
 
  

ALMA MATER STUDIORUM – UNIVERSITÀ DI BOLOGNA 

SCHOOL OF ARCHITECTURE AND ENGINEERING 

 

DEPARTEMENT OF  

Electrical, Electronic, and Information Engineering "Guglielmo Marconi" - DEI 

 

MASTER’S DEGREE IN 

ADVANCED AUTOMOTIVE ELECTRONIC ENGINEERING 

 

MULTICORE SOFTWARE DEVELOPMENT 

FOR ENGINE CONTROL UNITS 

 

 

Master Thesis 

in 

Hardware-Software Design of Embedded Systems M.I.C. – Real Time OS 

 

 

 

Candidate 

Massimo Toscanelli 

Supervisor 

Chiar.mo Prof. Paolo Torroni 

Co-supervisor 

Ing. Saverio Cortese 

 

Academic Year 2018/2019 

Session II



I 
 

Contents 

1. Introduction ........................................................................................................... 1 

1.1. The context....................................................................................................... 1 

1.2. Magneti Marelli use case .................................................................................. 1 

1.3. The project ....................................................................................................... 2 

2. AUTOSAR .............................................................................................................. 3 

2.1. What is AUTOSAR ........................................................................................... 3 

2.2. History and organization ................................................................................... 4 

2.3. AUTOSAR Architecture .................................................................................... 5 

2.3.1. Software Components (SW-C) ................................................................... 6 

2.3.2. Runnable Entities ....................................................................................... 7 

2.3.3. Virtual Functional Bus (VFB) ...................................................................... 8 

2.3.4. System Constraint and ECU Descriptions .................................................. 8 

2.3.5. Basic Software (BSW) ................................................................................ 9 

2.3.5.1. BSW Conformance classes ................................................................ 9 

2.3.6. Runtime Environment ................................................................................. 9 

2.4. ECU Architecture .............................................................................................. 9 

2.4.1. Application layer ....................................................................................... 10 

2.4.2. Inputs description ..................................................................................... 10 

2.4.3. System configuration ................................................................................ 11 

2.4.4. ECU configuration .................................................................................... 11 

2.4.5. Executables generation ............................................................................ 11 

2.4.6. Runtime Environment ............................................................................... 11 

2.4.7. Basic Software ......................................................................................... 12 

2.4.8. Operating System .................................................................................... 13 

2.4.9. Microcontroller Abstraction Layer ............................................................. 14 

2.4.10. ECU Abstraction layer ............................................................................ 15 

2.4.11. Service layer .......................................................................................... 15 

2.4.12. Complex Drivers ..................................................................................... 16 

2.4.13. Communication ...................................................................................... 16 

2.4.13.1. Inter-ECU communication ............................................................... 17 



II 
 

2.4.13.2. Inter-Core communication ............................................................... 18 

2.4.13.3. Intra-task and Inter-task communication ......................................... 19 

2.5. AUTOSAR Methodology ................................................................................ 20 

2.5.1. System and ECU configuration ................................................................ 20 

2.5.2. Application Software Components configuration ...................................... 21 

2.6. MICROSAR .................................................................................................... 22 

2.6.1. What is MICROSAR ................................................................................. 22 

2.6.2. MICROSAR Architecture .......................................................................... 23 

2.6.2.1. MICROSAR.OS ................................................................................ 23 

2.6.2.2. MICROSAR.SIP ................................................................................ 24 

2.6.3. DaVinci Tool Suite .................................................................................... 24 

3. Inter-Core communication case of study ......................................................... 26 

3.1. Inter-OsApplication-Communication ............................................................... 26 

3.2. Cyclical Asynchronous Buffers ....................................................................... 27 

3.3. Proposed solutions ......................................................................................... 28 

3.3.1. Multi-core utilization analysis.................................................................... 28 

3.3.2. Scheduling schemes ................................................................................ 29 

3.3.3. Two different designs ............................................................................... 30 

3.3.3.1. First design model ............................................................................. 30 

3.3.3.2. First design optimization ................................................................... 33 

3.3.3.3. Second design model ....................................................................... 34 

3.3.4. Designs comparison ................................................................................. 35 

3.4. Methodology ................................................................................................... 36 

3.5. Simulator ........................................................................................................ 37 

3.6. Simulation Results .......................................................................................... 39 

4. Embedded software development .................................................................... 40 

4.1. Inter Core Communicator ............................................................................... 40 

4.2. SW-Cs Architecture Design ............................................................................ 41 

4.3. BSW Configuration ......................................................................................... 43 

4.4. Templates Implementation ............................................................................. 44 

4.5. “cabs” and “cab_shared_sec” files ................................................................. 45 

4.6. Software building ............................................................................................ 48 

4.7. Testing ........................................................................................................... 48 



III 
 

4.8. Validating design ............................................................................................ 49 

5. Code generator development ............................................................................ 51 

5.1. Diagrams ........................................................................................................ 51 

5.1.1. Analysis class diagram ............................................................................. 51 

5.1.2. Complete design class diagram ............................................................... 52 

5.1.3. ARXML parsing - design class diagram ................................................... 53 

5.1.4. Code generation - design class diagram .................................................. 54 

5.2. General description ........................................................................................ 55 

5.3. ARXML parsing .............................................................................................. 56 

5.3.1. ARXML components ................................................................................ 56 

5.3.2. ARXML parser.......................................................................................... 57 

5.4. Code generation ............................................................................................. 57 

5.5. GUI ................................................................................................................. 58 

5.6. User Guide ..................................................................................................... 59 

6. Conclusions ........................................................................................................ 62 

Acknowledgments .................................................................................................. 63 

References .............................................................................................................. 64 

Webliography ........................................................................................................ 64 



1 
 

1. Introduction 

1.1. The context 

System requirements in automotive context are becoming increasingly more 

restrictive. Their complexity is growing up very fast and this has a remarkable impact 

on functional elements used in software. The integration of the different software 

modules, that represent the operations of a control device, is a very expensive and 

error prone phase of the entire system production line. Moreover, the limitation of 

system components is often translated in scalability or maintenance difficulties. 

Specific adjustments and several versions are the reason why reusability and 

standardization are hardly achievable and often many producers reinvest in new 

concept platforms to solve this problem. For this purpose, the AUTOSAR partnership 

was born, gathering the consent and participation of many companies in the 

automotive sector. 

1.2. Magneti Marelli use case 

Faced with the need of car manufacturers to have control units capable of performing 

increasingly difficult real-time tasks, Magneti Marelli, as tier one supplier, has made 

several hardware and software upgrades to their systems during the years. One of the 

most important was the switch to multi-core microcontrollers. This change implied also 

a significant software adaptation to exploit as much as possible this new hardware 

potential. Therefore, the operating systems have been suitably modified by introducing 

inter-core communication services that allow the cooperation of the cores and the 

consequent increase in the workload of the system. The company adopted AUTOSAR 

architecture first in single-core ECUs (Engine Control Units) and then in multi-core 

ones, that are natively supported since AUTOSAR version 4.0, offering its own 

standard for inter-core communication: the “IOC”. However, Magneti Marelli wanted to 

develop a better-fitted solution for its use cases: a custom “IOC” component that could 

substitute the standard one and speed up executions that requires a multi-core 

utilization. 

  



2 
 

1.3. The project 

The aim of this project was to design a proper inter-core communicator (ICC) for 

Magneti Marelli ECUs with AUTOSAR architecture. Once studied the best algorithm to 

optimize the data transfer, we tested it in a simulated environment that we created ad-

hoc. Verified its correctness, we implemented it in embedded C code to be flashed in 

control unit, so that we could also validate our solution. 

At the end of this process, we designed and developed a code generator, based on 

that code structure, that can automatically read configuration files of an AUTOSAR 

project and produce the C code of a properly configured ICC. 

This project will be described in the thesis with the following structure: 

▪ Initially AUTOSAR is introduced, together with its architecture, its methodology, 

the implementation used in Magneti Marelli and the related development tools. 

▪ Afterwards, we focus on the study of the inter-core communication. In particular, 

the current solution is compared with the one we propose. 

▪ The embedded software development process is the next topic, in which we 

show all the implementation steps that led us to test our model directly in the 

control unit. 

▪ In the end, all the design and development phases of the code generator are 

described and a brief guide to its use is also provided. 

  



3 
 

2. AUTOSAR 

2.1. What is AUTOSAR 

As specified in [2] and [3], the AUTOSAR (AUTomotive Open System ARchitecture) 

platform is born from the activity of the homonymous consortium born in 2003 from a 

group of important actors in the automotive scene. From that time, the industrial 

realities that joined the consortium are so many, sharing the common need for 

regulation of the sector. 

AUTOSAR is a standard born to divide the dependency of the applicative functions 

from the hardware platform where they are running. This allows to simplify their 

transferability and to reduce adjustment expenses for producers’ requirements. 

Thanks to well defined interfaces and a unified architecture, maintenance, update and 

interchangeability of software components can be easily guaranteed for the entire 

system lifecycle. 

Having the same applicative modules on different hardware platforms, increases the 

growing of software suppliers that are specialized into single sectors. In fact, in 

AUTOSAR systems we often find components provided by different suppliers and car 

manufacturers act just as integrators. With an adequate organization of the process 

chain, a fruitful collaboration and communication channels defined in partnership, it is 

possible to reduce the iteration cycles and management costs and, consequently, 

general costs and development time. 

AUTOSAR promises benefits also in software quality, which is becoming an aspect of 

considerable size in a context where certifications are increasingly required according 

to the Spice automotive standard (ISO / IEC 15504) or CMMI (Capability Maturity 

Model Integration). Indeed, the combination of qualitative structures within the 

partnership between semiconductor manufacturers and software houses contributes 

to reduce the percentage of errors and make a solid integration between software and 

hardware. 

Finally, adequate partnerships and fruitful collaborative relationships further pave the 

way and facilitate the creation and market introduction of a complete AUTOSAR car. 



4 
 

The consortium members tend to the theoretical limit in which, if the process of 

abstraction concerns all the devices of a motor vehicle, the same management 

software can equip many types of cars with a simple configuration of some 

performances. 

2.2. History and organization 

The consortium, born from an almost exclusively Teutonic will (BMW, Bosch, 

Continental, Daimler, Chrysler, Siemens VDO and Volkswagen), has expanded, 

gathering more and more support and involving today more than two hundred industrial 

companies that participate in fundamental way to develop and define the platform ([4]). 

However, the contribution of partners varies depending on the type of partnership: 

• Core Partners 

• Premium Partners 

• Development Partners 

• Associate Partners 

• Attendee 

As core partners we find BMW, Bosch, Continental, Daimler AG, Ford, General Motors, 

PSA Peugeot Citroën, Toyota and Volkswagen. They are responsible for organization, 

administration and control of the AUTOSAR development partnership. 

Premium and Development members are allowed to work on packages coordinated 

and monitored by the Project Leader Team, established by the Core Partners. 

Associate partners make use of the standard documents AUTOSAR has already 

released. Attendees participate with Academic collaboration and non-commercial 

projects. 

AUTOSAR project milestones are phase 1 (from 2003 to 2006), phase 2 (from 2007 to 

2009), phase 3 (from 2010 to 2012). After them, we find continuous further 

development that includes the stabilization of Classic Platform and, since 2017, the 

improvement of the Adaptive Platform. The first kind of platform addresses the needs 

of deeply embedded ECUs, whose software is designed and implemented for a target 

vehicle and does not change fundamentally during vehicle lifetime. Future vehicle 

functions, such as highly automated driving, will introduce highly complex and 



5 
 

computing resource demanding software into the vehicles and must fulfil strict integrity 

and security requirements. Therefore, AUTOSAR specifies Adaptive Platform, which 

provides mainly high-performance computing and communication mechanisms and 

offers flexible software configuration, e.g. to support software update over-the-air. 

Since 2009 (version 4.0), AUTOSAR has supported systems with multicore 

processors. However, the OS can still only execute a single thread at a time, which 

means that the OS has to be replicated on each core. Moreover, AUTOSAR only allows 

static task allocation, meaning that tasks are not allowed to migrate between cores. 

However, what is interesting to note is the growing acceptance of the standard at 

manufacturers and suppliers that today allows us to say that more than 80% of the 

cars sold in the world are built by members of the AUTOSAR consortium. 

2.3. AUTOSAR Architecture 

The structure, based on the AUTOSAR software components, uses a layered 

architecture (defined in [5]) to free the functionality from the hardware and from 

software services of the system. 

 

Figure 1: AUTOSAR Layered Software Architecture 



6 
 

2.3.1. Software Components (SW-C) 

In AUTOSAR infrastructures, applications run on Software Components (AUTOSAR 

SW-C) that have well defined and standardized interfaces. Their standard description 

format is called SW-C Description. 

Each SW-C is “atomic”, meaning that its instance is statically 

assigned to one ECU. Moreover, AUTOSAR does not specifies 

whether a component must be handwritten or automatically 

generated. 

A Software Component Description that specifies the infrastructure 

configuration for the component, and an implementation, that can be 

given as “object code or source code”, compose a shipment of a SW-

C. 

A SW-C Description is structured with a “software component template” that includes: 

• PortInterfaces that describe operations and data elements that the SW-C needs 

• Requirements on the infrastructure 

• Resources required by SW-C 

• Information regarding the specific implantation of the SW-C 

The source code component implementation is independent on the type of ECU it is 

mapped in, on the number of its instances and on the location of the other components 

with which it interacts. 

Components interact each other through well-defined ports. Interface concept is 

introduced to define services or data that a port provides or requires. An AUTOSAR 

Interface can be Client-Server, defining a set of operations that can be invoked, or 

Sender-Receiver, for data-oriented communication. 

In Client-Server communication, the server is a provider and the client is a user of a 

service. Who starts the communication is the client that requests a service to the server 

and then it can be blocked (synchronous communication) or non-blocked 

(asynchronous communication) until a response is received. On the other side, the 

server waits for incoming requests, executes the service and send back a response to 

the client. 

Figure 2: SW-C 



7 
 

The Sender-Receiver communication is asynchronous: the sender distributes 

information to one or more receivers and, meanwhile, it can continue its execution not 

expecting any response. The sender is unaware of number of receivers, it just provides 

information and the communication infrastructure is in charge of distributing it. 

Requirements and capabilities of data exchanged between components are defined 

through Communication attributes and Application level attributes. The first ones 

specify parameters of the communication that are meaningful for the RTE generation 

or the real runtime communication (ex. transfer time over a connector). Application 

level attributes instead, are just indications for developer on how data must be 

processed, for example if data is “filtered” or “raw”. 

2.3.2. Runnable Entities 

Runnable Entities are software functions that implement the component behaviour 

and, at the same time, are the smallest pieces of code that a component can reference. 

They are subject to OS scheduling as part of OS tasks. 

Each Runnable has a “canBeInvokedConcurrently” option that is FALSE by default. If 

it is set TRUE, we can have more instances of the same Runnable that run at the same 

time in different tasks with no single state associated. Without any explicit constraint 

imposed to the OS, it can freely preempt every Runnable. Furthermore, all code called 

by every Runnable must be reentrant. 

Figure 3: Runnables' mapping into tasks 



8 
 

Each Runnable has access to the port interfaces and can read/write data signals 

from/to other software components. A Runnable execution is triggered by a data 

receive event (when new data is available on its sender-receiver port) or by a timing 

event (timer trigger). 

2.3.3. Virtual Functional Bus (VFB) 

Every communication mechanism provided by the architecture is abstracted with this 

technology independent level. VFB allows virtual connections between components in 

order to define a system since its early development phase. Here we find the 

description of components with the means of datatypes, interfaces, hierarchical 

components, ports and connections between them. 

The functionality of the VFB is provided by communication patterns.  

2.3.4. System Constraint and ECU Descriptions 

In vehicles, we find many interconnected ECUs with different resources and 

configurations. To integrate them with SW-Components, AUTOSAR provides their 

description formats together with the system description. It also defines the 

methodology and the tool support to build a concrete system of ECUs, meaning the 

configuration and generation of RTE and BSW on each ECU. 

  

Figure 4: Virtual Functional Bus 

Figure 5: System Constraint and ECU Descriptions 



9 
 

2.3.5. Basic Software (BSW) 

This layer has no other specific features besides making the top layer (Runtime 

Environment) independent of the system hardware. This function is implemented 

through specific APIs. Obviously, this layer is dependent on the system hardware. 

2.3.5.1. BSW Conformance classes 

During the migration period to next-generation automotive systems AUTOSAR and 

NON-AUTOSAR software are mixed together. That is why three implementation 

conformance classes (ICCs) are defined for the BSW, where we find modules’ 

interfaces that are AUTOSAR-compliant, so that it is not necessary to implement each 

module as unit of its own. In this way, ICCs affect BSW and RTE, but not the ASW 

(Application Software). 

• ICC1: It is the first step of the migration, in which RTE and BSW are inside the 

same cluster, and only the interface between RTE and ASW and the one to the 

bus must be AUTOSAR-compliant. RTE and BSW implementations are 

proprietary, but we need to take care that they have a standardized AUTOSAR 

behaviour. 

• ICC2: Clusters divide related modules that must have AUTOSAR-compliant 

interfaces. RTE has its own cluster. BSW clusters from different vendors can be 

integrated together. 

• ICC3: No clustering of modules. It is the most compatible AUTOSAR level: all 

AUTOSAR compliant BSW modules are present with the specified interface. 

2.3.6. Runtime Environment 

It manages the data exchange between the software components and the connections 

between the application, the system hardware and the various software components. 

2.4. ECU Architecture 

AUTOSAR has a layered architecture that allows clear and structured interface 

definition and a precise hardware abstraction. We have five main layers plus the 

Complex Drivers. 



10 
 

 

Figure 6: ECU Architecture 

2.4.1. Application layer 

This layer consists of AUTOSAR Software Components that are mapped on the ECUs. 

Their interaction is routed through the AUTOSAR Runtime Environment. The 

AUTOSAR Interface specification assures the connectivity. 

This is the only layer not composed of standardized software, because it is the one in 

which the application resides. This approach, based on software functionality, allows 

the definition of the "vehicle system" ignoring whether two software components are 

belonging to the same ECU or not. "Low" software layers have the responsibility to 

connect the components and to guarantee their access to hardware resources. The 

sequence of operations used to define the "vehicle system" in all its components can 

be summarized in the following steps. 

2.4.2. Inputs description 

The inputs description can be divided into three sections: the first is the formal 

description of the software components (independent of the implementation of the 

software component itself), whose interfaces and hardware requirements are 

specified. Then follows the description of the system topology (interconnection 

between the various ECUs) described together with the available data buses, the used 

protocols, the clustering of functions and the specific characteristics of the devices 

such as bus speed, timing, latencies etc. It is then necessary to define the hardware 

structure of the system (processors, actuators, sensors) and any particularities 

regarding signal processing and device programmability. 



11 
 

2.4.3. System configuration 

In this phase the software components are attributed to the various ECUs through an 

iterative process that must take into account the resources available and the limits of 

the system (for example if the communication speeds allow the subdivision of a 

software component on two different ECUs and so on). 

2.4.4. ECU configuration 

In this phase the Basic Software and Runtime Environment layers of each ECU are 

configured. Obviously, this configuration is based on the assignment of the SW 

components to each ECU. 

2.4.5. Executables generation 

At this point, it is possible to generate executables for each ECU and, of course, it is 

necessary to define the specific behaviour of each SW component. This methodology 

is automated thanks to the use of special software that allows the management of 

every single step of the process. All actions taken up to the generation of executables 

are supported by the definition of standard data interchange formats using XML. To 

support the AUTOSAR method, a meta-model in UML was developed containing the 

formal description of all methods and related information. This methodology allows a 

clear and immediate visualization of the information structure, the guarantee of the 

information consistency and the enormous facilitation of system software maintenance. 

2.4.6. Runtime Environment 

The Runtime Environment is the runtime representation of the Virtual Function Bus for 

a specific ECU. It abstracts the connection of Software Components providing the 

same interface and services for inter-ECU or intra-ECU communication. Being 

communication requirements very application dependent, RTE is tailored generated to 

offer desired services and, at the same time, to be resource-efficient. Therefore, RTE 

is usually tool-generated, statically configured and very ECU dependent. 

The RTE-generator creates the right APIs based on the definition of each Software 

Component Template. Not to change components’ code when mapping is modified, 

the API has to be independent from mapping. The API names must be compliant to a 



12 
 

naming convention and are read from XML files. RTE-generator also implements 

connectors between ports; this piece of generated code is dependent on the mapping 

of SW-C to the ECU and. It creates a communication stub that can be local, if two 

connected components are on the same ECU, or, otherwise, it can use network 

communication. The last one is also responsible for parameter marshalling, so the 

serialization of complex data to a byte stream, even if who eventually performs the 

endian connection is the Basic Software.  

RTE is also responsible for the lifecycle management of AUTOSAR Software 

Components invoking their start-up and shutdown functions. Furthermore, SW-Cs 

cannot directly access Basic Software, but thanks to RTE generated APIs it can 

become possible. 

2.4.7. Basic Software 

AUTOSAR Basic Software is below the RTE, which provides services to SW-Cs, but 

does not fulfil any functional job. It includes standardized components (about services 

and communication) and ECU specific ones (Operating system, Microcontroller 

abstraction, Complex Device Drivers). 

We can find a further refined layered architecture inside the Basic Software: there are 

around 80 Basic Software modules subdivided into 11 main blocks plus Complex 

Drivers. 

  

Figure 7: BSW layered architecture 



13 
 

2.4.8. Operating System 

The OS that we can find inside is compliant with AUTOSAR Operating System 

requirements. It must be a real-time OS (RTOS), with priority-based scheduling and 

support to protective functions at run-time; it must be configured and scaled statically, 

and hostable on low-end controllers with and without external resources. 

The basis for AUTOSAR OS is the standard OSEK OS (ISO 17356-3), but a proprietary 

OS can be also allowed as long as it is abstracted to an AUTOSAR OS, this means 

having interfaces to AUTOSAR components that are AUTOSAR compliant. 

AUTOSAR has adopted a fixed priority preemptive scheduling policy. The unit of 

execution of the OS is called OS-Task, it has an assigned priority and can be 

preempted by OS-Tasks with higher priority. 

There are two types of OS-Task: 

• Basic: it can be in one of three 

states: ready (it waits for the 

allocation of the processor), 

running (it is executing its 

instruction), or suspended (when it 

has returned or terminated) 

• Extended: it has one more state 

with respect to the ones of the 

basic task. A system service can 

block and put into ready state the task. This one can only be activated and put 

into ready state by an event like a received data or an expired timer. 

Every Runnable defined in the system must be mapped to an OS-Task that can accept 

a multiple Runnable assignment. The simplest solution could be mapping each 

Runnable to its own OS-Task, but actually it is not feasible, because in many systems 

the number of tasks is limited and task switching would imply a considerable utilization 

overhead of the core. 

In multi-core ECUs, the standard specifies that each core is independently scheduled 

and a task of different cores cannot preempt each other. 

Figure 8: Types of tasks 



14 
 

The OS-Application is a collection of OS-objects: OS-Tasks, ISR (Interrupt Service 

Routines), alarms, events, etc. It can be trusted, if its objects have unrestricted access 

to the API and hardware resources, or untrusted, if the access is limited and they run 

in non-privileged mode. 

An OS-Application has its own memory partition, separate stack, data and code. 

AUTOSAR assures that a code executed in the context of an OS-Application cannot 

corrupt memory area of another OS-Application.  

2.4.9. Microcontroller Abstraction Layer 

The Microcontroller Abstraction Layer (MCAL) is a very hardware specific layer, the 

lowest one of the Basic Software. It acts as standard interface that manages 

microcontroller peripherals and provides BSW components with microcontroller 

independent values. Thanks to the notification mechanism, it also supports distribution 

of commands, responses and information to processes. 

The MCAL is composed by: 

• I/O Drivers: Drivers for analog and digital I/O (e.g. ADC, PWM, DIO) 

• Communication Drivers: Drivers for ECU onboard (e.g. SPI, I2C) and vehicle 

communication (e.g. CAN). OSI-Layer: Part of Data Link Layer 

• Memory Drivers: Drivers for on-chip memory devices (e.g. internal Flash, 

internal EEPROM) and memory mapped external memory devices (e.g. 

external Flash). 

• Microcontroller Drivers: Drivers for internal peripherals (e.g. Watchdog, Clock 

Unit) and functions with direct µC access (e.g. RAM test, Core test) 

Figure 9: MCAL schema 



15 
 

 

2.4.10. ECU Abstraction layer 

The ECU Abstraction Layer is the interface to electrical values of any specific ECU. It 

provides the complete separation between hardware dependencies and higher 

software level. 

This layer is subdivided into: 

• I/O Hardware Abstraction: this section is in charge of representing I/O signals 

as they are connected to the ECU hardware (e.g. current, voltage, frequency) 

and it hides ECU hardware and layout properties from higher software layers. 

• Communication HW abstraction: it is a group of modules that provide equal 

mechanisms to access a bus channel regardless of its location (on-chip / 

onboard). 

• Memory HW Abstraction: The task of this group of modules is to provide equal 

mechanisms to access internal (on-chip) and external (onboard) memory 

devices. 

• Onboard Device Abstraction: its task is to abstract from ECU specific onboard 

devices. 

2.4.11. Service layer 

Service Layer is composed by: 

• Communication Services: these 

modules make use of drivers through 

the Communication HW Abstraction. 

Their role is to hide protocol and 

message properties from the 

application and to provide a uniform 

interface to the vehicle network (for 

communication between different 

applications and for diagnostic 

communication) and uniform 

services for network management. 

Figure 10: Service Layer 



16 
 

• Memory Services: they manage non-volatile data, being responsible of 

read/write operations from different memory drivers. A fast-read access can be 

performed thanks to the NVRAM manager that, with a RAM mirroring, provides 

a data interface to the application. 

• System Services: the task of this group of modules is, in general, to provide 

basic services that can be µC dependent (like OS), ECU hardware and/or 

application dependent (like ECU state manager, DCM) or hardware and µC 

independent. 

2.4.12. Complex Drivers 

A Complex Driver is a container where specific software implementations can be 

placed, provided that their port and interfaces are compliant with the AUTOSAR 

specification. Complex Drivers are mostly used to perform complex sensor evaluation 

and actuator control with direct access to specific interrupts and complex 

microcontroller peripherals. In addition, we can use Complex Drivers to implement 

drivers for hardware not supported by AUTOSAR or to extend the AUTOSAR standard 

adding software that will not force the OEM nor the supplier to reengineer all existing 

applications. 

2.4.13. Communication 

 

As already mentioned, the sender-receiver 

pattern is an asynchronous type of 

communication in which the sender 

Runnable transmits data through its 

component P-Port and one or more 

receivers consume what received through 

their component R-Port. 

Figure 11: Communication hierarchy 



17 
 

Sender-receiver can be: 

Implicit: sender Runnable sends just the 

latest data of the signal after its 

execution, the RTE generates a copy of 

the information and then starts the 

receiver Runnable that will use that copy 

for its entire execution time. 

Explicit: a sender Runnable can transmit 

data whenever he wants, calling the 

RTE API. Each call corresponds to a 

different data transmission that can be 

queued or unqueued. In the first case 

data signal is retrieved in FIFO (first-in 

first-out) order, otherwise its latest value 

is read (last-is-best semantic). The 

reading happens each time a receiver Runnable decide to read data. 

The client-server paradigm, instead, provides a communication in which one or more 

client Runnable invoke the service of a server Runnable that executes requests in FIFO 

order. The communication can be synchronous (blocking) or asynchronous (non-

blocking). 

The inter-runnable pattern is considered as a special case of sender-receiver. 

Runnables belonging to the same software component communicate asynchronously 

accessing the same inter-runnable variable. 

Communication types can be classified depending on SW-Cs’ and Runnables’ 

mapping to ECUs, cores and OS-Tasks. 

2.4.13.1. Inter-ECU communication 

If Runnables are mapped to different ECUs, RTE layer performs an inter-ECU 

communication relying on modules such as Communication Stack (COM) to send data 

over a physical network 

  

Figure 12: Sender-Receiver and Client-Server ports 



18 
 

2.4.13.2. Inter-Core communication 

In multi-core systems, BSW modules can be subdivided (or repeated) in several 

partitions and each of them can only be present in one core. Not standardized 

communication services allow an inter-partition linking. 

 

Figure 13: System services in two cores 

Every OS-Application is connected with the others thanks to the IOC (Inter OS-

Application Communication), which provides proper services for crossing core 

communication and memory protection boundaries. Therefore, Runnables mapped to 

different cores communicate between them with the help of the RTE and the IOC layer. 

Considering that OS-Applications can be or not in different cores, the inter-core 

communication is always an inter-OS-Application communication, but not vice versa. 

IOC internal functionality is dependent on hardware architecture properties, in 

particular on the memory architecture. To guarantee data consistency, the content of 

all data sent in one communication operation and (in queued communication) the 

sequential order of communication operations shall remain unchanged. 

The IOC provides sender-receiver communication only. Therefore, the RTE translates 

ClientServer invocations and response transmissions into Sender-Receiver 

communication. 

1:1, N:1 and N:M (unqueued only) communication are supported by the IOC. 

The IOC allows the transfer of one data item (that can be a data structure) per atomic 

communication operation. It does not need to know the internal data structure, the 



19 
 

basic memory address and length is sufficient. Transferring more than one data item 

in one operation is only supported for 1:1 communication. The advantage compared 

to sequential IOC calls is that mechanisms to open memory protection boundaries and 

to notify the receiver have to be executed just once. Additionally, all data items are 

guaranteed to be consistent, because they are transferred in one atomic operation. 

The IOC provides both, unqueued (Last-is-Best) or queued (First-InFirst-Out) 

communication operations. It can optionally notifie the receiver as soon as the 

transferred data is available for access on the receiver side by calling a configured 

callback function. 

Depending on the hardware architecture and other constraints, different 

implementation options might be available within the IOC. In systems with shared 

memory, there can be a specific communication buffer for each data item in a memory 

section, which is shared between the sending and receiving OS-Applications. 

 

Figure 14: IOC schema 

2.4.13.3. Intra-task and Inter-task communication 

Intra-task communication is provided by the RTE when Runnables that are exchanging 

data are mapped on the same OS-Task. Inter-task communication, instead, happens 

when Runnables are mapped to different OS-Tasks on the same core. It is worth to 

mention that the mapping order into the OS-Task is very important; data sending, for 

example, must be performed before data reading.  



20 
 

2.5. AUTOSAR Methodology 

AUTOSAR Methodology is the description of principal steps of system development 

required by AUTOSAR standard. Design phases go from the system-level 

configuration to the generation of ECU Executable. AUTOSAR Methodology does not 

include a complete process description and does not specify the precise order in which 

activities must be executed; it just defines their dependencies on work-products. 

XML files are used to store models and descriptions. They are compliant with the W3C 

XML schema specific for AUTOSAR models: the AUTOSAR XML Schema. That is why 

every AUTOSAR XML file is characterized by the “.arxml” extension. 

2.5.1. System and ECU configuration 

In “System Configuration Input” phase, the overall system constraints are identified 

and software components and hardware are selected. Information exchange format 

are used as formal description and their structure is different depending on the specific 

data type: 

• Software Components require a software API description. 

• ECU Resources require definitions like the processor unit, memory, peripherals, 

sensors and actuators. 

• System Constraints require information about bus signals, topology and 

mapping of connected software components. 

“Configure System” is an activity that contains a collection of complex algorithms and 

engineering work. System configuration tools can support the mapping operation of 

software components to ECUs. This configuration must obviously satisfy the 

restrictions specified in the System Configuration Input, matching resources and timing 

requirements. As output of this activity, we find the System Configuration Description, 

which includes information about system and mapping of software components to 

ECUs. Next steps need to be performed for each system ECU. 

“Extract ECU-Specific Information” extracts information of a specific ECU from the 

System Configuration Description and automatically generates the ECU Extract of 

system Configuration. 



21 
 

“Configure ECU” is a phase that mainly deals with RTE and BSW configuration. It 

includes information that is strictly related to the implementation, e.g. task scheduling, 

required Basic Software modules, configuration of the Basic Software, assignment of 

runnable entities to tasks… At the end of this activity, we find an ECU Configuration 

Description containing ECU specific information that can be exploited to build the 

runnable software. 

The ECU configuration step must not be underestimated; it requires engineering 

competences that are not needed, for example, in an information extraction phase. In 

this activity, indeed, detailed scheduling information or the configuration data for e.g. 

the communication module, the operating system, or AUTOSAR services have to be 

defined. 

The last step is the “Build Executable” one, in which, starting from the ECU 

Configuration Description, code is usually generated, compiled and linked in an 

executable file. 

2.5.2. Application Software Components configuration 

 

Figure 15: System and ECU configuration 

Figure 16: Application Software Components configuration 



22 
 

Configuration flow of Application Software Components is parallel to previous steps. 

First, we find Component Internal Behaviour Description, which illustrates how a 

component responds to events like received data elements and describes the 

scheduling relevant aspects of a component. 

After that, AUTOSAR Component API Generator reads the provided component 

description and creates a Component API containing all header declarations for the 

RTE communication. 

In the “Implement Component” phase, the developer can implement the component 

independently from the external system design. As result, we obtain the Component 

Implementation (typically “.c” files), the Component Internal Behavior Description 

(more descriptive than the one generated at the beginning) and the Component 

implementation Description (to collect information regarding next build process). 

At the end of this process, Compile Component generates Compiled Component using 

Component Implementation Description, Component API and Additional Headers. In 

addition, a new refined Component Implementation Description comes out, containing 

last process information, like linker settings. 

2.6. MICROSAR 

2.6.1. What is MICROSAR 

As a promoting member of the AUTOSAR consortium, Vector Informatik is able to offer 

a wide range of design and development tools, as well as basic software modules 

specific to the AUTOSAR ECUs. Vector products for the development, distribution, 

generation and configuration of AUTOSAR software can be integrated with the DaVinci 

Tool Suite. Moreover, they help engineers to design distributed systems and software 

components compliant with AUTOSAR technology and to shorten the development 

time of automotive networks. 

MICROSAR ([9]) is the Vector implementation of an embedded software for AUTOSAR 

ECUs that covers the standard and contains many useful extensions. It consists of the 

runtime environment MICROSAR RTE and MICROSAR basic software modules 

(BSW). Each BSW module is assigned to a MICROSAR package. Vector combines 



23 
 

and releases the BSW modules needed in individual “software integration packages” 

(SIP). 

2.6.2. MICROSAR Architecture 

The BSW modules of the MICROSAR packages assure basic functionality of the ECU. 

They contain implementations of AUTOSAR standard services needed for functional 

software that can be developed independently, because the AUTOSAR architecture 

follows a consistent strategy of hardware abstraction. 

MICROSAR.OS and MICROSAR.MCAL packages contain hardware-dependent 

modules that Vector release for a large number of different hardware platforms and 

compilers. The operating system MICROSAR.OS is available for single core and multi 

core-processors. Based on its ongoing contacts with OEMs, Vector is able to offer a 

number of OEM-specific BSW modules and extensions such as the diagnostic 

modules. 

To produces a complete set of ECU software, functional software can be integrated 

after the generation of preconfigured MICROSAR BSW modules that satisfies project’s 

requirements. 

If the functional software consists of AUTOSAR-conformant SWCs, a run-time 

environment (RTE) is needed. The MICROSAR.RTE implements communication 

between the SWCs and their access to data and services from the BSW modules. 

Along with managing the entire flow of events and information, the MICROSAR.RTE 

also assures consistency in the exchange of information and coordinates accesses 

across core or memory protection boundaries. 

ECU projects without SWC architecture (and therefore also without Rte) are optionally 

supported by the Vector vBre (Vector Basic Runtime Environment). 

2.6.2.1. MICROSAR.OS 

MICROSAR.OS is a pre-emptive real-time multitasking operating system with 

optimized properties for microcontrollers. It is based on AUTOSAR OS specification, 

as extension of the OSEK/VDX-OS standard, including functions for time monitoring 

and memory protection. 



24 
 

Memory Protection Unit (MPU) protects the OS partitions, which can run without the 

risk of mutual interference due to incorrect data changes, so that the system can 

operate in parallel partitions with different ASILs. LeanHypervisor is a module to ensure 

a safe startup of multiple operating system partitions in a multicore processor or SoC. 

It is compliant with ISO26262 ASIL D standard and it is in charge of programming the 

system MPU during system startup and then starting the operating system partitions. 

2.6.2.2. MICROSAR.SIP  

The Software Integration Package (SIP) is a fundamental component of every 

MICROSAR delivery that can be a prototype, beta, update or production one. Vector 

lists its customer requirements in advance of delivery and then it develop the SIP as 

individually as possible, also testing it. This allows companies like Magneti Marelli to 

put the entire package into operation within just few days. MICROSAR package is 

implemented so that it can cover as many additional variants to the initial configuration 

as possible. However, Vector tries to strictly satisfy project-specific constraints in order 

to ease the product integration for the customer. The aim is running the delivery on as 

many devices as possible from the preselected processor line. If it is technically 

possible for the project, MICROSAR SIP includes as the Extension "Start Application". 

It is based on the ECU specific input data for communication and diagnostics. 

2.6.3. DaVinci Tool Suite 

As already mentioned, DaVinci tools are useful to configure BSW modules in a user-

friendly and well-coordinated way, instead of handwriting them. Moreover, multiple 

users can simultaneously work on a project thanks to the Multi User Support. DaVinci 

tools require an “ECU Extract of System Description” file as input and then assist the 

user in configuring the RTE and the BSW modules. 

Automatic code generation relieves the programmer of tasks that recur frequently and 

are prone to errors when performed manually. This of course allows time and costs 

savings. 

In particular, DaVinci Developer is a tool for designing the architecture of SW-Cs, 

including ports, data types, connectors and internal behavior. It ease the engineering 



25 
 

process thanks to graphical or textual grid 

views and to the automatic verification of 

AUTOSAR compliance of the project. 

This tool can work in combination with 

DaVinci Configurator Pro, that offers a 

customized user interface to configure, 

validate and generate BSW and RTE. 

Considering the entire system configuration 

DaVinci Developer comes into play when 

the XML of the “ECU extract of System 

Configuration” is already provided. In this 

phase SW-Cs are manged and saved into 

XML files that are part of the “ECU extract of System Configuration” and the 

“Component Internal Behaviour Description”. After that, DaVinci Configurator can be 

used to read the produced XMLs and configure the ECU generating the BSW, RTE 

and the “ECU Configuration Description”, but also to generate “Component API” (“.h” 

files) and component templates (“.c” files) that will be later implemented. 

 

  

Figure 17: DaVinci Tools 

Figure 18: DaVinci roles in System and ECU configuration 

Figure 19: DaVinci roles in Application Software Components configuration 



26 
 

3. Inter-Core communication case of 

study 

3.1. Inter-OsApplication-Communication 

As already mentioned, AUTOSAR supports multi-core systems since 4.0 version. This 

means that it allows different OS applications to be statically allocated to the different 

cores and supports data exchange among these cores by means of the IOC sub-

module.  

The MICROSAR implementation of the IOC follows the AUTOSAR recommendations, 

using Spinlocks wrapped by a suspend-all-interrupt function. Spinlock is a 

programming technique that provides a lock variable acquisition and performs a busy-

wait routine until the lock is released, allowing to enter the critical section. Therefore, 

if a core acquires a lock, the others cannot proceed with their execution. It is easily 

understandable that such an implementation can be very inefficient if the 

communication between cores is repeated very often or if the size of the transferred 

data is considerable. Another limitation of the IOC is that it does not allow to 

consistently communicate data elements produced by different SW-Cs. 

Considering that these negative aspects of the already existing inter-core 

communication could be solved in its own control units, Magneti Marelli has decided 

to study a new solution, based on its specific use cases. 

As alternative to the IOC, a Cyclical Asynchronous Buffers approach has been chosen, 

based on the older NON-AUTOSAR multi-core architecture already used by the 

company. 

  



27 
 

3.2. Cyclical Asynchronous Buffers 

As defined in [1] and [12], the Cyclical Asynchronous Buffer 

(CAB) is a One-to-Many (in general Many-to-Many) 

Asynchronous Communication System purposely designed 

for the cooperation among periodic activities with different 

activation rates: sensory acquisition, control loops, etc. 

CAB Mechanism guarantee that the last/newest message 

(data), after the first write operation, is available at any 

instant for reading. The message is not consumed by the 

reader, but is maintained into CAB System until a new 

message is overwritten. As a consequence, the same data is read more than once if 

the receiver is faster than the sender and, of course, messages are lost if the sender 

is faster than the receiver. However, this eliminates unpredictable delays due to 

synchronization and allows a continuous fetch of fresh data that is a satisfactory 

condition for many applications. 

A CAB is created with a specific name and the dimension, parameter that corresponds 

to the maximum number of messages contained in the CAB (max_buff), multiplied by 

their single dimension (dim_buff). In its structure we also find a pointer to the list of free 

buffers and one to the most recent buffer (mrb). A buffer is composed by three fields: 

the pointer to the next free buffer (next), a counter that memorizes how many tasks are 

accessing that task (use) and the stored message (data). 

CAB messages are always accessed through a pointer to a message buffer that first 

must be reserved, then filled with the data content and finally made available to be 

read. 

CAB message write is performed with following paradigm: 

 buff_ptr = reserve(cab_id); 

 <write message to *buff_ptr> 

 putmess(cab_id, buff_ptr); 

CAB message read is very similar: a task gets the pointer to the most recent message, 

use it and release the pointer. It is performed in the following way: 

Figure 20: Cyclic Buffer 



28 
 

 buff_ptr = getmess(cab_id); 

 <read message from *buff_ptr> 

 unget(cab_id, buff_ptr); 

Can be noticed that simultaneous read and write operations are allowed without critical 

sections because of multiple memory buffers managed via Cyclic Array of Buffer 

Pointers. If a task reserves a buffer to write in a CAB and also another task wants to 

write inside it, the last one must use a free buffer that is different from the ones already 

reserved by who is writing and who is eventually reading. That is why, to avoid 

blocking, the number of buffers inside a CAB must be at least equal to the number of 

tasks that use it, plus one (num_tasks+1). 

3.3. Proposed solutions 

In the old Magneti Marelli NON-AUTOSAR architecture, a classical Cyclical 

Asynchronous Buffers approach has been used in order to meet time constraints and 

maintain higher priority of safety critical tasks, without losing data consistency. By the 

way, in order to improve the speed of next generation AUTOSAR based ECUs, we 

decided to develop a better-fitted CAB implementation. Thus, we started analysing 

what is the role of each core and how it communicates with the others in a generic 

application workflow, then we made assumptions that allowed us to reduce system 

interruptions and therefore achieve better performance. 

3.3.1. Multi-core utilization analysis 

Magneti Marelli multi-core ECUs are based on Infineon AURIX TriCore 32-bit MCUs. 

In the company architecture, two of the three cores are dedicated to hard real-time 

tasks and one to safety tasks. Divided functionalities allow an easier management of 

tasks and shared resources between cores. However, this is disadvantageous from a 

dynamic load-balancing point of view. In fact, a balanced processor load distributes 

workload evenly on each core, so that the system can be better optimized to perform 

its set of operations. 

Even if this can be a reasonable approach, Magneti Marelli has preferred a task 

mapping solution that is coherent for each core, allowing a better scheduling tracking 

and therefore more consciousness on system behaviour. Tasks with the same 



29 
 

functionality are executed on the same core, implying that real-time requirements are 

often independently satisfied by each core, not by its coordinated use with the others. 

This separation of roles between cores involves that their communication is not as 

frequent as in balanced load solutions, where very dependent tasks running on 

different cores need to exchange data very often to proceed their execution. 

In Magneti Marelli applications, tasks are linked by a very simple relation: one task (in 

one core) produces data and one or more tasks use it (one task per core); so, the CAB 

rule becomes: one plus the number of reading cores plus one 

(1+num_readingCores+1). This means that a shared variable can just be written by 

one core, but read by all the others, acting as a one-way communication channel 

between them. We will see that this consideration becomes very important when tasks 

are running on different cores. 

What must be also pointed out is that, for Magneti Marelli use cases, readers do not 

need to know all the history of written data, therefore a data can be overwritten even if 

it has never been read by anyone. However, the consistent reading of messages is the 

critical aspect of the inter-core communication; in fact, reading tasks must always find 

consistent data available and this implies that they cannot read the same memory area 

that the writer is updating. This can be relevant for a CAB implementation, where the 

writer is cycling buffers and, if readers are not fast enough to fetch data, it must wait 

until everyone has read the buffer with the oldest value. 

3.3.2. Scheduling schemes 

In order to become more conscious on how to perform a new CAB design, the analysis 

proceeded simulating the behaviour of the system with scheduling schemes. To do 

that, we have considered a periodic task per core (three in total): one that writes a CAB 

(ta) and the others that read it (tb and tc). 

In a first approach, we set ta, tb and tc, respectively with a high, medium and low speed. 

As result, we saw how the CAB theory always guarantee (thanks to the 

“max_buff=num_tasks+1” formula) at least an available buffer to write and, as 

expected, reading tasks lose some data history (tc more than tb), because of their 

slowness. 



30 
 

After that, we tried to exchange the speed of ta and tb. Being ta still faster than tc, this 

one continues to lose some data history at a certain point in time, but tb, being faster 

than ta, can always read every value ta release into the buffers. 

In the last scheme instead, we considered two tasks per core, so three that are 

dedicated to inter-core communication (the same as before) and three that preempt 

them with a certain periodicity. From this model, we understood that tasks belongings 

to the same core (in particular if they are preemptive) have a relevant impact on 

communication timings, even if they do not participate to the data exchange. 

3.3.3. Two different designs 

As already said each core has: 

• a different functionality 

• a unidirectional communication with the others 

These assumptions allow us to simplify the old implementation, but, depending on 

other additional considerations, we have developed two different design models. 

3.3.3.1. First design model 

We assume the case in which the read operation is much slower than the write one. 

This situation can be due to higher priority interrupts that can block the reading task 

for a long period, or caused by the read access time of the specific MCU. 

Therefore, if “max_buff-1” (look at Cyclical Asynchronous Buffers chapter) buffers are 

occupied by reading tasks and the writer has written in the only available buffer, we 

can still have tasks that, despite the “num_tasks+1” formula, still need the resources. 

In this case, the writing task must cycle the CAB until it finds an available buffer. To 

keep track of buffer availability, we have used a shared array between cores (accessed 

through Spinlock) that collect the number of readers for each buffer. 

Newer solution, as will be shown below, is very simple in “CAB Write” (function used 

by the writing task), but not in “CAB Read” (function used by the reading task), that is 

still lighter than the older implementation, having smaller critical sections. 



31 
 

CAB Write 

OLD implementation: 
 

<SUSPEND INTERRUPTS> 

<GET SPINLOCK> 

Free buffer reserved 

Buffer pointer obtained 

<RELEASE SPINLOCK> 

<RESUME INTERRUPTS> 

 

Write message into buffer 

 

<SUSPEND INTERRUPTS> 

<GET SPINLOCK> 

Buffer becomes available (mrb updated) 

< RELEASE SPINLOCK> 

< RESUME INTERRUPTS> 

First implementation: 
 

Find a free buffer 

 

Write message into buffer 

 

Buffer becomes available (mrb updated) 

Implementation differences: 

1) The old version reserves a buffer because accepts multiple writers on the same 

CAB, the new solution accepts just one writer and multiple readers (so, no 

reservation needed) 

2) The old version manages pointers inside critical sections, the new solution has 

no critical sections 

3) The old version uses a stack (not cyclic) of buffers that grows up or goes down, 

the new solution has cyclic buffers 



32 
 

CAB Read 

OLD implementation: 
 

<SUSPEND INTERRUPTS> 

<GET SPINLOCK> 

Added a user to the most recent buffer 

Buffer pointer (mrb) obtained 

< RELEASE SPINLOCK> 

< RESUME INTERRUPTS> 

 

Read message from buffer 

 

<SUSPEND INTERRUPTS> 

<GET SPINLOCK> 

Removed a user to the most recent buffer 

< RELEASE SPINLOCK> 

< RESUME INTERRUPTS> 

First implementation: 
 

< ENTER CORE CRITICAL SECTION> 

 

Retrieved mrb value 

 

<GET SPINLOCK> 

Added a user to the most recent buffer 

< RELEASE SPINLOCK> 

 

Read message from buffer 

 

<GET SPINLOCK> 

Removed a user to the most recent buffer 

< RELEASE SPINLOCK> 

 

< EXIT CORE CRITICAL SECTION> 
 

Implementation differences: 

1) The old version adds user to the buffer and obtains the pointer in the same 

critical section. In new solution, we have changed the order of the operations, 

so that we have a spinlock just for the user addition. (Similarly happens for the 

user removal) 

2) The old version suspends and not disables interrupts. 

3) The old version has two “SUSPEND INTERRUPTS” and two nested “GET 

SPINLOCK”. We have instead created a big (configurable) “CORE CRITICAL 

SECTION” block and two small “GET SPINLOCK” ones. 



33 
 

Alternative CAB Read (not chosen) 

OLD implementation: 
 

<SUSPEND INTERRUPTS> 

<GET SPINLOCK> 

Added a user to the most recent buffer 

Buffer pointer (mrb) obtained 

< RELEASE SPINLOCK> 

< RESUME INTERRUPTS> 

 

Read message from buffer 

 

<SUSPEND INTERRUPTS> 

<GET SPINLOCK> 

Removed a user to the most recent buffer 

< RELEASE SPINLOCK> 

< RESUME INTERRUPTS> 

First implementation: 
 

< ENTER CORE CRITICAL SECTION> 

 

Retrieved mrb value 

 

<GET SPINLOCK> 

Added a user to the most recent buffer 

< RELEASE SPINLOCK> 

 

< EXIT CORE CRITICAL SECTION> 

 

Read message from buffer 

 

< ENTER CORE CRITICAL SECTION> 

 

<GET SPINLOCK> 

Removed a user to the most recent buffer 

< RELEASE SPINLOCK> 

 

< EXIT CORE CRITICAL SECTION> 
 

Implementation differences: 

1) The alternative to our proposed solution has two smaller “CORE CRITICAL 

SECTION” instead of a larger one. 

2) In both the old and the new implementation, the reader can be blocked during 

the message reading by the same core tasks. This can delay the operation but 

cannot change the result. 

We chose the previous “CAB Read” because we prefer to prevent the reading 

interruption of the message, obtaining a more deterministic data transfer. 

3.3.3.2. First design optimization 

In this first design we can point out that, if a CAB has just one reader, it is also the only 

one that can write the most recent buffer, so Spinlocks are not needed for that CAB. 

Spinlocks are often limited resources and, moreover, they are also a limiting factor for 

the cores’ execution. That is why, removing them, we can obtain an optimized version 

of this first design.  



34 
 

3.3.3.3. Second design model 

We assume the case in which the read and write operations have almost the same 

execution time. This allows us to assume that a writer will always have an available 

buffer to write (cyclically the next one). 

Therefore, we don’t need to count readers of each buffer (no shared array, no 

Spinlocks) and, moreover, in write operation the free buffer must not be found cycling 

among all buffers (as in first alternative), because it is for sure the next one. 

In this solution, we are never using Spinlocks, neither to write nor to read. However, 

writer must disable interrupts, something that is useless in the first alternative. 

CAB Write 

OLD implementation: 

 

<SUSPEND INTERRUPTS> 

<GET SPINLOCK> 

Free buffer reserved 

Buffer pointer obtained 

<RELEASE SPINLOCK> 

<RESUME INTERRUPTS> 

 

Write message into buffer 

 

<SUSPEND INTERRUPTS> 

<GET SPINLOCK> 

Buffer becomes available (mrb updated) 

< RELEASE SPINLOCK> 

< RESUME INTERRUPTS> 

 

Second implementation: 
 

<DISABLE INTERRUPTS> 

 

Pointer to next buffer 

 

Write message into buffer 

 

Buffer becomes available (mrb updated) 

 

<DISABLE INTERRUPTS> 

 

Implementation differences: 

1) The old version reserves a buffer because accepts multiple writers on the same 

CAB, the new solution accepts just one writer and multiple readers (so no 

reservation needed) 

2) The old version manages pointers inside critical sections; the new solution has 

just the interrupt disabling. 

3) The old version seems to use a stack (not cyclic) of buffers that grows up or 

goes down, the new solution has cyclic buffers 



35 
 

CAB Read 

OLD implementation: 
 

<SUSPEND INTERRUPTS> 

<GET SPINLOCK> 

Added a user to the most recent buffer 

Buffer pointer (mrb) obtained 

< RELEASE SPINLOCK> 

< RESUME INTERRUPTS> 

 

Read message from buffer 

 

<SUSPEND INTERRUPTS> 

<GET SPINLOCK> 

Removed a user to the most recent buffer 

< RELEASE SPINLOCK> 

< RESUME INTERRUPTS> 

Second implementation: 
 

<DISABLE INTERRUPTS> 

 

Retrieved mrb value 

 

Read message from buffer 

 

<ENABLE INTERRUPTS> 

 

Implementation differences: 

1) The old version adds user to the buffer and obtains the pointer in the same 

critical section. In new solution, we just need to enter the “CORE CRITICAL 

SECTION” and get the pointer. 

2) The old version has two “SUSPEND INTERRUPTS” and two nested “GET 

SPINLOCK”. We have just created a big (configurable) “CORE CRITICAL 

SECTION” block. 

3.3.4. Designs comparison 

As we can notice, both our alternative designs have smaller critical sections than the 

ones of the older implementation, without including a larger execution time and 

memory occupation. A core that waits for a Spinlock is blocked until its acquisition; this 

is the reason why we have reduced as much as possible this kind of critical section. 

The interrupt disabling instead, has not such a strong impact on the MCU performance, 

because it just blocks the execution of higher priority tasks on the same core, not 

affecting the other tasks running in the other cores.  



36 
 

3.4. Methodology 

The development process we chose for our project is the V-Model, that allowed us to 

flow step by step from high level design to development phase and then to test 

everything going backwards. We needed two different “V” in order to first study the 

correct solution and its related embedded code, and then to develop the code 

generator. 

Once defined the two CAB designs, we decided to test them to verify their correctness 

before implementing the real code for ECU deployment. Hence, we developed a 

software simulator in C language for Windows OS that also helped us in the choice of 

the design. After that, we introduced a low-level design that was a pseudo code very 

similar to the C code. The software implementation instead, is comprehensive of a SW-

Cs Architecture design and a BSW Configuration, necessary steps to set a working 

MICROSAR architecture and related C code templates that can be implementable. 

Figure 21: First V-process 

Figure 22: Second V-process 



37 
 

As system requirements for code generator development, we consider the C code that 

we developed and tested in the previous process. From them we extracted the high 

and low level design of the generator: the analysis class diagram and the design class 

diagram. This time software implementation was just Java development. 

3.5. Simulator 

To build a simulated environment that could be as similar as possible to the original 

one, we decided to exploit threads provided by Windows, so that they could act as the 

three cores of the AURIX MCU. Therefore, we have generated three threads from the 

same process and we have imposed them the same priority. This allows Windows to 

schedule threads with a Round Robin algorithm, meaning that they are fairly executed. 

For simplicity, each thread represents also the unique task of the core, which can 

communicate with the others through the shared memory provided by their common 

process. 

We defined a data type as a “struct” of two atomic data, to verify that the model could 

perfectly ensure data consistency. As relation between them, we have imposed to have 

two numbers: one the opposite of the other. “thread 0”, in fact, generates a random 

number, creates its opposite and writes them into the right buffer of the CAB. After that, 

“thread 1” and “thread 2” can verify data consistency simply summing them after the 

reading operation.  

Simply implementing CAB algorithm into threads, we let them work at full speed 

(managed by the OS) and we cannot have a realistic emulation of the task behaviour. 

What really matters for our purpose is having tasks with different relative execution 

times, this means that we just want to control the speed of a thread with respect to the 

others, we do not care which can be the real execution time of each thread. Therefore, 

to impose this task characteristic we have inserted some “sleep” functions in strategic 

points of the code. In this way, we are stopping the thread for a certain period, 

simulating its execution, because, if we do not consider the processor workload, a 

sleeping thread can be seen as a running one, from a timing point of view. Where we 

extend the task execution is fundamental for our purpose, because it affects the way 

tasks interact. A “sleep” between two atomic writing operations simulates a longer 

writing operation; the same happens from the reading point of view. By the way, to 



38 
 

enlarge the task timing without changing the communication one, we have also paused 

threads before the end of their cycle.  

Design 2 writing thread example: 

Writing _Thread(){ 

int i = 0; 

for(i=0; i<WRITER_ITERATIONS; i++){ 

  Find a free buffer 

Write “data” into buffer 

Sleep(WRITING_DURATION) 

Write “-data” into buffer 

Buffer becomes available (mrb updated) 

Sleep(ENDING_DURATION) 

} 

} 
 

Fast readers could access CAB before a first writing operation, for this reason we also 

needed to ensure a correct initialization of threads. To work around the problem we 

impose the MRB initialization value to “-1”, so that, if readers find a negative MRB, they 

skip the reading operation. As soon as the CAB is written, the writer updates the MRB 

to “0” and data is considered available. 

In this simulated environment, we have not introduced the “core critical section” 

because what we have developed is a simplified model of the system in which there is 

just a task per core that cannot be pre-empted by anyone else. 

The Spinlock present in “Design 1” has been implemented with Windows Mutex, that 

provides the exclusive access to the critical sections, as Spinlocks do in AUTOSAR 

architectures. 

  



39 
 

3.6. Simulation Results 

Tests have been performed changing tasks’ timings, in order to emulate different use 

cases. These different configurations have been obtained simply modifying sleeping 

parameters of threads in both design simulations, in order to compare their impact on 

the two models. 

First, we noticed that the CAB theory was respected; in fact, the writer correctly cycles 

buffers and releases the updated MRB, while readers are always reading the buffer 

indexed by the current MRB. 

As expected, enlarging the writing time, the number of readings performed on the same 

buffer is increased. However, this behaviour can be limited slowing down readers with 

a highest “ENDING_DURATION” or “READING_DURATION” (input parameters of the 

Sleep() function). Of course, if instead we reduce the “WRITING_DURATION” of the 

writer, the speed of released MRB becomes higher, the probability that a reader reads 

the same buffer is reduced. If the writer is fast enough, with a speed that is similar or 

greater than the one of readers, some buffers’ readings are skipped.  

Between the two designs, we expected that the first one, using Spinlocks, was the 

heavier. Indeed, the simulator demonstrates that Spinlocks have a considerable impact 

on the reader performance, even if it is blocked for a small critical section. To reach 

this outcome we have imposed the writing time a bit lower than the reading one, in 

order to see how fast readers can follow the MRB updates. 

In this pseudo-real environment, the presence of critical sections that slow down the 

communication can be noticed. By the way, to actually understand their importance, 

we need to keep in mind that the target of this implementation is a multi-core embedded 

system with many tasks that exchange information through the shared memory.



40 
 

4. Embedded software development 

4.1. Inter Core Communicator 

The right CAB design model has been chosen keeping in mind that reliability is a 

milestone in the industrial field, especially in the automotive context. In general, when 

a new software component is deployed, it must not compromise the execution of the 

others and, of course, it must do its own work. Speed or memory optimizations can be 

considered as a plus, not as a strict requirement that overcomes the safety. Therefore, 

our design had to optimize as much as possible the inter-core communication, being 

at the same time the more robust solution.  

We considered that the way MCUs manage the access to the RAM is not deterministic, 

even if we disable all core interrupts. 

After this assumption, we can notice that, among our two designs, just one of them can 

be considered as robust as the old solution, being at the same time more efficient: the 

first design. So, our choice fell on this model that, as already mentioned in the CAB 

design analysis chapter, provides that readers write a shared variable to increase the 

counter that keep track of buffer users. To do that, Spinlocks must be used, although 

for a short critical section with respect to the one of the old implementation. 

The chosen test ECU to develop the new software is an ICC3 AUTOSAR compliant 

multi-core ECU that Magneti Marelli has prototyped. The principal BSW supplier of the 

company is Vector, which provides its own implementation of the AUTOSAR 

architecture: MICROSAR. Differently from the IOC present in MICROSAR.OS, that 

allows the communication between OS Applications, we defined our new software as 

Inter Core Communicator (ICC). Indeed, its aim is managing the physical 

communication between cores, not between different OS Applications that can be part 

of the same one. The ICC is located in the Complex Driver layer and it can be used as 

alternative to the IOC inside MICROSAR.OS, so that a system can be designed to let 

them work together, having some shared variables accessed through IOC and others 

through ICC.  



41 
 

4.2. SW-Cs Architecture Design 

An ICC is a SW-C that is directly linked with other SW-Cs of the same core that require 

an inter-core communication, but also with other ICCs, thanks to their internal 

implementation. Therefore, to start the implementation of our CAB design, we first 

needed a pre-defined testing SW-Cs architecture that included ECU components. For 

MICROSAR architectures, components can be defined in DaVinci Developer modifying 

the “ECU extract of System Configuration” of the MICROSAR.SIP. 

We have created two “Application Components” (SW-Cs): “comp0” that writes data 

and “comp1” that reads it. They rely in two different cores and are connected to their 

relative ICC (named with a number corresponding to the core number). As we can 

notice in figures, every SW-C situated in one core is directly linked with the others 

situated on the same core, this means that they can communicate through connected 

“Application Ports” that must be of the same type. These connections will be later used 

by the DaVinci Configurator to automatically generate the RTE that implements 

connection at code level. The subdivision into cores allows to get rid of the additional 

contribution of the IOC, which is substituted with the interconnected ICCs. Their 

communication cannot be seen at components architecture level, because our internal 

implementation will actually be in charge of exchanging their data. 

Inside components, “Application Ports” are associated to “Access Points” of Runnables 

in order to express what data they can access. “Application Ports” that we used are 

just the ones that in DaVinci are defined as Sender/Receiver, that allows components 

to provide or receive information. However, before we could use Application Ports we 

have defined Application Port Interfaces based on standard Magneti Marelli Application 

Figure 23: SW-Cs Architecture Design 



42 
 

Data Types. Each of them is mapped to the corresponding code variable by the DTMS 

(Data Type Mapping Set), information exploited by the DaVinci Configurator to 

generate code. This chain of dependencies is fundamental to make the SWC-Cs 

architecture modular and code independent. 

As already mentioned, DaVinci Configurator Pro generates the RTE or, if configured, 

the IOC, basing on the port connections defined in DaVinci Developer. Thus, if two 

correlated data are sent independently through different ports, they are seen by the 

Configurator as uncorrelated and it cannot guarantee a consistent data transfer. To 

send correlated data, we should use Application Ports based on Application Port 

Interfaces that include in their definition every correlated Data Type. 

With our ICC implementation instead, this operation can be avoided. Indeed, 

Runnables are aware of what must be kept consistent, because we designed them to 

consider as single data their complete set of Access Points, without grouping their 

related Data Types inside new Application Port Interfaces. To better understand this 

concept, let us analyse how we conceived the SW-Cs of this first architecture. 

Inside comp0, we have collocated two Runnables: one that writes two atomic values, 

COUNTER and COUNTERDBL, and the other that writes COUNTERTRPL. In comp1, 

we find other two Runnables: one with the role of reading COUNTER and 

COUNTERDBL, while the other COUNTER and COUNTERTRPL.  We wanted that our 

ICCs could always guarantee a consistent reading of such data couples. To do that, 

we inserted in each ICC a Runnable with Access Points COUNTER and 

COUNTERDBL and another one with COUNTER and COUNTERTRPL (in this case, 

icc0 Runnables just send data, while icc1 receives it). The consistency check will be 

defined in “Templates Implementation” phase, imposing COUNTERDBL as the 

doubled value of COUNTER and COUNTERTRPL as its tripled value. 

  



43 
 

 

4.3. BSW Configuration 

 

Figure 24: Task Mapping - Reading Runnables 

 

Figure 25: Task Mapping - Writing Runnables 

Once saved the project in the DaVinci Developer, we can open it with the Configurator 

Pro. This tool reads the ARXML files of the previously modified “ECU extract of System 

Configuration” and warns the user that latest changes have to be configured. 

In the “OS Configuration” section, we have created new tasks for OS Applications of 

“Core 0” and “Core 1”. After that, we entered the “Task Mapping” section and we 

mapped every Runnable we added in the SW-Cs Architecture with the tasks previously 

inserted in the OS Applications. Each transmitting ICC Runnable has to be mapped at 

the end of the task where we decide to make it run, each receiving Runnable instead, 

at the end of the task. In this way, we guarantee that every task cycle ends updating 

every modified variable or that starts with updated values, exploiting ICC 

functionalities. 

To make our testing phase easier, comp0 and comp1 Runnables are in the same tasks 

of the ICC Runnables; in fact, we wanted them to have the same timings of the ICCs, 



44 
 

so that, at every task cycle, ICC0 can read the consistent data produced by comp0, 

while comp1 can read the consistent data transferred by ICC1. If comp0 and comp1 

had been on different tasks, we would have had consistency errors not related to the 

ICC problems, but just to the tasks’ synchronization. 

In “OS Configuration” we also configured a Spinlock to be used in our code. In this 

case we did not need any Spinlock having just a reader for a unique CAB, but we used 

one anyway so that our implementation could be as generic as possible. To define a 

Spinlock, we set its name, the OsApplications that access it and other two parameters: 

“OsSpinlockLockMethod” and “OsSpinlockLockType”. The first one allows to associate 

the Spinlock to a locking method that prevents the pre-emption of a task that holds it. 

We set it as “LOCK_NOTHING”, because we decided to implement the “CORE 

CRITICAL SECTION” in our ICC code. “OsSpinlockLockType” instead, let us choose 

whether to use a standard Spinlock or an optimized one provided by MICROSAR.OS. 

Setting it as “OPTIMIZED”, we decided to minimize the execution time of the Spinlock 

API, but to do it we had to make some assumptions. In fact, the standard Spinlock 

performs error checks on OS configuration, verifying that no deadlocks are occurring. 

In our use cases, Spinlocks are never nested and we cannot have deadlocks between 

them. The optimized Spinlock omits the API checks, so that its data are kept in user 

memory and the OS context change is eliminated. 

Next step was the validation of the BSW configuration, operation that allows the 

DaVinci Configurator Pro to check if some generation phases are inconsistent. 

Ensured the correctness of the project, we generated the BSW, the RTE and, 

furthermore, the templates of our SW-Cs, so that we could manually implement them. 

4.4. Templates Implementation 

A template is an auto-generated “.c” file with a fixed structure that is divided in auto-

generated sections (where code is completely overwritten, if we generate again the 

same template in the same folder) and manually implementable sections (where we 

can write our C code avoiding that it will be deleted or substituted after a further 

template generation). Of course, Runnables are defined with auto-generated names 

and Access Points, but being templates, their implementation must be manual. 



45 
 

Therefore, we converted our low-level design structure into C code, filling Runnables 

internal fields, including header files and defining variables of ICC files. As already 

mentioned in the “SW-Cs Architecture Design” chapter, comp0 was implemented to 

produce related variable couples, while comp1 to check that the relation between them 

is respected, so that data consistency can be verified. 

4.5. “cabs” and “cab_shared_sec” files 

During templates implementation, we understood that these generated templates were 

not enough to constitute our complex driver. We missed were to declare and define 

shared variables accessed by every ICC file. Hence, we imposed that they all must 

include a “cabs.h” file that contains: 

• The macro definitions of “ENTER_CRITICAL_SECTION” and 

“EXIT_CRITICAL_SECTION” in order to be properly parametrized with the 

respective calls to the OS for core critical sections (for instance 

“SuspendAllInterrupts()” and “ResumeAllInterrupts()”). 

• The macro definitions of every buffer dimension (following the CAB rule: number 

of reading tasks “+” number of writing ones “+” 1) 

• The new datatypes based on the buffers’ structures. 

• shared variables declarations. 

We created this file together with the “cabs.c” one that includes it in order to define 

its variables. 

We parametrized the memory location of these shared variables, so that the software 

integrator can decide which is the best RAM section where to put them. We need to 

keep in mind that, if they are accessed very often, this choice can have a great impact 

on the MCU performance. 



46 
 

 

Figure 26: AURIX TC29 MCU - partial schematic 

As an example, we can consider the TC29 MCU structure ([16]), where every core has 

its own RAM divided in PSPR (Program Scratch-Pad RAM) and DSPR (Data Scratch-

Pad Ram), but there is also a global/shared one in the LMU (Local Memory Unit). Every 

RAM is accessible by every core, this is why it can be very important where we put 

shared variables. For example, if we know that a variable can be only accessed by 

core0 and core1, we can put it DMI belonging to core0 or core1. This solution is more 

efficient than the one we have if we store the same variable inside the LMU; this is due 

to the fact that we are shortening the path to access data, avoiding a useless 

congestion of the crossbar. 

To parametrize the memory location, we surrounded shared variables’ definitions of 

each core in this way: 



47 
 

#define CAB_CORE<NUM_CORE> 

#include "cab_shared_sec_on.h" 

 

<SHARED_VARIABLES> 

 

#include "cab_shared_sec_off.h" 

#undef CAB_CORE<NUM_CORE> 
 

 

Including “cab_shared_sec_on.h” before the definitions we add this piece of code: 

#ifdef CAB_CORE<NUM_CORE> 

    #pragma section "CAB_CORE<NUM_CORE>_section"  

#else 

    #error No core definition found for pragma section of cabs.h or cabs.c elements 

#endif 
 

 

Including “cab_shared_sec_off.h” at the end of the declarations we are adding: 

#ifdef CAB_CORE<NUM_CORE> 

    #pragma section 

#else 

    #error No core definition found for pragma section of cabs.h or cabs.c elements 

#endif 
 

In this way we can call a pragma that can be redefined just changing the content of the 

“cab_shared_sec_on.h” files and leaving “cabs.h” and “cabs.c” untouched. 

  



48 
 

4.6. Software building 

IBM Rational Synergy ([13]) is the tool adopted by the company as task-based software 

for configuration management that allows the cooperation of distributed development 

teams. Therefore, every project needs to be versioned with this system, which saves 

everything in a server accessed by selected users. 

Once uploaded our project with this tool, we remotely accessed a UNIX based server 

that Magneti Marelli uses as compilation platform. From there, we opened Synergy in 

order to see our project files and we built the software with a predefined “make file”. 

This can be also considered a first bug correction step, because first compilation errors 

that came out showed some implementation problems that have been solved with few 

corrections. 

4.7. Testing 

After the building process, we obtained many files resulting from compilation and 

linking. The one that mostly interested us was the “.elf” file. ELF (Executable and 

Linkable Format, formerly called Extensible Linking Format) ([14]) is a common 

standard file format for executables, object code, shared libraries, and core dumps. 

Unlike many proprietary executable file formats, it is very flexible and extensible, and 

it is not bound to any particular processor or architecture. 

To debug ECUs, Magneti Marelli uses emulators provided by Lauterbach (producer of 

microprocessor development tools) (15). These boards need to be controlled by their 

proprietary software Trace32, which allows to read ELF files, to flash the contained 

firmware inside the connected MCU and to have a complete debugging interface. 

Therefore, we physically connected the ECU to the emulator and the emulator to the 

company intranet through an Ethernet connection. In this way, we could launch 

Trace32 from the remote server that directly managed the emulator. After that, we 

loaded the ELF file that came out from the build procedure and we selected the right 

memory partition of the microcontroller where to flash the firmware. 

We added to the “watch window” every variable we needed, to understand if our 

implementation was working; for example, the MRBs variables showed if CABs were 

cyclically accessed, the “Consistent” variables instead, were used as counters 



49 
 

initialized to 0, that increment their value when the associated reading Runnable of 

comp1 receives inconsistent data. 

The first result was quite disappointing because, even if the MRBs were correctly 

updating their values, “Consistent” counters were continuously increasing. Therefore, 

we set break points in every Runnable and we stepped into C code lines to keep track 

of what was happening. What we noticed was completely unexpected: in fact, variables 

that count the number of users per buffer were not changing their values. Hence, we 

visualized the correspondent Assembly code of the C code lines where the values had 

to change and indeed, there were no instructions that could modify the variables. From 

this result, we understood that the compiler was optimizing our code, “thinking” that the 

consecutive increase and decrease of the same variables were useless operations: it 

cannot see that a Runnable in another core needs the updated value of this shared 

resource. To solve this problem, we declared that shared variables as “volatile”, so that 

the compiler cannot optimize them. 

4.8. Validating design 

Once seen that the model was working with a very simple SW-Cs Architecture, we 

decided to test our design applying it to a more complex architecture in which the 

system has two components in three different cores. We chose this model to validate 

our design, because it can be considered closer to a real architecture, dealing with 

many different data exchanges between every core. 

We created three “Composition Components” named “Core0”, “Core1” and “Core2” 

that represent the three cores of the Tricore MCU. Inside each of them, we have 

included Application Components that have to run on the specific core. Each 

Application Component contains Runnables with Sender/Receiver Access Points that 

can have either correlated Data Types or not (to better simulate a real use case). We 

repeated the same steps described in previous chapters: after the definition of the new 

SW-Cs Architecture Design, we configured the BSW, we extracted and implemented 

templates, we built the software and we tested it in ECU. 

A peculiarity of the ICC that has not been previously specified is that it allows to 

consistently transfer multiple variables together without defining a new data type as an 

aggregation of multiple types. With the IOC, this does not happen because it 



50 
 

guarantees a consistent writing of a single data; therefore, if we want to send more 

related variables, we must create a new type that encloses them. 

The facility, that we introduced, allows us to consistently send data elements produced 

by different SW-Cs; thus, with the validating design, we also checked this property. 

Tests in ECU were performed several times changing the Runnables’ mapping into 

tasks with different periodicity, to simulate many use cases where data are sent at 

different rates.  

 

Figure 27: ECU Composition: Cores' subdivision 

 

        

Figure 30: Core0 SW-Cs 

Figure 29: Core1 SW-Cs Figure 28: Core2 SW-Cs 



51 
 

5. Code generator development 

5.1. Diagrams 

5.1.1. Analysis class diagram 

 

Figure 31: Analysis class diagram 

  



52 
 

5.1.2. Complete design class diagram 

 

Figure 32: Complete design class diagram 

  



53 
 

5.1.3. ARXML parsing - design class diagram 

 

Figure 33: ARXML parsing - design class diagram 

  



54 
 

5.1.4. Code generation - design class diagram 

Figure 34: Code generation - design class diagram 



55 
 

 

5.2. General description 

After the validation of CAB code that we performed in ECU, we were sure that the auto-

generation tool should have been based on that structure. Therefore, we started the 

code generator development considering as system requirements what we obtained 

from the previous development process. 

The aim of the generator was to automate as much as possible the procedure of the 

Inter Core Communicator implementation. To do that, we wanted that our application 

could substitute the template implementation phase (generating C code) and the 

Spinlocks’ definition (generating an ARXML to be included in the BSW configuration). 

Java was the programming language chosen for the generator, due to its WORA (“write 

once, run anywhere”) characteristic that allows to run it on every platform which 

supports the Java virtual machine. The IDE mainly used for the development was 

Eclipse, but we preferred NetBeans to design the GUI (Graphical User Interface). 

The software was originally designed to be run on a CLI (Command Line Interface), 

but, during the development, we realized that a GUI, even if trivial, could simplify the 

use of the generator for the end user. Thus, we decided to add it just when every Java 

“exception” had already been managed printing a message in the CLI. Redirecting 

every output to a GUI would have been a waste of time, so we decided to cope with 

this problem imposing the user to launch the program through an executable file (“.bat” 

Windows, or “.sh” in Linux). In this way it will automatically open a CLI, where any 

errors can be printed, and then GUI to interact with the application. The output 

redirection could be a future improvement to make the software independent from the 

CLI, so that the user can open it simply double-clicking the “.jar” file. 

As can be noticed by the analysis class diagram (in “Diagrams” section), our 

application contains two completely separated and independent generation phases: 

one that generates ICC, “cabs” and “cab_shared_sec” files (left part of the graph) and 

one that generates Spinlock ARXML (right part of the graph). 

“CodeGenerator_Application” is the class that contains the logic of our application, for 

this reason we adopted the “Singleton” design pattern that guarantees its instance to 



56 
 

be unique for the entire execution of the program, requiring it through a static method 

“getInstance()” that returns a new instance just if not yet present. This class is in charge 

of instantiating manager objects that are used to parse and generate ARXMLs and 

also to generate C code. These managers are useful to hide the algorithmic and 

structural complexity of other classes, managing more parsers or code generators. 

Their characteristics will be better explained in next sections. 

5.3. ARXML parsing 

The “IccParser” that we find in the analysis graph is an XML parser that has to extract 

both writing and reading Runnables (“RdRunnable” and “WrRunnable”) information 

from an ARXML that has been exported from the DaVinci Developer. In fact, during 

the ICC development, we previously generated templates; with this procedure, instead, 

we have to export every ICC component that we have in the Developer project, so that 

our tool can read it. 

5.3.1. ARXML components 

In design phase we used the “Façade” pattern, defining the “ArxmlComponent” 

interface with just a symbolic method “getName()”. The aim of this pattern is to mask 

the interaction of complex components behind a simple one: Runnables and Spinlocks 

can be seen as ArxmlComponents (meaning they are generic elements that can be 

extracted from ARXML files). We will see that another ArxmlComponent will be a 

Spinlock, that we will create in order to generate an ARXML file, instead of being 

extracted from it. 

Why are we distinguishing writing and reading Runnables? The reason is linked to the 

fact that we are considering a CAB as uniquely identified by its unique writer (basing 

on previous assumptions about our CAB definition), so a writer has, as particular 

property, the number of readers that receive its message. Reading Runnables instead, 

can read from just one writer, that is why it is their particular property. 

Therefore, to better explain this concept: we don’t have CAB objects inside our 

program; by the way, we can identify CABs just with lists of writing and reading 

Runnables, linked each other. 



57 
 

A Runnable has associated its “AccessPoints”, objects representing Access Points and 

all their properties, such as the “implementationDataType”, which represents the real 

C code data type that the generator uses to define variables to be transferred. 

5.3.2. ARXML parser 

IccParser is implemented as a DOM (Document Object Model) parser, that is a good 

choice for documents like ICC ARXMLs because they are quite small (few megabytes) 

and have a complex structure. It returns parsed documents as tree structures, easier 

to be analysed and to extract useful data from. The “parseDocument()” method exploits 

parsing functionality to instantiate Runnable objects and fill the internal class lists. 

With the “Façade” pattern, as before, we designed the “ArxmlParser” interface, to make 

implementing classes, like “IccParser” (the only one needed in our specific application), 

externally seen as a simpler class with just the “parseDocument()” method. In fact, this 

allowed us to define the abstract “ArxmlParsersManager” in charge of managing every 

generic associated ArxmlParser, that in this case is only IccParser. Its method “parse()” 

instantiates ArxmlParsers calling the abstract method “parsersInstantiation()” and then 

the “parseDocument()” of each parser. “IccArxmlParsersManager” is the necessary 

class that concretizes abstract methods of the ArxmlParsersManager with Runnables 

dependent algorithms and leaving it independent by them. 

5.4. Code generation 

The “Façade” pattern was also used to define a “CodeGenerator” interface that only 

shows the “genCode()” method, hiding the complexity of all the implementing classes 

that in our program are four: 

• “Icc_CodeGenerator”: used to generate “icc<NumCore>.c” files; 

• “Cabs_CodeGenerator”: abstract class concretized by 

“CabsC_CodeGenerator” and “CabsH_CodeGenerator”, to generate “cabs.c” 

and “cabs.h” files; 

•  “CabSharedSection_CodeGenerator”: abstract class concretized by 

“CabSharedSection_On_CodeGenerator” and 

“CabSharedSection_Off_CodeGenerator” to generate “cab_shared_sec_on.h” 

and “cab_shared_sec_off.h” files; 



58 
 

• “Spinlock_CodeGenerator”: that produces “Generated_Spinlocks.arxml” file 

using Spinlock objects that implement ArxmlComponent. 

The “CodeGeneratorsManager”, with its “genCode(List<ArxmlComponent>)” is in 

charge of instantiating CodeGenerators and calling their “genCode()”, similarly at 

ArxmlParsersManager. It is an abstract class extended by 

“IccCodeGeneratorsManager” and “SpinlockCodeGeneratorsManager” to respectively 

perform a C code and an ARXML generation. 

5.5. GUI 

A GUI has been created with the aim of simplifying the use of the application for the 

end user. It is based on a single frame connected to the “CodeGenerator_Application” 

through a “FrameController” that manages the communication between them. 

 

Figure 35: Code Generator Graphical User Interface 

To generate C code, input and output folders must be selected either pressing “Select” 

and choosing the right ones in the appearing frames or writing the right paths in proper 

text fields. Then the “Generate C Code” button can be pressed and, of course, the 

generation of C code starts. 



59 
 

Once terminated the process, the application will notify the number of Spinlocks that 

have to be generated, considering that they are not used for CABs with one reader. 

Basing on this number, name and OsApplications associated to each Spinlock have to 

be provided typing them in the lower text field. A Spinlock can be defined writing its 

<SpinlockName> followed by a tabulation, followed by an <OsApplicationName>, 

followed by a tabulation, followed by an <OsApplicationName> and so on, for the 

number of <OsApplicationName> associated to the Spinlock. A new Spinlock must be 

defined in a new line (they are separated each other by an end-of-line). 

After that, the “Generate Spinlock ARXMLs” button can be pressed and the 

“Generated_Spinlocks.arxml” file will be generated. 

It can be noticed that the application has two completely separated sub-programs that 

have different functionalities, as defined in high level design phase; in fact, we can 

simply generate C code without Spinlocks’ ARXML, or vice versa, being not strictly 

linked operations (we just need to know how many Spinlocks we have to declare). 

The way we define Spinlocks, writing in a text field, can be considered a rough solution 

to be substituted in future with a better graphical structure, maybe equipped with 

buttons to add singular Spinlock and OsApplication text fields. This implementation 

can reduce the likelihood of text formatting errors. However, the current solution, 

although very simple, is more flexible, because Spinlocks can be added copying and 

pasting them from any text file configured before the program opening. 

5.6. User Guide 

This chapter will explain how to properly use the software to obtain a correct ICC 

generation for our architecture. 

1) Define a proper SW-C Architecture 

Open the system project with DaVinci Developer to define a proper SW-Cs 

Architecture that integrates ICCs. 

Depending on the number of cores that have to inter-communicate in our 

system, we define SW-Cs named icc<CoreNumber> that will represent the ICC 

for the related core. 



60 
 

Inside them, we name transmitting Runnables as <TxRunnablePrefix>_Tx, 

where <TxRunnablePrefix> is defined as 

icc<CoreNumber>_<RunnableLabel>. 

Receiving Runnables, instead, are named 

icc<CoreNumber>_<TxRunnablePrefix>_Rx, where <TxRunnablePrefix> is 

the one of the related transmitting Runnable. 

Runnables triggers are the periodic activations at 10 milliseconds adopted as 

standard in MMPWT. 

Inside ICCs we have to create just Runnables necessary for components 

communication; Therefore, we do not need to set calls and events. 

2) Export ICC components 

Export ICC components in AUTOSAR V4.4.0 ARXML format following the 

naming convention icc<CoreNumber>_swc.arxml.  

3) Run the ICC_Generator 

Run the ICC_Generator clicking on the “ICC_Generator.bat” file. 

This will open a console (where generation results will be notified) and a GUI 

(where the user have to insert parameters). 

In the GUI select the correct paths of the folders where icc<CoreNumber>.c 

files are located and where to store output files. 

Click the “Generate C Code” button. 

Once the generation is completed, write in the lower text field as many Spinlocks 

as the application will notify, respecting the naming convention defined in “GUI” 

chapter. 

Inserted every spinlock we want to generate, the “Generate Spinlock ARXMLs” 

button can be pressed and the “Generated_Spinlocks.arxml” file will be 

generated. 

NOTA BENE:  

o Running the “.bat” (if using Windows OS) instead of the “.jar” file is very 

important because in this way the console is opened to show generation 

results and, eventually, errors. 

o “.bat” file has been defined to be on the same folder of the “Application” 

folder that contains the “.jar” file. 

 



61 
 

4) Correctly map ICC Runnables into tasks 

Open the system project with DaVinci Configurator Pro. 

Each transmitting ICC Runnable has to be mapped at the end of the task where 

we decide to make it run, while each receiving one has to be mapped at the 

beginning. 

In this way, we guarantee that every task cycle ends updating every modified 

variable or that starts with updated values, exploiting ICC functionalities. 

5) Import the “Generated_Spinlocks.arxml” file into 

DaVinci Configurator Pro 

In DaVinci Configurator Pro go into “File”, then “Import” and the “Module 

Configuration Import” dialog window will appear. 

Add the “Generated_Spinlocks.arxml” file ignoring UUIDs. 

At the end of the process, DaVinci will switch into “Comparison Mode”, from 

which we need to add Spinlocks and ignore all the removed elements. 

This passage is very important, if we do not ignore everything that is removed, 

we can lose configuration data. This is due to the fact that DaVinci computes 

the differences among the imported file and the rest of the project and we just 

have to add what is contained in the “Generated_Spinlocks.arxml” file, not to 

substitute it with the project configuration data. 

  



62 
 

6. Conclusions 

The conducted work in this thesis was a chance to study in deep the AUTOSAR 

architecture, the main standard for embedded software development in automotive 

industry. 

We focused our attention on the inter-core communication features provided by 

AUTOSAR, to understand what needed to be improved according to the Magneti 

Marelli use cases. The study of an old implementation, already present in the company 

and based on an alternative communication mechanism, allowed us to design our 

solution. Therefore, many software architectural levels have been analysed and 

several cutting-edge development tools have been used. 

The Inter Core Communicator model resulted to be a satisfactory solution for the 

company, since it is based on a solid and configurable model to be reusable on generic 

Magneti Marelli multi-core implementations, independently on the microcontroller 

used. 

To effectively understand which performance increase a control unit can have thanks 

to our solution, we should have verified the difference in speed between the 

implementation of a commercial product that adopts the AUTOSAR IOC and the same 

one that instead uses the ICC. Unfortunately this work would have taken too long, 

because we would have to deactivate the IOC of an already existing ICC3 project and 

reimplement its multi-core functionalities adding our ICC as a complex driver. What we 

did, was to take the basic software, as released by Vector, and then create simple 

components to test our code. 

After the ICC definition, we developed a code generator that automatically generate it 

from project configuration files. Our tool has been tested and works fine. However, it 

can be also improved to add new features and ease the user experience. For example, 

its modular structure allows a possible further increment of its functionalities adding 

different ArxmlParsers or CodeGenerators. 

  



63 
 

Acknowledgments 

I thank Saverio Cortese (from Magneti Marelli) for his valuable advice and guidance 

during my internship work in the company and Prof. Paolo Torroni (from Alma Mater 

Studiorum – University of Bologna) for the useful suggestions he gave me to develop 

my thesis. 

I also thank my friends and my parents that supported and believed in me during my 

university studies. 

  



64 
 

References 

[1] Hard Real-Time Computing Systems – G. Buttazzo (Springer-Nature New 

York Inc; 3rd edition) 

[2] Automotive Embedded Systems Handbook (Industrial Information 

Technology) - Nicolas Navet, Francoise Simonot-Lion (CRC Press; 1 edition) 

Webliography 

[3] Introduction to AUTOSAR https://www.autosar.org 

[4] AUTOSAR – History – Concept and goals – Architecture 

https://en.wikipedia.org/wiki/AUTOSAR 

[5] AUTOSAR – Layered Software Architecture 

https://www.autosar.org/fileadmin/user_upload/standards/classic/4-

3/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf 

[6] AUTOSAR – Explanation of Adaptive Platform Design 

https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-

10/AUTOSAR_EXP_PlatformDesign.pdf 

[7] AUTOSAR – Specification of Operating System 

https://www.autosar.org/fileadmin/user_upload/standards/classic/4-

3/AUTOSAR_SWS_OS.pdf 

[8] Summary of AUTOSAR Competence 

https://pdfs.semanticscholar.org/8e53/429e50fc52b767e50126f3d922305c555

e7c.pdf 

[9] MICROSAR – Product Information 

https://assets.vector.com/cms/content/products/microsar/Docs/MICROSAR_Pr

oductInformation_EN.pdf 

[10] Functionality assignment to partitioned multi-core architectures 

http://www.imm.dtu.dk/~paupo/publications/Maticu2015aa-

Functionality%20assignment%20to%20pa-a.pdf 

[11] Migrating a Single-core AUTOSAR Application to a Multi-core Platform: 

Challenges, Strategies and Recommendations 

http://publications.lib.chalmers.se/records/fulltext/250043/250043.pdf 

[12] Kernel Overview http://hartik.sssup.it/overview.html 



65 
 

[13] IBM Rational Synergy V7.2.1 documentation 

https://www.ibm.com/support/knowledgecenter/en/SSRNYG_7.2.1/com.ibm.ra

tional.synergy.doc/helpindex_synergy.html  

[14] Executable and Linkable Format (ELF) 

https://elinux.org/Executable_and_Linkable_Format_(ELF) 

[15] Integrazione Lauterbach e Vector Software 

https://www.lauterbach.com/frames.html?tut-i_trace32-vectorcast.html 

[16] TC29x B-Step – User’s Manual 

https://www.infineon.com/dgdl/Infineon-TC29x_B-step-UM-v01_03-

EN.pdf?fileId=5546d46269bda8df0169ca1bdee424a2 


