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Introduzione

La mia tesi magistrale affronta alcune importanti proprietà relative alla

distanza (naturale) di Carnot-Carathéodory nel gruppo di Heisenberg. In

particolare vogliamo studiare quelle proprietà che riguardano il cut locus di

una superficie liscia. Il cut locus di un sottoinsieme chiuso S in Rn, denotato

con cut(S), è l’insieme dei punti finali dei segmenti massimali che realizzano

la distanza da S (in altre parole, se si prende un segmento la cui lunghezza

misura localmente la distanza da S, il punto dove tale segmento cessa di

realizzare la distanza da S sta in cut(S)). In ambito Euclideo si conoscono

già molte proprietà del cut locus quando S è il bordo di un aperto di Rn di

classe C2. Per esempio è noto che in questo caso cut(S) è un insieme chiuso.

Tali proprietà continuano a valere se si rimpiazza la metrica Euclidea con

una qualsiasi metrica Riemanniana con coefficienti di classe C2 (si vedano [1]

e [2]).

Alcuni problemi riguardanti il cut locus che sono stati risolti in ambito

Riemanniano, restano tuttavia aperti in geometria sub-Riemanniana. Il nos-

tro obiettivo è quindi quello di studiare il cut locus nel gruppo di Heisenberg,

che è la struttura sub-Riemanniana più elementare che esista. In particolare,

stiamo cercando di provare che i cut loci di superfici che sono il bordo C2 di

sottoinsiemi aperti del gruppo di Heisenberg, sono insiemi chiusi. La scelta di

una regolarità di classe C2 viene fatta per analogia con il caso Riemanniano,

dove è già stato trovato un controesempio per superfici di classe C1,1 (si veda

[11]).

Attualmente non siamo in grado di fornire una dimostrazione della chiusura

i



ii INTRODUZIONE

del cut locus. Per questo motivo il nostro lavoro mira a trovare nuove pro-

prietà della distanza di Carnot nel gruppo di Heisenberg, le quali pensiamo

possano essere correlate al cut locus e che quindi possano risultare utili per

arrivare alla dimostrazione finale. In particolare stiamo studiando i cosid-

detti punti coniugati ad una superficie S di classe C2, i quali presentano dei

legami con il cut locus anche in campo Riemanniano. Alla fine di questo

lavoro daremo alcuni piccoli ma nuovi risultati proprio riguardo i punti co-

niugati.

Questi sono gli argomenti che tratteremo nell’ultimo capitolo di questa

tesi. D’altra parte avremo prima bisogno di presentare una teoria approfon-

dita del gruppo di Heisenberg, partendo dalla definizione fino ad arrivare ai

campi di Jacobi. Più precisamente nel primo capitolo, dopo aver definito il

gruppo di Heisenberg, descriveremo la sua struttura di Lie e, soprattutto,

parleremo della sua naturale metrica sub-Riemanniana. Tale metrica, de-

notata con g, induce esattamente la distanza di Carnot-Carathéodory (si

vedano [6] e [12]).

Nel secondo capitolo continueremo descrivendo le curve di minima lunghezza

relative alla metrica g, le cosiddette geodetiche (si vedano [12], [15] and [17]).

Inoltre introdurremo la struttura pseudo-Hermitiana del gruppo di Heisen-

berg (si veda [18]), la quale ci consentirà di introdurre i campi relativi alle

variazioni di geodetiche, ovvero i campi di Jacobi (si vedano [15] e [17]).

Infine il terzo capitolo, come già abbondantemente detto sopra, con-

cluderà la tesi.



Introduction

My master thesis deals with some fine properties of the natural Carnot-

Carathéodory distance in the Heisenberg group. In particular, we are inter-

ested in properties related to the cut locus of a smooth surface. The cut

locus of a closed subset S of Rn, denoted by cut(S), is the set containing

the endpoints of maximal segments that minimize the distance to S (i.e. if

a segment starting at S locally minimize the distance from S, then the last

distance-minimizing point of such segment is a point of cut(S)). In the Eu-

clidean case many properties of cut(S) are well known if S is the C2 boundary

of an open set of Rn. For example the cut loci of such surfaces are closed (this

is the fact we will be most interested in). Such results are still valid if the

Euclidean metric is replaced with any Riemannian metric with coefficients of

class C2 (see [1], [2]).

Not all the known properties of the cut locus in Riemannian geometry are

also known to hold in the sub-Riemannian case. So our goal is to generalize

and prove some of them in the Heisenberg group, which has the simplest

sub-Riemannian structure. In particular we are very interested in proving

that the cut loci of surfaces which are the C2 boundary of open sets in the

Heisenberg group are closed sets. We choose a regularity of class C2 because

there is already a counterexample in the Riemannian C1,1 case (see [11]).

At the moment we are not able to give a proof of the closure of the cut

locus. So we are looking for new properties of the Carnot distance which

may be related with the cut locus of a C2 surface in the Heisenberg group

and that may be useful to prove its closure. Precisely, we are investigating
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iv INTRODUCTION

in points conjugate to the surface S, since they are strictly connected with

the cut locus in the Riemannian case. Just about conjugate points, we will

show some new small results at the end of this work.

These topics will be discussed in the last chapter. Before, we will present

an in-depth theory of the Heisenberg group, starting from the definition up

to talking about the Jacobi fields. Precisely, in the first chapter we will

describe the Heisenberg group, its Lie structure and, above all, its natural

sub-Riemannian metric. This metric, denoted with g, exactly induces the

natural Carnot distance mentioned at the beginning of this paragraph (see

[6] and [12]).

In the second chapter we will continue by describing the length-minimizing

curves relating to the metric g, that is the so-called geodesics (see [12], [15]

and [17]). Moreover, we will will introduce the pseudohermitian structure

of the Heisenberg group (see [18]). This will allow us to describe the vector

fields related to the variations of geodesics, that is the afromentioned Jacobi

fields (see [15] and [17]).

Then the third chapter will conclude the thesis, as widely stated above.
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Chapter 1

An introduction to the

Heisenberg group

In this chapter we will describe the main topics about the Heisenberg

group. The principal references for such arguments are [6] and [12]. Let us

start giving the definition of the Heisenberg group, that is

Definition 1.1. The Heisenberg group H is the unique analytic, nilpotent

Lie group whose background manifold is R3 and whose Lie algebra h has the

following properties:

1. h = V1 ⊕ V2, where V1 has dimension 2 and V2 has dimension 1

2. [V1, V1] = V2, [V1, V2] = 0 and [V2, V2] = 0

Definition 1.1 is well posed thanks to the following

Proposition 1.2. Let G be a simply connected, nilpotent Lie group and let g

be the Lie algebra of G. Then the exponential map exp : g→ G is a (global)

diffeomorphism.

So H is uniquely described by his Lie algebra. There are many ways of

realizing this abstract structure. Now we describe one of them, that is the

one which we refer to. First we need to recall the Baker-Campbell-Hausdorff

formula for Lie algebras

1



2 1. An introduction to the Heisenberg group

Theorem 1.3 (Baker-Campbell-Hausdorff formula). Let G be a Lie group

with Lie algebra g. Let X, Y ∈ g. Then

exp(X)exp(Y ) = exp(X + Y +
1

2
[X, Y ] +

1

12
([X, [X, Y ]]− [Y, [X, Y ]]) + . . . )

(1.1)

For the complete formula and for a complete proof see [6].

Example 1.4. Using the notation of Definition 1.1, we fix an arbitrary basis

X and Y of V1 and we consider T = [X, Y ] ∈ V2. Then a generic point P ∈ h

has the form P = xX+yY +tT , x, y, t ∈ R. Now let P = x1X+y1Y +tT and

Q = x2X+y2Y +sT be two points in h. Using the Baker-Campbell-Hausdorff

formula we are able to compute

exp(P )exp(Q) = exp(P +Q+
1

2
[P,Q])

The formula is stopped at the second order because, by definition, h is nilpo-

tent of step two. Then the successive brackets are all equal to 0. Thanks to

the fact that T = [X, Y ] we have

P +Q+
1

2
[P,Q] = (x1 + x2)X + (y1 + y2)Y + (t+ s+

1

2
(x1y2 − x2y1))

From these facts we have a natural representation for H: we identify H =

C × R through the exponential map, mapping a point P ∈ g in the point

(z, t) = (x + iy, t) ∈ C× R. So it is immediate that the group law, denoted

by ·, between two points (z, t), (w, s) ∈ C× R is given by

(z, t) · (w, s) = (z + w, t+ s− 1

2
Im(zw)) (1.2)

We can also obviously identify H = (R3, ·). Finally the explicit representation

of h (and then of H) is given by the left invariant vector fields

X = ∂x −
1

2
y∂t, Y = ∂y +

1

2
x∂t (1.3)

As a result we found T = [X, Y ] = ∂t and so V1 = span{X, Y }, V1 =

span{T}, h = V1 ⊕ V2. To see the left invariance of X it is sufficient to
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compute:

LQ(P ) = QP = (x2, y2, s)(x1, y1, t) = (x2 + x1, y2 + y1, s+ t+
1

2
(y1x2 − x1y2))

dLQ = (∂a(QP )j)a=x1,y1,t; j=1,2,3 =


1 0 0

0 1 0

−1
2
y2

1
2
x2 1


Now, by the standard identification between vector fields and points in R3,

we have

XP = (1, 0,−1

2
y1)

XQP = (1, 0,−1

2
(y2 + y1)) = dLQXP

The check is similar both for Y and T .

Remark 1.5. From now on we make a sligth abuse of notation by denoting

with P both the point in H and the corresponding point exp−1(P ) ∈ h.

Sometimes it might also be useful to write a point P = (x, y, t) = (x +

iy, t) = (z, t) also as x = (x1, x2, x3) = (x1 + ix2, x3) = (z, x3). In this

case the vector fields X, Y, T are replaced respectively by X1 = ∂x1 − 1
2
x2∂x3 ,

X2 = ∂x2 + 1
2
x1∂x3 and X3 = ∂x3 . This change of notation will be adopted,

for example, when the variable t will have to be used for denoting the time.

Example 1.6 (Polarizied representation). Another way of seeing the Heisen-

berg group is to identify

H =




1 x t

0 1 y

0 0 1

 ∈ GL(3,R), x, y, t ∈ R

 (1.4)

as the subgroup of 3×3 reversal real matrix which have ones on the diagonal.

Here the group law is the matrix product so, if we identify an element of H
with the triplet (x, y, t), the group product becomes

(x1, y1, t)(x2, y2, s) = (x1 + x2, y1 + y2, t+ s+ x1y2) (1.5)
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The tangent spaces of H can be described as follows: first consider left trans-

lation of a fixed point P = (x, y, t) by one parameter families of matrices to

form curves in H, then take derivatives along those curves to determine the

tangent vectors at the point P , that is

XP =
d

dε

∣∣∣∣
ε=0

(ε, 0, 0)(x, y, t) = (1, 0, y)

YP =
d

dε

∣∣∣∣
ε=0

(0, ε, 0)(x, y, t) = (0, 1, 0)

TP =
d

dε

∣∣∣∣
ε=0

(0, 0, ε)(x, y, t) = (0, 0, 1)

(1.6)

It easy to see that [XP , YP ] = TP , while all the other brackets are zero. This

fact suggest us the explicit representation of h in this case:

X = ∂x + y∂t, Y = ∂y, T = [X, Y ] = ∂t (1.7)

A point P = (x, y, t) can also be written as

exp(tTIexp(yYI)exp(xXI))

where exp in this case denoted the exponential of a matrix.

Remark 1.7. The representation of H given in Example 1.4 is called standard

representation or representation of the first kind, while the one discussed in

Example 1.6 is called polarizied representation or representation of the second

kind. A canonical isomorphism between the two models is given by mapping

a standard point Ps = (x, y, t) onto the polarizied point Pp = (x, y, t+ 1
2
xy).

From now on the model to which we refer is the standard one.

Remark 1.8 (!). Other infinite expicit representations of the Heisenberg group

can be found as in Example 1.4. Indeed, it is sufficient to modify both the

group product as

(z, t) · (w, s) = (z + w, t+ s− αIm(zw)), α ∈ R (1.8)

and the left invariant vector fields X and Y in

X = ∂x − αy∂t, Y = ∂y + αx∂t, α ∈ R (1.9)
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depending on a real parameter α. As a result we found

T = [X, Y ] = 2α∂t (1.10)

These representations are called standard representations of parameter α.

The most used in literature are those with α = ±1/2,±1,±2. For example,

[6] use α = 1/2, [15] have chosen α = −1.

For geometric reasons we keep α = 1/2 in the first two Chapters, while

in the third one we will use α = −2, according to [3].

We give now other elementary definitions and properties of the Heisenberg

group:

i) The group identity is 0 = (0, 0, 0), while the group reverse is P−1 =

(−x,−y,−t).

ii) The Haar misure of H is simply the Lebesgue misure in R3 and this

follows from the fact that the Euclidean volume form dx ∧ dy ∧ dt is

invariant under pull-back via left translation, that is (LP )∗(dx ∧ dy ∧
dt) = dx ∧ dy ∧ dt.

iii) The group has a homogeneous structure given by the dilations δλ(P ) =

(λx, λy, λ2t), λ > 0, as a metter of fact (δλ)
∗(dx ∧ dy ∧ dt) = λ4dx ∧

dy∧ dt. So the homogeneous dimension of H with respect to the group

dilatations δλ is 4.

iv) The vector fields X and Y are left invariant, first-order differential

operators, homogeneous of order 1 with respect to the dilations δλ.

Definition 1.9. The subbundle generated by the left invariant frame X, Y

of the tangent bundle TH of H is called horizontal bundle. We denote it with

HH or simply with H. Every frame given by a linear combination of X and

Y is called horizontal and every frame having no component neither long X

and long Y is called vertical. Similarly the subspace HP := span{XP , YP}
of the tangent space TPH is called horizontal section at the point P . Every

vector in HP is called horizontal and every vector having no components in

HP is called vertical.
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Remark 1.10. The horizontal section at a point P = (x, y, t) is at the same

time also the kernel of a differential 1-form, that is of the 1-form ω = dt −
1
2
(xdy − ydx). The fact that both X and Y belong to the kernel is a simple

check, whilw ω(T ) = ω(∂t) = 1. So we have ker(ω) = span{X, Y }.

Definition 1.11. Let Ω be an open set of H and let φ : Ω → R be a C1

function. We call ∇Hφ := (Xφ)X + (Y φ)Y the horizontal gradient of φ.

1.1 The Carnot-Carathéodory (or CC) dis-

tance

In this section we want to discuss the natural metric structure with which

we will equip the Heisenberg group. It is the so-called Carnot-Carathéodory

metric and there are three equivalent ways to define such metric. Let us start

by defining the concept of horizontal and C(δ) paths

Definition 1.12. An absolutely continuous path γ : [0, 1] → H is called

horizontal if there exist measurable functions a, b : [0, 1]→ R such that

γ̇(t) = a(t)(X1)γ(t) + b(t)(X2)γ(t), a.e in [0, 1] (1.11)

Now we want to write explicitly (1.11), so consider γ = (γ1, γ2, γ3). Since

X1 = (1, 0,−1
2
x2), X2 = (0, 1, 1

2
x1), we have

X1(γ) = (1, 0,−1

2
γ2), X2(γ) = (1, 0,

1

2
γ1)

and then (1.11) becomes

γ̇(t) = (a(t), b(t),−1

2
(a(t)γ2(t)− b(t)γ1(t))) (1.12)

that is

γ̇3 = −1

2
(γ̇1γ2 − γ̇2γ1) (1.13)

So the following definition is equivalent to the 1.12 one.
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Definition 1.13. An absolutely continuous path γ : [0, 1] → H, γ(t) =

(γ1(t), γ2(t), γ3(t)) is called horizontal if

ωγ(γ̇) = γ̇3 −
1

2
(γ̇2γ1 − γ̇1γ2) = 0, a.e. in [0,1], (1.14)

where ω = dx3 − 1
2
(x1dx2 − x2dx1).

Definition 1.14. For δ > 0 we say that an horizontal path γ as in definition

1.12 is of class C(δ) if a(t)2 + b(t)2 ≤ δ2, a.e in [0, 1]. The set of all paths of

class C(δ) joining two fixed points x, y ∈ H is denoted by C(x,y)(δ)

Naturally, these definitions remain the same for every path γ defined in

a generical interval [a, b] ⊂ R. If it is necessary, to avoide mistakes, we will

write C(x,y)(δ, [a, b]) to specify the interval of definition for the curves of class

C(δ) joining two points x and y.

Theorem 1.15 (Chow’s Theorem). Every pair of points in the Heisenberg

group can be connected by an horizontal curve.

Proof. Definition 1.13 gives a natural way to lift every planar curve in C
to an horizontal path in H. Let α be a planar curve α : [0, 1] → C and

let π : H → C the canonical projection. We want a (continuous) path

γ : [0, 1] → H such that π(γ) = α. Such a curve is given by placing γi = αi

for i = 1, 2 and

γ3(t) = γ3(0)− 1

2

∫ t

0

(α̇1α2 − α̇2α1)(s)ds, h ∈ R, t ∈ [0, 1] (1.15)

The geometric meaning of (1.15) is the key to complete the proof. Indeed,

according to Stokes’ Theorem, we have

−1

2

∫ 1

0

(α̇1α2 − α̇2α1)(s)ds = −1

2

∫
α̃

x2dx1 − x1dx2 =

∫
S

dx1 ∧ dx2 = Area(S)

where α̃ is the closed planar curve obtained by travelling α and the segment

joining α(1) and α(0) and S is the region of the plane bounded by α̃.

Now, we want to join two arbitrary points x = (x1, x2, x3) and y =

(y1, y2, y3) of H with an horizontal path. To do this, take a planar curve
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α : [0, 1] → C joining (x1, x2) and (y1, y2) in the plane such that the region

S defined as above has signed Area equal to y3 − x3. Thus, the horizontal

curve γ : [0, 1] → H starting at x and given by (1.15) prove the statement,

since γ3(1) = x3 + Area(S) = y3.

As a consequence we have that the set C(x,y)(δ) is non empty if δ is large

enough. This fact allow us to define the CC metric

Definition 1.16. Let x, y ∈ H. We define the Carnot-Carathéodory (or CC)

distance between x and y as

dcc(x, y) = inf{δ > 0|C(x,y)(δ) 6= ∅} (1.16)

We denote it by dcc(x, y) to avoide ambiguity with the Euclidean distance,

which will be denoted by de(x, y) (but when it is clear what distance we refer

to, we denote both of them simply with d(x, y))

An equivalent definition of the CC distance can be obtained as follows:

consider the C(x,y)(1) paths defined on [0, T ], T > 0, i.e. the absolutely

continuous horizontal paths γ : [0, T ] → H, such that a2 + b2 ≤ 1 a.e. Then

take the infimum on T > 0, that is

dcc(x, y) = inf{T > 0|∃γ : [0, T ]→ H, γ ∈ C(x,y)(1, [0, T ])} (1.17)

In other words dcc(x, y) is the shortest time that it takes to go from x to y,

travelling at unit speed along horizontal paths.

Proof of the equality of the two distances. Let δ > 0 be such that C(x,y)(δ) 6=
∅ and γ ∈ C(x,y)(δ). Then just taking σ = s/δ in (1.15) we obtain

γ3(t) = h− 1

2δ

∫ t

0

(γ̇1γ2 − γ̇2γ1)(σ)dσ = h−1

2

∫ t

0

(
γ̇1
δ
γ2 −

γ̇2
δ
γ1)(σ)dσ (1.18)

where t ∈ [0, 1/δ]. Then, if T = 1/δ, the path η : [0, T ] → H defined by

η(σ) := 1
δ
γ(δσ) is in C(x,y)(1, [0, T ]), since

η̇21 + η̇22 =

(
γ̇1(s)

δ

)2

+

(
γ̇1(s)

δ

)2

=
γ̇1(s)

2 + γ̇2(s)
2

δ2
≤ 1
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Proposition 1.17. Let d be the CC distance and x, y ∈ H. Then

(i) d(x, y) = d(y−1x, 0), that is the Carnot-Carathéodory metric is left-

invariant.

(ii) d(δs(x), δs(y)) = sd(x, y), ∀s > 0, i.e. d is homogeneous of degree 1

w.r.t. the group dilatations.

(iii) The function x 7→ d(x, 0) is continuous in the following sense: let

(xn)n∈N be a sequence such that

∀ε > 0 ∃nε ∈ N : xn ∈ δε(B1(0)), if n > nε,

with B1(0) the Euclidean unitary ball. Then d(xn, 0)→ 0, n→∞.

Proof. (i) Since the vector fields X1 and X2 are left invariant, left trans-

lates of horizontal curves are still horizontal and then C(x,y)(δ) = C(y−1x,0)(δ).

(ii) First we prove that if a path γ is horizontal, then also δs(γ) is. In-

deed let γ = (γ1, γ2, γ3) be horizontal, then γ̇ = (γ̇1, γ̇2, γ̇3) with γ̇3 =

−1
2
(γ̇1γ2 − γ̇2γ1). So

d

dt
(δs(γ3)) = −s21

2
(γ̇1γ2−γ̇2γ1) = −1

2
(sγ̇1sγ2−sγ̇2sγ1) = −1

2
(δs(γ̇1)δs(γ2)−δs(γ̇2)δs(γ1))

shows that δs(γ) is horizontal. Moreover if γ ∈ C(x,y)(δ), then δs(γ) ∈
C(x,y)(sδ) and the endpoints must be dilatated as well. This prove the

second statement.

(iii) It is a direct consequence of (ii).

An equivalent metric of the CC one is the so-called Korányi metric, which

is given in the following

Definition 1.18. Let x, y ∈ H. We define the Korányi norm as

‖x‖40 := (x21 + x22)
2 + 16x23 (1.19)

and the Korányi distance between x and y as

d0(x, y) := ‖y−1x‖0 (1.20)
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Proposition 1.19. The distance d0 is equivalent to the dcc one defined in

(1.17).

Proof. To prove the triangular inequality for ‖ · ‖0 write x = (z, x3), y =

(w, y3) and compute

‖xy‖40 = |z + w|4 + 16(x3 + y3 −
1

2
Im(zw))2

=

∣∣∣∣|z + w|2 + 4i(x3 + y3 −
1

2
Im(zw))

∣∣∣∣2
=
∣∣|z|2 + |w|2 + 2Im(zw) + 4i(x3 + y3)

∣∣2
≤ (‖x‖20 + 2|z||w|+ ‖y‖20)2 ≤ (‖x‖0 + ‖y‖0)4

Consquently we have the triangular inequality for dH: to prove that ‖y−1x‖0 ≤
‖z−1x‖0 + ‖y−1z‖0 just take z−1x = u and y−1z = v. Finally it is clear from

the definition that ‖ · ‖0 is homogeneous of degree 1 w.r.t. the dilatations

δs (i.e. ‖δs(x)‖0 = s‖x‖0). So from this fact, from the compactness of the

unit Korányi sphere BH := {x ∈ H|‖x‖0 = 1} and from the continuity of

the distance proved in (ii) of Proposition 1.17 1.16 follows immediatly the

existence of some constants C1, C2 > 0 such that

C1‖x‖0 ≤ dcc(x, 0) ≤ C2‖x‖0, ∀x ∈ H (1.21)

that is the equivalence of the two metrics.

Corollary 1.20. The topologies induced by the CC distance and the Eu-

clidean one are the same.

Proof. By (1.19) it follows that every Euclidean ball contains and is contained

by a Korányi one and viceversa. We obmit the analytic details.

The final step of this section is to introduce the sub-Riemannian length

of a curve in the Heisenberg group, to then show that the metric induced by

the infimum of these lengths is the same of the CC one.
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Remark 1.21. A sub-Riemannian metric on H is determined by choosing

an inner product on the horizontal subbundle of the Lie algebra. If 〈·, ·〉
is such an inner product, one can define the length of an horizontal curve

γ : [a, b]→ H as

`〈·,·〉(γ) =

∫ b

a

√
〈γ̇(t), γ̇(t)〉dt (1.22)

and then define also the distance between two points x and y to be

d〈·,·〉(x, y) = inf {`(γ)|γ is an horizontal path joining x and y} (1.23)

We want find, if it exists, the sub-Riemannian structure on H which is the

same of the CC distance in the sense that

d〈·,·〉(x, y) = dcc(x, y) (1.24)

Since we have already fixed some arbitrary coordinates to present H, and

since we have used such coordinates to define the CC distance, one expects

that 〈·, ·〉 is the inner product that makes X1 and X2 an orthonormal frame

for the horizontal bundle. Actually, this is true and this inner product will

be denote by 〈·, ·〉H. Such sub-Riemannian metric is also denoted with gH

and it is the one with which we equip H. Moreover, gH can be extended to

an inner product defined on the full tangent bundle by requiring that X1, X2

and X3 form an orthonormal system. This new inner product will be again

denote by 〈·, ·〉H and defines the Riemannian metric with which we equip

H. Such Riemannian metrin is also denoted by g. If there is no possibility

of misunderstanding with the Euclidean inner product, we could write 〈·, ·〉
instead of 〈·, ·〉H to lighten the notation.

Definition 1.22. Let γ : [a, b] → H be an horizontal path. We define the

horizontal length of γ to be

`(γ) :=

∫ b

a

√
〈γ̇(t), (X1)γ(t)〉2H + 〈γ̇(t), (X2)γ(t)〉2Hdt (1.25)

Notice that writing γ̇ = aX1 + bX2, equation (1.25) becomes

`(γ) =

∫ b

a

√
a2 + b2dt
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Proposition 1.23. For all x, y ∈ H we have

dcc(x, y) = inf
γ
`(γ) (1.26)

where the infimum is taken over all horizontal curves joining x and y.

Proof. See [6], Chapter 2, §2.2.2.

Definition 1.24. i) Let P be a point of H. The horizontal or CC norm

of P , denoted with ‖P‖H is

‖P‖H = dcc(0, P ) (1.27)

ii) Let v be an horizontal vector of the tangent space TPH of H at a point

P ∈ H. The horizontal or CC norm of v, denoted again with ‖v‖H is

‖v‖H =
√
〈v, v〉H (1.28)

Also in Definition 1.24, if this does not create confusion with the Eu-

clidean case, we may write | · | instead of ‖ · ‖, both in (i) and in (ii).

The next lemma shows that the Korányi and CC metrics generate the

same infinitesimal structure.

Lemma 1.25. Let γ : [0, 1]→ H be a C1 curve and ti = i/n, i = 0, . . . n, be

a partition of [0, 1]. Then

lim sup
n→∞

n∑
i=1

d0(γ(ti), γ(ti−1)) =

`(γ) if γ is horizontal

∞ otherwise
(1.29)

Proof. See [6], Chapter 2, Lemma 2.4.

1.2 Higher dimensional Heisenberg groups Hn

In this short section we will give a quick description of the higher-dimensional

analogs of the Heisenberg group. They represent the natural generalization

of the Heisenberg group when the background manifold is R2n+1 or Cn×Rn.
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Precisely, the n-dimensional Heisenberg group Hn is the Lie group which

have as background manifold Cn×Rn, and whose Lie algebra has a step two

stratification hn = V1 ⊕ V2, where V1 has dimension 2n, V2 has dimension 1,

and [V1, V1] = V2, [V1, V2] = [V2, V2] = 0.

As in the case of the first Heisenberg group, we write a point P ∈ Hn as

P = (z1, . . . , zn, t) = (x1 + iy1, . . . , xn + iyn, t). Then the group law is given

by

P ·Q = (z1 + w1, . . . , zn + wn, t+ s− 1

2

n∑
i=1

Im(ziwi)) (1.30)

where P = (z1, . . . , zn, t) and Q = (w1, . . . , wn, s).

A basis for the Lie algebra of Hn is given by the left-invariant vector fields

Xi = ∂xi − 1
2
yi∂t, Yi = ∂yi + 1

2
xi∂t, i = 1, . . . , n, and T = ∂t. It is easy to see

that [Xi, Yi] = T , i = 1, . . . , n, while all the other brackets are null. Then we

say as in Definition 1.9 that the first 2n vector fields X1, Y1, . . . , Xn, Yn span

the horizontal bundle of Hn.

As in Remark 1.8, we can obtain other infinite parametrization of Hn

depending on a real parameter α. It is sufficient to replace the coefficient 1
2

just with α both in the group law (1.30) and in the equations of the horizontal

vector fields. As a result we will have [Xi, Yi] = 2α∂t, i = 1, . . . , n,.

Finally, also the results regarding the Carnot-Carathéodory distance re-

main valid. In particular, the sub-Riemannian metric compatible with the

CC distance is the metric which makes orthonormal the horizontal vector

fields X1, Y1, . . . , Xn, Yn, i = 1, . . . , n.





Chapter 2

Geodesics in the Heisenberg

group

In this Chapter we will talk about the length-minimizing curves joining

pairs of points in H, that is the so-called geodesics. Thanks to the left-

invariance of the CC metric, we may assume, without loss of generality, that

one of the two points is the origin (denoted with 0=(0,0,0)). We will also

deal with variations of such curves to obtain the equations of Jacobi fields

as in [15] and [17]. We point out that we will make an extensive use of

Riemannian and differential geometry, assuming these subjects to be known

(see, for example, [8]).

Remark 2.1. Let us recall the geometric meaning of the proof of Chow’s

Theorem: let γ : [0, 1] → H be an horizontal path joining 0 and a point

x = (x1, x2, x3) and π : H → C be the standard projection. So we consider

the closed curve γ̃ in the complex plane obtained by closing π(γ) and with

the segment joining π(x) and 0. Let S denote the C-region bounded by γ̃.

Then by Stokes’ theorem and by (1.15) we have

x3 =

∫ 1

0

γ̇3(t)dt = −1

2

∫ 1

0

(γ̇1γ2 − γ̇2γ1)(t)dt

= −1

2

∫
γ̃

x2dx1 − x1dx2 =

∫
S

dx1 ∧ dx2 = Area(S).

(2.1)

15
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In view of Remark 2.1 we can rephrase the problem of finding the hori-

zontal curve from 0 to x = (x1, x2, x3) with minimal length with the following

problem:

Find the plane curve from the origin to (x1, x2) with minimum length, sub-

ject to the constraint that the region S delimited by the curve and the segment

joining 0 to (x1, x2) has fixed area.

This is one formulation of Dido’s problem, thanks to which, we can move a

sub-Riemannian problem to a bonded Euclidean one.

The solution of this problem is well known and is given by arcs of a circle

joining 0 and x. The proof of this fact can be found at [9]. In particular, in

the limit case of x3 = Area(S) = 0 we have the straight line from 0 to x as

a solution. As a conclusion, we have the following

Proposition 2.2. A length minimizing curve, or a geodesic, between 0 and x

is given by the lift of a circular arc joining 0 and (x1, x2) in C, whose convex

hull has area x3.

Corollary 2.3. The geodesics in H are curves of class C∞.

Proof. Take an horizontal curve γ = (γ1, γ2, γ3) joining 0 and a point x.

Suppose its projection π(γ) = (γ1, γ2) is an arc of a circle. This means that

γ1 and γ2 are C∞. Thus, Remark (1.15) immediately implies that also γ3 is

C∞, since both γ1 and γ2 are.

This is a geometric way to prove the smoothness of the geodesics in H.

Actually, the same result is true in the higher order Heisenberg groups Hn.

The proof of this fact can be found at [13]. Here the author uses some

elements of Control Theory to minimize the length of horizontal curves. Make

also attention to the different parametrization of Hn used in [13], which is

the one with α = −2 (see Remark 1.8)

Remark 2.4 (!). Based on the Heisenberg group model, one can think that the

geodesics in sub-Riemannian spaces are always curves of class C∞. But this is

false! The C∞-regularity of the geodesics in sub-Riemannian geometry is not
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a foregone fact, differently from what we know about Riemannian manifolds.

Actually, it is an open problem for several years!

2.1 The equations of geodesics

The following theorem provides the explicit analytic form of Heisenbrg’s

geodesics with unit-speed and which initial point is the origin

Theorem 2.5. Let v be an horizontal vector with unitary CC norm. The

family of unit-speed geodesics having starting point 0 and initial velocity v is

given explicitly by

γ0,c,v =

(
eiφ

1− e−ics

ic
,−cs− sin (cs)

2c2

)
(2.2)

where c ∈ R is said to be the curvature of the geodesic and φ ∈ [0, 2π) is

unique such that v = cosφXv + sinφYv. Moreover γ is length-minimizing

over any interval of length 2π/|c|.

To prove Theorem 2.5, keeping in mind Corollary 2.3, we compute the

equations of the geodesics by thinking of a geodesic as a smooth horizontal

curve that is a critical point of length under any smooth variation by hori-

zontal curves with fixed endpoints. To do this we first need some notions of

differential geometry about H.

Definition 2.6. We denote by D the Levi-Civita connection of (H, g), which

we remember to be the unique connection such that

i) D is metric-preserving, i.e. DU(g(V,W )) = g(DUV,W ) + g(V,DUW )

ii) D is torsion-free, i.e. DUV −DVU = [U, V ]

for any vector fields U, V,W ∈ TH. Here g is the Riemannian metric with

which we have equipped H in Remark 1.21.

Definition 2.7. We define J to be the field endomorphism J : TH → TH,

J(U) := −2DU(T ).
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From the very definition it may not be clear what J and D are. So

we need some calculations which allow us to compute both the values of J

and D applied to the orthonormal (w.r.t. the metric g) frame X, Y , T .

This will give us explicit expressions for the two operators when applied to

left-invariant vector fields.

Let us recall the Koszul formula, that is

2〈∇VW,Z〉 = V 〈W,Z〉+W 〈V, Z〉 − Z〈V,W 〉

+ 〈[V,W ], Z〉 − 〈[W,Z], V 〉 − 〈[V, Z],W 〉

+ 〈Tor∇(V,W ), Z〉 − 〈Tor∇(W,Z), V 〉 − 〈Tor∇(V, Z),W 〉
(2.3)

for any vector fields V , W , Z (not necessarly left-invariant) and for any

metric-preserving connection ∇ in (H, g). Here we write 〈·, ·〉 instead of

〈·, ·〉H. Thus, the Levi-Civita connection D trivially satisfies (2.3) without

the terms involving the torsion. Since the scalar product of left-invariant

vector field is a constant function, by (2.3) and we obtain

2〈DVW,Z〉 = 〈[V,W ], Z〉 − 〈[W,Z], V 〉 − 〈[V, Z],W 〉 (2.4)

for any left-invarint vector fields V , W , Z. Now, by (2.4), the following

derivatives can be easily computed

DXX = 0 DXY =
1

2
T DXT = −1

2
Y

DYX = −1

2
T DY Y = 0 DY T =

1

2
X

DTX = −1

2
Y DTY =

1

2
X DTT = 0

(2.5)

For example we show DXX = 0. We have, for Z left invariant

〈DXX,Z〉 = −〈[X,Z], X〉

and then

〈DXX,X〉 = 0, 〈DXX, Y 〉 = −〈T,X〉 = 0, 〈DXX,T 〉 = 0

from which it follows DXX = 0. The check is similar for the other derivatives.
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Remark 2.8. We collect some important properties about the endomorphism

J

i) By (2.5) it follows J(X) = Y and J(Y ) = −X. That is, the endo-

morphism J is an involution of the horizontal distributions or rather

(J |H)2 = −IdH.

ii) Observe that 1 = 〈Y, Y 〉 = 〈J(X), Y 〉 = −〈X, J(Y )〉 = 〈X,X〉, while

〈X, J(X)〉 = 〈Y, J(Y )〉 = 0. Thus,

〈J(U), V 〉+ 〈U, J(V )〉 = 0 (2.6)

for any vector fields U , V .

iii) We also have

[V,W ] = −〈V, J(W )〉T (2.7)

for any V ,W left-invariant. Indeed, [X, Y ] = T = −(−1)T = −4(−|X|2)T =

−〈X,−X〉T = −〈X, J(Y )〉T and the check is similar for the other

brackets.

Remark 2.9. Equations (2.4) and (2.7) provide also an explicit formula to

calculate DVW for all left-invariant vector fields V and W , that is

DVW = ω(V )J(W ) + ω(W )J(V )− 1

2
〈V, J(W )〉T (2.8)

Here ω is the contact form in H we have already discussed in the first Chapter.

Now we are ready to collect all the pieces of the proof of Theorem 2.5.

We point out that not all the previous remarks are preparatory for the proof,

but they will be useful when we will introduce the Jacobi fields.

Definition 2.10. Let γ : I → H be a C2 horizontal curve defined on a

compact interval I ⊂ R. A variation of γ is a C2 map F : I × I ′ → H, where

I ′ is an open interval of R around the origin, such that F (s, 0) = γ(s). We

denote γε(s) = F (s, ε). We say that the variation is admissible if the curves

γε are horizontal and have fixed boundary points.
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Lemma 2.11. Let γε be an admissible C2 variation of an horizontal curve

γ as in Definition 2.10. Let Vε be a vector field along γε. Then Vε(s) =

(∂F/∂ε)(s, ε) if and only if V vanishes at the endpoints of γ and

γ̇(〈V, T 〉) = −〈VH , J(γ̇)〉. (2.9)

Here γ = γ0, V = V0 and VH = V − 〈V, T 〉 denotes the horizontal projection

of V0.

Proof. The proof is given in [17], §3. Just make attention that in [17], the

authors have chosen the parametrization of the Heisenberg group given by

α = −1 (see Remark 1.8).

Proposition 2.12. Let γ : I → H a C2 horizontal curve parametrized by

arc-length. Then γ is a critical point of length for any admissible variation

if and only if there is c ∈ R such that γ satisfies the second order ordinary

differential equation

Dγ̇ γ̇ − cJ(γ̇) = 0. (2.10)

Notice that in Riemannian geometry the equation of the geodesics was

given by Dγ̇ γ̇ = 0. Here the sub-Riemannian structure of the Heisenberg

group causes the presence of the endomorphism J in such equation.

Proof. Let V be the vector field of an admissible variation γε of γ as in

Lemma 2.11. Since γ is parametrized by arc-length, by the first-variation

formula (see [8], Theorem 3.31) we have

d

dε

∣∣∣∣
ε=0

(`(γε)) = −
∫
I

〈Dγ̇ γ̇, V 〉

because V vanishes at the endpoints. Suppose that γ is a critical point of

length for any admissible variation. We then want to prove that γ satifies

(2.10). Since |γ̇| = 1 and 〈Dγ̇ γ̇, γ̇〉 = γ̇(|γ̇|) − 〈Dγ̇ γ̇, γ̇〉, we can start by

observing 〈Dγ̇ γ̇, γ̇〉 = 0. As γ is horizontal, we also have by (2.4) 〈Dγ̇ γ̇, T 〉 =

0. Moreover 〈J(γ̇), γ̇〉 = 0, then Dγ̇ γ̇ is obliged to be proportional to J(γ̇) at

any point of γ. In light of this, we need to show that 〈Dγ̇ γ̇, J(γ̇)〉 is costant
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to complete the proof. Assume, without loss of generality, that I = [0, a].

Consider a C1 function f : I → R vanishing at the endpoints and such that∫
I
f = 0. Finally, we take the vector field V on γ so that VH = −fJ(γ̇)

and 〈V, T 〉(s) =
∫ s
0
f . Indeed such a V satifies (2.9), because γ̇(〈V, T 〉(s)) =

d
ds

(
∫ s
0
f) = f = f |γ̇|2 = f〈J(γ̇), J(γ̇)〉 = −〈VH , J(γ̇)〉. Inserting in the first

variation formula, since Dγ̇ γ̇ is horizontal, we have∫
I

f〈Dγ̇ γ̇, J(γ̇) = 0

But
∫
I
f = 0, so 〈Dγ̇ γ̇, J(γ̇) is necessarly costant. Hence we have proved that

Dγ̇ γ̇ is a scalar multiple ofJ(γ̇).

The proof of the converse follows taking into account (2.9) and the first

variation formula.

Definition 2.13. An horizontal path γ : I → H is said to be a geodesic of

curvature c if it satisfies equation (2.10). Given a point P ∈ H, an horizontal

vector v ∈ TPH and c ∈ R, we denote by γP,c,v the unique solution to (3.2)

with initial conditions γ(0) = P , γ̇(0) = v. We call the real parameter c the

curvature of the geodesic.

Proof of Theorem 2.5. Let v be a unit horizontal vector and c ∈ R fixed.

We have to compute the equation of an horizontal geodesic γ assuming that

γ(0) = 0 and γ̇(0) = v. Then suppose such a geodesic γ has equations

γ(s) = (x(s), y(s), t(s)). Since γ is horizontal we have

γ̇(s) = ẋ(s)Xγ(s) + ẏ(s)Yγ(s)

ṫ(s) =
1

2
(xẏ − ẋy)(s)

Let us explicit (2.10) to find the differential equations that the coordinates

of γ̇ satisfy. We have (see [8], Theorem 2.68)

Dγ̇ γ̇ = Dγ̇(ẋXγ + ẏYγ) =
D

dt
(ẋXγ + ẏYγ)

= ẍXγ + ÿYγ + ẋ
D

dt
Xγ + ẏ

D

dt
Yγ = ẍXγ + ÿYγ + ẋDγ̇X + ẏDγ̇Y

= ẍXγ + ÿYγ
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where in the last equation it follows from (2.5) that ẋDγ̇X + ẏDγ̇Y is 0. On

the other hand from the very definition cJ(γ̇) = cJ(ẋXγ+ẏYγ) = cẋYγ−cẏXγ

and then we obtain

ẍ = cẏ

ÿ = −cẋ

with initial conditions x(0) = y(0) = 0 and ẋ(0) = a, ẏ(0) = b, where a and

b are the two horizontal components of v.

Integrating these equation, for c 6= 0, we obtain

x(s) = a
sin(cs)

c
+ b

1− cos(cs)

c

y(s) = −a1− cos(cs)

c
+ b

sin(cs)

c

t(s) = −cs− sin(cs)

2c2

Now to obtain (2.2), just set φ = arccos a = arcsin b. This is certainly

possible, since a2 + b2 = 1 for hypothesis. Then φ ∈ [0, 2π), a = cosφ,

b = sinφ and so, by using the complex notation, we get

x(s) + iy(s) =
1− cos(cs)

c
(sinφ− i cosφ) +

sin(cs)

c
(cosφ+ i sinφ)

= −i1− cos(cs)

c
eiφ +

sin(cs)

c
eiφ

= −ieiφ1− (cos(cs)− i sin(cs))

c

= eiφ
1− e−ics

ic

Integrating, for c = 0, we obtain x(s) = as, y(s) = bs and t = 0 which

are Euclidean straight lines in the xy-plane of H. This result is exactly the

limit for c→ 0 of the equations we have obtained by the previous integration

for c 6= 0. We obmit the check for ṫ and this complete the proof.

Corollary 2.14. Let γ = γ0,c,v b a nonunit-speed geodesic passing through

the origin. Then it has equations

γ0,c,v(s) =

(
|v|eiφ1− e−ics

c
,−|v|2 cs− sin (cs)

2c2

)
(2.11)
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Here |v| = ‖v‖H denotes the horizontal length of the vector v.

Proof. In the proof of Theorem 2.5 we set φ = arccos a = arcsin b. There we

had v = (a, b) with |v|2 = a2 + b2 = 1. Here |v| is other than 1, so just set

φ = arccos a/|v| = arcsin b/|v|.

Note that in Corollary 2.14 we wrote γ0,c,v with a slight abuse of notation.

Indeed, here, γ0,c,v has not the same meaning as in Theorem 2.5. That is,

(2.11) should be rewritten as

γ0,c,v(s) =

(
eiφ

1− e−i
c
|v| s|v|

c/|v|
,−

c
|v|s|v| − sin ( c

|v|s|v|)
2(c/|v|)2

)
= γ0, c|v| ,

v
|v|

(|v|s) (2.12)

where γ0,c/|v|,v/|v|(|v|s) has the same signification as in Theorem 2.5. Thus,

from now on, γP,c,v denotes a geodesic with curvature c/|v| and costant

speed |v| and the notation is not in contrast with the previous one, since

the geodesic has exactly curvature c if |v| = 1. In particular, v = γ̇(0) and

the geodesic γP,c,v is length-minimizing above any interval of length 2π|v|/c.

Corollary 2.15. Let γ = γ0,c,v be a geodesic passing through the origin. Then

the equation of geodesic passing through a generic point P = (x0, y0, t0) =

(z0, t0) ∈ H with initial velocity |v| and curvature c/|v| is given by the left

translation by P of γ. That is

γP,c,v = LP (γ0,c,v) =

(
z0 + |v|eiφ1− e−ics

c
, t0 − |v|2

cs− sin (cs)

2c2
− z0e−iφ

1− eics

2c

)
(2.13)

Proof. The proof is the left invariance of the vector fields X and Y . Moreover

(2.13) is given by H’s group law defined in (1.2).

This provides a complete description of the geodesics in the Heisenberg

group and shows that all the geodesics in H can be obtained by left trans-

lations and/or by reparametrizations of the unit speed geodesics passing

through the origin. Since the initial velocity v and the parameter φ are

in one-to-one correspondence, from now on we write indistinctly γP,c,v or

γP,c,φ.
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Remark 2.16. In this remark we point out some basic properties of the

geodesics. That is

i) Any isometry in (H, g) preserving the horizontal distribution trans-

forms geodesics in geodesics since it respects the Levi-Civita connection

and commutes with J .

ii) It follows from a simple calculation that any group dilatation δλ, λ > 0,

takes a geodesic (γP,c,v)(s) to the geodesic γP,c/λ,v(λs). I.e. the group

dilatations modify the curvature and the wlaking time of the geodesics.

iii) Take a unit speed geodesic passing through the origin γ = γ0,c,v(s).

Then, for c 6= 0, we have by (2.2) that the t-coordinate of γ is monotone

increasing w.r.t. the time s. It follows that γ leaves every compact set

in finite time. The same is true for any other horizontal geodesic, since

it can be obtained by a left translation or a rotation of γ.

iv) Any geodesic γP,c,v is uniquely determined by the three parameters P ,

v = γ̇(0) and c. This is a central difference with Riemannian met-

rics! Indeed, in any Riemannian manifold, a geodesic is well defined

only by the starting point and the initial velocity. Here the additional

parameter we need is the curvature c and we emphasize there are infi-

nite geodesics having both the same starting point and the same initial

velocity.

v) The geodesic γP,−c,−v(−s) has the same support of γP,c,v(s), but it is

walked in the opposite direction.

vi) If γP,c,v and γP ′,c′,v′ have an arc, of their supports, in common, then

c = ±c′.

Example 2.17 (Carnot-Carathéodory balls in H). By Theorem 2.5 we can

deduce the parametrization of the boundary of the CC ball having center in

0 and radius 1. Indeed, it is sufficient to set s = 1 in (2.2) since the time s
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measure exactly the distance between 0 and γ(s). As a result we obtain

∂Bcc(0, 1) =

z(c, φ) = eiφ 1−e−ic
c

t(c, φ) = − c−sin c
2c2

(2.14)

which is a surface in H depending on the two parameters c and φ. The

following figures show the graphic of (2.14) and of its projection in the plane

(x, t)

In particular, one can see that the boundary of the unit CC ball is C∞

for z 6= 0. On the contrary, ∂Bcc(0, 1) is not even of class C1 for z = 0, where

it intersects the t-axis in two points called poles.

2.2 The pseudohermitian structure of H

The topics covered in this short section are preparatory for studying Ja-

cobi fields in H. We will not enter into detailed arguments: just describe the

basic facts we need. The reader can learn more in [18].

In the whole section M is a C∞ manifold. If it is not specified the di-

mension of M is n. Before describing the pseudohermitian structure of the

Heisenberg group, we need to recall some facts relating to the Frobenius

theorem.

Definition 2.18. Let M be a C∞ manifold of dimension n. An r-dimensional

distribution D on M is a C∞ r-dimensional subbundle of the tangent bundle

of M (i.e. for any p ∈ M Dp is a r-dimensional subspace of TpM which

admits a C∞ basis X1, . . . , Xr in a neighborhood of p).
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A submanifold N of M is called an integral manifold of D if TpN = Dp
for an arbitrary p ∈ N .

The distribution D is said to be completely integrable if there exists an

integral manifold of D for each point of M .

Definition 2.19. A distribution D on a smooth manifold M is said to be

involutive if [D,D] ⊂ D.

Definitions 2.18 and 2.19 are equivalent thanks to the Frobenius theorem,

that is

Theorem 2.20 (Frobenius theorem). A distribution D on a C∞ manifold

M is completely integrable if and only if it is involutive.

Frobenius theorem can be rewritten in terms of differential forms on M .

Just define I(D) as the set of the differential forms on M which vanishes on

D. Actually, I(D) is an ideal of the exterior algebra of M . Moreover, it is

closed w.r.t. the exterior derivate, that is dI(D) ⊂ ID iff D is involutive.

Now the r-dimensional distribution D can be represented locally by equa-

tions ω1 = · · · = ωn−r = 0. That is, there is an open neighborhood U of

any point p of M such that ω1, . . . , ωn−r are linearly indipendent on U and

Dq = {X ∈ TqM |ω1(X) = · · · = ωn−r(X) = 0} for all q ∈ U . D is involutive

(on U) iff there exists 1-forms ωij such that

dωi =
n−r∑
i=1

ωi ∧ ωij (2.15)

Equation (2.15) is called integrability conditions for the 1-forms ωi, i =

1 . . . n− r.

Theorem 2.21 (Frobenius theorem). Let represent a distribution D locally

as ω1 = · · · = ωn−r = 0. Then D is completely integrable if and only if (2.15)

holds.

The proofs of Theorems 2.20 and 2.21 can be found in [14]. Here the

reader can also learn more about the Frobenius theorem and the completely

integrable distributions.
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Now we are going to describe the intrinsic pseudohermitian structure of

the Heisenberg group. As the very word “pseudo” suggests, we before need

to know some basic topics of Hermitian geometry, which we resume below

i) A complex manifold of dimension n is a manifold with an atlas of

charts to the open unit disk in Cn, such that the transition maps are

holomorphic.

ii) A manifold M is said to be an almost complex manifold if there exists

a linear map J : TM → TM satisfying J2 = −Id and J is said to be

an almost complex structure of M . Then J2 = −In for a suitable base

of TM and (−1)n = det(J2) = (detJ)2 = 1. Thus an almost complex

manifold is even dimensional.

iii) Let TCM = TM ⊗ C be the complexification of TM . Let us denote

T (1,0)M = T 1M = {V + iJV |V ∈ TM} and T (0,1)M = T 1M = {V −
iJV |V ∈ TM}. Then TM = T 1M ⊕ T 1M . Furthermore, JZ = −iZ
iff Z ∈ T 1M and JZ = iZ iff Z ∈ T 1M . All these facts are also valid

punctually.

iv) A Riemannian metric g on an almost complex manifold (M,J) is called

almost Hermitian if

g(U, V ) = g(U, V ), ∀U, V ∈ Γ(TM) (2.16)

If J define a complex structure on M , then g is a Hermitian metric and

M is said to be a Hermitian manifold.

Remark 2.22. We will see soon that H is a manifold satisfying (ii), (iii) and

(iv) just on the horizontal bundle H and not on all TH. That is why the

name of pseudohermitian: H has an Hermitian structure, but which is not

defined on the whole tangent bundle.

From now until the end of the section we also assume that M is paracom-

pact and that M is odd dimensional with, dimM = N = 2n+1 (actually, the

most general theory is with N = 2n+ d, but for our purposes it is sufficient

d = 1).
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Definition 2.23. A contact structure (or bundle) ξ on M is a 2n-dimensional

completely nonintegrable distribution. A contact form θ is a 1-form an-

nilathing ξ, i.e. θ(ξ) = 0. If ξ is oriented, we say that θ is oriented if

θ(U, V ) > 0 for any oriented basis of ξ.

We point out that, if M admits a contact (oriented) bundle ξ, there

always exists a global (oriented) contact form defined on M , which can be

obtained by patching together local ones with a partition of unity. Thus we

assume that M has a contact (oriented) structure: we denote it with ξ and

its relative contact (oriented) global form is denoted by θ.

Remark 2.24. There exist a unique vector field W such that θ(W ) = 1 and

LT θ = 0 or dθ(W, ·) = 0. Here L denotes the Lie derivative. The vector field

W is said to be the Reeb vector field of θ.

Definition 2.25. A CR-structure compatible with ξ is a smooth endomor-

phism J : ξ → ξ such that J2 = −Id. We say that J is oriented if (V, JV ) is

an oriented basis of ξ for all V ∈ ξ.

Definition 2.26. A pseudohermitian structure on M compatible with ξ is

a CR-structure J compatible with ξ together with a global contact form θ.

Since J2 = −Id, then there exists a basis of ξ ⊗ C (the complexifica-

tion of ξ) w.r.t. J2 is represented by the matrix −I2n. So J2 has only the

two eigenvalues i and −i, both of multiplicity n. We denote by Z1, . . . , Zn

the eigenvector basis of the autospace relative to the eigenvalue i and by

Z1, . . . , Zn the eigenvector basis of the autospace relative to the eigenvalue

−i.

Remark 2.27. With the notations just set Zj = Zj for any j = 1, . . . , n. In

particular, we have the decomposition

ξ ⊗ C = S ⊕ S (2.17)

where S =< Z1, . . . , Zn > and S =< Z1, . . . , Zn >.
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Remark 2.28. A simple calculation show that there exist an unique basis

{U1, . . . , Un, V1, . . . , Vn} such that JUj = Vj and Zj = Uj − iVj. Indeed, it is

given by

Uj =
Zj − Zj

2
, Vj =

Zj − Zj
2i

, j = 1, . . . , n (2.18)

Remark 2.29. It is easy to calculate that, for j, k = 1, . . . , n, [Zj, Zk] = 0,

[Zj, Zk] = 0 for k 6= j and [Zj, Zj] = 2i[Uj, Vj]. Since ξ is noninvolutive by

hypothesis (Definition 2.23), [Uj, Vj] must be other than 0 for all j. Indeed,

every restriction of TM to < ξj,W > (here ξj =< Uj, Vj >) has a natural

pseudohermitian structure provided by J |ξj and θ|<ξj ,W>. Thus ξj is invo-

lutive and this implies [Uj, Vj] 6= 0. The only possible value for [Uj, Vj] is a

real scalar multiple of W , depending on the normalization of the basis. We

choose, naturally, the one so that [Uj, Vj] = W/2i.

Remark 2.30. Although it may not be obvious, a sub-Riemannian metric

gξ is natural defined on M by choosing gξ as the metric on ξ which makes

{U1, . . . , Un, V1, . . . , Vn} an orthonormal basis for ξ. It can be soon extended

to a metric g on TM making W orthonormal to ξ. Such metric g is Hermitian

on ξ in the sense that gξ(U, V ) = gξ(JU, JV ), for any U, V ∈ ξ.

Remark 2.31 (!). The natural pseudohermitian structure of the Heisenberg

group H is, at this point, obvious. Indeed

i) The contact structure is the horizontal bundle H and the contact form

is ω = dt− 1
2
(xdy − ydx).

ii) The ω’s Reeb vector field is clearly T = ∂/∂t.

iii) The CR-structure is provided by the endomorphism J defined in Defi-

nition 2.7 (actually, by ist restriction to H)

iv) Finally, the natural basis for H and H⊗C described in Remarks 2.27,

2.28 and 2.29 are, respectively, {X, Y } and {Z,Z}, with Z = X − iY .

The generalization to the higher dimensional Heisenberg groups Hn is equally

obvious.
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Before going on to the next section and proceeding with the description

of the Jacobi fields, we want define the pseudohermitian connection of a

pseudohermitian manifold M and see its relationship with the Levi-Civita’s

one. It is the natural covariant derivative that one can consider on a contact

manifold M . Precisely

Proposition 2.32. There exists an unique affine connection ∇ : TM →
TM ⊗ T ∗M on M satisfying the following conditions

i) The contact structure ξ is parallel, that is ∇Uξ ⊂ ξ, for all U ∈ TM .

ii) The Reeb vector field W , the endomorphism J and the 2-form dθ are

parallel, that is ∇W = ∇J = ∇dθ = 0.

iii) The torsion Tor∇ of ∇ satisfies

Tor∇(U, V ) = dθ(U, V )W, ∀U, V ∈ ξ (2.19)

Tor∇(W,JU) = −JTor∇(W,U) ∀U ∈ ξ (2.20)

The proof of Proposition 2.32 can be found at [18] and thanks to it we

can give the following

Definition 2.33. The connection ∇ of Proposition 2.32 is called pseudo-

hermitian connection of M . Sometimes we may work with other different

connections. In this case, the pseudohermitian one will be denoted with ∇ph

and its torsion will be denoted Torph.

Remark 2.34. The proof of Proposition 2.32 is given providing the (unique)

extension of ∇ as an operator, denoted again with ∇, from TCM to TCM ⊗
TC∗M . In other words, ∇ can be complexificated as ∇ : TCM → TCM ⊗
TC∗M in a unique way. This extension is obtained by imposing

i) For any A,B ∈ S we have ∇AB, ∇AB and ∇WB are determined
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respectively by equations (2.21), (2.22) and (2.23) below

∇AB = πS([A,B]) (2.21)

dθ(∇AB,C) = Adθ(B,C)− dθ(B, πS([A,C]), ∀C ∈ S (2.22)

∇WB = LWB −
1

2
J(LW (JB)) (2.23)

Here S, S are the same as in Remark 2.27 and πS, πS denote the

canonical projection from TCM to, respectively, S, S.

ii) For any C ∈ TCM , ∇CW = 0.

iii) For any A,B ∈ S

∇AB = ∇AB, ∇AB = ∇AB, ∇WB = ∇WB (2.24)

Proposition 2.32 and Remark 2.34 allow us to calculate ∇AB for every

A,B both belonging to TM and to TCM and, then, to obtain other interes-

sant equations for the p.h. connection ∇. Such properties can be found, for

example, in [18], [7]. Regarding us, we are interested in calculating some of

them in the Heisenberg group.

Remark 2.35 (The pseudohermitian connection in H!). Let us recall we have

fixed the orthonormal basis X = ∂x − 1
2
y∂t and Y ∂y + 1

2
x∂t of H and the

contact form is ω = dt − 1
2
(xdy − ydx). So dω = −dx ∧ dy. We want to

collect some remarkable properties of the p.h. connection ∇ of H, that is

i) Writing any pair of left-invariant vector fields U , V as a linear combi-

nation with constant coefficients of the elements of the basis {X, Y, T}
we have

[U, V ] = −〈U, JV 〉T (2.25)

dω(U, V ) = U(ω(V ))− V (ω(U))− ω([U, V ]) (2.26)

ii) Taking U and V as in (i) also horizontal, we get

dω(U, V ) = −ω([U, V ]) = 〈U, JV 〉 (2.27)
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which implies that the quadratic form

U ∈ H 7→ −dω(U, JU) = −〈U, J2U〉 = |U |2 (2.28)

is positive definite (such quadratic form is exactly the sub-Riemannian

metric, that is −dω(·, J ·) = 〈·, ·〉).

iii) Proposition 2.32-(ii) tells us the Reeb’s vector field T is parallel with

respect to ∇. This means that T is torsion-free with respect to ∇, that

is Tor(U, T ) = Tor(T, U) = 0 for any vactor field U . Hence, by (2.19)

and (2.27) we deduce

Tor(U, V ) = 〈U, JV 〉T (2.29)

iv) Equations (2.19), (2.25) and (2.27) also implies

Tor(U, V ) = −[U, V ] (2.30)

v) Let R∇ be the curvature operator associated to the p.h. connection ∇.

equation (2.30) implies

R∇(U, V )W = ∇U∇VW −∇V∇UW −∇[U,V ]W = 0 (2.31)

for U , V , W left-invariant vector fields. This implies that the p.h.

connection ∇ is flat.

vi) If U and V are left-invariant, then J(V ) is also left-invariant and

∇U(JV ) = J(∇UV ) (2.32)

vii) As a consequence of the Koszul formula (2.3), the p.h. connection ∇
is related with the Levi-Civita one, D, by

2〈∇UV,W 〉 = 2〈DUV,W 〉+〈Tor(U, V ),W 〉−〈Tor(U,W ), V 〉−〈Tor(V,W ), U〉
(2.33)

We point out that (2.33) holds for any triple of vector fields U , V , W

belonging to the tangent bundle TH, not necessarly left-invariant or

with costant coefficients.
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2.3 Jacobi fields in H

In this section we want to describe the Jacobi fields in the Heisenberg

group. The same arguments are presented, in the Riemannian context, in

[8]. We start by proving an analytic property for the vector field associated

to the variation of curve which is a geodesic.

Lemma 2.36. Let γ : I → H be a geodesic of curvature c. Let γε be a

variation of γ given by horizontal curves parametrized by arc-length. Finally,

let U be the C1 vector field canonically associated by U = ∂γε/∂ε as in Lemma

2.11. Then the function

c〈U, T 〉+ 〈U, γ̇〉 (2.34)

is constant along γ.

Proof. First note that

γ̇(〈U, T 〉) = 〈Dγ̇U, T 〉+ 〈U,Dγ̇T 〉
(∗)
= 〈DU γ̇, T 〉 −

1

2
〈U, J(γ̇)〉

= U(〈γ̇, T 〉)− 〈γ̇, DUT 〉+
1

2
〈γ̇, J(U)〉

= U.0 +
1

2
〈γ̇, J(U)〉+

1

2
〈γ̇, J(U)〉

= 〈γ̇, J(U)〉

On the other hand, we have

γ̇(〈U, γ̇〉) = 〈Dγ̇U, γ̇〉+ 〈U,Dγ̇ γ̇〉
(∗)
= 〈DU γ̇, γ̇〉+ 〈U, cJ(γ̇)〉 = −c〈γ̇, J(U)〉

where in the last equality we used 0 = U.1 = U(|γ̇|2) = 2〈DU γ̇, γ̇〉, while

the starred equalities follows from [U, γ̇] = 0. Thus, γ̇(c〈U, T 〉 + 〈U, γ̇〉) =

c〈γ̇, J(U)〉 − c〈γ̇, J(U)〉 = 0

As in Riemannian geometry we may expect that the vector field associated

to a variation of a given geodesic by geodesics of the same curvature satisfies

a certain second order differential equation. In fact, we have
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Lemma 2.37. Let γε be a variation of γ by geodesics of the same curvature c.

Assume that the canonically associated vector field U is C2. Then U satisfies

Ü +R(U, γ̇)γ̇ − c(J(U̇) +
1

2
〈U, γ̇〉T ) = 0 (2.35)

where R denotes the Riemannian curvature tensor in (H, g) and U̇ = Dγ̇U ,

Ü = Dγ̇Dγ̇U .

Proof. As any γε is a geodesic of curvature c, we have Dγ̇ε γ̇ε − cJ(γ̇ε) = 0.

Deriving with respect to U and taking into account that DUDγ̇ γ̇ = Dγ̇DU γ̇+

R(U, γ̇)γ̇ +D[U,γ̇]γ̇ and that [U, γ̇] = 0, we deduce

0 = DUDγ̇ γ̇ − cDUJ(γ̇) = Dγ̇DU γ̇ +R(U, γ̇)γ̇ − cDUJ(γ̇)

= Dγ̇Dγ̇U +R(U, γ̇)γ̇ − cDUJ(γ̇)

Now we need to compute DUJ(γ̇). To do this, we first observe that from

(2.5) we have

D2
X,Y T = DXDY T −DDXY T = 0

D2
X,XT = DXDXT −DDXXT = −1

2
DXY = −1

4
T

D2
Y,Y T = DYDY T −DDXXT =

1

2
DYX = −1

4
T

where D2
W,Z := DWDZ − DDWZ is the second covariant derivative (see [8],

Chapter III, §A). This implies for W and Z arbitrary vector fields, of which

at least one horizontal, that

D2
W,Z = −1

4
〈W,Z〉T

As a consequence the calculation of DUJ(γ̇) is quite easy. Indeed

DUJ(γ̇) = −2DUDγ̇T = −2DDU γ̇T − 2D2
U,γ̇T = J(DU γ̇) +

1

2
〈U, γ̇〉T

Setting Dγ̇U = U̇ , Dγ̇Dγ̇U = Ü and combining the results obtained above

we effectively have (2.35)
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Definition 2.38. We call (2.35) the Jacobi equation for geodesics in H of

curvature c. Any solution of (2.35) is a Jacobi Field along γ.

Remark 2.39. Among all the Jacobi fields, we want to quickly describe the

tanget ones. That is, U = fγ̇ is a Jacobi field if and only if

f̈ γ̇ + cḟJ(γ̇) = 0, (∗)

where f is a real valued function. Indeed, remembering that R(W,W ′)Z =

DWDW ′Z − DW ′DWZ − D[W,W ′]Z, it is not difficult to see (it is just quite

long) that if (*) holds, then U = fγ̇ satisfy (2.36). Conversely (2.36) with

U = fγ̇ gives (*). Thus, any tangent Jacobi field to γ is of the form (as+b)γ̇,

with a = 0 when c = 0.

We want now to rewrite the Jacobi equation for H’s geodesics in terms

of the p.h. connection ∇. Since ∇ is flat (Remark 2.35), the cuvature tensor

will disappear in the new Jacobi equation. Furthermore, we want to remove

the hypothesis of costant curvature for the variation of geodesics. Let us

start with the following

Lemma 2.40. Let γ be an horizontal path in H. Then we have

Dγ̇ γ̇ = ∇γ̇ γ̇ (2.36)

Proof. It is sufficient to prove that 〈Dγ̇ γ̇ − ∇γ̇ γ̇,W 〉 = 0, for W = X, Y, T .

We prove the statement with W = X and the check is similar with Y and T .

Since γ is horizontal, we know γ̇ = aXγ + bYγ (see Definition 1.12).

Moreover, for U and V left-invariant vector fields and f , g C∞ functions we

have Now, replace both U and V with γ̇ and W with X in (2.33). It follows

〈Dγ̇ γ̇ −∇γ̇ γ̇, X〉 = 〈Tor(γ̇, X), γ̇〉 (2.37)

Actually (2.37) make sense only if X is calculated along γ, being γ̇ a vector

field along γ. Hence by (2.30) we have

Tor(γ̇, Xγ) = −[aXγ + bYγ, Xγ] = −bTγ = −bT

which implies the right hand side of (2.37) is equal to b〈T,X〉 = 0.
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Remark 2.41. As a consequence of Lemma 2.40 and Proposition 2.12 we have

that an horizontal curve γ is a geodesic of curvature c if and only if it satifies

∇γ̇ γ̇ − cJ(γ̇) = 0 (2.38)

That is, it is indifferent to describe the equation of a geodesic by using the

Levi-Civita connection D or the p.h. one ∇.

Thus, to obtain the Jacobi equation (of constant curvature) for the p.h.

connection it is sufficient to repeat exactly the same steps made to get Lemma

2.37, but with∇ instead of D. As a result we will not have the term involving

the curvature tensore, but one involving the torsion will appear.

So we move in a similar way as in Lemma 2.36, but this time we consider a

variation of geodesics γε of a geodesic γ having no constant curvature. Hence

each curve of the variation {γε} has curvature c(ε)/|γ̇ε| and costant speed.

In other words, we have

∇γ̇ε γ̇ε − c(ε)J(γ̇ε) = 0 (2.39)

Let Uε = ∂γε/∂ε the deformation vector field as in Lemma 2.11. Differenti-

ating (2.39) along Uε we obtain

∇Uε∇γ̇ε γ̇ε − c′(ε)J(γ̇ε)− c(ε)J(∇Uε γ̇ε) = 0 (2.40)

since ∇Uεc(ε) = ∂c(ε)/∂ε = c′(ε) and also thanks to (2.32). Using the sub-

Riemannian curvature tensor associated with ∇, which is null, we get

∇Uε∇γ̇ε γ̇ε = R∇(Uε, γ̇ε)γ̇ε +∇γ̇ε∇Uε γ̇ε +∇[Uε,γ̇ε]γ̇ε = ∇γ̇ε∇Uε γ̇ε

being also [Uε, γ̇ε] = ∂ε∂sγ − ∂s∂εγ = 0. Involving now the torsion, by (2.29)

we have

∇γ̇ε∇Uε γ̇ε = ∇γ̇ε∇γ̇εUε +∇γ̇ε(Tor(Uε, γ̇ε)) = ∇γ̇ε∇γ̇εUε +∇γ̇ε(〈Uε, J(γ̇ε)〉T )

As a last step, the Leibnitz rule implies

∇γ̇ε(〈Uε, J(γ̇ε)〉T ) = γ̇ε〈Uε, J(γ̇ε)〉T + 〈Uε, J(γ̇ε)〉∇γ̇εT = γ̇ε〈Uε, J(γ̇ε)〉T
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where in the last equality we have exploit ∇γ̇εT = 0. Thus, collecting all the

pieces, equation (2.40) becomes

∇γ̇ε∇γ̇εUε − c(ε)J(∇γ̇εUε)− c′(ε)J(γ̇ε) + γ̇ε〈Uε, J(γ̇ε)〉T = 0

Evaluating at ε = 0 we obtain the Jacobi equation along the geodesic γ, that

is

∇γ̇∇γ̇U − cJ(∇γ̇U)− c′J(γ̇) + γ̇〈U, J(γ̇)〉T = 0 (2.41)

where c = c(0) is the curvature of γ and c′ = c′(0). Equation (2.41) can also

be written, to lighten the notation, as

Ü − cJ(U̇)− c′J(γ̇) + γ̇〈U, J(γ̇)〉T = 0 (2.42)

where we have set, naturally, Ü = ∇γ̇∇γ̇U and U̇ = ∇γ̇U .

Remark 2.42. By observing the equation just obtained, we notice that the

noncostance of the curvature of the geodesic variation {γε} had caused only

the presence of the term c′J(γ̇) in (2.42). Hence, the equivalent of (2.35) in

terms of the p.h. connection ∇ is

Ü − cJ(U̇) + γ̇〈U, J(γ̇)〉T = 0 (2.43)

Equation (2.43) is the Jacobi equation for geodesics in H of curvature c with

respect to the p.h. connection ∇.

Remark 2.43. Similarly to Remark 2.42, the Jacobi equation (of noncostant

curvature) with respect to the Levi-Civita connection D will be

Ü +R(U, γ̇)γ̇ − c′J(γ̇)− c(J(U̇) +
1

2
〈U, γ̇〉T ) = 0 (2.44)

where R is the curvature tensor of D. In other words, passing from the

connection ∇ to the connection D for writing the Jacobi equations, the term

R(U, γ̇)γ̇ − c
2
〈U, γ̇〉T is trasformed into γ̇〈U, J(γ̇)〉T .

The solutions of equation (2.42) can be explicitly computed in H. We

first need a small preliminary result
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Lemma 2.44. Let γ : R→ H be a geodesic in H with curvature c and let V

be a left-invariant vector field. Then

d

ds
〈γ̇(s), Vγ(s)〉 = c〈γ̇(s), JVγ(s)〉

d

ds
〈γ̇(s), JVγ(s)〉 = −c〈γ̇(s), Vγ(s)〉

(2.45)

where s is the arc-length parameter of γ. In particular

〈γ̇(s), Vγ(s)〉 = 〈γ̇(0), Vγ(0)〉 cos(cs) + 〈γ̇(0), JVγ(0)〉 sin(cs)

〈γ̇(s), JVγ(s)〉 = −〈γ̇(0), Vγ(0)〉 sin(cs) + 〈γ̇(0), JVγ(0)〉 cos(cs)
(2.46)

Moreover, if V is a left-invariant vector field so that Vγ(0) = γ̇(0) then

γ̇(s) = cos(cs)Vγ(s) − sin(cs)JVγ(s) (2.47)

Proof. The system (2.45) is obtained from the geodesic equation (2.38) tak-

ing into account that left-invariant vector fields in H are parallel for the

pseudohermitian connection. Then it follows (2.46) and, in turn, also (2.47).

Now we compute explicitly the Jacobi fields along a given sub-Riemannian

geodesic. Let us introduce the following notation: if v ∈ TPH, then vl is the

only left-invariant vector field such that (vl)P = v.

Lemma 2.45. Let γ : R → H be a sub-Riemannian geodesic of curvature

c parameterized by arc-length, and let U be a Jacobi field along γ satisfying

equation (2.42). Then U is given by U(s) = Uh(s) + λ(s)Tγ(s), where Uh and

λ satisfy the equations:

Üh − cJ(U̇h)− c′JU = 0 (2.48)

λ̇ = −b, where b = 〈U, J(γ̇)〉 (2.49)

Moreover, Uh is given by

Uh(s) = [Uh(0)l]γ(s) +
sin(cs)

c
[U̇h(0)l]γ(s) −

1− cos(cs)

c
[J(U̇(0))l]γ(s)

+ c′
(
cs− sin(cs)

c2
γ̇(s) +

1− cos(cs)

c
J(γ̇(s))

) (2.50)
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where we have used the following notation: if v ∈ TPH, then vl is the only

left-invariant vector field such that (vl)P = v.

Proof. See [15], Lemma 2.3. As already mentioned in the proof of Lemma

2.11, one need some attention to the different parametrizations of the Heisen-

berg group.

Remark 2.46. Suppose U is a Jacobi field along a geodesic γ associated to

a variation by arc-length parameterized curves. Then γ itself is arc-length

parameterized, so

0 =
1

2
U |γ̇|2 =

1

2
U〈γ̇, γ̇〉 =

1

2
(〈∇U γ̇, γ̇〉+ 〈γ̇,∇U γ̇〉) = 〈∇U γ̇, γ̇〉

= 〈∇γ̇U + Tor(U, γ̇), γ̇〉 = γ̇〈U, γ̇〉 − 〈U,∇γ̇ γ̇〉 = γ̇〈U, γ̇〉 − c〈U, J(γ̇)〉,

where c is the curvature of the geodesic γ and 〈Tor(U, γ̇), γ̇〉 = 0 thanks to

(2.19). Hence,

γ̇〈U, γ̇〉 − c〈U, J(γ̇)〉 = 0 (2.51)

Moreover, using equations (2.49) and (2.51), we obtain

γ̇〈U, γ̇〉+ cγ̇〈U, T 〉 = 0 (2.52)

This means 〈U, γ̇ + cT 〉 is constant along γ.

Lemma 2.47. Let γ : R → H be a geodesic of curvature c. Consider a

Jacobi field U along γ given by

U(s) = a(s)γ̇(s) + b(s)J(γ̇(s)) + d(s)Tγ(s) (2.53)

Assume that the variation associated to U consists of arc-length parameterized

geodesics, then the functions a, b, d, satisfy the differential equations

ȧ− cb = 0

b̈+ cȧ− c′ = 0

ḋ+ b = 0

(2.54)
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Proof. Take a Jacobi field U as in (2.53). It is always possible to write a

Jacobi field in such a way because γ̇ and J(γ̇) are horizontal and orthogonal

and so they form, together with T , a basis for the vector fields along γ.

We want to rewrite (2.42) for U in terms of a, b and d, so we derive (2.53)

along γ. By (2.32), (2.38) and ∇γ̇T = 0 we get

U̇ = ∇γ̇U = ȧγ̇ + a∇γ̇ γ̇ + ḃγ̇ + bJ(∇γ̇ γ̇) + ḋT

= ȧγ̇ + acJ(γ̇) + ḃγ̇ + bcJ2(γ̇) + ḋT

= ȧγ̇ + acJ(γ̇) + ḃγ̇ − bcγ̇ + ḋT (∗)

and (here we obmit all the passages)

Ü = ∇γ̇∇γ̇U = ∇γ̇(∗) = äγ̇ + 2cȧJ(γ̇)− c2aγ̇ + b̈J(γ̇)− 2cḃγ̇ − c2bJ(γ̇) + d̈T

Now we compute

Ü − cJ(U̇) = (ä− c2a− 2cḃ+ c2a+ cḃ)γ̇ + (b̈+ 2cȧ− c2b− cȧ+ c2b)J(γ̇) + d̈T

= (ä− cḃ)γ̇ + (b̈+ cȧ)J(γ̇) + d̈T

and

γ̇〈U, J(γ̇)〉 = 〈U̇ , J(γ̇)〉 − c〈U, γ̇〉 = ac+ ḃ− ac = ḃ

from which (2.42) becomes

(ä− cḃ)γ̇ + (b̈+ cȧ− c′)J(γ̇) + (d̈+ ḃ)T = 0

This prove the second equation of (2.54), while the first and the third one

are weaker than we wanted.

The stronger equation ä− cḃ follows by (2.51), while to get the third one

we differetiate

ḋ = γ̇〈U, T 〉 = 〈∇γ̇U, T 〉 = 〈∇U γ̇ + Tor(γ̇, U), T 〉 = −〈J(γ̇), U〉 = −b
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Corollary 2.48. Let γ and U as in Lemma 2.47. Then d(s) = 〈U(s), Tγ(s)〉
satisfies

...
d + c2ḋ− c′ = 0 (2.55)

In particular,

d(s) = d(0) + ḋ(0)
sin(cs)

c
+ d̈(0)

1− cos(cs)

c2
+ c′

cs− sin(cs)

c3
(2.56)

Proof. It is a direct consequence of the previous Lemma and (2.52). For a

little more detailed arguments see [15], Corollary 2.6.

Remark 2.49 (!). We want to give an improvement of Remark 1.8. That

is, we want to collect all the basic results obtained until now in function of

different parametrizations of H, depending on a real parameter α.

i) We have seen right in Remark 1.8 that the group product is given by

(z, t) · (w, s) = (z + w, t+ s− αIm(zw)), α ∈ R (2.57)

and the left invariant vector fields X, Y and T are

X = ∂x − αy∂t, Y = ∂y + αx∂t, T = [X, Y ] = 2α∂t (2.58)

ii) The 1-form of which the horizontal vector fields are the kernel is given

by

ω = dt− α(xdy − ydx) (2.59)

In this way the Reeb vector field of ω is ∂t, that is ω(∂t) = 1.

iii) The endomorphism J is defined as

J(U) = − 1

|α|
DUT = − 1

α
DU∂t (2.60)

and then (2.5) becomes

DXX = 0 DXY = αT DXT = −αY

DYX = −αT DY Y = 0 DY T = αX

DTX = −αY DTY = αX DTT = 0

(2.61)



42 2. Geodesics in the Heisenberg group

iv) The geodesics’ equation is at the same time given by

Dγ̇ γ̇ − 2αcJ(γ̇) = 0 (2.62)

∇γ̇ γ̇ − 2αcJ(γ̇) = 0 (2.63)

As a consequence the analytic expression of a geodesic passing through

the origin is modified in

γ0,c,v =

(
eiφ

1− e−ics

ic
,−αcs− sin (cs)

c2

)
(2.64)

v) The Jacobi equations (2.44) and (2.42), derived respectively by (2.62)

and (2.63), remain the same, since the parameter α is contained in the

vector field T .

vi) Finally, we rewrite the Lemma 2.47. That is, if we take a Jacobi field

of the form U = aγ̇ + bJ(γ̇) + d, then the functions a, b and d satisfies

ȧ− 2αcb = 0

b̈+ 2α(cȧ− c′) = 0

ḋ+ 2αb = 0

(2.65)



Chapter 3

The distance funtion and the

cut locus

We are finally ready to study some fine properties of the distance func-

tion from a C2 suface in the Heisenberg group. Moreover, we are going to

investigate on the cut locus of such surfaces. Informally, it the set containing

maximal segments’ endpoints that minimize the distance to the surface. The

reason of the C2 regularity comes from the Riemannian context, as already

explained in the introductory part.

From now on, S will denote a surface in H. If it is not specified, we

suppose S satisfies this two hypothesis

H1. S is the boundary of an open and connected set Ω and of Hr Ω

H2. S is of class C2 in the Euclidean sense

The hypothesis H2 reflects what we have just said above, while the reason

of the assumption H1 will be soon clear, when we will need to give a sign to

the distance function (see Definition 3.1).

Almost all the topics we are going to discuss have been proved by Arcozzi

and Ferrari in [3]. It is the main work to which we refer the reader for this

chapter. For this reason we change the parametrization of the Heisenberg

group by choosing, according to Remark 2.49, α = −2. In this way we have

43
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the same representation of H as in [3]. More, the authors in [3] proved some

statements below with a little less restrictive hypothesis on the regularity of

the surface, assuming a C1,1 regularity.

These were the premises for this chapter. Now we can start giving the

definition of the distance (and the signed one) from a C2 surface

Definition 3.1. Let P be a point in H. We define the distance from P to S

as

dS(P ) = inf
Q∈S

dcc(P,Q) (3.1)

Thanks to H1, we can also define the so-called signed distance from P to S,

that is

δS(P ) =

−dS(P ), if P ∈ Ω

dS(P ), if P /∈ Ω
(3.2)

In Remark 2.16-(iv), we have underline as in the Heisenberg group there

are infinite geodesics having both the same starting point and the same initial

velocity. This leads to a serious problem. Indeed, in the Riemannian case

the normal geodesics to surface are unique and they determine (locally) the

set of minimal distance’s points the surface. Here, the normal geodesic to

a point P ∈ S is not uniquely determined by the normal vector to S at P .

So it is not clear which is the (locally) distance-minimizing geodesic which

minimizes (locally) the distance from S. Such a geodesic will be called the

metric normal.

We first need to introduce some new differential geometric notions about

S, which will be used to define right the metric normal to S.

Definition 3.2. Let P ∈ S. Then TPS denote the Euclidean tangent space

to S at P and ΠSP denote the Euclidean plane in H tangent to S at P in

the Euclidean sense. The direction tangent to S at P is VPS := TPS ∩ HP ,

while the direction normal to S at P is NPS := HP 	 VPS. Finally let ν

be the Euclidean exterior normal to S at P and let 〈·, ·〉 be the Euclidean

inner product. The Pansu exterior normal to S at P , denoted by N+
P S, is

the unique vector v ∈ NPS such that 〈v, ν〉 > 0.
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Remark 3.3. The directions tangent and the direction normal to S can be

easly determined when the surface S is described implicitly by a function.

Indeed, if S is implicitly defined by g(x, y, t) = 0 we have

VPS = span{(Y g)X − (Xg)Y }, NPS = span{∇Hg} (3.3)

Definition 3.4. A point C ∈ S is said to be characteristic if TCS = HC .

We denote by Char(S) the set of all characteristic points of S.

Remark 3.5. Each Euclidean plane P of the form t = ax+ by+ c, a, b, c ∈ R,

has one and only one characteristic point, which is

C = (−b/2, a/2, c). (3.4)

Indeed the tangent space of P at (x, y, t) is spanned by (1, 0, a) and (0, 1, b).

They are both horizontal iff a = 2y and b = −2x. Any other Euclidean

plane which is not of this form, has equation ax + by + c = 0. Such a plane

is called vertical and has no characteristic points. Sometimes, with a slight

abuse of notation, we said that a vertical plane P has characteristic point C

at infinity and that dcc(P,C) =∞ for all P ∈ P .

We are now ready to define the metric normal to the surface S, that is

Definition 3.6. Let P ∈ S. The metric normal to S at P , denoted by NPS,

is the set of the points Q ∈ H such that dSQ = dcc(Q,P ).

Note that from the very definition, a point Q ∈ NPS, Q 6= P , cannot

belong to S, otherwise we should have 0 = dSQ = dcc(Q,P ) > 0 and it

is impossible. So the metric normal describes which points of H r S are

“closest” to the points of S.

Similarly for P,Q ∈ S, one can ask what is the fastest path to go from P

to Q staying within S. This is in a certain sense the sub-Riemannian metric

“induced” in S by the sub-Riemannian one gH (Remark 1.21) of H. It is a

very interesting problem, but it goes beyond what we intend to deal with

in this thesis. For our purposes, in fact, we will only need to study a few

situations concerning the induced metric and only if S is a plane.
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Remark 3.7. If the distance between two pionts of S is realized by a geodesic

γ of H, as a consequence of Definition 3.2 it needs γ̇(0) ∈ VPS.

Example 3.8. Let’s compute VPS and NPS if S is the plane t− ax− by −
c = 0, a, b, c ∈ R and P ∈ S is the point P = (zP , tP ) = (xP , yP , tP ) =

(xP , yP , axP + byP + c). We use the results given by Proposition 3.3.

g(x, y, t) = t− ax− by − c

Xg(P ) = −a− 2yP , Y g(P ) = −b+ 2xP

XP = (1, 0,−2yP ), YP = (0, 1, 2xP )

By (3.4) the S’s characteristic point is C = (−b/2, a/2, c). Then we have

C − P =
1

2
(b− 2xP ,−a− 2yP ,−2axP − 2byP )

NPS = span{Xg(P )XP + Y g(P )YP} = span{(yC−P ,−xC−P , tC−P + 2|zP |2)}

VPS = span{Xg(P )YP − Y g(P )XP} = span{C − P}

Lemma 3.9. Let S be the plane t−ax−by−c = 0, a, b, c ∈ R, with character-

istic point C = (−b/2, a/2, c). Let P = (xP , yP , tP ) ∈ S be noncharacteristic.

Then the CC distance between P and the characteristic point C of S is

dcc(P,C)2 = |xP +
b

2
|2 + |yP −

a

2
|2 (3.5)

that is the Euclidean distance between the projections of P and C in C.

Proof. VPS = span{C − P}, then the Euclidean segment joining C and P

is an H’s geodesic. Its length is the Euclidean length of the projection in

C.

For example the C-plane in H has the origin as a characteristic point. So,

Lemma 3.9 tells us something we already know: the planar geodesics passing

through the origin are straight lines and the distance between 0 and a point

in C is the Euclidean one.

Note that Definitions 3.2 and 3.6 remain the same for any closed subset

E of H. The results below gives a first geometic description of NPS and

explain why we have introduced the notions of Definitions 3.2 and 3.4.
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Lemma 3.10. Let E be a closed subset of H and let P ∈ E. Let Q ∈ NPE
and γ : I → H be a length minimizing geodesic from P to Q, with I ⊂ R an

interval. Then γ(I) ⊂ NPE.

Proof. Let A be any point in γ, then dS(A) ≤ d(A,P ). By absurd take a P ′

in S such that d(A,P ′) < d(A,P ). Then, by the triangle inequality, we have

d(Q,P ′) ≤ d(Q,A) + d(P ′, A) < d(Q,A) + d(P,A) = d(Q,P )

contradicting Q ∈ NPE.

Since any surface is a closed set, then Lemma 3.10 holds for S. Hence,

as we expected, for each P ∈ S, there is effectively a normal geodesic to S

at P , among the infinite normal ones, which locally minimize the distance of

points of H from P . However, Lemma 3.10 is still a weak result concerning

the metric normal of S. Indeed, we will soon have an improvement of this

fact: we are going to prove that the metric normal to S at P coincides with

the metric normal to ΠPS at P , where ΠPS is the Euclidean tangent plane

to S at P as in Definition 3.2. This is a fundamental fact because we are

able to give an explicit expression of the metric normal to a plane, thanks to

the following statements.

Theorem 3.11. Let P be a plane in H and let P ∈ P be non-characteristic.

If P has a characteristic point C and Ω is one of the half-spaces having P
as boundary, then

NPP = γP, 2
dcc(P,C)

,N+
P P

([
−π

2
dcc(P,C),

π

2
dcc(P,C)

])
(3.6)

and NCP = {C} is degenerate. If P is a vertical plane, then NPP is the

straight geodesic through P , in the direction NPP.

Proof. See [3], §3, Theorem 3.1.

The following picture shows the geometic meaning of the metric normal

to a point P of a plane P when P is noncharacteristic for P (when P is

characteristic for P there is nothing to explain)
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First, we consider the characteristic point C of P and the orthogonal axis

to P passing through C. Then we take the unique CC ball which center

belong to such axis and which is tangent to P at P . Thus, the metric normal

is the geodesic joining P with the center of the ball.

By Theorem 3.11 and (2.13) we have an explicit expression for the metric

normal to a plane.

Proposition 3.12. The metric normal to P = {t = 0} at P = (z, t), z =

x+ iy, is the support of the geodesic arc

γP (σ) = (w(σ), s(σ)) =

(
1

2
z(1 + e−icσ),

|z|2

2
(cσ + sin(cσ))

)
(3.7)

with c = 2/|z| and |σ| ≤ π/c.

Observe that by (3.7) we have|w(σ)| = |z|(1 + cos(cσ))

s(σ) = |z|2
2

(cσ + sin(cσ))
(3.8)

which is, for σ fixed, |σ| ≤ π/c, a parametrization of the set of points having

distance σ from P = t = 0.

Theorem 3.13. Let P ∈ S be noncharacteristic and let ΠPS be the Eu-

clidean tangent plane to S at P . Then NPS is a nontrivial geodesic arc
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having endpoints in Ω and HrΩ. Moreover, NPS∩NPΠPS is an nontrivial

geodesic arc containing P .

Proof. See [3], §4, Theorem 4.1.

The geometic construction of the metric normal to a surface is the same

as in the case of a plane. Here, the plane we need to consider is just the

Euclidean tangent one at P to the surface S

So we have an explicit expression for the metric normal to S at each of its

points, given by Theorems 3.11, 3.12 and 3.13. This is the starting point for

the definition of the exponential map of S: informally it is the map moving

each point P of S along its metric normal.

Definition 3.14. Let P ∈ S. The oriented metric normal to S at P , denoted

by N+
P S, is the unique parametrization of NPS such that δS(N+

P S(σ), P ) =

σ, ∀σ ∈ D(NPS(σ)).

This means that, if N+
P S is nontrivial, N+

P S(σ) ∈ Ω for σ < 0, N+
P S(σ) ∈

Hr Ω for σ > 0 and N+
P S(0) = N+

P S.
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Now if C is characteristic for S, then by Theorems 3.11 and 3.13 we have

NCS = N+
C S = {C}.

Viceversa, suppose that P ∈ S is noncharacteristic and that, locally near

P , S has equation g(x, y, t) = 0, where g : H → R is C2 in the Euclidean

sense (according to H2) and ∇g 6= 0 pointwise on S. The Euclidean tangent

plane to S at P , ΠPS, has equation

∂xg(P )(x− xP ) + ∂yg(P )(y − yP ) + ∂tg(P )(t− tP ) = 0 (3.9)

If ∂tg(P ) 6= 0, thanks to (3.4) we know the explicit expression of the

characteristic point C of ΠPS. Then by Definition 3.2, Example 3.8 and

Lemma 3.9, by a direct calculus we have

dcc(P,C) =
|∇Hg(P )|
2|∂tg(P )|

(3.10)

and

N+
P S =

∇Hg(P )

|∇Hg(P )|
(3.11)

Here ∇Hg(P ) 6= 0 since P in noncharacteristic. So Theorems 3.11 and 3.13

allow us to write N+
P S in terms of g’s partial derivatives: N+

P S(σ) = P ·η(σ),

where

η(σ) =

(
eiφ

1− e−icσ

ic
, 2
cσ − sin(cσ)

c2

)
(3.12)

and c = 4∂tg(P )/|∇Hg(P )|, cosφ = Xg(P )/|∇Hg(P )|, sinφ = Y g(P )/|∇Hg(P )|.
If ∂tg(P ) = 0, then ΠPS is a vertical plane, with characteristic point at

infinity. Then dcc(P,C) =∞ and (3.12) becomes

η(σ) = (eiφσ, 0) (3.13)

Definition 3.15. Let C := {(P, s) : P ∈ S, s ∈ D(N+
P S)} ⊂ S × R. The

exponential map associated with S is the map

expS : C → H, expS(P, s) := N+
P S(s) (3.14)

We call this map exponential because it extends the notion of exponential

map of Riemannian manifolds. Clearly, using a slight abuse of notation,
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S = S×{0} ⊂ C and expS(P, 0) = P , ∀ P ∈ S. Then {expS(P, 0)| P ∈ S} =

expS(S, 0) = S.

If we define

Unp(S) := {P ∈ H : ∃! Q ∈ S s.t. dS(P ) = dcc(P,Q)} (3.15)

then we have

Theorem 3.16. The map expS is an homeomorphism of int(C) onto an open

subset of int(Unp(S)). Moreover, S ∩ int(Unp(S)) = S ∩ expS(int(C)).

Proof. See [3], §5, Theorem 5.2.

Actually, we are able to improve Theorem 3.16. Indeed, it is not dif-

ficult to show that expS is a diffeomorphism in an open neighborhood of

Srchar(S). To do this suppose that P ∈ S is noncharacteristic and that U ⊂
S is an open neighborhood of P free of characteristic points, parametrized

by

U = {(u, v, f(u, v)) : (u, v) ∈ A}. (3.16)

Here A ∈ C is open and f : A → H is C2. In particular P is described by

P = (uP , vP , f(uP , vP )). Moreover the map

F : A× R→ H, F (u, v, τ) := expS((u, v, f(u, v)), τ) (3.17)

is an expression of expS in local coordinates and we have

Lemma 3.17. The matrix representing JF (u, v, 0) with respect to the basis

{∂u, ∂v, ∂τ} of A× R and the basis {X, Y, ∂t} of H is
1 0 Xf

|∇Hf |

0 1 Y f
|∇Hf |

−Xf −Y f 0

 (3.18)

Here we have denoted Xf = Xg and Y f = Y g with g(u, v, t) = t− f(u, v).
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Sketch of proof. The main fact is that from (3.12) we can get an explicit

expression of the map F . To do this, we fix the coordinates (z, t) = (x, y, t)

and (z′, t′) = (x′, y′, t′) for H and the coordinates (u, v, τ) = (u + iv, τ) =

(w, τ) for A× R. By (3.12) we obtain

(z, t) = F (u, v, τ) = N(u,v,f(u,v))S(τ) = (u+ iv, f(u, v)) · η′(τ), (3.19)

where

η′(τ) = (z′(τ), t′(τ)) =

(
1

4
(1− e−icτ ), |∇Hf |2

8
(cτ − sin(cτ))

)
(3.20)

and c = 4/|∇Hf |. Actually z′(τ) = z′(u, v, τ), since z′ contain f in its

expression. So

(z, t) = (u+ iv + z′, t′ + f + 2Im((u+ iv)z′)). (3.21)

Then to complete the proof of Lemma 3.17, just calculate the deivatives of F .

We obmit such calculations, since they are very long and boring. However,

the reader can be found them at [3], §6, Lemma 6.5.

As a consequence of Lemma 3.17 we are able to calculate

|JF (u, v, 0)| = (Xf)2 + (Y f)2

|∇Hf |
= |∇Hf | = 2

|∇Hf |
2|∂tg|

= 2dcc(P,C)

where in the last two equalities we have used that ∂tg = 1 and (3.10). This

shows that |JF (u, v, 0)| = 2dcc(P,C) 6= 0, where C is the characteristic point

of ΠPS. Then we have the desired improvement of Theorem 3.16.

Remark 3.18. The explicit expression of the exponential map in local coor-

dinates shows that the map F (u, v, t) is of class C1, because it contains some

partial derivatives of f , which is a C2 function by hypothesis. Hence, the

evolute of SrChar(S) along the exponential map is, at least for small times,

still a surface of class C1. This Remark will be useful in the next section.

From Lemma 3.17 and some other number of Lemmata (see [3], §6) it

follows
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Theorem 3.19. If S is Ck in the Euclidean sense, k ≥ 2, then δS and

∇HδS are of class Ck−1 in the Euclidean sense, in an open neighborhood of

S r Char(S).

Proof. See [3], §6, Theorem 6.1.

In particular, according to our hypothesis H1 and H2, we will always have

that δS and ∇HδS are at least of class C1.

3.1 The cut locus and our partial results

Now we are ready to define the cut locus of S. Moreover, we present some

partial results we have obtained on the exponential map. We think that such

results could be the starting point for a proof of the closure of the cut locus

of S.

Definition 3.20. Let P ∈ S and define Q ∈ Ω to be the endpoint, other

than P , of NPS. When NPS reduces to the only point P , we set Q = P .

The set of such points Q as P varies over S, denoted by KS or cut(S), is

the cut locus of S in Ω. The definition of the cut locus of S in Hr Ω is the

same, with Q ∈ (Hr Ω).

In other words cut(S) is the set of the metric normals’ endpoint of S.

Below KS denote the cut locus of S in Ω and NPS refers to the portion of

metric normal at P which lies in Ω.

Proposition 3.21. The cut locus KS of S has the following properties

i) KS has empty interior

ii) Char(S) ⊂ KS and each characteristic point of S is an accumulation

point of KS

iii) Let R ∈ (HrKS). Then there is a unique geodesic γ from R to S such

that LH(γ) = dS(R), i.e. Unp(S) ⊂ KS
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Proof. See [3], §7, Propositions 7.1 and 7.2.

As we have said at the beginning of this paper, we think that KS is a

closed subset of H, but we are still unable to prove it. The first step we have

taken is to find a link between the exponential map associated with S and

the cut locus KS: clearly, by (iii) of Proposition 3.21, the exponential map

is differentiable in an open subset of HrKS. So we define

Definition 3.22. Let (P, s) ∈ C such that expS is not a local diffeomorphism

around (P, s) and, ∀ 0 < ε ≤ s, expS is a local diffeomorphism around

(P, s− ε). Then we call expS(P, s) conjugate point of S (or S-conjugate).

For example, characteristic points of S are conjugate points of S. We use

the name “conjugate” for the similarity that is noted with the Riemannian

case. The next Lemma gives a limit condition in order that a point of H is

S-conjugate.

Lemma 3.23. Let Sτ denote the surface expS(S, τ). Let P ∈ S be non-

characteristic and suppose that there is a σ > 0 such that expS(P, σ) is

characteristic for Sσ. Then expS(P, σ + ε) can not be S-coniugate, ∀ ε > 0.

Before giving the proof we need some preparation. Suppose that A is an

open subset of C and that S has implicit equation, around a noncharacteristic

point P

S = {(α(u, v), β(u, v), γ(u, v)) : (u, v) ∈ A} (3.22)

We want compute the tangent plane, ΠPS, of S at P and the distance be-

tween P and the characteristic point C of ΠPS.

Since P ∈ S, we can write P = (α(u, v), β(u, v), γ(u, v)). So the tangent

plane is given by ∣∣∣∣∣∣∣∣
x− α y − β t− γ
αu βu γu

αv βv γv

∣∣∣∣∣∣∣∣ = 0 (3.23)

Equation (3.23) becomes

t =
1

αuβv − αvβu
((γuβv − γvβu)(x− α) + (αuγv − αvγu)(y − β) + γ) (3.24)
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if αuβv − αvβu 6= 0, while we have the vertical plane

(γuβv − γvβu)(x− α) + (αuγv − αvγu)(y − β) = 0 (3.25)

if αuβv − αvβu = 0. In (28) the characteristic point is

C =
1

2(αuβv − αvβu)
(αvγu − αuγv, γuβv − γvβu, c) (3.26)

where c contains everything that in (28) does not multiply x and y. The

distance between P and C is (in the nonvertical case)

dcc(P,C)2 =

(
α +

αuγv − αvγu
2(αuβv − αvβu)

)2

+

(
α +

βuγv − βvγu
2(αuβv − αvβu)

)2

(3.27)

Proof of Lemma 3.24. We denote Pτ := expS(S, τ) and we use the same no-

tations of Lemma 3.17. Then we have a local parametrization of S around

P of the type (u, v, f(u, v)), with (u, v) ∈ A ⊂ C. Since expS is a local

diffeomorphism, we can restrict A just enough to have Sτ of class C1 for all

τ . This allow us to derive F at each time τ .

Let τ > 0 be fixed and suppose that ΠPτSτ is nonvertical. This is sure

possible for a certain time τ < σ, otherwise we have that the distance from

Pτ and the characteristic point of ΠPτSτ should be∞ for all τ ≤ σ. But this

contradicts our hypothesis. With these assumptions the parametrization of

Sτ is as in (3.22), with α = u+ x′, β = v+ y′ and γ = t′. Then the Jacobian

of the map F at the time τ is

JF (u, v, τ) =


1 + x′u x′v x′τ

y′u 1 + y′v y′τ

t′u t′v t′τ

 (3.28)

and

|JF (u, v, τ)|
(1 + x′u)(1 + y′v)− x′vy′u

=x′τ
y′ut
′
v − t′u(1 + y′v)

(1 + x′u)(1 + y′v)− x′vy′u
+

+ y′τ
x′vt
′
u − t′v(1 + x′u)

(1 + x′u)(1 + y′v)− x′vy′u
+ t′τ

(3.29)
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For τ = σ we have, by hypothesis, d(Pσ, C) = 0, where C is the characteristic

point of ΠPτSτ . So by (31) we have

y′ut
′
v − t′u(1 + y′v)

(1 + x′u)(1 + y′v)− x′vy′u
= −2(u+ x′) (3.30)

x′vt
′
u − t′v(1 + x′u)

(1 + x′u)(1 + y′v)− x′vy′u
= 2(v + y′) (3.31)

Putting (3.30) and (3.31) into (3.29) and calculating all the derivatives (the

explicit calculus is just made in [3], §6, proof of Lemma 6.5) we obtain

|JF (u, v, σ)| = 0.

Corollary 3.24. Let P be a point of S and suppose that Pτ is characteristic

for Sτ . Then Pτ is a conjugate point for the domain of F .

Proof. As in Lemma 3.17 one have |JF (u, v, τ)| = 2dcc(Pτ , Cτ ) for all τ < σ.

Here Cτ is the characteristic point of the tanget plane at the time τ . Indeed

we have seen that at the time τ , Sτ has a C1 implicit expression as in (3.22).

So we can restrict around the point Pτ to find an explicit expression of

the kind (u, v, f (τ)(u, v)). Then just repeat the proof of Lemma 3.17 by

replacing f with f (τ). Since we have supposed that the point expS(P, τ) is

noncharacteristic, the Jacobian of F must be other than 0 for all τ < σ. So

the characteristic points which S develops at a certain time σ (if they exist!)

are necessarly conjugate points of the domain of F .

Remark 3.25. The opposite implication in Corollary 3.24 is not necessarly

true. Indeed, if expS(P, τ) is a conjugate points of the domain of F , by

the inverse function Theorem we have |JF (u, v, τ)| = 0. But we are not

sure that Sτ is C1 in a neighborhood of Pτ ! So we cannot conclude that

|JF (u, v, τ)| = 2dcc(Pτ , Cτ ) = 0 (which would means the point expS(P, τ) is

characteristic for Sτ ) because we are not sure that Sτ admits a tangent plane

at Pτ .

So we need to explain what really happens to the conjugate points of S.

We start by the following
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Proposition 3.26. The evolution Sτ of S cannot develops any characteristic

points.

Proof. Suppose that Pτ is characteristic for Sτ . Consider an Heisenberg ball

B = B(P, τ) of radius τ and center in P having Pτ on its boundary. We

want to first show that Pτ is necessarly a pole of B. Suppose Pτ is not a pole

of B. Certainly, the surface Sτ cannot have any point in the interior of the

ball B, otherwise a point of Sτ would be reached in a shorter time than τ .

Since Pτ is characteristic for Sτ , the tangent plane ΠPτSτ is horizontal. But

the geodesic NPS can be extended for times longer than τ , because Pτ is not

a pole. Thus, the normal vector NPτSτ to Sτ at Pτ is horizontal too. This

is impossible because we would have a 3-dimensional horizontal space in Pτ .

Then the other chance for Pτ is to be a pole of B.

Since we have already seen that the surface Sτ cannot have any point in

the interior of the ball B, we can conclude that Sτ develops a singularity at

Pτ having the same behavior of the the pole of the CC ball B. Hence, Pτ

cannot be characteristic for Sτ .

Corollary 3.27. Let Pτ be a conjugate point of S. Then Sτ loses its regu-

larity of class C1 in Pτ .

Proof. If Sτ is C1 in a neighborhood of Pτ , then by Remark 3.25 the converse

of Corollary 3.24 holds. This means that Pτ needs to be characteristic for

Sτ . But it is impossible by Proposition 3.26.

Moreover, by the proof of Proposition 3.26, we have that the singularity

developed at Pτ has the same behavior as a CC ball’s pole.
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[17] M. Ritoré, C, Rosales. Area-stationary surfaces in the Heisenberg group

H1. Adv. Math. 219 (2008), no. 2, 633-671.

[18] N. Tanaka. A Differential Geometric Study on Strongly Pseudo-Convex

Manifolds. Kinokuniya Book-Store Co., Ltd, Tokyo (1975).


