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Abstract

All’interno della banda di conduzione di materiali semiconduttori, le transizioni ot-
tiche tra stati elettronici confinati possono essere progettate per assorbire fotoni nel
medio e lontano infrarosso (4µm < λ < 100µm). Queste transizioni sono la base
di detector unipolari come il quantum well infrared photodetector (QWIP) [1] e il
quantum cascade detector (QCD) [2]. Nel corso degli ultimi vent’anni si è assistito
a un grande interesse nel comprendere le loro proprietà fisiche, così da poter miglio-
rare le loro performance. I focal plane array di QWIP, raffreddati a temperature
criogeniche, sono al giorno d’oggi la parte essenziale di telecamere ad alta definizione
per il medio infrarosso e sono prodotti da varie compagnie. Il QCD, introdotto nel
2004, è basato su una struttura con molteplici pozzi quantici progettata per avere un
processo di detezione di tipo fotovoltaico. In termini di rumore questo dispositivo
è una promettente alternativa al QWIP, che generalmente soffre di un’alta corrente
di buio [3].

Nel caso dei QWIP, un recente studio [4] ha dimostrato un metamateriale, chiam-
ato patch-antenna, che è in grado di migliorare le performance del detector, special-
mente ad alta temperatura. In questa geometria il dispositivo è posto all’interno
di una cavità risonante composta da due piastre metalliche, che producono due ef-
fetti: concentrano ed aumentano il campo elettrico locale, incrementato l’interazione
radiazione-materia, e agiscono come un’antenna, aumentando l’area effettiva in cui
i fotoni sono raccolti.

Nel presente lavoro di tesi abbiamo studiato un dispositivo nel quale la regione
attiva di un QCD a 8.6µm è stata inserita in una geometria di tipo patch-antenna.
Su questo dispositivo abbiamo effettuato in primo luogo misure elettriche, per val-
utare le sue proprietà di trasporto in assenza di illuminazione. In questa situazione
il trasporto è attivato termicamente e regolato dal livello di Fermi e dall’energia di
attivazione. Abbiamo estratto l’energia di attivazione dalle misure di corrente di
buio a diverse temperature e abbiamo confermato i nostri risultati con una simu-
lazione degli stati elettronici nella regione attiva del dispositivo. In seguito abbiamo
caratterizzato il processo di foto-detezione e la sua dipendenza dalla temperatura,
comparandolo ad un QCD in una geometria standard, chiamata mesa. A tempera-
ture maggiori di 200 K è in grado di operare solamente il dispositivo patch-antenna
e non viene misurata responsività da parte del mesa. Inoltre si osserva che, grazie
all’effetto antenna della cavità, il QCD patch-antenna dimostra una buona detet-
tività ad temperature alte, facilmente accessibili con un circuito di raffreddamento
termoelettrico. Nell’ultima parte di questo lavoro ci siamo dedicati al progettare
e simulare un nuovo QCD patch-antenna, che opera a 4.4µm. L’energia di tran-
sizione più alta rispetto al dispositivo a 8.6µm introduce delle sfide nel suo design e
nella scelta dei materiali. Per superarle abbiamo introdotto un nuovo tipo di QCD,
chiamato step-well, in cui sono presenti pozzi quantici di diverse profondità. In
questo manoscritto riportiamo come abbiamo simulato questo sistema e presenti-
amo la struttura finale del QCD che abbiamo progettato.





Abstract

Optical transitions between confined electronic states in the conduction band of
semiconducting materials can be engineered to absorb photons in the mid- and far-
infrared (4µm < λ < 100µm). These transitions are the building blocks of unipolar
detectors such as the quantum well infrared photodetector (QWIP) [1] and the quan-
tum cascade detector (QCD) [2]. Over the past twenty years there has been a great
effort on the understanding of their physical properties, in order to improve their
performance. Focal plane arrays of QWIP detectors, cooled at cryogenic tempera-
tures, are nowadays the essential part of high definition mid-infrared cameras and
are produced by several companies. The quantum cascade detector, demonstrated in
2004, is based on a multi-quantum well structure designed to have a photovoltaic de-
tection process. In terms of noise properties, this detector is a promising alternative
to the QWIP, that generally suffers from a high dark current [3].

In the case of QWIPs, a recent work [4] has shown that a sub-wavelength meta-
material, named patch-antenna, can boost the temperature performance of the de-
tectors. In this architecture, the device is placed within a double-metal resonator,
which produces two effects: it concentrates and enhances the local electric field,
boosting light-matter interaction, and it acts as an antenna, increasing the effective
photon collection area.

In the present thesis work, we studied a device in which a QCD active region
operating at 8.6 µm has been inserted into a patch antenna geometry. On this de-
vice, we first performed electrical measurements to assess its transport properties
in absence of illumination. Under these conditions, the electronic transport is ther-
mally activated and regulated by the Fermi energy and the activation energy. We
extracted the activation energy from dark current measurements at different tem-
peratures and validated our results by simulating the electronic energy levels in the
active region of the device. Then, we characterized the photo-detection response
and its behavior as a function of temperature, comparing it to a QCD in a standard
mesa architecture. Above 200K only the patch antenna operates and no responsivity
from the mesa can be detected. Moreover, we observed that, thanks to the antenna
effect of the double-metal cavities, the patch-antenna QCD displays good detectivity
at high temperatures, easily accessible with a thermoelectric cooler. In the last part
of the thesis work, we focused on the design and simulation of a new patch-antenna
QCD, operating at 4.4 µm. The higher transition energy with respect to the 8.6
µm device, introduces challenges in its design and in the choice of the materials. To
overcome them, we proposed a new QCD design, named step-well, where quantum
wells of different heights are present in the structure. In this manuscript we describe
how we were able to simulate such a system and we report the final QCD structure
we designed.
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Introduction

This thesis work concerns mid-infrared quantum cascade detectors (QCDs) made of
III-V semiconductors, in particular GaAs, AlGaAs and InGaAs. In these devices the
photo-detection process is based on intersubband (ISB) transitions, i.e. electronic
transitions between energy states in a multi-quantum well structure. The advantage
of ISB detectors is the possibility to design and control the electronic confinement by
changing geometrical parameters such as the quantum well depth or width, i.e. the
quantum engineering. Thanks to their ultra-fast response time (in the picosecond
range), these detectors are promising for high speed applications, such as imaging
and telecommunications. However, QCD performance is still limited by high thermal
noise at room temperature, which is the main obstacle to their large scale diffusion.
In this thesis work we explore a new QCD geometry, named patch-antenna, which is
promising for enhancing the high temperature performance of the detector. In this
architecture the device is embedded in a double-metal resonator, which enhances
the local electromagnetic field and increases the effective photon collection area. In
this manuscript we report the results of the characterization of these devices, along
with simulations on the QCD active region.

Outline of the thesis

Chapter 1 presents a general discussion of the state of the art in infrared de-
tection. In the first part, we cover the main practical applications concerning this
spectral region. In the second part we describe the most relevant detector technolo-
gies for the infrared, i.e. the thermal and photonic ones, with a particular focus on
the latter. We also introduce the figures of merit used to evaluate the performance
of photonic infrared detectors.

Chapter 2 introduces the quantum cascade detector and its opto-electronic
properties. In the first part, we recall the basic concepts of heterostructures and
quantum wells, which are the building blocks of the QCD structure. In the second
part, we cover the principles of optical transitions between subbands in quantum
well structures, the physical mechanism that is at the basis of the QCD working
principle. In the third part, we explain how a QCD is designed and we present the
state of the art theoretical model of transport inside the device, along with a sim-
plified transport model we developed. In the last part, we report the dark current
measurements on the 8.6µm QCD, object of this thesis work. We also show the
results of simulations we made on the active region of the device and compare them
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6 Contents

to the experimental data.

Chapter 3 presents the advantages of coupling infrared intersubband detec-
tors to double-metal microcavities. In the first part, we cover the theory of optical
waveguides and the latest advances in the study of optical properties of microcavity
gratings. The second part presents the experimental results of the optical charac-
terization we performed on the patch-antenna 8.6µm QCD. In particular, we report
the results of the spectral response, responsivity and detectivity as a function of the
detector temperature.

Chapter 4 covers the simulation and design of QCDs. In the first part, we recall
the theoretical aspects at the basis of simulations of multi quantum well structures.
In the second part, we describe how we simulated and designed a new type of QCD
structure, operating at a 4.4µm wavelength.



Chapter 1

Infrared detection

The infrared (IR) band is the portion of the electromagnetic spectrum between the
visible and the microwave bands. As Figure 1.1 shows, the IR can be divided into
three regions: the near infrared (NIR), which extends from 0.75 to 2.5 µm, the mid
infrared (MIR), from 2.5 to 30 µm and the THz range (also called Far Infrared),
from 30 to 1000 µm.

Figure 1.1: Schematic representation of the Infrared electromagnetic spec-
trum.

In this thesis we explore a type of quantum detector working in the mid-infrared
range, for applications in molecular spectroscopy, thermal imaging and telecommu-
nications. In the following we will cover how infrared detectors work and the main
applications in this spectral region.

1.1 Applications in the infrared

There are many applications that take advantage of infrared radiation. Indeed, the
IR spectral region is extensively used for scientific, security and civilian purposes.
Herein we present the three most relevant applications: thermal imaging, molecular
spectroscopy and telecommunications.

7



8 Chapter 1. Infrared detection

1.1.1 Thermal imaging

Due to Planck’s law, any object with temperature close to room temperature emits
radiation in the infrared band, with a peak of emission at a wavelength set by the
temperature itself. Taking advantage of this phenomenon, cameras with sensors that
detect infrared radiation can be used to determine the temperature of any body they
are pointed at. A typical application is the determination of where heat losses in
houses come from. Figure 1.2 shows a picture of a house taken with an infrared
camera, where the color scale represents the value of temperature. It can be clearly
seen that in this case windows are the main cause of heat loss. This technique is
important from an environmental point of view, since it allows to determine where
heat isolation has to be improved, in order to avoid waste of energy. Thermal
imaging is also used to measure the temperature of the oceans from the satellites,
to obtain data regarding the effects of global warming.

Figure 1.2: Image of the exterior of an house captured with an infrared
camera. The color scale indicates the temperature. It is clear
that in this case the most heat losses come from the windows
(from [5]).

In the security and military domains, cameras that detect infrared radiation are
used by the police and the army for night vision. In fact, at night there is no emission
in the visible spectrum from the bodies in the environment, but there is still emission
in the infrared due to their temperature, allowing to detect the presence of other
humans in the dark. Moreover, with this technique missiles can be guided in the
night towards their targets, typically planes, thanks to the thermal emission of their
motors. These cameras are also used by firefighters to find living body caught in
smoke clouds or to prevent the spread of fires on a large scale by localizing early the
seats of fire.

1.1.2 Molecular spectroscopy

Having a 3 dimensional structure, molecules can rotate and vibrate in space. Their
rotational and vibrational energies are quantized, i.e. they can assume only discrete
values, which are determined by the structure of the molecule itself. Thus, photons
with an energy equal to the difference between two roto-vibrational levels of a cer-
tain molecule are absorbed by it. In many molecules, these resonant energies fall in
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the IR range, making IR spectroscopy a very useful technique to study the composi-
tion and the structure of molecules. This technique consists of passing an IR beam
through the sample and measure the percentage that is transmitted, i.e. the trans-
mittance. In the final spectrum, dips appear at photon energies that correspond to
a resonance frequency and by studying them it is possible to obtain compositional
and structural information about the molecule. Figure 1.3 shows an example of an
IR spectrum of the hexanoic acid, with the indication of which chemical bonds cause
the transmission dips.

Figure 1.3: IR spectrum of the hexanoic acid. Dips in the transmittance
occur when the photon energy resonates with a roto-vibrational
transition of the molecule (from [6]).

1.1.3 Free space optical communication

Free Space Optical (FSO) Communication is an emerging technology that refers to
transmission of information in unguided propagation media through the use of IR,
visible or UV beams. It allows for wireless and fast data transfer between two fixed
points over distances up to several kilometers. It also provides high optical band-
width and therefore a much higher bit-rate than radio-frequency communication
[7].

For FSO communication to be possible it is necessary to work with photon wave-
lengths that are not absorbed by the air, otherwise the signal is lost before reaching
the receiver. Figure 1.4 shows the transmittance of the air as a function of the pho-
ton wavelengths in the MIR. It is clear that two atmospheric windows exist where
more than 80% of the radiation is not absorbed by the air: one between 3 and 5
µm and the other between 8 and 14 µm. This is why the interest in the develop-
ment of high performance sources and detectors operating at these wavelengths has
drastically increased. The detectors we characterized for this thesis work operate at
8.6 µm, fitting in the second atmospheric window of the MIR. Fast response (up to
GHz) is needed in sources and detectors used in FSO communication, in order to
fully exploit its potential. This is why quantum sources such as QCLs and quantum
detectors such as QWIPs and QCDs are the best candidates for this technology.
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Figure 1.4: Atmospheric transmittance in the MIR range. It is possible to
identify two atmospheric windows, at 3-5 µm and at 8-14 µm,
where there is a low absorption of radiation by air molecules
(from [8]).

This technology is appealing for a wide range of applications. It can be used to
transfer data from different buildings on the earth, or to communicate with airplanes
and satellites. In addition, it is promising for metropolitan area network (MAN)
extension, local area network (LAN)-to-LAN connectivity, backhaul for wireless cel-
lular networks and high definition TV and medical image/video transmission [7].

Despite its huge potential, FSO communication is still limited by its link relia-
bility, especially in long ranges due to atmospheric turbulence. Experimental real-
izations of FSO in MIR have been demonstrated using a QCL. They show improved
performance with respect to NIR in adverse conditions with reduced visibility [9].

1.2 Infrared detectors

There exist two main types of infrared detectors: thermal and photonic. One of the
most important differences between these two types of detectors is the dependence of
their response on the impinging photon wavelength. As shown in Figure 1.5, thermal
detectors display a flat response, while photonic ones show a selective response with
wavelength.

1.2.1 Thermal detectors

In thermal detectors, a temperature gradient, following the absorption of the inci-
dent radiation, causes the variation of certain physical properties of the material.
By measuring this change, it is possible to obtain information on the incident beam.
Since the change in temperature is generally does not depend on the photon wave-
length, but just on the amount of incident power (or its rate of change), these types
of detectors display a flat spectral response with wavelength.

The most important types of thermal detectors are thermocouples or thermopiles,
pyroelectrics, bolometers and Golay cells. The former consists of a thermocouple put
in contact with an IR absorbing element. The impinging radiation causes a tem-
perature change in the absorber, which is sensed by the thermocouple. Thermopile
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Figure 1.5: Schematic representation of the spectral response of photonic
and thermal detector.

sensors are based on the same principle, except that in this case many thermocouples
are connected in series, in order to reach a higher temperature sensitivity. Pyroelec-
tric sensors exploit the temperature dependence of the electrical polarization that
spontaneously develops in some crystals. The change in temperature caused by the
radiation is sensed through a corresponding change in the electrical potential mea-
sured across the crystal. In bolometers the temperature dependence of the electrical
resistance is used to detect radiation and, to this purpose, different materials can
be used: metals, semiconductors and also superconductors. Finally, Golay cell de-
tectors are based on the measurement of a pressure variation in a gas chamber due
to the temperature change induced by the incident radiation.

Most thermal detectors work at room temperature, however their performance
can be improved by decreasing the operating temperature. One of their biggest
advantages is that they cover wide part of the infrared spectral region delivering
acceptable values of detectivity, of the order of 109Jones (Figure 1.6). However,
they are not suited for high frequency applications, due to their low response time,
typically of the order of 10 to 100 ms [11]. For these types of applications, photonic
detectors are able to provide better performance, since they typically display faster
response times.

1.2.2 Photonic detectors

Photonic detectors are based on the interaction between the incoming radiation
and the charge carriers in the material. If certain conditions are met, photons
are absorbed and their energy is transferred to the electrons, which are excited to a
higher energy state. The excited electrons then generate an electrical signal (current
or voltage), which is the output of the sensor.

There are two main types of electronic transitions that are exploited to build
infrared detectors: interband (IB) transitions and intersubband (ISB) transitions
(Figure 1.7). The former type consists of transitions between the valence band
and the conduction band of the detector. In this case the minimum photon energy
that can be detected is fixed by the band gap energy (Eg) of the material. On



12 Chapter 1. Infrared detection

Figure 1.6: Detectivity of available photonic and thermal detectors when
operating at the specified temperature (from: [10]).

the other hand, intersubband transitions occur between electronic levels within the
same energy band, which might be either the valence band or the conduction band.
Typically they occur in quantum structures, such as quantum wells, quantum dots
or superlattices. The advantage of this class of detectors is that the transition energy
can be set by choosing the right geometrical parameters when growing the quantum
structure.

Figures of merit

Before discussing some examples of photonic detectors, we introduce the most im-
portant figures of merit that allow to evaluate the performance of such detectors and
also give the possibility to compare it with other devices. The following is based on
reference [12], where it is possible to find a more in depth description of the figures
of merit of photodetectors.

Responsivity

Responsivity is a figure of merit that measures the output of the detector for a given
input optical power (Pin) and in general it is a function of the impinging photon
energy E. The most typical output for a detector is a photo-generated current
(Iphoto), yielding the formula for the responsivity:

R(E ) =
Iphoto(E )

Pin(E )
. (1.1)
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Figure 1.7: Schematic representation of energy as a function of one spatial
coordinate for an interband transition (left) and an intersub-
band transition (right).

The units of the responsivity are then A/W. The photon flux Φ(E) is defined as the
number of photons reaching the detector per unit second and per unit area:

Φ(E) =
1

Adet

Pin(E)

E
, (1.2)

where Adet is the area of the detector exposed to the photon flux. Then, the pho-
tocurrent can be expressed as the number of charge carriers generated by each photon
times the number of absorbed photons per second:

Iphoto(E) = (eg)× (ηAdetΦ(E)). (1.3)

g is the photoconductive gain, which is generally between 0 and 1 and quantifies
the effective photonic charge generated by each photon. η is the quantum efficiency,
representing the probability for a photon to be absorbed by charge carriers in the
detector. Now, by combining equations 1.1, 1.2 and 1.3 we obtain a new expression
for the responsivity:

R(E ) =
eηg

E
. (1.4)

Noise equivalent power

Any electronic device is affected by noise. There are three most relevant sources
of noise in photodetectors. They are the Johnson-Nyquist noise (also known as
thermal noise) iJN , the generation-recombination noise iGR and the photon noise
iP . The Johnson noise is due to the thermal energy of electrons, which causes
them to randomly move in the device and in the whole circuit. iGR and iP are
instead related to fluctuations in the number of carriers. In the first case these
fluctuations are due to generation and recombination processes in the active region
of the detector, while in the second case they are due to the quantized and random
nature of the light source. We will assume the photon noise to be negligible with
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respect to the others and thus the expression for the total mean square current noise
is:

i2N = i2JN + i2GR =
4kBT

R
∆f + 4egI∆f, (1.5)

wherekB is the Boltzmann constant, T is the device temperature, R is its resistance
and I is the total current flowing in the circuit. The signal to noise ratio of the
detector is then:

S/N =
Iphoto
iN

. (1.6)

The noise equivalent power (NEP) is defined as the minimum power that is
needed for the detector to produce a signal to noise ratio of 1, for a bandwidth of
∆f = 1Hz. It is expressed as:

NEP =
iN

R
√

∆f
. (1.7)

Detectivity

Although the NEP is a quantity that gives valuable information on the detector
performance, it is still dependent on the detector area Adet and thus not ideal to
compare different types of detectors. Therefore it is useful to introduce the specific
detectivity, which contains a normalization by Adet:

D∗ =

√
Adet

NEP
=
R
√
Adet
iN

√
∆f. (1.8)

Its measurement unit is cmHz1/2W−1, usually named Jones. Since iN depends on
the detector temperature, also D∗ does:

D∗(T ) =
R
√
Adet√

4kBT/R(T ) + 4eg [Idark(T ) + Iback,photo]
. (1.9)

Here we have separated the two contributions to the total current I flowing in the
circuit. The dark current Idark is the current that flows in the photodetector in
absence of external radiation sources and it is thermally generated in the active
region. The current Iback,photo is the photocurrent generated by the background,
which is usually at room temperature and generates a blackbody radiation that is
added to the radiation coming from the source. We define the background current
Iback to be the total current that is not generated by the source, i.e.:

Iback(T ) = Idark(T ) + Iback,photo. (1.10)

We now look at the particular case of photovoltaic detectors, which are the the
main interest in this thesis work. These detectors generally work close to 0V bias
and in this condition we can consider Idark << Iphoto, thus allowing to define a 0V
specific detectivity:

D∗0(T ) =
R0

√
Adet√

4kBT/R0(T ) + 4egIback,photo
, (1.11)



1.2. Infrared detectors 15

Figure 1.8: Temperature dependence of the specific detectivity at 0V bias.
The BLIP temperature separates the two regions of the curve,
the background noise limited one (blue) and the thermal noise
limited one (red).

where R0 is the resistance at 0V and it is calculated from the background current-
voltage characteristic. At low temperatures the thermal noise becomes negligible
with respect to the background noise, while at high temperatures the thermal noise
dominates. Since the background noise can be considered temperature independent,
the curve D∗0(T ) can be divided into two parts (Figure 1.8). At low temperatures
it is constant with temperature (blue line), while at high temperatures it decreases
for increasing temperature (red line). The temperature at which these two curves
intersect is called Background Limited Infrared Performance temperature, TBLIP .
The low temperature value of D∗0 is called background limited detectivity D∗0,BL .

The BLIP temperature is the temperature below which it is useless to cool the
detector further. It is then an important parameter to evaluate the temperature
performance of infrared photodetectors, which is relevant for practical applications.

Time response

Let us assume that a time dependent optical signalG(t) impinges on a photodetector.
This might represent a challenge for the device if the signal varies suddenly or
oscillates at high frequency. In fact, if the lifetime of photo-generated carriers τ is
lower than the characteristic time in which G(t) varies, then the output signal will
not follow exactly the input signal. The equation that describes the time dependence
of the number of photo-generated carriers ∆n is:

d

dt
∆n+

∆n

τ
= ηG(t). (1.12)
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Figure 1.9: Time response of two photoconductors with different carrier
lifetimes.

Consider the case of a sinusoidal signal G(t) = G0sin(ωt), then the solution is a
sinusoidal response ∆n(t) = ∆n(ω) sin(ωt+ φ), with:

∆n(ω) =
ηG0τ√

1 + (ωτ)2
. (1.13)

Therefore, the output signal will always have a lower amplitude than the input one
(negligible if ωτ << 1 and ητ ∼ 1) and a delay, defined by the phase φ. Figure 1.9
shows the time response of photodetectors with different carrier lifetimes. A critical
frequency exists, below which the output signal is not able to replicate the input
one and it is of the order of τ−1. The figure also shows that a compromise between
intensity of the output signal and maximum operating frequency has to be found.
Indeed, materials with the best responsivities are affected by poor time response,
and viceversa.

HgCdTe detector

Mercury Cadmium Telluride (also known as MCT) has been studied and optimized
as a material for producing detectors since 1959, when Lawson and others [13] showed
the possibility of achieving band gap tunability in this material. This allowed for
the production of detectors based on interband transitions that work in different
regions of the IR spectrum, covering a broad band from 1 to 12 µm. Nowadays
these devices offer a detectivity as high as D∗ = 1012 Jones [10] and they are the
most widely used semiconductor infrared detectors.

However, in the mid-infrared these detectors offer good performance only if
cooled down to liquid nitrogen temperature (Figure 1.6). This is because a small
band gap is needed for detecting MIR photons (hundreds of meV) and at room
temperature electrons have enough thermal energy to overcome the gap and create
thermal noise, which compromises the detector’s performance. As a consequence,
these detectors have to be placed in cryostats (Figure 1.10b) and be continuously
cooled down during their operation, imposing practical limitations on some possible
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(a) (b)

Figure 1.10: (a) MCT detectors and (b) typical cryostats where they are
positioned in order to cool them down to cryogenic tempera-
tures.

applications. Due to the high technological interest in the mid-infrared region, many
efforts have been made to find alternatives to MCT detectors, offering comparable
performance, but also room temperature operation.

Another limitation of MCT detectors is that their response time of the order of
1µs [10] limits their frequency response, not allowing for fast applications such as in
telecommunications, where GHz operation is required.

Finally, another factor has fuelled the race to alternatives to MCT detectors is
the Minamata convention of 2013, which aims for the prohibition of the manufacture,
import and export of mercury by the year 2020 [14].

One of the most promising alternatives to MCT detectors are quantum devices
based on intersubband transitions. These provide several advantages, such as the
possibility of setting the transition energy and fast response times, in the picosecond
range. Moreover, they have been shown to provide good performance at room
temperature.

Quantum well infrared photodetector

The quantum well infrared photodetector (QWIP) is the most famous example of
intersubband detector. It was first proposed in 1987 by Levine and others [1] and
it is a photoconductive unipolar device. The device is a stack of alternating layers
of two materials with different band gaps, which creates a conduction band profile
with multiple quantum wells, sandwiched between two highly doped contact layers,
the emitter and the collector.

The absorption occurs in the quantum wells, which are moderately doped (∼
1011cm−2 for mid-infrared detectors) so that the ground state of the well is populated
by electrons. The absorption of photons promotes these electrons to an excited state,
which can be either in the continuum (Figure 1.11a), or within the well itself (Figure
1.11b). In the first case, the QWIP is called bound to continuum (B-C), in the second
case bound to bound (B-B). In order to collect the excited electrons and prevent
them from de-exciting back to the ground state, an asymmetry in the band structure
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(a) (b)

Figure 1.11: Schematic representation of the conduction band profile of (a)
bound-to-bound and (b) bound-to-continuum QWIPs.

has to be introduced. This is achieved by applying an external bias, which generates
an electric field that allows to collect the charge carriers and measure a photocurrent.
Figure 1.12 shows the case of B-B QWIPs, where the photocurrent comes from the
photo-excited carriers that either reach the continuum due to thermal excitation or
that tunnel through the potential barriers.

Being ISB detectors, QWIPs have the advantage that they can be designed to
absorb a particular wavelength. This can be done by changing the well width Lw
(by acting on the thickness of the GaAs layer) and the barrier height (through the
percentage of AlAs and GaAs in the alloy AlGaAs). Thus, it is possible to build
QWIPs that detect radiation in a large range of the IR spectrum, from the THz
to the MIR. A major difference with respect to IB detectors is that QWIPs have
a narrower spectral response (Figure 1.6), which is centered around the wavelength
defined by the transition energy inside the quantum well.

Figure 1.12: Schematic representation of the two main transport mecha-
nisms in a bound-to-bound QWIP: tunneling and thermionic
emission. In this case an external bias is applied to the device,
causing the band bending.

Nowadays QWIPs provide high performance for IR detection, with competitive
detectivity as well as high frequency response, theoretically up to 100 GHz [15].
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The main drawback in QWIPs is the dark current, i.e. the current that flows in
the device which is not due to photo-excited electrons, but to thermally excited
electrons. The dark current exponentially increases with temperature, thus most
QWIPs have to be cooled down to cryogenic temperatures to provide high perfor-
mance operation. However, in the recent years solutions have been found to obtain
good performance from these devices, even at room temperature. One example is
the work by Ravikumar an others, who have demonstrated a 3-5 µm QWIP based
on ZnCdSe/ZnCdMgSe with room temperature operation [16]. In 2018, Palaferri
and others used a 9 µm QWIP based on GaAs/AlGaAs as a room temperature
heterodyne receiver [4]. They achieved high performance at room temperature by
embedding the multi quantum well structure in a double metal patch resonator,
which, acting as an antenna, allowed to improve the signal to noise ratio and in-
crease the operating temperature of the device. In this thesis work, we applied the
idea of the patch resonators to another type of intersubband detector, the quantum
cascade detector.

Quantum cascade detector

Quantum cascade detectors (QCD) are intersubband detectors based on a multi
quantum well structure inspired by quantum cascade lasers (QCLs) [17]. They
were first introduced in 2004 by Gendron and others [2]. As for QWIPs, the MQW
structure is obtained by stacking several layers of two materials with different energy
gaps. The width of the quantum wells is engineered in such a way that the electronic
eigenstates create a cascade structure, as shown in Figure 1.13. The first well is called
the active well and it is the only one that is doped. The doping is high enough to
push the Fermi level above the ground state of the well, making it populated by
electrons. When photons with an energy corresponding to the difference between
the ground state and the excited state of the active well impinge on the device,
charge carriers are promoted to the excited state. Then, they de-excite along the
cascade, through longitudinal optical (LO) phonon scattering, down to the next
active well. This structure is typically repeated for N periods in order to ensure a
good signal to noise ratio.

The presence of the cascade generates an asymmetric structure that defines a
preferential direction for the transport and makes these devices able to work without
any external bias, unlike QWIPs. Another difference with respect to QWIPs is that
in QCDs the transport is 2-dimensional, because it takes place within the quantum
wells and it does not involve transitions to the continuum. This makes the theoretical
modeling of the charge transport in QCDs easier to manage with respect to the 3-
dimensional one of QWIPs. Moreover, the absence of a strong transport in the
active region ensures a lower amount of thermally activated noise with respect to
QWIPs, making QCDs devices with a low dark current (which is absent without
any applied bias). This has allowed to easily achieve room temperature operation
of QCDs. On the other hand, the absence of a strong transport is responsible for a
lower responsivity with respect to QWIPs.

Being intersubband detectors, the photon wavelength that is detected can be set
by changing geometrical parameters such as the width and height of the active well.
QCDs have been demonstrated in the NIR [18], in the MIR [2] and in the THz range
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Figure 1.13: Scheme of the conduction band profile of a QCD and of the
detection process, with electronic excitation in the active well
and de-excitation along the cascade region.

[19]. In addition, QCDs are also promising for high speed applications, due to their
response time of the order of picoseconds. Indeed, high speed operation up to 11
GHz has been already reported in QCDs based on GaN/AlGaN heterostructure by
Vardi and others [20].



Chapter 2

Quantum Cascade Detector

In this chapter we cover the basics of quantum cascade detectors (QCDs). First,
we recall the physics of quantum wells, the building blocks of QCDs, and we cover
the theoretical modeling of electronic transitions in quantum structures. Then, we
present the theory of thermally activated transport in quantum cascade structures.
Finally, we report our experimental results on the characterization of a QCD in dark
conditions, which allows to understand the role of thermally activated processes in
the device.

2.1 Heterostructures and quantum wells

Heterostructures are systems where at least one interface between two different ma-
terials exists. The key characteristic that has determined their success is that they
allow to design the conduction and valence band profile of a system. The progress in
techniques that enable the control of material growth at the atomic scale has further
increased their potential. Indeed, such an accurate growth, following an appropriate
design, allows to generate energetic potentials that can confine electronic wavefunc-
tions, paving the way to quantum devices, such as quantum lasers and quantum
detectors. Confinement is possible in one, two, or three spacial dimensions and the
corresponding systems are called quantum wells, quantum wires and quantum dots,
respectively. In this thesis work we will only cover quantum wells, which are the
basic components of quantum cascade detectors.

A quantum well (QW) is created by sandwiching a layer of a certain material
(as thin as few nanometers) between two layers of another material with higher
energy gap. Figure 2.1 shows a transmission electron microscope image of a multi
quantum well (MQW) structure, where the wells are created by alternating InAs
and GaAs1−xNx layers, where x is a number between 0 and 1 that indicates the
percentage of GaN in the alloy.

In the following, we briefly recall the main aspects of the theory of QWs, following
references [22–24].

Given a single quantum well with thickness Lz along the growth direction z, the
energy of an electron in the well can be calculated with the particle in a box model.
Using the envelope function approximation, it is possible to write the electronic

21
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Figure 2.1: Transmission electron microscope image of a multiple QW
structure made of InAs in GaAsN. in the high resolution im-
age on the right the individual rows of atoms can be seen (from
[21]).

wavefunction as a Bloch wavefunction multiplied by an envelope function χ(z):

ψ(r) = exp(ik⊥r)uνk(r)χn(z), (2.1)

where r is the 3-dimensional position vector, i is the imaginary unit, k⊥ is the in-
plane wave vector and ν and n are integer numbers that label specific energy bands
and subbands, respectively. According to Bloch’s theorem, uνk(r) is a function
with the same periodicity as the lattice. Since the potential only depends on the

(a) (b)

Figure 2.2: Schematic representation of the energy levels and the wave-
functions in (a) an infinite well and (b) a finite well.

z coordinate, it is possible to decouple the motion in the x − y plane and the one
in the z direction. The envelope function fulfills the one-dimensional Schrödinger



2.1. Heterostructures and quantum wells 23

equation: [
− ~2

2m∗
∂2

∂z2
+ Ec(z)

]
χn(z) = Enχn(z), (2.2)

where m∗ is the effective mass of the material that forms the quantum well and Ec
is the potential defined by the band discontinuity. We use the convention Ec = 0
inside the well and Ec > 0 in the barrier. In the approximation of

Ec →∞ in the barriers, the solution of 2.2 is quite easily calculated setting the
boundary conditions χ(0) = χ(Lz) = 0, yielding:

En =
~2

2m∗

(
nπ

Lz

)2

(2.3)

χn(z) =

√
2

Lz
sin

(
nπ

Lz
z

)
, (2.4)

where En is the confinement energy and assumes discrete values, labeled by n. The
equation in the x−y plane yields the energy of a free particle ~2k2

⊥/2m
∗, since there

is no confinement along that orientation. The total energy of the system is then
given by the sum of the two contributions:

En(k⊥) = En +
~2k2

⊥
2m∗

(2.5)

Note that En only depends on the effective mass m∗, which contains the trans-
port properties of the material, and a geometrical parameter, the well width Lz.
Thus, by changing these two parameters, one can design QW structures following a
desired distribution of energy levels. Figure 2.2a shows a schematic representation of
the first three solutions (n = 1,2, 3) of the Schrödinger equation for an infinite QW.
Real world structures always have finite barriers and in that case Equation 2.2 leads
to a transcendental equation that can be solved either graphically or numerically.
Figure 2.2b shows the first two solutions of such a finite-barrier QW.

Equation 2.5 introduces the concept of subbands. Each value of n defines a sub-
band, which has a free-particle parabolic dispersion relation (Figure 2.3a). Subbands
are within an energy band, either the conduction band or the valence band, hence
their name. The electronic occupation of each subband is calculated by the use of
the Fermionic partition function, which fixes a certain density of energy states g(E)
at a given temperature. g(E)dE is the number of states that are found between
energies E and E + dE per unit volume. It can be shown that in 2-dimensional
systems, like a QWs, g(E) is a step-like function, as shown in Figure 2.3b, and it
can be expressed as:

g(E) =
m∗

π~2

∑
j

(EF − Ej)Θ(EF − Ej), (2.6)

where EF is the Fermi energy and Θ is the Heaviside step function. Due to Pauli
exclusion principle, charge carriers occupy available states, starting from the one
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(a) (b)

Figure 2.3: Schematic representation of four subbands in a QW (a) and of
the step-like density of states in 2D systems (b), with the grey
area representing the occupied states.

with the lowest energy, up to the Fermi level, of energy EF (Figure 2.3b). The
Fermi energy at a temperature of 0K is given by the simple expression:

E0K
F =

π~2n2D

m∗
. (2.7)

Quantum sensors such as QCDs detect radiation thanks to photon-induced elec-
tronic transitions between different subbands. In the following section we cover the
theory of such intersubband transitions.

2.2 Intersubband transitions
The first experimental observation of intersubband (ISB) transitions in semiconduc-
tors was made by West and Eglash in 1985 [25]. They demonstrated a Brewster
angle ISB absorption in GaAs/AlGaAs QWs. Since then, an increasing effort has
been made to exploit the unique properties of such transitions and produce high
performance quantum devices, such as quantum lasers and quantum detectors.

In the following we present the calculations that yield the expression for the
absorption coefficient in ISB transitions, based on reference [26]. Transitions are
induced by an external electromagnetic radiation, which we assume to be monochro-
matic, with frequency ω and linearly polarized in the direction of e, the polarization
vector.

E(ω) = E0 cos(q · r− ωt)e, (2.8)

where q is the propagation vector. This wave constitutes an external perturbation
for the system, which causes an electronic excitation from an initial state i to a final
state f . The transition rate Wif from i to f is then given by Fermi golden rule.

Wif =
2π

~
|〈ψi|H ′|ψf〉|2δ(Ef − Ei − ~ω), (2.9)
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where δ is the Dirac delta function and H ′ is the interaction Hamiltonian:

H ′ =
e

2m∗
(A · p + p ·A) , (2.10)

with p being the dipole moment and A the vector potential. The latter is defined
by E = −∂A/∂t. At this point, we apply the dipole approximation, which assumes
the wavelength of the radiation to be large compared to the characteristic dimension
of the system, which in our case is the QW width. This generally fulfilled in the
infrared, since IR radiation has wavelengths of the order of µm, while typical QW
widths are in the range of nm. In this approximation A and p commute, yielding:

Wif =
~
2π

e2E2
0

4m∗2ω2
|〈ψi|e · p|ψf〉|2δ(Ef − Ei − ~ω). (2.11)

Thanks to the properties of the Bloch functions and considering a slowly varying
envelope function, it is possible to split the expression of the matrix element into
two terms [27]:

〈ψi|e · p|ψf〉 = e · 〈uν |p|uν′〉〈χn|χn′〉+ e · 〈uν |uν′〉〈χn|p|χn′〉 (2.12)

where ν, ν ′ and n, n′ are the band and subband indices of the initial and final states,
respectively. The first term is related to interband transitions. It contains a dipole
matrix element of Bloch functions, which gives rise to the interband polarization
selection rules, and an overlap integral of envelope functions, which determines se-
lection rules for the electron and hole quantum numbers in the subbands. If ν = ν ′,
i.e. if the transition occurs within a single band, then this term is null. The second
term is instead related to ISB transitions. It contains an overlap integral of Bloch
functions, which vanishes if ν 6= ν ′, and a dipole matrix element of envelope func-
tions, which is what determines the ISB absorption. It is then convenient to study
separately the latter term:

〈χn|e · p|χn′〉 =

ˆ
drχ∗n(z)[expx + eypy + ezpz]χn′(z). (2.13)

Due to the orthogonality of the envelope functions, the terms proportional to ex and
ey vanish, except when initial and final states are identical. Thus, the expression for
the matrix element that determines the ISB absorption simplifies to:

〈n|pz|n′〉 =

ˆ
dzχ∗n(z)pzχn′(z). (2.14)

This means that, in order to have an ISB absorption process, the electric field of
the radiation must have a component along the z direction. This is the well known
polarization selection rule for ISB transitions. It plays an important role in the
design of detectors, since radiation that has normal incidence on the surface does
not generate any ISB transition.

It is useful to define a new quantity named oscillator strength between two sub-
bands n and n′:

fnn′ =
2

m∗~ωn′,n
|〈n|pz|n′〉|2 =

2m∗ωn′,n
~

|〈n|z |n′〉|2, (2.15)
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where ωn,n′ = (En − En′)/~. This dimensionless quantity allows to compare the
transition strengths of different systems. It also has the property that the sum of
the oscillator strengths related to the transitions from an initial state n to all the
available final states n′ is equal to unity:∑

n′

fnn′ = 1. (2.16)

If we consider the case of the transition between the first two levels of an infinite
QW, we can easily obtain the oscillator strength f12 by calculating the dipole matrix
element using the wavefunctions 2.4. The result is f12 = 0.96, which then results
by far the strongest transition from the ground state of the QW. Indeed, due to
Equation 2.16, the sum of all other oscillator strengths

∑
n f1,n+1 only contributes

by 4% to the total excitation process.
We can finally derive the expression of the absorption coefficient for ISB transi-

tions. We consider a flux Φ of radiation impinging at an angle θ with respect to the
growth axis of the layers of a multi-QW structure with Nw quantum wells. Then, the
absorption coefficient α2D(ω) is the fraction of electromagnetic energy absorbed by
the 2D electron system and it is calculated summing over all the possible transitions
the ratio between Wnn′ and Φ:

α2D(ω) = Nw

∑
nn′

Wnn′(ω)

ΦA cos(θ)

= Nw
e2h

4πε0ncm∗
sin2(θ)

cos(θ)

∑
nn′

n2Dfnn′
Γ

(En′ − En − ~ω)2 + Γ2/4
, (2.17)

where n is the index of refraction, c the speed of light in vacuum and n2D the 2D
density of states. The term cos(θ) is introduced because the effective interaction
length is Lw cos(θ)), while the sin2(θ) comes from the polarization selection rule
of ISB transition. Indeed, if the incident radiation impinges perpendicularly to
the growth direction, the absorption coefficient vanishes. Γ is the half width at half
maximum (HWHM) of a Lorentzian distribution that replaces the energy-conserving
Dirac delta contained in the transition rate Wnn′ . This is introduced because in real
multi-QW structures the carrier lifetime in the excited state is not infinite, but
typically of the order of ps and its value depends on the relaxation processes that
occur in the system. These processes can be divided into inelastic and elastic ones.
Therefore, it is useful to define the linewidth as a sum of two contributions:

Γ = ~
(

1

2T1

+
1

T2

)
, (2.18)

where T1 is related to inelastic processes and T2 to the elastic ones (note that the
former contributes only half as strongly as the latter). Typical inelastic relaxation
processes are acoustic and optical phonon emission, with the optical one being the
most relevant contribution to T1. Interface roughness scattering or ionized impurity
scattering are instead the most usual elastic process and generally they both deter-
mine T2. In order to obtain a narrow linewidth, a precise and slow growth (generally
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Figure 2.4: Measured absorbance of a AlInAs/GaInAs quantum well (from
[28]).

by molecular beam epitaxy) of the QWs has to be done. If performed correctly, this
allows to get close to the intrinsic broadening limit due to the only optical phonon
emission. Figure 2.4 shows an experimental spectrum of a AlInAs/GaInAs quantum
well where a linewidth of few tens of meV is observed.

2.3 Quantum Cascade Detector

2.3.1 Working principle

The quantum cascade detector is a device based on ISB transition in a multi-QW
structure. Figure 2.5a shows a computer simulation of the band profile of a QCD
operating at 4µm. The structure can be divided into two parts: the active well (well
A) and the cascade region (wells from B to H).

The active well is where the photon absorption takes place. It is designed in
such a way that it contains two electronic levels (A1 and A2). This well is highly
doped (∼ 1011cm−2), so that the Fermi level is above the ground state A1, which is
therefore populated by electrons. Among the wells in the structure, this is the only
one that is doped. When photons with a wavelength corresponding to the energy
difference between the two levels (4µm in this case) reach the structure, they excite
electrons to the higher energy state A2.
The charge transfer to the cascade is ensured by resonant tunneling between A2 and
the ground state of well B. It is important that this tunneling process is faster than
the relaxation process between the two levels in the active well, otherwise most of the
charge carriers would de-excite back to the ground state A1, producing a significantly
lower photocurrent and responsivity. The use of resonant tunneling allows to create
a thick barrier that separates the active well from the extraction cascade, with the
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(a) (b)

Figure 2.5: Band simulations of quantum cascade detectors. In the regu-
lar geometry (a) the optical transition occurs in the first well
between levels A1 and A2 (from [29]). (b) shows an alterna-
tive geometry that exploits a diagonal transition between two
different wells (from [30]).

advantage of increasing the device resistance (and thus reduce the thermal noise)
without weakening the escape probability. We point out that alternative geometries
also exist, such as the diagonal QCD, where the active transition occurs between two
energy states situated in different wells (Figure 2.5b). This geometry is particularly
efficient and it holds the record for the highest responsivity at room temperature,
17 mA/W [30].

The QWs forming the cascade are engineered in such a way that their difference in
energy is close to the longitudinal optical phonon energy ELO. Indeed, the emission
of such phonons is the most important relaxation mechanism in QCDs. The value
of ELO depends on the materials used to build the device (e.g. 36 meV in GaAs, 32
meV in In0.53Ga0.47As [3]).

The gain of a QCD g is determined by the ratio between the escape probability
and the capture probability pe/pc. The capture probability is typically close to unity.
The escape probability depends mainly on the LO phonon scattering times from the
resonant states A2 and B1 to the ground state A1 (τrel) or to the extractor state C1

(τesc). It is defined as pe = τrel/(τrel + τesc), so that a high gain can be achieved
by designing the structure in such a way that τrel >> τesc. The relaxation time is
typically of the order of picoseconds, thus a resonant tunneling time of hundreds of
femtosecond, at most, is needed.

Typically, the structure described above is repeated more times, creating Np

periods. In this way, Np photons are required in order to generate a single photo-
electron. On one hand this decreases the photoconductive gain by a factor of Np,
but on the other hand it increases the absorption quantum efficiency, thus an ideal
number of period exists for a given device (for details see [3]).
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2.3.2 Electronic transport in QCDs

Thermalized cascade model

This model was first presented by C. Koeniguer and others [31] to describe the dark
current, i.e. the current in absence of external radiation, of QCDs. The model as-
sumes the interaction between electrons and longitudinal-optical (LO) phonons to
be the most relevant mechanism that enables charge transfer in the structure. Inter-
action with acoustic phonons, interface roughness and electron-electron interaction
are not considered in this model. The transition rate Sij(E) (in s−1) from an initial
state of energy E in subband i towards subband j is calculated integrating a matrix
element involving the electron-optical-phonon Hamiltonian. This integration is car-
ried out considering all the possible final states with energy E±~ωLO in subband j,
where ~ωLO is the LO-phonon energy. The rate of phonon absorption is indicated
with Saij(E) and the rate of emission with Seij(E).

The global absorption rate (Ga
ij) and emission rate (Ge

ij) of LO-phonons are
calculated through an integration over all the occupied initial states, assuming a
Fermi-Dirac distribution of electrons f(E):

Ga
ij =

+∞ˆ

εj−~ωLO

Saij(E)f(E)[1− f(E + ~ωLO)]noptg(E)dE (2.19)

Ge
ij =

+∞ˆ

εj+~ωLO

Seij(E)f(E)[1− f(E − ~ωLO)](1 + nopt)g(E)dE, (2.20)

where nopt is the Bose-Einstein statistic function accounting for the phonon popu-
lation, g(E) is the 2D density of states and εj is the energy minimum of subband j.
The total transition rate is then given by the sum of the emission and absorption
term:

Gij = Ga
ij +Ge

ij. (2.21)

Figure 2.6a shows the transitions with the highest rate between two consecutive
cascades in a GaAs/AlGaAs QCD with 40 periods of 7 quantum wells, at T = 80K.
The solid lines represent the main transitions (with rate above 4 × 1018m−2s−1),
whereas the dashed lines concern the other main transitions (with rate above 1 ×
1018m−2s−1 and below the main transitions). Transitions within a single cascade
reach rates two orders of magnitude higher, due to the strong electron-LO phonon
coupling.

Since QCDs are photovoltaic detectors, they generally work close to 0V. Thus,
in this model, the bias V is introduced as a small perturbation in the energy of the
system, equal to eV . To describe the system under an external bias we can use the
concept of quasi-Fermi level from the theory of the p-n junction. We define a quasi-
Fermi level for each cascade of the QCD, so that the quasi-Fermi level of cascade
A is related to that of cascade B via: EA

F = EB
F + eV . Each level of cascade A is

increased accordingly in energy by an amount of eV , as depicted in Figure 2.6b.
When no bias is applied to the device, thermodynamical equilibrium is reached

and the transition rate from a cascade A to its consecutive cascade B is equal to the
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(a) (b)

Figure 2.6: (a) Most relevant transitions between two consecutive cascades
of a GaAs/AlGaAs QCD at T = 80K. The solid lines represent
the fastest transitions, the dashed lines the other main transi-
tions. (b) Effect of a bias voltage V on a QCD. The dashed
lines represent the energy levels at zero bias (from [31]).

transition rate from B to A. Whenever an external bias applied, the equilibrium is
broken and a dark current raises:

Jd(V ) = e
∑
i∈A

∑
j∈B

(Gij(V )−Gji(V )). (2.22)

By calculating the contribution coming from the absorption and the emission of LO
phonons and assuming no dependence of the electronic wavefunctions on the small
bias, the following expression of the dark current is obtained [32]:

Jd(V ) = J0

[
exp

(
eV

kBT

)
− 1

]
, (2.23a)

J0 = e
∑
i∈A

∑
(Ga

ij(0) +Ge
ji(0))j∈B = eGtot. (2.23b)

Equation 2.23a is the typical expression of the J-V curve of a diode, with a
saturation current J0 that is related to the transitions taking place within the QCD.

From this model it is also possible to extract a relevant quantity for a photo-
voltaic detector such as a QCD, the resistance at zero bias R0. The importance of
this parameter stems from Equation 1.11: it determines the thermal noise of the
detector. A high value of R0 is desirable to lower the contribution of the Johnson
noise and increase the specific detectivity. By linearizing Equation 2.23a, considering
eV/kBT << 1, the following expression for R0 is derived:

R0Adet =
kBT

e2
∑

i∈A
∑

j∈B Gij

. (2.24)

It is common practice to normalize R0 by the detector area Adet, to allow comparison
among devices with different physical dimensions.
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In this model the current is calculated as the result of a variation of the distri-
bution of carriers as a function of the energy from cascade A to cascade B. Thus,
the transport inside a QCD can be described as a diffusion process, due to the
presence of an inhomogeneous chemical potential [31][32]. Therefore, Equation 2.24
can be seen as an Einstein relation which links a macroscopic quantity such as R0

to the microscopic transition processes described by Gij. Indeed, by considering
R0Adet = V/Jd, with V = E · l and Jd=enµE (l is the period of the structure, n is
the 3D electron concentration, µ the electron mobility and E the amplitude of the
applied electric field), we obtain:

R0Adet =
l2

en2Dµ
, (2.25)

where n2D = n/l. Then we find the usual Einstein relation D/µ = kBT/e, with the
diffusion coefficient D expressed in terms of the transfer rates:

D =
l2
∑

i∈A
∑

j∈B Gij

n2D

. (2.26)

Schottky diode analogy of a QCD

As proposed by A. Delga [33] and Z. Asghari [34] in their PhD theses, it is possible
to approximate one period of a QCD with an ideal Schottky diode (Figure 2.7). The
highly doped active well corresponds to the metal, with electronic states occupied
up to the Fermi level. The cascade region, with its intrinsic electronic concentration,
corresponds to the depletion region in the semiconductor. The well depth defines
the Schottky barrier of the diode.

Figure 2.7: Schematic representation of the analogy between one period of
a QCD and a Schottky contact.

Using this analogy, on the basis of the results reported above, we obtained a
simplified expression for the J-V curves of a QCD, with respect to equations 2.23a
and 2.23b. As already discussed, the transport that takes place in a QCD and
generates the dark current can be considered as a diffusion process. Therefore, we
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can adapt to QCDs the classical result of the diffusion current in a Schottky diode,
which is [23][35]:

JDiff (V ) = eµNCE exp

(
− FB
kBT

)[
exp

(
eV

kBT

)
− 1

]
, (2.27)

where FB is the Schottky barrier height and NC is the conduction band edge density
of states, given by 2(mekBT/2π~2)3/2, with me the electron mass. This expression
has now to be adapted to the case of QCDs. Using the Einstein relation for the
mobility, we can express it as:

µ =
eD

kBT
, (2.28)

whereD is given by 2.26. We can also substitute the Schottky barrier height FB with
the activation energy, that we indicate by Ea. This quantity refers to the minimum
energy that charge carriers have to acquire in order to generate a dark current in
the device. Then, the J − V characteristic of a QCD can be approximated with:

Jd(V ) =
e2DNCE
kBT

exp

(
− Ea
kBT

)[
exp

(
eV

kBT

)
− 1

]
. (2.29)

Then, for small applied biases, it is possible to obtain a temperature dependence of
the type:

ln(Jd · T ) ∝ − Ea
kBT

, (2.30)

Then, an Arrhenius-type plot of ln(Jd · T ) as a function of 1/kBT is expected to
yield a straight line with slope equal to the activation energy. This is a practical
way to obtain an estimate of the activation energy directly from measurements of
dark current at different temperatures.

2.4 Characterization of QCD transport

2.4.1 Sample description

In this section we present experimental results and simulations on the QCD oper-
ating at 8.6µm which is the main object of this thesis work. The active region is a
GaAs/Al0.35Ga0.65As structure with 8 periods of 5 QWs. The active well has a nom-
inal n-type doping of 1.25×1018cm−3. The injector and extractor contacts are made
of GaAs with doping of 5 and 6×1018cm−3, respectively. The sample was grown by
molecular beam epitaxy at University of Leeds1. The growth sheet is reported in
Appendix A. The device used for this characterization is in a patch-antenna archi-
tecture, as described in Section 3.2.1.

Figure 2.8 shows a simulation of the sample’s band diagram, performed using a
computer program developed by C. Sirtori2, A. Vasanelli2 and others, which solves
the Schrödinger equation for a given input potential. Each eigenstate is associated
with a letter, that indicates the cascade, and a number, which labels the energy
states within a cascade.

1University of Leeds, Leeds LS2 9JT, United Kingdom.
2École Normale Supérieure, 75005 Paris, France.
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Figure 2.8: Band simulation at 0V bias of the 8.6µm QCD characterized
in this thesis work.

2.4.2 Experimental results

In order to characterize the transport properties of the QCD, we measured the
current voltage characteristic in dark condition. An infrared detector is considered
to be in dark condition if the temperature of the environment inside its field of view is
lower than or equal to that of the detector (Tdet). Figure 2.9 shows the experimental
setup used to acquire the dark current-voltage (I-V) characteristics of the device at
different temperatures. The detector is put in a cryostat in order to control Tdet

Figure 2.9: Schematic representation of the experimental setup for dark
I-V characterization as a function of temperature.

through the balance between the flux of liquid nitrogen and a heating wire. Then,
within the cryostat, the device is enclosed in a cold chamber, or so called cryo-
shield, at temperature Tshield ≤ Tdet, so that the condition for dark measurement is
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met. The cryostat used for these measurements is a Janis ST-300. The I-V curve is
measured by connecting the contacts of the device to the two inputs of a Keithley
2400 Source Measure Unit (SMU). This instrument is controlled by a LabVIEW
program and it is able to bias the device and measure the resulting current.

Figure 2.10 shows the dark I-V curves measured with this setup, in the range
from liquid nitrogen temperature (78K) to room temperature (300K). The device
shows a rectifying I-V, as expected from Equation 2.23a. However, moving closer
room temperature an increasingly resistive behaviour is observed. Indeed, the ratio
between the currents at +0.8V and -0.8V decreases from 294, at 78K, to 6, at room
temperature. Therefore, we can consider Equation 2.23a to be valid only in the
low temperature regime. Figure 2.11 shows the differential resistance calculated by
differentiation of the I-V curves, R = (dI/dV )−1.
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Figure 2.10: Dark current-voltage characteristics of the QCD measured in
a temperature range between 78K and room temperature.

From the curves of the resistance we extracted the resistance at 0V bias R0, as
a function of temperature. Its behaviour as a function of inverse temperature is
plotted in Figure 2.12. An exponential dependence is observed, as expected from
the results reported in the literature [31][32].

From the dark I-V curves we extracted the activation energy following the
method reported in Section 2.3.2. Figure 2.13 shows the Arrhenius plots of the
product Id · T at negative and positive applied biases. The red lines are the linear
fits from which it was possible to extract the activation energy of the device as a
function of the bias. We performed the fits only in the low temperature regime (from
78K to 100K), where Equation 2.23a describes correctly the dark I-V characteristic.
The resulting plot of activation energy versus bias is reported in Figure 2.15, where
it is compared to the same plot obtained through computer simulations.
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Figure 2.11: Differential resistance of the device calculated from the dark
I-V curves.
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Figure 2.12: Product of the resistance at zero bias times the detector area
as a function of inverse temperature.

2.4.3 Active region simulations

The activation energy can also be extracted from simulations on one period of a QCD
at different applied biases, considering the thermally activated electronic transitions
between energy levels in the system. We considered the initial state of the transitions
to be the Fermi level in the active well, which we calculated using Equation 2.7.
Considering a value of m∗ = m∗GaAs = 0.067me and n2D equal to the nominal
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Figure 2.13: Arrhenius plots of the product between the dark current and
temperature for negative (a) and positive (b) bias. The red
lines are the linear fits from which the activation energy was
extracted.

concentration in the active well multiplied by the well width (5nm), we calculated
the Fermi level to be 22.33 meV above the ground state of the active well. Then,
we chose the final state to be the excited level of the active well, assuming this type
of transition to be more relevant than other diagonal ones. However, there actually
exist two excited states in the active well of the QCD, with a small energy separation
(from 5 to 15 meV, depending on the applied bias). The choice we made on which
of the two levels to consider depends on the particular band structure at a given
bias. Figure 2.14 shows two simulations of the structure at negative (-0.32V) and
positive (0.32V) bias.

At negative bias, the electric field accelerates the excited electrons in the positive
direction of the growth axis, so we considered level 1A to be the initial state. The
energy of the final state was chosen to be an average of the eigenstates 5B and 6B.
The reason for this is that electrons in both of these levels display a not negligible
probability of being in the first QW as well as in the second one. This means that
both 5B and 6B can concur to the tunneling process that allows thermally activated
carriers to access the extraction cascade and generate a dark current. At positive
bias the electric field acts in the opposite direction, therefore we chose level 1C as
the initial state. Due to the direction of the current, the final state is again at the
top of the cascade. In this case, however, the simulation predicts level 6B to give
negligible contribution to the tunneling process. Therefore at this bias we considered
the final state to be only the 5B level.

We performed the simulations also at ±0.16, ±0.096 and 0 V bias. For each
simulation we calculated the activation energy following the procedure described
above. The simulated activation energy as a function of the bias is presented in Fig-
ure 2.15, where it is compared to the experimental one, obtained with the Arrhenius
plot method described in the previous section. The two results show a good agree-
ment, except for the point at -0.32 V. This discrepancy might be due to diagonal
transitions that are triggered at such applied bias, decreasing the value of Ea.
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(a) (b)

Figure 2.14: Simulations of the QCD active region at ±0.32 V. In both
graphs are indicated the position of the Fermi level and the
activation energy.
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Chapter 3

Patch-antenna microcavities for
enhanced MIR detection

In this chapter we cover the optical properties of microcavities and their use for
enhancing the performance of MIR detectors. In the first part, we recall the basics
of optical waveguide and we report the state of the art theory of arrays of optical
microcavities. Then, we show the benefits that such microcavities can bring to MIR
detectors performance. Finally, we show our experimental results on the first ever
reported optical characterization of a QCD in a microcavity array geometry. We
will show that this device shows enhanced responsivity, detectivity and operating
temperature with respect to a standard QCD.

3.1 Optical properties of photonic microcavities
This section is divided into three parts. In the first one we cover the theory of one
of the simplest types of optical waveguide: the planar waveguide. In the second
part we adapt the formalism for a planar waveguide to an array of cavities with sub-
wavelength dimensions. Finally, in the third part, we report the recent discoveries
on the positive effects that such miniaturized cavities can have on the performance
of ISB detectors.

3.1.1 The Planar Waveguide

An optical waveguide is a system that consists of two main parts: a core, where
light is confined, and a cladding, surrounding the core. The core and the cladding
are made of materials with indexes of refraction chosen in such a way that light
undergoes total internal reflection, remaining always within the core.

We will consider the case of metal-dielectric-metal planar waveguides, where a
dielectric layer of thickness L, sandwiched between two metallic plates (Figure 3.1),
creates a resonant cavity. Maxwell’s equations can be used to obtain the expression
of an electromagnetic wave propagating in such a system. In absence of electric
charges and in the assumption of electric and magnetic fields in the form E ∝ek·r−iωt
and H ∝ek·r−iωt, Maxwell’s equations yield the Helmholtz equations [36]:

∇2E(r) + ω2εµE = 0 (3.1)

39
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∇2H(r) + ω2εµH = 0 (3.2)

where ε and µ are the electric permittivity and magnetic permeability of the di-
electric layer. In the planar waveguide there is no dependence of E and H on the y
direction (using the frame of reference of Figure 3.1), therefore we can set ∂E/∂y = 0
and ∂H/∂y = 0. Putting these two conditions into equations 3.1 and 3.2, two in-
dependent electromagnetic modes are obtained, denoted as transverse electric (TE)
and transverse magnetic (TM) [37]. In the TE mode the electric field is perpen-
dicular to the plane of incidence, with components (0, Ey, 0) and the magnetic field
has in-plane components (Hx, 0,Hz). Instead, in the TM mode the magnetic field is
transverse to the plane of incidence (0,Hy, 0) and the electric field has components
(Ex, 0, Ez). The expressions for for the confined field waves are:{

Hz ∝ cos(kzz) exp(ikxx)

Ez ∝ cos(kzz) exp(ikxx)
, (3.3)

where the z component of the wavevector is quantized due to the boundary condi-
tions imposed by the presence of the metallic plates:

kz = mπ/L, (3.4)

with m an integer number that equals 1,2,3,... in the TE mode and 0,1,2,... in the
TM mode. These integers define a set of modes, which are labeled TEm and TMm.
In Figure 3.1 the zeroth, first and second order TM and TE modes are represented.

Figure 3.1: Planar metal-dielectric-metal cavity. 0-th, 1st and 2nd order
TE and TM modes are schematically represented.

The x-y plane wavevector is indicated with k‖ and it follows the dispersion rela-
tion

k‖ =

√
εµω2 −

(mπ
L

)2

. (3.5)

For a given m, a cutoff frequency ωcutoff exists, below which k‖ takes imaginary
values:

ωcutoff,m =
πm

L

1
√
εµ

(3.6)

Thus the only mode without a cutoff frequency is the TM0 mode, which shows a
light-cone dispersion relation ω = k‖/εµ. Therefore, we can have the excitation of
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the only TM0 mode if the radiation has a frequency ω ≤ ωcutoff,1. This condition
corresponds to:

L ≤ λ

2n
, (3.7)

where n is the refractive index of the medium. Thus, a mono-mode excitation is
achieved if the cavity has a sub-wavelength dimension. For example, if we consider
a dielectric layer of GaAs and a MIR radiation with λ = 9µm, the refractive index
is ∼ 3.3 and we obtain a mono-mode condition for L . 1.4µm.

3.1.2 Microcavity gratings

In the previous section we analyzed the case of a macroscopic planar waveguide. In
the following we will study how the waveguide properties when the dimensionality of
the systems is reduced. In particular, we will consider an array of of square patches
(Figure 3.2), where the electromagnetic field is confined in x and y directions.

Figure 3.2: Schematic representation of an array of square patches of size
s and periodicity p

The patches are squared, with side equal to s, and the periodicity of the structure
is defined by p = s + a, where a is the distance between two adjacent patches. We
consider a GaAs dielectric layer embedded between the two metallic plates, with
sub-wavelength thickness L < λ. As discussed previously, this implies that the only
mode that is present within the stripes is the TM0. Figure 3.3 shows a simulation
from reference [38] of the vertical component of the electric field Ez. We observe that
Ez shows a standing-wave behaviour along the confined direction. To understand the
mechanism that causes this, it is useful to introduce the effective index of refraction
neff . Its value is approximately that of the GaAs refractive index in the double
metal regions (neff = nGaAs = 3.2 − 3.3 in the IR), while in the regions between
the stripes it is approximately equal to that of air (neff ≈ 1). This generates an
impedance mismatch of the EM modes between the two regions, which causes the
reflection of the TM0 modes at the interfaces, generating a standing wave behaviour
[39].

As for any resonant cavity, discrete modes are allowed, which we label with the
letters N and M , which take into account confinement in the x and y directions,
respectively. The resonant frequencies of the cavity can be expressed as:

νNM =
c

2neffs

√
N2 +M2, λNM =

2neffs√
N2 +M2

, (3.8)

with the corresponding fields of the resonant modes:
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Ez(x) = E0 cos

(
πN

s
x

)
cos

(
πM

s
y

)
, Hy(x) = H0 sin

(
πN

s
x

)
cos

(
πM

s
y

)
.

(3.9)
We observe that the resonance frequencies do not show any dependence on the
angle of incidence of the radiation. Indeed, from formula 3.8 one can see that νNM
is fixed once the material between the metal plates and the size of the cavities are
determined.

Figure 3.3: Simulation of the vertical component of the electric field Ez in
an row of three square patches. The maximal values are in red
and minimal in blue. A standing-wave behaviour is observed
(from [38]).

This confinement vanishes for thick resonators (large L). In this case, the res-
onant modes inside a cavity couple with the neighboring ones, creating a unique
de-localized mode [39]. A similar behaviour is observed when, for a fixed thickness
L, the separation between stripes a is reduced.

Resonant absorption

When a beam of IR light with a wavelength equal to the resonant mode of the cavity
(with wavelength λres) impinges on it, resonant photon absorption occurs. Under
this condition, photons are coupled into the mode and their energy is dissipated by
ohmic losses of the metallic plates.

From an experimental point of view this phenomenon can be studied by sending
a polychromatic beam of radiation at a certain angle θ onto the structure and
measuring the intensity of the reflected beam. Figure 3.4 shows the result of such
an experiment on a MIR microcavity of size s = 1.3µm. The reflectivity R, i.e. the
fraction of reflected radiation, shows a clear dip at an energy corresponding to a
resonant mode in the microcavity. The beam is completely reflected (R = 1) below
80 and above 200 meV, whereas a strong resonant absorption is observed at around
140 meV, with absorption of 90% of the radiation energy.

The dip minimum with value 1 − Rmin, also named contrast C, measures how
much energy of the incident wave the structure is able to absorb. It is possible
to obtain an expression for the reflectivity as a function of the incident photon
frequency using the scattering matrix approach [39][41]. The result is a lorentzian
shape, which can be written as:

R(ν) = 1− 1−Rmin

1 + (ν−νres)2

π2ν2res
Q2
, (3.10)
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Figure 3.4: First order reflectivity dip of a MIR microcavity of size s =
1.3µm. The dashed green line is the lorentzian fit of the curve,
on the basis of Equation 3.10 (from [40]).

where νres is the resonance frequency of the cavity and Q is the quality factor of
the cavity, defined by Q = 2πνres/∆ν, with ∆ν the full width at half maximum
(FWHM) of the reflectivity dip. In microcavity structures the value of the quality
factor is determined by two components, one related to radiative losses Qrad and
one to non radiative losses Qloss (e.g. ohmic energy dispersion in the metallic walls).
The quality factor can be calculated through:

1

Q
=

1

Qrad

+
1

Qloss

. (3.11)

Patch-antenna effect

It has been shown both theoretically and experimentally that arrays of planar res-
onators are able to collect the incident radiation from a large cross section [39][42].
Given an array with periodicity p, we can divide it in different cells of area Σ = p2

as in Figure 3.5.
Considering an incident photon flux Φ, the contrast C = 1 − Rmin in the re-

flectivity spectrum indicates the fraction of absorbed photons. Since the number of
incident photons per unit time on each square patch is given by ΦΣ, the collection
area of each element of the array is [43]:

Acoll = (1−Rmin)Σ = CΣ. (3.12)

Thus, from the reflectivity spectrum it is possible to experimentally determine the
collection area of the structure. Equation 3.12 indicates that with an appropriate
design of the array, it is possible to obtain patches with a collection area larger than
the physical area of the patches themselves. This is known as patch-antenna effect.

Following [43], we can write the collection area also as:

Acoll =
A1
coll(Qloss)(

1 +
A1

coll(Qloss)

4Σ

)2 , A1
coll(Qloss) =

64

π

V

λres
Qloss, (3.13)
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Figure 3.5: Optical microscope image of an array of square patches (left)
and scanning electron microscope image of a single patch
(right) (from [43]).

where V = σL is the patch volume and λres the resonant wavelength of the cavity.
A1
coll(Qloss) is the collection area obtained by letting Σ → ∞ for a given Qloss and

therefore it is the collection area of a single isolated patch. It is also the largest
collection area that we can achieve. Indeed, it is evident from Equation 3.13 that
if we increase the array density the collection area of the single patches decreases.
Figure 3.6 shows the dependence on Σ of the collection area. Experimental data (in
black), obtained from the reflectivity spectra following Equation 3.12, are compared
with a simulation (in red), based on Equation 3.13.

Figure 3.6: Collection area of an individual MIR patch as a function of
Σ. The experimental data (in black) are compared with the
theory (in red) (from [43]).
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3.1.3 Photonic microcavities for enhanced IR detection

Recent works reported in the literature have exploited the extraordinary properties
of patch-antenna structures described in the previous section to enhance the per-
formance of ISB infrared detectors. The idea is putting the active region of an IR
detector within the double metal cavity in order to increase the effective photon
collection area, leading to improved signal to noise ratio and enhanced temperature
performance. This idea has been applied so far to QWIP detectors for the THz
[44][45] and the MIR [38][4] bands.

(a) (b)

Figure 3.7: Schematic representations of (a) the mesa geometry and (b)
the patch-antenna array geometry.

In the following, we compare two different geometries for IR detectors. The first
one is the mesa geometry, which is the standard geometry for ISB photodetectors.
In the mesa configuration the device is exposed to the radiation through a 45° facet
(Figure 3.7a). This angle allows to maximize the ISB absorption in the QWs, due
to the ISB polarization rule. In this case, the collection area of the detector is equal
to its electrical area σ. The second geometry is the patch-antenna, where the active
region of the detector is placed in a double metal cavity. In this case, a single device
is made of N2 patches which are connected together to form a N × N array. As
discussed previously, in this configuration there is no more a limitation related to the
polarization of the incoming radiation and thus the photon flux can be perpendicular
to the detector surface (Figure 3.7b).

ISB absorption and responsivity

Due to the effect on the detector performance of the patch-antenna geometry, we
can redefine the figures of merit for IR detectors embedded in double metal cavities
and then compare them to those of detectors in a mesa geometry.

According to equations 1.3 and 1.4, the photocurrent generated by a photon flux
Φ impinging on a device can be written as:

Iphoto = RAcollΦEtrans, (3.14)

where R is the device responsivity and Etrans is the energy of the active transition
in the device. For a QCD this corresponds to the energy difference between the
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two levels in the active QW. As discussed in Chapter 2, the dark current can be
expressed as

Idark ∝ σJ0 exp

(
− Ea
kBT

)
, (3.15)

where σ is the electrical area of the device, J0 is the saturation current density and
Ea is the activation energy. From the comparison of Equations 3.14 and 3.15, it is
already evident why a patch-antenna geometry can lead to enhanced performance.
Indeed, patch devices can have a larger collection area than mesa devices, thus
providing a higher photocurrent for the same dark current. If we consider the data
in Figure 3.6, in this case the collection area is from two to seven times larger than
the electrical area, thus producing an increase in the photocurrent of the same factor,
with respect to the mesa geometry.

The mesa quantum efficiency ηmesa can be expressed as [38][40]:

ηmesa = NwLw

√
εE2

p

4c~2

sin2 θ

cos θ

~Γ

(E − Etrans)2 + (~Γ)2

4

, (3.16)

where Nw and Lw are the number and width of active QWs, θ is the angle of
incidence, Γ is the linewidth of the quantum transition and Ep is the plasma energy
defined by

Ep =
e2~2f12n2D

2m∗εLwEtrans
. (3.17)

The responsivity of the mesa device can be determined following Equation 1.4.
However, we need to consider the influence that the geometry itself has on the
responsivity. Indeed, only a fraction ξmesa = 0.5 of the radiation couples with
ISB transitions, due to polarization selection rule. Moreover, in this geometry,
radiation has to penetrate the substrate before reaching the active region, therefore
also the transmission coefficient of the substrate t has to be taken into account. The
responsivity of the mesa is then given by

Rmesa = (tξmesa)×
(

eg

Etrans
ηmesa

)
. (3.18)

The responsivity of an array of microcavity devices can be obtained through a
model based on conservation of energy within the cavity, developed in references
[38] and [46]. When radiation enters the microcavity, a fraction of its initial energy
U enables ISB transitions and the remaining part is dissipated via ohmic losses in
the metallic plates. Thus, we can write a rate equation in this form:

dU

dt

∣∣∣∣
cavity

=
dU

dt

∣∣∣∣
isb

+
dU

dt

∣∣∣∣
ohm

. (3.19)

In the same way, we can define the quality factor of the cavity related to the ohmic
losses Qohm and the quantity Bisb, that defines the fraction of the electromagnetic
field absorbed by the ISB quantum transition. Thus, the non radiative loss quality
factor introduced in Equation 3.11 can be expressed as:

1

Qloss

=
1

Qohm

+Bisb. (3.20)
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The quantum efficiency of the microcavity array can be seen as the ratio of the ISB
dissipation rate and the total dissipation rate within the cavity:

ηarray =
Bisb

Bisb + 1/Qohm

= BisbQloss. (3.21)

In an inefficient array, most part of the energy is dissipated though ohmic losses and
then Qohm << Bisb, leading to ηarray → 0. In the opposite case, Bisb >> 1/Qohm

and most part of the energy is used to excite ISB transitions, leading to ηarray → 1.
Quality factors are generally kept around 4-5, since a higher value would imply a
narrow spectral response, which in practice might not be useful because it would
limit the operation of the device to a very small bandwidth. The most efficient
situation for real devices is then a tradeoff where Bisb ≈ 1/Qohm, with ηarray ≈ 0.5.

The responsivity of the array then becomes

Rarray = (Cξarray)×
(

eg

Etrans
ηarray

)
, (3.22)

where C is the contrast of the resonant cavity, which determines the fraction of
radiation that is actually absorbed by the cavity, and ξarray = 0.7 − 0.8 is a polar-
ization coefficient introduced because the metallic wires, which electrically extract
the photocurrent from the patches, reflect back the impinging radiation [40].

We can now compare the efficiencies of the mesa and array devices by calculating
their ratio:

ηarray
ηmesa

=
cos θ

sin2 θ

λtrans
2πL

Qloss. (3.23)

Let us consider the case of a sub-wavelength microcavity with λtrans = 9µm, L =
1µm and an angle of incidence θ = 45◦. According to Equation 3.23, in this config-
uration, a loss quality factor larger than 4.4 is enough to obtain a higher quantum
efficiency in the array with respect to the mesa device. This gain in quantum ef-
ficiency is easier to obtain in the case of a sub-wavelength microcavity, where the
ratio λtrans/L is greater than 1, otherwise a higher Qloss is needed.

Detectivity and temperature performance

We can now compare the specific detectivity D∗ of a QCD in the mesa and array
configuration, to understand what is the expected impact of the microcavities on
the performance of this type of detector.

First, we consider the 0V detectivity of the mesa. Its temperature dependence
follows from Equation 1.11:

D∗0,mesa(T ) =
R0,mesa

√
σmesa√

4kBT/R0(T ) + 4egIback,photo
, (3.24)

where we have considered the effective detector area to be the electrical area of the
mesaAdet = σmesa. From Equation 3.14, we can consider Iback,photo = R0,mesaσΦ300KEtrans,
assuming the environment to be at room temperature (300K). Now, we can study
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the two limiting behaviours of the mesa detectivity, i.e. when T = 0 K and when
T >> TBLIP :

D∗0,mesa(T = 0) =

√
R0,mesa

4egEtransΦ300K

(3.25)

D∗0,mesa(T >> TBLIP ) = R0,mesa

√
σ

4kBT/R0,mesa(T )
. (3.26)

For an array, we can write analogously:

D∗0,array(T ) =
R0,array

√
Acoll√

4kBT/R0,array(T ) + 4egIback,photo
, (3.27)

where we considered Adet = Acoll. In this case, the background photocurrent is
Iback,photo = R0,mesaAcollΦ300KEtrans and the two limiting values are

D∗0,array(T = 0) =

√
R0,array

4egEtransΦ300K

(3.28)

D∗0,array(T >> TBLIP ) = R0,array

√
Acoll

4kBT/R0,array(T )
. (3.29)

The ratio of the array and mesa detectivities in the low temperature regimes is
then:

D∗0,array(T = 0)

D∗0,mesa(T = 0)
=

√
R0,array

R0,mesa

. (3.30)

In order to calculate this ratio in the high temperature regime, we observe that the
array (mesa) resistance is inversely proportional to its electrical area σarray (σmesa).
This yields the equationR0,array/R0,mesa = σmesa/σarray. Thus, the high temperature
ratio can be expressed as:

D∗0,array(T >> TBLIP )

D∗0,mesa(T >> TBLIP )
=
R0,array

R0,mesa

√
Acoll
σmesa

· σmesa
σarray

=
R0,array

R0,mesa

√
Acoll
σarray

(3.31)

Figure 3.8 shows a schematic comparison of the mesa and array detectivity curves
as a function of temperature. At low temperatures, where the device is background
limited, the ratio of the two detectivities just depends on the ratio of the two corre-
sponding responsivities. Thus, in array QCDs, it is possible to achieve an increase
in detectivity thanks to the improved absorption efficiency of a patch cavity over a
mesa (microcavity effect). In this case, however, there is no advantage related to the
higher collection area in the array device. The reason for this is that not only the
detectivity, but also the background photon noise increases with the collection area.
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Figure 3.8: Temperature dependence of the QCD specific detectivity in
mesa and array geometries. The latter can improve the device
performance, especially in the high temperature regime, thanks
to a combined microcavity and antenna effect.

At high temperatures, instead, where the device is limited by thermal noise, the ef-
fect of the higher collection area is visible and the ratio of the two detectivities does
not only depend on the ratio of the responsivities, but also on Acoll/σarray. Thus,
we can say that an antenna effect is added to the microcavity one. As a result, the
largest improvement due to the microcavities is observed at high temperatures.
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3.2 Electro-optical characterization of a patch-antenna
QCD

Up to now, the only patch-antenna ISB detectors that have been reported in the
literature are QWIPs [44][45][38][4]. These works confirm the predictions discussed
in the previous section. Particularly relevant are the results reported in reference
[4] by D. Palaferri and others, who achieved room temperature operation of a 9 µm
patch-antenna QWIP.

In this thesis work, we report for the first time a characterization of a QCD in this
type of geometry, showing that the microcavities are beneficial for the performance
of these types of detector as well.

3.2.1 Sample description

The wafer of the active region described in Section 2.4.1 was processed by Azzurra
Bigioli1 at Paris Diderot University2 to create the patch array. The device is a
matrix of 15x15 square patches (Figure 3.9). On top of each patch is deposited a
PdGeTiAu layer, which creates an ohmic contact with the underlying GaAs. All
the elements in a single row are connected by a TiAu wire, which is in contact both
with the PdGe and with the active region. TiAu creates a Schottky contact with the
semiconducting materials and thus ensures that the charge carriers are collected only
from the PdGe contact. The wires then reach a common pad, where it is possible
to create, via thermal bonding, the electrical contact to perform the measurements.
The ground signal is taken from a metallic substrate, common to all patches.

Figure 3.9: Scanning electron microscope images of the patch array (left)
and of a single square patch (right).

Samples with four different patch sizes s were produced: 1.15µm, 1.2µm, 1.3µm
and 1.4 µm. These values were chosen on the basis of Equation 3.8 and of the
simulation reported in Figure 2.8. The optical transition predicted by the simulation
has a corresponding wavelength λres ≈8.9µm. The patch with a resonant wavelength
equal to λres is then expected to have size s ≈ λres/2neff ≈ 1.35µm (with neff = 3.3

1École Normale Supérieure, 75005 Paris, France.
2Université Paris Diderot, 75013 Paris, France.
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[39]). Also patch cavities expected to be off-resonance were produced (1.15 and 1.2
µm), in order to study what is their effect on the spectral response of the device.

3.2.2 Spectral Response

The first optical measurements we performed on the devices are photoresponse spec-
tra as a function of the patch size s and of temperature. Figure 3.10 shows the exper-
imental setup we used for these measurements. The sample is placed inside a Janis
ST-300 cryostat with ZnSe windows, which are transparent in the spectral range
between 7 and 12 µm. The temperature in the cryostat determined by the balance
between the flow of liquid nitrogen and the current flowing into a heater wire in the
cryostat. The internal temperature is measure by a thermocouple, whose output is
sent to a Lakeshore 331 temperature controller. The proportional-integral-derivative
(PID) controller in the Lakeshore 331 sets the current flow needed to reach the de-
sired temperature. The whole cryostat is kept under high vacuum (below 10−4 mbar)
by a turbomolecular pump, to avoid condensation and decrease thermal exchange
with the environment.

Figure 3.10: Schematic representation of the experimental setup for the
measurement of the QCD spectral photoresponse.

We measured the spectral response with a Bruker Vertex 70 Fourier transform
infrared (FTIR) spectrometer. This instrument has an internal source of polychro-
matic MIR radiation (called globar), which is a blackbody with a temperature of
≈ 1000 K. This beam is reflected by a mirror towards a beamsplitter, i.e. an optical
element that partly transmits and partly reflects the radiation, splitting the initial
beam in two. The two beams are reflected by two mirrors back to the beamsplit-
ter, where they recombine. Finally, the resulting beam is sent to the output of the
instrument and focused onto the sample. The output current from the sample is
amplified by a Femto DLPCA-200 transimpedance amplifier and sent to the FTIR
itself, which delivers the result to the PC. One of the two mirrors is able to move,
creating an optical path difference between the two beams. Thus, this part of the
FTIR is essentially a Michelson interferometer. The output signal is measured as
a function of the optical path difference and then Fourier transformed to obtain a
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spectrum as a function of the wavenumber k (with dimensions of an inverse length).
From the wavenumber it is possible to obtain the photon wavelength (λ = 1/k) and
energy (E = hck). For more details on how an FTIR spectrometer works we refer
the interested readers to [47] and [48]. Typically, several mirror scans are performed
to measure as many spectra, which are then averaged together in order to reduce
the noise.

Finding the resonant patch size

First we acquired the spectral response of the four samples with different patch sizes
at liquid nitrogen temperature (∼78K) and without an external bias. The goal is to
identify at which patch size the resonance energy of the microcavity is the same as
the energy of active transition in the QCD. In order to compare correctly the four
spectra, we performed the measurements under the same experimental conditions
(aperture in the globar source, number of scans, spectral resolution, amplifier gain).
The result of the measurement is shown in Figure 3.11. We normalized to 1 the
curve with the highest peak and scaled the other spectra accordingly.
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Figure 3.11: Photoresponse spectra at T =78K and without applied bias
of four patch-antenna QCDs with different patch sizes. In
the sample with s = 1.4µm the microcavity resonates with
the optical transition of the QCD, generating a symmetric
and more intense signal.

These data show how strong can be the effect of the cavity on the device response:
a change in s of few hundreds of nanometers causes remarkable changes in the
output signal. These spectra allowed us to state that resonant patch size is s =
1.4µm. Indeed, the corresponding spectrum has substantially higher intensity than
the others. For example, its peak response is 10 times higher than the s = 1.15µm
sample.

Another indicator of the resonance between cavity and QCD is the shape of
the spectra. The s = 1.4µm has a symmetric shape, while all the others display
broadening at high energies. This effect is directly related to the presence of the
microcavity. Indeed, these spectra are a combination of two responses: one due to
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the ISB transition in the QCD RISB(E), which is the same in all samples, and one
due to the microcavity absorption Rcavity(E), which depends on s. In particular,
due to Equation 3.8, a lower s implies a higher resonance energy of the cavity and
thus an absorption peak at higher energies, for a given quality factor of the cavity
Q. Figure 3.12 shows a simplified model to understand the effect of the cavity on
the QCD spectrum. On the left, the black curve represents RISB, with a peak at 140
meV, while the red and blue dashed lines represent Rcavity for two different resonance
energies of the cavity, one at 150 meV (blue curve) and one at 140 meV (red curve),
which is in resonance with RISB. If we approximate the resulting spectrum of a

Figure 3.12: Effect of the microcavity on the absorption spectrum of a
QCD. If the cavity absorption energy corresponds to the ISB
absorption energy, the intensity is maximized and the result-
ing spectrum is symmetric.

patch QCD with the product of the two spectral responses RISB×Rcavity, we obtain
the two spectra reported on the right. In the case where the cavity absorption does
not resonate with the ISB absorption, the spectrum has a lower intensity and shows
a broadening at higher energies. Instead, when cavity and ISB absorption resonate,
the resulting spectrum has a higher intensity and it is symmetric.

Through these measurements we were able to find the device with resonant patch
size (s = 1.4µm) and thus we carried out the whole characterization only on this
detector. Therefore, all the experimental results reported in the following concern
this device.
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High temperature performance

For practical applications, it is relevant to study how the detector temperature
affects the spectral response. We measured the spectral response with an applied
bias of 0V and at 210, 260 and 295 K temperatures, of interest for Peltier-cooled
applications. Figure 3.13a shows the measured spectra, compared with the one
measured at liquid nitrogen temperature. Figure 3.13b shows the integral of each
spectrum, as a function of the detector temperature.
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Figure 3.13: (a) Spectral response at 0 applied bias of the s = 1.4µm
device at different temperatures of the device. (b) Integral of
the four spectra as a function of the device temperature.

The detector achieves room temperature operation, although a drop in intensity
occurs as temperature increases. From 78K to 260K we observe a decrease by
approximately a factor of two in the integral, which turns to a factor of five at
room temperature. The temperature drop of the QCD responsivity is a well known
behaviour, reported multiple times in the literature [3][30]. However, the physical
mechanism that causes this is still unknown. Indeed, electronic transport should be
always confined in the multi-QW structure and charge carriers should not loose their
velocity at high temperatures, leading to a temperature-independent responsivity.

We observe a significant decrease in the signal from 260 to 295 K, which is un-
expected, especially because from 210 to 260 K a much lower drop is observed. We
suggest that this behaviour might not be related to the device itself, but to the limi-
tations imposed by our experimental setup and, in particular, by the transimpedance
amplifier. At high temperatures the 0 Volts resistance of the device decreases by
more than four orders of magnitude (Figure 2.11), which is not an ideal condition for
operating a current amplifier. Indeed, these instruments typically work best with a
high impedance input. A possible way to check the validity of this hypothesis would
be to let the output current flow though a shunt resistor and then to measure the
voltage drop across it with a voltage amplifier. In this case, the device resistance
should not affect the output of the measurement.
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3.2.3 Background I-V characteristics

The device is said to be in background condition if the only external source of radia-
tion is the environment, having a temperature greater than the device temperature.
Thus, from Equation 1.10, in this condition the total current is a sum of two con-
tributions: the photocurrent due to the background radiation and the dark current.

The experimental setup for this measurement is the same as for the dark I-
V (Figure 2.9), except that the cryo-shield is not used in this case. Instead, the
sample is exposed to the environment radiation though the cryostat windows. We
performed the measurement for different detector temperatures, from 78K to room
temperature. The results are shown in Figure 3.14.
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Figure 3.14: Background I-V characteristics of the patch-antenna QCD at
different temperatures

Figure 3.15: Dark and background I-V characteristics of the QCD at tem-
peratures of 78 and 130 K. The graph on the right shows an
enlargement of the 130K curves, showing that also in this case
we observe a higher background current, due to the photocur-
rent generated by background radiation.

It is interesting to compare these curves with the dark I-V characteristics re-
ported in the previous chapter (Figure 2.10). In Figure 3.15 we report the dark
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and background characteristics at two different temperatures: 78 and 130 K. By
comparing the two curves at 78K, we can observe that the background current is
always higher than the dark one. This is expected from Equation 1.10, indeed the
difference between the two is exactly the photocurrent due to the background ra-
diation. Moving to higher temperatures this photocurrent becomes weaker, but it
is still present, as shown for 130K temperature in the enlargement on the right of
Figure 3.15.

3.2.4 Responsivity

From the definition of responsivity (Equation 1.1) we know that, in order to obtain
its value, we need to measure the photocurrent flowing in the device due to an
external source and the incident power on the detector. In the following we explain
the setup and the techniques we used to accomplish these tasks, along with the
experimental results.

Power calibration

The incident power on a detector Pin can be calculated as the energy integral of the
product of the power emitted by the source Pe(E) with the detector responsivity
normalized to 1, Rn(E) = R(E)/Rmax:

Pin =

ˆ
Pe(E)Rn(E)dE. (3.32)

The emitted power can be also written as:

Pe(E) = ΩAdetI(E), (3.33)

where Ω is the solid angle seen by the detector, Adet is the light collection area and
I(E) is the emitted irradiance. In our case, the source of radiation is a Stanford
Research Systems SR830 blackbody at temperature T = 1000◦C. The irradiance is
then given by Planck’s law for blackbody radiation:

I(E) =
2π

~3c2

E3

eE/kBT − 1
, T = 1000◦C. (3.34)

It is convenient to express the irradiance as its peak value Imax times the normalized
irradiance curve In(E). Therefore, Equation 3.32 can be rewritten as:

Pin = ΩAdetImaxΣdet, Σdet =

ˆ
In(E)Rn(E)dE, (3.35)

where Σdet represents an overlap integral between the emitted irradiance and the
detector responsivity. Since the value of Imax is unknown, we cannot use directly
Equation 3.35 to calculate the incident power on the QCD. Therefore, we performed
a power calibration using an Teledyne Judson MCT (model J15D22), with a respon-
sivity curve RMCT (E) provided by the manufacturer. If the MCT and the QCD
collect the blackbody radiation from the same solid angle Ω, then we have that:

Pin,QCD =
AQCDΣQCD

AMCTΣMCT

Pin,MCT . (3.36)
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Figure 3.16: Graphic result of the calculation of the overlap integrals
ΣMCT and ΣQCD on the basis of Equation 3.35. The red
and blue lines are the normalized responsivities of MCT and
QCD, respectively. The black line is the normalized black-
body radiation at T = 1000◦C.

Imax is the same for both detectors, because it just depends on the source, so it is
simplified in the equation and it is not needed anymore. Therefore, we can extract
the incident power on the QCD knowing the incident power on the MCT detector.
Figure 3.16 shows the graphic result of the calculation of ΣMCT (red area) and
ΣQCD (blue area). The red and blue lines are the normalized MCT and QCD
responsivities, respectively. The MCT curve was provided by the manufacturer. As
QCD responsivity curve we took the spectrum at 78K and 0V bias. The black line
is the normalized 1000°C blackbody irradiance predicted by Equation 3.34.

Figure 3.17: Experimental setup for the measurement of the incident
power on the MCT detector.

Figure 3.17 shows a schematic representation of the experimental setup we used
to measure the incident power on the MCT detector. The 1000°C blackbody radi-
ation is produced by a Boston Electronics IR-564/301 source and it is focused on
the MCT detector. The output signal VMCT is then amplified with a gain G = 100.
In order to avoid the influence of the blackbody radiation from the environment (at
25°C), we placed an optical chopper in front of the source, spinning at a frequency
sent by a controller to the reference input of a lock-in amplifier. Because the output
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from the amplifier overcomes the maximum input voltage accepted by the lock-in,
we added a voltage divider to the circuit, with two resistances R1 = 10kΩ and
R2 = 1MΩ. The lock-in amplifier measures the voltage Vlock−in across R2.

It is straightforward to show that the value of VMCT can be extracted from the
measured Vlock−in through the formula:

VMCT =
1

G
× R1 +R2

R2

× π√
2
Vlock−in, (3.37)

where the factor π/
√

2 is introduced because the lock-in amplifier measures the root
mean square value of the voltage oscillation, caused by the presence of the chopper.
The incident power on the MCT detector is then

Pin,MCT (E) =
VMCT

RMCT (E)
. (3.38)

In our case, we are interested in the incident power at the energy corresponding to
the peak of the QCD responsivity (E = 141.5meV), since the detector responds only
in a narrow band around that value. Calculating Pin,MCT (141.5meV),we obtained
an incident power on the QCD of

Pin,QCD = 90nW.

Photocurrent measurements

Figure 3.18 shows the experimental setup used for the measurement of the photocur-
rent as a function of the bias applied to the device. As for the previous measure-
ments, the device is put in a cryostat cooled by a liquid nitrogen supply. The source
is the same blackbody at T = 1000◦C used for the incident power measurement.
Also in this case, an optical chopper is put in front of the source and connected to
the reference input of the lock-in amplifier in order to measure only the signal due
to the source and not the one coming from the background. The total current I

Figure 3.18: Schematic diagram of the experimental setup used for the
photocurrent measurement.

flows into a shunt resistor with resistance Rshunt = 220Ω, creating a voltage drop
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Vlock−in across it. This voltage is amplified by a Stanford Research Systems SR560
Voltage Amplifier with gain G = 104 and then sent to the input of the lock-in am-
plifier. The circuit is biased through the Keithley 2400 source measure unit (SMU).
A LabVIEW program on the PC controls the bias applied by the SMU and acquires
the output signal from the lock-in and the current I, measured by the SMU.

Figure 3.19: Equivalent circuit of the setup in Figure 3.18.

Figure 3.19 shows the equivalent circuit of the setup in Figure 3.18. The QCD
can be modeled as a current source in parallel with the device resistance Rd. The
current source models the generation of (i) the photocurrent due to the blackbody
Iphoto, (ii) the background photocurrent Iback,photo and (iii) the dark current Idark.
Our interest is to measure Iphoto as a function of the bias applied to the device Vd.
Iphoto is separated from the other two contributions thanks to the optical chopper and
the lock-in amplifier. Vd does not correspond to the total bias applied by the SMU
Vb, due to the presence of Rshunt. Solving the equivalent circuit using Thévenin’s
theorem it is possible to obtain the following expression for Vd:

Vd =
Rd

Rd +Rshunt

(Vb −RshuntI). (3.39)

Therefore, in order to calculate Vd, also I and Rd are needed. The former is mea-
sured directly by the SMU and acquired by the LabVIEW program. The latter is
calculated from an I-V characteristic, acquired after the photocurrent measurement,
under blackbody illumination. From the I-V the resistance of the device is easily
obtained through Rd = (dI/dV )−1. It is necessary to measure separately the I-V
characteristic, otherwise the presence of Rshunt would influence the result. Once
obtained the photocurrent, it is possible to calculate the responsivity dividing Iphoto
by the incident power on the detector Pin, measured at the previous stage.

Figure 3.20b shows the resulting experimental curves of the responsivity as a
function of the bias applied to the device. We measured these curves at different
temperatures, from liquid nitrogen temperature to room temperature. Figure 3.20a
shows the same curves measured on the mesa reference device. In this case the
measurements were performed from liquid helium temperature (4K) to 210K. For
practical reasons we report only those above 78K.

Figure 3.22 compares the responsivity at -0.1V of the mesa and patch devices as
a function of temperature. A boost in the responsivity due to the microcavity effect
is clearly visible in the patch detector with respect to the mesa. At liquid nitrogen
temperature the responsivity of the former is six times larger than that of the latter.
At 210 K the the enhancement is even larger, by a factor of 10. At room temperature
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and -0.1V, we report a responsivity of 65.7 mA/W, which is significantly higher than
the highest value reported in the literature for QCDs in the 9µm spectral range, i.e.
16.9 mA/W [30].

3.2.5 Detectivity

Following Equation 1.9, we calculated the specific detectivity of the device from its
responsivity. We obtained the generation-recombination noise using the background
I-V characteristics discussed in Section 3.2.3. We calculated the Johnson noise
using the resistance calculated from the same I-V characteristics. We considered a
detector area equal to the collection area Acoll of the microcavities, i.e. the unit cell
area Σ = (s + a)2 multiplied by the number of elements of the array, 125, times
the contrast measured in the reflectivity spectra measure in the reflectivity spectra
C = 0.8. We repeated the same calculations also for the mesa reference in order
to compare the performance of the two geometries. In this case we considered the
detector area to be the electrical area σof the mesa detector.

Figure 3.21 shows the results for (a) the mesa and (b) the patch array geometries.
A higher specific detectivity is observed at every temperature in the patch device,
with respect to the mesa.

Figure 3.23 shows the comparison of the mesa and patch detectivities as a func-
tion of temperature, for a fixed voltage of -0.1V. As expected from the theory of
patch-antenna detectors (Section 3.1.3), we observe the most relevant boost in de-
tectivity at high temperatures, thanks to both the microcavity and antenna effects.
At liquid nitrogen temperature the patch D∗ is greater than the mesa one by a factor
of ∼5.5, which is in agreement with the value of 6.1 predicted by Equation 3.30, cal-
culated using the experimental values of the two responsivities at this temperature.
At 200K this factor becomes ∼16.3, close to the value of 13.7 predicted by Equation
3.31. We also note that at room temperature the patch detector has a detectivity
comparable to the one at 170K of the mesa. Therefore, thanks to the patch antenna
architecture, in the high temperature range, we were able to achieve a 130K increase
in the operating temperature, keeping the same detector performance as in the mesa
device.
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(a)

(b)

Figure 3.20: Responsivity as a function of the bias applied to the device
for (a) the reference mesa and (b) the patch-array device.
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(a)

(b)

Figure 3.21: Specific detectivity as a function of the bias applied to the
device for (a) the reference mesa and (b) the patch-array de-
vice.
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Figure 3.22: Comparison of the mesa (red dots) and patch-array (blue tri-
angles) responsivity at -0.1V as a function of temperature.
We report a responsivity enhancement by a factor of 6 at low
temperature and by a factor of 10 at 200K.

Figure 3.23: Comparison of the mesa (red dots) and patch-array (blue tri-
angles) detectivity at -0.1V as a function of temperature. At
room temperature our array QCD displays the same perfor-
mance as the mesa reference at 170K.
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Chapter 4

Design of a new QCD generation

In this chapter, we focus our attention on computer simulations for the design of
the QCD active region. First, we briefly recall the theory needed to simulate the
band structure of multi-QW systems, such as QCDs. Then, we report our work
concerning the design of a patch-antenna QCD operating at a 4µm wavelength. As
we shall see, a device of this kind introduces some challenges that we were able to
overcome by introducing a new type of QCD, that we refer to as step-well QCD. We
explain the modifications implemented in the Schrödinger-Poisson solver in order to
simulate such structure and we finally report the results of the simulations.

4.1 Simulating the QCD active region
The production process of a QCD (and of any other ISB device) can be divided into
three main steps:

1. Simulation: A computer program is used to simulate the band structure of
the device. Parameters such as the materials used in wells and barriers, the
QWs height and the QWs width are changed, as a function of the operating
wavelength and desired performance, until the desired result is achieved.

2. Growth: The heterostructure designed during step 1 is produced by epitaxial
growth and then the device is processed. This part is performed in clean room.

3. Characterization: Measurements are carried out on the final device to assess
its electrical and optical properties.

Figure 4.1 shows some of the most important parameters that have to be optimized
during the design of a new QCD. The first one is the transition energy Etrans in the
active well. Its value determines the spectral region where the detector operates and
it is chosen on the basis of the particular applications the QCD is made for. The
value of Etrans influences the choice of the materials for wells and barriers, which
have to provide a conduction band offset (CBO) larger than the transition energy
itself. Also the energy difference between adjacent levels of the cascade Eij, with
j = i + 1, has to be optimized. Indeed, as discussed in Section 2.2, Eij should be
close to the LO phonon energy in order to create a faster and more efficient transport
along the cascade.

65
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Figure 4.1: Schematic representation of some of the key parameters to be
optimized during the QCD design.

Other important parameters are the relaxation times τij between the energy levels
in the structure (labeled by i and j). The relaxation time of the active transition (τ12

in the case of Figure 4.1) should be higher than the extraction time to the cascade
region, otherwise most part of the photo-excited electrons would de-excite back to
the ground state, instead of giving their contribution to the photocurrent. Also the
relaxation time between the last level of the cascade region and the ground state
of the following period (τ56) has to be optimized. Its value should be minimized,
in order to avoid accumulation of charge carriers in level 5, which would slow down
the transport in the structure and also create, between levels 5 and 1, a capacitive
effect, detrimental for high speed applications.

The oscillator strength fij between different levels is another key parameter in
the design of the active region. In particular, it is important that the oscillator
strength of the active transition f12 is as close as possible to unity, to ensure that
most part of electrons in the ground state are excited to level 2 and do not take part
in diagonal transitions.

It is therefore necessary to have a computer program that is able to simulate the
electronic eigenfunctions for a given potential and also to calculate the scattering
times and oscillator strengths between energy levels. In the following, we briefly
cover the theory that is needed to perform these calculations and we explain the
working principle of the program for the simulations used during this thesis work.

4.1.1 Band structure calculation in multi-QW systems

As already discussed in Section 2.1, inside a crystalline solid the electronic eigen-
states can be calculated solving the time-independent Schrödinger equation:

[
p2

2m
+ V (r)

]
ψ(r) = Eψ(r), (4.1)

where m is the electron mass and V (r) is a potential with the same periodicity as
the crystal lattice: V (r) = V (r + R), with R the lattice constant. Bloch’s theorem
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states that the eigenfunctions that solve Equation 4.1 are in the form [49]:

ψνk(r) =
eik·r√
V
uνk(r), (4.2)

where V is the unit cell volume, ν is the band index and unk(r) is a period function
such that uνk(r) = uνk(r+R) and ~k is the crystal momentum. By putting Equation
4.2 into 4.1 and using approximations such as the tight binding or the pseudo-
potential methods [50] it is possible to obtain the full band structure of the system.
However, a description of the band structure just in the vicinity of the conduction
and valence band extrema is typically sufficient to correctly predict the electronic
and optical properties of the system. For this reason, a very popular method to
solve the Schrödinger equation is through the k · p approximation, that allows to
calculate the band structure in the vicinity of the k = 0 point.

k·p perturbation theory

By inserting Equation 4.2 into 4.1, we obtain a Schrödinger equation for the periodic
functions uνk(r): p2

2m
+ V (r)︸ ︷︷ ︸

H(k=0)

+
~k · p
m

+
~2k2

2m︸ ︷︷ ︸
W (k)

uνk(r) = Eνkuνk(r), (4.3)

where we have split the Hamiltonian into two parts: a k-independent part H(k = 0)
and a k-dependent part W (k), that we will treat as a perturbation in k. The
fundamental idea at the basis of this theory is indeed using uν0 as a basis for the
expansion of the eigenfunctions and energy eigenvalues at finite k.

Assuming the band structure to have a minimum at energy En0, it is possi-
ble to show that, applying k · p perturbation theory, we obtain a parabolic energy
dispersion relation close to the Γ point (Figure 4.2) [50]:

Eνk = En0 +
~2k2

2m∗
, (4.4)

where m∗ is the effective mass, which in k · p is expressed as [50]:

1

m∗
=

1

m
+

2

m2k2

∑
ν′ 6=ν

|〈uν0|k · p|uν0〉|2

Eν0 − Eν′0
. (4.5)

Equation 4.5 shows that the electron mass in a solid differs from the free electron
mass because of the coupling between electronic states in different bands, through
the k · p term. If we consider the only conduction (c) and valence (v) bands, we can
write the conduction band energy as:

Eck = Ec0 +
~2k2

2m
+

~2k2

2m

|pcv|2

Eg
= Ec0 +

~2k2

2m

(
1 +

EP
Eg

)
, (4.6)

where pcv = 〈uc0|p|uv0〉 is the isotropic momentum matrix element, Eg is the band
gap energy and EP = 2|pcv|2/m is the Kane energy (≈ 20 eV in III-V semiconductors
[52]).
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Figure 4.2: Band structure of GaAs (black lines) and result of k · p ap-
proximation close to the Γ point (red line) (from [51])

Kane model

The parabolic approximation of Equation 4.4, yielded by the k · p method, becomes
less and less valid for lower values of the effective mass [12]. This is because Eg
decreases for a smallerm∗, resulting in a stronger interaction between the conduction
and valence bands, which causes larger deviations from the parabolic approximation.

The first model to take into account conduction band non-parabolicity was first
proposed in 1957 by E. O. Kane [53] for the case of the InSb band structure. The
model considers just the conduction band and three valence bands: heavy holes,
light holes and split-off bands(Figure 4.3). The light and heavy holes bands are
degenerate in k = 0 and their energy separation with the split-off band is denoted
by ∆so. Considering these four bands, the perturbation W (k) can be written as a
8x8 matrix (the factor of 2 is due to the spin). The energy dispersions E(k) are
then the eigenvalues of this matrix and one can find that, in this approach, the
dispersions are not parabolic anymore. As we shall see later, this non-parabolicity
can be taken into account by including an energy dependence in the effective mass:
m∗ = m∗(E(k)).

Application to QW systems

Our interest is to simulate multi QW structures, therefore we shall see how the
Kane model can be optimized for such systems. The heterostructure forming a QW
is made by two materials, one with a lower energy gap EW

g , which produces the well,
and one with a higher energy gap EB

g , forming the barrier. This creates conduction
and valence band profiles that vary as a function of the growth direction z: Ec(z)
and Ev(z) (Figure 4.4).

In general the two materials in the well and in the barrier display a different
values of the effective mass. Therefore, in heterostructures, there is a z-dependence
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Figure 4.3: Scheme of the band structure considered in the framework of
Kane model for a direct III-V semiconductor.

Figure 4.4: Conduction and valence band profiles of a heterostructure. The
“W” denotes the well region and the “B” the barrier region.

of the effective mass, in addition to the energy dependence: m∗ = m∗(E, z). As
discussed in Section 2.1, in these systems it is useful to adopt the envelope func-
tion approximation (Equation 2.1). The Schrödinger equation in the confinement
direction z for the envelope function χn(z) reads:[

−~2

2

∂

∂z

1

m∗(En, z)

∂

∂z
+ Ec(z) + Vext(z)

]
χn(z) = Enχn(z), (4.7)

where we have introduced an external potential Vext, to consider contributions than
are additional to the band discontinuity. In our case, the only external contribution
we will consider is a bias applied to the structure, which acts only on the z direction.
Along the x− y plane no confinement or external contribution exists, therefore the
eigenfunctions and energy eigenvalues are those of free particles.

Following Reference [28], we can reduce the number of bands in the Kane model
to three considering the coupling of the conduction band states with the light holes
and split-off states. The heavy holes states are decoupled from the original 4x4
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Hamiltonian, which becomes the 3x3 matrix:

H =


Ec(z)

√
2
3
pcv
m
pz −

√
1
3
pcv
m
pz

−
√

2
3
pcv
m
pz Elh(z) 0√

1
3
pcv
m
pz 0 Eso(z)

 , (4.8)

where lh and so label the the light hole and split-off band edges, respectively. This
Hamiltonian acts on a vector of three envelope functions Φ, one for each band:

H

Φc

Φlh

Φso

 = E

Φc

Φlh

Φso

 . (4.9)

If we are interested only in the energy levels above the conduction band edge (which
is the case for QCD simulations), we can solve the problem expressing the equation
in the first row as a function of those in the second and third:

pz
2

m∗(E, z)
pzΦc + Ec(z)Φc = EΦc, (4.10)

where the energy and position dependent effective mass is given by [28]:

1

m∗(E, z)
=

1

m

[
2

3

Ep
E − Elh(z)

+
1

3

Ep
E − Eso(z)

]
. (4.11)

If we adopt the convention of Figure 4.3, setting the conduction band edge energy
to zero, the effective mass can be expressed in terms of Eg and ∆so:

1

m∗(E, z)
=

1

m

[
2

3

Ep
E + Eg(z)

+
1

3

Ep
E + ∆so(z) + Eg(z)

]
. (4.12)

4.1.2 Calculation of transition parameters

As discussed above, in addition to the band structure of the system, we are also
interested in parameters regarding the transitions between two arbitrary states i
and j of the structure. In particular, the most relevant ones are the scattering times
and the oscillator strengths. In the following we briefly cover how these parameters
can be calculated.

Scattering time

For III-V semiconductor multi-QW systems the three most important scattering
mechanisms are [54][55]:

1. Interface roughness : An elastic scattering mechanism that is due to imper-
fections at the interface between two different semiconductors. This type of
scattering is relevant in the case of multi-QW structures, which display a high
density of interfaces.
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2. Alloy disorder : An elastic scattering mechanism that appears in systems that
contain alloys. The disorder inevitably present in alloy compounds introduces
inhomogeneities in the periodic potential, which causes electron scattering. It
is important to consider this phenomenon in multi-QW structures because it
often occurs that they contain alloys such as AlGaAs, InGaAs and others.

3. LO-phonon emission: an inelastic scattering mechanism that is typically the
most efficient for ISB transitions. Electrons relax to lower energy subbands
and part of the lost energies generates longitudinal optical phonons.

Each of these processes has a characteristic scattering rate for a given transition
i → j. The total scattering rate can be computed through Matthiessen’s rule [23],
which states that the total scattering rate is equal to the sum of the scattering rates
of the different mechanisms at play:

1

τ totij

=
1

τ IRij
+

1

τalloyij

+
1

τLOij
, (4.13)

where “IR”, “alloy” and “LO” indicate the interface roughness, alloy disorder and
LO-phonon emission mechanisms, respectively. The equations for the calculation of
these three scattering rates are reported in Appendix B. In order to calculate these
rates it is necessary to fix some parameters that depend on the material choice (e.g.
lattice constant, LO-phonon energy, etc.) and to know the wavefunctions of the
system, which are obtained by solving the Schrödinger equation.

Oscillator strength

As already discussed in Section 2.2, the oscillator strength of a transition from state
i to state j can be expressed as:

fij =
2

m∗~ωij
|〈ψj|pz|ψi〉|2 =

2m∗ωij
~
|〈ψj|z|ψi〉|2, (4.14)

where ~ωij is the transition energy. The term dij = 〈ψj|z|ψi〉 is generally referred
to as dipole matrix element and it is the electric dipole moment associated with
the transition between the states i and j. This is also a relevant parameter for
active region design because its direction gives the polarization of the transition,
determining how the system will interact with an electromagnetic wave of a given
polarization.

4.1.3 C++ program for active region simulations

The computer program we used in this thesis work for simulating the QCD active
region was developed by Carlo Sirtori, Angela Vasanelli, Giulia Pegolotti and others.
It is written in C++ programming language and it is based on a numerical method
to solve the Schrödinger equation 4.7 [56][24]. The program finds numerically, point
by point, the solutions to this differential equation, allowing to find the solutions for
arbitrary potentials, also in the case of a non-zero applied bias.

In the following we report the input file of the program, where we have introduced
example values, and a brief explanation of the purpose of each parameter.
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1 e f i e l d = −0.0001
2 matchoice = 1
3 xcont = 0 .5
4 nbwel l s = 2
5 Epot = 0 .5
6 T = 300
7 b a r r i e r s (1 ) = 30
8 we l l s (1 ) = 44
9 mul t i p l i e r_we l l (1)=0

10 mu l t i p l i e r (1)=100
11 b a r r i e r s (2 ) = 62
12 we l l s (2 ) = 12
13 mul t i p l i e r_we l l (2)=25
14 mu l t i p l i e r (2 ) = 100 ,0

• efield is the value of the electric field applied to the structure, expressed in
V/Å.

• matchoice can take values from 1 to 5 and each value corresponds to a par-
ticular combination of the materials for barrier and wells:

1. GaAs/AlGaAs

2. InGaAs/InP

3. InGaAs/AlGaAs

4. InAs/AlSb

5. InGaAs/AlInGaAs

Once defined the material choice, the following physical parameters are fixed
for both the barriers and the wells and saved in specific variables, indicated in
parenthesis: m∗ (variable m_b for barriers and m_w for wells), ∆so (dso_b and
dso_w) and Eg (Eg_b and Eg_w). In the case of ternary compounds, these
parameters are calculated from the value of xcont, following to Vegard’s law
[22, 23]: ξ AxB1−xC = (1−x)ξAC +xξBC , where ξ is one of the three parameters.

• xcont is the percentage x of the material AB (e.g. AlAs) in the ternary alloys
in the form AxB1−xC (e.g. AlxGa1−xAs).

• nbwells is the number of QWs in the structure.

• Epot is the conduction band offset, that has to be calculated by the user on
the basis of the chosen materials.

• T is the temperature of the system.

• barriers(i) is the width of the i-th barrier, expressed in Å.

• wells(i) is the width of the i-th well, expressed in Å.
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• multiplier_well(i) can take values from 0 to 100 and it is a percentage
value that is used to scale the height of the i-th well. The height of the well
is calculated through Epot× [1− multiplier_well/100].

• multiplier(i) has the exact same purpose as multiplier_well(i), but for
the barriers. In this case the barrier height is calculated through Epot ×
multiplier/100.

The potential of the structure is constructed by repeating the last four terms for
each quantum well, with the appropriate input values.

To calculate the band structure of the system, the program solves the Schrödinger
Equation 4.7, which contains the z- and energy-dependent effective mass m∗(E, z).
A corresponding vector m_z, containing the value of the effective mass at each
position z is defined in the code. The value of m∗(E, z) is determined by two
other z-dependent parameters, Eg(z) and ∆so(z) (see Equation 4.12), therefore two
corresponding vectors Eg_z and dso_z are defined as well. Let us consider the case
of the effective mass, first. At a given position along the growth direction zi, the
program checks whether in that part of the structure a well or a barrier is present.
Then, according to the result, m_z[zi ] is set equal to either m_w or m_b. The same
procedure is applied to Eg_z and dso_z.

Once calculated the band structure, the program outputs a text file containing
the potential and the square modulus of the wavefunctions |ψi(z)|2 as a function of
the growth direction z. Some example results are reported in Chapter 2, in Figures
2.8 and 2.14. Once obtained the eigenfunctions, the program calculates for each
transition i → j the scattering times τ IRij , τalloyij , τLOij and τ totij (through Equations
B.1, B.3, B.5 and 4.13), the oscillator strength fij and the dipole matrix element dij
(through Equation 4.14).

4.2 New generation of 4µm patch-antenna QCD

In this thesis work, in addition to the characterization of a 9µm patch-antenna QCD,
we also started the design of an analogous structure operating at a wavelength of
4µm. In the following, we describe the challenges that such device introduces, from
the point of view of both simulations and growth, and what we did to overcome
them.

4.2.1 Choice of the structure

In order to have our device operating at a wavelength between 4 and 5 µm, an ISB
transition in the active well in the energy range 248 - 310 meV is needed. The use
of GaAs in the wells and AlGaAs in the barriers, like in the 9µm QCD discussed in
the previous chapters, leads to a conduction band offset (CBO) of 276.32 meV. This
value is exactly within the desired transition energy range, which is not ideal for the
QCD operation. Indeed, even with a 250 meV transition, electrons in the excited
state could be easily excited by thermal energy to the continuum and bypass the



74 Chapter 4. Design of a new QCD generation

cascade region. Therefore, it is necessary to choose another combination of materials
to achieve a larger CBO.

(a)

(b)

Figure 4.5: Schematic conduction band diagram of the two possible geome-
tries for the 4µm patch-antenna QCD: (a) a standard InGaAs
/ AlGaAs structure and (b) a step well structure, with InGaAs
in the active well and GaAs in the cascade region.

One possibility is using InxGa1−xAs in the wells and AlyGa1−yAs in the barri-
ers,grown on a InP substrate (Figure 4.5a). A value of x = 0.53 ensures lattice
matching to InP and along with y = 0.45 generates a CBO of 520 meV. How-
ever, the use of an InP substrate could lead to some fabrication problems since the
wet-etching of this substrate, necessary to define the patches, generates unwanted
residuals products. Therefore, we decided to discard this option.

An alternative to the previous structure is a new geometry, that we will refer to
as step-well geometry, which has never been applied to QCDs. The idea involves
using two different materials to create the QWs, generating wells of different height
along the structure, hence the name “step-well”. In our case, the InxGa1−xAs /
AlyGa1−yAs combination would be used for the active well only. All the remaining
structure (i.e. the cascade region) would be made of GaAs / AlyGa1−yAs (Figure
4.5b). In this case the compositions to have a lattice matched structure are x = 0.1
and y = 0.5, yielding a CBO of 500 meV. In this way, on one hand, the active well
has enough CBO to allow a 4µm transition and, on the other hand, it is possible to
grow the active region on a GaAs substrate, for which the etching process is well
known. For this reason we opted for this geometry, rather than the first one.

4.2.2 Adapting the code for step-well simulations

The step-well geometry solves the problem of etching during growth, but introduces
complications in the simulation process. Indeed, The C++ program adopted for the
simulations does not provide the possibility of having three different materials in
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the active region. Therefore, in this thesis work, we introduced some changes in the
program, needed to accomplish this task.

The creation of a step-well potential is possible thanks to the multiplier_well
parameter. One can set the parameter Epot equal to the CBO of InGaAs / AlGaAs,
i.e. 500 meV, and then scale the wells in the cascade accordingly. In particular, if
we denote CBO and CBOw the conduction band offsets of InGaAs / AlGaAs and
InGaAs / GaAs, respectively (see Figure 4.5b), then the correct value of the well
multiplier is given by:

multiplier_well = 100× CBOw

CBO
= 100× 63meV

500meV
= 12.6,

where we have reported the calculation for our particular system, where the indium
percentage is x = 0.1 and therefore the CBOw results as 63meV.

This allows to create the correct shape of the potential, however it is not enough
to perform the simulation correctly. Indeed, it is necessary that the material pa-
rameters (i.e. m∗, Eg and ∆so) of InGaAs are associated to the deeper wells and
those of GaAs to the shallower ones. Our work was devoted to modify the program
to make this possible.

Figure 4.6: Schematic representation of the filling process of the z-
dependent effective mass vector m_z.

We introduced a sixth material choice in the program: matchoice = 6, cor-
responding to this three-compunds system. Inside the program, we changed the
variable containing the effective mass of the well m_w to a two dimensional array
m_w[], with m_w[0] containing the InGaAs effective mass and m_w[1] the GaAs
one. We did the same for the band gap and split-off energy variables: Eg_w[2],
dso_w[2]. In order to fill correctly the corresponding z-dependent vector, we added
to the code a control on the value of multiplier_well for a given well. Let us
consider the case of the effective mass. If the multiplier_well parameter is equal
to zero, then the well is an InGaAs one and m_z is set equal to the InGaAs effective
mass m_w[0]. Instead, if its value is larger than zero, the well is a GaAs one and
m_z is set equal to the GaAs effective mass m_w[1]. Figure 4.6 shows a schematic
diagram of this process. The same approach is followed for Eg_z and dso_z. We left
unchanged the process regarding the effective mass in the barriers, because there we
have only one type of material.
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Approximations and possible improvements

In the process of adapting the code we had to make some approximations.

1. The Kane energy Ep, that appears in the expression for the effective mass
m∗(z, E) in Equation 4.12, is not a z-dependent quantity, as opposed to Eg and
∆so. Therefore, we could not apply the same method used for the other three
parameters to distinguish between the Kane energy in the InGaAs wells and
in the GaAs ones. However, we calculated that the change in Ep between the
GaAs and In0.1Ga0.9As case is negligible. Indeed, we calculated that EGaAs

p =
24.1eV and EInGaAs

p = 23.9eV, a difference of less than 1%. Therefore we set
Ep = EGaAs

p , since GaAs is more present in the structure than InGaAs. A
possible improvement to the code would be to allow the possibility of a band
structure calculation with a z-dependent Kane energy.

2. The calculation of the oscillator strength fij based on Equation 4.14 does
not involve a z-dependent effective mass, but just a fixed value of m∗. We
calculated the value of fij in the case of two states of the same QW in a step-
well structure, using first the In0.1Ga0.9As and then GaAs effective mass. We
obtained values of fGaAsij = 0.66 and f InGaAsij = 0.62, i.e. a difference of 6%,
which we consider acceptable. We opted for putting the GaAs effective mass
in the calculation. Of course, the ideal solution and a possible improvement
would be to include a z-dependent effective mass in the integral of the dipole
matrix element 〈ψj|z|ψi〉, from which the oscillator strength is calculated.

3. In the calculation of the three scattering times (Equations B.1, B.3 and B.5), it
is necessary to specify some material-specific parameters, e.g. Λ and ∆ for τ IR,
∆Ec for τalloy and ωLO for τLO. Also in this case, the original program does
not allow to set two different values of these parameters, one for GaAs and one
for InGaAs. As discussed previously, the most important contribution comes
from the LO-phonon scattering rate, therefore we can focus on the difference
between ~ωLO in the case of GaAs and In0.1Ga0.9As. For GaAs its value is 36
meV [3], while for In0.1Ga0.9As it is 35.9 meV [57], a difference of 0.3% that
we can neglect. Therefore we opted for putting all of the relaxation times
parameters equal to the GaAs ones.

4.3 Results of the simulations
After changing the code to simulate step-well structures, we worked on the design of
the new structure. As discussed at the beginning of the chapter, at this stage, one
modifies the widths of wells and barriers in order to optimize all the relevant physical
parameters, such as position of the levels, scattering times, oscillator strength, etc.

The growth sheet of the final structure is reported in Appendix C. It is an active
region with 5 periods of 5 QWs and an active transition of ∼280 meV, corresponding
to a wavelength of ∼4.4µm. Figure 4.7 shows the corresponding computer simulation
of the band structure of one period, with numbers labeling the different energy states.

In the following, we report the most important transition parameters calculated
in the simulation. A complete list of all the parameters can be found in Appendix



4.3. Results of the simulations 77

Figure 4.7: Band structure simulation of the 4.4µm step-well QCD de-
signed in this thesis work. Each number labels an energy state
in the structure.

D. The scattering times between the ground state of the active well and the two
excite states are:

τ tot26 = 5.52 ps
τ tot28 = 1.02 ps,

The scattering time between the last level of the cascade and the ground state of
the adjacent well is calculated to be:

τ tot31 = 6.78 ps,

which is low enough to avoid effects of charge accumulation in level 3 and a corre-
sponding parasitic capacitance.

The sum of the oscillator strengths between the ground state of the active well
and the two excited state of the same well is:

f26 + f28 = 0.8,

indicating that 80% of the oscillator strength is concentrated in the optical transi-
tion.
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Conclusions

In this thesis work, we carried out an electrical and optical characterization of a
8.6µm Quantum Cascade Detector (QCD) in a patch-antenna geometry and we
simulated and designed an analogous device operating at 4.4µm.

In the first part of this work, we measured the dark current-voltage characteristic
of the device as a function of temperature and, applying a simplified model we
developed based on references [33] and [34], we extracted the activation energy Ea
of the dark current. In order to associate this quantity to the thermally activated
electronic transitions in the QCD active region, we performed a simulation of the
band structure of the system and we used it to estimate the activation energy. The
comparison of the experimental results and the simulations of Ea show an excellent
agreement.

The second part of the work was devoted to the optical characterization and
performance evaluation of the patch-antenna QCD. We first studied the spectral
response of the device for different patch sizes s in order to find for which value of
s the microcavity resonates with the active transition in the device. Once found
the resonant patch size, we performed photocurrent measurements on the device
with a calibrated blackbody source and we measured its responsivity. We repeated
the measurement at different temperatures, from 78K to room temperature. By
comparing the results with a device having the same active region, but in a standard
mesa geometry, we observed a responsivity enhancement by a factor of 6 at liquid
nitrogen temperature and by a factor of 10 at 200 K. The patch-antenna QCD offers a
room temperature responsivity of 50 mA/W at 0V bias, which is significantly higher
than the highest value reported in the literature for QCDs in the 9μm spectral range
[30]. Finally, we calculated the detectivity of the device and we obtained a room
temperature detectivity of 2 · 107cmHz1/2 W−1, which the mesa device was able
to achieve only at 170K, indicating a 130K boost in the temperature performance
thanks to the microcavity-antenna affect.

In the last part of this thesis work we designed a patch-antenna QCD operating
at 4.4µm. In order to overcome some challenges introduced by the lower wavelength
of operation, we proposed for the first time a step-well QCD. In this geometry, the
quantum well where the optical transition occurs is deeper than the others form-
ing the structure. We introduced some modifications to the program for the QCD
active region simulations in order to simulate such structure and we produced the
final growth sheet of the device.

This work showed that QCD performance can largely benefit from the properties
of double-metal microcavities, especially at room temperature. This, combined with
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the fast response time of QCDs (in the picosecond range), paves the way to several
practical applications for these detectors in molecular spectroscopy, imaging and
telecommunications.
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Appendix A

Growth Sheet of 8.6µm QCD

n+ GaAs 5× 1018cm−3 500Å

i Al0.35Ga0.65As - 32Å

i GaAs - 45Å

i Al0.35Ga0.65As - 33Å

i GaAs - 33Å

i Al0.35Ga0.65As - 28Å

i GaAs - 25Å

i Al0.35Ga0.65As - 46Å

i GaAs - 20Å

i Al0.35Ga0.65As - 67Å

i GaAs - 10Å

n+ GaAs 1.25× 1018cm−3 50Å

i GaAs - 10Å
...

...
...

...
↓↓ x8 Periods ↓↓

i Al0.35Ga0.65As - 32Å

n+ GaAs 6× 1018cm−3 500Å

i Al0.35Ga0.65As 4000Å

Undoped GaAs substrate

Table A.1: Growth sheet of the 8.6µm QCD characterized in this thesis
work. The red lines indicate the active region.
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Appendix B

ISB scattering times

B.1 Interface roughness

The interface roughness scattering is due to defects that appear at the interface
between two different materials during the growth process. The defect distribution
is typically assumed to be gaussian around the interface position [58][59]. The mean
height of the roughness is indicated with ∆ and the mean distance along z with Λ.
The interface roughness scattering rate can be shown to be [55]:

1

τ IRij
=
πm∗i
~3

Λ2∆2
∑
m,n

Fm
ij F

n
ij exp

(
− q̂

2Λ2

4

)
, (B.1)

where q̂2 = 2m∗jEij/~2. Fm
ij is the interaction strength at the m-th interface and it

is expressed as:

Fm
ij = −δEc(zm)ψi(zm)ψj(zm), δEc(zm) = Ec(z

+
m)− Ec(z−m), (B.2)

where zm is the position of the m-th interface.

B.2 Alloy disorder

If a ternary compound of the typeAxB1−xC is present in the system (e.g. AlxGa1−xAs),
then the disorder present in such alloys, causes electron scattering [59][60]. The con-
sequent alloy disorder scattering rate can be expressed as [55]:

1

τalloyij

=
1

8

m∗i a
3(∆Ec)

2x(1− x)

π~3

ˆ
alloy

ψ2
i (z)ψ2

j (z)dz, (B.3)

where a is the alloy lattice constant and ∆Ec is the conduction band offset.
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B.3 LO-phonon emission
The LO-phonon scattering is the most efficient relaxation mechanism for ISB tran-
sitions. Its scattering rate at temperature T = 0K is given by [61]:

1

τLOij (T = 0K)
=
m∗i e

2ωLO
2~2εp

ˆ 2π

0

Iij(Q)

Q
dθ, (B.4)

where

Q =
√
k2
i + k2

j − 2kikj cos θ

k2
j = k2

i +
2m∗i
~

(Ei − Ej − ~ωLO)

Iij(Q) =

ˆ
dz
ˆ

dz′ψi(z)ψj(z) exp(−Q|z − z′|)ψi(z′)ψj(z′).

~ωLO is the LO-phonon energy (that depends on the specific material that is used)
and εp = 4πε0

ε−1
∞ −ε−1

s
, with ε∞ high frequency and εs static electric permittivity. At

finite temperature we have to take into account the phonon population, described
by the Bose-Einstein statistics. Therefore, the scattering rate for an arbitrary T is
obtained through:

1

τLOij (T )
=

1

τLOij (T = 0K)

[
1 +

(
exp

(
~ωLO
kBT

)
− 1

)−1
]
. (B.5)



Appendix C

Growth sheet of 4.4µm step-well
QCD

n+ GaAs 5× 1018cm−3 500Å

i Al0.5Ga0.5As - 30Å

i GaAs - 37Å

i Al0.5Ga0.5As - 36Å

i GaAs - 25Å

i Al0.5Ga0.5As - 43Å

i GaAs - 17Å

i Al0.5Ga0.5As - 55Å

i GaAs - 12Å

i Al0.5Ga0.5As - 62Å

i In0.1Ga0.9As - 5Å

n+ In0.1Ga0.9As 2× 1018cm−3 34Å

i In0.1Ga0.9As - 5Å
...

...
...

...
↓↓ x5 Periods ↓↓
Undoped GaAs substrate

Table C.1: Growth sheet of the 4.4µm step-well QCD designed during this
thesis work. The red lines indicate the active region.
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Appendix D

Results of simulations

D.1 Scattering times

(i, j) τ totij (ps) τLOij (ps) τ IRij (ps) τalloyij (ps)

(1, 2) 3.46·1011 0 3.46·1011 4.18·1014

(1, 3) 6.78 13.49 13.76 1.63·103

(1, 4) 709.70 1.53·103 1.36·103 5.03·104

(1, 5) 2.98·104 5.68·104 6.68·104 1.04·106

(1, 6) 4.56·104 6.95·104 1.46·105 1.45·106

(1, 7) 0.95 1.38 3.41 30.97
(1, 8) 8.41·103 1.21·104 3.07·104 2.73·105

(2, 3) 6.99·1011 1.65·1012 1.23·1012 1.02·1014

(2, 4) 1.68·108 4.14·108 2.93·108 8.81·109

(2, 5) 3.10·104 6.54·104 6.26·104 1.05·106

(2, 6) 5.52 9.14 15.17 171.98
(2, 7) 6.41·103 1.00·104 1.94·104 2.00·105

(2, 8) 1.02 1.59 3.16 31.75
(3, 4) 2.47 6.97 3.85 663.68
(3, 5) 343.92 889.23 576.46 2.07·104

(3, 6) 2.26·104 5.27·104 4.22·104 6.02·105

(3, 7) 6.97 14.99 14.04 183.36
(3, 8) 9.44·104 1.46·105 3.00·105 2.35·106

(4, 5) 1.21 6.00 1.53 276.11
(4, 6) 205.68 740.13 291.35 1.27·104

(4, 7) 93.40 268.00 149.07 3.74·103

(4, 8) 1.30·103 4.13·103 1.95·103 6.34·104

(5, 6) 0.58 4.85 0.66 181.97
(5, 7) 360.77 1.77·103 456.34 6.59·104
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(i, j) τ totij (ps) τLOij (ps) τ IRij (ps) τalloyij (ps)

(5, 8) 3.76 30.71 4.30 865.83
(6, 7) 408.84 0 409.74 1.87·105

(6, 8) 0.02 0 0.02 17.53
(7, 8) 60.40 0 60.49 3.86·104

Table D.1: Scattering times of the 4.4µm structure designed in this thesis
work, calculated for any combination of energy levels (i, j).
The values of i and j refer to the labels in Figure 4.7. The
scattering times between levels whose separation is less than
the LO-phonon energy ~ωLO are set equal to 0.

D.2 Transition parameters

(i, j) dij (Å) fij Eij (meV)

(1, 2) 1.86·10−4 2.10·10−13 0.34
(1, 3) 5.35 0.04 79.35
(1, 4) 0.37 3.48·10−4 145.23
(1, 5) 0.06 1.57·10−5 214.73
(1, 6) 0.06 1.56·10−5 269.57
(1, 7) 12.26 0.74 279.57
(1, 8) 0.13 8.44·10−5 281.67
(2, 3) 3.11·10−5 1.35·10−12 79.00
(2, 4) -1.52·10−3 5.89·10−9 144.88
(2, 5) 0.09 3.00·10−5 214.38
(2, 6) -5.37 0.14 269.22
(2, 7) 0.15 1.07·10−4 279.23
(2, 8) -11.54 0.66 281.32
(3, 4) 6.57 0.05 65.88
(3, 5) 0.37 3.27·10−4 135.38
(3, 6) 0.07 1.77·10−5 190.22
(3, 7) 6.59 0.15 200.23
(3, 8) 0.05 9.06·10−6 202.32
(4, 5) 6.81 0.06 69.50
(4, 6) 0.42 3.80·10−4 124.34
(4, 7) 2.33 0.01 134.34
(4, 8) -0.14 4.62·10−5 136.44
(5, 6) 7.28 0.05 54.84
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(i, j) dij (Å) fij Eij (meV)

(5, 7) 0.99 1.12·10−3 64.84
(5, 8) -2.48 0.01 66.94
(6, 7) 1.68 4.99·10−4 10.00
(6, 8) -33.04 0.23 12.10
(7, 8) 3.82 5.37·10−4 2.10

Table D.2: Transition dipole moment, oscillator strength and energy dif-
ference between any combination of energy levels (i, j) in the
4.4µm step-well structure. The values of i and j refer to the
labels in Figure 4.7.
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