
ALMA MATER STUDIORUM
UNIVERSITY OF BOLOGNA

SCHOOL OF ENGINEERING AND ARCHITECTURE

Second Cycle Degree in Automation Engineering

THESIS
in

Computer Vision and Image Processing

3D Object Recognition from a Single Image via Patch Detection

by a Deep CNN

CANDIDATE SUPERVISOR:
Francesco Taurone Chiar.mo Prof. Luigi Di Stefano

 ADVISORS
 Dott. Daniele De Gregorio

Dott. Alessio Tonioni

Academic year 2018/19
Graduation session I

To my family,

for supporting me.

Contents

Introduction 7

Abstract 9

1 Pose Recognition - State of the art 11

1.1 Examples of successful algorithms for 3D Pose Estimation 12

2 Development of the algorithm 17

2.1 Choice of the network . 17

2.1.1 What is Yolo . 18

2.2 Prototyping with a simple object - the raspberry box 19

2.3 The App to create datasets . 23

2.3.1 ARCore and its use . 23

2.3.2 The use of the app . 23

2.3.3 Issues and solutions . 27

2.4 3D models and keypoints identifications . 29

2.4.1 Blender - keypoints extraction with respect to the object 29

2.4.2 Keypoints with respect to camera 30

2.4.3 Projection on the image . 31

2.4.4 Patch creation for training . 32

3 The final pipeline 37

3.1 Description . 37

3.2 Test of the two components . 38

3.2.1 Datasets for testing . 38

3.2.2 Test Yolo . 38

3.2.3 Test Ransac PnP . 42

3.3 Results: Yolo and PnpRansac . 43

3.3.1 Training with multiple objects . 51

4 Conclusions 57

4.1 Further developments . 58

5

Introduction

Pose Recognition is the task of understanding the position and orientation of an object in

space with respect to a world reference frame by means of a series of pictures taken from

a camera. Therefore, the desired result is an estimation of the rototranslation from the

camera reference frame to the object reference frame, namely a description of the object

position and orientation with respect to the camera taking the pictures.

Pose recognition has proved to be a key element for many tasks involving computer

vision, since it is necessary whenever the task to be accomplished requires interactions

with objects.

As a matter of fact, there are many possible examples of use of pose estimation in

various contexts, such as:

• Industrial manipulators, that are required to grasp objects placed in random po-

sitions and orientations, which usually makes use of a camera on the end-effector.

Since the grasping points depend on the object itself, it is important to estimate

the pose of the object in order for the robot to handle it correctly.

• Augmented reality applications, for various contexts such as industry, gaming, etc.

It is key to recognize the surrounding environment, as well as the objects placed

therein.

• Quality control, to check the final position and orientations of goods at the end of

a production line.

• Physiology, to track the posture of human bodies for analysis, for rehabilitation,

etc.

This thesis targets the pose recognition of an object in space by using the recognition

of a series of patches in an image of the object, for which a Deep Network is trained. This,

together with the association between labels of the keypoints and their 3D coordinates

with respect to the object, allows the estimation of the pose in space. In order to cre-

ate the training dataset for the deep learning network, this thesis proposes an innovative

semi-automatic learning technique, adapted from previous theses for this particular task.

7

Abstract

This thesis describes the development of a new technique for recognizing the 3D pose of

an object via a single image. The whole project is based on a CNN for recognizing patches

on the object, that we use for estimating the pose given an a priori model. The positions

of the patches, together with the knowledge of their coordinates in the model, make the

estimation of the pose possible through a solution of a PnP problem. The CNN chosen

for this project is Yolo [10].

In order to build the training dataset for the network, a new approach is used. Instead

of labeling each individual training image as for the standard supervised learning, the

initial coordinates of the patches are propagated on all the other images making use of

the pose of the camera for all the pictures. This is possible thanks to the use of AR-Core

package by Google and a supported phone like the Pixel, upon which this thesis and

others have developed an app for keeping track of the pose of the phone while moving.

At this stage, this project is intended to recognize single objects in the space. It could

be generalized to recognize multiple objects as well.

In order to summarize the results achieved with this thesis, following is a brief de-

scription of the whole proposed pipeline to recognize the 3D pose of an object.

• Train the Net (Yolo):

1. Choose the keypoints and extract their coordinates:

In order to identify the keypoints on all the captured image, an initial set of

coordinates to be propagated is needed. For this thesis, a CAD of the object

has been used in order to measure the position of the chosen points of interest

to be tracked, but they could also be measured manually (in which case, for

the following steps involving CAD, a carefully placed cube can be used). The

choice of the keypoints is made by the user. The effect of the number of

keypoints to choose for each object , as well as the suggested characteristics,

are discussed in a specific section 2.2.

2. CAD of the object to be recognized :

It needs to be imported on the phone where the app for generating the dataset

is installed.

9

3D pose recognition via single image based on deep networks

3. Position the CAD in the App on the scene:

The app needs to be installed on the phone via APK. The phone needs to be a

ARcore supported device, in order to have a precise tracking while capturing.

The CAD is then asked by the app once launched, it needs to be positioned in

correspondence of the real object in the scene, so that they overlap.

4. Record and save the resulting files:

Once the recording button is pressed, a series of images is saved according to

the selected frame rate. For each image, the pose of the camera is saved in a

file. For each record, the initial position and orientation of the object are saved

on a file. These files are going to be used to generate the training dataset for

Yolo.

5. Generate the dataset:

Beside the images, in order to train Yolo there’s the need of a series of labels

for each image. This labels are generated automatically, since both the pose of

the camera with respect to the world and the pose of the object with respect

to the world are known. This assumes that the object is not moving while the

training set is generated, and that the camera is tracked quite precisely.

6. Train Yolo:

Once the positions and labels of each patch for each image have been generated,

the command to train Yolo can be launched.

• Recognize the pose of the object with the trained net for each image:

1. Detect the patches:

Running Yolo on each images, a set of patches is identified.

2. Get the position and orientation of the object:

Once the keypoints are identified, a PNP using ransac is launched. Since for

each label there is a correspondence between the detected keypoint and the

coordinates in the nominal model, namely the CAD, it is possible to retrieve

the pose of the object. The final result is therefore a translation vector and a

rotation matrix, that represent respectively the position and orientation of the

object with respect to the world.

This project has been developed using Python, for processing data and network train-

ing, Java for the android App.

The software used are PyCharm as IDE, Android Studio for the android app, Blender

for the 3D models and model reprojection on images, LabelImg for manual labeling in

the prototype, Putty for remote training of the Deep Network, Excel for data analysis.

10 Chapter 0 Francesco Taurone

Chapter 1

Pose Recognition - State of the art

Pose Recognition has quickly become a key element for all sorts of newer technologies

involving vision, since it is one of the basic tasks to be performed for most of augmented

reality applications (AR).

As analyzed in [1], this is a quite old problem, that has been solved in various ways

during the last 25 years. The first attempts made use of classic computer vision techniques

relying on markers, to be tracked during the motion of the camera. However, this approach

lacks flexibility, since these markers have to be attached to the object itself, which might

not always be possible.

For this and other reasons, markerless approaches started to become more popular

in the scientific literature. Since this thesis aims the estimation of poses of 3D object

without making use of markers, in the following a brief overlook at some of the most well

known approaches to markerless pose estimation.

Approaches to 3D pose recognition

Some of the most common approaches for dealing with pose recognition are:

• Known 3D model: the idea is to fit in the best way a known 3D model of the object

to be analyzed in the scene. This makes use of techniques like P3P, using 3 points, or

PnP, with n points, with or without RANSAC (Random Sample Consensus) to deal

with outliers. Alternatives to RANSAC are M-estimators, which are generalized

versions of Maximum likelihood and Least squares. One of the most common setup

is indeed Pnp without any initialization (EPnp) alongside RANSAC, that is the

approach used in the thesis.

• Match low level features: since each object has some key elements that our brain

perceives as unique and characteristic, the some idea is translates in computer vision

as keypoint matching. These features have to be extracted from the model first,

then paired with the keypoints in the image basedon a descriptor. These pairs make

the pose estimation possible.

11

3D pose recognition via single image based on deep networks

There are indeed many proposed methods for the automatic extraction of features

and the relative descriptors. Beside SIFT [2], which was a major breakthrough for

2D points matching, SURF and FAST are some of the most successful and recent

feature extraction algorithms available to the scientific community, especially for

AR applications. For building the descriptors instead, many methods have been

proposed and compared for computational efficiency and result effectiveness once

matching is performed.

Recently, latent modeling approaches have been proposed to learn optimal sets of

keypoints without direct supervision [3]. Some have tried to make the detection of

effective keypoints a less labor intensive process [4]. This thesis uses user chosen

keypoints, and leaves the automatic selection of those as further development in 4.1.

Quick overview about camera pose estimation

For the sake of this thesis, in order to propose a semi-supervised technique for deep

network dataset creation, we make use of tracking techniques for the estimation of the

pose of a moving camera in the environment.

The tool employed to estimate the camera pose is ARCore by Google, which makes

use of a concept developed in the late 2000s and still quite an active research topic named

SLAM (Simultaneous Localization and Mapping) that allowed the localization of the

camera while it is moving in the environment.

SLAM does not make use of a priori model, which is not always available, but rather

tracks the motion of the camera with respect to the environment, so to retrieve the pose of

the object as well. The main issue with this approach is the lack of an absolute localization

and its cost inefficiency in large environments. Some hybrid approaches partially cope

with these problems, making use of an online PnP.

1.1 Examples of successful algorithms for 3D Pose

Estimation

Many elegant and interesting solutions to 3D Pose estimations have been proposed in the

recent past.

Some of the most representative algorithms are:

• PoseCNN [5]: it is one of the first approaches to 3D pose estimation, and works by

estimating the 3D translation of an object by localizing its center in the image and

predicting its distance from the camera. The 3D rotation of the object is estimated

by regressing to a quaternion representation. The structure is represented in Figure

1.1

12 Chapter 1 Francesco Taurone

3D pose recognition via single image based on deep networks

Figure 1.1: PoseCNN structure

• SSD-6D [6]: This is an extension to the to the SSD paradigm to both position and

orientation of the object, therefore covering all the 6 degrees of freedom of a rigid

body in 3D space. Here the stages are: (1) a training stage that makes use of syn-

thetic 3D model information only, (2) a decomposition of the model pose space that

allows for easy training and handling of symmetries and (3) an extension of SSD that

produces 2D detections and infers proper 6D poses. This is therefore a method alike

the one developed in this thesis, namely based on single RGB images. Additionally,

SSD-6D can be easily extended to RGB-D images, including distance information.

This is indeed approaching the pose estimation problem as a classification task. See

figure 1.2 for the structure of the network.

Figure 1.2: Schematic overview of the SSD style network prediction. The network is fed
with a 299x299 RGB image and produce six feature maps at different scales. Each map
is then convolved with trained prediction kernels to determine object class, 2D bounding
box as well as scores for possible viewpoints and in-plane rotations that are parsed to
build 6D pose hypotheses.

• BB8 [7]: This method uses RGB info as well, and solves the pose estimation task

Francesco Taurone Chapter 1 13

3D pose recognition via single image based on deep networks

by inferring the 3D points of the bounding box for the chosen object. Namely, it

applies a Convolutional Neural Network (CNN) trained to predict their 3D poses in

the form of 2D projections of the corners of their 3D bounding boxes. Like Yolo, the

net for image recognition used throughout this thesis, BB8 splits each image into

regions, extracting binary masks for each possible object. The largest component is

kept, and its centroid is used as the 2D object center. Then, in order to estimate

its 3D pose, the chosen segment centered in the centroid is fed to a Deep Network,

thus achieving both position and orientation. Some refinement is required to get a

more precise estimation. Example of results in figure 1.3.

Figure 1.3: BB8: some qualitative results with different shapes and occlusions.

• PVNet [8]: Similarly to BB8, PVnet infers points of the object to retrieve its 3D

pose. The method PVNet employs is a Pixel-Wise Voting Network to regress pixel

wise unit vectors pointing to the keypoints, using then these votes to retrieve the

keypoints locations through RANSAC. Ones the keypoints are selected by voting, a

PnP is applied to get an estimate of the 3D pose. This method proves to be partic-

ularly effective against occlusions and truncation, since the visible pixels contribute

to the voting process nevertheless. See Figure 1.4.

Chapter 2 will be devoted to the development of the final pipeline that this thesis

presents, as well as the solutions to the challenges faced in the process.

14 Chapter 1 Francesco Taurone

3D pose recognition via single image based on deep networks

Figure 1.4: PVNet: the different steps of the process.

Francesco Taurone Chapter 1 15

Chapter 2

Development of the algorithm

This thesis aims to assess whether a patch oriented 3D pose algorithm can compete with

other approaches, like the ones seen in 1.

The main motivations for researching on this approach are:

1. Versatility:

Even if for this thesis Yolo has been chosen as the Deep Network to recognize

patches, it is nonetheless non ideal for these purposes. Another more specialized

network could be chosen as a substitute, given some performance requirements.

2. Robustness to occlusions and truncation:

Since few object points, and therefore few patches, are required to reconstruct a

pose via PnP, even when the object is occluded the estimation process is expected

to perform satisfactorily.

3. Quick training via a custom AR based app:

In order to obtain a dataset to train the network of choice, only few minutes are

required. The development and use of the app in 2.3.

4. Many further direction of development:

As listed in 4.1, there are many possible ways to improve the performances of the

current algorithm (for example, an automatic way for determining the best keypoints

to choose).

In the following, a description of the elements needed for this pipeline.

2.1 Choice of the network

Since the main objective is to develop a patch oriented system for recognizing the pose

of an object in 3D, there is the need to choose a reliable network able to detect multiple

patches of various dimensions on single RGB images in real time.

17

3D pose recognition via single image based on deep networks

Yolo has proved itself as state of the art in the last months for what concerns detection

on images. Moreover, the community behind the development and maintenance of this

software is particularly active on platforms like GitHub. Yolo returns as output also the

confidence level of its predictions, which is very useful to label only the most probable

detection as object keypoints.

The chosen implementations for this thesis can be found here [9].

2.1.1 What is Yolo

As described in [10], ”You Only Look Once” (YOLO) is a state-of-the-art, real-time

object detection system. A single neural network is fed with the full image. This network

divides the image into regions and predicts bounding boxes and probabilities for each

region. These bounding boxes are weighted by the predicted probabilities.

It looks at the whole image at test time so its predictions are informed by global

context in the image. It also makes predictions with a single network evaluation unlike

systems which require thousands for a single image. This makes it a very fast network.

An example of output is in figure 2.1, where bounding boxes for the objects present

in the scene are drawn.

Figure 2.1: Example of Yolo output

Moreover, Yolo returns the confidence level of each prediction. Quite naturally, the

higher the confidence level, the more likely it is a trustworthy prediction. This is a key

element for choosing Yolo against other detectors, since this index proves to be useful

when multiple instances of the same patch are detected, but only the most trustworthy

can be label as the corresponding object keypoint.

18 Chapter 2 Francesco Taurone

3D pose recognition via single image based on deep networks

2.2 Prototyping with a simple object - the raspberry

box

In order to test the capabilities of this approach and to understand its critical points, we

first test the net on a simple object, a box. We choose the Raspberry box in Figure 2.2

with noticeable elements on it, that would serve as patches samples.

Figure 2.2: The Rasperry Box used as prototype

The objective of the test is to map the different 2D sides of the box on the 3D image

based on the detected patches. More specifically, once the pairs of patches are obtained,

one from the side image and one from the box in space image, the centroid of those

patches are used as keypoints to perform an homography based on the matches, mapping

3D boxes’s keypoints with side’s keypoints.

The homography represents an intermediate step with respect to the complete PnP,

since it exploits the fact that the thing to be projected in space is a plane surface, having

therefore less degrees of freedom.

The steps for the tests were:

1. Take pictures of the sides (image of a 2D object) and of the box in space (image of

a 3D object). The needed set of images are:

(a) Images of all the 6 sides, to be labelled manually;

(b) Images of the box in space to be used for training Yolo, and therefore to be

labelled manually;

(c) Images of the box in space to test the trained Yolo and the idea of patch based

pose recognition.

2. Label the first and second dataset manually, like in figure 2.3 and 2.4.

The tool used for labeling manually each image can be found here [11]

The criteria to choose patches were:

Francesco Taurone Chapter 2 19

3D pose recognition via single image based on deep networks

Figure 2.3: The Rasperry Box with the patches. Manually labeled.

Figure 2.4: The Rasperry Box Side with the patches. Manually labeled.

• Small compared to the object: since we consider the centroid of a rectangular

patch, a big sized patch would result in higher noises after detection;

• Roundish elements as patches: in this way, even when rotated or skewed, the

patch would look similar and therefore recognizable by Yolo;

• Spread in the object: it was immediately noticeable from the results that a

quite homogeneous distribution of the patches on the object was needed to

achieve a good homography. This criteria proved to be even more important

for the complete PnP with more complex objects, as reported in 4.

3. Train Yolo on the training set of images to recognize the patches of each side of the

box.

An example of Yolo output once trained in Figure 2.5.

4. Perform the homography on the test dataset for all the 6 sides of the box.

The results of these test are comforting. After few adjustments, the idea of using

patches detected via Yolo for homographies provides good estimations, since in the ma-

jority of cases the homographies resulted in images like figure 2.6 and 2.7.

An example of patches correspondences in Figure 2.8.

However, initially the patches were chosen without taking care of all the criteria for

selecting successful sets, resulting in unsatisfactory results like in Figure 2.9.

This proves once again that the choice of the keypoints is critical for the performances

of this algorithm.

20 Chapter 2 Francesco Taurone

3D pose recognition via single image based on deep networks

Figure 2.5: Example of Yolo output for an image of the side.

Figure 2.6: An example of successful series of homographies.

Figure 2.7: Another example of successful series of homographies.

Francesco Taurone Chapter 2 21

3D pose recognition via single image based on deep networks

Figure 2.8: Homography result for one of the sides of the box, highlighting the corre-
sponding patches.

Figure 2.9: An example of failed homographies.

22 Chapter 2 Francesco Taurone

3D pose recognition via single image based on deep networks

The next step was to use a custom app to quickly create datasets in order to train

Yolo for more complex objects.

2.3 The App to create datasets

The app is meant to quickly create a dataset of images in order to train Yolo with an

automatic labeling technique. This app has been adjusted based on a previous version

from [12].

The core toolkit employed to make this possible is ARCore from Google, as well as a

compatible smartphone (in this case, a Pixel phone).

2.3.1 ARCore and its use

As presented on Google’s website [13], ARCore is a platform for building augmented

reality applications.

ARCore uses three key capabilities to integrate virtual content with the real world as

seen through the camera:

• Motion tracking, to understand and track the position of the phone relative to the

world;

• Detect the size and location of surfaces in the environment;

• Light estimation.

ARCore’s motion tracking uses the phone’s camera to identify interesting points and

tracks how those points move over time. With a combination of the movement of these

points and readings from the phone’s inertial sensors, ARCore determines both the posi-

tion and orientation of the phone as it moves through space.

Basically, ARCore is tracking the position of the mobile device as it moves, allowing

the user to know the position of the phone with respect to the world frame, assigned a

priori by the tool.

Since the final objective of this app is to estimate the pose of the phone with respect

to the object, or vice versa, the world frame assigned by ARCore is not really meaningful,

since it will not be accounted on the final frame transformation.

An example of how ARCore places objects in the environment in Figure 2.10.

2.3.2 The use of the app

A custom app is created so to record the pose of the camera and of the object in the

environment during the shooting of the dataset. The main idea is to place a CAD model

of the object in the environment, so that it overlaps with the real object. This allows us

Francesco Taurone Chapter 2 23

3D pose recognition via single image based on deep networks

Figure 2.10: An example of a 3D object placed in the environment using ARCore.

to keep track of the position and orientation of the model, and then to propagate it for

each image shot in the process by means of the camera poses.

The propagated coordinates of the keypoints, once projected on each image, will cor-

respond to the keypoints of the real object, since CAD model on object overlap. These

data processing steps are analyzed more in detail in 2.4.

The procedure for recording a dataset is represented in figure 2.11, and described in

the following:

(a) Let the app recognize the surface on top of which the object is lying. This step

is achieved once a series of grayish dots appear on the desired surface. This step

is important in order to keep track of the object even when the camera is moving,

namely while performing the proprietary SLAM like procedure. See 2.11a.

(b) Open the menu and select ”Create New Box” to import AR object. See 2.11b.

(c) Select Generic, which means that the imported object will be the one previously

added as resource in the app, and then Create. In order to include a personalized

model, for now it is necessary to use AndroidStudio and import the asset manually.

As further development, the possibility to include an object from Google Drive. See

2.11c.

(d) Place the 3D CAD object, previously uploaded on the app, on the highlighted

surface. Make the CAD model just added overlap with the real object to shoot by

adjusting its position on the plane, its orientation and its scale manually. This app

allows pinches and gesture for scaling and moving. See 2.11d. Another example of

this step in figure 2.12, representing the image of a bottle as subject for the training

before and after placing the model.

To be noted on Figure 2.12b is that the center of the reference frame assigned to

the object is highlighted by a grey circle, whose size depends on the chosen scale.

24 Chapter 2 Francesco Taurone

3D pose recognition via single image based on deep networks

(a) Main page, the whitish dots are the detected
planes to place the AR objects.

(b) Main menu to import the object in the scene.

(c) Select generic and create. (d) Place the model to overlap as precisely as
possible with the real object. Adjust scale, ori-
entation and position.

(e) Hit the record button. (f) When hit again, a pop up confirms that the
dataset has been created and saved.

Figure 2.11: The main steps to use the app to create a dataset semi-automatically.

Francesco Taurone Chapter 2 25

3D pose recognition via single image based on deep networks

(a) Plain image of a bottle before AR placement. (b) The same bottle as Figure 2.12a, with an
overlapping model.

Figure 2.12: Another example of use of the App for dataset creation.

(e) Set the desired frame rate, depending on the desired number of images in the dataset,

and hit the recording button, which is red while recording.

By default the frame rate is set to 30 frames per second. Therefore, in order to get

a reasonable number of images, like 1000, under this setting we need to record for

half a minute.

(f) Hit again the record button to stop the dataset creation. If successful, a pop-up

confirmes that the dataset has been saves on the file tree in the phone.

The output files of the app for each dataset will therefore be:

• CameraPose.txt: this file has as many rows as the number of images in the dataset.

Each row is in the format

x, y, z, qx, qy, qz, qw

which corresponds to the triplet for translation and the quaternion for rotation.

Through these info, it is fairly easy to compute the matrix in projective space

representing the rototraslation from the camera frame to the world frame. A visual

representation of the camera pose during a dataset recording in 2.13

• Intrinsics.txt: it returns the instrinsics of the camera used to obtain the camera

matrix. These parameters are the focal lenghts (fx, fy) in pixels and principal point

(cx, cy), that usually corresponds to the image center.

The camera matrix is important to project 3D point to the 2D image, according to

the pinhole camera model.

• Nodes.txt. This contains various information about the models in the environment

during the shooting. There are as many rows as the number of models, but for this

thesis it is assumed that only one object is present in a given session. In particular,

it cointains:

26 Chapter 2 Francesco Taurone

3D pose recognition via single image based on deep networks

x, y, z, qx, qy, qz, qw, id, scalex, scaley, scalez, boxtype

Namely, translation info [x, y, z], orientation info [qx, qy, qz, qw], the id of the model

[id], the scales [scalex, scaley, scalez] that for this application are all equal, and the

kind of model considered [boxtype].

Figure 2.13: Visual representation of the content in CameraPose.txt, namely the pose of
the camera with respect to the world for each image.

Once the dataset is shot, it is sufficient to downlaod the automatically generated folder

from the phone, so to be able to process the data as described in 2.4.

2.3.3 Issues and solutions

• Reference frame direction: unlike standard computer vision applications, ARCore

nominally assigns the reference axis to the model as for game development tasks.

Namely, the y axis is perpendicular to the surface, whereas the z axis is parallel, as

for the Figure 2.14. It has be to considered while extracting the keypoints from the

model in order to draw them correctly in the figure, and for data processing.

• Reference frame center: by default, the center of the model imported on the scene is

assigned by ARCore to the ”root” of the object, which is related with the center of

gravity. Therefore, instead of keeping the original reference frame, it is reassigned

to a different one, making all the reasoning about keypoint projection inapplicable.

An example of this effect can be noted in Figure 2.15, where there is a clear gap

Francesco Taurone Chapter 2 27

3D pose recognition via single image based on deep networks

Figure 2.14: Axis assigned by ARCore to the model.

between the corners of the box imported in the image, and the paired keypoints

drawn according to the misplaced reference frame.

Figure 2.15: Example of misplaced center of the reference frame. Gap between the corners
of the box and the paired keypoints drawn according to the misplaced reference frame.
Notice that this gap is due to a little spear added to the cube at the bottom, that changes
its center of gravity. Therefore, its projection as center of the reference frame, nominally
assigned by ARCore, does not correspond anymore to the local one from CAD used for
the keypoints drawing.

In order to solve this issue, once the model is imported to the app through the

ARCore plugin in AndroidStudio, the ”recenter” option in the .sfa file must be set

to ”false”.

• Augmented images: The ARCore toolbox does not allow by default to save pictures

of the augmented environment, namely with the models placed in it. Therefore,

28 Chapter 2 Francesco Taurone

3D pose recognition via single image based on deep networks

in order to generate this kind of images, it is necessary to take a screenshot of the

screen everytime an image is saved by the app, therefore with the same frame rate.

These screenshots have then to be processed in order to adjust resolution and size

so to be compared with the output images from the app.

• ARCore updates: ARCore is often updated by developers, since it is a quite recent

tool and many features are added on a weekly basis. Beside all the pros of the

frequent update, it happened more then once that some bugs arose once updated

to new versions. It is therefore suggested, while developing a specific component of

the app, to disable the automatic updates from Google Play.

• Android studio additional components: Google Sceneform Tools is a necessary com-

ponent to import and modify the models to be used for training in the app. It can

be added directly on Android Studio.

• Permissions to the app: Since the app needs the storage and camera permissions

in order to work, it is key to ensure that those permissions are enabled after the

installation. The app asks for the camera permission, but might skip the storage

one, causing a crash once the record button is pressed.

2.4 3D models and keypoints identifications

As discussed previously, one of the needed elements for the algorithm discussed in this

thesis is the 3D model of the object we want to train Yolo for.

In order to make these models, we use both CAD software and 3D reconstruction

tools, making use of the kinect camera. For processing the model, we use ”Blender”.

The reason for using Blender is the easy implementation of Python scripts directly

inside the program, making the extraction of keypoints a fairly simple process.

We use Blender also to reproject the model on the images so to appreciate the perfor-

mances of the pose estimation (see 3.12)

2.4.1 Blender - keypoints extraction with respect to the object

In order to extract the points of interest needed for the training dataset, we need to

import in Blender the model of the desired object. This model can be obtained in various

ways, and it is up to the user to decide which way is the most convenient depending on

the object under use.

The main model used throughout the whole thesis is Mario from Nintendo, since it is

quite a complex object and fairly adequate as test bench for the algorithm.

Francesco Taurone Chapter 2 29

3D pose recognition via single image based on deep networks

Therefore, once imported, is has to be noted that there are various reference frames to

describe the position of the desired keypoints. For this thesis, we choose a local reference

attached to Mario itself.

Then, it is sufficient to select the desired point and run a python script to write their

coordinates to a txt file. The output is then a list on n coordinates in 3D, expressed with

respect to a frame attached to Mario itself. An example of this process in Blender in 2.16.

Figure 2.16: In Blender, it is possible to select the desired keypoints (orange dots), to
export them via a python script, whose editor is at the bottom. This model of Mario in
Blender is indeed a mesh.

Once imported in the app, as described in 2.3.3, and the ”recenter” option is set to

”false”, Android Studio will keep that reference frame as the nominal one.

Therefore, the coordinates just extracted are the ones of the model overlapping the

real object with respect to the object reference frame, making them approximations of

the coordinates of the real object as well.

2.4.2 Keypoints with respect to camera

At this point, we have at our disposal a series of elements:

• objpi: coordinates of the i-th keypoint expressed with respect to the object reference

frame. In order to be projected on the image, we want to express all these with

respect to the camera reference frame.

• worldTobj: projective transformation matrix (4x4) of the object reference frame with

respect to the world frame, assigned by ARCore during dataset creation. It is built

from the info in the file ”nodes.txt” discussed in 2.3.2.

30 Chapter 2 Francesco Taurone

3D pose recognition via single image based on deep networks

• worldTj−camera: projective transformation matrix (4x4) of the j-th image of the

dataset, expressing the j-th camera reference frame with respect to the world frame.

This info is obtained by procesing the data in ”cameraPoses.txt” as in 2.3.2. This

is the key localization structure identified by ARCore while moving the phone.

With these elements, it is possible to compute the coordinates of the keypoints with

respect to the camera frame by simple matrix manipulation using the following compu-

tation:

j−camerapi = (worldTj−camera)
−1 ∗world Tobj ∗obj pi (2.1)

where the ”∗” symbol is meant as a matrix multiplication operator.

After this process, considering m keypoints extracted via Blender, and n images in the

dataset, we have a series of n ∗m keypoints, m for each one of the n images, expressed

with respect to their own camera reference frame.

Once plotted on the image, a series of keypoints looks like Figure 2.17, that is the

drawn version of 2.12a.

Figure 2.17: This is the image from 2.12a once the extracted keypoints are drawn on it.
It is noticeable how they fit well on the real object even when plotted based on the 3D
model approximating it.

2.4.3 Projection on the image

Having j−camerapi, namely the coordinates of each keypoint with respect to the camera,

we need to teach Yolo to recognize these points on other images of the same object.

In order to do so, Yolo needs to be trained with the coordinates of the keypoints on

the image, namely the projection on the image plane of each j−camerapi, as well as its

label.

Francesco Taurone Chapter 2 31

3D pose recognition via single image based on deep networks

The label is indeed i, since we consider ordered sets of keypoints. Regarding the

projection, we need to employ the projection matrix:

P =

fx 0 cx

0 fy cy

0 0 1


where the parameters in it are taken from ”intrinsics.txt” returned by the app. In

order to retrieve these values, even the standard camera calibration procedure is feasible.

As a matter of fact, in order to check the validity of the values reported by the app, during

the development process a camera calibration was performed and the values were found

to be comparable.

The camera calibration procedure, which was done using the guide by OpenCV [14],

returns also the distortion coefficients of the camera. Throughout this thesis, these coef-

ficients have been considered negligible.

The coordinates in the image of each keypoint can be obtained by:xy
1

 = P ∗

p
i
x

piy

piz

 =

fx 0 cx

0 fy cy

0 0 1

 ∗

p
i
x

piy

piz

 (2.2)

It has to be noted that the result belong to the 2D projection space, and it has then 3

component. In order to have the standard 2D vector, we should divide the whole vector

for the 3rd component, getting then rid of that last one afterwards.

2.4.4 Patch creation for training

Once the keypoints have been expressed with respect to the camera and projected to the

image, we need to make a patch out of it, so to feed it to Yolo as something to be learned

in order to recognize it on real future images.

For doing so, we use each projected keypoint as a centroid, and build around it a

squared patch of a certain size.

Because of the prospective rules of pinhole camera models, an object becomes smaller

as its distance from the camera increases. So, using this very concept, we should adjust

the dimension of the patch built around a keypoint according to its distance from the

camera, since the characteristic elements that it represents will become smaller as well.

In fact, if we did not decide the patch dimensions according to the distance, we might

include unwanted elements for keypoints far away from the camera.

Since from 2.4.2 we know the vector j−camerapi, its norm represents the distance of the

i-th keypoint in the j-th image from the camera. The dimension of the patch is therefore

inversely proportional to j−camerapi norm. The proportionality constant was determined

32 Chapter 2 Francesco Taurone

3D pose recognition via single image based on deep networks

experimentally, but it can be easily adjusted.

An example of patches is in Figure 2.18.

Figure 2.18: The white squares around each yellow keypoint are patches. Notice that
here the patches are all very similar in dimension since the distance to the camera for all
of them is approximately the same.

To appreciate the difference in size of these patches according to distance, compare

Figure 2.18 with 2.19.

Adjusting Annotations

As remarked in 4.1, it is not easy to make the 3D model of the app overlap with satisfactory

accuracy to the real object during the creation of the dataset via the app.

The misalignment due to this, during this patch creation phase, would make the images

with projected keypoints look like 2.20: there’s a clear gap between the intended points

of interest in the image and the projected one, especially along the vertical axis.

In order to solve this problem, since this exact error propagates for all the images in

the dataset, all shot with the same misaligned CAD model, it is sufficient to add to the

Patch creation algorithm an additional rototranslation, which by default is set to identity

therefore with no effect, which is applied to the matrix representing the pose of the object

with respect to the camera.

This additional step can be adjusted manually, by looking at the effect on the repro-

jected keypoints of changes along different directions (Red : X, Green:Y, Blu, Z), until

satisfactory. For example, in order to fix 2.20 the additional rototranslation was set to

Francesco Taurone Chapter 2 33

3D pose recognition via single image based on deep networks

Figure 2.19: Here the patches are smaller in dimension with respect to 2.18 since the
object is farther.

Figure 2.20: Here the effects of a misalignment of the model during App dataset creation.

34 Chapter 2 Francesco Taurone

3D pose recognition via single image based on deep networks

ManualRT =


1 0 0 0

0 1 0 −0.06

0 0 1 −0.03

0 0 0 1


meaning that there was no need to add rotations, whereas -6cm were added along the

green axis and -3cm along the blue axis, resulting in 2.21.

Figure 2.21: From 2.20, by applying an additional rototranslation decided by the user,
the overlapping improves significantly.

This step is important to ensure that Yolo learns to recognize the patches that the

user decided, so to identify them correctly on the pose estimation pipeline. Therefore, a

new file was added to each dataset, called ”manualT”, which is the specific ManualRT

of that set of images, since all of them were captured for the same dataset and therefore

share the same misalignment.

Moreover, this adjustment of the groundtruth makes the final evaluation of the per-

formances of the pipeline more realistic, since after the correction the set of values we use

as groundtruth are closer to the real ones.

Francesco Taurone Chapter 2 35

Chapter 3

The final pipeline

3.1 Description

As described in the previous chapters, the final pipeline is composed of a first phase

dedicated to the training of the net, and a second phase in which the real pose estimation

can be retrieved. This estimation need therefore 2 separate steps, the first being yolo

detection and the second the PnP Ransac reconstruction of the rototranslation from

camera to object.

This chapter reports the results on these two separate components after training (3.2),

then on the whole system (3.3).

A possible sequence of steps for a real use of this pipeline is summarized in the algo-

rithm 1.

Result: Pose estimation

-Import the 3D model of the object in the app;

-Generate a dataset overlapping the model with the real object;

-Export the desired keypoints coordinates using the 3D model;

-Generate patches around each keypoint, saving them on a training file;

-Train Yolo with that dataset;

-while Camera on do

-Yolo generates bounding boxes for each image;

-The centroids of these patches are the detected keypoints;

-Apply PnPRansac to retrieve the pose;

-Feed the needed pose to controller

end
Algorithm 1: Proposed algorithm

37

3D pose recognition via single image based on deep networks

3.2 Test of the two components

Next, the tests of the 2 main steps of the pipeline, namely Yolo detection and PnP with

Ransac to get the pose, so to ensure that the performances of the 2 separately were

satisfactory.

3.2.1 Datasets for testing

To test the performances of a trained deep network we need to collect sets of images that

the net is supposed to understand, but that were not present in the training dataset.

These are called test datasets.

The test datasets used for this thesis are:

• Dataset Close: it is made of images taken from a close distance. An example in

3.1a;

• Dataset Far: it is made of images taken from a farther distance. An example in

3.1b;

• Dataset Noisy Background: the subject of these images has various random elements

as background, making the detection task more complex. An example in 3.1c;

• Dataset Occlusion: the subject is partially hidden behind another object. These

make the PnP task much more challenging since elements on the object cannot be

detected. An example in 3.1d.

Here the four datasets are supposed to be of increasing complexity for both the detector

and the PnP pose reconstruction.

3.2.2 Test Yolo

In order to test Yolo performances, we analyze 2 parameters, Precision and Recall. These

are defined as:

• Precision: given an image, precision is the ratio between two elements. The numer-

ator is the number true positive results, those being the keypoints (centroids of the

bounding box) that, once projected, lie within a certain distance from the ground

truth projected keypoint. Conversely, the denominator is the total number of de-

tected keypoint in the image, meaning the sum of true positive and false positive

results. Usually, in order to evaluate the performances of a net on a whole dataset,

the average of all the precisions is considered.

Precision =
tp

tp + fp
(3.1)

38 Chapter 3 Francesco Taurone

3D pose recognition via single image based on deep networks

(a) Image belonging to dataset close. (b) Image belonging to dataset far.

(c) Image belonging to dataset noisy back-
ground.

(d) Image belonging to dataset occlusion.

Figure 3.1: Examples from the test datasets.

Francesco Taurone Chapter 3 39

3D pose recognition via single image based on deep networks

• Recall: given an image, recall is the ratio between the number of positively detected

keypoints and the number of ground truth keypoints for that image, namely true

positive summed with false negative results.

Precision =
tp

tp + fp
(3.2)

It has to be noted that the usual trend for these two metrics is to be in a sort of inverse

proportionality.

An example of this could be made by considering the threshold above which preditions

from the net are considered valid. Troughout this thesis, the threshold was set to 0.3.

Consider then the possibility of increasing this threshold: what happens is that the net

outputs only results with higher confidence, making the predictions more reliable and

more likely to be precise. But, if on one hand the precision increases, the fact that the

net now outputs only high confidence results make the recall metric decrease, since some

predictions of keypoints were discarted.

Graphs and results

Following, a graph about mean precision (3.2) and mean recall (3.3) for all the 4 datasets,

with various configurations of number of detectable keypoints and threshold.

The main result of this series of tests is that Yolo performs better when it is trained

to recognize few keypoints. This is well shown by the negative trends of recall on all the

datasets by increasing the number of detectable keypoints, meaning that among all the

possible keypoints to be detected only a small percentage is recognized. This can also

the highlighted by the number of images where no patch was detected by yolo 3.4. As

expected, the occluded dataset shows the worst results of all, and moreover it reaches

percentages above 80% for all the dataset when trained for 100 keypoints.

This is indeed a problem related to the confidence threshold Yolo uses in order to reject

untrustworthy results. Since with a lot of keypoints the confidence of each detection tends

to decrease, cause a patch is then similar to many others labeled differently, after a certain

number of keypoints no detection is trustable anymore in the image.

It has to be noted that while the recall decreases as we train Yolo for a biggere number

of keypoints, the precision is quite steady until 50kp. It means that an high percentage

of the detected keypoints is close to the groundtruth, even if the ones detected are not

many as highlighted by the small recall.

Moreover, looking at the different colored columns, it can be noted that after a thresh-

old of 30 pixel (the green column) a further increase of the threshold doesn’t change much

the corresponding precision and recall. Therefore, most of the examples in the datasets

show good precision and recall at around 30 px of threshold.

An example of detection compared with the groundtruth in

40 Chapter 3 Francesco Taurone

3D pose recognition via single image based on deep networks

Figure 3.2: Precision Mean on Yolo tests for all the datasets, with multiple thresholds (in
pixels) and multiple number of keypoints.

Figure 3.3: Recall Mean on Yolo tests for all the datasets, with multiple thresholds (in
pixels) and multiple number of keypoints.

Figure 3.4: Number of images where no patches where detected, representing Yolo failures.

Francesco Taurone Chapter 3 41

3D pose recognition via single image based on deep networks

Figure 3.5: Here the colored squares are the projected groundtruth, the colored crosses
are Yolo detection’s centroids, used afterwards to calculate PNP. The

3.2.3 Test Ransac PnP

In order to test Pnp with Ransac, we feed it with the ground truth keypoints, so that it

returns a pose composed of Rotation and Translation. The real algorithm will use Yolo

output instead of the ground truth, since given a simple image we are not supposed to

have information about the camera pose in the environment or the object pose in space.

Then, we compare the estimated pose with the ground truth by means of 3 main

metrics:

• Projection metric: this is very similar to precision, from 3.2.2, since it is the mean

for each image of the distances in pixel of the projected keypoint and the paired

ground truth one. Moreover, we keep track of the mean, standard deviation and

median of the norm of the distance between computed keypoints and ground truth

ones.

• Rotation metric: it checks the ”precision” for the rotation matrix, computing the

norm of the error vector between the 3 angles representing the orientation of the

object in space.

• Translation metric: it checks the ”precision” for the translation vector, computing

the norm of the error vector between the 3 component representing the position of

the object in space.

42 Chapter 3 Francesco Taurone

3D pose recognition via single image based on deep networks

Graphs and results

The projection error mean in 3.6 is a measure of the quantity that is then analyzed

with respect to a threshold for the projection metric. For this test using groundtruth

keypoints, its order of magnitude is shown to be around 1
10

of the threshold used for the

whole pipeline in 3.3, making the projection metric always 100%. Moreover, the trend in

3.6 is almost constant. This means that if the keypoints used for estimating the pose are

very reliable, the number of keypoints does not seem to play a big role in the process in

terms of reprojection error.

However, the results of the whole pipeline presented in the following section highlight

the fact that a non minimal number of keypoints is required when those are not completely

reliable, as described in 3.3.

Figure 3.6: Average projection error while testing Pnp Ransac for all the dataset varying
the number of keypoints to extract the pose from.

Similarly to what happened for the pojection metric, also rotation and translation

metrics showed always satisfactory results using the same thresholds as for the complete

pipeline (3 cm for the translation error and 10 degrees for the rotation).

Interestingly, for both rotation (3.7) and translation (3.8), an increasing number of

keypoints make the error decrease. It can be noticed that after 20 keypoints, the error

is approximately steady. Therefore, in order to balance the trade-off between an high

number of keypoints for decreasing the Pnp Ransac error and a small number of keypoints

to increase Yolo precision, 20 might be a sweet spot.

3.3 Results: Yolo and PnpRansac

In order to interpret the performances of the whole pipeline, the same metrics use in 3.2.3

will be employed, since Yolo performances are the same as for 3.2.2. The difference of this

test with respect to the previous lies in what the PnP Ransac uses in order to estimate

Francesco Taurone Chapter 3 43

3D pose recognition via single image based on deep networks

Figure 3.7: Average error in the estimation of the orientation, while testing Pnp Ransac
for all the dataset varying the number of keypoints to extract the pose from.

Figure 3.8: Average error in the estimation of the position of the object, while testing
Pnp Ransac for all the dataset varying the number of keypoints to extract the pose from.

44 Chapter 3 Francesco Taurone

3D pose recognition via single image based on deep networks

the pose. Previously, in order to test just PnP, it was fed with the groundtruth; now,

with the detections from Yolo.

It has to be noted that the graphs in 3.9, 3.10 and 3.11 do not show any result for the

100kp case, since as already shown in 3.2.2 almost no detection was possible.

About the projection error in 3.9, it can be seen that, as expected, the occluded dataset

is the worst of the 4 in terms of reprojection average 3.9a.

For this series of results we use the median instead of the mean, so to filter out those

spurious results that highly affect the mean: the median instead represents with higher

fidelity the result of the vast majority of images.

The median of the projection error is in all configurations, but for the occluded dataset,

below 10 pixels.

Interestingly, the performances in terms of projection error are quite similar for the

first 3 datasets. The results tend to favor farther images and few keypoints for the best

projection metric. As already stated, this might be due to the decrease in precision of

Yolo detections for many keypoints, as seen in 3.2.2

Looking at the rotation graphs in 3.10, we find a quite steady median of the rotation

error in 3.10a around 10 degrees for the first 3 datasets. From 3.10b it can be appreciated

more in detail the percentage lying below those 10 degrees threshold.

Similarly for the Translation error in 3.11, the median is quite steady for the first 3

datasets and selected number of keypoints (exception made for the occlusion dataset),

around 5 cm

Interestingly, regarding the position error of the model in space, far objects are not

favored, conversely to the trend for projection error. Rather, close views are the best in

terms of performances.

Reprojection of the model on the images

In 3.12, examples of reprojections of the model onto images from the different dataset

using the pose estimated by the pipeline.

This reprojection was achieved using Blender, by calculating the position of the camera

with respect to the object. In order to do that, we need to move the camera within Blender

according to the position of the camera with respect to the object, then shooting a picture

at the model of the object placed in Blender at the center of the global reference frame.

In order to do so, we made use of the inverse of the matrix obtained in 2.4.2, namely:

objTj−camera = (j−cameraTobj)
−1 (3.3)

which represent exactly the rototranslation needed to Blender to move the camera

with respect to the reference frame fixed to the object.

After that, we make use of a python script to:

Francesco Taurone Chapter 3 45

3D pose recognition via single image based on deep networks

(a) Median of the projection error for all the dataset with varying number of
detectable keypoints.

(b) Projection metric, with threshold = 10 pixels

Figure 3.9: Projection error results for the complete pipeline, so regarding the different be-
tween the reprojected keypoints according to the estimated keypoints and the reprojected
groundtruth.

46 Chapter 3 Francesco Taurone

3D pose recognition via single image based on deep networks

(a) Median of the rotation error for all the dataset with varying number of
detectable keypoints.

(b) Rotation metric, with threshold = 10 degrees

Figure 3.10: Rotation error results for the complete pipeline, so regarding the difference
in degrees between the estimated orientation and the grondtruth.

Francesco Taurone Chapter 3 47

3D pose recognition via single image based on deep networks

(a) Median of the translation error for all the dataset with varying number of
detectable keypoints.

(b) Translation metric, with threshold = 3 cm

Figure 3.11: Translation error results for the complete pipeline, so regarding the difference
in cm between the estimated position of the object in space and the groundtruth.

48 Chapter 3 Francesco Taurone

3D pose recognition via single image based on deep networks

(a) Reprojection on image belonging to dataset
close.

(b) Reprojection on image belonging to dataset
far.

(c) Reprojection on image belonging to dataset
noisy background.

(d) Reprojection on image belonging to dataset
occlusion.

Figure 3.12: Reprojections on images from the test datasets. The grey shadow represents
the predicted pose of the object in space.

1. Move the camera to the desired position, which is the pose of the camera of the j-th

image;

2. Shoot a picture with no background of the model imported in Blender;

3. Reduce its opacity, and overlay it to the j-th image of the dataset.

In this way it is possible to visually appreciate the performances of the pose estimation.

Sided object correlation with errors

Since a considerable standard deviation was highlighted in all the tests results, we try to

investigate the reasons for that.

Visually, when looking at the results of the pose estimation for the different datasets,

we notice that errors seem to be more frequent with sided images, those being images

where the object is oriented side-wise rather then front-wise.

Francesco Taurone Chapter 3 49

3D pose recognition via single image based on deep networks

In order to deepen our understanding of this phenomenon, namely to see if there is a

real correlation between sided images and errors spikes, we need to calculate how sided

each image is.

The technique for achieving this measurement is a cross product between the axis of

the camera facing the object and the z axis of the object, which points to the front part

of it. This is possible since we have for each image in the dataset the initial position of

object with respect to the world, and the position of the camera with respect to the world

for each image.

Therefore, similarly to what is done in 2.4.2:

j−cameraTobj = (worldTj−camera)
−1 ∗world Tobj (3.4)

In order to do the cross product between the z axis of the object and the frontal (x)

axis of the camera, we do:

side =
[
1 0 0 0

]j−camera

Tobj ∗


0

0

1

0

 (3.5)

which is indeed the component of the first row and third column of the matrix.

Therefore, a side value of 0 corresponds to a perfectly frontal object, whereas 1 cor-

responds to the camera facing the right side of the object, -1 facing its left side. The

correlation is calculated with respect to the absolute value of this side measurement,

since we just want to highlight that the object is on the side, regardless of which one.

The graph in 3.13 shows the mean correlation of this ”side” measure with Projection

error, Rotation Error and Translation Error. The correlation is a number from −1 to 1,

where the higher the absolute number of the value, the higher the correlation.

Figure 3.13: Correlation between how on the ”side” is the subject of the image and the
metrics used for judging the pose estimation. This correlation uses the absolute value of
the ”side” as variable, since we don’t care which side the object is but just that it is sided.

50 Chapter 3 Francesco Taurone

3D pose recognition via single image based on deep networks

It is indeed a non-zero correlation most of the times, meaning that indeed being on

the side affects the errors of the pose.

A possible reason for that might be that a good portion of objects has key features

on the front and back face, meaning that users are more likely to select keypoints along

those two ”planes”. When the camera is looking at the object laterally, it is possible that

many of those keypoints overlap, making the detection process by Yolo more difficult,

which would result in less precise estimations of the pose as well.

It has to be highlighted that if on one hand, for close and far images mainly, the

correlation is positive, meaning that if the position is more on the side the error increases,

on the other hand for Noisy background and occlusion the correlation is negative.

This could be due to the fact that for these 2 dataset a sided image might correspond

to a better detection of the keypoints that before were hidden or placed in front of a noisy

background, improving the performances of the detection.

3.3.1 Training with multiple objects

For the applications described in the previous chapters, it would be advisable to have a

system able to recognize the pose of multiple kinds of objects in the surrounding environ-

ment. Up to now, this thesis focused only on the recognition of a single kind of object,

namely ”Mario”, as primary subject of the tests, whereas this section reports the result

of this pipeline trained for multiple objects.

We test the case of 2 objects, Mario and a Bunny shaped toy, assuming that only one

of the two is present in the scene at a time. The presence and recognition of multiple

objects in the scene is suggested as further development in 4.1.

The steps followed for generalizing the 1 object pipeline to a 2 or more object pipeline

are:

1. Make a 3D model for the new objects, and extract/measure the local coordinates

of the keypoints needed for making the datasets;

2. Import these new models to the app, so to be able to place it in the environment as

AR object;

3. Make a new set of datasets for each new object, one for training Yolo and four (close,

far, noisy background and occlusion) for testing the results (if needed);

4. Retrain Yolo, making sure to differentiate the labels for each object. As a matter of

fact, two objects should not share any label. As example, if it’s planned to detect 7

keypoints on 2 objects, an advisable choice is that the labels go from 0 to 6 for the

first and from 7 to 13 for the second;

5. Select the newly trained Yolo for detecting the keypoints needed by PnP.

Francesco Taurone Chapter 3 51

3D pose recognition via single image based on deep networks

After these steps, Yolo is trained to recognize all those objects in the scene.

Graphs and results

The results with Yolo trained for more then 1 object are satisfactory. It is noticeable

indeed that the performances of this setup are quite comparable with the one trained for

a single object. Meaning that Yolo is perfectly capable of learning a multitude of object

precisely enough that this pipeline is robust nonetheless.

Following is the series of graphs about whole pipeline performances already explained

in the previous section, here reported for comparing the results. As highlighted previously,

this setup take as assumption the presence of a single object at a time in each image.

It is interesting to notice that for the occluded dataset, having an higher number of

object for the yolo training improves its performances on the complete pipeline.

52 Chapter 3 Francesco Taurone

3D pose recognition via single image based on deep networks

(a) Median of the projection error for all the dataset with varying number of
detectable keypoints. The version for single object in 3.9a.

(b) Projection metric, with threshold = 10 pixels. The version for single object
in 3.9b.

Figure 3.14: Projection error results for the complete multi-object pipeline, so regarding
the different between the reprojected keypoints according to the estimated keypoints and
the reprojected groundtruth. The version for single object in 3.9.

Francesco Taurone Chapter 3 53

3D pose recognition via single image based on deep networks

(a) Median of the rotation error for all the dataset with varying number of
detectable keypoints. The version for single object in 3.10a.

(b) Rotation metric, with threshold = 10 degrees. The version for single object
in 3.10b.

Figure 3.15: Rotation error results for the complete multi-object pipeline, so regarding the
difference in degrees between the estimated orientation and the grondtruth. The version
for single object in 3.10.

54 Chapter 3 Francesco Taurone

3D pose recognition via single image based on deep networks

(a) Median of the translation error for all the dataset with varying number of
detectable keypoints. The version for single object in 3.11a.

(b) Translation metric, with threshold = 3 cm. The version for single object in
3.11b.

Figure 3.16: Translation error results for the complete multi-object pipeline, so regard-
ing the difference in cm between the estimated position of the object in space and the
groundtruth. The version for single object in 3.11.

Francesco Taurone Chapter 3 55

Chapter 4

Conclusions

The results of this pipeline are quite satisfactory, for both single object training and

multiple. Few key considerations are worth noticing, among many pros and cons for this

solution.

PROS:

1. Given the performances in terms of pose estimation, this pipeline is suitable for

application where no highly precise results are needed. Nonetheless, the results are

quite satisfactory, and is well suited for a wide variety of application (like non fragile

object grasping or AR visualization).

2. In order to build this pipeline from scratch for a given application, just few hours are

required. As a matter of fact, for a set of few objects, Yolo is relatively quick to train

and the creation of the needed datasets is sped up thanks to the semi-automatic

creation via App.

3. The process of adding a new object to the recognizable ones is fairly easy and quick,

since it requires its 3D model for the app and a new dataset fort the training.

CONS:

1. The need of a CAD model is inconvenient, since it is not always available. However,

especially for industrial application, it is a reasonable requirement. One could avoid

the use of CAD models by measuring the keypoints and placing a cube in the app

to retrieve the position of the object, at the expenses of accuracy.

2. During dataset creation via App, it is not always easy to place the model in the

environment as precisely as intended. In fact, it is for this reason that a manual

refinement step has been added for a more precise dataset and consequently a better

training.

Moreover, it is unlikely to measure the real performances of the algorithm, since the

groundtruth itself is extracted from the model placed in the app which is noisy.

57

3D pose recognition via single image based on deep networks

4.1 Further developments

During the development of this thesis, it was possible to highlight multiple possible im-

provements for the current implementation. The most relevant ones are:

• Being able to detect multiple objects form the same scene. It is indeed quite easy to

achieve given the current configuration, just forcing PnP to consider only detection

labeled for the same object, repeating the process for all the objects in the scene.

• Automatic selection of good keypoints for this task. It could be useful to find a

way to train a network to recognize, given an object, which keypoints would be the

best for a pose estimation task. For the current implementation, this is just a user

choice.

• Try with a more specialized Deep Network, different from Yolo, to compare the

performances.

• Make the process of overlapping the 3D model on the app with the real world

object on the screen an easier task. Right now, one of the causes of the errors

metrics shown before was cause by a misalignment between the 2, which add an

error to the groundtruth used to judge the results.

• Fine tuning of parameters: since some are key elements of the algorithm, like the

patch size and the adjustment based on the distance of the model, it would be worth

it to test more in depth the changes in performance according to modifications in

those parameters.

• On each image of each dataset, all the nominal keypoints are plotted and saved

as annotation to be learnt by Yolo. This happens also for those keypoints that

are ”hidden” by objects in the image, so that for example the tail of the bunny

is written as patch even when the bunny is in front view. It would be interesting

to implement a sort of hiding process making use of the groundtruth, so that all

the keypoints whose reprojection line intersects the model is discarded. This might

improve Yolo’s accuracy, and therefore the performances of the whole pipeline.

58 Chapter 4 Francesco Taurone

Bibliography

[1] E. Marchand, H. Uchiyama, and F. Spindler, “Pose estimation for augmented real-

ity: a hands-on survey,” IEEE transactions on visualization and computer graphics,

vol. 22, no. 12, pp. 2633–2651, 2015.

[2] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Com-

put. Vision, vol. 60, pp. 91–110, Nov. 2004.

[3] B. Yang, W. Luo, and R. Urtasun, “Pixor: Real-time 3d object detection from point

clouds,” 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,

Jun 2018.

[4] I. Barabanau, A. Artemov, E. Burnaev, and V. Murashkin, “Monocular 3d object

detection via geometric reasoning on keypoints,” CoRR, vol. abs/1905.05618, 2019.

[5] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “Posecnn: A convolutional

neural network for 6d object pose estimation in cluttered scenes,” arXiv preprint

arXiv:1711.00199, 2017.

[6] W. Kehl, F. Manhardt, F. Tombari, S. Ilic, and N. Navab, “Ssd-6d: Making rgb-

based 3d detection and 6d pose estimation great again,” 2017 IEEE International

Conference on Computer Vision (ICCV), Oct 2017.

[7] M. Rad and V. Lepetit, “Bb8: A scalable, accurate, robust to partial occlusion

method for predicting the 3d poses of challenging objects without using depth,”

2017 IEEE International Conference on Computer Vision (ICCV), Oct 2017.

[8] S. Peng, Y. Liu, Q. Huang, H. Bao, and X. Zhou, “Pvnet: Pixel-wise voting network

for 6dof pose estimation,” 2018.

[9] qqwweee, “A keras implementation of yolov3 (tensorflow backend).” https://

github.com/qqwweee/keras-yolo3.

[10] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” arXiv, 2018.

[11] tzutalin, “Labelimg is a graphical image annotation tool and label object bounding

boxes in images.” https://github.com/tzutalin/labelImg.

59

https://github.com/qqwweee/keras-yolo3
https://github.com/qqwweee/keras-yolo3
https://github.com/tzutalin/labelImg

3D pose recognition via single image based on deep networks

[12] L. Cottignoli, “Strumento di realtà aumentata su dispositivi mobili per labeling di

immagini semi-automatico..” https://amslaurea.unibo.it/17734/.

[13] Google, “Arcore.” https://developers.google.com/ar/.

[14] OpenCV, “camera calibration and 3d reconstruction.” https://docs.opencv.org/

2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html.

60 Chapter 4 Francesco Taurone

https://amslaurea.unibo.it/17734/
https://developers.google.com/ar/
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html

	Introduction
	Abstract
	Pose Recognition - State of the art
	Examples of successful algorithms for 3D Pose Estimation

	Development of the algorithm
	Choice of the network
	What is Yolo

	Prototyping with a simple object - the raspberry box
	The App to create datasets
	ARCore and its use
	The use of the app
	Issues and solutions

	3D models and keypoints identifications
	Blender - keypoints extraction with respect to the object
	Keypoints with respect to camera
	Projection on the image
	Patch creation for training

	The final pipeline
	Description
	Test of the two components
	Datasets for testing
	Test Yolo
	Test Ransac PnP

	Results: Yolo and PnpRansac
	Training with multiple objects

	Conclusions
	Further developments

