depend on Kähler moduli as:

ξi =
1

4πV
∫
Y

D̂i ∧ J ∧Fi =
t j f̃ k

i

4πV
∫
Y

D̂i ∧ D̂ j ∧ D̂k =
1

4πV qi j t
j (3.2.2)
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where V is the volume of the Calabi-Yau Y and we have defined the U (1) charges
qi j = ki j k f̃ k

i (the i is not summed here) of the j -th Kähler modulus T j induced by the
flux on the i -th divisor Di . If matter fields ϕ j charged under the U (1), with charges ci j ,
are introduced, then there will be a non-zero D-term potential of the form:

VD =
g 2

i

2

 ∑
j

ci j |ϕ j |2− ξi

!2

(3.2.3)

This contribution to the scalar potential V dominates over the F-term potential VF
and could destabilise the process of stabilisation of the volume mode τvis of the 4-cycle
wrapped by the brane supporting the visible sector. If there are no visible sector singlets
ϕ j which can balance and partially cancelling the Fayet-Iliopuolos term, the supersym-
metric locus VD is realised by imposing the vanishing of ξi = 0. This, however, will
result in the shrinking of some rigid 4-cycles to zero size and this singular regime is
poorly understood in terms of α′ and quantum corrections.

Solution:
If the visible sector is wrapped on a non-diagonal del Pezzo2 rigid divisor, the FI-term
will depend on a linear combination of various Kähler moduli and requiring the van-
ishing of the FI term will just fix the corresponding combination of Kähler moduli,
making it possible to avoid the shrinking of any cycle.

(iv) Stabilisation within Kähler cone and phenomenological requirements:

Problem:
When in §2.2.6 we analysed the Kähler structure deformations, we said that in order
for the resulting metric gi j + δ gi j to be positive definite, the Kähler form J has to

satisfy, for a Calabi-Yau 3-fold, a set of 3 constraints defining a subset of Rh(1,1)
which

goes under the name of Kähler cone:∫
C

J > 0;
∫
S

J ∧ J > 0;
∫
Y

J ∧ J ∧ J > 0 (3.2.4)

where these relations must be true for each complex curve C and surface S on the
Calabi-Yau Y . Any stabilisation process should then respect the Kähler cone, namely
it should fix the moduli within it. However, when combined with the requirement to
get phenomenologically viable scales, these constraints are not trivial to satisfy.

Solution:
2Del Pezzo surfaces are two-dimensional complex variety which admits a Kähler metric with strictly positive

Ricci curvature. On a Calabi-Yau, del Pezzo submanifolds are arbitrarily contractible to a point without affecting
the rest of the geometry. Diagonal del Pezzo divisors appear in the intersection form in a diagonal way. For such Di ,
in fact, it can be found a basis in which only the self-intersection number ki j k with i = j = k is not zero. These can
be thought of as local effects and they will appear in the volume form of the Calabi-Yau in a diagonal way. Also they
arise as resolutions of point-like singularities. Non-diagonal del Pezzo, instead, can’t be brought to a diagonal form
by a suitable choice of basis. They are indeed global effects and will appear in a non-diagonal form in the Calabi-Yau
volume mode.
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There is no general solution to this problem, it relies, in fact, on the model considered,
the brane set-up and the fluxes chosen.

In our explicit models of the next chapter, we are not going to construct the Standard Model
(or GUT or MSSM sectors), but we are only going to focus on the brane and flux set-ups to get
the right hidden gauge sector which will kinetically couple to the Standard Model’s electroweak
gauge boson. Our Calabi-Yau manifold will be chosen with a given volume mode V in function
of the 4-cycle volumes: V = V (τi ) in a multiple-hole Swiss cheese form (see [CCQ08a; Cic10]
for details). The 4-cycle where the Standard Model D-branes should be wrapped will not be in-
cluded in V and this in turn will allow us to forget these global-like problems and focus more on
our local model building.
That begin said, we can now explore the mechanisms to stabilise the Kähler moduli. InN = 1
supergravity in 4-dimensions, the Kähler potential receives corrections at every order in pertur-
bation theory, while the superpotential receives only non-perturbative corrections due to the
non-renormalisation theorem [DS86]. The Kähler potential and superpotential then enjoy an
expansion of the form: ¨

K =Ktree+δK(α′)+δK(gs )

W =Wtree+δWnp

(3.2.5)

where δK(α′) are the perturbative corrections of the Kähler potential in the (α′)-expansion, while
δK(gs )

are the quantum loop corrections in the string coupling gs . The latter are, in general, the
less understood corrections which can be employed in the stabilisation procedure. For general
Calabi-Yau manifolds, these functions are not explicitly known, however, there are some consid-
erations which can be made in order to, at least, come up with a functional dependence of δK(gs )

with respect to the Kähler moduli.

3.2.1 Non-perturbative Corrections to the Superpotential

Non-perturbative effects play a very important role in string theory and they have been studied
since the ’80s (see [Din+86; Din+87; Wit96; Wit00; BW06; DIN85; Din+85; Bur+96; Gor+04]),
where these corrections can be seen to arise in two different ways:

• Via D7-branes wrapping 4-cycles in the Calabi-Yau undergoing gaugino condensation;

• Via Euclidean D3-brane instantons.

Either way, the form of the non-perturbative correction is given by (in MP -units):

δWnp(Ti , U α) =
∑

i

Ai (U
α)e−ai Ti (3.2.6)

where ai is 2π for D3-brane instantons, and ai = 2π/N for a stack of N D7-branes undergoing
gaugino condensation. The sum is over 4-cycles generating the non-perturbative contributions to
the superpotential W and Ai (U

α) are threshold effects that can depend on the complex structure
moduli U α. There also may be higher instanton effects of the form: e−2ai Ti , e−3ai Ti , ..., which
can be neglected in the regime aiτi � 1. From the form of the F-term potential (2.3.25) we can
see that the contribution of δWnp generates a scalar potential for the Kähler structure moduli
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as (we write here Wtree ≡W0 and δWnp ≡ δW for notational convenience, moreover we write
K0 ≡−2 ln(V ) for the classical Kähler potential for the Kähler structure moduli space):

δVnp(Ti ) =eK
�

K i j
0 (∂iW +W ∂i K0)(∂ j W +W ∂ j K0)− 3|W |2

�
=eK

�
K i j

0

�
∂iW ∂ j W +(∂iW )W ∂ j K0+(∂ j W )W ∂i K0

�
+ |W |2(K i j

0 ∂i K0∂ j K0− 3)
�

1 →=eKK i j
0

�
∂i (W0+δW )∂ j (W 0+δW )+ (∂i (W0+δW ))(W 0+ ∂W )∂ j K0

+(∂ j (W 0+δW ))(W0+δW )∂i K0)
�

2 →=eKK i j
0

�
∂iδW ∂ jδW +(∂iδW )W ∂ j K0+(∂ jδW )W ∂i K0

�
3 →=eKK i j

0

�
Ai ai Aj a j e

−ai Ti−a j T j − (Ai aiW e−ai Ti∂ j K0+Aj a j W e−a j T j ∂i K0)
�

(3.2.7)

where in 1 we have used the no-scale property of the tree-level Kähler potential and expanded
the superpotential as W =W0+δW , in 2 we have used the fact that the tree-level superpotential
W0 does not depend on the Kähler moduli so that ∂iW0 = 0 and finally in 3 we have used the
expansion of δW as in (3.2.6). Notice that the exponential is in function of the total Kähler
potential K , while in the other instances it appears K0. This is simply because the Kähler potential
is block-diagonal, so that ∂i K = ∂i K0.

In the LARGE volume scenario, the non-perturbative correction to the superpotential allows
to fix the 4-cycle volume of a small blow-up resolving a pointlike singularity, which is required
to exists by the LARGE volume claim [CCQ08a].

3.2.2 Perturbative (α′)-Corrections to the Kähler Potential
The classical no-scale structure of the scalar potential does not allow to fix the Kähler mod-
uli. However, this structure is violated by stringy corrections in (α′) as was first conjectured
in [GKP02] and proved by Becker et al. [Bec+02]. In [Bec+02] the authors managed to explic-
itly find these corrections to the scalar potential (sometimes called BBHL-stringy corrections) up
to orders O(α′3), in this way, the scalar potential will lose the no-scale property. Following their
work, the relevant terms in the 10-dimensional type IIB supergravity action are:

S =− 1
2k2

10

∫
d 10x

p−G e−2φ �R+ 4∂Mφ∂
Mφ+(α′)3c1J0

�
(3.2.8)

where c1 = ζ (3)/3 · 211, the ζ (z) is the Riemann ζ -function and the higher order interaction is
[FKT02]:

J0 = 3 · 28
�

RH M NK RP M NQ R RSP
H RQ

RSK +
1
2

RH KM N RPQM N R RSP
H RQ

RSK

�
(3.2.9)

Along with this contribution coming from the structure of the Green-Schwarz 4-point massless
string scattering amplitude in the NS-NS sector, there is a contribution due to the fact that the
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β-function receives 4-loop contributions which do not vanish in Ricci-flat spaces (as opposed to
1-, 2- and 3-loop contributions)[GVZ86; GW73b]. The term that must be added is of the form:

1
k2

10

∫
d 10x

p−G e−2φ(α′)3(∇2φ)Q (3.2.10)

where Q is given by:
Q = R KL

I J R M N
KL R I J

M N − 2R K L
I J R I J

M N (3.2.11)

As pointed out in [Can+91], it can be recognized that for a Calabi-Yau 3-fold Y , it is true that
Q
p−g d 6x = 12(2π)3c3(TY ), where c3(TY ) is the third Chern class of the tangent bundle

of Y , also, by making use of the Gauss-Bonnet theorem (by noticing that for a complex n-
dimensional manifold, the Euler class of the real tangent space e(TYR) is equals to the n-Chern
class cn(TY )), it can be shown that:∫

Y
d 6x

p−g Q = 12(2π)3χE (Y ) (3.2.12)

where χE (Y ) is the Euler characteristic of Y .
Using all these ingredients Becker et al. [Bec+02] came up with the quantum-corrected Kähler

potential:

K =−2 ln

�
V + ξ

2g 3/2
s

�
− ln

�
2
gs

�
+Kcs (3.2.13)

where:

ξ =−χE (Y )ζ (3)
2(2π)3

(3.2.14)

By plugging (3.2.13) into the F-term potential (2.3.25) we get a new term involving the volume
mode V of the form (defining ξ̂ ≡ ξ /g 3/2

s ):

δV(α′) = 3eK ξ̂
(ξ̂ 2+ 7ξ̂V +V 2)

(V − ξ̂ )(2V + ξ̂ )2
|W |2 ∼ eK 3

4
ξ̂

V |W |
2 (3.2.15)

where in the last step we have shown the asymptotic behaviour of this term in the decompacti-
fication limit, namely when the volume of the Calabi-Yau is sent to infinity V →∞. Since we
will be using the LARGE volume scenario stabilisation scheme, in our scalar potential we will
use the asymptotic form of the above expression.

The interplay between non-perturbative corrections to W and (α′)-corrections to K will in
general fix all the small blow-up modes and the total volume mode of the Calabi-Yau manifold.
What are left unfixed are, however, those cycles which corresponds to fibrations and which are
"big" with respect to the blow-ups (but clearly small with respect to the exponentially large vol-
ume). In order to fix these last cycle volumes, we need to take into account (gs )-corrections,
namely string loop corrections.

3.2.3 Perturbative (gs )-Corrections to the Kähler Potential
The explicit form of these corrections for Calabi-Yau manifolds are still unknown, however, from
their previous computation on T 6/Z2×Z2 in [BHK05], Berg, Haack, and Pajer [BHP07]made
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an educated guess for the scaling of these loop corrections with the Kähler moduli and the dilaton
S respecting their previous computation on the torus. Their conclusion is that there should be
two kind of perturbative corrections to be taken into account:

δK(gs )
= δKKK

(gs )
+δKW

(gs )
(3.2.16)

The first one δKKK
(gs )

comes from the exchange of Kaluza-Klein modes between D7-branes (or O7-
planes) and D3-branes (or O3-planes). The conjectured parametric form given by [BHP07] can
be written as:

δKKK
(gs )
∼

h(1,1)∑
i=1

C KK
i (U

α) ·m−2
KK

Re(S)V ∼
h(1,1)∑
i=1

C KK
i (U

α) · (ai j t
j )

Re(S)V (3.2.17)

where V is the volume of the Calabi-Yau, m−2
KK is the mass of the exchanged mode, C KK

i (U
α) are

unknown functions of the complex structure moduli which parametrise our ignorance regarding
the true form of the correction, and (ai j t

j ) is a linear combination of the 2-cycle basis t j giving
the path along which the mode between the D7-brane and the D3-brane propagates. The second
passage in (3.2.17) is justified by noticing that for Kaluza-Klein modes m−2

KK ∼ t (which is nothing
but the correspondence between (energy)−2 of the mode and the (space)2 travelled).

The second term in (3.2.16), namely δKW
(gs )

, comes from the exchanging of winding modes
between intersecting stacks of D7-branes. From the fact that m−2

KK ∼ t , for winding modes, due
to T-duality, it will be true that m2

W ∼ t−1. In this way, we can write an analogous expression for
the loop correction given by exchanging of winding modes:

δKW
(gs )
=

h(1,1)∑
i=1

C W
i (U

α) ·m−2
W

V ∼
h(1,1)∑
i=1

C W
i (U

α)
V · (ai j t j )

(3.2.18)

where ai j t
j gives the 2-cycle over which the D7-branes are intersecting and again, C W

i (U
α) are

unknown functions of the complex structure moduli and, as C KK
i (U

α), should be regarded as
free parameters since the complex structure moduli U α are stabilised at tree-level thanks to the
Gukov-Vafa-Witten superpotential generated by background fluxes.

Extended No-Scale Structure and Correction to the Scalar Potential

The (gs )-corrections could, in principle, spoil the stabilisation procedure obtained by using non-
perturbative and (α′)-corrections. However, what can be shown is that their leading contribution
to the scalar potential vanishes, extending further the no-scale property at tree level to one more
order, and for that reason it is referred to as the Extended No-Scale Structure. This is true for
perturbative loop corrections δK(gs )

which are homogeneous functions of degree n = −2 in
the 2-cycle volumes [CCQ08b]. This leading order cancellation is then crucial to render δV(gs )

subdominant with respect to δV(α′), in fact, the first non-vanishing contribution to the scalar
potential of the (gs )-corrections above are found to be [CCQ08b] (using the fact that the axio-
dilaton at this stage is fixed at 〈(S + S)/2〉= g−1

s ):

δV 1-loop
(gs )

=
|W |2
V 2

∑
i

�
(gs C

KK
i )

2(K0)i i − 2δKW
(gs )

�
(3.2.19)

Also, there can be given a field theory interpretation of the above potential through the Coleman-
Weinberg Potential in supergravity, for details see [CCQ08b].
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3.3 KKLT Scenario

In order to give a first example of the moduli stabilisation process, we consider the first model
that has been proposed with all the moduli supersymmetrically fixed and with a suitable uplift
to get a de Sitter vacuum: the KKLT Scenario [Kac+03]. The set-up is a warped type IIB flux
compactification on a Calabi-Yau orientifold Y (more generally F-theory) with the number of
Kähler moduli given by:

h (1,1) = h (1,1)
+ = 1 (3.3.1)

Following §3.1 we turn on background fluxes with respect to the NS-NS 3-form H3 and R-R
3-form F3 in such a way to generate the tree-level superpotential of the Gukov-Vafa-Witten form:

Wtree ∼
∫
Y

G3 ∧Ω (3.3.2)

with G3 = F3 − i SH3 imaginary self-dual (?G3 = iG3) due to the background fluxes which also
serve as sources for a warp factor for the metric that in general will be given by (3.1.7).

The tree-level Kähler potential can be inferred by dimensional reducing the 10-dimensional
action (for details one can consult the appendix of [GKP02]), which will give:

Ktree =−3 ln((ρ+ρ))− 2 ln(S + S)− ln
�
−i
∫
Y
Ω∧Ω

�
(3.3.3)

where ρ is the radial Kähler modulus which governs the volume of the Calabi-Yau. Also the
scalar potential will be of the no-scale form:

V =VF = eK
�
K SS DSW DSW +K UαUβ

DUαW DUβW − 3|W |2� (3.3.4)

where U α are the complex structure moduli with α= 1, ..., h (2,1)
− . This allows to supersymmetri-

cally fix the axio-dilaton S and all the complex structure moduli by imposing:¨
DSW |〈S〉,〈Uα〉 = 0
DUαW |〈S〉,〈Uα〉 = 0

(3.3.5)

Since in this model there is only one Kähler modulus ρ, it means that the volume V is regulated
only by the real part of ρ, namely V = V (ρ+ ρ). After the fixing of S and U α, it remains a
flat direction in V which need to be uplifted to resolve the vacuum degeneracy. The stabilisation
of V can be done via non-perturbative corrections to the superpotential, as presented in §3.2.1,
thanks to D7-branes wrapping the 4-cycle with volume ρ. The non-perturbative correction will
be given by:

δWnp =Ae−aρ (3.3.6)

with A and a constant such that aρ� 1 in order to avoid higher order instanton corrections. At
a supersymmetric vacuum we have: DρW = 0, namely:

DρW |〈ρ〉 = (∂ρW +W ∂ρK)|〈ρ〉 =−aAe−a〈ρ〉+(W0+Ae−a〈ρ〉) −3
〈ρ+ρ〉 = 0 (3.3.7)
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in such a way that we can write the tree-level superpotential as:

W0 =Ae−a〈ρ〉
�
−1+
〈ρ+ρ〉a

3

�
(3.3.8)

And this allows to get an Anti-de Sitter vacuum:

VAdS =(−3eK |W |2)|〈ρ〉
=− 3e−3 ln〈ρ+ρ〉|W0+Ae−a〈ρ〉|2

=− 3
�

1
〈ρ+ρ〉3

�����〈ρ+ρ〉3
aAe−a〈ρ〉

����2
=− a2A2e−2a〈ρ〉

3〈ρ+ρ〉

(3.3.9)

We can see that all the moduli have been fixed while preserving supersymmetry. In order to
trust the supergravity approximation the modulus ρ is required to be large ρ� 1, making also
the (α′)-corrections to the Kähler potential under better control. These conditions are met if
background fluxes are turned on such that W0� 1. This, however, is not "natural" and in order
to get to it, some fine tuning is needed. If too much flux is turned on, the tadpole cancellation
condition (3.1.14) can be satisfied provided that one introduce one or more D3-branes. These
leave an extra energy density term in the potential slightly breaking supersymmetry and which
allowed [Kac+03] to uplift their vacuum to a metastable de Sitter minimum.

3.4 Calabi-Yau Embedded in P4
(1,1,2,2,6): 2-Parameter K3 Fibra-

tion
Calabi-Yau manifolds can be constructed in different ways and in general lots of algebraic geom-
etry techniques are required. Thanks to the Yau’s theorem [Yau77; Yau78] we are allowed to
construct manifolds of SU (3) holonomy (so that the supersymmetries are reduced toN = 2 for
type II string theories and toN = 1 for heterotic strings) by looking for manifolds of vanishing
first Chern class (which are much easier to construct than that of SU (3) holonomy). As Candelas
et al. [Can+85] presented in their original work when they first managed to connect Calabi-Yau
manifolds to compactifications of string theories, the easiest Kähler manifold that one can think
about is the complex projective space Pn, which is nothing but (n + 1)-dimensional complex
plane Cn+1 subject to the equivalence relation (z i ∼ w i ) ⇐⇒ z i = λw i for a complex number
λ ∈C. Also, every complex dimensional subspace of Pn defined as the vanishing locus of analytic
functions φα(z

i ) is a Kähler manifold due to the fact the induced metric from Pn is Kähler. This
means that to construct a three-dimensional Kähler manifold, one can consider the 4-dimensional
projective space P4 and define a hypersurface embedded in this projective space as the zero locus
of a homogeneous polynomial. The simplest case is the Quintic which is the manifolds defined
as the subspace of P4 by:

z5
1 + z5

2 + z5
3 + z5

4 + z5
5 = 0 (3.4.1)

This space has complex dimension three and is in particular a Calabi-Yau manifold since its first
Chern class vanishes. As Candelas et al. [Can+85] already noted, one can generalise this construc-
tion to k vanishing polynomials of degree d1, ..., dk in Pk+3, in such a way that the simultaneous
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vanishing locus of all these polynomials will be a three-complex-dimensional Kähler manifold. It
is found that the first Chern class vanishes if and only if the sum of the degree of the polynomials
is the dimension of the projective space plus one: d1 + ...+ dk = k + 4. Besides, since a linear
subspace of Pn is Pn−1, there are only five cases one needs to study in order to be able to construct
a Calabi-Yau manifold in this way.

Now, over the last decades the techniques to construct Calabi-Yau manifolds have grown
and datasets of explicit constructions have been developed, ranging from Complete-Intersection
Calabi-Yaus (CICYs) to Elliptically Fibred manifolds over Toric Bases and Hypersurfaces in Toric
Ambient Spaces. The CICYs three-folds were for the first time classified by Candelas et al. [Can+85],
while the CICYs four-folds by Gray, Haupt, and Lukas [GHL13]. Four-folds are clearly useful
in the context of F-theory, namely for the construction of interesting string vacua based on el-
liptically fibred Calabi-Yau. All the smooth toric bases supporting elliptically fibred Calabi-Yau
manifolds 3-folds were classified and constructed by Morrison and Taylor [MT12]. Finally, Hy-
persurfaces in Toric ambient spaces were constructed by Kreuzer and Skarke [KS02] and repre-
sents the biggest known database for Calabi-Yau three-folds. Moreover, [Alt+15] provided an
online database for these toric based Calabi-Yau manifolds with a detailed inventory of all the
relevant quantities needed by physicists, like topological data and geometric information. Lots
of algebraic geometry notions are needed to construct and study Calabi-Yau manifolds in toric
ambient spaces and these can be gathered in the appendix A of [Alt+15].

The Calabi-Yau manifold we are going to consider in this section is defined as the vanishing
locus of a homogeneous polynomial in a weighted projective space (see appendix B). This exam-
ple was analysed byCandelas et al. [Can+94], and the mathematical context to realise the mirror
symmetry used to study this model are indeed ambient toric spaces. Calabi-Yau manifolds are
described in terms of reflexive polyhedra [KS02] allowing the study of all the useful topolog-
ical/geometrical characteristics needed in the applications such as the hodge numbers, Chern
classes, divisors, intersections, Kähler cones, etc.

We consider then a Calabi-Yau three-fold Y which is obtained by resolving singularities of a
degree 12 hypersurface Ŷ embedded in the weighted projective space P4

(1,1,2,2,6).

Remark

We recall that a hypersurface defined as the zero locus of a homogeneous polynomial p in
the weighted projective space Pn

(a0,...,an)
is a Calabi-Yau if the degree of the polynomial d is

equals to the sum of the weights: d = a0 + · · · + an. Also we remind that weighted pro-
jective spaces in general are not smooth as opposed to projective spaces. This can be eas-
ily seen considering a simple example: in P3

(1,1,2,3) we have the equivalence relation relating
(z0, z1, z2, z3) ' (λz0,λz1,λ

2z2,λ
3z3) for λ ∈ C. Taken λ = −1, in a neighbourhood of the

point (0,0,1,0), it will be true that (z0, z1, 1, z3)' (−z0,−z1, 1,−z3), meaning that there will
be a cyclic quotient singularity, namely a Z2 identification. In general a weighted projective
space can be locally viewed as a quotient of the projective space by a suitable group action,
leaving singularities which may intersect an embedded surface.

A typical defining polynomial for the 12 degree hypersurface Ŷ is [Can+94]:

p = z12
0 + z12

1 + z6
2 + z6

3 + z2
4 (3.4.2)
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There is a curve of singularities described by:¨
z0 = z1 = 0
z6

2 + z6
3 + z2

4 = 0
(3.4.3)

and to resolve them, the base locus z0 = z1 = 0 must be blown-up. The curve of singularities is
replaced by a divisor E on the resolved hypersurface Y , namely every singular point is replaced
by a sphere P1. In order to study the moduli space of Y , it is considered the mirror manifold
defined as the family of Calabi-Yau of the form {p = 0}/G where:

p = z12
0 + z12

1 + z6
3 + z6

4 + z2
5 − 12ψz0z1z2z3z4z5− 2φz6

0 z6
1 (3.4.4)

with the group G as in [Can+94]. In terms of 2-cycles, the volume form can be expressed as:

V = t1t 2
2 +

2
3

t 3
2 (3.4.5)

where we recall that if Y is a Calabi-Yau manifold, we decompose its Kähler form J into a basis
of harmonic (1,1)-form {D̂i}i=1,...,h(1,1) with h (1,1) = dim(H (1,1)(Y )) which thanks to the Hodge
decomposition theorem (2.1.3) are the same as the elements of the Dolbeault Cohomology group
H (1,1)

∂
(Y ). We then write J = t i D̂i and the moduli spaceMks defined by Kähler structure de-

formations for type IIB orientifolds with h (1,1)
− = 0 and D3/D7-branes, is spanned by the moduli

Ti = τi + i bi with τi related to ti by τi = ∂ V /∂ t i . The 4-cycle moduli can then be written as
functions of ti in the following way:

τ1 =
∂ V
∂ t 1
= t 2

2

τ2 =
∂ V
∂ t 2
= 2t1t2+ 2t 2

2

(3.4.6)

Inverting these relations, we can express ti (τ j ) as:

t1 =
τ2− 2τ1

2pτ1

t2 =
p
τ1

(3.4.7)

By substituting these expressions in the volume form, we see that the Calabi-Yau is a K3 fibration
with base volume given by τ1 and fibre modulus t1. In fact in the large anisotropic limit τ1� τ2,
we get:

V = 1
2
p
τ1(τ2− 2

3
τ1)' 1

2
p
τ1τ2 = t1τ1 (3.4.8)

Also, the hodge numbers are given by (h (1,1), h (2,1)) = (2,128), so that from (2.2.13) the Euler
characteristic χ is:

χ = 2(h (1,1)− h (2,1)) =−252 (3.4.9)

The Kähler potential at tree level will be given by:

Ktree =−2 ln(V )− ln(S + S)− ln
�
−i
∫
Y
Ω∧Ω

�
(3.4.10)
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with S the axio-dilaton and Ω the holomorphic (3,0)-form of the Calabi-Yau defined in terms
of complex structure moduli U α with α = 1, ..., h (2,1)

− . Turning on fluxes for the NS-NS 3-form
H3 = dB2 and the R-R 3-form F3 = dC2, we can fix the axio-dilaton and complex structure moduli
to their vacuum expectation values 〈U α〉 and 〈S〉, since a tree-level superpotential of the Gukov-
Vafa-Witten form W0 is generated. The tree-level Kähler potential becomes:

Ktree =−2 ln(V )− ln(2/gs )+Kcs (3.4.11)

with gs and Kcs as in (3.1.40). The Kähler metric for the Kähler structure deformation moduli
space in the anisotropic limit τ1� τ2 will be:

(Ktree)i j :=
∂ 2Ktree

∂ T i∂ T j
=

1
4
∂ 2Ktree

∂ τ i
i ∂ τ

j
' 1

4

�
τ−2

1 0
0 2τ−2

2

�
(3.4.12)

with its inverse given by:

(Ktree)
i j = 4

�
τ2

1 0
0 τ2

2/2

�
(3.4.13)

As it is, this model does not allow the existence of an exponentially large volume, this is be-
cause it does not satisfy the requirements of the LARGE volume scenario stabilisation frame-
work [CCQ08a]. In fact this Calabi-Yau does not admit a small blow-up resolving a pointlike
singularity, which is needed to achieve the exponentially large volume. This is easily seen as fol-
lows. In order to stabilise the Kähler moduli we consider (α′)-corrections and non-perturbative
corrections due to gaugino condensation on stack of D7-branes wrapped along the divisors D1
and D2 (with vol (D1) = τ1 and vol (D2) = τ2). Since τ1� τ2, we can neglect the contributions
of the condensate on the stack wrapping τ2, so that we will have the following corrections:

W =W0+δW(n p) =W0+A1e−a1T1

K =Ktree+δK(α′) =−2 ln
�
V + ξ

2gs

�
− ln

�
2
gs

�
+Kcs

(3.4.14)

As [CCQ08a] explicitly showed, in the limit of large volume V � 1 the F-term scalar potential
will take the form:

V ' 4
V 2
[(a1τ1e−a1τ1 −W0)a1τ1e−a1τ1]+

3
4
ξ

V 3
W 2

0 (3.4.15)

which in every case W0 ∼O(1),W � 1 and W0 = 0, it does not allow exponentially large volume
minima. However, with the addition of a small blow-up it can be obtained a K3-fibred Calabi-Yau
with three Kähler moduli admitting a stabilisation at an exponentially large volume with all the
moduli stabilised making also use of the string loop corrections. We will analyse this model in
search for a good candidate to realise an explicit brane set-up implementing the sought parameter
region.
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Chapter 4

Hidden Gauge Bosons from Kinetic
Mixing in Type IIB String Models

As we mentioned in the first chapter, there are various issues that the Standard Model fails to
explain, in fact lots of models have been constructed in order to account for these problems
under the framework of string theory. In string compactifications it is known that various U (1)
gauge sectors arise from D-branes wrapping holomorphic cycles in the compact space. These
gauge bosons can couple to the Standard Model hypercharge U (1) boson, giving rise to a so
called Kinetic Mixing which could, in principle, give rise to measurable effects. The U (1) gauge
bosons are called hidden if the D-branes supporting them do not intersect the Standard Model’s
brane and if they are put on a suitable distance from it (more than the string length), in such a
way that no matter will be charged under both the Standard Model U (1) and the hidden U (1)s,
making them indeed "hidden". The kinetic mixing parameter does not suffer from any kind of
mass suppression, making this mechanism a very promising probe of high scale physics and its
measurement could provide valuable clues for energy scales probably never accessible to colliders.
In this regard, we would like to present a model in which kinetic mixing appears and explains
the non-standard interaction proposed to describe the ∼ 2σ deviation from the Standard Model
found by Dutta et al. [Dut+19] in the analysis of the Coherent Elastic Neutrino-Nucleus Scattering
(CEνNS) energy and timing data extrapolated by the COHERENT collaboration [Aki+17].
The next section is devoted to present a summary of the COHERENT experiment and how the
non-standard interaction could arise. After that, we will present a brief account of the Kinetic
Mixing in the context of string phenomenology and the D-term potential (Fayet-Iliopoulos term)
generated due to the Stückelberg mechanism employed to generate a mass for the hidden gauge
boson. Finally, explicit models will be introduced and developed with a great care in following
and respecting the moduli stabilisation processes outlined in the preceding chapter in order to
reproduce the correct mass and coupling of the hidden gauge sector.

4.1 Non-Standard Interactions from CEνNS

The coherent elastic neutrino-nucleus scattering (CEνNS) was predicted for the first time by
Freedman [Fre74] and finally experimentally discovered by the COHERENT collaboration [Aki+17]
within a confidence level of ∼ 6.7σ . The CEνNS is an important source for Beyond Standard
Model (BSM) physics but also a potential disturbance background for dark matter detectors.
There are in fact lots of potential disturbing neutrinos coming from different sources. Solar neu-

119



Hidden Gauge Bosons from Kinetic Mixing in Type IIB String Models

trinos, anti-neutrinos produced in radioactive decays in the Earth’s mantle and core, atmospheric
neutrinos coming from decays of cosmic rays, supernova and nuclear fission anti-neutrinos are
all sources of a background flux of neutrinos which cannot be shielded against. The study of
CEνNS is then of utmost importance in order to be able to handle in the right way dark matter
experimental results.

At the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, a pulsed proton
beam is produced, impinging on a dense target of Mercury. The proton-mercury interaction will
produce pions π− and π+ which are quickly stopped in the target with a small probability of
decay-in-flight. The former are captured by target nuclei while the latter experience a decay-at-
rest with a production of mono-energetic 30 MeV muon-netruinos νµ called PROMPT neutrinos,
via:

π+→µ++ νµ (4.1.1)

The anti-muonµ+ produced in this process travels for about a tenth of millimetre before decaying-
at-rest with a production of νµ and νe referred to as DELAYED neutrinos, via:

µ+→ e++ νe + νµ (4.1.2)

The neutrinos escaping the shielding monolith surrounding the mercury target, swamps a CEνNS
detector composed of Na-doped Caesium Iodine (CsI[Na]) which will measure the number of re-
coil events due to the coherent interaction:

ν +Nucleus→ ν +Nucleus (4.1.3)

driven by a long wavelength neutral boson Z0. In a ∼ 300 days of exposure of proton beams,
the COHERENT collaboration measured a best fit of 134± 22 recoil events which favour the
CEνNS process instead of the null hypothesis at the ∼ 6.7σ .

Studying the full energy and timing distribution of these nuclear recoil events, Dutta et al.
[Dut+19] tested deviations from pure Standard Model interactions by considering as example
light mediators that couple to the Standard Model. The Standard Model cross section for the
CEνNS process may be, indeed, modified by introducing a new mediating particle which couples
to the neutrinos and either electrons or quarks. Taken this new boson to be Z ′µ, there will be a
new interaction term in the Lagrangian of the form:

L ⊃ Z ′µ(g
′
ν νLγ

µνL+ g ′f ,v f γµ f + g ′f ,a f γµγ 5 f ) (4.1.4)

where clearly g ′ν , g ′f ,v and g ′f ,a are the coupling constants associated to new physics and g ′f ,v , g ′f ,a

referred to the vector and axial couplings of the fermions f to the new Z ′ boson. It can also be
considered the case where quarks/electrons couple to the new gauge boson Z ′ via a loop contain-
ing hidden sector particles χ , however, we will not be concerned about this case.

Considering the COHERENT set-up, [Dut+19] focus only on g ′e and g ′µ, associated to the
couplings of the electron and muon to the Z ′. Also, by imposing the couplings to be of the
same order g ′ν = g ′u = g ′d = g ′ (with u for up-quark and d for down-quark), the Non-Standard
Interaction (NSI) parameter will become:

ε=
g ′2

2
p

2GF (q2+M 2
Z ′)

(4.1.5)
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Figure 4.1: Probability densities found by Dutta et al. [Dut+19] in the coupling g ′ versus the
mass of the hidden gauge boson MZ ′ space. The right probabilities were found considering only
the energy data, while on the left we can appreciate the heat maps resulting from the combined
energy and timing data. The second row of figures refers to a model in which the Standard Model
interaction is modified due to a loop of hidden sector particles and we are not going to consider
them in the present work.

where q2 is the momentum transfer, MZ ′ is the mass of the new mediator and this (NSI) parameter
ε enters the differential cross section of a neutrino scattering off of a target quark/electron as a
shift in the vector-axial couplings:

(gv , ga) 7→ (gv , ga)+ (ε,ε) (4.1.6)

Using the energy and timing distributions from the COHERENT data, Dutta et al. [Dut+19]
performed a joint analysis in order to identify possible contributions from Beyond Standard
Model physics. What they obtained is a probability in log10(MZ ′) vs log10(g

′
µ) space (where g ′µ

is the non-standard interaction parameter between the muon-neutrinos and the gauge boson Z ′)
given by the following heat maps of figure (4.1). As we can see from the upper left heat map,
for mediator masses MZ ′ ® 101.7 MeV, the coupling is constant g ′µ ∼ 10−4.3, while for masses
MZ ′ > 101.7MeV, the coupling grows linearly in the mass as g ′µ ∼ 10−6 MZ ′/ MeV. This can be
summarised as:

g ′µ ∼
10−4.3 for MZ ′ ® 101.7 MeV

10−6 · MZ ′

MeV
for MZ ′ > 101.7 MeV

(4.1.7)
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We note that the above relations can be relaxed, since as we can see from figure (4.1) what we have
is a probability density.

We are now going to see how in string theory a non-standard interaction via kinetic mixing
can arise and how the above values of couplings and masses can be reproduced in an explicit
compactification model.

4.2 Hidden Gauge Sectors in Type IIB

4.2.1 Kinetic Mixing in String Phenomenology
In the search for hidden sector particles with masses below the TeV scale and weak coupling to
the Standard Model, superstring theories provide good extensions of the Standard Model accom-
modating hidden gauge sectors living on D-branes. Extra U (1) gauge bosons, hidden from the
Standard Model, are a prime candidate for Beyond Standard Model Physics. At low energies, the
interaction between the hidden sector and the visible sector is primarily given through kinetic
mixing (analysed by [Oku82; Hol86; BKM98] in QFT context). If we consider the hidden gauge
group to be U (1)b and the visible one to be U (1)a, then we will have [Abe+08; Goo+09]:

L ⊃− 1
4g 2

a

F (a)µν F µν
(a) −

1
4g 2

b

F (b )µν F µν
(b ) +

χab

2ga gb

F (a)µν F µν
(b ) +m2

ab A(a)µ Aµ(b ) (4.2.1)

where χab is the kinetic mixing parameter and mab is the mass mixing term, which, in string
theory, arises via Stückelberg mechanism. There will be a stack of D-branes supporting the Stan-
dard Model, and in particular the U (1)a hypercharge gauge boson A(a)µ , with field strength F (a)µν
and coupling ga, and a D-brane supporting the hidden gauge sector U (1)b with gauge boson A(b )µ ,
with field strength F (b )µν and coupling gb . The kinetic mixing appears in the Lagrangian where
massive modes, which couples to different U (1)s, are integrated out [Abe+08]. These heavy
modes correspond to open strings stretched between the visible and the hidden branes or, in the
closed string channel, correspond to the exchange of light massless closed string modes (see figure
(4.2)). In order to discuss the physical implications of the above kinetic mixing, we should rotate
the fields (A(a)µ ,A(b )µ ) in such a way to get to the physical (or mass) eigenbasis for the system. At
lowest order, we can take ga = gb = 1 and by shifting the gauge bosons by:

A(a)µ = Â(a)µ +χab Â(b )µ

A(b )µ = Â(b )µ
(4.2.2)

the gauge kinetic term in (4.2.1) becomes diagonal (with Â(a)µ the physical visible gauge boson and
Â(b )µ the physical hidden gauge boson). The result is also a modification of the interactions, in
fact, a new coupling between the visible matter particles and the hidden gauge boson arises:

f A(a)µ γ
µ f = f Â(a)µ γ

µ g +χab f Â(b )µ γ
µ f (4.2.3)

where f are Standard Model’s particles. This in turn, corresponds to a possibly small coupling
between the visible matter and the hidden sector of the form:

g ′ = gaχab (4.2.4)
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Open String

Closed String

Figure 4.2: Representation of the two different string channels leading to Kinetic Mixing between
the visible sector supported on (D7)visible and the hidden sector supported on (D7)hidden. Above
it can be appreciated a string stretched between the (stack of) D-branes which makes a loop and it
is immediate to realise its equivalence with the below tree-level exchange of a closed string. This
duality in general is referred to as the Channel Duality and it is at the heart of holography and
AdS/CFT correspondence.

It is natural to ask whether it is possible to kinetically mix non-anomalous U (1)s (i.e. massless
gauge boson) considered that the mixing parameter χ and the mass term, which mixes visible and
hidden U (1)s, come from the same diagram. This is indeed possible, since the mass generated via
Stückelberg mechanism does not depend upon the masses of the particles (namely the length of
the string stretched between the D-branes) while the kinetic mixing does. In a set-up with a D-
brane and an anti-D-brane separated by an orientifold plane together with a D-brane supporting
the Standard Model, this could happen, because the strings stretched between these branes and
the visible sector will give rise to massless U (1)s (anomaly free), but with a non-zero kinetic
mixing [Abe+08].

The Stückelberg mechanism allows for the hidden U (1) gauge boson to acquire a mass through
a completely stringy process. If in (4.2.1) we consider that the photon is massless (after the spon-
taneous breaking of the symmetry SU (2)L×U (1)Y into U (1)EM), then we have a mass term for
the hidden gauge boson m2

b A(b )µ Aµ(b ), and together with (4.2.4), these are nothing but the mass MZ ′

and coupling g ′µ of the preceding section, and which we would like to fix in such a way to satisfy
(4.1.7). To compute g ′ we then need an explicit form of the kinetic mixing χab . As showed in
[Goo+09], before the breaking of supersymmetry, the kinetic mixing appears as a holomorphic
function in the kinetic part of the supergravity Lagrangian of the 4D effective theory. The holo-
morphic kinetic mixing depends on the complex structure moduli, generically in polynomial or
exponential form, which will typically be numbers of order one, making the physical kinetic
mixing to be of the form:

χab ∼ ga gb

16π2
(4.2.5)

We are now left to explain the process for generating the mass of the hidden gauge boson,
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namely the Stückelberg mechanism, and the form of the coupling of a U (1) sector living on a
Dp-brane wrapping a holomorphic cycle in the compact space. This is however not the end of
the story, since as we shall see, in order to generate a mass for the hidden gauge boson we need to
turn on magnetic fluxes on internal cycles wrapped by the Dp-brane. In turn, these will generate
a Fayet-Iliopoulos (FI) term entering the D-term potential, threatening the stabilisation processes
we outlined before because of its dominating character over the F-term potential. Stabilise the
moduli without taking into account the FI-term will be incorrect, and in order to partially cancel
its contribution, the presence of charged scalar fields (open string modes) will come at rescue.

4.2.2 Stückelberg Mechanism from Internal Fluxes
The process which allows to generate a mass for anomalous U (1) in string theory, is well described
in the appendix of [Cic+11], here we will just give a brief review stating the important results
that we will be using later.

In this derivation we will not be concerned about multiplicative constants, we are going to
focus on why and how does this process takes place, the final result, however, will be furnished
with the correct constants in order to reproduce later the correct mass of the hidden boson. Let’s
then consider the Chern-Simons (or Wess-Zumino) action term (1.3.14) for a D7-brane wrapping
a holomorphic cycle Di , taking only the part with the coupling to the 10-dimensional R-R 4-form
C4:

S∝
∫
R1,3×Di

F2 ∧C4 ∧ F2 (4.2.6)

The R-R 4-form can be expanded in terms of the basis {D̂i}i=1,...,h(1,1) ofH 1,1(Y ) and {D̃i}i=1,...,h(2,2)=h(1,1)

ofH 2,2(Y ) (which we recall from §2.1.4 and §2.2.1 that due to the Hodge ?-isomorphism and
Hodge decomposition theorem, we haveH 2,2(Y )'H 1,1(Y )) as:

C4 =Q j
2 (x)∧ D̂ j (y)+ bi (x)D̃

i (y) (4.2.7)

Due to the self-duality of the 5-form (1.4.8), Q i
2 are duals to the axions bi . If the gauge field

strength F2 has no components in the compact dimensions, reducing the action along the divisor
leads to:

S∝
�∫

Di

C4

��∫
R1,3

F2 ∧ F2

�
∝ bi (x)

∫
R1,3

F2 ∧ F2 (4.2.8)

since we recall that the Kähler moduli Ti are defined as:

Ti = τi + i bi ∝
∫

Di

p−g d 4y + i
∫

Di

C4 (4.2.9)

Now, as we shall see in the next section, the U (1) gauge theory living on a D7-brane is encoded
in a kinetic action of the form:

Skin =− 1
4gi

∫
R1,3

FµνF
µνd 4x with gi =

2π
τi

(4.2.10)

so that the combined expression for the gauge kinetic function reads:

fD7i
=

Ti

2π
(4.2.11)
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On the other hand, when we consider one of the F2 in (4.2.6) to have components in the compact
dimensions, namely to be the compact flux F c

2 , then:

S∝
�∫

Di

F c
2 ∧ D̂ j

��∫
R1,3

Q j
2 ∧ F2

�
(4.2.12)

and expanding F c
2 = fk D̂k , we obtain:

S∝ fk

�∫
Di

D̂k ∧ D̂ j

��∫
R1,3

Q j
2 ∧ F2

�
= ki j k fk

∫
R1,3

Q j
2 ∧ F2 =: qi j

∫
R1,3

Q j
2 ∧ F2 (4.2.13)

where we have defined the charge qi j := ki j k fk . This is the charge of the 2-form Q j
2 under the

U (1) living of the divisor Di . From the definition of qi j we see that the intersection numbers
ki j k and the flux components fk determine which 2-form Q j

2 couples to the gauge boson living
on Di . The Kähler moduli which get charged under the U (1) are those parametrising the volume
of the 4-cycles that intersect the 2-cycle supporting the gauge flux. In other words, the charged
Kähler moduli are a combination of 4-cycles corresponding to the 4-cycle Poincaré dual to the
2-cycle supporting the flux. Take now the kinetic term for the Q j

2 :

−
∫
R1,3×Y

dC4 ∧ ?dC4∝−
�∫
Y

D̂ j ∧ D̂k

��∫
R1,3

dQ j
2 ∧ ?dQk

2

�
∝− (Ktree)

j k

V
�∫
R1,3

dQ j
2 ∧ ?dQk

2

� (4.2.14)

where (Ktree)
j k is the inverse of (Ktree) j k := ∂ 2Ktree/∂ τ j∂ τk and we have also used the self-duality

property of dC4. The Lagrangian then will contains terms of the form:

L Q
kin
∝− (Ktree)

j k

V H j
µνρH k ,µνρ

L A
kin =− 1

4g 2
i

FµνF
µν

Lint∝ qi j Q j
2 ∧ F2

(4.2.15)

By canonically normalise the fields and dualise the 2-form Q2 to get the corresponding axion b ,
then a Lagrangian of the following form arises:

L =−1
4
FµνF µν − mZ ′

2
(Aµ+ ∂µb )(Aµ+ ∂ µb ) (4.2.16)

with the mass of the hidden gauge boson given by:

mZ ′ = g 2
D7

M 2
P

4π2
qD7i (Ktree)i j qD7 j (4.2.17)

where gD7 is the gauge coupling of the U (1) sector supported on the D7 and qD7i are the charges
of the 2-form Q i

2 with respect to the flux on the 4-cycle DD7 wrapped by the D7, namely:

qD7i =
∫

DD7

D̂i ∧F2 (4.2.18)
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Note that the expression (4.2.17) for the mass of the gauge boson supported on the D7, is valid
when there isn’t any cycle odd under the orientifold involution, otherwise it should be modified
by the addition of another contribution [Cic+11]. However, since in LARGE volume scenar-
ios the orientifold involution is taken such that h (1,1)

− = 0 = h (2,2)
− , then there will be no more

contributions to (4.2.17).

4.2.3 Effective U (1) Gauge Theory Living on a D7-Brane
In §1.3 and in particular in §1.3.1, we saw that Dirichlet branes are not static objects living in the
bulk but are dynamical objects with dynamics described by the Dirac-Born-Infeld action SDBI and
the Wess-Zumino (Chern-Simons) action SW Z . For a Dp-brane with worldvolumeW embedded
in the 10-dimensional spacetimeM via the map ϕ :W →M , these actions take the following
form:

SD p =−Tp e−φ
∫
W

d p+1ξ
Æ−det[ϕ∗(G+B2)+ (`2

s/2π)F2]

+Tp e−φ
∫
W

∑
i

ϕ∗Cp ∧ eϕ
∗B2+(`

2
s /2π)F2

(4.2.19)

where Tp is the tension of the Dp-brane, G is the ten-dimensional graviton, B2 is the NS-NS 2-
form, φ is the dilaton and F2 is the field strength associated to the U (1) gauge boson living on
the Dp-brane. Stable Dp-branes in type IIB string theory have odd p, and given our orientifold
projection (see §2.3.2), only D3/D7-branes are brought into play. D3-branes must be extended
to all the Minkowski R1,3 in order to maintain Poincaré invariance, so that they are just single
points in the compact space. D7-branes, on the other hand, will have a worldvolume of the form
W = R1,3 × D where D will be a holomorphic 4-cycle in the compact directions. The Dirac-
Born-Infeld action (where we will infer the form of the kinetic term for the gauge boson, and so
the form of the gauge coupling) for D7-branes becomes:

SDBI
D7 =−T7e−φ

∫
R1,3×D

d 8ξ
Æ−det[ϕ∗(G+B2)+ (`2

s/2π)F2] (4.2.20)

At this point we can expand in powers of the field strength F2 in order to find the corresponding
Maxwell action allowing us to learn the precise form of the gauge coupling constant. In order to
simplify our notation let’s write for now G := ϕ∗(G) and kF := `2

s/2πF2, we will also neglect
the NS-NS field B2 since the orientifold projection we will be considering is such that h (1,1)

− = 0.
The determinant is then:

det(G + kF ) = det[(G + kF )T ] = det(G − kF ) (4.2.21)

where in the first equality we have used the fact that the determinant is invariant upon taking the
transpose and in the second equality we have used the fact that F is anti-symmetric. The above
relation tells us that this determinant is even with respect to k. Let’s then define M := kG−1F
and we will have: Æ−det(G + kF ) =

p−detGpdet(1+M )

=
p−detG �det(1+M )2

�1/4

=
p−detG [det(1+M )det(1+M )]1/4

=
p−detG [det(1−M 2)]1/4

(4.2.22)
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We can then use the identity relating the logarithm of the determinant to the logarithm of the
trace:

ln(det(A)) = tr(ln(A)) (4.2.23)

to obtain:
ln(det(1−M 2)) = tr(ln(1−M 2)) =−tr

�
M 2+

1
2

M 4+ ...
�

(4.2.24)

so that:

[det(1−M 2)]1/4 = e−
1
4 tr(M 2)− 1

8 tr(M 4)+.... = 1− 1
4

tr(M 2)− 1
8

tr(M 4)+
1
32

�
tr(M 2)

�2+ ... (4.2.25)

Putting all together and plugging back the constants and the pull-back, the term in the DBI-action
will be:Æ−detϕ∗G

�
1− 1

4
`4

s

4π2
FM N F M N − 1

8
`8

s

16π4
FM N F N P FPQ F QM +

1
32

`8
s

16π4
...
�

(4.2.26)

where clearly M ,N , P,Q = 0, ..., 9 are the indices in the 10-dimensional spacetime. The Maxwell-
like term will just be the one proportional to FM N F M N , so that by dimensional reducing from
8D to 4D, we obtain:

SDBI
D7 =−T7`

4
s e−φ

16π2

∫
R1,3×D

FM N F M N =⇒ SMaxwell =−
�

T7`
8
s

16π2

�
τD

∫
d 4xFµνF

µν (4.2.27)

where τD is the volume of the 4-cycle D wrapped by the D7-brane τD = (e
−φ/`4

s )
∫

D
pg d 4y

and µ, ν = 0,1,2,3 are indices in the Minkowski spacetime R1,3. Since the D7-brane tension is
T7 = 2π/`8

s , we have:

SMaxwell =− 1
4g 2

D

∫
R1,3

FµνF
µν (4.2.28)

where the gauge coupling is given by:

g 2
D =

2π
τD

(4.2.29)

4.2.4 Fayet-Iliopoulos Term

Turning on magnetic fluxes for D7-branes wrapping holomorphic cycles, allows to generate a
mass via Stückelberg mechanism as we saw in §4.2.2. However, this is not the only result we get
when internal fluxes do not vanish, in fact, a Fayet-Iliopoulos term is also generated [JL05]. From
the reduction we have already seen in the previous section of the DBI-action for a D7-brane
wrapping a holomorphic 4-cycle D in the Calabi-Yau Y , we have:

SDBI
D7 =−T7 e−φ ΓD

∫
R1,3

d 4x
Æ−det g(4)

Æ
1+(`2

s/2π)F(4) (4.2.30)

with:

ΓD =
∫
D

d 4y
Æ−det(ϕ∗ gY )+ F (4.2.31)
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where we are denoting g(4) the metric in R1,3, F(4) the four-dimensional field strength and F the
field strength restricted to the divisorD (namely the component of the U (1) field strength living
on the D7-brane in the compact directions). What it is found using the BPS-calibration condition,
is that ΓD is of the following form [Haa+07]:

ΓD = Γ̃D e−iθ = |Γ̃D |e−i(θ−θ̃) (4.2.32)

where:

Γ̃D =
1
2

∫
D
(ϕ∗J ∧ϕ∗J − F ∧ F )+ i

∫
D
ϕ∗J ∧ F (4.2.33)

and:

θ̃= arctan

�
2
∫
D ϕ
∗J ∧ F∫

D(ϕ∗J ∧ϕ∗J − F ∧ F )

�
(4.2.34)

Since the tension of the brane should be real and positive, we have that: θ = θ̃+ 2πn, which
leads to:

ΓD = |Γ̃D |=
√√√�

1
2

∫
D
(ϕ∗J ∧ϕ∗J − F ∧ F )

�2

+
�∫
D
ϕ∗J ∧ F

�2

(4.2.35)

If the supersymmetry is preserved on the D7-brane, then the imaginary part of Γ̃D must vanish,
forcing to have no flux on the divisor:

Im(Γ̃D) =
∫
D
ϕ∗J ∧ F = 0 (4.2.36)

However, if one allows a small supersymmetry breaking, one can expand ΓD (4.2.35) as1:

ΓD =
1
2

∫
D
(ϕ∗J ∧ϕ∗J − F ∧ F )+

�∫
D ϕ
∗J ∧ F

�2∫
D(ϕ∗J ∧ϕ∗J − F ∧ F )

(4.2.37)

Thus, the deviation from the BPS condition is a measure of supersymmetry breaking and leads
to the appearance of a D-term potential because a new moduli-dependent Fayet-Iliopoulos term
ξD appears (with the correct constants and in MP units):

VD =
g 2D
2
ξ 2
D =

g 2D
2

1
(4πV )2

�∫
D
ϕ∗J ∧ `

2
s

2π
F
�2

=⇒ ξD =
1

4πV
∫
D
ϕ∗J ∧ `s

2π
F (4.2.38)

Also, due to the non-vanishing fluxes on the worldvolume of the brane, the gauge coupling gets
modified to:

2π
g 2D
=Re(TD)− e−φ

f j qD j

2
(4.2.39)

1For z =Re(z)+ iIm(z) with Im(z)�Re(z), we can expand:

|z |=pRe(z)2+Im(z2) =Re(z)

√√√
1+

Im(z)2

Re(z)2
=Re(z)

�
1+

1
2
Im(z)2

Re2 +O
�
Im(z)3

Re(z)3

��
'Re(z)+

1
2
Im(z)2

Re(z)
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where qD j are the charges defined as in §4.2.2 and TD is the Kähler modulus with Re(TD) =
vol (D) = τD .

In the presence of charged matter fieldsψ j (open string states) with U (1) charges given by the
O(1) numbers cD j , the D-term potential will look like:

VD =
π

(τD − f j qD j/2gs )

 ∑
j

cD jψ
j ∂ K̃
∂ ψ j
− ξD

!
(4.2.40)

where K̃ is the Kähler matter metric and depends on which open string states are allowed due to
the brane configuration.

4.3 K3 Fibration With a Blow-Up Mode
We finally start here to present some explicit models and see whether they can provide interesting
set-ups of D-branes and fluxes allowing us to reproduce the interesting parameter region given
by (4.1.7). We consider a generalisation of the 2-parameter K3-fibred Calabi-Yau embedded in
P4
(1,1,2,2,6) (considered in §3.4) by the addition of a small blow-up mode τ3 in such a way that the

volume form can be written as:

V = α �pτ1(τ2−βτ1)− γτ3/2
3

�
(4.3.1)

where α,β and γ are real numbers determined by the intersection numbers ki j k . The LARGE
Volume Scenario limit is given by considering:¨

τ2→∞
τ3� τ1 < τ2

(4.3.2)

As we have said before, non-perturbative corrections to the superpotential are necessary to find a
LVS minimum and are given by gaugino condensation on a D7-brane wrapping the small blow-up
moduli. We also do not want the same contributions coming from the D7-brane supporting the
hidden gauge sector, indeed since we have the relation τ3� τhi d , then e−a3τ3� e−ahidτhid and this
allows us to discard possible non-perturbative effects generated on the hidden D7-brane wrapping
τhid (whether it will be τ1 or τ2). Also, we will require a very high degree of anisotropy for the
volume in the form of demanding τ1� τ2. In this anisotropic limit, the volume reduces to:

V ' αpτ1τ2 (4.3.3)

and a representation of the volume can be appreciated in figure (4.3).
The tree-level Kähler potential Ktree given by (2.3.28) will give rise to the following Kähler metric:

(Ktree)i j =
∂ 2Ktree

∂ τi∂ τ j

'
�
τ−2

1 0
0 2τ−2

2

�
(4.3.4)

In order for our model to support a hidden gauge sector, we need to wrap a D7-brane on a
4-cycle. We have then two choices, namely we can support the hidden gauge sector either on τ1
or on τ2, let’s then inspect these two possibilities. In the following we are going to take:

τvis = 12.5 (4.3.5)
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Figure 4.3: Pictorial representation of the Calabi-Yau volume, where the 2-cycles are represented
as 1-dimensional segments and 4-cycles as 2-dimensional surfaces. We see that the volume is given
by the productpτ1τ2 or equivalently t1τ1 with the subtraction of the small blow-up τ3, making
the configuration of a Swiss cheese type.

leading to a visible gauge coupling of:

gvis ' 0.709 (4.3.6)

Which means that we are considering the visible coupling to be determined by the GUT-fine
structure constant α−1

GUT = 25 in such a way that:

gvis =
p

4παGUT =

√√√ 2π
τGU T

(4.3.7)

4.3.1 Hidden Sector on D2

Wrapping a D7-brane on D2 (where vol (D2) = τ2) will generate the hidden U (1) gauge sector
with the coupling given by:

g 2
hid =

2π
τ2

(4.3.8)

The kinetic mixing for a hidden sector living on τ2 with the electromagnetic gauge boson on the
visible sector is of the order:

χ ∼ gvis ghid

16π2
∼ 1.1 · 10−2

p
τ2

(4.3.9)

giving rise to a coupling g ′:

g ′ ∼ 8 · 10−3

p
τ2

(4.3.10)

To generate a mass for this U (1) gauge boson, we turn on magnetic fluxes:

F2 = fi D̂i (4.3.11)

and the mass will be:

m2
Z ′ = g 2

hid

M 2
P

4π2
q2 j (Ktree) j k q2k (4.3.12)
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Since the charge qi j of the 2-form Q j
2 (recall (4.2.7)) under the U (1) living on the divisor Di is:

qi j =
∫

Di

D̂ j ∧F = fk ki j k =⇒ q2i = f k k2i k (4.3.13)

and that the only non-zero k2 j k intersection number is k122 (ki j k is symmetric in all indices), we
see that the mass becomes the sum of two contributions:

m2
Z ′ = g 2

hid

M 2
P

4π2

�
q2

21(Ktree)11+ q2
22(Ktree)22

�
= g 2

hid

M 2
P

4π2

�
( f2k122)

2

τ2
1

+
2( f1k122)

2

τ2
2

�
(4.3.14)

This means that depending on which fluxes we turn on, we will have a different mass for the
hidden gauge boson. However, we can immediately note that if both ( f2, f1) 6= (0,0), then the
second term is suppressed with the respect to the first due to the anisotropic limit τ2� τ1, this
means that the case f1 6= 0, f2 6= 0 is equivalent to the case f1 = 0, f2 6= 0. With these considerations
in mind let’s analyse both cases.

Gauge flux on t2: f1 = 0

Imposing f1 = 0, we are left with:

m2
Z ′ =

2π
τ2

M 2
P

4π2

( f2k122)
2

τ2
1

=
(MP f2k122)

2

2πτ2τ
2
1

=⇒ mZ ′ =
MP f2k122p
2πpτ2τ1

(4.3.15)

We can now isolate thepτ2 from the above equation and put it into the coupling g ′, obtaining:

g ′ ∼ 8 · 10−3 τ1

f2k122

mZ ′

MP

∼ 8 · 10−21 τ1

f2k122

mZ ′

GeV
(4.3.16)

It is immediate to see that, since τ1 is small and both f2 and k122 are of order O(1), the coupling
g ′ cannot reach the desired values (4.1.7). In fact, employing the anisotropic limit, we can come
up with a lower bound for the mass as follows:

τ1

τ2

� 1 ⇐⇒ τ1� 6.4 · 10−5

(g ′)2
⇐⇒ mZ ′� 1.1 · 1024(g ′)3 GeV (4.3.17)

which brings to a phenomenologically uninteresting parameter region.

Gauge flux on t1: f2 = 0

Requiring f2 = 0, or equivalently just taking f1 6= 0 without worrying about f2, we have:

m2
Z ′ =

(MP f1k122)
2

πτ3
2

=⇒ mZ ′ =
MP f1k122p
πτ3/2

2

(4.3.18)

by substituting againpτ2 into the coupling g ′ we get:

g ′ ∼ 8 · 10−3

�
1

f1k122

mZ ′

MP

�1/3

∼ 8 · 10−9

�
1

f1k122

�1/3 � mZ ′

GeV

�1/3
(4.3.19)

By direct comparison with the relation (4.1.7), we see that they are not compatible, since in
(4.3.19) the coupling g ′ scales as the cubic root of the mass of the hidden gauge boson, while in
(4.1.7) it scales linearly with the respect to mZ ′ .
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4.3.2 Hidden Sector on D1

Wrapping a D7-brane on τ1 will generate the hidden U (1) gauge sector with the coupling given
by:

g 2
hid =

2π
τ1

(4.3.20)

To generate a mass for this U (1) gauge boson, we turn on magnetic fluxes:

F2 = fi D̂i (4.3.21)

and the mass will be:

m2
Z ′ = g 2

hid

M 2
P

4π2
q1 j (Ktree) j k q1k (4.3.22)

Since the charge qi j of the 2-form Q j
2 (recall (4.2.7)) under the U (1) living on the divisor Di is:

qi j =
∫

Di

D̂ j ∧F = fk ki j k (4.3.23)

given that the only non-zero k1 j k intersection number is k122, we thus need to turn on gauge

fluxes just on t2, namely F2 = f2D̂2, so that the mass will be of the form:

m2
Z ′ =

2π
τ1

M 2
P

4π2
(q12)

2(Ktree)22 =
(MP f2k122)

2

πτ1τ
2
2

' ( f2k122)
2

πV 2
M 2

P (4.3.24)

The kinetic mixing for a hidden sector living on τ1 with the electromagnetic gauge boson on the
visible sector is of the order:

χ ∼ gvis ghid

16π2
∼ 1.1 · 10−2

p
τ1

(4.3.25)

giving rise to a coupling g ′:

g ′ ∼ 8 · 10−3

p
τ1

(4.3.26)

For a hidden gauge boson of mass of the GeV order, we know from the figure (4.1) that the
coupling g ′ in log10 space can be of order ∼−3. In turn, from the above expression we can infer
that the modulus τ1 should be fixed at values of order:

τ1 =O(10)÷O(100) (4.3.27)

Note that we cannot require the mass of the hidden boson to be bigger than the GeV order,
namely something like 10GeV, this is because the resulting kinetic mixing would be too big,
falling in a parameter region ruled out by experiments. This can be appreciated from the figure
at page 3 of [Cic+11]. So, for a hidden gauge boson mass of mZ ′ = 1 GeV we can use the formula
giving mZ ′ via Stückelberg mechanism (4.3.24) in order to get an estimate of the volume mode:

1 GeV= mZ ′ =
( f2k122)p
πV MP ⇐⇒ V ' 1018 (4.3.28)

(we have used that natural values for the flux f2 and intersection numbers are of order unity).
We also note that once the modulus τ1 and the volume mode V are known, then the big 4-cycle
volume τ2 will be fixed.
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Fayet-Iliopoulos Term

This reasoning leads us to believe that the above stet-up could indeed reproduce the suitable pa-
rameter region we are searching for, provided we manage to correctly stabilise all the moduli at
the above values. However, as we saw previously, the fluxes for the Stückelberg mechanism give
rise to also a Fayet-Iliopoulos (FI) term, contributing to the D-term scalar potential. In our case
the FI-term will be of the form:

ξ1 =
q1 j t

j

4πV =
f2k122t2

V (4.3.29)

Considering matter fields, namely open string modes, charged with respect to the U (1), these can
contribute to a partial cancellation of the FI-term, since its behaviour will dominate the F-term
potential. The D-term potential considering one charged field will become (with charge c1):

VD =
π

τ1

(c1|φ|2− ξ1)
2+m2

φ|φ|2 (4.3.30)

The VEV of the matter field is readily obtained:

∂ VD

∂ φ

����〈|φ|〉 = 0 ⇐⇒ 〈|φ|〉2 = ξ1

c1

− τ1m2
φ

2πc2
1

' ξ
c1

(4.3.31)

where the last equality comes from the fact that the mass of the matter field φ is of the order
the gravitino mass m2

φ
∼ m2

3/2 which is of the order O(1/V 2), so that its contribution is highly
suppressed with respect to the term ξ1. As can be noted, this results in a leading order cancellation
of the FI-term with the charged matter fields. The presence of these fields, which in general are
written as φ = |φ|e iθ with θ their axionic part, is, however, problematic for our case since the
hidden gauge boson via the Stückelberg mechanism eats a combination of the open string axion
and the closed string axion (recall Ti = τi + i bi ) (as pointed out in [Cho+11; CQV16]):

m2
Z ′ '

M 2
P

τ1

( f 2
θ + f 2

b2
) (4.3.32)

where these two terms are proportional to the open and closed string axion decay constants fθ
and fb2

given by:

f 2
θ = |φ|2 ' ξ1

f 2
bi
=
∂ 2Ktree

∂ τ2∂ τ2

' ξ 2
1

(4.3.33)

Because ξ1� ξ 2
1 (since ξ ∼pτ1/V ), then f 2

θ
� f 2

b2
, meaning that the axionic part of the charged

fields dominates over the axionic part of the Kähler moduli, resulting in a mass for the hidden
gauge boson of the order Kaluza-Klein modes:

mZ ′ 'MP
fθp
τ1

' MP

τ1/4
1

pV (4.3.34)

which is clearly too big to reproduce a mass of the order 1 GeV. Now, the presence of charged
matter fields is crucial to get D-term potential comparable to the F-term potential. As it is, the
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FI-term scales as∼ 1/V while the F-term potential in LARGE volume scenario goes like∼ 1/V 3.
The FI-term will then induce a run away for the volume mode making impossible its stabilisation
to a fixed minimum. When charged string modes are introduced to balance the FI-term, how-
ever, their axionic parts contribute too much to the mass of the hidden gauge boson, nullifying
whatever process we make to stabilise the moduli since we would still get a mass mZ ′ out of our
interesting parameter region (4.1.7). Imposing the vanishing of the FI-term, because of the sim-
plicity of the Calabi-Yau intersection numbers ki j k , would force the 4-cycle volume τ1 to go to
zero size, making the model inconsistent. A way out could be to consider the D-brane support-
ing the hidden sector to wrap a cycle of the form DD7 = D1 +D3, this would result in a more
complicated FI-term and forcing it to be zero will just fix a particular combination of 2-cycles.
Let’s see if this could work.

4.3.3 Hidden Sector on DD7 =D1+D3

The Calabi-Yau volume can be written in terms of 2-cycles as V = 1/6 ki j k t i t j t k , this means that
(4.3.1)is also equivalent to:

V = k122t1t 2
2 + k222t 3

2 + k333t 3
3 (4.3.35)

In the anisotropic limit τ2� τ1 the volume can be written as V 'pτ1τ2−τ3/2
3 (without worry-

ing about intersection numbers and taking into account that the 2-cycle t3 will be fixed negative
by the Kähler cone constraints) and the diagonal part of the Kähler metric will be:

(Ktree)i j =
∂ 2Ktree

∂ τi∂ τ j

'
τ−2

1
2τ−2

2
3(2V pτ3)

−1

 (4.3.36)

Take now the hidden gauge sector D7-brane to wrap DD7 = D1 + D3, this will have a volume
given by:

vol (DD7) =: τD7 =
∫

D1+D3

J ∧ J =
∫
Y
(D̂1+ D̂3)∧ t i D̂i ∧ t j D̂ j = τ1+τ3 (4.3.37)

Also, the coupling will just be:

g 2
D7 =

2π
τD7

=
2π

τ1+τ3

(4.3.38)

Suppose to turn on magnetic gauge fluxesF = f k D̂k which will give rise to FI-term of the form:

ξD7 =
1

4πV
∫

DD7

J ∧F = 1
4πV

∫
Y
(D̂1+ D̂2)∧ J ∧F = 1

4πV (t2 f2k122+ t3 f3k333) (4.3.39)

Imposing:
ξD7 = 0 (4.3.40)

will then fix the combination t2 f2k122+ t3 f3k333 to zero, namely the fact that the 2-cycle t2 should
be of the same order of t3 (given that the fluxes and intersection numbers are of order O(1)):

t2 ∼ t3 (4.3.41)
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In turn, from the relation τi = ∂ V /∂ t i , we see that τ1 ' t 2
2 while τ3 ' t 2

3 . This will be translated
in the relation:

τ1 ∼ τ3 =⇒ g 2
D7 ' πτ1

' π
τ3

(4.3.42)

The situation seems pretty promising at this stage, since, effectively, this set-up reduces to the case
analysed before of the D7-brane wrapping τ1 without introducing charged fields to cancel the FI-
term. What needs to be inspected is the form of the mass generated via Stückelberg mechanism
for the hidden gauge boson, given that the 4-cycle wrapped by the brane is now a combination
of D1 and D3. Using the general formula:

m2
Z ′ = g 2

D7

M 2
P

4π2
qD7 j (Ktree)i k qD7 k (4.3.43)

we see that there are two contributions given by:

qD72 (Ktree)22 qD72 =
2( f2k122)

2

τ2
2

qD73 (Ktree)33 qD73 =
3( f3k333)

2

2V pτ3

(4.3.44)

where we have used the fact that qD7 i is not zero only for i = 2,3, since:

qD7 i =
∫

DD7=D1+D3

D̂i ∧F =
∫
Y
(D̂1+ D̂3)∧ D̂i ∧ fk D̂k = q1i + q3i (4.3.45)

From the expressions in (4.3.44) and the fact that V ∼pτ1τ2 and τ2� τ1, it is clear that the first
term is subdominant with respect to the second one. The mass of the hidden boson will then just
be (using τ3 ∼ τ1):

m2
Z ′ = g 2

D7

M 2
P

4π2

3( f3k333)
2

2V pτ3

' 3(MP f3k333)
2

4πτ3/2
3 V

=⇒ mZ ′ '
p

3MP f3k333

2
p
πτ3/4

3

pV (4.3.46)

Sadly the above relation resembles a lot the mass (4.3.34) we found when we took into account
the axionic part of the charged matter fields and we can see even here that since τ3 is a small
blow-up, the above relation cannot give phenomenologically interesting masses for the hidden
gauge boson. Even if at first wrapping the hidden D7-brane on a combination of 4-cycles seemed
to be promising since it naturally led to a cancellation of the FI-term without the introduction
of "dangerous" charged matter fields, at the end, the mass generated is almost of the same order
of that generated by the charged open string modes. This can be attributed to the fact that new
charges qD7 i pop-up, coupling the R-R 4-form also to fluxes on the 2-cycle t3. Note that by look-
ing at (4.3.44) one can think to turn on gauge fluxes only on t2, while keeping f3 = 0. However,
in this case the FI-term will just depend upon t2, making it inconsistent to impose ξD7 = 0 and
falling back to the model considered before where charged matter fields were needed, giving rise
to a wrong hidden gauge boson mass.
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4.4 A Triple K3 Fibration With a Blow-Up Mode
As we said in §3.4 there are various ways to construct Calabi-Yau manifolds and the biggest
database is constructed by means of toric geometries. Also, all the relevant characteristics of
these manifolds can be explicitly calculated by means of the methods developed in [Alt+15].
Every Calabi-Yau manifold is constructed starting from a hypersurface in a toric ambient space.
What has been shown is that if the hypersurface in the ambient space is constructed from lat-
tice polytopes obeying the condition of reflexivity, then it will be a Calabi-Yau manifold. For
these construction one can refer to [Alt+15; Lou+12; KS02]. Here, we are going to consider a
Calabi-Yau three-foldY with 4 Kähler moduli embedded in toric ambient space with a triple K3
fibration, with volume mode of the form:

V = k123 t1t2t3+ k444 t 3
4 (4.4.1)

where t1, t2, t3 are bulk moduli and t4 is the 2-cycle associated to a small blow-up τ4 where non-
perturbative effects will be turned on. An example of such a Calabi-Yau is the polytope ID #1206
of the database constructed by [Alt+15]. This Calabi-Yau was also considered by Cicoli et al.
[Cic+17] as a model for fibre inflation and it has k123 = 2 and k444 = 1/3. We can then consider
this Calabi-Yau to have the same Hodge numbers as the polytope mentioned above:

(h (1,1), h (2,1)) = (4,98) =⇒ χE =−188 (4.4.2)

The 4-cycle D4 is a del Pezzo divisor d P7, while the other 4-cycles are non-del Pezzo rigid divisors,
resulting in three K3 fibrations over different P1 bases. We see that this Calabi-Yau satisfies the
two topological conditions for the existence of a LVS minimum [CCQ08a], namely the fact that
the Euler characteristic is negative (more precisely h2,1 > h (1,1) > 1) and the presence of a diagonal
blow-up mode.
The 4-cycle volumes will be given by:

τ1 =
∂ V
∂ t 1
= k123 t2t3; τ2 =

∂ V
∂ t 2
= k123 t1t3;

τ3 =
∂ V
∂ t 3
= k123 t1t2; τ4 =

∂ V
∂ t 4
= 3k444 t 2

4 .
(4.4.3)

and the constraints given by the Kähler cone (2.2.61) will impose t4 < 0. This allows to rewrite
the volume in function of these 4-cycles:

V = 1p
k123

p
τ1τ2τ3− 1p

27k444

τ3/2
4 (4.4.4)

The diagonal part of the Kähler metric in the limit τ4 � τ1,τ2τ3 (since τ4 is a small blow-up
mode which will be used to fix the volume exponentially large):

(Ktree)i j =
∂ 2Ktree

∂ τi∂ τ j

∼

τ−2

1
τ−2

2
τ−2

3

(2
p

3k444V pτ4)
−1

 (4.4.5)

We know that when we consider the Stückelberg mechanism, we need to turn on fluxes and these
in turn will generate a Fayet-Iliopoulos term of the form (4.2.38). Since we would like to bring
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us back to the promising case of §4.3.2 but without worrying about the FI-term, we are going
to wrap a D7-brane on τ1 supporting the hidden gauge sector. The Stückelberg mechanism will
also generate the following FI-term:

ξ1 =
q1 j t j

4πV =
1

4πV (q12t2+ q13t3) =
k123

4πV ( f3t2+ f2t3) (4.4.6)

where the charges are given by q1 j = k1 j k fk . We can the impose ξ1 = 0 which fixes the combina-
tion f3t2 + f2t3 = 0. This means that since f2, f3 should be of order unity, the 2-cycles t2 and t3
should be of the same order: t2 ∼ t3, leading to the 4-cycle volumes:

τ1 ' k123 t 2
2 ' k123 t 2

3

τ2 = k123 t1t3 ' k123 t1t2

τ3 = k123 t1t2 ' k123 t1t3

(4.4.7)

making:
τ2 ' τ3 (4.4.8)

in such a way that the volume mode will be of the form:

V ' 1p
k123

p
τ1τ2− 1p

27k444

τ3/2
4 (4.4.9)

which is the same as the one considered in §4.3.2, meaning that we can transpose here all the
considerations that we have made there. Namely, we could get a hidden gauge sector supported
on a D7-brane wrapping the small cycle D1 (with vol (D1) = τ1) kinetically coupled to the visible
sector supported on a small blow-up mode τvis (which is not included in the above model, but it
is supposed to be there and its presence is in fact irrelevant in the stabilisation process). As we
saw in §4.3.2 this set-up is very promising in reproducing the suitable mass and coupling of the
hidden gauge boson. We are then going to search for values of the moduli reproducing (4.3.27)
and (4.3.28). What we have to do now is to check whether the mass generated via Stückelberg
mechanism is of the right order of magnitude (without worrying about the presence of charged
fields since we are imposing the vanishing of the FI-term). Considering the general formula:

m2
Z ′ = g 2

hid

M 2
P

4π2
q1 j (Ktree) j k q1k (4.4.10)

the contributions to the mass will be:

q12 (Ktree)22 q12 =
�

k123 f3

τ2

�2

q13 (Ktree)33 q13 =
�

k123 f2

τ3

�2 (4.4.11)

and now, contrary to the case considered in §4.3.3, these two contributions will be of the same
order of magnitude since τ2 ' τ3. The resulting mass for the hidden gauge boson will be:

m2
Z ′ =

M 2
P

2πτ1

��
k123 f3

τ2

�2

+
�

k123 f2

τ3

�2�
' M 2

P

τ1τ
2
2

=⇒ mZ ′ ' MPp
τ1τ2

' MP

V (4.4.12)
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which is of the same form as (4.3.24). Thus, provided we manage to fix the modulus τ1 small,
while V of order (4.3.28), we will be able to reach the interesting parameter region given by
(4.1.7). In order to do that, we are going to wrap a D7-brane undergoing gaugino condensation on
τ4 so that a non-perturbative correction to the superpotential will be generated, thanks to which,
by also considering the (α′)-correction to the Kähler potential, a LVS potential VLVS(V ,τ4) will
appear. By the interplay between a higher order (α′)-correction which will be a function of the
modulus τ1 (found in [CLW15] and applied to a string inflationary model in [Cic+16]) and string
loop corrections, we will be able to fix τ1 to small values and the volume mode exponentially large
in function of the small blow-up mode τ4 as the LVS claims. Let’s now put all of these together.

4.4.1 (α′) and Non-Perturbative Corrections
Since τ4 is a small diagonal blow-up, we can wrap a D7-brane around it undergoing gaugino
condensation without incurring in any tension between this effect and chirality since the visible
sector is supported on a D7-brane wrapped around another blow-up with volume τvis (see §3.2).
This will then generate a correction to the superpotential of the form:

δWnp =A4e−a4T4 (4.4.13)

where we are discarding higher order contributions of the form e−2a4T4 , e−3a4T4 , ... by demanding
a4τ4� 1. Using (3.2.7)we can infer that the correction to the scalar potential will be of the form
(where here (Ktree)44 = ∂

2Ktree/∂ T 2
4 = (1/4)∂

2Ktree/∂ τ
2
4):

δVnp = eK((Ktree)44)
−1

�
A2

4a2
4 e−2a4τ4 − 1

2
W0A4a4

∂ Ktree

∂ τ4

(e−a4T4 + e−a4T 4)
�

=
eKcs gs

2V 2
(8
Æ

3k444V pτ4)
�

A2
4a2

4 e−2a4τ4 − 1
2

W0A4a4

p
τ4p

3k444V
e−a4τ4(e ia4 b4 + e−ia4 b4)

�
=

eKcs gs

2

 
8
p

3k444 A2
4a2

4 e−a4τ4
p
τ4

V − 4W0A4a4τ4e−a4τ4

V 2
cos(a4b4)

!
(4.4.14)

In the above expression we see that it appears the axionic part b4 of the Kähler modulus T4. We
can fix it by:

∂ Vnp

∂ b4

����〈b4〉
= 0 ⇐⇒ sin(a4〈b4〉) = 0 ⇐⇒ 〈b4〉= nπ

a4

; n ∈Z (4.4.15)

The non-perturbative potential, with the correct pre-factor (see the appendix of [Bur+10]) will
then be (in MP -units):

δVnp =
eKcs gs

8π

�
c
p

xe−2x

V − b xe−x

V 2

�
(4.4.16)

with the following definitions:

x := a4τ4

b := 4W0A4

c := 8
Æ

3k444 A2
4a3/2

4

(4.4.17)
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Taking into account (α′)-corrections to the Kähler potential given by (3.2.15), namely of the form
(again with the correct pre-factor):

δV(α′) ' eKcs gs

8π

�
3ξ |W0|2
4g 3/2

s V 3

�
(4.4.18)

together with the non-perturbative corrections, we get to the LVS potential:

VLVS(V ,τ4) = δVnp+δV(α′) =
eKcs gs

8π

�
c
p

xe−2x

V − b xe−x

V 2
+

3ξW 2
0

4g 3/2
s V 3

�
(4.4.19)

As we can see, we have found a potential term for the volume mode V and the blow-up modulus
τ4, without any contribution for the modulus τ1. We could then stabilise at this order the above
mentioned moduli, and then employ string loop corrections and higher order (α′)-corrections to
stabilise at the next order τ1. However, with a bit of prescience, the contribution of string loop
and higher order (α′) corrections cannot be completely ignored in the stabilisation of τ4 and V ,
since, even if its contribution to τ4 is small, it will have a significant contribution to the volume
mode (because it will be fixed at an exponentially large value in function of the blow-up τ4 as the
LVS prescription predicts). We will then stabilise all the moduli at the order of the string loop
corrections.

4.4.2 String Loop Corrections and Higher Order (α′)-Corrections

In order to fix the VEV of τ1, we consider the string loop corrections presented in §3.2.3. As
we saw, there are two kind of contributions that can arise: corrections due to the exchange of
Kaluza-Klein modes between D7-branes and D3-branes and/or corrections due to the exchange
of winding modes between intersecting (stacks of) D7-branes. The former are given by:

δV KK
(gs )
= g 2

s

�
gs e

Kcs

8π

�
W 2

0

V 2

∑
i

(C KK
i )

2(Ktree)i i (4.4.20)

with (Ktree)i i = ∂
2Ktree/∂ T i∂ T i = (1/4)∂ 2Ktree/∂ τ

i∂ τ i . While the latter will be:

δV W
(gs )
=−

�
gs e

Kcs

8π

�
W 2

0

V 2

∑
i

2C W
i

V (ai j t j )
(4.4.21)

where ai j t
j is the 2-cycle where the D-branes intersect.

If we wrap D7-branes on every 4-cycle τi and consider the existence of a D3-brane thanks to
which the exchange of Kaluza-Klein modes can take place, we will get the following contributions
(for i , j , k = 1,2,3):

δV KK
(gs ),τi

=
gs e

Kcs

8π
∆1

V 2τ2
i

; ∆i =
(gs C

KK
i )

2W 2
0

4

δV W
(gs ),τi∩τ j

=− gs e
Kcs

8π
Ξk

V 3tk

; i 6= j 6= k; Ξk = 2W 2
0 C W

k

(4.4.22)
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and:

δV KK
(gs ),τ4

=
gs e

Kcs

8π
44

2
p

3k444V 3pτ4

(4.4.23)

In the stabilisation of τ1, this last term won’t contribute, so clearly we are not considering it in
the following discussion. The other terms can be manipulated considering the fact that τ2 ' τ3
and τ4� τ1� τ2 making the volume of the form V ∼ pτ1τ2 ∼ pτ1τ3. Using these facts, the
Kaluza-Klein corrections can be re-written as:

δV KK
(gs ),τ1

=
gs e

Kcs

8π
∆1

V 2τ2
1

; δV KK
(gs ),τ2
' gs e

Kcs

8π
∆2τ1

V 4
; δV KK

(gs ),τ3
' gs e

Kcs

8π
∆3τ1

V 4
(4.4.24)

while the winding corrections become:

δV W
(gs ),τ1∩τ2

'− gs e
Kcs

8π
Ξ3

V 3pτ1

; δV W
(gs ),τ1∩τ3

'− gs e
Kcs

8π
Ξ2

V 3pτ1

; δV W
(gs ),τ2∩τ3

'− gs e
Kcs

8π
Ξ3τ1

V 4
;

(4.4.25)
The resulting scalar potential for τ1 is given by the sum of all the above contributions, leading to
the following:

δV(gs )
(τ1,V ) = gs e

Kcs

8π

�
∆1

V 2τ2
1

+
∆233τ1

V 4
− Ξ23

V 3pτ1

�
(4.4.26)

where clearly:
∆233 =∆2+∆3−Ξ3; Ξ23 = Ξ2+Ξ3 (4.4.27)

If we minimise this potential with respect to τ1, we get:

∂ δV(gs )

∂ τ1

����〈τ1〉,〈V 〉
= 0 ⇐⇒ 〈τ1〉−3/2 =

Ξ23

8∆1〈V 〉
 

1+ sgn(B)

√√√32∆1∆233

Ξ23

+ 1

!
(4.4.28)

where sgn(B) is the sign-function.
Natural values for the loop coefficients C KK

i and C W
k are of order O(1), and from the above

expression, we see that 〈τ1〉 ∼ 〈V 〉2/3. This relation is problematic, since we are seeking a stabili-
sation which will make τ1 small, certainly not of the same order of the volume. This brings us to
try a different set-up of string loop corrections and eventually taking into consideration higher
order (α′)-corrections thanks to which we will be able to fix τ1 small.

D7-brane Wrapping τ1 and τ2, Without D3-branes

If there are no D3-branes, corrections induced by the exchange of Kaluza-Klein modes do not
appear. We are then left with the correction induced by winding modes exchanged in the inter-
section τ1 ∩τ2:

δV W
(gs ),τ1∩τ2

'− gs e
Kcs

8π
Ξ3

V 3pτ1

(4.4.29)

This set-up is represented in the figure (4.4). Needless to say, the above contribution alone cannot
be used to fix the modulus τ1 to a finite value. In addition to the loop correction we are then
going to consider higher order (α′)-corrections coming from terms of the form F 4O(α′3) in the
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Non-perturbative Corrections:

Winding String Loop Corrections:

With Gauge Coupling:

Figure 4.4: Pictorial representation of the Calabi-Yau volume in terms of 2-cycles (represented as
segments) and 4-cycles (represented as surfaces) with the blow-up modulus τ4 which has the effect
of decreasing the effective volume, making it of Swiss cheese type. It is also shown the origin of
the non-perturbative and gs -string loop corrections, as well as the place where the hidden gauge
sector is supported.

10D supergravity action. These type of subleading corrections were computed by Ciupke, Louis,
and Westphal [CLW15] and take the following form:

δVF 4 =−
�

gs e
Kcs

8π

�2 λW 4
0

g 3/2
s V 4

Πi ti (4.4.30)

where the Πi s are topological integers defined as:

Πi =
∫
Y

c2(TY )∧ D̂i (4.4.31)

with c2(TY ) the second Chern class of the Calabi-Yau manifold Y with Kähler form J = ti D̂i
and from appendix A we see that c2(TY )∝ tr(R2)− (tr(R))2 with R = Ri j d z i ∧ d z j be the
curvature 2-form. The natural range in which these topological numbers are defined is something
like O(1)÷O(10), as can be seen for the Calabi-Yau considered in [Cic+17] (which has the same
volume form of our Calabi-Yau). The parameter λ is an overall unknown numerical factor which
is believed to take values in the range 10−2÷ 10−3 (as can be seen by an explicit computation for
one Kähler modulus performed by Grimm, Mayer, and Weissenbacher [GMW18]).
When applied to our Calabi-Yau, the VF 4 term will become:

δVF 4 =−
�

gs e
Kcs

8π

�2 λW 4
0

g 3/2
s V 4

(Π1t1+Π2t2+Π3t3)

'−
�

gs e
Kcs

8π

�2 λW 4
0

g 3/2
s V 4

�
Π1
V
τ1

+Π23
p
τ1

� (4.4.32)

with:
Π23 =Π2+Π3 (4.4.33)
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The scalar potential for the modulus τ1 will be:

δV (τ1,V ) = δV(gs )
+δVF 4 =− gs e

Kcs

8π
1
V 3

�
Ξ3p
τ1

− |Θ1|
τ1

+
Π23
p
τ1

V
�

(4.4.34)

with:

|Θ1| := eKcs |λ|W 4
0 Π1

8πpgs

(4.4.35)

The minus sign before the term |Θ1| appears because the parameter λ=−|λ| is negative as can be
inferred from the explicit computation provided in [GMW18]. Minimising the above potential
considering that the volume will be fixed exponentially large, leads to:

∂ δV
∂ τ1

����〈τ1〉,〈V 〉
= 0 ⇐⇒ 〈τ1〉= 4Θ2

1

Ξ2
3

+O
�

1
V 1/2

�
=
�

eKcsλW 2
0 Π1

8πpgs C
W
3

�2

(4.4.36)

We can also verify that it is indeed a minimum by computing the second derivative:

∂ 2δV
∂ τ2

1

����〈τ1〉,〈V 〉
∝− 3Ξ3

4〈τ1〉5/2 −
2Θ1

〈τ1〉3 =
−3

p〈τ1〉Ξ3+ 8|Θ1|
4〈τ1〉3 =

−6|Θ1|+ 8|Θ1|
4〈τ1〉3 > 0 (4.4.37)

Integrating out the modulus τ1, namely substituting its VEV into its contribution δV to the
scalar potential V , we get:

δV =− gs e
Kcs

8π
Ξ2

3

4|Θ1|V 3
(4.4.38)

What we have to do now, is stabilise the other directions, namely τ4 and the volume mode V ,
also we can see that the effect of fixing τ1 is a shift in the term 3ξW 2

0 /4g 3/2
s V 3 coming from (α′)

corrections.

4.4.3 Stabilisation of V and τ4

Now that we have stabilised τ1, we can consider the resulting scalar potential (where we recall
that x = a4τ4):

V (x,V ) =VLV S +δV =
gs e

Kcs

8π

�
c
p

xe−2x

V − b xe−x

V 2
+

3ξW 2
0

4g 3/2
s V 3

− Ξ2
3

4|Θ1|V 3

�
(4.4.39)

and by defining:

Λ :=
3ξW 2

0

4g 3/2
s

− Ξ2
3

4|Θ1| (4.4.40)

we get to:

V (x,V ) = gs e
Kcs

8π

�
c
p

xe−2x

V − b xe−x

V 2
+
Λ

V 3

�
(4.4.41)

Let’s now minimise the above potential in order to see if we can find suitable minima for τ4 and
V . The critical points will be given by the solutions of:

∇V |〈x〉,〈V 〉 = ~0 (4.4.42)
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namely:
∂ V
∂ x

����〈x〉,〈V 〉 = 0 ⇐⇒ V = 2b e 〈x〉(−1+ 〈x〉)p〈x〉
c(−1+ 4〈x〉) ' b e 〈x〉

p〈x〉
2c

(4.4.43)

∂ V
∂ V

����〈x〉,〈V 〉 = 0 ⇐⇒ c e−2〈x〉〈V 〉2p〈x〉− 2b e−〈x〉〈V 〉〈x〉+ 3Λ
〈V 〉4 = 0 (4.4.44)

now, using the approximate form of the volume mode (4.4.43) we obtain:

12c3e−4〈x〉(b 2〈x〉3/2− 4cΛ)
b 4〈x〉2 = 0 ⇐⇒ 〈x〉 '

�
4cΛ
b 2

�2/3

(4.4.45)

And the volume mode becomes:

〈V 〉 ' b
2c

e (4cΛ/b 2)2/3
�

4cΛ
b 2

�1/3

(4.4.46)

realising the exponentially large volume required by the LARGE volume scenario stabilisation
mechanism. If we try to evaluate the potential (4.4.41) in the approximate minima 〈x〉 and 〈V 〉,
we obtain (by plugging (4.4.43) back into (4.4.41) and using 4.4.45):

V (〈x〉, 〈V 〉) = 1
〈V 〉3

 
b
p〈x〉
2c

�
b
p〈x〉
2c

�2

− b 〈x〉 b
p〈x〉
2c

+Λ

!
=

1
〈V 〉3

�
− b 2〈x〉3/2

4c
+

b 2〈x〉3/2
4c

�
= 0

(4.4.47)

This means that we can’t say whether our expectation values provide a de Sitter or Anti-de Sitter
minimum. In order to extrapolate this information, we should take into account the exact form
of (4.4.43), namely:

〈V 〉= 2b e 〈x〉(〈x〉− 1)
p〈x〉

c(4〈x〉− 1)
(4.4.48)

in this way, from (4.4.44) we will obtain an expression for Λ:

Λ=
4b 2〈x〉5/2(〈x〉− 1)

c(4〈x〉− 1)2
(4.4.49)

From the above relation, since x� 1 and c > 0, we see thatΛ> 0, which means that the following
condition must be satisfied:

Λ=
3ξW 2

0

4g 3/2
s

− Ξ2
3

4|Θ1| =
3ξW 2

0

4g 3/2
s

�
1− 32πg 2

s (C
W
3 )

2

3 eKcs |λ|ξW 4
0 Π1

�
> 0 ⇐⇒ 1>

32πg 2
s (C

W
3 )

2

3 eKcs |λ|ξW 4
0 Π1

(4.4.50)

Now, by substituting the (4.4.49) and (4.4.48) back into the potential, we finally obtain:

V (〈τ1〉, 〈x〉, 〈V 〉) =−2b 2〈x〉3/2(〈x〉− 1)
c〈V 〉3(4〈x〉− 1)2

· gs e
Kcs

8π
(4.4.51)

As we can see, since 〈x〉 � 1, the minimum that we found is Anti-de Sitter, V < 0, this means
that we will have to employ an uplift mechanism in order to get a de Sitter vacuum.
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4.4.4 Considerations on Gravitino Mass and Free Parameters of the The-
ory

The LARGE Volume Scenario vacua in general lead naturally to an intermediate string scale,
namely:

Ms ' 1011 GeV (4.4.52)

since via the relation (see appendix B of [CQV16]):

1
`s

=Ms =
g 1/4

s MPp
4πV (4.4.53)

and for values of V ' 1012 and gs ' 10−1, we indeed get (4.4.52). The gravitino mass in these type
IIB compactifications is generally given by the following leading order expression:

m3/2 ' eK/2|W |=
È

gs

8π
MPW0

V (4.4.54)

And in our case, we see that if we want to reproduce a volume of the magnitude V ' 1018, with
the string coupling gs = 0.1, we have:

m3/2 ' 0.151 ·W0 GeV (4.4.55)

In order to reproduce TeV scale supersymmetry, we are then fixing the value of W0 to the order:

W0 =O(104) (4.4.56)

leading to a gravitino mass of the TeV scale: m3/2 =O(1TeV).

Consistency Conditions - Neglect of Stringy Kaluza-Klein Modes

What we have to check is if these parameters are consistent with the supergravity approximation.
Since we are discarding Kaluza-Klein (KK) massive modes when considering the 10D supergravity
action (1.4.5), we should check whether the resulting vacuum energy V0, once all the moduli have
been stabilised at their VEVs, is much smaller than the KK modes [CQS05]:

|V0| � m4
KK (4.4.57)

Now, the precise value of mKK is unknown, but by making use of toroidal compactifications, one
can at least infer its scaling. In fact when one compactify the 10-dimensional manifold in which
strings propagate on a circle, one can see that the tower of Kaluza-Klein massive modes is given
by:

m2
KK =

��n
R

�2
+
�wR
α′

�2�
(4.4.58)

where n is the KK momentum and w is the winding number. In order to get the mass scale for
general compactifications, we can consider R= Rs`s with R� 1, so that:

mKK ∼ Ms

Rs

; mW ∼ (2π)2Rs Ms (4.4.59)
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For a Calabi-Yau Y with anisotropic compactification as in our case, the lightest Kaluza-Klein
mode will scale as [CQS05]:

m4
KK ∼ M 4

s

τbig

∼ M 4
P

V 2τbig

(4.4.60)

This means that we can already see whether the condition (4.4.57) is satisfied or not. In fact,
we are searching for values of the volume mode of order V ' 1018 and of the small modulus
τ1 =O(100). Since we have that effectively V 'pτ1τ2, it means that the biggest 4-cycle τ2 will
be of order:

τ2 =O(1017) (4.4.61)

Using then the values of:
V = 1018; τ2 = 1017; (4.4.62)

we see that by combining (4.4.51) with (4.4.57) and (4.4.60) we get to an upper bound for W0
roughly of (we recall that the potential was in units of MP ):

V0 ∼ gs

8π

M 4
PW 2

0

V 3
� M 4

P

V 2τ2

⇐⇒ W0�O(10) (4.4.63)

Which seems to be incompatible with our choice of W =O(104). However, we should note that
after the uplift, the resulting vacuum energy density will be of order the cosmological constant,
namely almost zero. In turn, the condition (4.4.57) will always be satisfied even for large value
of W0.

Consistency Conditions - Decoupling of Particle Masses

In order to get a trustable supergravity approximation, we also need to require/check a separation
between the masses. Starting from the complex structure moduli, from [CQS05]we see that these
masses will scale as:

mcs ∼ MspV (4.4.64)

which means that the ratio mKK/mcs will be indeed much greater than 1:

mKK

mcs

∼ 1
V 1/3
� 1 (4.4.65)

thanks to the fact the volume will be fixed at an exponentially large value and of order O(1018).
What can be seen is that a hierarchy of the following form appear:

m3/2� mKK �Ms �MP (4.4.66)

with the soft masses of order the gravitino mass.

Fixing the Parameters

We can already see whether this stabilisation leads to the searched VEVs for the moduli fields
using natural values for the constants in play before employing the uplift mechanism. We then
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fix W0 = 104 and gs = 0.1 due to the above considerations on TeV scale supersymmetry. If we fix
the other parameters to the seemingly most natural values2:

A4 = 1; a4 = 2π; C W
3 = 1; f2 = 1; f3 =−1

eKcs = 1; ξ =
188 · 1.2
2(2π)3

; |λ|= 10−3; k444 =
1
3 Π1 = 1

(4.4.67)

from (4.4.36) and by numerically solving (4.4.48) and (4.4.49) we get:

〈τ1〉 ' 1.58 · 108; 〈x〉 ' 49.0; 〈V 〉 ' 2.09 · 1024 (4.4.68)

We can see that these values are not compatible with our requirements (4.3.27) and (4.3.28). If we
play around with the values of the winding loop coefficient C W

3 and the λ, we see that by taking
them as:

C W
3 = 50; |λ|= 10−4 (4.4.69)

while leaving all the other parameters fixed, we get to the following VEVs for the moduli:

〈τ1〉 ' 633; 〈x〉 ' 42.8; 〈V 〉 ' 4.14 · 1021 (4.4.70)

These are indeed closer to our searched values, but not closed enough. We would like then to
study a bit the parameter space given by the pairs (C W

3 , |λ|). First of all we note that little changes
in these parameters can result in a big variation in the moduli’s VEVs as can be appreciated in
the figure (4.5). We see, there, that many values of C W

3 and |λ| can reproduce a volume of the
order V ' 1018 and a small modulus τ1 of order O(100). In fact, the points in the intersection
of 〈x(C W

3 , |λ|)〉 with the horizontal plane z = 34.6 (i.e. the pairs (C W
3 , |λ|) making 〈x〉 ' 34.6)

represents the values which give rise to a volume of 1018, and we can see that for for such pairs
the modulus τ1 is of the right order of magnitude. If we want to find the best values for C W

3 and
|λ|, we can impose by hand:

Λ=
4b 2〈x〉5/2(〈x〉− 1)

c(4〈x〉− 1)2
〈τ1(C

W
3 , |λ|)〉= 300

1018 = 〈V 〉= 2b e 〈x〉(〈x〉− 1)
p〈x〉

c(4〈x〉− 1)

(4.4.71)

and by numerically solving this system (which are 3 equations in three unknowns: 〈x〉,C W
3 and

|λ|) with the other parameters fixed as in (4.4.67), we get the following values:

C W
3 ' 76.4; |λ| ' 1.05 · 10−4; 〈x〉= 34.63 (4.4.72)

2We note here that the combinations of all possible values of the free parameters are clearly infinite, but these
values are, however, fixed for each Calabi-Yau manifold, brane set-up and fluxes. In phenomenological models they
are considered as free parameters since their exact values are either unknown or left as free in order to not restrict the
study to any particular case, leaving the considerations as general as possible since phenomenological requirements
will indeed guide the best configuration. Some of these parameters likeΠi , λ, eKcs , etc.. have been calculated, allowing
us to infer what kind of ranges should be more natural to consider than others.
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Figure 4.5: 3D plot of the stabilised moduli 〈τ1〉 (orange) and 〈x〉 (blue) in function of the winding
loop coefficient C W

3 ∈ [1,100] and |λ| ∈ [10−5, 10−4]. It is also displayed the plane z = 34.6 (green)
which enables to visually see the parameters’ pairs making 〈x〉 = 34.6 which in turn leads to a
volume of the order O(1018).

A posteriori the value of 〈x〉= 34.63 justifies our previous choice of the plane z = 34.6 in figure
(4.5), claiming that it would have led to a volume of the order O(1018).
Choosing τ1 = 300 leads, through (4.3.26), to the following coupling:

g ′ ∼ 4.62 · 10−4 (4.4.73)

In log10 space, we have log10 g ′ '−3.3 which, by looking at the heat map (4.1), is compatible with
a mass of the hidden gauge boson of 1 GeV. Also the values of C W

3 and λ (4.4.72) do not seem
to actually deviate much from their expected natural values. We can also compute the vacuum
energy through (4.4.51), obtaining:

V (〈τ1〉, 〈x〉, 〈V 〉)'−3.61 · 10−49 (4.4.74)

as the figure (4.6) shows.

4.4.5 Uplifting to a De Sitter
The vacuum state of our universe seems to be of de Sitter type since our universe is expanding
with a non zero acceleration attributed to the existence of a positive vacuum energy density,
namely a positive cosmological constant. In LVS models with the stabilisation techniques we
have mentioned, one inevitably lands on an Anti-de Sitter space once all the moduli have been
stabilised at their vacuum expectation values. In order to reproduce a de Sitter universe, addi-
tional terms contributing positive energy density should be considered. In the KKLT scenario
[Kac+03], the authors brought into the scene anti-D3-branes which in their models allowed to
uplift the vacuum to a de Sitter. However, there are other ways to do the exact same job, for ex-
ample one can exploit T-branes [CQV16], Dilaton-dependent non-perturbative effects [Cic+12]
or non-vanishing F-terms due to the fluxes introduced to fix the complex structure moduli and
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V

Figure 4.6: Plot of the potential V (V ) in function of the volume V once the other moduli τ1
and x = a4τ4 have been fixed. It is evident its metastable minimum with a negative value of the
energy density.

the axio-dilaton [Gal+17]. In this work, we are going to employ the latter uplifting technique,
namely we will follow the road smoothed out by Gallego et al. [Gal+17]. In §3.1 the stabilisa-
tion of the axio-dilaton S and the complex structure moduli U α led us to impose at tree-level the
supersymmetric conditions DSW = DU W = 0, which allowed us to fix S and U at their vac-
uum expectation values 〈S〉 and 〈U 〉. However we can introduce a small amount of flux-induced
supersymmetry breaking for these moduli by imposing:

FI :=DI W = εW fI (4.4.75)

with ε� 1, fI a unit vector and I = S, U α. By introducing this new supersymmetry-breaking
term for the axio-dilaton and complex structure moduli, it could be possible that the compactifi-
cation is spoiled since the following term will appear in the scalar potential:

δVdS =
gs e

Kcs

8π
FI F Ī

V 2
(4.4.76)

Since FI F Ī ∼ |W |2 the new term could cause a dangerous run-away for the volume mode. How-
ever if it is suitably small, FI F Ī can provide an uplifting for the Large Volume Scenario potential
from Anti-de Sitter to a de Sitter vacuum. In order to develop this behaviour the ε coefficient
must be taken of the order:

ε=O
�

1pV
�

(4.4.77)

The total scalar potential considering all the contributions (non-perturbative effects via gaugino
condensation on the brane wrapped around τ4, (α

′)-corrections, string loop corrections, higher
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order (α′)-corrections and this new term) will result in:

V (τ1, x,V ) = δVn p +δV(α′)+δV(gs )
+δVF 4 +δVdS

=
gs e

Kcs

8π

�
c
p

xe−2x

V − b xe−x

V 2
+

3ξW 2
0

4g 3/2
s V 3

− Ξ3

V 3pτ1

+
|Θ1|
V 3τ1

− Π23
p
τ1

V 4
+
ε2W 2

0

V 2

�
(4.4.78)

where x, b and c are defined as (4.4.17) The critical points for the potential will be given by the
vanishing of the gradient:

∇V |〈τ1〉,〈x〉,〈V 〉 =
~0 ⇐⇒



∂ V
∂ τ1

����〈τ1〉,〈x〉,〈V 〉
= 0

∂ V
∂ x

����〈τ1〉,〈x〉,〈V 〉
= 0

∂ V
∂ V

����〈τ1〉,〈x〉,〈V 〉
= 0

(4.4.79)

The stabilisation of the τ1 modulus goes precisely as before since the newly added term does not
carry any factor which is function of τ1:

∂ V
∂ τ1

����〈τ1〉,〈x〉,〈V 〉
= 0 ⇐⇒ 〈τ1〉= 4Θ2

1

Ξ2
3

+O
�

1
V 1/2

�
=
�

eKcsλW 2
0 Π1

8πpgs C
W
3

�2

(4.4.80)

This means that the potential we will be using to minimise x and V is just:

Ṽ (V , x) =
gs e

Kcs

8π

�
c
p

xe−2x

V − b xe−x

V 2
+
Λ

V 3
+
ε2W 2

0

V 2

�
(4.4.81)

where we have defined Λ as before in (4.4.40).
So, as far as the stabilisation of x and V is concerned, we have:

∂ Ṽ
∂ x

����〈x〉,〈V 〉 = 0 ⇐⇒ e−〈x〉 =
2b (−1+ 〈x〉)p〈x〉
c(−1+ 4〈x〉)〈V 〉

∂ Ṽ
∂ V

����〈x〉,〈V 〉 = 0 ⇐⇒ Λ+ 2
3ε

2W 2
0 〈V 〉= 4b 2(−1+ 〈x〉)〈x〉5/2

c(1− 4〈x〉)2

(4.4.82)

Plugging these expressions back in (4.4.81) we obtain:

Ṽ =
gs e

Kcs

8π
1

3〈V 〉3
�
−6b 2(−1+ 〈x〉)〈x〉3/2

c(1− 4〈x〉)2 + ε2W 2
0 〈V 〉

�
(4.4.83)

and since we are seeking a non-negative vacuum, the condition Ṽ (〈x〉, 〈V 〉)≥ 0 gives:

6b 2(−1+ 〈x〉)〈x〉3/2
c(1− 4〈x〉)2 ≤ ε2W 2

0 〈V 〉 (4.4.84)
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To this, we can add another constraint, namely the fact that the squared mass of the volume
mode should be strictly positive. To this end, we can calculate the Hessian matrixH (Ṽ ) of the
potential (4.4.81) and evaluate it in the critical point (〈V 〉, 〈x〉):

2
V 5

�
−2b 2〈x〉3/2(1+ 〈x〉− 2〈x〉2)

c(1− 4〈x〉)2 − ε2W 2
0 〈V 〉

�
−2b 2(−1+ 〈x〉)2p〈x〉

c〈V 〉4(−1+ 4〈x〉)

−2b 2(−1+ 〈x〉)2p〈x〉
c〈V 〉4(−1+ 4〈x〉)

b 2(−1− 2〈x〉+ 9〈x〉2− 14〈x〉3+ 8〈x〉4)
c〈V 〉3(1− 4〈x〉)2p〈x〉


Its eigenvalues will be the squared masses of the volume and τ4 (x = a4τ4) modes. In order to
get an approximate but still reliable form for the mass squared eigenvalues, we can consider that,
once diagonalized, it will be of the form:

D =
�

m2V 0
0 m2

x

�
(4.4.85)

The cross-terms in the matrix for the mass of the blow-up x = a4τ4 do not contribute much since
they lead to very small corrections [Gal+17]. The squared mass for x will then be given by:

m2
x =

∂ 2Ṽ
∂ x2

����〈V 〉,〈x〉 = b 2(−1− 2〈x〉+ 9〈x〉2− 14〈x〉3+ 8〈x〉4)
c〈V 〉3(1− 4〈x〉)2p〈x〉 (4.4.86)

In this way, since the determinant is invariant upon diagonalization, we can see that:

det(H (Ṽ )) = det(D) = m2
V ·m2

x ⇐⇒ m2
V =

det(H (Ṽ ))
m2

x

(4.4.87)

resulting in:

m2
V =

2
〈V 〉5

�
6b 2〈x〉5/2(−5+ 16〈x〉− 23〈x〉2+ 12〈x〉3)

c(1−〈x〉)2(1+ 3〈x〉− 6〈x〉2+ 8〈x〉3) − ε
2W 2

0 〈V 〉
�

(4.4.88)

Because this mass squared must be non-negative, together with (4.4.84), we get two conditions
bounding the value of ε:

6b 2x5/2(−5+ 16〈x〉− 23〈x〉2+ 12〈x〉3)
c(1−〈x〉)2(1+ 3〈x〉− 6〈x〉2+ 8〈x〉3) > ε

2W 2
0 〈V 〉

6b 2(−1+ 〈x〉)〈x〉3/2
c(1− 4〈x〉)2 ≤ ε2W 2

0 〈V 〉
(4.4.89)

Now, by a simple manipulation, the final condition can be written as:

1≤ c(1− 4〈x〉)2
6b 2(−1+ 〈x〉)〈x〉3/2 · ε

2W 2
0 〈V 〉< 〈x〉(5− 11〈x〉+ 12〈x〉2)

1+ 3〈x〉− 6〈x〉2+ 8〈x〉3 (4.4.90)

Now, the far right term, asymptotically (for x → ∞) tends to 3/2 and this means that there
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Figure 4.7: Plot of the potential V (V ) once the moduli τ1 and τ4 have been fixed at their VEVs
using the uplifting term.

will always be a region for ε to be chosen in order to make the uplift happen. From the second
equation of (4.4.82) we see that we cannot determine, even numerically, the value of 〈x〉 since the
uplifting parameter ε appears. What we can do is, however, stabilise x as before by discarding the
uplifting term 2/3ε2W 2

0 V . Is seems reasonable to do that since from the considerations we made
before on the order of ε, namely ε=O(1/

pV ), we see that the term in Λ should dominate over
it. In a first approximation we can then stabilise x using again (4.4.49), and then numerically solve
the second equation of (4.4.82) for the volume mode taking, then, into account the uplifting term.
Using the values (4.4.67) with C W

3 and |λ| as in (4.4.72) and (with some prescience in choosing ε
since we know that the volume mode will be of order 1018):

ε2 = 10−18 (4.4.91)

we will again obtain:
〈τ1〉= 300; 〈x〉 ' 34.63; (4.4.92)

while for the volume mode we get:

〈V 〉= 1.21 · 1018 (4.4.93)

which is in perfect agreement with our requests. Also, as we can see from the graph (4.7), the
vacuum will be of de Sitter type, in fact:

V (〈τ1〉, 〈x〉, 〈V 〉)' 2.95 · 10−48 (4.4.94)

We then managed to obtain a de Sitter vacuum for our model with the moduli stabilised at the
correct values in order to reproduce the correct mass and coupling of the hidden gauge sector
matching the values obtained in the analysis made by [Dut+19] of the energy and timing data
extrapolated by the COHERENT collaboration. We should point out that in our model there
isn’t an explicit blow-up mode supporting the visible sector. We have, in fact, tacitly considered
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Figure 4.8: Pictorial representation of our Calabi-Yau volume with the brane set-up and the pres-
ence of an additional blow-up mode τvis supporting the visible sector, with exchange of heavy
closed string modes giving rise to the kinetic mixing. In green it is also represented the intersec-
tion between the branes wrapping τ1 and τ2 where the string loop corrections arise.

that another blow-up mode τvis is present, with D7-branes wrapping it and supporting the visible
sector. Kinetic mixing as we have seen comes from integrating out heavy modes coming from
either open strings stretched between the visible and the hidden sector (in the open string channel)
or from the exchange of closed strings between these two (stack of) branes (in the closed string
channel). The emerging picture can be appreciated in figure (4.8).

Additional Considerations on the Uplift

[Here, we are always going to consider the free parameters fixed at the values (4.4.67) with C W
3 and

|λ| as in (4.4.72)]

In the evaluation of 〈x〉 in (4.4.92), we said that the uplifting term could be discarded since it
would not contribute significantly in the computation. Here, we would like to, instead, not
make any approximation of this kind and see how far we can go. Starting from (4.4.82), we see
that the value of the blow-up mode 〈x〉 is given by the vanishing locus of:

Y (〈x〉;ε) =Λ+ 2
3

W 2
0 ε

2 2b e 〈x〉(−1+ 〈x〉)p〈x〉
c(−1+ 4〈x〉) − 4b 2(−1+ 〈x〉)〈x〉5/2

c(1− 4〈x〉)2 = 0 (4.4.95)

Fixed the value of ε, the function Y does not always admits a zero, in fact, from the figure (4.9b),
we see that for ε sufficiently big, Y = 0 is never attained, while starting from a value of εmax and
taking ε < εmax, Y = 0 always admits two distinct solutions. We also present the 3D plot of Y
in function of both variables 〈x〉 and ε in figure (4.9a). If we want to find the maximum value
of ε which allows to get a real 〈x〉, from the figure (4.9b) we see that this will be given by the
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(a) 3D Plot of the function Y (〈x〉,ε) and the
plane z = 0. The intersection is clearly the locus
of the points (〈x〉,ε) satisfying Y = 0.
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(b) Plot of the function Y (〈x〉;ε) when ε has
been fixed at some different values. It can be
noted that as ε grows, from a certain value on,
there will be no solutions to Y = 0.

Figure 4.9

conditions: 
∂ Y
∂ x

����
εmax,〈x̃〉

= 0

Y |εmax,〈x̃〉 = 0

(4.4.96)

where 〈x̃〉 is the value of 〈x〉 in which the ε is the maximum value εmax such that for ε < εmax
we will have two distinct real solutions of 〈x〉. By numerically solving the system of equations
(4.4.96), it is found:

εmax ' 3.91 · 10−10; 〈x̃〉 ' 35.6 (4.4.97)

We stress that the value 〈x̃〉 is not the maximum value of 〈x〉 consistent with the de Sitter require-
ment, this can be seen by noticing (looking at figure (4.9b) that for ε < εmax one of the solutions
is indeed bigger than 〈x̃〉. We also note that our guess (4.4.91) does not satisfy this condition
ε < εmax even though we managed to find a de Sitter minimum and this is because if one tries to
solve the equation Y = 0 using the ε in (4.4.91), they will find solutions for 〈x〉 only in C. This
means that we should be more careful in the approximations we make, even though the correct
result will not deviate much from the approximate one. We can also get a lower bound 〈x〉min
such that values above it will give a de Sitter vacuum, while values below will give an Anti-de
Sitter vacuum. In fact, we can take the condition (4.4.84) and eliminate the ε by making use of
(4.4.82) to obtain:

4b 2(〈x〉− 1)2〈x〉3/2− cΛ(1− 4〈x〉)2
2c〈V 〉3(1− 4〈x〉)2 ≥ 0 (4.4.98)

Which can be numerically solved to yield:

0.231886< 〈x〉< 0.269277 ∧ 〈x〉> 35.3

Where ∧ here stands for the "or" logic. Since we are requiring 〈x〉 � 1, the only condition
surviving will be:

〈x〉min > 35.3 (4.4.99)

which corresponds to a value of ε of:

ε̃' 3.77 · 10−10 (4.4.100)
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Y(〈x〉, ϵ) = 0
〈x〉min = 35.3
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Figure 4.10: Vanishing locus of Y (〈x〉;ε), where the allowed region to obtain a de Sitter vacuum
is for pairs above the horizontal line 〈x〉= 35.3.

We can then plot the vanishing locus of Y (〈x〉;ε) in R2 which represents the compatible pairs
(〈x〉,ε)which make Y vanish, obtaining the figure (4.10). Also, we can notice that in the interval
[ε̃,εmax], for each ε∗ it will correspond two 〈x〉∗1,2 making Y (〈x〉∗1,2,ε

∗) = 0. While, for values of
ε smaller than ε̃, only one value of 〈x〉 will be compatible with the requirement of a de Sitter
vacuum.

We see that the closest value of 〈x〉 to the wanted 〈x〉= 34.63 of (4.4.92) and compatible with
the de Sitter requirement is indeed 〈x〉min = 35.3. This corresponds to the value ε̃ ' 3.77 · 10−10

and a volume mode of V ' 1.96 · 1018 which is still ok with our requirement (4.3.28). From
figures (4.11a) and (4.11b) it can be appreciated that the minimum we have found is indeed a de
Sitter one. In order to obtain an actual uplift and phenomenologically interesting values for the
moduli’s VEVs, the parameter ε should then be of order 10−10. The contribution in which the ε
appears is given by a supersymmetry breaking term caused by the fluxes introduced to stabilise
the axio-dilaton and complex structure moduli. We remind that the fluxes are constrained by the
tadpole cancellation condition (3.1.14) without the presence of D3-branes for this model, since
they would induce unwanted string loop corrections. As [Gal+17] pointed out, a small ε of
order ε =O(1/

pV ) is always possible to be achieved by a suitable tuning of continuous fluxes,
but for quantised fluxes (which are the physical ones due to the Dirac quantisation condition)
this is expected to still be true for many cycles and a large flux tadpole.
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(a) Plot of the potential V (V ) in function of the
volume mode V once the other moduli have
been stabilised and the correct uplift has been
employed, i.e. using ε= 3.77·10−10 correspond-
ing to 〈x〉 ' 35.3
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imum for the potential plotted on the left. We
can appreciate here the fact that V (〈V 〉) > 0,
obtaining a de Sitter vacuum.
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Conclusions

In this thesis we have explored the realm of string theory, starting from its very foundations to
the more recent developments in string phenomenology. Our goal was to, at the end, construct
a model supporting a hidden gauge sector with hidden gauge boson kinetically coupled to the
visible one. In our final model, for a Calabi-Yau with four Kähler moduli (three K3 fibrations
and one small blow-up) in a toric ambient space, we managed to find a suitable D7-brane configu-
ration and fluxes set-up to generate the right mass for the hidden gauge boson as well as the right
coupling to the visible sector compatible with experimental bounds (see page 3 of [Cic+11]) and
compatible with the values found by [Dut+19]. Moreover, all the moduli have been stabilised
with the free parameters all being chosen within (more or less) expected natural ranges also re-
producing TeV scale supersymmetry.
More precisely for a Calabi-Yau with volume given by four 4-cycles of the form V 'pτ1τ2τ3−
τ3/2

4 , we found for the mass of the hidden gauge boson supported on a D7-brane wrapped on τ1,
the value:

mZ ′ = 1 GeV (4.4.101)

coming from the Stückelberg mechanism as a result of the switching on of internal gauge fluxes.
The fluxes also generated a Fayet-Iliopoulos (FI) term of the form ξ = (1/4πV )( f2t3+ f3t2) (where
ti are the 2-cycles) which in principle could destabilise the stabilisation process since it dominates
the F-term scalar potential, because in general, in LVS models, the F-term scalar potential is given
by (after considering non-perturbative corrections to the superpotential and (α′)-corrections to
the Kähler potential):

VLVS(x,V )∼ c
p

xe−2x

V − b xe−x

V 2
+
Λ

V 3
∼O

� ln(V )
V 3

�
� ξ ∼O

�
1
V
�

(4.4.102)

with c , b ,Λ suitable constants and x the small blow-up mode supporting the non-perturbative
correction. Our previous model (the K3 fibration with a blow-up mode of §4.3) could not repro-
duce the suitable parameter region due to the following facts:

• If the D7-brane supporting the hidden sector was wrapped around a single divisor D1, then
we had to require the existence of charged matter fields (open string modes) which partially
would have balanced the FI-term. However, it turned out that the massive axionic parts
of these charged fields were eaten up by the hidden gauge boson, and these contribution
dominated the one furnished by the axion of the Kähler modulus, making, in turn, the
mass of the hidden boson too large.

• If the D7-brane supporting the hidden sector was wrapped around a divisor of the form
D1+D3, then we could require the vanishing of the FI-term (given that it was a combina-
tion of 2-cycles), fixing the size of the 4-cycle volumes τ3 and τ1 of the same order. This
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promising set-up quickly turned out to fail too, since the mass from the Stückelberg mech-
anism received a contribution due to the new charges qi j that came out with respect to the
previous case which were too big to reproduce the interesting parameter region.

Learning from the above attempts, we knew that the new model was free of these problems since,
there, we could have imposed the vanishing of the FI-term resulting in the fixing of a specific com-
bination of 2-cycles without generating a too large contribution in the Stückelberg mass of the
hidden boson. Once the model was found adequate to reproduce the right mass and coupling of
the hidden gauge boson, we employed all the stabilisation machinery presented in §3 to, indeed,
stabilise the Kähler moduli in such a way to reproduce the values we were seeking and also repro-
duce TeV scale supersymmetry. With the volume’s value of the Calabi-Yau we needed in order
to reproduce mZ ′ = 1 GeV, namely V = 1018, we had to consider the flux term W0 (which is the
VEV of the tree-level Gukov-Vafa-Witten superpotential) to be of order 104, and with a string
coupling of gs = 0.1 (which is the VEV of the axio-dilaton 2/gs = 〈S+ S〉) we got to a gravitino’s
mass in the TeV range:

m3/2 ' 1.51 TeV (4.4.103)

As is customary in LVS models, the stabilised moduli led us to an AdS vacuum, which we were
able to uplift to a de Sitter one by employing small supersymmetry breaking contributions com-
ing from non-vanishing F-terms, following [Gal+17]. This process leads always to a metastable
de Sitter vacuum provided one has enough freedom to choose these contributions suitably small.
Constraints may come from the tadpole cancellation condition and the complete brane set-up, it
is however believed that for a suitably large flux tadpole these values can always be found.
In conclusion we found that anisotropic compactifications of Calabi-Yau with volume of the form
V ' pτ1τ2τ3 − τ3/2

4 are particularly interesting for studying hidden gauge sectors in type IIB
string models, since they naturally lead to parameter regions interesting for phenomenological
applications. It would be interesting to explicitly construct the visible sector (whether it would
be the MSSM, or other extensions of the Standard Model) on another blow-up mode (enlarging
the Calabi-Yau volume form with the addition of another τvis), and see whether the construction
presented here can be realised when all the constraints are carefully checked.
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Appendix A

Characteristic Classes

Chern classes are particular Characteristic classes which are tools defined to see how far from trivial
a given principal bundle is, and in particular they are topological invariants. In this regard it is
first studied the so called Universal Bundle denoted by ξ (n − k − 1,O(k)), which is the O(k)-
principal bundle which has as its base space the Grassmann manifold of k-dimensional planes1:
G r (n, k ,R) =O(n)/(O(k)×O(n− k)) and as total space O(n)/O(n− k). As shown in [Ste60]
every O(k)-principal bundle P with base space M can be recovered as the pull-back bundle of
ξ (n − k − 1,O(k)) by a suitable map f : M → G r (n, k ,R). Moreover this construction can
be extended to any connected Lie group G instead of O(k), defining the universal bundle by
ξ (n, k ,G) with base space given by O(n)/(G ×O(n − k)) and total space as before. In order
to study how far a principal G-bundle P is from being trivial, a function c - which will tell how
non-trivial is the universal bundle ξ (n, k ,G) - must be developed and subsequently pulled it back
in some way to P [NS83]. What is required of this c are the following two conditions:

(i) c(P ) = c(P ′) if P and P ′ are equivalent (as principal bundles)

(ii) f ∗(c(ξ )) = c( f ∗ξ )

where P,ξ and f are defined as above.
If the object c(P ) is taken to be an element of H p(M ,R) (where M is the base space of P ), then

these two properties are satisfied. A key fact to prove these statements is that equivalent bundles
arise from homotopic maps and the pull-back bundles of homotopic maps are equivalent.

This means that if we are able to compute the characteristic class c(ξ ) ∈H p(B ,R), where B is
the base space of ξ , then we can compute the characteristic class of the bundle P by computing
the pull-back f ∗(c(ξ )) ∈H p(M ,R) if f ∗ξ = P .

1The Grassmann manifold G r (n, k ,R) is defined as the set of all k-dimensional subspaces of Rn ("set of k-
dimensional planes" is also used). In order to give a topology to this set and making it a manifold, we can consider
a map σ : O(n)→ G r (n, k ,R) which maps an orthogonal matrix A∈ O(n) to σ(A) := Aw0 where w0 ⊂ Rn is the
k-dimensional subspace spanned by {e1, ..., ek}. Considering also the Stiefel manifold

V (n, k ,R) := {(v1, ..., vk ) ∈Rn × · · ·×Rn︸ ︷︷ ︸
k−t i me s

|∑λi vi = 0 ⇐⇒ λi = 0, ∀i = 1, .., k}

which is the set of (v1, ..., vk )which are linearly independent, then we can define a map ρ : V (n, k ,R)→G r (n, k ,R)
as: (v1, ..., vk ) 7→ ρ((v1, ..., vk )) := span{v1, ..., vk} ∈ G r (n, k ,R). In this way, considering the continuous map
α : O(n)→ V (n, k ,R) defined by A 7→ α(A) := (Ae1, ...,Aek ), then we have that ρ ◦ α = σ . Using this fact, it can
be seen that G r (n, k ,R) can be represented as the left coset space O(n)/(O(k)×O(n − k). For a more complete
account of this fact see [Spi99].
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A.1 Pontrjagin, Euler and Chern Classes
Having considered a general Lie group G, we can now specialise to the most frequently encoun-
tered groups, namely O(k), SO(k) and U (k). The characteristic classes for principal G-bundles
with these Lie groups are called respectively Pontrjagin, Euler and Chern classes. The reasoning
made before can be extended in a trivial way to these groups by a suitable modification of the
universal bundle. What we do want to compute is the Cohomology of the Grassmann manifold
modified in order to take into account these different Lie groups G. Indeed we have the following
Grassmann manifolds:

(i) Pontrjagin: G r (n, k ,R) =O(n)/(O(k)×O(n− k)

(ii) Euler: G̃ r (n, k ,R) := SO(n)/(SO(k)× SO(n− k))

(iii) Chern: G r (n, k ,C) =U (n)/(U (k)×U (n− k))

and we want to compute the corresponding Cohomology groups:

(i) Pontrjagin: H i (G r (n, k ,R);R);

(ii) Euler: H i (G̃ r (n, k ,R);R);
(iii) Chern: H i (G r (n, k ,C);R)
By a complete computation (see [Spi99]) it is seen that:

(i) H i (G r (n, k ,R);R) is non-zero only if i is a multiple of 4. We will indicate the Pontrjagin
class of a bundle P with base space M as pi (P ) ∈H 4i (M ;R) (this is an abuse of notation that
we will always employ, since the cohomology groups are defined by cohomology classes,
and more precisely we should write [pi (P )] ∈H 4i (M ;R), but we it will be understood that
pi (P ) stands for the cohomology class in order to make the notion less cumbersome) and it
is calculated from the fact that f ∗H 4i (G r (n, k ,R);R) = H 4i (M ;R) if f ∗ξ = P (where ξ is
the universal bundle over G r (n, k ,R)).

(ii) H i (G̃ r (n, k ,R);R) is non-zero only if i is a multiple of 2. The characteristic classes are
still the Pontrjagin classes with the addition of a new one (provided that k is even): the
Euler class. We will indicate the Euler class of a SO(2m)-bundle P with base space M as
e(P ) ∈ H 2m(M ;R). From the fact that, taken an integer 2m, we have that the Euler class
e(P ) is a 2m-form, then e(P )∧ e(P ) is a 4m-form and thus belongs to H 4m(M ;R). In this
way, the Euler class is defined in terms of the Pontrjagin class: take the 4m-form pm(P ),
then the Euler class is defined to be the 2m-form such that e(P )∧ e(P ) = pm(P ).

(iii) H i (G r (n, k ,C);R) is non-zero only if i is a multiple of 2. We will indicate the Chern class
of a bundle P with base space M as ci (P ) ∈H 2i (M ;R).

Now that we have classified the most important characteristic classes we can try to compute
them. Leaving the details to [NS83], what can be said is that ci (P ), pi (P ) and e(P ) are all given
by polynomials in the curvature 2-form F . In the following we are going to firstly recall how a
connection and its curvature on a principal bundle arise before continuing to analyse and com-
pute characteristic classes.
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A.1.1 Connection on a Principal Bundle

Recall that for a principal G-bundle (P,π, M ,G) (with P total space, M base space, π the pro-
jection and G its structure group) we can choose a connection which is nothing but a smooth
assignment of horizontal spaces in the tangent bundle of P , in the sense that for all p ∈ P , Tp P is
split into a vertical component Vp P - whose vectors are pushed-forward by the projection π to
zero - and a horizontal componentHp P in such a way that:

(i) Tp P = Vp P ⊕Hp P ;

(ii) (/g )∗Hp P =Hp/g P ;

(iii) each smooth vector field X : P → T P can be split into two smooth vector fields: X =
Xve r +Xho r where Xve r : P →Vp P and Xho r : P →Hp P .

where we have denoted by / the action of the group G onto P .

Connection 1-form

A connection in this form is not that useful however, in fact in general it is used what is called a
connection 1-form ω, which is a differential form of degree 1 in P with values in the Lie Algebra
g of G, i.e. ω ∈Ω1(P )⊗ g. In other words taken a point p ∈ P we have that:

ωp : Tp P → g

This connection 1-form is defined by some characterising properties which match the definition
of a connection:

(i) p 7→ωp is smooth

(ii) ∀g ∈G,∀p ∈, P∀vp ∈ Tp P it is true that:

((/g )∗ω)p(vp) = (Adg−1)∗(ωp(vp)) = g−1 ·ωp(vp) · g (A.1.1)

with Adg : G→ G the adjoint map Adg (h) := g ◦ h ◦ g−1 and in the second equality it has
been taken the Lie group G to be a matrix group, namely a subgroup of the general linear
group GL(n,R) (if the dimension of P is n).

(iii) ∀A∈ g, p ∈ P we have that
ωp(X

A
p ) =A (A.1.2)

where X A is the vector field (vertical) generated by the Lie algebra element A by the flux
φ(t , p) := p / exp(tA).

Once chosen a section σ of the principal bundle, thenω can be pulled-back to the base manifold,
defining the so called gauge potential: Aσ = σ

∗ω ∈ Ω1(M )⊗ g. What is remarkable is that if we
have a gauge potential AU ∈ Ω1(U )⊗ g defined on a chart (U ,φ) and a section σ : U → P , then
there exists a unique lifted connectionω ∈Ω1(π−1(U ))⊗ g defined by:

ωπ−1(U ) = g−1(π∗AU )g + g−1d g (A.1.3)
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where those g : π−1(U )→ G allows to reach every point in the fibre π−1(π(p)) starting from
the local section by means of σ(m) / g (p) with m =π(p).
Moreover, if we have two gauge potentials AU and A′U ′ defined on two overlapping charts (U ,φ)
and (U ′,φ′) with sections σU : U → P and σ ′U ′ : U ′→ P , then these are related by:

A′U ′ = g−1
U U ′ ·AU · gU U ′ + g−1

U U ′d gU U ′ (A.1.4)

where gU U ′ : U ∩ U ′ → G are the functions relating the sections σ ′U ′ = σU / gU U ′ and σU =
σ ′U ′ / gU ′U .

Covariant Derivative and Curvature 2-form

Taken a principal bundle (P,π, M ,G) with a connection 1-form ω, we can define a covariant
derivative acting on g-valued k-forms:

D :Ωk(P )⊗ g→Ωk+1(P )⊗ g (A.1.5)

by:
(DA)p(v1, ..., vk+1) = dA(v ho r

1 , ..., v ho r
k+1) (A.1.6)

where v ho r
i are the horizontal components of vi ∈ Tp P with respect to the connectionω. Using

this covariant derivative we can define the Curvature 2-form Ω ∈Ω2(P )⊗ g as:

Ω=Dω (A.1.7)

which will satisfy ∀g ∈G:
(/g )∗Ω= g−1 ·Ω · g (A.1.8)

and an important characterisation of the curvature form is the following Cartan’s Structure Equa-
tion, ∀p ∈ P,∀vp , wp ∈ Tp P :

Ωp(vp , wp) = dωp(vp , wp)+ [ωp(vp),ωp(wp)] (A.1.9)

where [·, ·] is the commutator in the Lie algebra g.
Now, same as before, if we take a section σ : M → P , then we can pull-back the curvature 2-form
to the base manifold M , obtaining a 2-form F ∈Ω2(M )⊗ g:

F = σ∗Ω (A.1.10)

and using Cartan’s structure equation, if A= σ∗ω, then ∀m ∈M :

Fm(vm, wm) = (dA)m(vm, wm)+ [Am(vm),Am(wm)] (A.1.11)

However, it can be proved that the compatibility on overlapping charts is translated in the co-
variance of the curvature form (in contrast with the local connection 1-form):

F ′U ′ = g−1
U U ′ · FU · gU U ′ (A.1.12)

(in the same conditions as the above (A.1.4)).
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A.2 Computation of Characteristic Classes

Coming back to our characteristic classes, namely the Pontrjagin, Chern and Euler classes, we an-
ticipated that given a principal bundle (P,π, M ,G) these will be given by some polynomials in the
curvature 2-form F ∈Ω2(M )⊗g. Now, at first this could seems to be unlikely since changing the
connection on P , the curvature will also change and F will be different, but what we are seeking
is some intrinsic topological character possessed by our bundle. However the polynomials used
to define the characteristic classes are independent of the connection because these are chosen to
be invariants of the Lie algebra g. If we consider {Ti} to be the set of generators of the Lie algebra
g, then it is known that the Casimir operator defined in terms of these generators for a compact
and semi-simple Lie algebra is T 2

1 + ...+T 2
n with dim(G) = n and invariants of g are formed by

taking polynomials in the generators. All these polynomials are obtained by expanding in power
series of t the following m×m determinant (if the group is O(k), the elements of the lie algebra
o(k) will be k × k real matrices):

det

�
1+ t

∑
k

akTk

�
=

m∑
i

Pi (ak)t
i (A.2.1)

This equation defines the polynomials Pi (ak) and the invariants of g are obtained by substituting
ak with Tk , making Pi (Tk).

Chern Classes

For the case G = U (k), if we now substitute the curvature 2-form F into the polynomials in
(A.2.1) we obtain:

det
�
1+ i t

2π
F
�
=
∑

i

Pi (F )t
i (A.2.2)

where i =
p−1 has been introduced to make the Pi real and the factor of 2π to have that the ci (P )

actually determine integral cohomology classes. Now, since Pi ’s are homogeneous of degree i ,
then since F is a 2-form, Pi (F ) is a 2i -form. It turns out that the Chern class ci (P ) is given by
Pi (F ):

ci (P ) = Pi (F ) (A.2.3)

What can be proved is that indeed Pi (F ) is closed and independent of the connection 1-form A
used to compute F so that ci (P ) ∈H 2i (M ;R). In this way we have that the Chern Classes can be
computed by expanding the determinant in power series:

det
�
1+ i t

2π
F
�
=
∑

i

ci (P )t
i (A.2.4)

Pontrjagin Classes

For G =O(k), we can substitute akTk with −F /2π in (A.2.1), obtaining:

det
�
1− t

2π
F
�
=
∑

i

Pi (F )t
i (A.2.5)
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However, in this case we see that since the determinant is invariant with respect to taking the
transpose, the only surviving polynomials Pi (F ) are those with even i , in fact (using that F is a
o(k)-valued 2-form, meaning that F T =−F ):

det
�
1− t

2π
F
�
= det

�
1− t

2π
F
�T
= det

�
1+ t

2π
F
�

(A.2.6)

leading to:
(−1)m

∑
i

Pi (F )t
i =

∑
i

Pi (F )t
i =⇒ Pi (F ) = 0 ∀i odd (A.2.7)

This means that we can define the Pontrjagin classes as:

pi (P ) = P2i (F ) (A.2.8)

and since Pi (F ) are (2i)-forms, this means that the Pontrjagin classes are 4i -forms, in particular
they belongs to the cohomology groups pi (P ) ∈H 4i (M ;R).

Euler Classes

For G = SU (2k), another characteristic classes adds to the Pontrjagin’s ones and is the Euler
class. This is the (2k)-form e(P ) defined in terms of the Pontrjagin class pk(P ) ∈ H 4k(M ;R) as
follows:

e(P )∧ e(P ) = pk(P ) (A.2.9)

also, since pk(P ) = P2k(F ), then equivalently:

e(P )∧ e(P ) = P2k(F ) (A.2.10)

Explicitly, since the 2-form field F is SO(2k) valued, we can write F a
b for its matrix content with

a, b = 1, ..., 2k, then the Euler class is given by the following expression:

e(P ) =
1
(2π)k

Pfaff(F )

=
(−1)k

2k(2π)k k!
εa1,...,ak

F a1
a2
∧ · · · ∧ F a2k−1

a2k

(A.2.11)

where Pfaff(F ) is the Pfaffian of the matrix F a
b .

A.2.1 Chern Classes for SU(2) Principal Bundles
Let’s take (P,π, M , SU (2)) to be a Principal bundle with total space P , base space M , projection
π and structure group SU (2). Using the formula (A.2.4) above, we can easily compute the Chern
classes for this kind of principal bundles. The first ingredient that we can employ is the fact that
for a Hermitian operator A it is true that:

log(det(A)) = tr(log(A)) (A.2.12)

which implies that (A.2.4) can be recast as:

det
�
1+ i t

2π
F
�
= exp

�
tr
�

log
�
1+ i t

2π
F
���

(A.2.13)
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Using the expansion of log(1+M )'M −M 2/2 we get:

tr
�

log
�
1+ i t

2π
F
��
' tr

�
i t
2π

F +
t 2F 2

8π2

�
= tr

� i t
2π

F
�
+ tr

�
t 2F 2

8π2

�
(A.2.14)

and by expanding the exponential too as exp(A)' 1+M +M 2/2 the result is:

det
�
1+ i t

2π
F
�
' 1+ i t

2π
tr(F )+

tr(F 2)− tr(F )2

8π2
t 2 (A.2.15)

where we have discarded terms of order O(t 3) and since the curvature F is a 2-form with values
in the Lie algebra su(2), the square is intended to be a wedge product F 2 := F ∧ F . Comparing
the definition of Chern classes (A.2.4) with this expansion, we can infer that:

c0(P ) = 1
c1(P ) =

i
2π

tr(F )

c2(P ) =
tr(F 2)− tr(F )2

8π2

(A.2.16)

Since F ∈Ω2(M )⊗ su(2) we can write it as:

F =
F a ⊗σa

2i
=

F a
µν

4i
d xµ ∧ d x ν ⊗σa (A.2.17)

where σa are the Pauli matrices (generators of the Lie Algebra), a = 1,2,3 and we have chosen
a chart (U , x) of M with µ = 1, .., dim(M ). In this we can see that the first Chern class vanishes
since tr(σa) = 0, while the second Chern class can be rewritten as:

c2(P ) =− tr(F a ⊗σa ∧ F b ⊗σb )− tr(F a ⊗σa)∧ tr(F b ⊗σb )
32π2

=−F a ∧ F b tr(σaσb )− F a ∧ F b tr(σa)tr(σb )
32π2

=− 1
32π2

F a ∧ F b (2δab )

=− 1
16π2

F a ∧ F a =− 1
8π2

tr(F ∧ F )

(A.2.18)

where it has been used the fact that the sigma matrices satisfy: tr(σaσb ) = 2δab obtained from
the characterising property: σaσb = δab1+ iε c

ab σc .

A.2.2 Pontrjagin and Euler Classes for the Tangent Bundle

Every smooth n-dimensional manifold M admits a tangent bundle T M which is defined as the
disjoint union of all the tangent spaces at each point p ∈ M . The tangent spaces are of the same
dimension as the base manifold, namely n-dimensional. If M is a Riemannian manifold,
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Once one has the tangent spaces Tp M , one can define the so-called Reference Frame Bundle
which is a principal GL(n,R) bundle constructed as follows. Consider the set of all the frame
references for the tangent space at the point p ∈M :

Lp M :=

(e1, ..., en) ∈ Tp M × · · ·×Tp M︸ ︷︷ ︸
n−times

����{e1, ..., en} is a basis of Tp M

 (A.2.19)

By considering the disjoint union LM of all the above spaces and defining a right action:

/ : LM ×GL(n;R)→ LM (A.2.20)

with:
((e1, ..., en), R) 7→ (e1, ..., en) /R := (e1, ..., en) ·R= (ei Ri1, ..., ei Ri n) (A.2.21)

which is nothing but the matrix multiplication, the 4-tuple (LM ,π, M ,GL(n;R)) is a principal
bundle. Reducing the group GL(n,R) to O(n) (see §7 of [NS83]) amounts to a continuous as-
signment of an orthogonal frame at each point p ∈M , namely it provides an inner product on the
tangent space Tp M . We thus have provided a Riemannian metric g to the base space M , which
allows to construct a unique affine connection (Levi-Civita connection) and a curvature formR .

As an example we consider the tangent bundle T M of a 4-dimensional manifold M , which is
chosen to be Riemannian with metric g and curvature formR . The group of the bundle is the
orthogonal group O(4), which means that the Euler class e(T M ) should be a 4-form e(T M ) ∈
H 4(M ;R). The Pontrjagin classes pi (T M ) are: p0(T M ) = 1, p1(T M ) ∈H 4(M ;R) and pi (T M ) =
0 for i > 1. Since p2(T M ) = e(T M )∧ e(T M ), it could be tempting to conclude that e(T M ) = 0.
However this is not the case, in fact using the expression for the Euler class, we see that:

e(T M ) =
(−1)2

24π22!
Pfaff(R) = 1

32π2
εab cdRa

b ∧R c
d 6= 0 (A.2.22)

A.2.3 Stiefel-Whitney Class

Stiefel-Whitney classes are characteristic classes of vector bundles with group O(k) or principal
vector bundles with group O(k), which are not given by polynomials in the curvature form F
but nonetheless encodes important topological properties of the underlying base manifold M .
The calculation of these classes requires a calculation of the cohomologies H i (G r (n, kR);Z/2)
and it can be seen that:

w1(T M ) = 0 ⇐⇒ M is orientable (A.2.23)

and
w2(T M ) 6= 0 =⇒ M has no Spin Structure (A.2.24)

If the first class is not zero, then the second cannot be non-vanishing, namely one cannot define a
spin structure if the manifold is not orientable. The first two Stiefel-Whitney classes are then used
to see if one can define spinors on a manifold M , since spinors are sections of the Spinor Bundle
which is the associated bundle of the lift of the orthonormal frame bundle. In fact, one can
consider the frame bundle LM defined above but instead of defining its elements as general frames,
we use the Riemannian metric on M to define them as orthonormal frames, obtaining a principal
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SO(n)-bundle (FSO(M ),π, M , SO(n)). Using the double cover ρ : S pi n(n)→ SO(n) one can lift
this bundle to obtain a S pi n(n)-principal bundle (P,πP , M , S pi n(n)) with an equivariant 2-fold
covering map Fp : P → FSO(M ) such that π ◦ FP = πP and FP (p /A) = FP (p) / ρ(A) (where the
/ are the action of the group on FSO(M ) and P and A∈ SO(n), p ∈ P ). The pair (P, FP ) is called
a spin structure and the associated bundle to the S pi n(n)-bundle is the Spinor Bundle, whose
sections are spinor fields. In particular we note that a spinor cannot be defined on a manifold
without priorly define a Riemannian structure, since its existence is related to the construction
of the Spinor bundle which itself is related to the orthonormal frame bundle, which requires the
presence of a metric g .

A.2.4 Physical Significance of Chern Classes
Consider a gauge theory, namely the SU (2) gauge theory describing the proton-neutron system
subject to strong force. The fact that protons and neutrons are almost indistinguishable from the
point of view of strong interactions (since their masses are almost the same) suggests that we can
arrange them in a strong isospin doublet:

ψ=
�
ψp

ψn

�
(A.2.25)

and take their masses to be exactly the same mp = mn = m. The kinetic term for this matter field
will be given by (defining M = diag(m, m)):

L ψ
kin
=ψ(i /∂ −M )ψ (A.2.26)

and using the gauge principle we can introduce the interaction with a gauge boson Aµ = Aa
µτa

(where τa are the generators of su(2)) by substituting the ordinary derivative with the covariant
derivative Dµ = ∂µ− i gAµ, obtaining:

L ψ
kin
+L ψ−A

int =ψ(i /D −M )ψ (A.2.27)

If we add the gauge field strength term for the gauge boson, we obtain the complete Lagrangian
density for the system (with a massless gauge boson):

L =−1
2

tr(FµνF
µν)+ψ(i /D −M )ψ (A.2.28)

where the trace is taken over the Lie algebra su(2). The gauge field strength is given by the
commutator: Fµν =

i
g [Dµ, Dν] = ∂µAν − ∂νAµ − i g [Aµ,Aν] and it comprises the kinetic term

∂µAa
ν − ∂νAa

µ and the interaction between gauge bosons −i g [Aµ,Aν]. The action is given by:

S [ψ,Aµ] =
∫
L d 4x (A.2.29)

and the equations of motion for the gauge field are given by the usual Euler-Lagrange equations:

∂µ
δL
δ∂µAν

− δL
δAν

= 0 (A.2.30)
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When in Quantum Field Theory one considers the most generic Lagrangian for a gauge field,
one realises that an additional term can be added: FµνF

µν
∗ where F µν

∗ = 1/2εµναβF αβ. This is,
however, always discarded since it is a total derivative and in QFT boundary terms are thrown
away by demanding the asymptotic flatness of the gauge field strength and considering the inte-
gration over the hole spacetime manifold.

Instantons

From a differential geometry point of view, a gauge theory is described by a principal bundle
over the spacetime manifold, with structure group equals to the gauge group and a gauge field is
nothing but the pull-back of the connection 1-form with respect to a given section. The gauge
field strength is the curvature 2-form pulled-back to the spacetime manifold.

Let (P,π, M , SU (2)) be a principal SU (2)-bundle, with M a Riemannian manifold of dimen-
sion 4 endowed with a connection 1-formω. Choosing a local section σ : U → P in a given chart
(U , x), provides a gauge choice and allows to define the gauge potential on the base manifold as
A = σ∗ω. The curvature 2-form Ω given by (A.1.9), will be also pulled-back to the base mani-
fold giving rise to the gauge field strength F = σ∗Ω. The action on M for the gauge field will be
written as:

S [Aµ] =−
∫

M
tr(F ∧ ?F ) =: ||F ||2 =: 〈F , F 〉 (A.2.31)

The equations of motion are obtained by considering the family of gauge potentials:

At =A+ t a (A.2.32)

The field strength will be:

F (At ) = dAt +At ∧At

= dA+ t da+(A+ t a)∧ (A+ t a)
= dA+ t da+A∧A+ t (A∧ a+ a ∧A)+ t 2a ∧ a

= F (A)+ t (da+ a ∧A+A∧ a)+ t 2a ∧ a

= F (A)+ t dAa+ t 2a ∧ a

(A.2.33)

where F (A) is the field strength arising from the 1-form A and dA is defined as dAA= dA+A∧A.
The action for the family of gauge potentials can be expanded near t = 0:

S [At ] = 〈F (At ), F (At )〉
=
�

F (A)+ t
d
d t

����
0
〈F (At ), F (At )〉+O(t 2), F (A)+ t

d
d t

����
0
〈F (At ), F (At )〉+O(t 2)

�
= 〈F (A), F (A)〉+ t [〈dAa, F (A)〉+ 〈F (A), dAa〉]+O(t 2)
= 〈F (A), F (A)〉+ 2〈dAa, F (A)〉

(A.2.34)

and A is a critical point for the action if:

dS
d t

����
0
= 0 ⇐⇒ 〈dAa, F (A)〉= 0 ⇐⇒ 〈a, d ∗AF (A)〉= 0 (A.2.35)

170



Computation of Characteristic Classes

where d ∗A is the formal adjoint of dA with respect to the inner product 〈·, ·〉. Since a 6= 0, the
equations of motion will be:

d ∗AF (A) = 0 (A.2.36)

If we take into consideration the fact that the field strength F naturally satisfies the Bianchi iden-
tity:

dAF = 0 (A.2.37)

then, since d ∗A = − ? dA?, we see that (A.2.36) is satisfied provided that F = ± ? F and if F
satisfies one of these conditions, then it is called self-dual (+ case) or anti-self-dual (− case). In
principle these solutions could be maxima or minima, but we are going to show that they are
indeed always minima for the action and these minima are called Instantons. In order to see that
F =± ? F are always minima for the action, we can decompose F into its self-dual and anti-self-
dual components:

F =
1
2
[F +(?F )]+

1
2
[F − (?F )] := F ++ F − (A.2.38)

in this way, it can be readily seen that the action becomes:

S = ||F ++ F −||2 = 〈F ++ F −, F ++ F −〉= 〈F +, F +〉+ 2〈F +, F −〉+ 〈F −, F −〉= ||F +||2+ ||F −||2
(A.2.39)

where in the last step it has been used the fact 〈F +, F −〉 is identically equals to zero. If we consider
now a representative of the second Chern class calculated before (A.2.18) and integrate it, we have:

−
∫

M
c2(P ) =

∫
M

tr(F ∧ F )
8π2

=
1

8π2

∫
M

tr[(F ++ F −)∧ (F ++ F −)]

=
1

8π2

∫
M
[tr(F + ∧ F +)+ tr(F − ∧ F −)]

=
1

8π2

∫
M
[tr(F + ∧ ?F +)− tr(F − ∧ ?F −)]

=
1

8π2
[||F +||2− ||F −||2]

(A.2.40)

Now, it is clear that we have the following inequality:

1
8π2

�||F +||2+ ||F −||2�≥ 1
8π2

��||F +||2− ||F −||2�� (A.2.41)

which is nothing but the fact that the action is always greater than or equals to the expression
(A.2.40) and the minimum is realised when we have the equality. By calling k the expression
(A.2.40), the absolute minima are obtained when:

S = 8π2|k| (A.2.42)

which corresponds to F ± = 0, namely the self-duality and anti-self-duality conditions on F . We
have thus shown that Instantons are indeed always minima of the Yang-Mills action.
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Let’s now analyse further (A.2.40). Since c2(P ) is a representative of the cohomology H 4(M ,R),
it is a closed 4-form and if the bundle is trivial, it is also exact. This means that we can find a 3-form
ω such that dω = c2(P ). This 3-form is found to be:

ω = tr
�

A∧A+
2
3

A∧A∧A
�

(A.2.43)

and is called Chern-Simons form. So, if the bundle is trivial, the integral (A.2.40) is zero. We see
that the instantons are topological entities which, in fact, depends on the topological character-
istics of the bundle. If one considers the U (1)-principal bundle π : S3→ S2 (Hopf bundle), then
since it is not trivial, (A.2.40) will not be zero, and it is found that k is equals to an integer char-
acterising the homotopy type of the transition functions which are maps from the equator of S2

(namely an S1) to the structure group U (1) (which is topologically equivalent to S1). This means
that we are characterising the maps from S1 to S1, which are defined by their winding number.
For the case of a Euclideanized Yang-Mills theory, the principal bundle is (P,π,R4, SU (2)), and
after the compactification ofR4 to S4 by adding the point at infinity |x|=+∞, we get the bundle
(P,π, S4, SU (2)). A cover of the 4-sphere S4 is given by two open sets {UN , US}, one covering the
north pole, UN , and one covering the south pole, US , intersecting on the equator giving rise to an
infinitesimal strip homeomorphic to a 3-sphere, namely UN ∩US ' S3. The transition functions
are then maps from S3 to SU (2)' S3, and these too are classified by their homotopy type, so the
integral −∫

S4 tr(F ∧ F )/8π2 will be given by a number n ∈ Z= π3(SU (2)) (where π3(SU (2)) is
the 3rd homotopy group of SU (2)).
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Varieties in Weighted Projective Spaces

There are various ways to find and realise Calabi-Yau manifolds: as intersection manifolds embed-
ded in products of ordinary projective spaces, as hypersurfaces embedded in weighted projective
spaces, as orbifolds and as fibrations. It is clear that the domain of mathematics this kind of con-
struction belongs to is Algebraic Geometry. The study of Mirror Symmetry (see §2.2.7) for Calabi-
Yau manifolds led to very profound results in this branch of mathematics. One example is the
result in enumerative geometry concerning the counting of rational curves on a generic quintic
which was done on a combination of physical based assumption and mathematics by Candelas
et al. [Can+91] and later on interpreted in a more mathematical fashion by Morrison [Mor92].
It is seems compelling, then, to give a brief introduction to weighted projective spaces, homo-
geneous polynomials and weighted projective varieties in order to understand the realisation of
Calabi-Yau manifolds as embedded hypersurfaces. We will mainly follow [Hos16].

Definition B.0.1 (Weighted Projective Space). Let a = (a0, ...,an) ∈Nn+1 be a collection of integers
called weights and let ρa be the action of C on An+1 \ {0} defined as:

ρa :C×An+1 \ {0}→An+1 \ {0}
(λ, (x0, ..., xn)) 7→ ρa(λ, (x0, ..., xn)) := (λ

a0 x0, ...,λ
an xn)

(B.0.1)

The Weighted Projective Space Pn
(a0,...,an)

is then defined as the quotient ofAn+1\{0}with respect to the
equivalence relation induced by the action:

Pn
(a0,...,an)

=
An+1 \ {0}
∼ (B.0.2)

where ∀(x0, ..., xn), (x
′
0, ..., x ′n) ∈An+1 \ {0}:

(x0, ..., xn)∼ (x ′0, ..., x ′n) ⇐⇒ ∀λ ∈C,∃a ∈Nn+1 such that (x0, ..., xn) = (λ
a0 x ′0, ...,λ

an x ′n) (B.0.3)

In the definition we have used An+1 which is the affine n-space of C and it is defined as the
spectrum1 of the ring of polynomials:

An+1 := Spec(C[x0, ..., xn]) (B.0.4)

1The spectrum of a commutative ring is the set given by the collection of all prime ideals, where a prime ideal
P of a commutative ring R is an ideal such that P is not the whole ring R and for each a, b ∈ R such that a · b ∈ P ,
then it must be true that either a ∈ P or b ∈ P .
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Remark

The affine n-space An+1 can be thought to just be the vector space Cn+1 without the origin,
in the sense that we add translations to linear maps and forget about the origin. From a
categorical point of view, there two categories, one given by affine spaces over a field k (in
the sense of vector spaces without the origin) and one of varieties over the field k (zero loci
of polynomials). There is a functor from these two categories allowing us to identify these
two kind of (at first sight) different definitions.

Points in P(a0,...,an)
are written as |x0 : · · · : xn|a for a = (a0, ...,an) ∈ Nn+1, also Pn

(a0,...,an)
inherits

naturally the quotient topology given the Zariski topology on An+1.

Definition B.0.2 (Weighted Polynomial Ring). For a ∈ Nn+1 we define the weighted polynomial
ring of n+ 1 variables as ka[x0, ..., xn] (k is a ring) with the weight of xi to be ai , in particular:

deg

�
n∏

i=0

x ci
i

�
=

n∑
i=0

ai ci (B.0.5)

For example, we can consider R(1,5,4)[x, y, z] and take the polynomial p(x, y, z) = 2x2 +p
3 y z3x −πy3. The degree of each monomial will then be given by the formula (B.0.5) as:

deg(2x2) =
a0︷︸︸︷
1 ·

c0︷︸︸︷
2

deg(
p

3y z3x) = 5 · 1+ 4 · 3+ 1 · 1= 18

deg(−πy3) = 3 · 5= 15

(B.0.6)

It seems natural now to consider those polynomials made up of monomials with the same
degree. These are called weighted homogeneous polynomials and we collect this in the following
definition:

Definition B.0.3 (Weighted Homogeneous Polynomials). Let ka[x0, ..., xn] be a weighted polyno-
mial ring with a ∈Nn+1. We say that f ∈ ka[x0, ..., xn] is a-weighted-homogeneous of degree d if each
monomial in f is of weighted degree d.

This means that for a polynomial f ∈ ka[x0, ..., xn] to be a-weighted-homogeneous of degree
d there must exists bi ∈ k and m ∈N such that:

f =
m∑

i=0

bi

 
n∏

j=0

x
c (i)j

j

!
(B.0.7)

in such a way that:
n∑

j=0

a j c
(i)
j = d ∀i = 0, ..., m (B.0.8)

As an example consider again as before the weighted polynomial ringR(1,5,4)[x, y, z], but take
the following polynomial f (x, y, z) = x10− y2+ z2x2+ xy z. The degree of each monomial will
be:

deg(x10) = 10

deg(−y2) = 5 · 2= 10

deg(z2x2) = 4 · 2+ 2= 10
deg(xy z) = 1+ 5+ 4= 10

(B.0.9)
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and this means that f is (1,5,4)-weighted-homogeneous of degree d = 10.
The fact that a polynomial f ∈ ka[x0, ..., xn] is a-weighted-homogeneous of degree d means

also that ∀λ ∈ k it is true that:

f (λa0 x0, ...,λ
an xn) = λ

d f (x0, ..., xn) (B.0.10)

which can be seen to arise from (B.0.7) in the following straightforward way:

f (λa0 x0, ...,λ
an xn) =

m∑
i=0

bi

 
n∏

j=0

(λa j x j )
c (i)j

!

=
m∑

i=0

bi

 
n∏

j=0

λa j c (i)j x
c (i)j

j

!

=
m∑

i=0

biλ
∑n

j=0 a j c (i)j

 
n∏

j=0

x
c (i)j

j

!
= λd f (x0, ..., xn)

(B.0.11)

If we now take an element of the weighted projective space, namely p ∈ Pn
(a0,...,an)

, and write it
as |p0 : · · · : pn|a, we could try to evaluate a weighted homogeneous polynomial f ∈ ka[x0, ..., xn]
at this point p. But recalling that for each λ ∈ k it is true by definition that |p0 : · · · : pn|a =|λa0 p0 : · · · : λan pn|a, then we have the following situation:¨

f (λa0 p0, ...,λ
an pn) = f (p0, ..., pn)

f (λa0 p0, ...,λ
an pn) = λ

d f (p0, ..., pn)
(B.0.12)

where in the first we have used the property of the elements in the weighted projective space and
in the second we have used the property of weighted homogeneous polynomials. Combining
these two, it can be seen that for generally λd−1 6= 0, in order to make sense of these expressions
it must be true that:

f (p0, ..., pn) = 0 (B.0.13)

The evaluation of a homogeneous polynomial on a point in the weighted projective space makes
sense only if one considers the zeroes of such a function at that point. This understanding is of
fundamental importance in order to get to the definition of weighted projective varieties. The
last ingredient will be the concept of weighted homogeneous ideals.

Definition B.0.4. Let ka[x0, ..., xn] be a weighted polynomial ring with a ∈ Nn+1. We will say
that an ideal I /ka[x0, ..., xn] is a-weighted-homogeneous if it is generated by a-weighted-homogeneous
elements.

Aside

We recall that for a ring of polynomials k[x0, ...xn], there always can be constructed ideals I
generated by polynomials of k[x0, ..., xn]. Namely, for {pi}i=1,...,m sequence of polynomials
in k[x0, ..., xn], the space:

I := 〈 f1, ..., fm〉 :=
¨

p ∈ k[x0, ..., xn]
���� p =

n∑
i=0

gi fi with gi ∈ k[x0, ..., xn]
«

(B.0.14)
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Varieties in Weighted Projective Spaces

is an ideal of k[x0, ..., xn].

For example take again R(1,5,4)[x, y, z] and consider the ideals:

I = 〈x4+ y, z − y x, x9+ y z〉 J = 〈x3y − 3y z, zy + x4z〉 (B.0.15)

By direct inspection, every polynomial generating I is weighted-homogeneous, while those gen-
erating J are not. We remark that it is not required for the generating polynomials to be of the
same degree. This means that the ideal I is (1,5,4)-weighted-homogeneous, while J is not.

We are now in a position to define the idea of weighted projective variety, given the previous
discussion on the vanishing of weighted homogeneous polynomials on points of the weighted
projective space.

Definition B.0.5 (Weighted Projective Variety). Let I / ka[x0, ..., xn] be a weighted homogeneous
ideal of ka[x0, ..., xn]. The weighted projective variety (associated to the ideal I ) is the subspace of the
weighted projective space Pn

(a0,...,an)
given by:

V(I ) := {p ∈ Pn
(a0,...,an)

| ∀ f ∈ I : f (p) = 0} (B.0.16)

This definition makes sense since polynomials in a weighted homogeneous ideal can be writ-
ten as a sum of a-weighted-homogeneous polynomials of different degrees. It then makes sense
to consider I 3 f (p) =

∑
i gi (p) fi (p) = 0 where each fi is a weighted homogeneous polynomial

of degree i while gi ∈ ka[x0, ..., xn].
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