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Introduction

The study of tangent circles has a rich history that dates back to antiquity. Already

in the third century BC, Apollonius of Perga, in his exstensive study of conics,

introduced problems concerning tangency. A famous result attributed to Apollonius

is the following.

Theorem 0.1 (Apollonius - 250 BC). Given three mutually tangent circles C1, C2,

C3 with disjoint interiors1, there are precisely two circles tangent to all the three

initial circles (see Figure 1).

Figure 1

A simple proof of this fact can be found here [Sar11]

and employs the use of Möbius transformations.

The topic of circle packings as presented here, is sur-

prisingly recent and originates from William Thurston's

famous lecture notes on 3-manifolds [Thu78] in which he

proves the theorem now known as the Koebe-Andreev-

Thurston Theorem or Circle Packing Theorem. He

proves it as a consequence of previous work of E. M.

Andreev and establishes uniqueness from Mostov's rigid-

ity theorem, an imporant result in Hyperbolic Geometry. A few years later Reiner

Kuhnau pointed out a 1936 proof by german mathematician Paul Koebe.

1We de�ne the interior of a circle to be one of the connected components of its complement (see

the colored regions in Figure 1 as an example).
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Figure 2: [Wik19a]

A circle packing is a �nite set of circles in the

plane, or equivalently in the Riemann sphere, with

disjoint interiors and whose union is connected. To

any circle packing we can naturally associate a sim-

ple2 planar graph (called contact graph or nerve) in

the following way: to each circle there corresponds

a vertex and, to each pair of tangent circles, an edge

connecting the two corrisponding vertices. Figure 2

shows an example of a circle packing with its associ-

ated graph. In the three chapters of this document,

we will explore the nature of the correspondence be-

tween circle packings and planar graphs, and present

some applications of this correspondence. We will

ask the question: what are the necessary conditions

on a planar graph to be the contact graph of a circle

packing? The answer, given by the Koebe-Andreev-Thurston Theorem, is the follow-

ing: for every �nite simple planar graph there exists a circle packing in the plane with

contact graph the initial graph. In the case of plane triangulations3 an important

uniqueness result also holds; indeed, if we have two packings with nerve the same

planar triangulation, there exists a Möbius transformation that maps one into the

other. As an example, consider the circle packings in Figures 1 and 2. Letting the

colors help us, we can see how these two packings have the same nerve. This graph,

shown in Figure 2, is a plane triangulation as each of its faces is bounded by three

edges. By the Koebe-Andreev-Thurston Theorem, the two circle packings are equal

up to a certain Möbius transformation.

The objective of this document is to present an elementary proof of the theorem,

as well as some of its many applications. The �rst chapter is dedicated to the basic

de�nitions concernig circle packings and graphs. By the and of the �rst chapter we

2Without loops or multiple edges.
3Graphs that admit a drawing in the plane in which every face is bounded by three edges.
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will have in hand a precise statement of the theorem that we will prove in detail in

the second chapter. The third chapter is dedicated to applications of the theorem,

the most important of which is in the �eld of Conformal Geometry. In the 1985 Per-

due conference celebrating de Brange's proof of the Bieberbach Conjecture, William

Thurston proposed a way to approximate a conformal map using circle packings.

In 1987 Burt Rodin and Dennis Sullivan published a seminal paper [RS+87] in wich

they gave a positive answer to Thurston's conjecture thus establishing circle packings

as a topic of great research interest.





Introduzione

Lo studio di con�gurazioni di cerchi tangenti nel piano inizia nell'antichità. Già nel

terzo secolo a.C., Apollonio di Perga, nel suo estensivo studio delle coniche, introdusse

molti problemi riguardanti la tangenza di cerchi. Un famoso risultato attribuito ad

Apollonio é il seguente.

Teorema 0.1 (Apollonio - 250 a.C.). Dati tre cerchi mutualmente tangenti C1, C2,

C3 con interni4 digiunti, ci sono esattamente due cerchi tangenti a tutti i tre cerchi

iniziali (vedi Figura 1).

Figura 1

Una semplice dimostrazione di questo fatto si può

trovare qui [Sar11] e sfrutta le trasformazioni di Möbius.

Il tema degli impacchettamenti di cerchi come pre-

sentato qui è invece sorprendentemente recente e ha

origine nelle famose note di William Thurston sulle 3-

variertà [Thu78]. Qui Thurston dimostra quello che

oggi è noto con il nome di Teorema di Koebe-Andeev-

Thurston come corollario di un lavoro di A. M. Andreev,

e ne deduce la parte di unicità dal teorema di rigidità di

Mostov, un importante risultato in Geometria Iperbolica. Qualche anno dopo Reiner

Kuhnau riportò l'attenzione su una dimostrazione del 1936 del matematico tedesco

Paul Koebe.

4De�niamo l'interno di un cerchio come una delle componenti connesse del complemantare (vedi

ad esempio le regioni colorate in Figura 1).
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Figura 2: [Wik19a]

Un impacchettamento di cerchi è un insieme �ni-

to di cerchi nel piano, o equivalentemente nella sfera

di Riemann, con interni disgiunti e unione connessa.

Ad un dato impacchettamento di cerchi possiamo, in

modo naturale, associare un grafo planare semplice5

(chiamato grafo di contatto o nervo) nel modo se-

guente: a ogni cerchio corrisponde un vertice e a

ogni coppia di cerchi tangenti un arco che connette i

vertici corrispondenti. Figura 2 mostra un esempio

di impacchettamento di cerchi con il relativo grafo.

Nei tre capitoli di questo documento esploreremo la

natura della corrispondenza tra impacchettamenti di

cerchi e gra� planari e presenteremo alcune applica-

zioni di questa corrispondenza. Ci chiederemo: quali

sono le condizioni su un grafo planare che gli con-

sentono di essere il nervo di un impacchettamento di cerchi? La risposta, data dal

teorema di Koebe-Andreev-Thurston, è la seguente: per ogni grafo planare semplice

esiste un impacchettamento di cerchi che ha quest'ultimo come grafo di contatto.

Nel caso di triangolazioni del piano6 si ha un importante risultato di unicità; infatti,

se si hanno due impacchettamenti con nervo una stessa triangolazione del piano, esi-

ste una trasformazione di Möbius che porta un impacchettamento nell'altro. Come

esempio, si considerino gli impacchettamenti nelle Figure 1 e 2. Facendoci aiutare

dai colori, si può osservare che questi impacchettamenti hanno lo stesso nervo. Il

teorema di Koebe-Andreev-Thurston ci garantisce l'esistenza di una trasformazione

di Möbius che porta uno dei due impacchettamenti nell'altro.

Il principale obiettivo di questo lavoro è presentare una dimostrazione elementare

del teorema di Koebe-Andreev-Thurston, insieme a qualche esempio di applicazione.

Il primo capitolo è dedicato alle de�nizioni di base riguardati gra� e impacchetta-

5Senza archi multipli o cappi.
6Gra� che ammettono un'immersione nel piano in cui ogni faccia è delimitata da tre archi.
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menti. Alla �ne del primo capitolo avremo un enunciato preciso del teorema, che

dimostreremo in dettaglio nel secondo capitolo. Il terzo capito è dedicato alle ap-

plicazioni; la più importante di queste è nell'ambito della Geometria Conforme. Nel

1985, in occasione dalla conferenza di Perdue in cui si celebrava la dimostrazione del-

la congettura di Bieberbach da parte di de Brange, William Thurston propose una

procedura per l'approssimazione di una mappa conforme utilizzando gli impacchet-

tamenti di cerchi. Nel 1987 Burt Rodin e Dennis Sullivan pubblicarono un articolo

[RS+87] in cui risolsero positivmente la congettura posta da Thurston, dando inizio

a un ciclo di �orenti ricerche nell'area.
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Chapter 1

The Circle Packing Theorem

In this chapter we de�ne circle packings, their graphs and we give di�erent equivalent

statements of the Koebe-Andeev-Thurston theorem. As mentioned in the introduc-

tion, we can think of circle packings as lying in the plane or, equivalently, in the

sphere. The bridge between these two views is stereographic projection. Closely re-

lated are Möbius transformations, that appear in the statement of the circle packing

theorem.

1.1 Stereographic projection and Möbius transfor-

mations

De�nition 1.1. Consider the unit spere S2 = {(x, y, z) ∈ R3 | x2 +y2 + z2 = 1} and
call N = (0, 0, 1) the North pole. For every point P ∈ S2 \ {N} we have a unique

line ` passing through N and P . We de�ne the stereographic projection of P to be

the unique point P ′ in the intersection of ` and the plane z = −11.

We can easily compute explicit formulas for stereographic projection and its in-

verse. Denote with with (X, Y ) the coordinates on the plane z = −1. We would

like to �nd an expression for X and Y in terms of the coordinates of a point

1Some authors de�ne stereographic projection with the plane z = 0.

1



1. The Circle Packing Theorem 2

Figure 1.1: [Wik19c]

P = (x0, y0, z0) ∈ S2 \ {N}. To do so, consider the line

` = {(λx0, λy0, λz0 − λ+ 1) | λ ∈ R}

passing through N (when λ = 0) and P (when λ = 1). Imposing the last coordinate

to be −1 we �nd λ = 2
1−z0 and thus

(X, Y ) =

(
2x0

1− z0
,

2y0
1− z0

)
.

In a similar fashion we can get an expression for (x, y, z) ∈ S2 \ {N} in terms of the

coordinates (X0, Y0) of a point in the plane z = −1.

Stereographic projection maps circles in the sphere that do not pass through N

into circles on the plane, and circles passing through N into straight lines. Coversely,

the inverse stereographic projection maps circles in the plane to circles in the sphere,

and straight lines to circles passing through N . We might de�ne generalized circles

in the plane to include straight lines (thought as circles of in�nite radius) and say

that stereographic projection maps circles in the sphere to generalized circles in the

plane and viceversa. Stereographic projection is also conformal, that is, it preserves

angles at which curves meet. Simple proofs of these propreties can be found here

[Cas14].



3 1.1. Stereographic projection and Möbius transformations

Although circle packings are more easily visulaized in the plane, it is useful to

think them as lying in the unit sphere. Let Ĉ = C ∪ {∞} be the extended complex

plane (or Riemann sphere). We can identify Ĉ with the unit sphere using stereo-

graphic projection and sending ∞ to the North pole. This identi�cation allows to

exchange between the two points of view.

We now introduce Möbius tranformations, which are a class of circle-preserving

maps of the Riemann sphere.

De�nition 1.2. A Möbius transformation (or linear fractional tranformation) is a

complex valued function of the form

f(z) =
az + b

cx+ d

where a, b, c, d are complex numbers satfying the condition ad−bc 6= 0 (which makes

f non-constant). We set f(−d
c

) = ∞ and f(∞) = a
c
when c 6= 0, and f(∞) = ∞

when c = 0.

Möbius transformation are bijective and conformally map the Riemann spere

into itself, that is, they preserve angles formed between any two curves. It is easy

to see that they also form a group under composition sometimes denoted Aut(Ĉ).

Geometrically, a Möbius transformation can be thought as these three actions:

1. a stereographic projection of the plane to the unit sphere;

2. a movement of the sphere to another location in space;

3. a stereographic projection of the moved sphere to the plane.

See [AR08] for details and here [AR15] for an animation.

Theorem 1.3. The Möbius transformation

f(z) =
az + b

cx+ d

has the inverse transformation

f−1(z) =
−dz + c

bz − a
.
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In particular, the inverse of a Möbius transformation is itself a Möbius transforma-

tion.

Proof. It is an easy exercise.

Proposition 1.4. A Möbius transformation can be written as the composition of a

translation (z 7→ z + λ), a homothety (z 7→ λz) and an inversion (z 7→ 1/z).

Proof.

f(z) =
az + b

cx+ d
=
bc− ad
c2

· 1

z + d
c

+
a

c

Theorem 1.5. A Möbius transformation maps circles of Ĉ to circles of Ĉ. That is,
every circle in C gets mapped to a circle or a line (a circle in Ĉ passing through ∞),

and every line gets mapped to a line or a circle.

Proof. By Proposition 1.4 we have a decomposition of our Möbius transformation

into an homothety, a translation and an inversion. It is easy to see that translations

and homotheties have the proprety we want, so one only has to prove the statement

for the map z 7→ 1
z
. The proof of this involves some elementary calculations (see

[Chr15]).

Theorem 1.6. There exists a unique Möbius tranformation sending three distinct

points z1, z2, z3 ∈ Ĉ to any other three distinct points w1, w2, w3 ∈ Ĉ.

Proof sketch. Given three points z1, z2, z3 ∈ Ĉ one can easily verify that the Möbius

transformation

M(z) =
(z − z2)
(z − z3)

· (z1 − z3)
(z1 − z2)

maps z1 7→ 1, z2 7→ 0, z3 7→ ∞. If one of the zi's is ∞ we 'cancel' the terms with ∞.

By composing with the inverse of the analogous map associated to w1, w2, w3, we get

the desired Möbius transformation. The uniqueness part follows from the fact that

a Möbius transformation that is not the identity, can not �x more than two points

(see [PH] for details).
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Lemma 1.7. Given three points z1, z2, z3 ∈ Ĉ, there exist three unique mutually

tangent circles C1, C2, C3 such that C1 ∩ C2 = z1, C1 ∩ C3 = z2 and C2 ∩ C3 = z3.

Proof. Applying a suitable Möbius transformation, we may assume z1 = −1, z2 = 1

and z3 = ∞. In the plane, two of these (generalized) circles will then be parallel

lines tangent to a thrid circle at +1 and −1. Therefore +1 and −1 are diametrically

opposite on this third circles and thus the three circles are determined.

Theorem 1.8. There exists a unique Möbius tranformation that maps three mutually

tangent circles P1, P2, P3 in Ĉ to any other three mutually tangent circles C1, C2, C3

in Ĉ.

Proof. By Theorem 1.6 there exists a unique Möbius transformation mapping P1∩P2

to C1 ∩C2, P1 ∩ P3 to C1 ∩ P3 and P2 ∩ P3 to C2 ∩C3. We conclude using Theorem

1.5 and Lemma 1.7.

1.2 Planar graphs and maps

De�nition 1.9. A simple graph is an ordered pair G = (V,E) comprising of:

� a set of vertices V = (vi)i∈J indexed by some countable set J ;

� a set of edges E ⊂ {{u, v} | u, v ∈ V ∧ u 6= v}.

If {vi, vj} ∈ E we say that vi and vj are connected by an (undirected) edge. The

term simple stands for the fact that our graph does not have multiple edges or loops

(like the ones in red below).

Figure 1.2: Example of a non-simple graph.
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De�nition 1.10. A graph G = (V,E) is connected if for each u, v ∈ V , there exists
a m-tuple (or path, in this case) of vertices (v1, ..., vm) such that v1 = u, vm = v and

{vi, vi+1} ∈ E for each i ∈ {1, ...,m− 1}.

De�nition 1.11. Let G = (E, V ) be any graph, and let S be a subset of V . Then

the induced subgraph G[S] is the graph on vertex set S and whose edges are the edges

in E that have both endpoints in S.

De�nition 1.12. A graph G = (V,E) is planar if it has a planar embedding. A

planar embeddng is a graph G = (V,E) endowed with a map such that:

� vertices are mapped to distinct points of R2;

� edges are mapped to continuous curves between the corrisponding vertices;

� no two curves intersect, except at the vertices they share.

We use the term drawing to refer to the image in R2 of the map of the embedding.

A planar embedding uniquely de�nes a cyclic order of the edges and therefore

one could regard some drawings to be similar or di�erent (Figure 1.3).

Figure 1.3: On the left: two embeddings representing the same class of planar maps.

On the right: two embeddings that represent the same graph but di�erent classes of

planar maps. The clockwise order of neighbors for the yellow vertex is (green, red,

blue) in one case and (green, blue, red) in the other.

De�nition 1.13. A planar map (or combinatorial embedding) is a graph in which

every vertex v is endowed with a cyclic ordering σv of edges incident to it. These

cyclic orders are such that there exists a planar embedding in which the clockwise

order of the curves touching the image of a vertex respects the cyclic order.
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We now want to de�ne precisely what we mean by face. Intuitively faces are the

connected components of the complement of the drawing, but this intitive de�nition

might fail to capture the essence of a face in the case of countably in�nite graphs.

Furthermore, we want to de�ne a face combinatorially, that is, without referring to

the embedding, but only to the planar map. To do so we consider each edge of the

graph as directed in both ways, and give the following de�nition.

De�nition 1.14. Let ~e, ~f be directed edges of a planar map. We say that ~e precedes

~f , if there exist vertices v, x, y such that ~e = (x, v), ~f = (v, y) and y is the successor

of x in the cyclic order σv (see Figure 1.4).

(a) ~e preceeds ~f . (a) (x, y) preceeds (y, x).

Figure 1.4: [Nac18, p. 28] Examples of the precedence relation.

Intuitively, we can think of two directed edges as belonging to the same face if,

starting from one, we can reach the other by always moving to the next leftmost

edge (the leftmost edge is the one that succeds the current one). This is formalized

with the next de�nition.

De�nition 1.15. Let ~e, ~f be directed edges of a planar map. We say that ~e and ~f

belong to the same face if there exists an m-tuple (~e1, ..., ~em) with ~ei preceding ~ei+1

for i ∈ {1, ...,m− 1} and either ~e = ~e1 and ~f = ~em, or ~f = ~e1 and ~e = ~em. Therefore

a face is just an equivalence class in the relation we just de�ned. Even though a face

is a set of directed edges, we may ignore orientation and therefore have that each

edge is incident to eighter one or two faces.
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The degree of a face is the number of directed edges that make up its boundary.

Note that for simple planar graphs with at least two faces the degree of every face

is at least three. Given a �nite planar map, the complement of its drawing has a

unique unbounded component. We call outer face the face that bounds it. The outer

face should not be regarded as a special one; indeed we can �nd an embedding in

which the outer face is any face f in the following way:

1. project stereographically the drawing to the unit sphere;

2. rotate the sphere so that f contains the (new) north pole;

3. project the rotated sphere on the plane.

This actions can be summarized in a Möbius tranformation and gives an embedding

in which f takes the role of outer face. See Figure 1.5 below for an example.

Figure 1.5: In the top left the cube graphQ3 embedded in the sphere and projected to

the plane. Note how the outer face is bounded by four red edges. If we continuously

rotate the sphere (thus continuously changing the North pole through which we

project) as shown in the top right, we can get some other arbitrary face to be the

outer one. In our example the new outer face is bounded by red and blue edges.
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De�nition 1.16. A plane triangulation is a simple planar map in which every face

is bounded by exactly three edges.

Any plane triangulation can be seen as the 1-skeleton of a triangulation of the

sphere2.

Theorem 1.17 (Euler's formula). Suppose G = (V, E) is a connected planar graph

with n vertices, m edges and f faces. Then

n−m+ f = 2. (1.1)

For proof(s) see Twenty Proofs of Euler's Formula by David Eppstein [Epp13].

Corollary 1.18. Suppose G = (V,E) is a plane triangulation. Denote by n, m and

f the number of vertices, edges and faces. Then

f = 2n− 4. (1.2)

Proof. Observe that 3f = 2n, since each face is bounded by three edges and each edge

bounds exactly two faces. Then applying Euler's formula (1.1), we have (1.2).

1.3 The Circle Packing Theorem

The interior of a circle P ⊂ C is usually de�ned as the bounded connected component

of C \P . For generalized circles we can de�ne it parametrizing the circle and saying

that the interior of our circle is the part of the plane that remains on the left when

we follow the trajectory de�ned by the parametrization. Given a circle P = {z ∈ C |
|z − z0| = r} we denote with D(P ) the union of P and its interior.

De�nition 1.19. A circle packing is a countable collection P = (Pj)j∈J of circles

Pj = {z ∈ C | |z − zj| = rj} in the complex plane, indexed by some set J , which are

allowed to intersect only tangentially (they have disjoint interiors), and whose union

is connected.
2The plane triangulation on three vertices is not, strictly speaking, a triangulation, but is a

regular CW complex decomposition of the sphere
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De�nition 1.20. An interstice is a connected component of the complement of⋃
j∈J(Pj ∪ D(Pj)). A triangular interstice is an interstice whose closure intersects

three circles.

De�nition 1.21. The contact graph (or nerve) associated to a circle packing P =

(Pj)j∈J is the graph on the vertex set V = {vj | j ∈ J} and edge set E such that for

each α, β ∈ J we have:

{vα, vβ} ∈ E ⇐⇒ Pα ∩ Pβ 6= ∅.

Observation 1.22. The contact graph of circle packing P = (Pj)j∈J is connected,

planar and simple.

Proof. We can embedd the contact graph in the plane by mapping each vertex in

the center of the corrisponding circle and drawing the edges as a lines segments

between the centers of intersecting circles. These line segments reamain internal to

the circles except for the point of intersection through which they pass. These points

of intersections form a discrete set in bijection with the set of edges. Therefore, no

two of the drawn line segments can cross.

We are now ready to give a �rst formulation of the Circle Packing Theorem.

Theorem 1.23 (Circle Packing Theorem (v1)). For every �nite planar graph G,

there is a circle packing in the plane with nerve G. If G is a plane triangulation the

packing is unique up to Möbius transformations and re�ections.

Figure 1.6 shows how uniqueness up to Möbius transformations and re�ections

fails for planar graphs that are not triangulations. On the left a planar embedding

of a graph which is not a plane triangulation (the outer face is bounded by 7 edges).

In the packing on the right, we can modify cicles 1, 5, 6 and 4 to be bigger or smaller

leaving the other circles unchanged and without modifying the tangency pattern. We

could also swap circles 5 and 6 and still have a valid packing for the graph. These

changes can not be described in terms of a re�ections or Möbius transformations,

therefore the uniqueness statement does not hold in this case.
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Figure 1.6: [Nac18, p. 2] A planar simple graph and an associated packing.

We can see how, again in Figure 1.6, the ordering of the neighbors of every circle

(the ones tangent to it) agrees with the ordering of the neighbors of the associated

vertex. That is, the structure of the planar map is also preserved. Swapping circles 5

and 6 would not change the tangency graph, but would certainly change the 'tangency

map'. Indeed, the statement of the theorem can be strengthened in the following

way.

Theorem 1.24 (Circle Packing Theorem (v2)). Given any �nite simple planar

map G = (V,E), V = {vj | j ∈ J}, there exists a circle packing P = (Pj)j∈J , with

nerve G. Furthermore, for every vertex vi, the clockwise order of the circles tangent

to Pi agrees with the cyclic permutation of vi's neighbors in the map. Furthermore,

if G is a plane triangulation, the packing is unique up to Möbius transformations.

Note how re�ections invert the cyclic orderings of the vertices in the planar map.

This is why we do not have uniqueness up to re�ections in this case.

Observation 1.25. It su�ces to prove the theorem for plane triangulations.

Proof. In any planar graph, if we add a vertex in each face bounded by more that

three edges and connect it to all the vertices of the face, we obtain plane triagulation.

At this point we just apply the circle packing theorem for triangulations and remove
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the circles corresponding to the added vertices. This gives a packing with the desired

pattern of tangency (see Figure 1.7 below).

Figure 1.7: [Nac18, p. 29] On the left: we add new (red) vertices and adges to make

the graph a plane triangulation. On the right: a circle packing associated with the

triangulation. Removing the circles corresponding to the added vertices gives a circle

packing with nerve the original graph.

Theorem 1.26 (Circle Packing Theorem (v3)). Let G = (V,E) be a �nite tri-

angulation for which V = {vj | j ∈ J} where J = {1, .., n}. Assume that {v1, v2, v3}
are the vertices a face. Then for any three positive numbers ρ1, ρ2, ρ3, there exists a

circle packing P = (Pj)j∈J with nerve G and the addition property that C1, C2, C3 are

mutually tangent, correspond to the outer face, and have radii ρ1, ρ2, ρ3, respecively.

Furthermore, this circle packing is unique up to translations and rotations of the

plane.

Fixing the three radii amounts to �x the sides of the triangle obtained connecting

their centers. Thus, the type of rigidity we have is only up to rotations and trans-

lations. We will get a circle packing similar to the one in Figure 1.7: all the circles

that correspond to internal vertices will lie in the triangular interstice of the three

'outer' circles.





Chapter 2

Proof of the Circle Packing Theorem

In this chapter we present an elementary proof of Theorem 1.26 based on [Nac18].

The proof takes inspiration from Thurston's argument [Thu78] and from the work of

Brightwell and Scheinerman [BS93]. We also use a theorem due to Ohad Feldheim

and Ori Gurel-Gurevich (Theorem 2.14) for the drawing part of the argument. The

uniqueness proof is due to Oded Schramm, published as a contribution on Wikipedia

[Wik19a].

2.1 Setup

Given a circle packing in the plane we could describe it providing the radii of the

circles and the position of their centers. With this information, there is only one

con�guration of circles we can draw, and what makes this drawing a circle packing

lies inside the verctor of radii that should have certain propreties. We will now

describe these propreties and see how these radii, packed in a vector, are the key to

the proof of Theorem 1.26.

De�nition 2.1. A label for G is a collection R = (ri)i∈J of positive numbers. We

will also denote ri with R(vi).

As Theorem 1.26 states, we assume G = (V,E) to be a �nite triangulation on

vertex set V = {vj | j ∈ J} where J = {1, ..., n}. Remebering the arbitrary nature

14
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of the outer face, we also assume that {v1, v2, v3} forms the outer face of the map.

Let vi, vj, vk be the vertices of a face f and consider a con�guration of three mutually

tangent circles of radii ri, rj, rk Connecting the centers of these circles we obtain a

triangle 4vivjvk of side lengths ri + rj, ri + rk and rj + rk.

Figure 2.1: The triangle 4vivjvk.

Given a label R and three vertices vi, vj, vk bounding a face f we de�ne αRf (vj)

to be the angle corrisponding to the vertex vj in a triangle 4vivjvk.

Theorem 2.2 (Law of cosines). In a triangle of side lengths a, b, c let γ denote the

angle between sides of lengths a and b and opposite to the side of length c. Then

cos γ =
a2 + b2 − c2

2ab
(2.1)

Proof. See [Wik19b].

Corollary 2.3. In the notation above we have:

cos
(
αRf (vj)

)
= 1− 2rirk

(ri + rj)(rj + rk)
∈ (0, 1). (2.2)

Proof. In the triangle 4vivjvk the angle αRf (vj) is the one between sides of lengths

ri + rj and rk + rj and opposite to the side of length ri + rk. Setting a = ri + rj,

b = rk + rj and c = rj + rk in (2.1) we get (2.2).

Denote with F o the set of faces of the map except the outer face. Given A ⊂ V

let F (A) be the set of the faces in F o that have at least one vertex in A. When we
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write F (v) we mean F ({v}). We write V (f) to denote the set of vertices composing

the face f .

De�nition 2.4. Let R be a label for our planar triangulation G. For every j ∈ J ,
we de�ne the sum of angles at vj ∈ V with respect to R to be:

σR(vj) =
∑

f∈F (vj)

αRf (vj). (2.3)

Let θ1, θ2, θ3 be the angles formed at the centers of three mutually tangent circles

C1, C2, C3 of radii ρ1, ρ2, ρ3.

De�nition 2.5. Let R be a label for our planar triangulation G. We call R a packing

label if it satis�es:

σR(vi) =

θi i ∈ {1, 2, 3}

2π otherwise
(2.4)

Observe that if we consider a circle packing of a map sarifying Theorem 1.26 must

satisfy (2.4) and therefore be a packing label. The idea of the proof revolves around

�nding a packing label and then showing how it gives us the desired circle packing.

The proof is split in three parts:

(i) A packing label exists;

(ii) Given a packing label, we can draw a circle packing with those radii and such

that:

(a) (r1, r2, r3) is a positive multiple of (ρ1, ρ2, ρ3);

(b) this circle packing is unique up to translations and rotations.

(iii) The packing label is unique up to scaling all the entries by a positive number.
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2.2 Finding a packing label

The most important part of the proof will be �nding a verctor of radii such that we

can draw a circle packing in wich the circles have exactly those radii. Starting with a

chosen arbitrary label we will de�ne an iterative algorithm that we prove to converge

to a label that allows the construction of a circle packing. Altough we will have an

algorithm to compute packings, this will not run in �nite (guaranteed) runnings time.

It is an open problem to �nd an algorithm thar runs in �nite (hopefully polynomial)

time, even if we relax some conditions1.

Observation 2.6. Let R be a label for our planar triangulation G. Then∑
i∈J

σR(vi) = |F o|π = (2n− 5) · π. (2.5)

Proof. Each inner face f is bounded by three vertices vi, vj, vk and contributes with

the three angles αRf (vi), α
R
f (vj), and α

R
f (vk) wich sum to π. By (1.2), there are 2n−5

inner faces.

We now set

δR(vi) =

σR(vi)− θi i ∈ {1, 2, 3}

σR(vi)− 2π otherwise
(2.6)

Finding a packing label is equivalent to �nd R such that δR ≡ 0. From (2.5) and the

fact that θ1, θ3, θ3 constitute the internal angles of a triangle, that for every label R,

∑
i∈J

δR(vi) =
∑
i∈J

σR(vi)− θ1 − θ2 − θ3 − (n− 3) · 2π = 0. (2.7)

We de�ne

ER =
∑
i∈J

δR(vi)
2. (2.8)

Proving the existence of a packing label now comes down to �nd R for which

ER = 0. To do so, we will use the following geometric observation.

1Like allowing circles to have intersecting interiors or shapes di�erent from circles
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Observation 2.7. Let (Ri)i∈J and (R′i)i∈J be labels for our plane triangulation G,

and f ∈ F o be bounded by vi, vj, vk for some i, j, k ∈ J . Then

(I) If R′(vi) ≤ R(vi), R
′(vk) ≤ R(vk) and R′(vj) ≥ R(vj),

then αR
′

f (vj) ≤ αRf (vj).

(II) If R′(vi) ≥ R(vi), R
′(vk) ≥ R(vk) and R′(vj) ≤ R(vj),

then αR
′

f (vj) ≥ αRf (vj).

(III) αRf (v) is continuous in R.

Proof. In (2.2) increasing ri and rk while decreasing rj makes the cosine increse.

Therefore the angle decreases and (I) is proven. Figure 2.2 shows an illustration of

this fact. Similarly we prove (II). Point (III) is immediate consequence of (2.2).

Figure 2.2: Given three vertices forming a face, increasing the radius of the circle

corresponding to one vertex while decreasing the radii of the other two, makes the

angle at the �rst vertex decrease.

Starting with an initial vector of labels R(0) we de�ne an iteration that we prove

to converge to a packing label. The input and autput of the algorithm will be labels

for G, normalized to have `1 norm 1, that is, we whant the sum of the entries to be

1. We take R(0) = ( 1
n
, ..., 1

n
) to be our starting label and given given R = R(t) we
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construct R′ = R(t+1). To the new label R′, we associate δ′ = δR′ and E ′ = ER′ . If

δ′ ≡ 0 we are done, othrwise, we continue the iteration.

To de�ne the iteration, we study the set (δ(vi))i∈J . If δ
′ 6≡ 0, choose s ∈ R such

that the sets S = {v ∈ V | δ(v) > s} and V \ S are non-empty and the gap

gapδ(S)
def
= min

v∈S
δ(v)−max

v/∈S
δ(v)

is maximal.

We now de�ne R′ = R(t+1) from R = R(t) :

1. For some λ ∈ (0, 1) to be chosen later, we set

(Rλ)i =

R(vi) vi ∈ S

λR(vi) vi /∈ S
(2.9)

2. We normalize Rλ to have `1 norm 1. Let R̂λ be the normalized vector and

de�ne R′ = R̂λ.

Normalizing Rλ in step 2 does not in�uence the vector δ′. We will often work

with Rλ for this reason.

We now want to show that:

(a) for any λ ∈ (0, 1), step 1 will decrease all values of δ(v) for v ∈ S and increase

all values of δ(v) for v /∈ S;

(b) there exists a λ that closes the gap, that is,

gapδ′(S) = min
v∈S

δ′(v)−max
v/∈S

δ′(v).

Part (a) is formalized with the following lemma relying on the geometric Obser-

vation 2.7.

Lemma 2.8. For every λ ∈ (0, 1), whe have:

(I) δ′(v) ≥ δ(v) for every v /∈ S;
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(II) δ′(v) ≤ δ(v) for every v ∈ S.

Proof. Consider vj /∈ S and f ∈ F o bounded by vertices vi, vj, vk.

Case 1: vi, vk /∈ S.
In this case the radii of Pi, Pj, Pk are all multiplied by λ, so αR

′

f (vj) = αRf (vj).

Case 2: vi, vk ∈ S.
In this case the radii of Pi, Pk remain unchanges while the radius of Cj decreases,

thus by observation 2.7 we get that αR
′

f (vj) ≥ αRf (vj).

Case 3: vi /∈ S, vk ∈ S.
In this case the radii of Pi, Pj are multiplied by λ. If we multiply each of the

three radii by λ−1 the agles ramain the same and it is as if we left the radii of

Pi and Pj unchanged and increased the radius of Ck (because λ−1 > 1). By

observation 2.7, we get that αR
′

f (vj) ≥ αRf (vj).

In all cases we have that αR
′

f (vj) ≥ αRf (vj), therefore, it follows from (2.6) and (2.4)

that δ′(v) ≥ δ(v) for any v /∈ S. A similar argument also shows that δ′(v) ≤ δ(v) for

all v ∈ S.

We now want to show (b): that there exists λ ∈ (0, 1) that closes the gap. This

is done with the following lemma. The proof is a little technical and we advise the

reader to just read the statement and return to it later.

Lemma 2.9.

lim
λ↘0

∑
v/∈S

δRλ(v) > 0 (2.10)

Proof. The proof is split in two parts. We �rst show that for each face f ∈ F (V \S)

bounded by vi, vj ,vk, the sum of angles at the vertices belonging to V \S converges

to π as λ↘ 0. The argument relies again on Observation 2.7.

Case 1: vi, vj, vk /∈ S.
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In this case, since the face is a triangle, αRλf (vi) + αRλf (vj) + αRλf (vk) = π for all

λ ∈ (0, 1).

Case 2: vi, vj /∈ S but vk ∈ S.

In this case, it follows from the cosine formula (2.2) that limλ↘0 α
Rλ
f (vk) = 0,

hence limλ↘0 α
Rλ
f (vi) + αRλf (vj) = π.

Case 3: vi /∈ S, vj, vk ∈ S.

In this case, again from (2.2), it follows that limλ↘0 α
Rλ
f (vj)+αRλf (vk) = 0, hence

limλ↘0 α
Rλ
f (vi) = π.

Therefore we have

lim
λ↘0

∑
v/∈S

σRλ(v) = |F (V \ S)| · π. (2.11)

Now set

θ(vi) =

θi i ∈ {1, 2, 3}

2π otherwise
(2.12)

so that we can write δR(v) = σR(v)− θ(v) for all v ∈ V . Then

lim
λ↘0

∑
v/∈S

δRλ(v)
def
= lim

λ↘0

∑
v/∈S

σRλ(v)−
∑
v/∈S

θ(v)

= |F (V \ S)|π −
∑
v/∈S

θ(v)

(2.13)

Let F̃ = F o \ F (V \ S), so every face in F̃ contains only vertices of S. We will show

that

|F̃ |π <
∑
v∈S

θ(v). (2.14)
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If (2.14) holds, the quantity |F̃ |π−
∑

v∈S θ(v) is negative. Adding it to (2.13) gives

lim
λ↘0

∑
v∈V

δRλ(v) = |F (V \ S)|π −
∑
v/∈S

θ(v) + |F̃ |π −
∑
v∈S

θ(v)

= |F o|π −
∑
v∈V

θ(v)

= (2n− 5) · π − (2n− 5) · π = 0.

(2.15)

Therefore (2.13) is strictly positive, proving our lemma. Thus we proceed showing

(2.14).

We �x an embedding of G in the plane with (v1, v2, v3) as the outer face and

consider the induced subgraph G[S]. Partition S into equivalence classes,

S = S1 ∪ · · · ∪ Sk,

where two vertices are equivalent if they are in the same connected component of

G[S]. Thus we have the decomposition

G[S] = G[S1] ∪ · · · ∪G[Sk].

Let F̃j be the set of faces in F̃ that appear as faces of G[Sj], so that we have the

disjoint union

F̃ = F̃1 ∪ · · · ∪ F̃k.

Now it is enough to show that for any j ∈ {1, ..., k},

|F̃j|π <
∑
v∈Sj

θ(v). (2.16)

Let mj and fj denote the number of edges and faces of G[Sj]. Observe that |F̃j| ≤
fj − 1, as the outer face of G[Sj] will never be counted.

If |F̃j| = 0, then (2.16) is trivial.

If |F̃j| ≥ 1, then G[Sj] is a simple graph with at least one inner face. Each edge

is countend in one or two faces, therefore the sum of the degrees of all the faces is
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less then or equal to twice the number of edges. In a simple graph with at least one

face the degree of each one of them is at least three, we have 2mj ≥ 3fj and using

Euler's formula we get

3

2
fj ≤ mj = |Sj|+ fj − 2 (2.17)

fj ≤ 2|Sj| − 4 (2.18)

Thus, summing over j ∈ {1, ..., k} and multiplying by π, we get that the left side of

(2.16) satis�es

|F̃j| · π ≤ (2|Sj| − 5) · π. (2.19)

If {v1, v2, v3} ⊂ Sj then the right side of (2.16) is∑
v∈Sj

θ(v) = θ1 + θ2 + θ3 + (|Sj| − 3) · 2π = (2|Sj| − 5) · π. (2.20)

Thus we have

|F̃j|π ≤ (2|Sj| − 5) · π =
∑
v∈Sj

θ(v).

We see that stict inequality holds by the following case analysis.

Case 1: {v1, v2, v3} 6⊂ Sj.

In this case, at least one of the θi in (2.20) is replaced by 2π and so the right

side of (2.16) is strictly greater than the left side.

Case 2: |F̃j| < fj − 1.

In this case, (2.18) implies |F̃j| < 2|Sj| − 5 and we have a strict inequality in

(2.19). Therefore (2.16) holds.

Case 3: {v1, v2, v3} ⊂ Sj and |F̃j| = fj − 1 = 2|Sj| − 5.

We prove that this case cannot occur. The equality F̃j = fj − 1 means that

every inner face of G[Sj] is an element F̃j and therefore a face of G. Since

{v1, v2, v3} ⊂ Sj , the outer face of G[Sj] is {v1, v2, v3}, which is the same as the
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outer face of G. So, every face of G[Sj] is also a face of G. But this is impossible:

if we choose any v ∈ V \S, then v is not a vertex of G[Sj] (the vertices of G[Sj]

all bellong to S) but must lie in some face of G[Sj], which then cannot be a face

of G.

So we conclude that (2.16) always holds.

Proposition 2.10. Let R be a label for G. There exists λ ∈ (0, 1) for which Rλ is

such that gapδ′(S) = 0.

Proof. By the third bullet of Observation (2.7) the function λ 7→ gapδRλ (S) is con-

tinuous on (0, 1], and its value at λ = 1 is

gapδ(S) = minv∈SδR(v)−maxv 6∈SδR(v) > 0.

Lemma 2.9 says that if µ > 0 is small enough, then∑
v/∈S

δRµ(v) > 0

from which it follows that maxv 6∈SδRµ(v) > 0. By (2.7), we also have∑
v∈S

δRµ(v) = −
∑
v/∈S

δRµ(v) < 0,

meaning that minv∈SδRµ(v) < 0 and therefore

gapδRµ (S) = minv∈SδRµ(v)−maxv 6∈SδRµ(v) < 0.

By continuity, there exists λ ∈ (µ, 1) such that gapδRλ (S) = 0.
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We now analyse the algorithm to show that E (t) → 0 as t→∞.

Proposition 2.11. Let R be a label for G, λ ∈ (0, 1) be the one guaranteed by

Proposition (2.10), and set E ′ = ERλ. Then

E ′ ≤ E ·
(

1− 1

2n3

)
.

Proof. De�ne

t = min
v∈S

δ′(v) = max
v/∈S

δ(v).

By (2.7) we have that ∑
i∈J

δ(vi) =
∑
i∈J

δ′(vi) = 0,

and therefore the following holds:

E − E ′ =
∑
i∈J

δ(vi)
2 −

∑
i∈J

δ′(vi)
2

=
∑

(δ(vi)− δ′(vi))2 + 2
∑
i∈J

(t− δ′(vi))(δ′(vi)− δ(vi)).
(2.21)

If v ∈ S, then t ≤ δ′(v) ≤ δ(v) and if v /∈ S, then t ≥ δ′(v) ≥ δ(v). Thus, in both

cases (t− δ′(vi))(δ′(vi)− δ(vi)) ≥ 0 and we already have E ′ < E . Taking u ∈ S and

v ∈ V \ S with δ′(u) = δ′(v) = t, we have that

E − E ′ ≥ (δ(u)− t)2 + (δ(v)− t)2 ≥ (δ(u)− δ(v))2

2
≥ gapδ(S)2

2
. (2.22)

Since we have n− 1 possible gaps between n numbers and gapδ(S) was chosen to be

the maximal gap we may bound,

gapδ(S) ≥ 1

n

(
max
v∈V

δ(v)−min
v∈V

δ(v)

)
. (2.23)

Again (2.7) implies that for every v ∈ V ,

max
w∈V

δ(w)−min
w∈V

δ(w) ≥ |δ(v)|, (2.24)
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and thus, squaring (2.23) to bound (2.22) and then using (2.24) we get

gapδ(S)2

2
≥ 1

2n2

(
max
v∈V

δ(v)−min
v∈V

δ(v)

)2

≥ 1

2n2 · n
n

(
max
v∈V

δ(v)−min
v∈V

δ(v)

)2

≥ 1

2n3

∑
i∈J

δ(vi)
2 =

1

2n3
E .

Hence, from this and (2.22) we get

E − E ′ ≥ 1

2n3
E ,

and we conclude that

E ′ ≤ E ·
(

1− 1

2n3

)
.

By iterating the described algorithm, we obtain from Prop. 2.11 that

E (t) ≤ E (0)
(

1− 1

2n3

)t
−−−→
t→∞

0.

For every t we have ‖R(t)‖`1 = 1 and therefore, by compactness, there exists a

subsequence (tk)k∈N and a vector R∞ such that R(tk) → R∞ as k → ∞. Continuity

of E implies ER∞ = 0, meaning that (2.4) is satis�ed. We might not have a packing

label still, as some entries of R(∞) may be 0. We do not have to worry obout entries

blowing up to ∞ as ‖R(t)‖`1 = 1 for every t, and therefore ‖R∞‖`1 = 1.

Proposition 2.12. R(∞)(vi) > 0 for all i ∈ J .

Proof. Let T = {vi ∈ V | R(∞)(vi) > 0}. We have ‖R∞‖`1 = 1 and therefore S is

nonempty. If we assume for contradiction that V \ T is also nonempty, a statment

similar to Lemma 2.9 also holds. Indeed, we have that

lim
t→∞

∑
v/∈T

δR(t)(v) > 0. (2.25)
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The proof relies on the same argument used in Lemma 2.9; we �rst show by case

analysis that

lim
t→∞

∑
v/∈T

σR(t)(v) = |F (V \ T )| · π

and then deducing the result proving

|F̃ | <
∑
v∈T

θ(v)

where F̃ = F o\F (V \T ). Now, if (2.25) holds, it can not be true that limt→∞ E (t) = 0,

and thus we have a contradiction. We conclude that T = V .

2.3 Drawing the circle packing

We now show that the packing label R∞ we have found in the previous section, gives

us a circle packing that can be drawn uniquely up to translations and rotations. To

do so, we present a result due to Ori Gurel-Gurevich and Ohad Feldheim.

Let G = (V,E) be a �nite planar triangulation on vertex set V = (vj)j∈J with

J = {1, ..., n}, and assume that {v1, v2, v3} forms the outer face. Instead of working

with labels of radii we consider a vector ` = (`e)e∈E of positive real numbers, indexed

by the edge set E. Let f be a face of G enclosed by eα, eβ, eγ and such that the edge

lengths `eα , `eβ , `eγ can be made to form a triangle, that is, the following three triangle

inequalities hold:

`ei + `ej > `ek {i, j, k} = {1, 2, 3}. (2.26)

Then, we can use the cosine formula (2.1) to compute the angle corresponding to a

vertex v ∈ V (f) in the triangle with side lengths `eα , `eβ , `eγ . We denote this angle

with α`
f (v). Similarly to what we have done with labels of radii, we de�ne the sum

of angles at a vertex v as

σ`(v) =
∑
f∈F (v)

α`
f (v).

De�nition 2.13. A vector of positive real numbers ` = (`e)e∈E is called feasible if

the following conditions hold:



2. Proof of the Circle Packing Theorem 28

� for any face enclosed by edges eα, eβ, eγ, the lengths `eα , `eβ , `eγ satisfy (2.26);

� For any internal vertex v ∈ V \ {v1, v2, v3} we have σ`(v) = 2π.

Theorem 2.14. Let G be a �nite planar triangulation and ` be a feasible vector of

edge lengths. Then there is a drawing of G in the plane so that each edge e is drawn

as a straight line segment of length `e and no two edges cross. Furthermore, this

drawing is unique up to translations and rotations.

Before proving this theorem, we state without proof the following classical result,

known as the Two Ears Theorem [Mei75].

Theorem 2.15 (Two Ears Theorem). Every simple closed polygon that is not a

triangle has at least two ears. An ear is a vertex such that the open line segment

connecting its neighbors lies entirely on the interior of the polygon.

Corollary 2.16. Every simple closed polygon P on n vertices can be triangulated

without adding eny vertex. Furthermore, every triangulation with no new vertices

contains n− 3 non-crossing diagonals.

Proof. We can construct a triangulation T of the polygon P by cuttig triangular ears.

Every time we cut a ear, the ramaining polygon has one vertex less, and therefore

we can itarate this process until we get triangle.

Let t be the number of triangles in a triangulation T of P . The sum Σ of internal

angles in a polygon with n vertices can be proven to be Σ = (n − 2) · π, but also
Σ = tπ (as we did not add new vertices). Thus we have t = n− 2 and the number of

feces in T is n− 1. Now, denoting with k the number of diagonals and using Euler's

formula (1.1) , we have n− (n+ k) + (n− 1) = 2 and therefore k = n− 3.

In [Mei75] it is also shown how this Corollary implies the Two Ears Theorem.
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Proof of Theorem 2.14. We use induction on the number of vertices n.

Base case: The case n = 3 is trivial since ` is feasible and thus the three edges

of the outer face can form a triangle. Any two triangles with the same side lengths

are similar and therefore the uniqueness statement also holds.

Figure 2.3: [Nac18, p. 37] On the left, we �rst draw the polygon surrounding v. On

the right, we erase v and the edges emanating from it, replacing it with diagonals

that triangulate the polygon and recording the lengths of the diagonals in `′.

Induction step: If n > 3, there exists an internal vertex v. We want to draw the

faces to which v belongs. Consider the Euclidean plane with Cartesian coordinates

(x, y) and place v at the origin. Letting (v1, ..., vm) denote the neighbors of v in

clockwise ordered, we want to determine their position in the plane. To do so we

draw the edge {v, v1} as a straight line segment of length `{v,v1} on the positive x-

axis emanating from the origin. For each i ∈ {2, ...,m} we draw the edge {v, vi} as
a straight line segment of length `{v,vi} emanating from the origin (v) at a clockwise

angle of α`
f (v) from the previous drawn line segment of {v, vi − 1}, where f =

{v, vi − 1, vi}. Feasibility of ` guarantees that we can complete the triangles by

drawing the straight line segments connecting vi to vi + 1, each of length `{v,vi+1}

where i ∈ {1, ...,m} (with vm + 1 = v1). Denote these edges by e1, ..., em. Since `

is feasible we have σ`(v) = 2π, and therefore the m triangles we have drawn have
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disjoint interiors. The edges e1, ..., em form a simple closed polygon containing the

origin in its interior (Figure 2.3, left). By Corollary 2.16 we have that every closed

polygon on m verices can be triangulated by drawing m − 3 diagonals as straight

line segments in the interior of the polygon. We erase vertex v and draw the m− 3

chosen diagonals (Figure 2.3. right). Adding the corrispondin edges and removing v

gives a new graph G′ on n− 1 vertices and |E(G)| − 3 edges. Assigning to the new

edges the corrisponding Euclidean lengths of the diagonals in the drawing, we get a

new edge length vector `′ corresponding to G′ that is clearly feasible.

By the induction hypothesis we have a drawing of G′ with edge lengths `′. This

drawing is unique up to translations and rotations by induction. In this drawing, the

polygon corresponding to e1, ..., em must be the exact same polygon as before, up to

translations and rotations, since it has the same edge lengths and the same angles

between its edges. Since it is the same polygon, we can now erase the diagonals in

this drawing and place a new vertex in the same relative position at which we have

drawn v before. We connect this new vertex to v1, ..., vm with straight line segments.

Thus we have obtained the desired drawing of G. The uniqueness up to translations

and rotations of this drawing follows from the uniqueness of the drawing of G′ and

from the fact that the location of v is uniquely de�ned.

Corollary 2.17. Let R = (Rj)j∈J be a packing label for a �nite planar triangulation

G = (V,E), where V = (vj)j∈J . Then, there is circle packing P = (Pj)j∈J with

contact graph G and such that the circle Pj corrisponding to vj has radius Rj for

every j ∈ J . Furthermore, this packing is unique up to translations and rotations.

Proof. Let ` be the vector of edge lenghts indexed by E, and such

`e = R(vi) + R(vj) for any edge e = {vi, vj} ∈ E. Condition (2.4) implies that `

is feasible. Applying Theorem 2.14 we get a drawing of G, unique up to translations

and rotation. We draw a circle Pi of radius Ri around the point representing vi.

For any edge {vα, vβ}, the distance between the two endpoints of the line segment

representing it, is exactly R(vα)+R(vβ) and therefore Pα and Pβ are tangent to each

other.
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Assume instead that {vα, vβ} is not an edge. We must show that Pα and Pβ

are not tangent to each other. For any v ∈ V let Av be the union of the faces

touching v in the drawing of Theorem 2.14. Since vα and vβ are not adjacent we

have that Int(Avα) ∩ Int(Avβ) = ∅. We also have that Pα ⊂ Int(Avα) since each of

the segments composing the boundary of Avα is contained in the circles associated to

the adjacent vertices. Similarly Pβ ⊂ Int(Avβ) and thus Pα and Pβ are not tangent

to each other.

2.4 Uniqueness

Theorem 2.18. Given a simple �nite triangulation with outer face v1, v2, v3 and

three radii ρ1, ρ2, ρ3, the circle packing with C1, C2, C3 having radii ρ1, ρ2, ρ3 is unique

up to translations and rotations.

Proof. We have seen in the previous section that given a vector R of radii, the

drawing we obtain is unique up to translations and rotations. Thus, we want to

show that R is unique given ρ1, ρ2, ρ3. Suppose that Ra and Rb are two labels

satisfying (2.4). In both vectors the outer face corresponds to a triangle of angles

θ1, θ2, θ3, therefore we may rescale so that Ra
i = Rb

i = ρi for i = 1, 2, 3. Now assume

by contradiction that Ra 6= Rb and let v be the interior vertex maximizing Ra
v/R

b
v.

Without loss of generality, we can assume that this quantity is strictly larger than 1

(eventually we can swap Ra and Rb). Using Observation 2.7 we now want to show

that for each f = (v, u1, u2) ∈ F (v), we have αR
a

f (v) ≤ αR
b

f (v), with equality if and

only if the ratios Ra
ui
/Rb

ui
, for i = 1, 2, are both equal to Ra

v/R
b
v. Indeed, scaling

the radii in Rb by a factor of Ra
v/R

b
v we get a new vector R′ such that Ra

v = R′v

and Ra
u ≤ R′u for all u 6= v. By the second bullet in Observation 2.7 we have that

αR
a

f (v) ≤ αR
′

f (v) = αR
b

f (v). If either Ru1 < R′u1 or Ru2 < R′u2 , then the cosine

formula (2.1) yields the inequality αR
a

f (v) < αR
′

f (v). Therefore, αR
a

f (v) = αR
b

f (v)

only if Ra
ui
/Rb

ui
= Ra

v/R
b
v for i = 1, 2. Since αR

a

f (v) ≤ αR
b

f (v) for each f ∈ F (v),

while σRa(v) = σRb(v) = 2π, the equality αR
a

f (v) = αR
b

f (v) holds for each f . Thus,

each neighbor u of v satis�es Ra
u/R

b
u = Ra

v/R
b
v. Because the graph is connected,
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the ratio Ra
u/R

b
u must be constant for all vertices u ∈ V . But this contradicts that

Ra
u/R

b
u > 1 while Ra

vi
/Rb

vi
= 1 for i = 1, 2, 3. We conclude that Ra = Rb.
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Applications

3.1 Thurston's Conjecture

In 1936 Paul Koebe proved the Circle Packing Theorem as a consequance of his

generalization of the Riemann Mapping Theorem to n-connected domains (a domain

whose complement has exactly n connected components). Surprisingly Koebe's proof

remained hidden and unknown until the 80's despite Koebe being a renowed mathe-

matician of his time. In the following pages we state the Riemann Mapping Theorem

and its generalization to n-connected domains along with a sketch of Koebe's proof

of the Circle Packing Theorem. After that, we present Thurston's conjecture on the

approximation of conformal mappings using circle packings.

De�nition 3.1. Let U , V be open subsets of the complex plane. The map f : U → V

is biholomo�c if it is a bijective holomorphic map whose inverse is also holomorphic.

A biholomophic map is also conformal and therefore angle-preserving. If such a map

exists we say that U and V are conformally equivalent.

Theorem 3.2 (Rieman Mapping Theorem). Let Ω be a simply connected open proper

subset of C. Then Ω is conformally equivalent to the unit closed disk D = {z ∈ C |
|z| ≤ 1}. Furthermore, the biholomorphic mapping f : Ω → D is unique up to

post-composition with a Möbius transformation preserving the disk.

34
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This is a remarkable theorem with numerous consequences. One immediate corol-

lary is the fact that any two simply connected proper subsets of C are homeomorphic.

Let U and V be such subsets and let f and g be the maps guaranteed by the Riemann

Mapping Theorem. Then the map g−1 ◦ f : U → V is a (conformal!) homeomor-

phism.

A generalization of Theorem 3.2 due to Koebe is the following.

Theorem 3.3. Let Ω be a n-connected open subset of C. Then there exists a bi-

holomorphic map f : Ω → Ω′ such that Ω′ is a circle domain, that is, its boundary

components are points or circles. Furthermore, both f and Ω′ are unique up to Möbius

transformation.

We now present a sketch of Koebe's original argument for existence of a circle

packing with prescribed tangency graph.

(a) Step 1. (b) Step 2. (c) Step 3. (d) Step 4.

Figure 3.1: [Nac18, p. 2].

Sketch of Koebe's proof. Let G = (V,E) be a �nite simple planar graph. Consider an

embedding of G (Figure 3.1a) in which the edges are given as the images of a family

(γe)e∈E of simple curves γe : [0, 1]→ C. Let ε > 0 and de�ne

Ωε = C \

(⋃
e∈E

γe

[
0,

1

2
− ε
]
∪
⋃
e∈E

γe

[
1

2
+ ε, 1

])
.

This is a |V |-connected subset of C (Figure 3.1b) that, by Theorem 3.3, is conformally

equivalent to a circle domain (Figure 3.1c). Taking the limit as ε→ 0 can be proven

to yield the desired circle packing.
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Perhaps recognizing the similar rigidity propreties of circle packings and confor-

mal maps, William Thurston was led to propose the following scheme to approximate

the conformal map in Theorem 3.2. Let Ω be an open simply connected proper sub-

set of C and let (εn)n∈N be a sequence of positive real number such that εn → 0 as

n→∞. Consider the triangular lattice with lattice spacing εn

Tn =

{
εna+ εn

1 +
√

3i

2
b | a, b ∈ Z

}
and connect two points if they are ε apart from each other. This gives an in�nite

triangulation of the plane that can be naturally packed with circles of radius εn/2

centered at the points of Tn. Let Pn be the set of circles of this in�nite packing that

lie in the interior of Ω. For εn small enough we can assume Pn to be a connected

circle packing like the one shown in Figure 3.2, left. In general the nerve of Pn

Figure 3.2: [Nac18, p. 5].

will not be a planar triangulation, as we can see in Figure 3.2, left; the boundary

circles correspond to a non-triangular face in the graph. To get a triangulation we

add a new vertex w and connect it to all the vertices that correspond to boundary

circles. Now, by the Circle Packing Theorem, there exists a circle packing P ′n in

the sphere with nerve isomorphic to the nerve of Pn with the added vertex w. We

normalize P ′n so, when projected to the plane, the circle corresponding to w has

boundary the unit circle centered at 0. This is illustrated in Figure 3.2, right; the
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big circle containing all the other circles is the one corresponding to w and his interior

is actually C \ {z ∈ C | |z| ≤ 1}. Consider the map fn sending the centers of the

circles in Pn to the corrisponding circles in P ′n and extend it in a piecewise linear

fashion. Thurston conjectured that this map, suitably normalized, converges to the

biholomorphic map of Theorem 3.2 as the radii of the circles in the exagonal packing

tend to 0 (Figure 3.3).

Figure 3.3: [Nac18, p. 5].

Short after Thurston made his conjecture, Rodin and Sullivan solved it proving

the following theorem.

Theorem 3.4 ([RS+87]). Let Ω be a simply connected open proper subset of C and

p, q ∈ Ω. Normalize P ′n as explained above, and so that

• the circle closest to p corresponds to a circle containing 0;

• the circle closest to q corresponds to a circle containing some positive real num-

ber.

Then fn converges to the conformal map f : Ω → D of the Riemann Mapping

Theorem 3.2, normalized to have f(p) = 0 and f(q) > 0, uniformly on compact

subsets of Ω as n→∞.

The proof of Rodin and Sullivan relies on the theory of quasiconformal maps and

on the non-trivial uniqueness of the triangular packing as the only (up to rotation
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and homothety) in�nite packing in the plane with nerve the triangular lattice. The

theorem of Rudin and Sullivan deals with packings based on the triangular lattice;

in [HS96] He and Schramm give a generalization of this theorem in which they only

require the circles of the 'covering' packing to have suitably bounded radii1. Their

proof is also much more elementary and does not depend on the Riemann Mapping

Theorem, contrary to the proof of Rudin and Sullivan. We have seen how, with

Koebe's argument, the Rimann Mapping Theorem implies the Circle Packing The-

orem. Conversely [HS96] can be used to give an independent proof of the Riemann

Mapping Theorem using the Circle Packing Theorem. An analogus conjecture holds

for n-connected domains.

Figure 3.4: [Roh11] A circle packing approximation for a 3-connected domain.

1They also de�ne fn di�erently, see [HS96] for details.



39 3.2. Planar Separator Theorem

In Figure 3.4 we see an illustration of the approximation of the conformal mapping

for a 3-connected domain into a circle domain. Similarly to what we did for the simply

connected case, we add a new vertex fo each connected component of the boundary

and add the necessary edges, to then apply the Circle Packing Theorem. Note how

the 'big circles' in the packing (on the left bottom of Figure 3.4) correspond to the

'holes' in the domain.

The proof of Thurston's conjecture shedded light to a deep connection between

conformal mappings and circle packings. Maps like the fn's above may be thought

as discrete analogs of conformal maps, and indeed, many classical results in complex

analysis have a discrete counterpart that involve the theory of circle packings [Ste02].

3.2 Planar Separator Theorem

The planar separator theorem is an important result in graph theory with numerous

applications in theoretical computer science. It states that a simple planar graph can

be split evenly with the removal of a small subset of its vertex set. We dedicate the

next pages to make this statement precise and give a proof using the circle packing

theorem.

De�nition 3.5. Let G = (V,E) be a simple planar graph on n vertices and let

A,B, S be a partition of the vertex set V . The set S is a separator for G if no edge

connects a vertex in A with a vertex in B.

The planar separator theorem concerns the existence of a small separator that

divides the graph evenly, that is, in parts of size at most cn, where c ∈ (1/2, 1) is

a constant. The �rst result of this type is due to Ungar [Ung51] and states that

there exists a separator of size O(
√
n log n) that splits the graph evenly. The planar

separator theorem gives a bound of O(
√
n) on the size of the separator and was

�rst proven by Lipton & Tarjan in 1979 [LT79]. It was later discovered (Miller et

al. [MTT+97]) that the circle packing theorem implies the planar separator theorem

quite easily. The proof we present can be found here [HP11].
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Theorem 3.6 (Planar Separator Theorem). Let G = (V,E) be a simple planar

graph. There exists a partition A,B, S of G such that

• S is a separator of size |S| = O(
√
n);

• |A| ≤ (7/8)n, |B| ≤ (7/8)n where n = |G|.

Figure 3.5

The constant 7/8 in the statement of the theorem is the one

that will come out of the proof, but is arbitrary and can be

replaced with any number in the interval (1/2, 1). Another con-

stant is hidden in the big O notation; in our case we will have

|S| ≤ 4
√

6
√
n but it can be improved.

Proof of Theorem 3.6. By the circle packing theorem there exists

a circle packing P in the plane with G as its tangency graph. Let N be the set of

centers of the circles in P and let D be the disk with the smallest radius containing

(1/8)n centers. We can assume that D is centered at the origin and has radius 1.

Pick a number x uniformly at random in the interval [1, 2], and consider the circle

Cx of radius x and centered at the origin. Denote with S the set of circles in P

that intersect with Cx. We show that S is the separator we want, starting with the

following lemma.

Lemma 3.7. S is a separator that splits G in parts of size at most (7/8)n.

Proof. It is clear that eliminating the circles of S form P we get at least two distinct

components; the circles outside Cx and the circles inside Cx. Therefore, we have a

splitting of the graph.

We know that (1/8)n of the circles have their centers inside the circle of radius 1

centered at the origin. In Figure 3.5 we can see how we can cover the circle of radius

2 with 7 circles of radius 1. Therefore, the circle of radius 2 contains at most (7/8)n

centers and therefore at least (1/8)n circles have their centers outside Cx. Thus,

removing S from G, the remaining connected components can not be of size greater

then (7/8)n.
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We now want to show that the size of S is good in expectation.

Lemma 3.8. We have that E[|S|] ≤ 4
√

6
√
n.

Proof. Let ` ∈ (0, 1) be a paramenter to be speci�ed later. Let P≤` be the set of circles

in P with radius less then or equal to ` and P>` be the set of circles in P with radius

greater then `. Conside the circular ring R = {z ∈ C | x−` ≤ |z| ≤ x+`} as the one

Figure 3.6

in orange in Figure 3.6. The area of this ring is β = π((x + `)2 − (x− `)2) = 4πx`.

Given a disk f ∈ P>` intersecting Cx, there exists a disk of radius `/2 contained

completely in f and in R. Therefore f covers at least an area of α = π(`/2)2 of the

ring. Therefore, we can bound from above the number of disks in P>` intersecting

Cx with β/α = 4πx`/(π`2/4) = 16x/`. Remember that x was chosen uniformly at

random in the interval [1, 2], therefore we have E[x] = 3/2 and thus E[β/α] = 24/`.

Let g ∈ P≤` of radius r and centered at p. The circle Cx intersects g if and only if

x ∈ [‖p‖ − r, ‖p‖ + r] and this happens with probability 2r/(2 − 1) = 2r ≤ ` as x

was chosen uniformly at random in the interval [1, 2]. Since |P≤`| ≤ n, the expected

number of disks in P≤` intersecting Cx is at most `n. Therefore, E[|S|] ≤ 24/`+ `n.

Choosing ` = 2
√

6/n we get the result.

From the two lemmas it follows that there exists x ∈ [1, 2] such that Cx leads to

the desired separator and thus the theorem is proved.
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