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Introduzione

Lo scopo principale di questa tesi è lo studio di processi casuali in campo automotive.
I veicoli moderni, infatti, sono gestiti da centraline (Electronic Control Units: ECUs) che
contengono la maggior parte della struttura software del veicolo e sono responsabili della
sicurezza dello stesso nei confronti di attacchi informatici. La maggior parte degli algo-
ritmi crittogra�ci è basata sulla generazione di numeri casuali: è quindi necessario che le
stringhe generate siano e�ettivamente casuali. Il metodo di valutazione più riconosciuto
e standardizzato, proposto dal National Institute of Standards and Technology (NIST),
consiste nell'analizzare sequenze di numeri, costruite dal generatore, attraverso una serie
di test statistici.

I capitoli 2 e 3 costituiscono il nucleo dell'elaborato: qui vengono date le de�nizioni
di processi casuali da un punto di vista probabilistico e con riferimento alla nozione
di entropia. Successivamente, il lavoro si concentra sullo studio della test suite per la
validazione di Generatori di Numeri Casuali (RNG) proposta dal NIST. La suite con-
siste in 15 test, ognuno dei quali analizza le sequenze da una di�erente prospettiva. La
solidità dei test cresce dai primi test (che sono caratterizzati da un bassissimo costo com-
putazionale, permettendo di scartare gli RNG meno e�cienti) agli ultimi, che studiano
proprietà più so�sticate dei processi casuali.

I primi test sono basati su proprietà molto semplici delle sequenze casuali, come
la probabilità di zero e uno all'interno della sequenza o all'interno di sotto-stringhe
(Frequency test e Frequency test within a block), o la probabilità di successioni di bit
uguali lungo la sequenza o all'interno di sotto-stringhe (Runs test e Runs test within a
block).

Se una sequenza passa questi primi test, viene analizzata con altre classi di test,
basati su strumenti matematici più so�sticati come ad esempio:

• trasformata di Fourier: il rispettivo test (Spectral test) è in grado di rilevare com-
portamenti periodici all'interno della sequenza;

• entropia: le sequenze casuali sono caratterizzate da alti valori entropici, stretta-
mente connessi con la comprimibilità della sequenza (Maurer's universal statistical
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test e Approximate entropy test);

• complessità algoritmica: le sequenza casuali sono su�cientemente complesse da
non poter essere costruite da semplici algoritmi (Linear complexity test e Serial
test);

• passeggiata aleatoria: la stringa binaria viene identi�cata come una passeggiata
aleatoria di 1 e −1. In quest'ottica le somme parziali dei primi m valori della
sequenza devono essere vicini allo zero (Cumulative sums test) e la sequenza deve
visitare ogni stato con la stessa frequenza di una passeggiata aleatoria (Random
excursion test and Random excursion variant test).

Dal momento che ognuno di questi analizza un diverso comportamento, un unico test
non è su�ciente per fornire un adeguato responso riguardo la sequenza in oggetto in-
oltre, dal momento che lo scopo è quello di validare l'RNG, una sola sequenza non basta
per a�ermare se le sequenze siano casuali o meno, ma sarà necessario testare un numero
su�cientemente grande di sequenze attraverso un'adeguata quantità di test.

Con lo scopo di costruire un metodo per valutare, primi tra gli altri, gli RNG con-
tenuti all'interno delle centraline, dopo aver analizzato e validato ognuno dei test pro-
posti, cercheremo di implementare l'intero schema di validazione in CANoe, un software
che permette di programmare ed interagire con le ECU, utilizzando, come step intermedi,
MatLab e Simulink.

Questo lavoro non sarebbe stato possibile senza l'Azienda Magneti Marelli, che mi ha
permesso di svolgere un tirocinio di un anno presso la sede di Bologna, supportato dal
Cyber Security Systems Architect che mi ha insegnato, tra le altre cose, come è costruita
la struttura software dei moderni autoveicoli, cyber security in primis, nonché l'utilizzo
dei sistemi che verranno analizzati in questa tesi.
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Introduction

The main scope of this dissertation is to study random processes in cyber security of
automotive environment. Indeed modern vehicles are managed by the Electronic Con-
trol Units (ECUs), which contains most of the software structure of the vehicle and are
responsible of its security against cyber attacks. Most cryptographical algorithms are
based on generation of random numbers and it is necessary that the generated strings
are truly random. The most standardized evaluation method consists in analyzing se-
quences of numbers, built by the generator, through a set of statistical tests, provided
by the National Institute of Standards and Technology (NIST).

The core of the thesis are chapters 2 and 3, where we gave the de�nition of ran-
dom process from a probabilistic and entropic point of view. Then we study the suite
proposed by NIST to validate Random Number Generators. The suite consists of 15
tests, each one inspecting the sequence from a di�erent perspective. The strength of
tests increases from �rst tests (which have extremely low computational cost and allow
to rapidly discard not e�cient RNG) to the last ones, which study more sophisticated
properties of the random process.

The �rst tests are based on very simple properties of random sequences as for ex-
ample the probability of zeros and ones within the sequence or within any sub-block of
the sequence (Frequency test and Frequency test within a block), or the probability of
occurrence of k identical bits within the sequence or any sub-block of it (Runs test and
Runs test within a block). If a sequence passes these �rst tests, it is submitted to other
classes of tests, based on more sophisticated mathematical instruments:

• discrete Fourier transform: these tests are able to detect periodic features within
the sequence which would indicate deviation from randomness (Spectral test);

• notion of entropy, which has high values in random sequences, and is strictly con-
nected with non compressibility of the sequence (Maurer's universal statistical test
and Approximate entropy test);

• algorithmic complexity: the high complexity of random sequences doesn't permit
to build them by simple algorithms (Linear complexity test and Serial test);

iii



• random walk properties: the binary string is identi�ed with a random walk which
attains values 1, −1. Hence the partial sum of the �rst m values of the sequence
has to be near zero (Cumulative sums test) and the sequence has to visit each state
with the same frequence of a random walk (Random excursion test and Random
excursion variant test).

Since each of those analyzes a di�erent behavior, a unique test is not adequate to
give a response concerning the analyzed sequence and, given the fact that the �nal goal
is to evaluate the RNG, a single sequence is not enough to say whether or not generated
sequences are random, but it will be necessary to test a great number of sequences, by
a commensurate number of tests.

With the purpose to build a method to evaluate, among all, RNGs embedded into
ECUs, after studying and validating each proposed test, we will try to implement the
whole validation scheme into CANoe, a software which permits to program and interact
with ECUs, using, as intermediate steps, MatLab and Simulink.

This work wouldn't be possible without theMagneti Marelli Company, which allowed
me to carry out a one year traineeship at its Bologna o�ce, supported by the Cyber
Security Systems Architect which taught me, among other things, how the software
structure of modern vehicles is built, cyber security in the �rst place, as well as the use
of the systems that will be analyzed along this thesis.
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Chapter 1

Random Number Generators in

automotive cyber security

This chapter is intended to give the reader a main idea of the importance of Ran-
dom Number Generators for cryptographic purposes, and in particular for automotive
cyber security: an overview of the design of the structure of modern vehicles is provided
together with examples of usage of random numbers in cryptography. After that, an ex-
planation of Random Number Generators types is proposed, in order to give the reader
the framework of this work.

1.1 Automotive cyber security

The structure of modern vehicle allows designers to embed many functions through
software, to make the vehicle more and more e�cient and less subject to mechanical
breakages. This allows to implement many features but, on the other hand, requires
that the system is protected not only from mechanical threats, but also from hacking.
This section is aimed to describe the design of vehicles communication system, together
with possible point by which an attacker could interact with it.

1.1.1 The ECUs infrastructure

Modern automobiles are no longer totally mechanical systems, since the largest part
of actions and communications, between the user and the car or within the car itself, are
managed by electronic devices (e.g. if the driver push the brake pedal, the mechanical
action is registered and electronically sent to the brakes, where the information is pro-
cessed and executed by the physical system: that happens not only for brakes, but for
the most part of the behavior of the car). To do that, every part of the vehicle which
has to perform an action (such as brakes, lightening, steer and the entertaining system)
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2 1. Random Number Generators in automotive cyber security

or to register values (e.g. emissions, consumptions and temperatures) is provided by
an electronic system which is responsible to manage it, called Electronic Control Unit
(ECU).

Main examples of ECUs1 are:

• Engine Control Module (ECM): controls the engine by determining the amount of
fuel to use, the time of ignition and many other parameters concerning the engine;

• Electronic Brake Control Module (EBCM): controls the brake system and the An-
tilock Brake System (ABS), formed by pumps and valves, which prevents the brakes
to lock in situations of possible sliding;

• Transmission Control Module (TCM): responsible of the transmission and of the
gear changing;

• Body Control Module (BCM): controls many functions of the cabin and often works
as a �rewall between messages from other ECUs;

• Heating Ventilation, Air Conditioning (HVAC): responsible of cabin environments,
such as the temperature.

ECUs don't operate separately, but they are connected each another to share infor-
mation, data and parameters which are necessary for the correct conduct of the vehicle.
The connections and the internal communications network are usually complaint to the
Controller Area Network standard, the CAN-bus, introduced in 1993 by ISO 118982.
The particularity of the CAN-bus is that it is a broadcast communication system: a
single cable is needed to connect a network of ECUs, which are able to see each message
other ECUs send. The communication via CAN allows to reduce cost, complexity and
gain in e�ciency, compared to the corresponding traditional wiring. Figure 1.1 provides
an overview of the ECUs system and of the connections between them.

1.1.2 Vehicle entry points and hacking

The multiple connected structure of ECUs permits to make the system more e�cient
and simpler on one hand, but it also exposes the vehicle, the driver and the manufac-
turer to new threats that have to be taken into consideration and prevented. It become
necessary, then, to embed processes to protect the system. To clarify this problem, we

1Most of ECUs are installed into each vehicle, however di�erent manufacturers (OEMs) could decide
to embed di�erent types in their vehicles.

2Other protocols are the Local Interconnect Network (LIN) and the Ethernet, however they are less
used in automotive due to the low speed of the �rst one and to the high cost of the second.



1.1 Automotive cyber security 3

Figure 1.1: ECUs system and CAN-bus connections Credits to www.silicon.it.

shall make some examples of how a malicious attacker could attach the car system.

We can distinguish between two sets of entry points: physical entry points and wire-
less connection. Physical entry points are "doors" as for example:

• the OBD-II port: which allows to exchange information by and to the whole vehicle
through the CAN-bus and to diagnose malfunctions without physically checking
all components or to modify ECUs software. To do that a cable has to be inserted
into the port and connected to a device, such as a computer with a dedicated
tool3. OBD-II port is often situated under the steering wheel: �gure 1.2 shows
the appearance of this device. It is clear that an attacker who could access this
port could seriously put at risk driver's health by injecting tampered tra�c in the
internal network.

• the infotainment system: the interface by which the user can use the radio, play
music, control wireless connections or access the GPS. The infotainment system is
coupled with an Operating System (e.g. Windows, Linux, Android..) that could
be subject to wireless or wired modi�cations in order to a�ect vehicle behavior.

3We will present and use one of them in chapter 5: the CANoe software [70].
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• CD player, USB, phone docking port: mainly used to interact with the infotainment
system, could be a door to enter the system and inject data.

Figure 1.2: The OBD-II port. Credits to www.yourmechanic.com.

Modern vehicles are also provided with many wireless connection which could be used
by an attacker to compromise the system. Examples of wireless entry points are:

• bluetooth: used to pair user's devices, such as a smartphone, to reproduce music
or to use an eventual car speakerphone;

• Radio Frequency Identi�cation (RFID) and Remote Keyless Entry (RKE): devices
which, pairing radio signals, permit to remotely open and turn on the vehicle;

• Wi-Fi connection: used, mainly, to communicate between nearby vehicles which
support it;

• Global Position System (GPS);

• Digital Audio Broadcasting (DAB);

• Mobile connection (3G,4G): used to connect to OEM's servers, e.g. to remotely
update software or to transmit vehicle's data.

We can also classify these connection among short-range (bluetooth), mid-range
(RFID and Wi-Fi) and long-range connections (GPS, Internet, DAB and Mobile con-
nection).
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All of these entry points could be used, in di�erent ways, to hack the car systems
with di�erent techniques. The table below shows main types of attack, coupled with a
brief description of them and possible consequences.

Hacking technique Description Consequence
Flooding Requesting of some service(s)

with a larger frequency than
nominal condition

DoS4 or activation of safe
state

Starvation Trying to repetitively self au-
thenticate using spoofed (i.e.
not working) credentials

DoS or activation of safe state

Memory Injection Injecting malicious code to
make a target ECU execute it
and corrupt it

Alter target ECU functional-
ity or take control of it

Spoo�ng Pretending to be an autho-
rized system

Take control of the target sys-
tem

Example 1.1.1 (Spoo�ng attack).
During an extended diagnostic session, gears can be changed using a CAN message (e.g.
by the mechanic to check the transmission) if the speed of the vehicle is 0 km/h.
A malicious attacker who can access the CAN-bus can do the following to change gears:

1. overwriting speed message, read by gear ECU, with the value 0;

2. sending the tester presence message to the gear ECU;

3. sending the request to the gear ECU to open an extended diagnostic session;

4. authenticating itself to the gear ECU, calculating the key by reversing the seed
and key algorithm, used for authentication;

5. sending the gear change request to the gear ECU.

That could be potentially done even while the car is moving, and consequences could be
extremely serious.

The example shows one of possible hacking cases which can occur if there is no or low
security. Consequences could be di�erent (and could have di�erent degrees of danger-
ousness): from the changing of the radio station to the shutdown of the engine, passing
trough the disabling of the power steering. It becomes indispensable, then, to provide
each part of the vehicle with some kind of security, depending on the vulnerability of it.

4Denial of Service: due to the huge amount of requests, the systems doesn't manage to ful�ll its
standard tasks.
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In the order form the bigger to the smaller, it is necessary to take into account the secu-
rity of the whole system, of the vehicle, of ECUs and of the Software each ECU carries
and uses: in this dissertation we will focus on the particular aspects which concerns the
use of random numbers.

1.2 The importance of randomness in cryptography

Modern cryptography is based on public algorithms and functions (called crypto-
graphic primitives): its whole strength is based on the key and on the unpredictability
of some values used for encryption, it' here that randomness plays a fundamental role.

The relevance of randomness became more clear if we think that most of modern cryp-
tography algorithms and protocols are designed around the Kerckho� principle, which
states that a cryptographic system has to be secure even though everything about the
system is known, except for the key5. This means that, if we assume that the crypto-
graphic structure is well designed, we should measure the strength of the system by the
number of key an attacker has to guess before he can break it, which also implies that
the security of the algorithm dangerously decreases if an enemy is able to be aware of
one or more bits of the key.

Random numbers are mainly required in the following cases:

• As cryptographic key in both symmetric and asymmetric algorithm: random num-
bers are used as values which de�ne the transformation of the unencrypted infor-
mation (plaintext) into the encrypted one (ciphertext), and vice versa. In modern
cryptography, indeed, encryption and decryption algorithms are on public domain,
as well as the ciphertexts sender and receiver exchange; the security of the whole
process depends, then, on the unguessability of the key: that's why this must de-
pend on random values. Most famous examples of algorithms where the key is
generated by random numbers are AES (symmetric cipher) and RSA (asymmetric
cipher).

• In symmetric ciphers (especially stream and block chipers), random numbers are
used as initialization vector to make di�erent encryptions, even maintaining the
same key which, in this case, doesn't need to be changed each message. Anyway,
maintaining the same key for a long time could produce a deterioration of security,
so that this modality is used only in the case of a brief-time communication.

5This principle is also known as Shannon's maxim since C. Shannon has independently formulated
it as "the enemy knows the system".
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• Random numbers are used as nonces (number used once) and challenges, to ensure
freshness of messages and authentication (which can be mutual or unilateral) such
as ElGamal, Goldwasser-Micali and McEliece ciphers.

• Digital signature algorithms also need random numbers, to ensure authentication
and non-repudiation, without exposing the message itself to the signer (this type
of signatures are called blind signature schemes, shortly BSS). In this case the
message is made unintelligible (blinded) through a random number, know only by
the author of the message; the blinded message is sent to the entity which as to
sign it with is private key, so that no private information are known to the signer.
Typical examples are RSA BSS, Elliptic Curve BSS and ElGamal BSS.

• As cryptographic salts, such as as an extra argument used to generate new pass-
word, starting from a single master key which remains the same all the time. This
is typically done in the case the starting key is particularly guessable or to create
key and password that cannot be renegotiated each time.

• Padding is another use of random numbers: some ciphers (particularly block ci-
phers) require �xed-length messages. In the case the plaintext message doesn't
reach the required length, blocks has to be �lled with something in order to en-
crypt the text and, obviously, removed by the receiver. Padding can be done using
�xed values (for example with zeros or by 0x80 followed by zeros), but that could
result in a leak of information about the message (i.e. an attacker could know some-
thing about the message, by analyzing the ciphertext): that could be avoided by
padding using random values. Some examples are Optimal Asymmetric Encryption
Padding (OAEP) and Probabilistic Signature-Encryption Padding (PSEP).

It is clear that the use of not enough random values, or worse of deterministic ones,
to perform these schemes could permit an attacker to break the encryption and �nd out
what it hides (plaintext), to impersonate someone else or to access to other people's
personal information: that could turn out in loss of privacy, theft of money or, in the
worst case as in automotive's �eld, on put at risk the health of someone else.

We give the following, simple, examples to give the reader a basic idea of how random
numbers are used.

Example 1.2.1 (The Di�e-Hellman protocol).
The Di�e-Hellman key exchange is a cryptographic protocol by which two interlocutors
(Alice and Bob in the following, as traditionally) can establish a secret shared key over a
public (insecure) channel without the need to know one another or to meet. The shared
key, produced by this protocol, could be used to encrypt successive communications
throughout symmetric cryptography schemes.
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Let g be a primitive root modulo p, where p is prime. The exchange between Alice
(A) and Bob (B) proceeds as follows:

A: chooses a random number a, computes A = ga mod p and sends (g, p, A) to Bob;

B: chooses a random number b, computes B = gb mod p and sends it to Alice;

A: computes KA = Ba mod p;

B: computes KB = Ab mod p.

Alice and Bob, now, have the same key K = KA = KB, since B
a mod p = Ab mod p.

Let's suppose the attacker could intercept the whole speech: he knows A and B, but
couldn't know the key K, since he doesn't know random numbers a and b. Theoretically
he could compute, by the discrete logarithm, a and b but that is considered too com-
putationally onerous to be dangerous. If the attacker could guess a or b, for example
if a and b aren't randomly generated, he could impersonate Alice or Bob and see the
following encrypted communication or substitute itself to one of the two.

Example 1.2.2 (One-Time Pad (OTP)).
Vernam Cipher (often called OTP) is the only cryptographic system which has been
proven (by C. Shannon in [66]) to be secure, since the ciphertext gives absolutely no
information about the plaintext (this property is said to be perfect secrecy): for this
reason the cipher has been called "the perfect cipher".
To encrypt using OTP, one has to generate an in�nite number of random sequences of
each possible length and both the sender and the receiver (and no one else) has to own
those keys.
Given the plaintext x1, . . . , xn, a random sequence of the same length has to be chosen
as key k1, . . . , kn: the ciphertext is created by an element by element sum yi = xi+ki ∀i.
The receiver has to know which is the random sequence the sender used and simply
decrypt by element by element subtraction.
Each use, the used key (i.e. the random sequence) has to be destroyed and never used
again, in order to maintain the perfect secrecy of the cipher.

Notwithstanding the theoretical perfect security of this cipher, the necessity to share
a potentially non-�nite number of key (which have to remain secret over time) and to
know which is used each time, the e�ective practice usability of OTP is very low in
modern cryptography, where the amount of information to encrypt is huge6.

6Anyway, OTP has been used since the early 1900s and registered an exploit in the World War II,
where many nations used OTP systems to secure their sensitive tra�c. [34] provides an interesting
reading on these facts, as long as the history of cryptography from its beginning to the time of writing
(1967).
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Example 1.2.3 (Digital Signature).
The digital signature is a scheme by which a receiver could verify that the message had
been created by a known sender and that it wasn't modi�ed by someone else, then it
provides authentication and integrity of the message. Moreover, signing a message, the
sender couldn't deny to have sent the message anymore, so that digital signature also
produces non-repudiation.

The most classical, and standard since 1994, way to provide a digital signature is the
Digital Signature Algorithm (DSA), described here.
To perform a digital signature the triple (p, q, g) is on public domain where p and q are
prime numbers, g = hz mod p where z is such that p = qz + 1 and h is such that hz

mod p > 1.
Moreover, the signer generates a random number x, which will be his private key, and
computes y = gx mod p to form the public key. Let H be an hash function (for the
DSA algorithm a SHA function is used).

The signature process for the message m proceed as follows:

• a random value k is chosen, with the restriction that 1 < k < q;

• r = (gk mod p) mod q;

• s = (k−1(H(m) + x · r)) mod q;

• the signature of the message m consists on the couple (r, s).

To verify the sign one has to perform the following steps:

• w = s−1 mod q;

• u1 = H(m) · w mod q;

• u2 = r · w mod q;

• v = (gu1yu2 mod p) mod q.

The signature is considered to be valid if v = r.

1.2.1 Employment of randomness in automotive

The examples above show some of common uses of randomness in cryptography. In
this section we would make some more examples, related to the automotive case, in order
to make the usage (and the importance) of randomness more clear, and speci�c to our
study case.
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Figure 1.3: Digital Signature scheme. Credits to www.docusign.com.

In certain cases the car maker has to ensure that any request to access the CAN-bus
is made by authorized entity and in particular that critical actions are performed by
legitimate entities:

Example 1.2.4 (Diagnostic authentication (challenge and response)).
Apart from troubleshooting, diagnosis communication with vehicle and with ECUs is
also used for more critical tasks, such as reprogramming (�ashing) a speci�c control
unit or updating software. It is crucial, then, to protect the communication between
the tester and ECUs against unauthorized persons or equipment. To ful�ll this need,
an authorized tester has to be recognized and authenticated by the system, in order to
perform critical actions: that is made by embedding a scheme of authenticated access,
which is based on a challenge and response protocol and (possibly) on digital signature,
described in example 1.2.3 A tester who has to make critical actions has to perform the
following actions:

1. opening a request to the system (i.e. the ECU), which generates a random number
to challenge the tester;

2. the tester encrypts the random number together with a pre-shared secret key, using
a shared algorithm (or a one-way function) and sends the ciphertext back to the
ECU;
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3. the ECU performs the same encryption and checks if the two values match: if it's
the case it permits the access.

This process could be even more secure by the use of certi�cates: in this case the tester
has to ask the OEM (through its PKI7) for the access: the OEM signs a certi�cate using
its private key; the tester sends the signed certi�cate to the ECU to request the access.
In this case the authentication is performed directly between OEM and ECU, by means
of tester's connection. The OEM signs a certi�cate reporting tester's identity and sends
it to the ECU, though the tester, to request the access; the ECU sends a chance to the
OEM, exploiting tester's connection; the OEM signs the challenge and sends it back to
the ECU, that can validate it and prove the authentication.

Example 1.2.5 (Secure communication).
During vehicle activity, ECUs exchange a lot of information between themselves to ensure
the functionality of the whole system. This communications, via CAN-bus, should be
checked to be secure. This is typically done by encrypting sensitive data, by asymmetric
or symmetric encryption (e.g. by the use of the Di�e-Hellman protocol, described in
example 1.2.1).

Each time the vehicle is started, an appointed ECU has to ensure that any other part
wasn't modi�ed or replaced (e.g. ECUs or software).

Example 1.2.6 (Component protection).
To ensure integrity of the system (i.e. to check if an ECU has been substituted by an
unauthorized one), a master ECU performs the following:

1. central ECU extracts a random number and sends it to a target ECU;

2. target ECU appends its unique ID8 to the random number and encrypts it using
a pre-shared key and sends it back;

3. central ECU decrypts the message, checks if the random number is the same it
sent and if the ID appears among authorized ECU's IDs (stored into its memory).

Other employment of random numbers are, for example:

• symmetric key generation for ECUs internal usage, such as to encrypt parts of
ECU's memory, authentication between ECUs and secure boot;

• asymmetric key generation for authentication;

• digital signature by the RSA-PSS algorithm, which works as in example 1.2.3 but
using RSA to sign, instead of a hash function;

7Public Key Infrastructure by which a third-party could ask the manufacturer to certi�cate a key.
8Identity: its made by an alphanumeric string which is unique for each component.
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• asymmetric encryption: when the encryption is based on RSA, the padding is often
made by random values and it takes the name of Optimal Asymmetric Encryption
Padding (OAEP) and the algorithm takes the name of RSA-OAEP.

To allow ECUs to perform cryptographic functionalities, as the above described,
ECUs can be equipped with a speci�c hardware which ful�ll all of these needs: an
example is the Hardware Security Module (HSM). HSM guarantees a trusted execution
environment where cryptography algorithms can be executed and sensitive data stored.

Figure 1.4: Hardware Security Module scheme. This HSM is provided with a True
Random Number Generator (TRNG). Credits to www.synopsys.com.

1.3 Random Number Generators

It becomes fundamental to create keys, in the form of strings of digits (numeric or
alphanumeric) which can't be uncovered by a possible attacker: that is done by the
embedding of Random Number Generators (shortly RNG) in the cryptographic system
(for example in the HSM, speaking about ECUs). RNGs are software or hardware (or,
in some cases both software and hardware) systems, which generate random numbers
as output. The output of an RNG is typically a binary sequence that could have any
length: there exists generators which create decimal or alphanumeric strings, but they're
less used and, in fact, any sequence could be converted in binary, as well as any binary
sequence can be converted in any other encoding. For this reason Random Number
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Generators are also, but rarely, called Random Bit Generators. In this thesis, unless
di�erently speci�ed, we will refer to RNGs and to random sequences/strings encoded
in binary format. We could distinguish Random Number Generators between Pseudo-
Random Number Generators (PRNGs) and True Random Number Generators (TRNGs)
depending on the way they create their output.

PRNGs are algorithms which, starting from a short initial value, called seed, produce
long sequences by manipulating that value through various mathematical functions in
such a way that output appear random. Some trivial PRNGs were also made by pre-
calculated tables from which a long sequence was extracted, depending from the seed.
PRNGs can produce sequences which are indistinguishable from really random sequences
in a suitable sense, even though they are, in fact, deterministic. When true randomness
is not required, PRNGs are the most e�cient choice, since they don't require any input
but the seed and they can produce a huge amount of digits in a very short time. Note
that, given a seed, a PRNG will always produce the same sequence as output: this prop-
erty of reproducibility, is very useful if one has to simulate or model random phenomena.
On the other hand, since the output can be predicted just knowing the seed, PRNGs
shouldn't be used when the produced numbers have to be really unpredictable, such as
lotteries, gambling, random sampling and security.

When e�ective unpredictability is required, it becomes necessary to use a TRNG: a
Random Generator which takes values from some source of entropy, which is typically a
random physical phenomena. Some typical source from which randomness is extracted
are:

• radioactive source: a radioactive source typically decays at completely unpre-
dictable times and that is often simple to register and use. This approach is the
one implemented, for example, by the HotBits service of Fourmilab Switzerland
(www.fourmilab.ch);

• shot noise: the noise produced by the �uctuation of electric current within electric
circuits;

• movement of photons: typically observed while traveling through a semi-transparent
mirror, detecting re�ection and transmission;

• atmospheric noise: atmospheric noise could be picked up by any radio and its easy
to be registered. The problem, in this case, is that it has to be detected in situation
where there is no periodic phenomena. www.random.org follows this approach;

• thermal noise, typically taken from resistors.
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Obviously, any other physical source could be used to extract digits from, but the ran-
domness of the source have to be proved to call that a TRNG. Well designed TRNG
could create high-quality random sequence, however typically TRNG are much slower
than PRNG since they are related to the physical event.

To ful�ll the request of a great amount of numbers in a short time, but maintaining
the unpredictability of TRNGs, it is also possible to combine a hardware based RNG
to a software based one (i.e. mixing a TRNG and a PRNG together): that type of
RNG is called Hybrid Random Number Generator (HRNG). In this case hardware ex-
tract randomness from a physical source of entropy, like TRNGs do, creating a short,
unpredictable, sequence; the sequence is then given as input to the software algorithm,
which uses it as the seed of a PRNG and extends it to the desired length.
By this choice, the produced sequence maintains randomness properties and remains
unpredictable, but can be generated much faster than a classical TRNG. However, the
design of a HRNG is doubly critical since both the physical entropy source and the al-
gorithm has to be well designed and has to work properly.
Many manufacturers are taking this path, due to the high demand of e�ciency requested,
while maintaining the unpredictability (in the form of unguessability) feature.

We said that PRNGs are not suitable to use in some application, with cryptography
among all however, at least theoretically, there exist a small subset of Pseudo Random
Number Generators which could be used in �elds where a TRNG would otherwise be
requested: these are called Cryptographically Secure Pseudo-Random Number Generators
(CSPRNGs). A PRNG is said to be cryptographically secure if it ful�ll two requirements:

i) next-bit test: if an attacker knows the �rst k bits of a produced random sequence,
there is no polynomial-time algorithm which can predict the (k + 1)th bit with
more than 50% of probability;

ii) state compromise extensions: if an attacker guess a part or all of the states of the
PRNG, there is no way he can reproduce the stream of random numbers which
where produced in previous states (i.e. he can't go backward).

The design of a CSPRNG is hard and most PRNG fail to satisfy one of the two re-
quests, however there are many PRNG which have been awarded by the cryptographically
secure prize: for example the ChaCha20 algorithm (embedded in Mac OS) , the Fortuna
algorithm (Linux) and the CryptGenRandom (Microsoft). Some other CSPRNGs have
also been standardized (in [4] and in [2]), such as Hash_DRBG, HMAC_DRBG and
CTR_DRBG.

A well designed RNG has to create sequences which are random by themselves and
which have no relations with other created sequences. In the following we will present a
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standardized method to evaluate if a RNG works properly analyzing the behavior of its
outputs.
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Chapter 2

The notion of randomness

This chapter will present an overview of the state of the art of randomness de�nitions.

2.1 Theoretical background

This section consists of a short introduction to the notions of probability which will
be useful to test randomness.

2.1.1 Probability bases

We give, here, some basic de�nitions we'll use in the following.

De�nition 2.1.1 (σ-algebra).
Fixed Ω an arbitrary non-empty set, a σ-algebra F over Ω is a family of subsets of Ω s.t.

i) Ω ∈ F ;

ii) if A ∈ F ⇒ Ac ∈ F ;

iii) if (An)n∈N ∈ F ⇒
⋃
n∈NAn ∈ F .

De�nition 2.1.2 (Probability measure).
A probability measure on (Ω,F) is a function P : F → [0, 1] such that

i) P (Ω) = 1;

ii) P is σ-additive: if {An}n∈N ⊆ F is a countable collection of pairwise disjoint sets,
then

P (
⋃
n∈N

An) =
∞∑
n=1

P (An).

17
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Elements of F are called events and if A ∈ F , the quantity P (A) is said to be the
probability of (the event) A.

De�nition 2.1.3 (Probability space).
A probability space is a triple (Ω,F , P ) where:

• Ω is an arbitrary non-empty set;

• F is a σ-algebra over Ω;

• P is a probability measure.

De�nition 2.1.4 (σ-algebra generated by a subset).
Let A be a set of subsets of Ω. De�ne

σ(A) = {A ⊆ Ω s.t. A ∈ F for all σ-algebras F containing A}

σ(A) is a σ-algebra, which is called the σ-algebra generated by A. It is the smallest
σ-algebra containing A.

De�nition 2.1.5 (Borel σ-algebra).
Given d ∈ N. The σ-algebra B = B(Rd) generated by the Euclidean toplogy of Rd is
called the Borel σ-algebra.

De�nition 2.1.6 (Random variable).
Let (Ω,F , P ) be a probability space and �x the couple (V ,A), where V is a set and A is
a σ-algebra. A function X : Ω→ V is called a random variable if X−1(A) ∈ F ∀A ∈ A.
X is said to be discrete if V is countable. If V ⊆ R, X is said to be real.
The probability that X takes on a value in a measurable set S ⊆ V is written as

P (X ∈ S) = P ({ω ∈ Ω|X(ω) ∈ S})

and is called the probability distribution of X.

De�nition 2.1.7 (Conditional probability).
Let (Ω,F , P ) be a probability space and A,B ∈ F be two events. If P (B) > 0, the
conditional probability of A given B (i.e. the probability of A to occur, while B occurs)
is de�ned as

P (A|B) =
P (A ∩B)

P (B)

where P (A ∩B) is the probability that both A and B occur.
For two random variables X and Y , this de�nition becomes

P ({X ∈ A|Y ∈ B}) =
P ({X ∈ A} ∩ {Y ∈ B})

P ({Y ∈ B})
.

If two events don't depend one another (we say that they are independent) we have that
P (A ∩B) = P (A)P (B) so that P (A|B) = P (A).
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Remark 2.1.1.
From the previous de�nition, it's easy to obtain the Bayes' theorem, which states that
if A,B ∈ F are two events, than

P (A|B) =
P (B|A)P (A)

P (B)
.

De�nition 2.1.8 (Independent random variables).
Random variables X1, X2, . . . are said to be independent if for any k ∈ N and for any
sequence A1, . . . , Ak ∈ F the equality

P (X1 ∈ A1, . . . , Xk ∈ Ak) = P (X1 ∈ A1) · . . . · P (Xk ∈ Ak)

holds.
For discrete random variables X1, X2, . . . this condition simpli�es to

P (X1 = x1, . . . , Xk = xk) = P (X1 = x1) · . . . · P (Xk = xk)

for any sequence x1, . . . , xk ∈ V.

De�nition 2.1.9 (Distribution function).
A distribution function µ is a map

µ : B(Rd)→ [0, 1]

de�ned by

µ(S) =
∑
x∈S∩A

γd(x) +

∫
S

γc(x)dx, S ∈ B

where

• γc, called the probability density function of µ, is a B-mesurable function

γc : Rd → [0,+∞]

such that ∫
Rd
γc(x)dx =: I ∈ [0, 1]

• γd, called the discrete distribution function of µ, is a function

γd : A→ [0, 1]

where A ⊆ Rd is a countable set, and∑
x∈A

γd(x) = 1− I

with the convention that γd(x) = 0 if x ∈ Rd \ A.
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In the case that γd ≡ 0, we say that µ is an absolutely continue distribution function.

De�nition 2.1.10 (Uniformly distributed random variable).
A random variable X that assumes values in a �nite set V is said to be uniformly dis-
tributed if it assumes all v ∈ V with the same probability.

De�nition 2.1.11 (Stochastic process).
A stochastic process is a parametrized collection of random variables {Xi}i∈I de�ned on
a probability space (Ω.F , P ) and assuming values in Rn.

De�nition 2.1.12 (i.i.d. random variables).
Let X and Y be two random variables on the same probability space. If X and Y are
independent as in (2.1.8) and have the same probability distribution, than X and Y are
said to be independent and identically distributed random variables: in the following we'll
shortly say i.i.d..

A stochastic process {Xi}i∈I is said to be an i.i.d. process if random variables that
forms it are.

De�nition 2.1.13 (Stationary stochastic process).
A stochastic process is said to be stationary if

P (X1 ∈ A1, . . . , Xk ∈ Ak) = P (X1+t ∈ A1, . . . , Xk+t ∈ Ak) ∀k, t ∈ N,∀A1, . . . , Ak ∈ F

For discrete random variables, this condition simpli�es to

P (X1 = x1, . . . , Xk = xk) = P (X1+t; . . . , Xk+t = xk) ∀x1, . . . , xk ∈ V.

Remark 2.1.2.
By de�nitions, an i.i.d. stochastic process is always stationary.

De�nition 2.1.14 (Mean).
The mean (or expected value) of a discrete real-valued random variable X is given by

E[X] :=
∑
x∈V

xP (X = x).

If X is a continue random variable (i.e.
∫

Ω
|X(ω)|dP (ω) <∞), then its mean is

E[X] :=

∫
Ω

X(ω)dP (ω) =

∫
Rn
xdµX(x).

De�nition 2.1.15 (Cumulative distribution function).
Let X be a real-valued random variable on (Ω,F , P ).
The cumulative distribution function of X is the function

FX : R 7→ [0, 1]

s.t. FX(y) = P (X ≤ y), y ∈ R.
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Proposition 2.1.1.
If two random variables X, Y : Ω→ R are independent then X, Y ∈ L1(Ω, P ) if and only
if XY ∈ L1(Ω, P ). In that case we have

E[XY ] = E[X]E[Y ].

De�nition 2.1.16 (Variance and standard deviation).
Given a random variable X, we can de�ne its variance and its standard deviation respec-
tively as:

V ar(X) := E[E[X]−X]2

σ :=
√
V ar(X)

De�nition 2.1.17 (Ergodic stochastic process).
A stationary stochastic process is said to be ergodic if its statistical properties can be
deduced from a single, su�ciently long realization of the stochastic process.

De�nition 2.1.18 (Dirac distribution).
The Dirac distribution δx0 centered on x0 ∈ R is the distribution with

γc ≡ 0 and γd = 1 on A = {x0}.

So

δx0(S) =

{
1 if x0 ∈ S
0 if x0 /∈ S.

De�nition 2.1.19 (Normal distribution).
The real normal distribution N(µ, σ2) of parameters µ ∈ R and σ ≥ 0 is the distribution
which density is

γc(x) =

{
0 if σ = 0

1√
2πσ2

e−
(x−µ)2

2σ2 if σ > 0

and discrete distribution function on A = {µ}

γd =

{
1 if σ = 0

0 if σ > 0.

So N(µ, 0) = δµ and, if σ > 0,

N(µ, σ2) =
1√

2πσ2

∫
S

e−
(x−µ)2

2σ2 dx S ∈ B(R).

A particular, and really important special case, is when µ = 0 and σ2 = 1: in this case
the distribution is called Standard Normal distribution and its cumulative distribution
function is

Φ(x) =
1√
2π

∫ x

−∞
e−t

2/2dt. (2.1)
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An extremely useful result for our analysis will be the following

Theorem 2.1.2 (Central limit theorem).
Let {Xn} be a stochastic process of independent and identically distributed random vari-
ables, whose mean µ and variance σ2 < +∞. Then the random variable

Zn :=
X1 + · · ·+Xn − nµ

σ
√
n

approaches the Standard Normal Distribution N(0, 1) as n approaches to in�nity. In
other words, for all a < b we have

lim
n→∞

P

(
a ≤ X1 + · · ·+Xn − nµ

σ
√
n

≤ b

)
= Φ(b)− Φ(a)

where Φ is the cumulative distribution function of the Standard Normal Distribution, as
above.

2.1.2 Entropy

We introduce, now, the concept of entropy, as de�ned by Shannon [65]. Thanks to
this concept, we can measure the uncertainty of a stochastic source of data or, equiva-
lently, the average amount of information content, regardless the object of study.

Let X be a discrete random variable and let P be its probability distribution de�ned
on V = {x1, . . . , xM} such that P (X = xi) = P (xi) = pi. We want to de�ne a set of
functions HM : RM → R+ that meets the following axiomes:

i) Monotony: f(M) := HM( 1
M
, . . . , 1

M
) be a strictly increasing function;

ii) Extensiveness: f(LM) = f(L) + f(M) ∀L,M ≥ 1;

iii) Groupability: �xed r < M we de�ne ~q = (qA, qB) s.t. qA =
∑r

i=1 pi
(⇒ qB = 1− qA =

∑M
i=r+1 pi)

HM(~p) = H2(~q) + qAHr

(
p1

qA
, . . . ,

pr
qA

)
+ qBHM−r

(
pr+1

qB
, . . . ,

pM
qB

)
iv) Continuity.

Theorem 2.1.3 (Shannon).
The only function (up to multiplicative constant) which satis�es the previous axioms is

~p 7→ H(~p) = −c
M∑
i=1

pi logb pi
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with the convention that 0 log 0 = 0 (which is consistent by the fact that limp→0 p logb
1
p

=

0). The function H is said to be the entropy function (or simply entropy).

Proof.
It's easy to prove that the function H meets the previous axioms, so we'll show the ex-
istence and uniqueness of that function.

1. ∀M,k ≥ 1 we can write f(Mk) = f(M · Mk−1) = f(M) + f(Mk−1) using the
groupability property.
Iterating the procedure we �nd f(Mk) = f(M) + f(Mk−1) = . . . = kf(M)

2. Let's show that ∀M ≥ 1 ∃ c > 0 s.t. f(M) = c logM :
if M=1 we have that

f(1) = f(1 · 1) = f(1) + f(1)⇒ f(1) = 0.

If, otherwise, M > 1, one can prove that for all r ≥ 1 exists k ∈ R such that

Mk ≤ 2r ≤Mk+1,

but f(M) = HM( 1
M
, . . . , 1

M
) is a strictly increasing function, so we obtain

f(Mk) ≤ f(2r) ≤ f(Mk+1).

Using the �st step

kf(M) ≤ rf(2) ≤ (k + 1)f(M)⇒ k

r
≤ f(2)

f(M)
≤ k + 1

r
,

and the logarithm is strictly increasing too, so

k

r
≤ log 2

logM
≤ k + 1

r
⇒
∣∣∣∣ f(2)

f(M)
− log 2

logM

∣∣∣∣ ≤ 1

r
.

r was arbitrary then, to the limit for r to in�nity,

f(M) =
f(2)

log 2
logM = c logM

3. We took uniform pi: let's extend this de�nition choosing pi = ri
M
∈ Q, i = 1, . . . , N ;

let's divide the element of ~p in groups of ri: each ri element will have a probability
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of 1
ri

= 1
M
/pi = 1

M
/ ri
M
.

Let's use now the groupability property, obtaining

c logM = f(M) = f(M) = HM

(
1

M
, . . . ,

1

M

)
= H(p1, . . . , pN) +

N∑
i=1

piHri

(
1

ri
, . . . ,

1

ri

)
= H(p1, . . . , pN) +

N∑
i=1

pic log ri

then

H(p1, . . . , pN) = c

(
logM −

N∑
i=1

pi log ri

)
= c

(
−

N∑
i=1

pi log
ri
M

)
= −c

N∑
i=1

pi log pi

We can now extend it to all of R thanks to the continuity axiom.

Remark 2.1.3.
The de�nition is consistent for any base of the logarithm b. Common values of b are 2,
the Euler's number e and 10, and the corresponding units of entropy are, respectively,
bits, nats and bans.
Our purpose is to analyze binary strings: we'll choose b = 2, so that c = 1. In the
following we will always use that base, than we'll simply write log, instead of log2.

Remark 2.1.4.
By de�nition we have that H(x) ≥ 0.

Making some examples, we want to to show what we mean for "measure the uncer-
tainty" of a source of data

Example 2.1.1.
If ~p = (0, . . . , 0, 1, 0, . . . , 0)M we obtain that H(~p) = 0: in the case that the distribution
of probability is some of this kind, we don't have any uncertainty.

Example 2.1.2.
Let's try to �nd which is the event ~p = (p1, . . . , pM) which maximize the entropy H.
We consider the function

h : ~p 7→ H(~p) = −
M∑
i=1

pi log pi

with the constraint that ϕ(~p) =
∑M

i=1 pi − 1 = 0. Let's use the Lagrange multipliers:

∂pij(H(~p) + λϕ(~p)) = 0
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− log pj − pj
1

pj

1

log 2
+ λ = 0⇒ − log pj = λ log 2 = cost.⇒ pj = cost.

pj also has to meet the constrait, so we obtain that pj = 1
M
.

One can easily see that the uniform vector ~p =
(

1
M
, . . . , 1

M

)
is a maximum for the entropy:

in this case we have H(~p) = logM .

Example 2.1.3.
If ~p =

(
1

M−1
, . . . , 1

M−1
, 0
)
M
⇒ H(~p) = log(M − 1), so that it's the same as having one

less choice.
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2.2 Characterizations of randomness

Many disciplines tried to give a de�nition of randomness and found di�erent ways
to call something "random". We are interested in expressing what is a "binary random
string".

2.2.1 Probabilistic approach

One can formulate the notion of random string in the following way:

De�nition 2.2.1 ((Probabilistic) random string).
Let {Xi}i∈I be a stochastic process to assume values in V = {r1, . . . , rM} with probability
P (ri) = P (rj) ∀i, j.
If the process consists on independent and identically distributed (i.i.d.) random vari-
ables, then its realization (r1, . . . , rN) ∈ VN is called a random string.

Remark 2.2.1.
In the case of a binary string (r1, . . . , rM), ri ∈ V = {0, 1} we can consider the sequence
as a realization of the same random variable X. Obviously, in this case, the probabilities
are P (0) = P (1) = 1

2
as in a coin �ip.

The distribution that models the outcomes of an i.i.d. process is known as the
Bernoulli distribution.

De�nition 2.2.2 (Bernoulli distribution).
Given p ∈ [0, 1], the Bernoulli distribution function is de�ned on R̄ and is de�ned in the
following way:

γ(x) =


p if x = 1,

1− p if x = 0,

0 otherwise.

The respective distribution is

B(1,p)(H) =


0 if 0, 1 6∈ H,
1 if 0, 1 ∈ H,
p if 1 ∈ H, 0 6∈ H,
1− p if 0 ∈ H, 1 6∈ H.

If a random variable X has a Bernoulli distribution, then P (X = 1) = p and P (X =
0) = 1− p.

Practically speaking, a Bernoulli process is a �nite or in�nite sequence of independent
random variables X1, X2, . . . such that:



2.2 Characterizations of randomness 27

i) the value of Xi is either "0" or "1", ∀ i;

ii) P (Xi = 1) = p, P (Xi = 0) = 1− p.

So we can rationally model an ideal random string as the realization of a Bernoulli
process with p = 1

2
.

A closely connected, and very useful in the following, distribution is the

De�nition 2.2.3 (Binomial distribution).
Let n ∈ N and p ∈ [0, 1]. The binomial distribution of parameters n and p is de�ned by
the distribution function

γ(k) =

{(
n
k

)
pk(1− p)n−k if k = 0, 1, . . . , n

0 otherwise.

So if a random variable X has a binomial distribution (by symbols X ∼ Bin(n, p)) we
have

P (X = k) =

(
n

k

)
pk(1− p)n−k, k = 0, 1, . . . , n.

Example 2.2.1.
Typical examples of binomial random variables are:

• the random variable "number of successes in n independent repeted trials with
probability p", which has Bin(n, p) distribution;

• if we suppose to have r objects into n boxes, the random variable "number of
objects into the �rst box" has a Bin(n, 1

r
) distribution.

Note that this point of view, nevertheless it provides ideas and characterization of
random string, is in fact the main base of all of the following approaches and theories.

2.2.2 Information Theory approach

As we discussed in section (2.1.2), we could give a measure of the uncertainty of a
source through the concept of entropy and this uncertainty of the source corresponds to
the amount of information which the data contains.

We modeled a random binary string as a Bernoulli process, i.e. as a sequence of
independent random variables X1, X2, . . . with P (Xi) = 1

2
∀i, so that the information

contained in it is maximum: this means that every single bit of the sequence contains
relevant information. If each single bit of the sequence contains some information, that
implies that we couldn't compress the string in a relevant way, without losing some of
the information contained inside it. In the following we try to formalize this idea and to
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show that this is strictly connected with the notion of entropy.

Let X̄ = {Xi}i∈I , I ⊆ N be a stochastic process. To express how the entropy grows
as soon as the process goes on (i.e. we add bits to the sequence) we can give the following

De�nition 2.2.4 (Entropy-rate of a stochastic process).
The entropy rate of a stochastic process is de�ned as

H(X̄) := lim
n→∞

H(x1, . . . , xn)

n

if this limit exists.

Using the fact that H(x1, . . . , xn) =
∑n

i=1H(xi|x1, . . . , xi−1) one can easily observe
that the following holds:

Theorem 2.2.1.
If X̄ is a stationary process, than H(X̄) exists and

H(X̄) := lim
n→∞

H(xn|x1, . . . , xn−1).

Example 2.2.2.
Let us consider a stochastic process formed by a sequence of i.i.d. random variables. In
this case it holds that

H(X1, . . . , Xn) = H(X1, . . . , Xn−1) +H(Xn).

Iterating we �nd that
H(X1, . . . , Xn) = nH(X1)

since H(Xi) = H(Xj) ∀i, j, so that the entropy rate of this process is exactly

H(X̄) = lim
n→∞

H(X1, . . . , Xn)

n
=
nH(X1)

n
= H(X).

Since, as we have seen in previous section, a random sequence is produced by a
Bernoulli process (which is an i.i.d. process) this is exactly the case of our interest, and
the entropy rate is maximum, since the entropy is.

To compress a sequence we should de�ne a way to transform elements of it or, in
other words, we need a

De�nition 2.2.5 (Code).
A code C for a random variable X, which takes values on an alphabet χ, is a map

C : χ→ D∗ =
⋃
n

Dn
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such that
x 7→ C(x),

where D is an alphabet and C(x) is said to be a code word. To each code word we can
naturally associate it's length l(x).

Each code can be extended to �nite strings of the alphabet χ through

C∗ : χ∗ → D∗

de�ned as
(x1, . . . , xn) 7→ C∗(x1, . . . , xn) = C(x1) · ... · C(xn).

where · stands for the concatenation.

In the following we will consider the most useful codes which permits to compress/-
code and decompress sequences without requiring any other information, i. e. codes
with the following properties:

• Non-singular: if xi 6= xj ⇒ C(xi) 6= C(xj) ∀i, j;

• Pre�x-free: no code word is pre�x of other code words, i.e. if c(xi) = α ⇒
@j s.t. C(xj) = α ∗ ∗∗.

Codes which satisfy these requirements are called instantaneous or pre�x code.

To assess the existence of an instantaneous code we can use the following theorem,
proved by Kraft in [40]:

Theorem 2.2.2 (Kraft's inequality).
If C is an instantaneous code on D, with |D| = D, the set of length {l1, . . . , lm} is such
that

∑m
i=1D

−li ≤ 1.
Vice versa, if the set of length {l1, . . . , lm} satisfy the inequality ⇒ there exists an in-
stantaneous code on D with those length.

Since we are interested in instantaneous codes, this theorem gives us constraints on
the length of code words which permits to study them.
We are interested to compress a sequence, i.e. to minimize it's length. Let's consider

De�nition 2.2.6 (Average length of the code).
If p(x) is the probability of the word x to occur and l(x) is the length of the coded word,
the average length of the code is de�ned as

L(C) =
∑
x∈χ

p(x)l(x).

A code that minimize the average length is said to be optimal.
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We can �nd a lower bound for the average length, i.e. we can �nd the best per-
formance for an instantaneous code, minimizing the average length function, with the
constraints that the length of code words satisfy Kraft's inequality.

Proposition 2.2.3.
For each instantaneous code for a random variable X one has

L(C) ≥ HD(X),

where HD(X) is the entropy where the base of the logarithm is D.

Proof.
Let's use Lagrange multipliers to minimize the average length with the constraints of the
Kraft inequality:

J(l1, . . . , lm) =
∑
i

pili + λ

(∑
i

D−li

)
where pi and li stands for the probability and length of the i-th symbol of the alphabet.

∂J

∂lk
= pk + λ(−logeD ·D−lk) = 0

from which

pk = (λlogD)D−lk .

Now
∑
pk = 1 and if we suppose

∑
D−lk = 1, we obtain

λlogD = 1⇒ λ =
1

logD

so that

pk = Dlk ⇔ lk = −logDpk.

Substituting we obtain that the minimum for the average length is L̃ = HD(X).

We can extend this de�nition to words of any chosen length by de�ning the

De�nition 2.2.7 (Average length per-symbol).
If l(x1, . . . , xn) is the length of the code word associate to the word (x1, . . . , xn),

Ln(C) =
1

n

∑
x1,...,xn

p(x1, . . . , xn)l(x1, . . . , xn)

is said to be the average length per-symbol.
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One can prove that, for an optimal code the following inequality holds:

HD(x1, . . . , xn)

n
≤ Ln(C) ≤ HD(x1, . . . , xn) + 1

n

which to the limit n→∞ becomes

H(X̄) ≤ Ln(C) ≤ H(X̄).

As we have seen, for a random sequence the entropy rate is, in fact, the entropy of the
process (which is maximum for random sequences), therefore studying the compression
rate of optimal codes applied to sequences seems to be a good way to test for randomness:
this has been done by most of test suites for randomness for long time, since equivalent
but more e�cient methods were found. The most used test suites, and especially NIST's,
used the LZ78 code or its variants: a universal and optimal code, proposed by Lempel and
Ziv in [71] and enhanced in [72]. Sequences were e�ectively compressed, using LZ78 and
the compression rate was analyzed to decide whether or not the sequence was random:
due to the high complexity of the compression algorithm and to some weakness of the
implementation, such as constraints on the length of the sequence to test, this test was
removed in 2004, since the Serial test (test 11) and the Approximate entropy test (test
12) produce analogous results.

2.2.3 Complexity Theory approach

In this section, we will present the approach of theory of complexity, introduced by
Kolmogorov (see [9] for a review) and extended by Chaitin (see for example [12]), which
de�nes randomness in terms of the length of the shortest code (called Chaitin computer)
that could create the sequence itself. This approach also leads to the sharable idea that
randomness implies an absence of regularity which is, obviously, strictly connected to
the idea of incompressibility presented by the theory of information.

In this section we will use the concept of partially computable function, typical of
the algorithmic information theory: a function ϕ : X → Y which is de�ned on a subset
Z ⊆ X is called a partial function; if dom(ϕ) = X, the function is said to be a total
function. A partial function is said to be partially computable function if it can be com-
pletely described by an algorithm.

The Chaitin de�nition of randomness is based on the following

De�nition 2.2.8 (Chaitin computer).
Let A = {a1, . . . , aQ} be a sortable alphabet.
A computer is a partially computable function C : A∗ × A∗ → A∗.
A Chaitin computer is a computer C such that ∀v ∈ A∗ the domain of Cv is pre�x-free,
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with Cv : A∗ → A∗ such that Cv(x) = C(x, v) ∀x ∈ A∗.
A (Chaitin) computer C is said to be universal if for each (Chaitin) computer ϕ there is
a constant c (which depends on ψ and ϕ) such that if ϕ(x, v) <∞⇒ ∃x′ s.t. ψ(x′, v) =
ϕ(x, v) and |x′| ≤ |x|+ c.

As in [11] (Theorem 3.3) one can prove that a (Chaitin) universal computer e�ectively
exists. In the sequel we will use ψ to indicate a universal computer and U for a Chaitin
universal computer and we'll use them to de�ne complexities of strings.

De�nition 2.2.9 (Complexities).
a) The Kolmogorov-Chaitin absolute complexity, associated with a computer ϕ is
the function Kϕ : A∗ → N de�ned as

Kϕ(x) := min{|u| s.t. u ∈ A∗, ϕ(u, λ) = x}.

If ϕ = ψ we will write K(x) instead of Kψ(x).
b) The Chaitin absolute program-size complexity, associated with the Chaitin com-
puter C is the function HC : A∗ → N de�ned as

HC(x) = min{|u| s.t. u ∈ A∗, C(u, λ) = x},

and we will write H(x) = HU(x) if the associated computer C is the universal computer
U .

According to both de�nitions, the complexity of a string x is the the length of the
shortest string y one has to give as input to a computer to obtain the string x: we can
use this notion as the main quantity to de�ne randomness. One can prove that the two
notion of complexity are equivalent and that

K(x) ≤ Kϕ(x) +O(1), H(x) ≤ HC(x) +O(1)

for each computer ϕ and for each Chaitin computer C.

Example 2.2.3 (Paradox of randomness).
Consider the following binary strings:

x = 00000000000000000000000000000000,

y = 10011001100110011001100110011001,

z = 011010001001101oo101100100010110,

u = 00001001100000010100000010100010,

v = 01101000100110101101100110100101.
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According to the classic probability theory all the previous strings have the same prob-
ability, which is 2−32 since they are made of 32 digit which can be 0 or 1, however, if
we focus on regularity of those, they are extremely di�erent: indeed we can express x
simply by "32 zeros", y is "eight time 1001" and z is "0110100010011010 concatenated
with it's mirror". This example also shows the strict relationship between regularity and
compressibility, since the more a sequence is regular, the more we can compress it.
u and v are more cryptically: we can't apparently �nd any sort of regularity and we can't
express them by a shorter formula. Simplistically thinking, this could be considered as
the main idea behind the de�nition of randomness given by the theory of complexity.

To give a de�nition of randomness based on complexity, one should prove that, each
time we choose a length n for the sequence, there is a maximum for the complexity of
strings of n digits. We will present here the main results which lead to the de�nition of
randomness given by Chaitin (see for example [11] for proofs).

Theorem 2.2.4 (Chaitin).
Let f : N→ A∗ be an injective, computable function.

• The following inequality holds ∑
n≥0

Q−H(f(n)) ≤ 1.

• Let g : N+ → N+ be a computable function, then

i) If
∑

n≥1Q
−g(n) =∞, then H(f(n)) > g(n) for in�nitely many n ∈ N+.

ii) If
∑

n≥1Q
−g(n) <∞, then H(f(n)) ≤ g(n) +O(1).

Using this theorem and choosing g(n) = blogQnc and g(n) = 2blogQnc one can �nd
the following bound for the Chaitin complexity of a string of length n on an alphabet of
cardinality Q:

blogQnc < H(string(n)) ≤ 2blogQnc+O(1).

Thanks to this bound we have

Theorem 2.2.5.
For every n ∈ N

max
x∈An
H(x) = n+H(string(n)) +O(1).

Since the maximum always exists, we can de�ne a function Σ : N→ N such that

Σ(n) = max
x∈An
H(x) = n+H(string(n)) +O(1).

A random string of length n could be de�ned as the string which have the maximal
complexity among all strings of length n, i.e. the strings x ∈ An such that H(x) ≈ Σ(n)
or, in other words, we can give the following



34 2. The notion of randomness

De�nition 2.2.10 (Chaitin random string).
A string x ∈ A∗ is said to be Chaitin m-random, with m ∈ N, if H(x) ≥ Σ(|x|)−m.
x is Chaitin random if it is 0-random.

Moreover, by combinatorial arguments, one can also prove the following result on the
numerosity of Chaitin random strings:

Theorem 2.2.6.
For all n ∈ N there exists a constant c > 0 such that

γ(n) = #{x ∈ An s.t. H(x) = Σ(|x|)} > Qn−c.

This approach is the main focus for the Binary matrix rank test (test 5), the Discrete
Fourier transform test (test 6) and for the two test which analyze templates (test 7 and
8).

2.2.4 Algorithmic Information Theory approach

The goal of Martin-Löf's theory was to prove that the de�nitions of randomness given
by Kolmogorov and Chaitin through the theory of complexity are consistent with the
classical probability theory: the strength of his theory is that it includes all known and
unknown properties of random sequences.

Let's suppose to have an element x of a general sample space and to test if this element
is typical, i.e. if it belongs to some majority or if it is a special case among that sample
space. Considering all these possible "majorities", an element would be "random" if it
lies on the intersection of all majorities or, conversely, it would be "non-random" if there
is some case where it can be considered "particular": this is, basically, the idea if the
classical hypothesis testing we'll explain and use in the following chapter.

De�nition 2.2.11 (Martin-Löf test).
A set V ⊂ A∗ × N+ is called a Martin-Löf test if the following holds:

i) Vm+1 ⊂ Vm ∀m ≥ 1;

ii) #(An ∩ Vm) < Qn−m/(Q− 1) ∀n ≥ m ≥ 1.

Vm = {x ∈ A∗ s.t. (x,m) ∈ V } is called a m-section of V . For each m, the set Vm is
called the critical region at level Q−m/(Q − 1) and we say that a string is "random" at
level m, with respect to the test V if x /∈ Vm and |x| > m.

Let make, here, two examples to show that tests we'll discuss in the following could
be analyzed according to this theory.
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Example 2.2.4.
Consider the set

V =

{
(x,m) ∈ A∗ × N+ s.t.

∣∣∣∣Nj(x)

|x|
− 1

Q

∣∣∣∣ > Qm 1√
|x|

}
,

where Nj(x) is the number of occurrences of the j-th letter in the string x, which is
a possible formulation of the frequency test: the most basic test that, in our (binary)
case, analyzes if the number of zeros and ones is approximately the same, as we expect
from a random sequence. This is a Martin-Löf test. Indeed the �rst condition is banally
satis�ed.
For the second condition, since

#

{
x ∈ An s.t.

∣∣∣∣Nj(x)

|x|
− 1

Q

∣∣∣∣ > ε

}
≤ Qn−2(Q− 1)

nε2
,

we obtain that

#(An ∩ Vm) = #

{
x ∈ An s.t.

∣∣∣∣Nj(x)

|x|
− 1

Q

∣∣∣∣ > Qm 1√
|x|

}

=
Qn−2(Q− 1)

Q2m

= Qn−2−2m(Q− 1)

≤ Qn−m

Q− 1

which is the second requirement of the de�nition.

Example 2.2.5.
Consider ϕ : A∗ → A∗ to be a computer. One can prove that the set

V (ϕ) = {(x,m) ∈ A∗ × N+ s.t Kϕ(x) < |x| −m},

is a Martin-Löf test. Note that this is a formulation for the test which rejects the
hypothesis of randomness if regularities are found, as discussed in the previous section.

By this de�nition we can say what is "random" with respect to the test V , indeed
we can give the following

De�nition 2.2.12 (Martin-Löf random string).
To a Martin-Löf test V we can associate a function mV : A∗ → N, de�ned as

mV (x) =

{
max{m ≥ 1 s.t. (x,m) ∈ V } if (x, 1) ∈ V
0 otherwise.

which is called the critical level of the string x with respect to the test V .
We can say that x is q-random, according to the Martin-Löf test V , if x /∈ Vq and q < |x|.
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Chaitin random strings and Martin-Löf's tests are strictly connected, indeed, as in
[11], one can prove the following

Theorem 2.2.7.
Fixed k ∈ N, almost all Chaitin k-random strings will be declared random by every
Martin-Löf test.



Chapter 3

Statistical tests for randomness

As we have seen, the purpose of a Random Number Generator is to produce sequences
of random digits, if it's a true RNG, or at least that behave as if they are random, in the
case of a PRNG: how could we decide whether a sequence is random? The idea behind
statistical tests is to compare the sequence, output of the RNG, to a sequence which is
the output of an ideal random number generator. Each test inspects the sequence to
assess the presence of some speci�c pattern or behavior which could indicate that the
sequence is random. For an ideal random string the property is known a-priori, can be
described in probabilistic terms and de�nes statistic T of each test. Each test gives us
more and more con�dence of the randomness of the sequence. The purpose is to propose
a collection of tests that could cover a su�ciently large set of defections.

3.1 General procedure

The idea behind the tests is the hypothesis testing: let's �x a parameter space Θ,
which indexes all possible probability distributions of the observed data. We de�ne the
null hypothesis H0 as a subset θ0 ∈ Θ which corresponds to special parametric values
of interest. The so called alternative hypothesis H1 i.e. θ ∈ Θ1 can also be considered:
typically the alternative hypothesis corresponds to the complementary one Θ1 = Θ \Θ0.
Once the null hypothesis is de�ned, one tests data to decide if he should maintain or
reject his hypothesis, i.e. if the inspected objects belong to the subset Θ0 or to its com-
plementary.

In our case of testing randomness, the hypothesis is that the sequence is random and
the alternative one is that it is not, we can give the following

De�nition 3.1.1 (Null hypothesis (for randomness)).
Let Θ be the set of all possible distributions of a binary sequence, Θ0 the set of distribu-
tions of ideal random binary sequence and Θ1 = Θ \Θ0.

37
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The null hypothesis H0 : θ ∈ Θ0 is that bits of the observed sequence represent indepen-
dent Bernoulli random variables with the probability of success p(1) = p(0) = 1

2

As we said, each statistical test is based on a statistic T : to decide if we should main-
tain or reject the null hypothesis, one shall see if the observed statistic T is su�ciently
close to the expected one T0, which is the same statistic under H0. According to that,
one should de�ne a cut-o� value to make this decision. This approach leads to

De�nition 3.1.2 (Signi�cance level).
The signi�cance level α is the probability that the null hypothesis is rejected.

This signi�cance level represents the probability that a "good" generator produced a
non-random sequence. α is a-priori de�ned and empirical results in cryptography showed
that it can be chosen between 0.001 and 0.01. One could also de�ne the probability that
a "bad generator" produced a random sequence; this is the

De�nition 3.1.3 (Power of the test).
The power of the test β is the probability that the alternative hypothesis H1 is rejected,
although is true (i.e. H0 is accepted).

So that, the observer may commit two types of error: judging the generator as a
"bad" generator while in fact it e�ectively generate random numbers, with probability
α, (we call that type I error) or concluding that the sequence is random (i.e. produced
by a "good" random generator) while it's not, with probability β (this will be called type
II error). We summarize possible conclusions in the following table:

CONCLUSION
TRUE SITUATION Accept H0 Reject H0

Data is random (H0 is true) No error Type I error
Data is non-random (H0 is false) Type II error No error

The probability β of a type II error is always di�cult to express, however α and
β are related to each other: a small α corresponds to a high β and vice versa. In
most of hypothesis testings, the signi�cance level α is chosen to be on the order of 0.05,
however in cryptography α is commonly set to smaller values (i.e. α ≤ 0.01). Note
that setting, for example, α = 0.01 means that, under randomness hypothesis (i.e. our
data is e�ectively random), we expect to reject the null hypothesis in less than 1% of
cases. The existence of these errors shows that evaluating if the observed (empirical)
values are su�ciently close to the expected one it's not enough, because we can fall in
one of the previous errors: it's also useful to know how often we obtain the value of the
statistic T(obs) we obtained from our sequence. Assume that the test leads to rejection
of the null hypothesis for large values of a test statistic T (i.e. when T > T0): the main
characteristic to �nd is the
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De�nition 3.1.4 (Empirical signi�cance level (P-value)).
The empirical signi�cance level, called the P-value, is the probability that the random
variable T exceeds its observed value T (obs), evaluated under the null hypothesis H0. In
formula we can write P-value = P (T > T (obs)|H0).

The advance of this approach is that the null hypothesis is rejected when the P-value
is smaller than α. So, if for each test we compute the P-value we obtain two information:
we know if the sequence is random and we get the probability this string is an output
of a truly random generator. By this approach, a P-value which equals to 1 assess that
the tested sequence has a perfect randomness, while a P-value which equals to zero says
that our sequence is completely non-random. Chosen a signi�cance level α, we proceed
as follows

• if P-value > α⇒ we accept the null hypothesis or, more precisely, we don't reject
it;

• if P-value < α⇒ we reject the null hypothesis and we conclude that the sequence
is non-random;

• if P-value ≈ α⇒ we don't reject the null hypothesis, but we apply another test.

As consequence, the P-value summarizes the strength of the evidence against the
null hypothesis and gives us a con�dence level: we can better explain this fact using the
following examples

Example 3.1.1.
An α = 0.01 indicates that we expect 1 sequence in 100 sequences to be rejected by
the test, if the sequence is in fact random. So, if P-value ≥ 0.01 we consider the string
as random with a con�dence of 99%; if P-value < 0.01 we consider the sequence as
non-random with a con�dence of 99%.

Example 3.1.2.
Similarly, if α is chosen to be equal to 0.001, if P-value ≥ 0.0001 we consider the string
as random with a con�dence of 99.9% and, if P-value < 0.001 we consider the sequence
as non random with a con�dence of 99.9%. Note that α = 0.001 would indicate that
we expect 1 sequence in 1000 to be rejected by the test even if the sequence is in fact
random.

As we have seen the signi�cance level we a-priori chose is crucial for our evaluation:
a too high value could permit "not-so-good" random number generators to pass tests,
even if it doesn't generate random numbers but, on the other hand, a too low α could
be too compelling and reject even some random sequences.

Since it is not possible to judge a RNG by testing only a sequence, it's important
to make a number of tests that ensures us a good level of con�dence. As we will see
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in section 4.1, the key to reduce the probability of falling on a type I or type II error,
and to have a con�dence level which depends as much as possible on the chosen level
of signi�cance α is to increase the number of tested sequence to perform a second level
test. NIST recommends to perform each test on n ∼ 1000 sequences to obtain a level of
signi�cance quite close to 1%; as we'll see in the following, since we'll inspect asymptotic
properties,these sequences would have a length on the order of 106 digits. Figure 3.1 sows
an example on the relation that occurs between α, β and the number of tested sequence
n: the plot is made for smaller sample size, since it produces a more clear representation
of the phenomenon.

Figure 3.1: Connection between power of the test β, level of signi�cance α and sample
size n. The horizontal line corresponds to α = 0.01 and the 45-degree line corresponds
to the minimum of α + β. Credits to [35].

3.1.1 χ2 goodness-of-�t test and incomplete gamma function

As we said, each test inspect frequencies of observed objects with the expected statis-
tic in random sequences. One of the most common test is the so called chi-squared test
(χ2). Once we de�ned the statistic to inspect, let's suppose that T leads every observa-
tion to fall into one of k categories. We take N independent observations: let πi be the
expected probability that each observation falls into i-th category, and let Yi be the ob-
served statistic of observations that actually fall into that i-th category, for i = 1, . . . , k.
We can de�ne, and evaluate, the following statistic:

T =
k∑
i=1

(Yi −Nπi)2

Nπi
. (3.1)
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Remark 3.1.1.
By construction we have

Y1 + Y2 + · · ·+ Yk−1 + Yk = N

π1 + π2 + · · ·+ πk−1 + πk = 1

Note that Y1, Y2, . . . , Yk are not completely independent, indeed we can compute Yk
using the previous k− 1 values. In this case we say that our statistic has k− 1 degrees of
freedom, i.e. the number of degrees of freedom is one less the number of chosen categories.
To evaluate this statistic, we partition the original sequence ε = ε1 . . . εn of length n into
N sub-strings, each of length M (if the length of the sequence can't be exactly divided by
chosen M, we can discard the last part since we'll inspect very long strings), obtaining:

ε = ε11 . . . ε1M |ε21 . . . ε2M | . . . |εN1 . . . εNM

For each of these sub-strings we evaluate the frequencies Y1, . . . , Yk of the corresponding
statistic, as described above.

We can now evaluate the statistic in (3.1) which, under the randomness hypothesis,
has an approximate χ2-distribution with k − 1 degrees of freedom since it's a sum of
squares of independent random variables.

We recall, now, the de�nition of the Euler's gamma function and of the incomplete
gamma functions in order to provide a property of the P-value:

De�nition 3.1.5 (Euler's gamma function).

Γ(s) =

∫ ∞
0

es−1e−tdt

De�nition 3.1.6 (Incomplete gamma functions).
The upper incomplete gamma function is de�ned as

Γ(s, x) =

∫ ∞
x

ts−1e−tdt

and the lower incomplete gamma function is

γ(s, x) =

∫ x

0

ts−1e−tdt.

Proposition 3.1.1.
The complementary of the P-value can be expressed in terms of the lower incomplete
gamma function and of the Euler's gamma function as follows:

lim
n→∞

P (T ≤ v) = γ

(
k − 1

2
,
v

2

)/
Γ

(
k − 1

2

)
(3.2)

where k − 1 is the number of degrees of freedom, as above.
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Proof.
First of all we show that the probability that Y1 = y1, . . . , Yk = yk can be seen as

n!

y1! . . . yk!
py11 . . . pykk (3.3)

where p1, . . . , pk are the theoretical probabilities.
Indeed, since each Ys counts the number of an event, we can assume that the Ys has the
value ys with the Poisson probability

P (Ys = ys) =
e−nps(nps)

ys

ys!
.

The Y 's are independent, so

P ((Y1, . . . , Yk) = (y1, . . . , yk)) =
k∏
s=1

e−nps(nps)
ys

ys!
,

and the probability that Y1, . . . , Yk = n will be

∑
y1+···+yk=n
y1,...,yk≥0

k∏
s=1

e−nps(nps)
ys

ys!
=
e−nnn

n!
.

We can assume, now, that Y1, . . . , Yk are independent except for the condition that
Y1 + · · ·+ Yk = n, then the probability that (Y1, . . . , Yk) = (y1, . . . , yk) is(

k∏
s=1

e−nps(nps)
ys

ys!

)/ (
e−nnn

n!

)
which equals (3.2). We can therefore consider Y1, . . . , Yk as independent random variables
with Poisson distribution, except for the condition that their sum is �xed, and equals n.
We make the change of variables

Zs =
Ys − nps√

nps
,

so that V = Z2
1 + · · ·+ Z2

k , and the condition Y1 + · · ·+ Yk = n becomes

√
p1Z1 + · · ·+√pkZk = 0. (3.4)

Let's consider the (k− 1)-dimensional space S of all vectors (Z1, . . . , Zk) such that (3.4)
holds. Using the Central Limit theorem, each Zs has approximately a normal distribution
for large value of n; therefore points in a di�erential volume dz2, . . . , dzk of S occur with
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probability approximately1 proportional to exp(−(z2
1 + · · ·+ z2

k)/2).
The probability that V ≤ v becomes∫

(z1,....zk)∈S∧z21+···+z2k≤v
exp(−(z2

1 + · · ·+ z2
k)/2)dz2 . . . dzk∫

(z1,...,zk)∈S exp(−(z2
1 + · · ·+ z2

k)/2)dz2 . . . dzk
. (3.5)

The hyperplane (3.4) passes through the origin of the k-dimensional space, so the nu-
merator in (3.5) is an integration over the interior of a (k − 1)-dimensional hypersphere
centered at the origin. Applying a generalized change of coordinates, using polar coor-
dinates with radius χ and angles ω1, . . . , ωk−2, we can transform (3.5) into∫

χ2≤v e
−χ2/2χk−2f(ω1, . . . , ωk−2)dχdω1 . . . dωk−2∫

e−χ2/2χk−2f(ω1, . . . , ωk−2dχdω1 . . . dωk−2

for some function f . Now, the integration over the angles ω1, . . . , ωk−2 gives a constant
factor from numerator and denominator that cancels together. Finally, we obtain the
formula ∫ √v

0
e−χ

2/2χk−2dχ∫∞
0
e−χ2/2χk−2dχ

(3.6)

which approximates the probability that T ≤ v.
Substituting t = χ2/2 the integral can be expressed in terms of the incomplete gamma
function, obtaining:

lim
n→∞

P (V ≤ v) = γ

(
k − 1

2
,
v

2

)/
Γ

(
k − 1

2

)
. (3.7)

Remark 3.1.2.
In the following we'll use the symbol χ2 to express the statistic T in (3.1).

Since we de�ned the empirical signi�cance level as the probability of T to exceed the
observed value, to compute the P-value, we need the complementary result, which is
obtained by substituting the lower incomplete gamma function by the upper one. We
can now de�ne the

De�nition 3.1.7 (Complementary incomplete gamma function).
The complementary incomplete gamma function igamc is de�ned as

igamc(s, x) = 1− γ(s, x)

Γ(s)
=

Γ(s, x)

Γ(s)
.

1This step makes the result not an exact value, but only an approximation for large value of n.
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Remark 3.1.3.
Using the de�nition above, we can �nally write a simple formula for the P-value, in the
case of χ-squared statistics, as

P-value = igamc

(
k − 1

2
,
v

2

)
=

1

Γ(v/2)

∫ +∞

v/2

t(k−1)/2−1e−tdt

where k − 1 is the number of degrees of freedom of the χ2 statistic (i.e. k is the number
of classes we are inspecting) and v is its empirical value, obtained from our observation
of the sequence through the statistic itself.

We summarize in �gure 3.2 the connection between the number of degrees of freedom,
the distribution, the chosen level of signi�cance α and the rejection region.

Figure 3.2: χ2 distribution with 1, 4 and 6 degrees of freedom. Vertical arrows represents
the critical value of the statistic which divides the acceptance and the rejection regions
(darker in the �gure), that corresponds to values with less probability than α.

As we can see, if χ2 ≤ α, our value will fall into the tail of the distribution which
corresponds to low values of probability to be in that situation under randomness hy-
pothesis, i.e. low P-values will indicate that the sequence shows deviations from the
expected behavior.
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3.1.2 Complementary error function

According to central limit theorem (Theorem 2.1.2), cumulative sums of a stochastic
process of independent and identically distributed random variable approaches to Nor-
mal Distribution as the number of random variables approaches to in�nity. Since we can
identify a random string with an i.i.d. stochastic process that theorem gives us another
interpretation for studying the string. Indeed, in many tests the theoretical distribution
T will have the Normal Distribution: in that cases we could �nd the P-value in a simply
comparing the empirical frequencies T (obs) to the Normal Distribution itself. In order
do so we shall de�ne the error function and its complementary.

De�nition 3.1.8 (Error function).
The error function erf (also called Gauss error function) is the function de�ned as

erf(x) =
1√
π

∫ x

−x
e−t

2

dt =
2√
π

∫ x

0

e−t
2

dt (3.8)

where the second integral comes from the fact that the function is symmetric with respect
to the origin.

The error function is the probability of a random variable with normal distribution
of mean 0 and variance 1

2
of falling in the range [−x, x].

Remark 3.1.4.
The cumulative distribution function Φ of the Standard Normal Distribution and the
error function are closely related, indeed we have

Φ(x) =
1

2

[
1 + erf

(
x√
2

)]
.

In the case of a generic normal distribution X with cumulative distribution function F ,
mean µ and variance σ2 we can still use this relation in the form

F (x) = Φ

(
x− µ
σ

)
=

1

2

[
1 + erf

(
x− µ
σ
√

2

)]
since Y = (X − µ)/σ has a Standard Normal Distribution.

Since we'll be interested in de�ning in which sense this result is worse than the
observed one, we'll use the following

De�nition 3.1.9 (Complementary error function).
The complementary error function erfc is de�ned as

erfc(x) = 1− erf(x) =
2√
π

∫ ∞
x

e−t
2

dt



46 3. Statistical tests for randomness

The complementary error function itself, is related with another function which rep-
resents the tail distribution of the Standard Normal Distribution, the

De�nition 3.1.10 (Q-function).
The Q-function is de�ned as

Q(x) =
1√
2π

∫ ∞
x

exp

(
−u

2

2

)
du

Q(x) is the probability that a standard normal random variables takes a value larger
than x. So if Y is a normal random variable with mean µ and variance σ2, then X =
(Y − µ)/σ has a Standard Normal Distribution and we have

P (Y > y) = P

(
X >

x− µ
σ

)
= Q(x),

which is exactly the formulation of the P-value we de�ned in (3.1.4).

From the de�nition of the Q-function, and observing that it's an even function, we
can easily see the relation

Q(x) = 1−Q(−x) = 1− Φ(x)

where Φ is the cumulative distribution function of the Standard Normal Distribution.

With the change of variables u2 = 2t2 in the de�nition of the Q-function, we also
obtain that

Q(x) =
1

2

(
2√
π

∫ ∞
x/
√

2

exp(−t2)dt

)
=

1

2
− 1

2
erf

(
x√
2

)
=

1

2
erfc

(
x√
2

)
which gives us a relation between the Q-function and the complementary error function.

Remark 3.1.5.
According to the above considerations, in tests where statistic has a normal distribution,
we'll compute the P-value using the complementary error function erfc.
In these cases the P-value will be computed, up to multiplicative constants, as

P-value = erfc

(
v − µ
σ

)
, (3.9)

where v is the observed statistic, µ is it's mean and σ2 the corresponding variance.
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Figure 3.3: The error function erf can be seen as the probability that a Gaussian random
variable falls into the into the [−x, x] interval. Conversely, the complementary error
function erfc represents the probability that a Gaussian random variable lies outside
that interval. See [14].

3.2 Tests

In this section we'll study the statistical test suite proposed by the National Institute
of Standard and Technology (NIST) to validate Random Number Generators: the suite
consists on 15 tests, each of them inspects the sequence from a di�erent point of view,
trying to detect a di�erent weakness of the RNG. We decided to analyze NIST statistical
tests since other test suites, such as the one proposed by the Bundesamt für Sicherheit
in der Informationstechnik (BSI), the DieHard test suite or the Crypt-X package, are
mostly based on that one.

The complexity, and in a certain sense the strength, of tests increases from �rst tests
to the last ones so, then even if initial tests could appear trivial, their extremely low
computational cost allows to use them to detect most common weakness of Random
Number Generators which, in general, are not visible to the naked eye, due to the length
of analyzed sequences.

In the following subsections we'll analyze how tests algorithmically work and, for
each test, we'll study the theory behind it. After that we'll try to understand which
is the best way to use these tests, if some of them are more useful then others and if
we can choose a battery (or some) to make the testing the most computationally e�cient.

First of all we have to make some hypothesis on random binary sequence to be tested,
which are based on basic ideas of randomness:
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• Uniformity: as we have seen in section (2.2.1) the probability of zeros and ones has
to be the same and it's exactly 1/2 and this occurs at any point of the sequence,
regardless of the fact the it has been generated from a true random generator or
from a pseudo one. That implies that the expected number of zeros or ones, is n/2,
where n is the sequence length;

• Scalability: if a sequence is random, then we can extract from it any sub-sequence
and it still has to be random and to pass tests itself;

• Consistency: the behavior of a Random Number Generator has to be consistent
with his starting value (seed). So, to obtain reliable information, it's necessary to
test RNG's outputs obtained from di�erent seeds (with respect to PRNG, since a
good TRNG should not have a predictable seed) .

The 15 tests are:

1. Frequency (Monobit) test;

2. Frequency test within a block;

3. Runs test;

4. Test for the longest run of ones in a block;

5. Binary matrix rank test;

6. Discrete Fourier transform (Spectral) test;

7. Non-overlapping template matching test;

8. Overlapping template matching test;

9. Maurer's "universal statistical" test;

10. Linear complexity test;

11. Serial test;

12. approximate entropy test;

13. Cumulative sums (Cusums) test;

14. Random excursion test;

15. Random excursion variant test.

The theory and the results behind most of the tests are based on asymptotic properties
or continue distributions, so that reference distributions are derived from the assumption
that the sequence length is large (all NIST, BSI and DieHard recommend a length of the
order from 103 to 107). Most test can also be computed for small values of n, but results
could be inappropriate: in this case it should be required an exact distribution that,
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in most cases, is too hard to determine; anyway, better to explain each test we'll use
examples taken from [64] (note that several of them don't satisfy hypothesis on length:
the only purpose is to make the test more clear).

We set, here, some notations that will be common to all tests, unless otherwise stated:

• ε = (ε1, . . . , εn) will be the sequence of bit, where εi = {0, 1} ∀i and n is the legth
of the sequence;

• some tests require to partition the sequence into sub-blocks: typically, M will be
the length of each block. The n − NM remaining bits will usually be discarded,
without loss of strength for the test, as stated in the assumption of scalability; note
that for Maurer's universal test (test 9) the sequence legth will be indicated by L,
as Maurer did in his original paper [50];

• χ2 will stand for the the chi-squared statistic, as de�ned in section (3.1.1);

• K will be the number of degrees of freedom, when it has to be speci�ed as an input
of the test itself;

• α will be the signi�cance level, as in (3.1.2), and will be taken equal to 0.01 within
the examples.

3.2.1 The frequency (Monobit) test

Under randomness hypothesis H0, the probability of zero and one is the same then,
for a truly random sequence, the number of zeros and ones has to be nearly the same.
The test inspects the entire sequence and evaluate the proportion of zeros and ones. If a
sequence doesn't pass this simple test it won't pass the others with high probability, since
this provides a great evidence of non-randomness. The following algorithm is consistent
for any sequence length, but to be signi�cant an n > 100 is recommended.

Algorithmic description

1. Convert the binary sequence ε into a corresponding ±1 sequence X: this can be
e�ciently done by X = 2ε− 1.

2. Compute the proportion of ±1, which consists of 0, 1 in the original string, by
adding together bits of the sequence: Sn = X1 + · · ·+Xn.

3. Compute the test statistic sobs = |Sn|√
n
, which for large values of n has a half normal

distribution, since Sn√
n
has a normal distribution.

4. Compute P-value = erfc
(
Sobs√

2

)
.



50 3. Statistical tests for randomness

Interpretation of results

A small P-value will occur when there is disproportion between the number of zeros
and ones: this corresponds to large values of the statistic Sobs (in particular if there are
too many ones Sn >> 1 and if there are too many zeros Sn << −1). If the sequence is
random Sobs has to be near zero, since +1 and −1 will cancel one another.

An example

ε = 1011010101 then n = 10.

1. X = 1,−1, 1, 1,−1, 1,−1, 1,−1, 1.

2. Sn = 1− 1 + 1 + 1− 1 + 1− 1 + 1− 1 + 1 = 2.

3. sobs = |2|√
10

= 0.632455532.

4. P-value = erfc
(

0.632455532√
2

)
= 0.5270809 > α, so that the sequence is considered

to be random.

P-value = 0.527089 > 0.01, then we don't reject the hypothesis of randomness and
proceed with more sophisticated tests.

Mathematical background

Under randomness hypothesis H0 the sequence can be considered as the realization
of a Bernoulli process, i.e. a sequence of random variables where the probability of the
outcomes (0 or 1) equals to 1

2
. The test is a direct application of the Central Limit

theorem (Theorem 2.1.2) in the special case of the

Theorem 3.2.1 (De Moivre-Laplace).
Let X1, X2, . . . , Xn be a sequence of Bernoulli random variables and let Sn = X1+· · ·+Xn

be their sum.
For each a, b ∈ R with a < b we have

lim
n→∞

P

(
a ≤ Sn√

n
≤ b

)
=

1√
2π

∫ b

a

e−
x2

2 dx.

In other words, the Normal distribution is a good approximation for the random variable
de�ned by Sn, if n is su�ciently large.

The approximation provided by the theorem is used to assess the closeness of the
fraction of 1's (and 0's) to 1

2
.

To follow the de�nition of the P-value, we can use the theorem to compute

lim
n→∞

P

(
Sn√
n
≤ z

)
=

1√
2n

∫ z

−∞
e−

x2

2 dx = Φ(z)
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which, for positive z, implies that

P

(
|Sn|√
n
≤ z

)
= 2Φ− 1.

In our case z will be the observed value of the statistic sobs = |X1 + · · ·+Xn|/
√
n and

the P-value can be computed used the complementary error function erfc(sobs/
√
n) =

2[1− Φ(sobs)].

3.2.2 Frequency test within a block

By the scalability property, under hypothesis of randomness, we have that each sub-
sequence of the random sequence has to be random itself so, if we split ε into sub-blocks,
the proportion of ones (and zeros) has to be maintained. This test inspects whether the
frequency of ones in each M -bit block of the sequence is approximately M/2. Note that
if M is chosen to be equal to 1 this test degenerates to the �rst test, the Frequency test.

Algorithmic description

1. Partition the input sequence into N = bn/Mc sub-blocks and discard the surplus.

2. Compute the proportion of ones into each M − bit block, by

πi =
1

M

M∑
j=1

εj+M(i−1) for i = 1, . . . ,M .

3. Evaluate the χ-squared statistic for the entire sequence by

χ2(obs) = 4M
M∑
i=1

(πi −
1

2
)2

.

4. Compute the P-value using the incomplete gamma function

P-value = igamc

(
N

2
,
χ2(obs)

2

)
.

Remark 3.2.1.
The partition implies that M and N should be such that n ≥ MN . NIST also recom-
mends M ≥ 20,M > 0.01n and N < 100.



52 3. Statistical tests for randomness

Interpretation of results

A small P-value will occur when there is a local deviation from the proportion of
zeros and ones within at least one of the blocks (i.e. there are too many zeros or too
many ones).

An example

ε = 0110011010 then n = 10 and we choose M = 3.

1. Partitioning the sequence into N = b n
M
c = 3 we obtain the blocks 011, 001 and

101. We discard the �nal 0.

2. Computing the partition of ones we obtain π1 = 2
3
, π2 = 1

3
and π3 = 2

3
.

3. The observed statistic will be χ2(obs) = 4·3·((2/3− 1/2)2 + (1/3− 1/2)2 + (2/3− 1/2)2) =
1.

4. P-value = igamc
(

3
2
, 1

2

)
= 0.801252 > α, so the sequence is random.

Mathematical background

As for the Monobit test (3.2.1), this test is focused on the proportion of zeros and
ones but looks for local deviation from the expected frequency, which is 1

2
. The main

theoretical base for this test is the Central Limit theorem (Theorem 2.1.2) but, since
we divided the sequence into sub-strings, we can compare expected probabilities and
observed frequencies by the χ-squared statistic, as described in section (3.1.1), which
will have a number of degrees of freedom equal to the number of sub-strings and we can
evaluate the P-value using the incomplete gamma function.

3.2.3 Runs test

For this test (and for the "Longest run of ones within a block" test) we shall give the
following

De�nition 3.2.1 (Run).
An uninterrupted sequence of identical bits, bounded after and before by a bit of the
opposite value, is said to be a run. The length of a run is the number of equal bits which
form a run; we call a run of length k a k-run. We call the change from zero to one, or
vice versa, an oscillation.

Example 3.2.1.
The sequence 0111000011 is formed, in the order, by a 1-run of zeros, a 3-run of ones, a
4-run of zeros and a 2-run of ones, so it has 4 runs. Note that the number or runs equals
the number of shifts between 0's and 1's plus one, and vice versa.
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This test focuses on the number of runs of both ones and zeros to determine if they are
nearly the same as for a random sequence. In particular, the number of runs corresponds
to the frequency of oscillation between zeros and ones: if we have a large number of runs
we'll have very frequent oscillations and vice versa. Even if they're obviously connected,
this test is not interested on the length of runs, which will be the focus of the subsequent
one.

Algorithmic description

1. Compute the proportion of ones through the entire sequence:

λ =
1

n

n∑
j=1

εj.

2. Evaluate the test statistic

Vn(obs) =
n−1∑
k=1

r(k) + 1

where r(k) is the function that count jumps between di�erent bits

r(k) =

{
0 if εk = εk + 1

1 otherwise
(3.10)

3. Compute P-value as

P-value = erfc

(
|Vn(obs)− 2nλ(1− λ)|

2
√

2nλ(1− λ)

)
.

Interpretation of results

A small P-value will occur when there is a great number of runs or when runs are
too few: this corresponds, respectively, to large or small value of the statistic Vn. In
particular a large value of Vn would indicate that the oscillation is too fast and a small
value that is too slow.

Example 3.2.2.
The string 010101010101010101, which is obviously non-random, has too fast oscillation.
A 300-bit sequence formed, in the order, by 100 ones, 73 zeroes, 127 ones would have
three runs, whereas we would expect a number of runs close to 150 for a random sequence.



54 3. Statistical tests for randomness

An example

Let's take the 10-bit string ε = 1001101011, so that n = 10.

1. The proportion of ones is λ = 1
10
· (1 + 0 + 0 + 1 + 1 + 0 + 1 + 0 + 1 + 1) = 6

10
= 3

5
.

2. Vn(obs) = (1 + 0 + 1 + 0 + 1 + 1 + 1 + 1 + 0) + 1 = 7.

3. P-value = erfc
(

7−(2·10·3/5·(1−3/5))

2·
√

2·10·3/5·(1−3/5)

)
= 0.147232 > α, so the sequence is considered

to be random.

Mathematical background

The main basis of this test is the distribution of the total number of runs Vn, which is
computed by the observation of oscillation among zeros and ones. Let's suppose to have
a sequence of length n = n1 + n2, where n1 is the number of 1's and n2 is the number of
0's; respectively we call r1 the number of runs of ones and r2 the number of runs of zeros,
so that r = r1 + r2 is the total number of runs, then we need the mean and variance of
the associated distribution Vn.

As we said, Vn can be considered as the sum of indicator variables, by de�ning the
random variables which corresponds to function (3.10) as

Ik =

{
1 if the k-th element 6= the (k-1)-th element

0 otherwise

so that Vn = 1 + I2 + · · · + In where Ik are Bernoulli random variables with parameter
p = n1n2/

(
n
2

)
, and their mean can be easily seen to be

E[Ik] = E[I2
k ] =

2n1n2

n(n− 1)
.

Vn is a combination of Ik so, by linearity, we have

E[Vn] = 1 +
n∑
k=2

E[Ik] = 1 +
2n1n2

n1 + n2

(3.11)

var(Vn) = var

(
n∑
k=2

Ik

)
= (n− 1)var(Ik) +

∑
2≤j 6=k≤n

cov(Ij, Ik)

= (n− 1)E[I2
k ] +

∑
2≤j 6=k≤n

E[IjIk]− (n− 1)2[E[Ik]]
2 (3.12)
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and, evaluating the joint moments E[IjIk] in (3.12), we �nd that

var(Vn) =
2n1n2(2n1n2 − n1 − n2)

(n1 + n2)2(n1 + n2 − 1)
. (3.13)

Since we are interested to study very large samples, we'll need the asymptotic distri-
bution of runs: let's suppose that the sample size n tends to in�nity in such a way that
n1/n→ λ and n2/n→ λ, with 0 < λ < 1. For n→∞, (3.11) and (3.13) become

lim
n→∞

E[Vn/n] = 2λ(1− λ) lim
n→∞

var(Vn/
√
n) = 4λ2(1− λ)2.

Finally, we can form the standardized random variable

Z =
Vn − 2nλ(1− λ)

2
√
nλ(1− λ)

which, for the Central Limit theorem (Theorem 2.1.2), has a Standard Normal distri-
bution, so that we can evaluate the P-value using the complementary error function
erfc.

3.2.4 Test for the longest run of ones in a block

This test is focused on the length of runs along the sequence. The sequence is divided
into M-bit blocks and the test looks for the longest run of ones into each sub-block.
The goal is to determine whether the length of the longest run within the sequence
is consistent from what we expect from a random sequence. We shall note that an
irregularity in 1's runs corresponds to an irregularity in 0's runs, so we only need to
check one of them.

Algorithmic description

1. Partition the input sequence into N = bn/Mc sub-blocks and discard the surplus.
Here, M is chosen depending to the sequence length:

Minimum n M
128 8
6272 128

7.5 · 105 104

Note that n < 128 is not permitted, since the test woldn't give reliable result as
it is based on asymptotic properties; furthermore, for small values of n we'd be
forced to choose short-length sub-sequences, so that this test would be too close to
the previous, and not really useful.
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2. Depending onM choose k+1 classes v0, . . . , vk to store the number of runs of ones
of �xed length:

vi M = 8 M = 128 M = 104

v0 ≤ 1 ≤ 4 ≤ 10
v1 2 5 11
v2 3 6 12
v3 ≥ 4 7 13
v4 8 14
v5 ≥ 9 15
v6 ≥ 16

So, if for example our sequence has length 128 < n ≤ 6272, we'll have the six
classes v0, . . . , v5 where v0 will be the number of blocks which the longest run of
ones is shorter or equal to 4, v1 the number of blocks which the longest run of ones
is a 5-length run and so on.

3. Compute the length of the longest run of ones inside each block and compute
v0, . . . , vk. If we are in the case M = 128 and the longest run of ones in the block
we are inspecting is 6, we'll increase the value v2 by one; similarly, if the length of
the longest run of ones is greater than 9, we'll increase v5 by one, and so on.

4. Compute the χ2-statistic comparing obtained frequencies vi and theoretical prob-
abilities πi

χ2(obs) =
k∑
i=0

(vi −Nπi)2

Nπi

which has k degrees of freedom.

5. Compute the P-value using the incomplete gamma function

P-value = igamc

(
k

2
,
χ2(obs)

2

)
.

Interpretation of results

If the sequence shows clusters of ones the χ2 statistic will be large since, as we will see,
the theoretical probabilities of very-long runs are smaller then probabilities of shortest
runs. On the other hand, small values of probabilities would indicate that the sequence
has too short runs.



3.2 Tests 57

An example

Let's consider the sequence

ε =11001100000101010110110001001100111000000000

00100100110101010001000100111101011010000000

1101011111001100111001101101100010110010,

so that n = 128.

1. Depending on the sequence length, M = 8 and we can divide the sequence into 16
sub-sequence of length 8 and we'll have 4 classes, v0, . . . , v3.

2. We obtain 16 sub-string each with its longest run of ones, as below

sub-string Max-run length sub-string Max-run length
11001100 2 00010101 1
01101100 2 01001100 2
11100000 3 00000010 1
01001101 2 01010001 1
00010011 2 11010110 2
10000000 1 11010111 3
11001100 2 11100110 3
11011000 2 10110010 2

3. Counting the number of strings into each class, we obtain

v0 = 4, v1 = 9, v2 = 3, v4 = 0.

4. χ2 = 4.882457.

5. P-value = igamc
(

3
2
, 4.882457

2

)
= 0.180609 > α, so the sequence is accepted as

random.

Mathematical background

To perform this test, and in particular to compute the χ2 statistic, we need to know
the probabilities π0, . . . , πk we used to compare with the empirical frequencies v0, . . . , vk.
We will need the following

De�nition 3.2.2 (Moment of a random variable).
Let X be a discrete random variable with probability mass function P , then

E[Xk] =
∑
x∈V

xkP (X = x)

is the k-th moment of X.
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De�nition 3.2.3 (Factorial moment).
Let r ∈ N, the r-th factorial moment of a probability distribution or, in other words, of
a random variable X with that probability distribution, is

µr[X] = E[(X)r] = E[X(X − 1)(X − 2) . . . (X − r + 1)]

where E is the mean and

(x)r = x(x− 1)(x− 2) . . . (x− r + 1) =
x!

(x− r)!

is the falling factorial, expressed by the Pochammer symbol.

De�nition 3.2.4 (Moment generating function).
Let X be a discrete random variable with probability mass function p and support S, then

MX(t) = E[etX ] =
∑
s∈S

etxp(x)

is the moment generating function of X.

De�nition 3.2.5 (Factorial moment generating function).
Let t ∈ C and X be a real-valued random variable, the factorial moment generating
function of the probability distribution of X is

GX(t) = E[tX ].

If X is a discrete random variable, GX(t) is said to be the probability generating function
of X and it's indicated by G(t).

We shall also make some remarks on properties of the factorial moment, for the proofs
of which we refer to [18].

Remark 3.2.2.
Useful facts are:

i) A trivial observation is that the 1-st (factorial) moment is the expected value.

ii) MX(t) = GX(et).

iii) The moment generating function is related to the cumulative distribution function
by

MX(t) = FX(t) = P (X ≤ t) t ∈ R.

iv) Factorial moments and comulative distribution function are related by the formula

GX(t) = FX(t− 1) =
∞∑
s=0

ts

s!
µ[s].
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If X is a Binomial random variable of parameters n and p. it holds

Remark 3.2.3.

E[(X)r] = (n)rp
r.

To model our situation we can think to an urn, containing n balls, r1 white and
r2 = n− r1 black. We sequentially extract n balls to form a n-long binary string.

The total number of combination is(
n

r1

)
=

(
n

r2

)
=

(
n

n− r1

)
.

We call T the total number of white runs and T0 the total number of white runs which
length is equal or greater than m+ 1: obviously T ≥ T0. We make use of characteristic
random variables ai, i = 1, . . . , T such that

ai =

{
1 if the length of the i-th is ≥ m+ 1

0 otherwise

with each ai attached to the corresponding i-th run. So the probability that any set of
runs j1, . . . , js (suppose that j1 ≤ · · · ≤ js ≤ T ) will be all of length (m+ 1) or more it's
equal to the probability that the product aj1aj2 . . . ajs = 1; for any of the other case the
product will be 0.

Let's take into account s of T white runs; we remove from them s · m balls and
we impose that r1 − sm ≥ T , so that we'll have (r1 − sm) white balls and r2 black
balls which form T (white) runs. If now we add m balls to each of our s run, we obtain
again r1 +r2 balls which form T white runs where s of them are of length (m+1) or more.

By a simple combinatorial argument we obtain that all the possible arrangements to
be in this situation are (

n− 1

T − 1

)(
r2 + 1

T

)
.

With the assumption that we have a total of T white runs we can compute the
expected value of having s runs which length is ≤ m+ 1, obtaining that

E[aj1 . . . ajs|T ] = E[aj1|T ] · · · · · E[ajs|T ] =

(
r1 − sm− 1

T − 1

)/ (
r1 − 1

T − 1

)
(3.14)

where the �rst identity comes from the fact that aji 's are independent (then the expected
value of the product is the product of expected values) and the second ones comes from
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a direct calculation.

By remark (3.2.3) we also obtain that the s-th factorial moment of T0, which is a
Binomial random variable, is

E[(T0)s|T ] = (T )sE[aj1 . . . ajs|T ]. (3.15)

Using the Total Probability theorem and equation (3.14), to obtain the v-th factorial
moment we just have to multiply (3.15) by p(T ) and summing over all T, obtaining

µ[v] =
∑
T

p(T )E[(T0)v|T ] = (r2 + 1)v

(
r − v(m+ 1)

r2

)/ (
n

r2

)
where (analyzing favorable cases and total cases)

p(T ) =

(
r1 − 1

T − 1

)(
r2 + 1

T

)/ (
r1 + r2

r2

)
.

Finally, by remark (3.2.2) we obtain that the probability to have an m-run is

P (v ≤ m|r1) = P (T0 = 0) =
∑
t=0

(−1)tµ[t]

t!
=

(
n

r2

)−1∑
t=0

(−1)t
(
r2 + 1

t

)(
r − t(m+ 1)

r2

)
.

Turning back to our case, and using the notation of the test, we can use this result to
obtain (by the Total Probability theorem)

P (v ≤ m) =
M∑
r=0

(
M

r

)
P (v ≤ m|r) 1

2M
.

So, now, we can evaluate probabilities π0, . . . , πk of our chosen classes and pre-
compute them to embed in the test.

Example 3.2.3.
If we divide the sequence into 8-bit block (i.e. M = 8) the theoretical probabilities will
be

Class Probability
{v ≤ 1} π0 = 0.2148
{v = 2} π1 = 0.3672
{v = 3} π2 = 0.2305
{v ≥ 4} π3 = 0.1875

It's important to observe that average cases have bigger probabilities than extreme ones,
and the phenomenon is even more observable for biggerM (for example ifM = 104 we'll
have π0 = 0.0882, π2 = 0.2483 and π6 = 0.0727): that is the behaviour one expects from
a random sequence.
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3.2.5 Binary matrix rank test

This test analyzes the rank of disjoint matrices created from �xed-length sub-strings
of the binary sequence. The purpose is to check whereas this rank is consistent from
what expected from a random sequence, i. e. from truly random binary matrices. Since
the rank corresponds to independence of both rows and columns, this examination leads
to examine linear dependencies through bits of each sub-sequence.

As well as in the NIST statistical test suite, the binary matrix rank test is also part
of the DIEHARD battery of test [43], and actually comes from it.

Remark 3.2.4.
For this test, we need one more parameterQ, so that the length of sub-blocks will beM ·Q;
since the theory of the test, analogously to others, is based on asymptotic properties, M
and Q has to be chosen such that n ≥ 38MQ so that at least 38 matrices are considered.
Since if M 6= Q we certainly have |M − Q| dependent vector, our implementation will
have M = Q = 32, so that square matrices are created.

Algorithmic description

1. Partitioning the sequence intoM ·Q-bit sub-sequences we obtain N =
⌊

n
MQ

⌋
blocks

and discard the surplus.
From each block ε11, . . . , ε1Q, . . . , εM1, . . . , εMQ form an M × Q matrix, where the
i-th row is given by εi1, . . . , εiQ, for i = 1, . . . ,M , i.e. the �rst row of each matrix
consists of the �rst Q bits of the block, the second row is formed by bits from
Q + 1 to 2Q, and so on till the last row, which consists of the last Q bits of the
sub-sequence.

2. For each matrix compute the binary rank Rk, where k = 1, . . . , N . For binary rank
we mean the rank over the �nite �eld F2.

3. Consider the following 3 classes

• FM = {matrices which rank is maximum, i.e. Rl = M}

• FM−1 = {matrices which rank is maximum −1, i.e. Rl = M − 1}

• FM−2 = {other matrices}

and evaluate the cardinality of each set (for simplicity we'll name these cardinalities
by the name of the set, so that FM will be the number of matrices of full rank).
Observe that FM−2 = N − FM−1 − FM−1.
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4. Compute the χ2 statistic as

χ2(obs) =
(FM − 0.2888N)2

0.2888N
+

(FM−1 − 0.5776N)2

0.5776N
+

(FM−3 − 0.1336N)2

0.1336N

5. Compute the P-value = e−χ
2(obs)/2.

Interpretation of results

Small P-values will occur when the value of the χ2 statistic is low: this corresponds
to deviations from distribution of rank of a truly random sequence. In particular, small
values of FM and FM−1 would indicate strong linear dependencies through the sequence.
For example, if a binary sequence is created by a shift-register generator formed by less
than M successive vectors, all created matrices will always have maximum rank while,
for truly random data, the proportion of maximum rank should be only about 0.2888.

An example

Let's consider the sequence ε = 01011001001010101101, so that n = 20, and we
choose M = Q = 3.

1. We divide the sequence into N = b 20
3·3c 9-bit blocs and discard the last two bits (0

and 1).
Using the 9-bit created blocks we construct the following 3× 3 two matrices:0 1 0

1 1 0
0 1 0

 0 1 0
1 0 1
0 1 1


2. Ranks of the two matrices are R1 = 2 and R2 = 3.

3. We have FM = F3 = 1, since only the second matrix has full rank, FM−1 = F2 = 1
(the �rst matrix has rank=2), and F3 = 0 since there isn't any matrix with lower
rank.

4. χ2(obs) = (1−0.2888N)2

0.2888N
+ (1−0.5776N)2

0.5776N
+ (0−0.1336N)2

0.1336N
= 0.596953.

5. P-value = e−0.596953/2 = 0.741948 > α so that the sequence is accepted as random.
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Mathematical background

To compare the empirical frequencies and the theoretical probabilities, we need to
compute the distribution of ranks of random binary matrices. Let's take an M × Q bi-
nary random matrix: we are looking for the probability P (rank=r) that the rank of such
matrix is r, with r = 0, 1, . . . ,min(M,Q). We can think of our matrix as a sequence of
Q binary column vectors of length M , so that we have vi ∈ FM2 for i = 1, . . . , Q.

We recall the following

Remark 3.2.5.
Vectors v1, . . . , vn, vn+1 are independent if and only if vectors v1, . . . , vn are independent
and vn+1 /∈ span(v1, . . . , vn).
We will name An the event "v1, . . . , vn are independent" and Bn the event "vn+1 /∈
span(V1, . . . , vn)".

Let pn+1 be the probability that vectors v1, . . . , vn+1 are independent, so that

pn+1 = P (An+1).

Events An and Bn are not independent so, by the de�nition of conditioned probability,
we can compute pn+1 as

pn+1 = P (An) = P (An ∩Bn) = P (An)P (Bn|An). (3.16)

By de�nition, a single vector is independent if and only if it is not the null vector:
the probability to have a null vector is 2−M (i.e. all values are �xed and equal to 0) so
that

p1 = 1− 2−M .

Each time we add an independent vector, we have to �x one more value so, by the
recursion formula (3.16), we obtain that

pn =
n∏
i=1

(
1− 2i−1−M) =

n−1∏
i=0

(
1− 2i−M

)
for n ≤M . (3.17)

An analogous argument can be used for row vectors. If we suppose, for the moment,
that rows and columns are independent, we have that the probability to have both r
independent row vectors and r independent column vectors is

r−1∏
i=0

(
1− 2i−M

) (
1− 2i−Q

)
for r ≤ min(M,Q).

Actually, rows and columns are not completely independent, since value we �xed for
each column will be also �xed when we count the rows: �rst row vector will have a single
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�xed value, second row vector will have 2 �xed values and so on till the desired rank r,
so our probability becomes

r−1∏
i=0

(
1− 2i−M

) (
1− 2i−Q

)
(1− 2i−r)

for r ≤ min(M,Q).

Now, we have �xed the min(M,Q) ·min(M,Q) values that concur to the rank of the
matrix, but we also have to consider that values outside this sub-matrix remain free to
be either 0 or 1.

Example 3.2.4.
Let's suppose that M < Q, and let's look for the maximum rank of the matrix, so
r = min(M,Q) = M : by the argument above we'll have that values of the M × M
sub-matrix (which values are indicated by aij for i, j = 1, . . . , r = M) and other are free
(indicated by *), as follows  a11 . . . a1r ∗ ∗ ∗

...
. . .

... ∗ . . . ∗
aM1 . . . aMr ∗ ∗ ∗


By direct computation one can see that these values are r(Q+M − r)−MQ, so that

the probability to have a random matrix which rank is r is

P (rank=r) = 2r(Q+M−r)−MQ

r−1∏
i=0

(
1− 2i−M

) (
1− 2i−Q

)
(1− 2i−r)

for r ≤ min(M,Q). (3.18)

Note that if r = max (i.e. r = min(M,Q)), than r(Q + M − r) −MQ = 0 so that
the multiplicative factor is 1: extra values are free to be 0 or 1. On the other hand, if
r = 0 we have that r(Q + M − r) −MQ = −MQ and all extra values are �xed (the
multiplicative factor is 2−MQ.

By the use of formula (3.18) we can compute probabilities to compare with the
empirical frequencies: we have M = Q = 32 so, by approximation, we obtain that

pM ≈
∞∏
j=1

(
1− 1

2j

)
= 0.2888 . . . ,

pM−1 ≈ 2pM ≈ 0.5776 . . . ,

pM−2 ≈
4

9
pM ≈ 0.1284 . . .

and all other probabilities are very small (≤ 0.005) if M ≥ 10, so that it wouldn't be
useful to include smaller classes for the statistic.

Finally, we can compute the χ2 statistic and �nd the P-value.
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Remark 3.2.6.
For this test the P-value is computed by the use of the exponential since, if the number of
classes (i.e. the number of degrees of freedom) is low, it provides a good approximation of
(3.6) and the value is very close to the customary incomplete gamma function which, in
this case, would be igamc (1, χ2(obs)/2). On the other hand, the use of the exponential
is easier and computationally less expensive.

3.2.6 Discrete Fourier transform (Spectral) test

The scope of this test is to detect periodic features through the sequence which would
indicate deviation from randomness. For periodic features we mean repetitive patterns
that are near each other. To do that we use the discrete Fourier transform (DFT) of the
sequence and analyze the pattern of frequencies: we �x a bound of 95% on peaks values
and, to be random, we require that the number of all peaks exceeding this bound isn't
signi�cantly di�erent from 5%.

For this test we will need the following

De�nition 3.2.6 (Discrete Fourier transform).
Let x1, . . . , xn be a succession of complex numbers. The discrete Fourier transform (DFT)
of the succession is the succession S1, . . . , Sn such that

Sj =
n∑
k=1

xke
i2π

(k−1)
n

j (3.19)

=
n∑
k=1

xkcos(2π
(k − 1)

n
j) + i

n∑
k=1

xksin(2π
(k − 1)

n
j) (3.20)

where i =
√
−1 is the imaginary unit.

Algorithmic description

1. Convert the binary sequence ε into a corresponding ±1 sequence X: this can be
e�ciently done by X = 2ε− 1.

2. Apply a discrete Fourier transform to X, obtaining S = DFT (X).
S is a sequence of complex variables which represent periodic components of the
binary sequence at di�erent frequencies.

3. Let S ′ be the �rst half of the obtained sequence S, so that S ′ is a n
2
-length sequence

of values +1 and -1.
Compute the modulus M = abs(S ′) = |S ′| to obtain a sequence of peak heights,
as shown in �gure 3.4.
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4. Compute T =
√
ln
(

1
0.05

)
n the bound of 95% on peaks value.

5. Compute N0 = 0.95 · n
2
, the expected number of peaks which are less than T.

6. Compute N1, the empirical number of peaks in M which are lass than T.

7. Compute d = N1−N0√
n·0.95·0.05/4

.

8. Compute P-value=erfc
(
|d|√

2

)
.

Interpretation of results

A small P-value will occur when d is low: that would indicate that there are too many
peaks (i.e. more than 5% of values are above the the bound T ) and, correspondingly, that
there are not enough values under the bound. This happens when the sequence shows
too many periodic features, compared from what expected from a random sequence.

An example

Let's consider the sequence ε = 1001010011, so that n = 10.

1. X = 1,−1,−1, 1,−1, 1,−1,−1, 1, 1.

2. S = DFT (X) = 0, 1.618+1.175i, 1.382+4.253i,−0.618+1.902i, 3.618−2.628i,−2,
3.618 + 2.628i,−0.618− 1.902i, 1.382− 4.253i1.618− 1.175i.

3. M = 0, 2, 4.4721, 2, 4.4721.

4. T = 5.4733.

5. N0 = 4.75.

6. N1 = 5.

7. d = 5−4.75√
10·0.95·0.05/4

= 0.725476.

8. P-value=erfc(0.7254/
√

2) = 0.468159 > α, so the sequence is accepted as random.
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Mathematical background

To perform this test we need to know what is the distribution of peaks which repre-
sents the distribution of the random variable N1 and respectively N0 which represents
the number of peaks not exceeding the 95% threshold in the �rst part of the Fourier
transform of the sequence. Note that we only need a half of it, since the discrete Fourier
transform is symmetric.

Let n′ be the length of the �rst half sequence (n′ = n
2
), we can think of N1 as the

sum of n′ random variables which take on the value 1 with probability p = 0.95 and the
value 0 with probability q = 1 − p = 0.05. Indeed if Yj are random variables such that
Yj = 1 if |Sj| < T and |Yj| = 0 otherwise, Yj = 1 with probability p, and Yj = 0 with
probability q, so that the Yjs are Bernoulli random variables: then we can write

N1 =
n′∑
j=1

Yj.

Since it is the sum of n′ Bernoulli random variable, we can easily compute its expected
value as

E[N1] =
n′∑
i=1

E[Yi] = n′E[Yi] = n′p =
n

2
p

so that the mean is µ = 0.95 · n
2
.

We could easily compute the variance in the same way, so that

V ar(N1) =
n′∑
i=1

V ar(Xi) = nV ar(Xi) = n′pq.

However Kim, Umeno and Hasegawa [36], through numerical simulation found that,
even if the expected value found below is a good approximation, the variance tends to
be

σ2 =
n′pq

2
=
npq

4
so that the variance we should use to perform the complementary error function is
σ2 = n·0.95·0.05

4
.

Let's see, now, how to �nd the threshold value T so that the number of peaks ex-
ceeding it is the 5% of the total: let's write the square modulus of Sj as

|Sj|2 = c2
j + s2

j

as (3.20). Under assumption of randomness of xk (which is +1 or -1 for k = 1, . . . , n)
we have that cj and sj converge to a normal distribution whit mean zero and variance
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σ2 = n/2, so that Y = (
cj
σ

)2 + (
sj
σ

)2 converges to a χ2 distribution with 2 degrees of
freedom, since it's the sum of 2 independent standard normal random variable, so that

P (Y ) =
1

2
exp(−Y

2
).

If we set Z = Y
2
, we obtain the distribution

P (Z) = exp(−Z).

We want that the number of peaks above the threshold T is the 5% of the total so,
if ZC is the upper bound of the random variable Z, we have

0.05 =

∫ ∞
ZC

exp(−Z)dZ = exp(−ZC)

so that ZC = −ln(0.05) = 2.995732274.

By (3.20), we also have that |Sj| =
√
nZ so, using the bound ZC , we �nd that the

threshold is
T =

√
nZC =

√
2.995732274n.

We set the bound T and we found values of the theoretical values of mean and
variance, so we can �nd the P-value by the complementary error function using formula
(3.9):

P-value = erfc

(
|d|√

2

)
where d = (N1 −N2)/

√
n · 0.95 · 0.05/4.

Figure 3.4 shows the di�erence between frequencies of a 4096-bit generated from a
good random number generator and the ones from a generator that produces periodic
patterns.

3.2.7 Non-overlapping template matching test

Under assumption of randomness, if we choose a pattern, it has to have the same
probability of any other pattern of the same length: this is the focus of this test and
of the subsequent Overlapping template matching test. This test counts the number of
occurrences of an aperiodic string and evaluate if that speci�c pattern occurs more or less
than expected from a truly random sequence. The test analyzes m bits of the sequence
(where m is the length of the chosen pattern): if the pattern is found it slides to the
next m bits, otherwise it slides by only one bit. This is done partitioning the sequence
into N sub-blocks of length M and the P-value is obtained by the χ2 statistic.

We give the following
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Figure 3.4: While very few magnitudes of the �rst sequence exceed the threshold value of
95%, represented by the horizontal line, more than 5% do in the second sequence. In the
second plot a structure of magnitudes is also observable, while we can't see something
like that on the �rst one. P-values of the �rst and the second sequence are, respectively,
0.8077 and 0.0001. Credits to [64].
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De�nition 3.2.7 (Aperiodic patter).
We say that a pattern B = ε01, . . . , ε

0
m is aperiodic if it doesn't exist a pattern C, shorter

than B, such that B=CC . . . CC ′, where C ′ is a pre�x of C.

Algorithmic description

First of all we choose an aperiodic template B and let m be its length.

1. The sequence is partitioned into N blocks of length M (possible surplus will be
discarded).

2. For each block count the number Wj of occurrences of B inside the j-th block for
j = 1, . . . , N , as follows:

• Compare the �rst m bits of the block with B;

• if they're not equal, slide of 1 bit and analyze bits from second to (m+1)-th2;

• if they match, slide of m bits and analyze bits from (m+ 1)-th to 2m-th.

3. Compute theoretical mean µ and variance σ2 as

µ =
N −m+ 1

2m
σ2 = M

(
1

2
− 2m− 1

22m

)
.

4. Compute the observed χ2-statistic as

χ2(obs) =
N∑
j=1

(Wj − µ)2

σ2
.

5. Compute P-value using the incomplete gamma function:

P-value = igamc

(
N

2
,
χ2(obs)

2

)
.

Remark 3.2.7.
Chosen m, this test can be performed for each aperiodic template of length m: for
example if m=2 the only non-periodic templates are 01 and 10, if m = 3 we have 001,
011, 100 and 110, but if we choosem = 9 orm = 10 we can perform the test, respectively,
for 148 and 284 templates. Note that, each template provides a di�erent P-value.

2For e�ciency purpose is important to compare only one bit at a time, instead of the whole m-bits
block, so that if the �rst bit doesn't match the comparison can straightaway proceed to the following m
bits.
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Interpretation of results

A small P-value (i.e. a rejection) is obtained when occurrences of the chosen tem-
plate through the sequence are irregular, in particular if there are too many or too few
occurrences, or if occurrences are located into restricted areas of the sequence.

An example

Let ε = 10100100101110010110, so that n = 20. We take N = 2 and M = 10 and
inspect the sequence for the template B = 001 (so m = 3).

1. Partitioning the sequence we obtain the two 10-bits blocks

1010010010, 1110010110.

2. Count occurrences of 001 through blocks; for the �rst block we �nd the �rst oc-
currence of B on bits 4-6, and the second one on bits 7-9: note that, as by the
algorithm, bits from 5-7 and 6-8 are not examined, since we slide to bits 7-9 after
the �rst match.
We �nd W1 = 2 and W2 = 1 (there is only a single occurrence on bits 4-6 in the
second block).

3. Theoretical mean and variance for m and M of this example are µ = (10 − 3 +
1)/23 = 1 and σ2 = 10 ·

(
1
23
− 2·3−1

22·3

)
= 0.46875.

4. χ2(obs) = (2−1)2+(1−1)2

0.46875
= 1+0

0.46875
= 2.133333.

5. P-value = igamc
(

2
2
, 2.133333

2

)
= 0.344154 > α so the sequence is accepted as ran-

dom.

Mathematical background

To perform this test we need to know the theoretical distribution of non-periodic
patterns inside the sequence or simply their mean and variance in order to compute the
χ2-distribution.
We a-priori choose an aperiodic template B = ε01, . . . , ε

0
m as in (3.2.7) of length m.

Example 3.2.5.
For m = 4 we have 6 aperiodic patterns: 0001, 0011, 0111, 1000, 1100, 1110.
For m = 5 they're 12:
00001, 00011, 00101, 01011, 00111, 01111, 11100, 11010, 10100, 1100, 10000, 11110.
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Since we chose a patter which is non-periodic, occurrences of B are non-overlapping,
and can count the number of occurrences W = W (m,n) through indicator variables as

W =
n−m+1∑
i=1

I{εi+k−1=ε0k,∀ k=1,...,m}.

Indicator functions can be seen as random variables which are m-dependent so that
we can use a more general version of the Central Limit theorem (Theorem 2.1.2) for
m-dependent random variables, as proved (for example) in [30] and [20], to say that the
distribution of W tends to the normal distribution, when n tends to in�nity, and its
mean and variance are

µ =
n−m+ 1

2m
σ2 = n

[
1

2m
− 2m− 1

22m

]
.

In our case we partitioned the sequence into N blocks of length M : let Wj =
Wj(m,M) be the number of occurrences of the chosen pattern in the j-th block, with
j = 1, . . . , N so that theoretical mean and variance are the ones referring to Wjs (i.e.
µ = E[Wj] and σ

2 = σ2(Wj)). For large values of n, and consequently of M , Wj has a
normal distribution and so the statistic

χ2(obs) =
N∑
j=1

(Wj − µ)2

σ2

has a χ2 distribution with N degrees of freedom, so that we can compute P-value using
the incomplete gamma function in the usual way.

3.2.8 Overlapping template matching test

This test is the complementary of the previous Non-overlapping template matching
test: the main idea is the same of the previous test, but the di�erence is on the type of
template to look for (this time this will be a periodic strings) and on the way we count;
in the previous test, if we had a match, we slid of the whole m bit, in this case we slide
only one bit both if we don't �nd the pattern or if we have a match: this allows us to
inspect the distribution of overlapping templates.

Algorithmic description

We choose a periodic template B of length m (we will consider a run of m ones, but
the test can be performed using any assgned periodic template, by changing theoretical
values).
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1. Partition the sequence into N = b n
M
c blocks of length M (and discard the possible

surplus).

2. For each block count the number of overlapping occurrences of B inside the j-th
block, for j = 1, . . . , N : the window slides each time of 1 bit, i.e. if we're analyzing
bits fro k-th to (k +m)-th we'll next analyze bits from k + 1 to k + 1 +m both if
patterns match or not.
To record the number of occurrences in each block, we use classes ν0, . . . , ν5: each
block, after the check, if we didn't �nd occurrences of the template B we increment
ν0 by one, if we found 1 occurrence we increment ν1 and so on; ν5 is incremented
if occurrence of B are 5 or more.

3. Compute values of λ and η:

λ =
M −m+ 1

2m
η =

λ

2
.

This values are used to compute theoretical probabilities π0, . . . , π5, which corre-
sponds to ν0, . . . , ν5 (if M and m are �xed, one can pre-compute these values, as
we did in our implementation).

4. Compute the statistic

χ2(obs) =
5∑
i=0

(νi −Nπi)2

Nπi

where, if m = 9 and M = 1032 as recommended by NIST, π0 = 0.364091,
π1 = 0.185659, π2 = 0.139381, π3 = 0.100571, π4 = 0.0704323 and π5 = 0.139865.
Obviously, probabilities for di�erent m and M can be computed anyway, as ex-
plained in the mathematical background section of this test.

5. Compute P-value using the incomplete gamma function:

P-value = igamc

(
5

2
,
χ2(obs)

2

)
.

Interpretation of results

A small P-value occurs when the number of periodic occurrences is far from the
theoretical number of them, under randomness hypothesis: in particular this correspond
to large values of ν0 or ν5 and, consequently on large values of the statistic.
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An example

We test the sequence ε = 10111011110110110100011100101110111110000101101001
(so that n = 50) for the template B = 11 (then m = 2), and �x M = 10 and N = 5.

1. The partition produces blocks 1011101111, 0110110100, 0111001011, 1011111000,
and 0101101001.

2. We count the number of overlapping occurrence of B through blocks. For the �rst
block the algorithm will count as follows

Position (bit) Bits Match of B
1 - 2 10
2 - 3 01
3 - 4 11 X
4 - 5 11 X
5 - 6 10
6 - 7 01
7 - 8 11 X
8 - 9 11 X
9 - 10 11 X

For the �rst block the sequence has �ve occurrences of B = 11, then we increment
ν5 by one, while ν0 = ν1 = ν2 = ν3 = ν4 = 0.
Similarly, block 2 has 2 occurrences of 11, so that ν2 = ν2 + 1 = 1; we have 3
occurrences in block 3, so that ν3 is incremented; there are 4 occurrences in block
4 and one occurrence in block 5, so that after the examination of all blocks we'll
have ν0 = 0, ν1 = 1, ν2 = 1, ν3 = 1, ν4 = 1, ν5 = 1.

3. λ = (10− 2 + 1)/22 = 2.25 and η = λ/2 = 1.125.

4. Using λ and η we compute the theoretical probabilities which, in this example,
will be di�erent from the ones in the algorithm section since we have di�erent M
and m: we �nd π0 = 0.324652, π1 = 0.182617, π2 = 0.142670, π3 = 0.106645, π4 =
0.077147 and π5 = 0.166269 (see the Mathematical background section for formulas
to compute probabilities).

χ2(obs) =
(0− 5 · 0.324652)2

−5 · 0.324652
+

1− 5 · 0.182617)2

5 · 0.182617
+

(1− 5 · 0.142670)2

5 · 0.142670

+
(1− 5 · 0.106645)2

5 · 0.106645
+

(1− 5 · 0.077147)2

5 · 0.077147
+

(1− 5 · 0.166269)2

5 · 0.166269
= 3.167729
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5. P-value = igamc
(

5
2
, 3.167729

2

)
= 0.274932 > α = 0.01 and we conclude that the

sequence is random.

Mathematical background

The test is based on the distribution of the number of runs of ones which length is
m, that can also overlap. Let Wj = Wj(m,n) be the number of those runs in the j-th
block. The key of this test is the computation of the asymptotic distribution ofWj, from
which we can evaluate probabilities πi, i = 0, . . . , 5. As proved, in the speci�c case of
binary sequences, by Földes in [23] and, in the more general case of sequences created
by any �nite alphabet, by Chrysaphinou and Papastravridis in [16], Wjs converges to a
compound Poisson distribution, in particular to the so called Pólya-Aeppli distribution
when (M − m + 1)2−m → λ > 0. The general Pólya-Aeppli distribution models the
idea that counted objects occur in clusters, where the number of objects has a Poisson
distribution (of parameter θ) and the number of objects per cluster has a geometric dis-
tribution of parameter p.

In the following it will be useful this

De�nition 3.2.8 (Con�uent hypergeometric function).
For x ∈ R and a, b ∈ Z the con�uent hypergeometric function (also called Kummer's
function3) is

1F1[a; c;x] = 1 +
a

c1!
x+

a(a+ 1)

c(c+ 1)2!
x2 + . . .

=
∞∑
j=0

(a)jx
j

(c)jj!

where (a)j = a(a+1) . . . (a+j−1) is the Pochammer's symbol for the ascending factorial.

Remark 3.2.8.
The Pólya-Aeppli distribution can be seen in two, equivalent, ways using the Poisson
distribution and the geometric distribution, so that if X has a Pólya-Aeppli distribution
then

X ∼ Poisson(θ)
∨

Shifted geometric(p) (3.21)

but also, using a non-shifted geometric distribution as

X ∼ Poisson

(
θ

p

)∨
Geometric(p). (3.22)

3Kummer introduced this function in 1837 as a solution to a di�erential equation, called the Kum-
mer's di�erential equation.
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Using the same parameter θ and p, is useful to de�ne the Pólya-Aeppli distribution
through its probability generating function:

G(z) = exp

[
θ

(
(1− p)z
1− pz

− 1

)]
(3.23)

= exp

[
θ

(
z − 1

1− pz
− 1

)]
= exp

[
θ

p

(
1− p
1− pz

− 1

)]
(3.24)

where expression (3.23) and (3.24) correspond respectively to models (3.21) and (3.22).
By direct expansion of the probability generating function and denoting q = 1 − p, we
can immediately obtain

P (X = 0) = e−θ

and

P (X = x) = e−θpx
x∑
j=1

(
x− 1

j − 1

)
(θq/p)j

j!
, x = 1, 2, . . . (3.25)

By the use of the con�uent hypergeometric function 1F1[·] de�ned in (3.2.8) we can
also write

P (X = x) = e−θ
(
θq

p

)
px 1F1[1− x; 2;−θq/p].

Using Kummer's transformation 1F1[a; b; y] = ey 1F1[b−a; b;−y] (proved by Kummer
itself under the name of Kummer's �rst theorem in [41]) one can obtain

P (X = x) = e−θ/p
(
θq

p

)
px 1F1[x+ 1; 2; θq/p].

From that, Kemp in [33] derived the following recurrence formula

(x+ 1)P (x = x+ 1) = θq
x∑
j=0

(x+ 1− j)px−jP (X = j).

Finally, we can use this formula to evaluate the theoretical probabilities π0, . . . , π5 noting
that, using notations of the algorithm section, θ = η = λ/2 and p = q = 1/2, so that if
X is a random variable with the compound Poisson asymptotic distribution

P (X = 0) = e−η,

P (X = 1) =
η

2
e−η,
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P (X = 2) =
ηe−η

8
(η + 2),

P (X = 3) =
ηe−η

8

(
η2

6
+ η + 1

)
,

P (X = 4) =
ηe−η

8

(
η3

24
+
η2

2
+

3η

2
+ 1

)
.

We can use above formulas to compute the probabilities π0, . . . π4 and, to evaluate
the probability to have more than four overlapping runs in the block, we can complement
the distribution function obtained in (3.25), obtaining that

P (X > x) = e−η
x∑
j=1

ηj

j!
∆(j, x)

where

∆(j, x) =
x∑
k=j

1

2k

(
k − 1

j − 1

)
.

We can �nally compute P (X ≥ 5) as

P (X ≥ 5) = P (X = 5) + P (X > 5).

Chosen K + 1 classes {X = 0}, {X = 1}, . . . , {X = K − 1}, {X ≥ K} , representing
the number of overlapping runs inside blocks, one can compute respective theoretical
probabilities π0, π1, . . . , πK−1, πK , using above formulas, and compute the value of the
χ2-statistic as

χ2(obs) =
K∑
i=0

(νi −Nπi)2

Nπi

where N is the number of block; after that we can compute the P-value using the in-
complete gamma function, as usual.

Supposing to test sequences on the order of 106 bits, we implemented the test for
K = 5,m = 9 and M = 1032, as NIST did, so that theoretical probabilities derived by
above formulas are

π0 0.367879
π1 0.183939
π2 0.137954
π3 0.099634
π4 0.069935
π5 0.140656

.
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Values in the above table are the ones NIST inserted in the most recent version of
their Overlapping template matching test, however Hamano and Kaneko, in [29], proved
that these values are inaccurate since, setting the level of signi�cance to 1%, the test
produce a rejection rate of 98.8%, instead of the expected 99%.
They recomputed probabilities πi, i = 0, . . . , 5 by founding a set of recursive formulas to
compute the number Ti(n) of n-bit sequence with i occurrences of the template B (an
m-bit run of ones), so that

πi =

{
Ti(n)

2n
fori = 0, . . . , 4

1−
∑4

j=0 πj fori = 5.

By the use of these formulas they computed values of the table below and, testing
4 · 104 sequences of length 106 taken from DES (used as a PRNG), showed that values
proposed by NIST lead to a distribution of rejection rate which is far from the theoretical
one (while, on the other hand, new values �ts almost perfectly).

π0 0.364091
π1 0.185659
π2 0.139381
π3 0.100571
π4 0.0704323
π5 0.166269

.

NIST itself acknowledged that Hamano and Kaneko's values are more correct, but left
the old ones in the implementation of the test suite. We decided to implement the test
using both values: the �rst ones to check the implementation and compare our results
with NIST's and the second to have a more reliable test for practical purposes.

3.2.9 Maurer's universal statistical test

As we said in section (2.2.2), a truly random sequence has high values of entropy and,
for that reason, it couldn't be signi�cantly compressed (i.e. compressed without losing
information, contained in the sequence) by any algorithm of compression. Since 2008 a
test based on a Lempel-Ziv compressor (an algorithm for data compression proposed by
Ziv and Lempel in [71]) was included in the NIST statistical test suite, but then it was
removed due to low e�ciency, problems on implementation and, primarily, di�cult on
de�ning a statistic which can be determined and approximated. However the idea be-
hind Maurer's universal statistical test is almost the same: it doesn't try to compress the
sequence, as the Lempel-Ziv test proposed in [73] did, but analyzes the per-bit entropy of
the sequence, which is strictly connected with compressibility. To achieve that, the test
examines the distance (i.e. the number of bit) between matching patterns, since if there
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are a lot of same pattern which are su�ciently close one-another, one can substitute the
pattern with a shorter one and compress the sequence: that is the connection between
distances and compression.

Maurer, in [50], states that the per-bit entropy is "the correct quality measure for a
secret-key source in a cryptographic application" since it's "related to the running time
of enemy's optimal key-search strategy" or to the e�ective key size of a cipher system.
The author also report that, even if this test doesn't detect some speci�c defection of
the sequence, it is "able to detect any one of the very general class of statistical defects
that can be modeled by an ergodic stationary source with �nite memory", so that this
test should contain a wide number of standard statistical tests. We recall that, for this
test, we will forget usual notations to conform to the ones Maurer used in the original
paper, so that the length of block will be L, and the number of blocks will be Q+K.

Algorithmic description

The length of block L and the number of testing blocks Q is chosen depending on
the sequence length, as in the following table:

n L Q = 10 · 2L
≥ 387840 6 640
≥ 304960 7 1280
≥ 2068480 8 2560
≥ 4654080 9 5120
≥ 10342400 10 10240
≥ 22753280 11 20480
≥ 49643520 12 40960
≥ 107560960 13 81920
≥ 231669760 14 163840
≥ 496435200 15 327680
≥ 1059061760 16 655360

After that, K is set as K = bn/Lc −Q.

The test could be performed for all L, but choosing L ≥ 6 would allow to have every
L-bit pattern into the initialization segment and taking L > 16 would make the test too
slow, since the initialization takes time exponential in L.

1. The sequence is split into two parts: �rst Q · L-bits will form the initialization
segment, and the following K · L-bits will form the test segment: any extra bits
are discarded.
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Figure 3.5: Partition of the sequence into Q+K block of length L. Credits to [64].

2. Create a table containing each possible L-bit pattern and store the index of the
last occurrence of each of these templates inside the initialization segment: in the
following we will call Tj the index of the j-th template of the table. For example if
the template a appears in s-th block and in t-th block, with s < t, store t as index
of the template a.

3. Scan blocks of the testing sequence: if a block appears into the table, compute
the log2 distance between the index of the block and the index of the previous
appearance of the template: i.e. if the i-th block matches the j-th template,
compute log2(i − Tj). Replace the index Tj into the table with the last index of
the template i. For each step sum all the distances together into a variable sum
(i.e. each step sum = sum+ log2(i− Tj)).

4. Compute the statistic

fn =
1

K

Q+K∑
i=Q+1

log2(i− Tj) =
sum

K
.

5. Compute theoretical expected value and standard deviation σ. Expected value and
variance depends only on L so that we can pre-compute them:

L expectedValue variance
6 5.2177052 2.954
7 6.1962507 3.125
8 7.1836656 3.238
9 8.1764248 3.311
10 9.1723243 3.356
11 10.170032 3.384

L expectedValue variance
12 11.168765 3.401
13 12.168070 3.410
14 13.167693 3.416
15 14.167488 3.419
16 15.167379 3.421
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The theoretical standard deviation is given from

σ = c(L,K)

√
variance(L)

K
, with c(L,K) = 0.7− 0.8

L
+

(
4 +

32

L

)
K3/L

15
.

Compute P-value using the complementary error function:

P-value = erfc

(∣∣∣∣fn − expectedV alue(L)√
2σ

∣∣∣∣) .

Remark 3.2.9.
In order to make the storing and the computation of step 2 and 3 more e�cient, patterns
are considered using the decimal value represented (on base 2) by the template itself.
For example, if L = 4, the pattern "0010" is stored into the second entry of the storing
table and the pattern "0111" is stored into the 7-th entry. "0000" can be stored into
the last entry of the table or into the �rst one: in the second case everything has to be
shifted by one.

Interpretation of results

A small P-value (i.e. a rejection of the sequence) occurs when the statistic of distances
fn di�ers signi�cantly from the expectedV alue(L): that would indicate that the sequence
can be signi�cantly compressed, i.e. is not random.

An example

Let ε = 01011010011101010111, then n = 20. Let's take L = 2 and Q = 4 so that
K = bn/Lc −Q = b20/2c − 4 = 6.

1. The sequence is split into an initialization segment 01011010 and a test segment
011101010111. No bits are discarded, since Q · L+K · L = 20 = |ε|. L-bit created
blocks are shown in the following tables:

Initialization segment
Block index Content

1 01
2 01
3 10
4 10

Test segment
Block index Content

5 01
6 11
7 01
8 01
9 01
10 11
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2. Table with L-bit templates and respective index (into the initialization segment)
is created:

Template 00 01 10 11
Last index 0 2 4 0

3. The sum of distances proceeds as follows:

Block 5: block 5 reports the template ′01′, which last index is 2, so that sum = log2(5−
2) = 1.584962501.

Block 6: block 6 reports the template ′11′, which last index is 0, so that sum = sum+
log2(6− 0) = 1.584962501 + 2.584962501 = 4.169925002.

Block 7: block 7 reports the template ′01′, which last index is 5, so that sum = sum+
log2(7− 5) = 4.169925002 + 1 = 5.169925002.

Block 8: block 8 reports the template ′01′, which last index is 7, so that sum = sum+
log2(8− 7) = 5.169925002 + 0 = 5.169925002.

Block 9: block 9 reports the template ′01′, which last index is 8, so that sum = sum+
log2(9− 7) = 5.169925002 + 0 = 5.169925002.

Block 10: block 10 reports the template ′11′, which last index is 6, so that sum =
sum+ log2(10− 6) = 5.169925002 + 2 = 7.169925002.

During the sum, the table of indexes is updated ad follows:

Iteration L-bit value
block 00 01 10 11
4 0 2 4 0
5 0 5 4 0
6 0 5 4 6
7 0 7 4 6
8 0 8 4 6
9 0 9 4 6
10 0 9 4 10

4. The test statistic fn = 7.169925002
6

= 1.1949875.

5. For L = 2 expected value and variance can be computed: expectedV alue =

1.5374383 and σ2 = 1.338, then P-value = erfc
(∣∣∣1.19498755−1.5374383√

2
√

1.338

∣∣∣) = 0.767189 >

α and the sequence is accepted as random.
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Mathematical background

As we have seen in section (3.1.2), in order to perform the complementary error
function erfc, we need to know the theoretical distribution of the statistic fn, when data
is truly random (i.e. we need to know its mean and variance).
Let sN = s1, . . . , sN be the whole (random) sequence of length N , with N = (Q+K)L,
we denote the n-th block of length L of the sequence as

bn(sN) = sL(n−1)+1, . . . , sLn for 1 ≤ n ≤ Q+K.

For Q+ 1 ≤ n ≤ Q+K we can de�ne the function that counts the distance from the
previous template equal to bn(sN) as

An(sN) =

{
n if @ i ≤ n s.t. bn(SN) = bn−1(sN),

min{i ≥ 1 s.t. bN(sN) = bn−i(s
N)} otherwise.

By this de�nition we can write the function fn which form the statistic as

fn(sN) =
1

K

Q+K∑
n=Q+1

log2An(sN).

When it's not strictly necessary, in the following we'll neglect the input argument of
function bn, An, fn and, unless speci�ed, we'll mean that it is sN .

We are ready to compute mean and variance of the function fn (which can obviously
be seen as a random variable): fn is the average of several random variable, its expected
value is equal to the average of the expected values, so that

E[fn] = E[log2An].

The variance of the sum of independent random variables is the sum of variances of them,
but our random variables An are not completely independent, so that the variance of fn
is smaller; we can write this fact as

var(fn) = c(L,K)2 · var(log2An)

K
(3.26)

where the factor c(L,K) denotes the reduction of the variance from the case of com-
pletely independent random variables.

Since we are inspecting very long strings, when computing mean and variance, it's
reasonable to assume that Q tends to in�nity. Let's suppose to have UN = U1, . . . , UN a
sequence of binary random variable with P (Uj = 1) = P (Uj = 0) = 1/2 ∀j = 1, . . . , N .
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For i ≤ 1 we can write the probability to �nd a distance between matching patterns of
i as

P (An) =
∑
b

P (bn = b, bn−1 6= b, . . . , bn−i+1 6= b, bn−i = b).

Under randomness hypothesis the blocks bn are independent and identically distributed,
so that probability becomes

P (An = i) =
∑
b

[P (bn = b)]2 · [1− P (bn = b)]i−1,

but our sequence is binary and symmetric (i.e. it assumes both values 0 and 1 with
probability 1/2), so that

P (An = i) = 2−L(1− 2−L)i−1.

Finally, remembering that we assumed Q→∞, the expected value is

E[fn] = E[log2An] = 2−L
∞∑
i=1

(1− 2−L)i−1log2i.

Using an analogous argument, the variance of log2An is seen to be

var(log2An) = E[(log2An)2]− (E[log2An])2 = 2−L
∞∑
i=1

(1− 2−L)i−1(log2i)
2 − (E[fn])2.

As we said, if the theoretical mean is exactly the one we just computed, the variance de-
pends on the constant c(L,K). Maurer approximated the value by extensive simulations
�nding that, for K ≥ 2L, the constant is well approximated by

c(L,K) ≈ 0.7− 0.8

L
+

(
4 +

32

L

)
L−3/L

15
.

Knowing the mean and a good approximation of the variance of the statistic fn,
we can �nally compute P-value using the complementary error function as in the Algo-
rithmic description section. As we just seen, even if the expected value is theoretically
correct, the variance, and in particular the multiplicative constant c(L,K), is obtained
by simulations. Coron and Naccache, in [17], assess that the approximation for the vari-
ance "can make the test 2.67 times more permissive than what theoretically admitted",
so that they re-computed the value of c(L,K) by explicit calculation of the variance:
to do that, they computed the probability P (An+k = j, An = i) for all possible cases
and found a more precise formula for c(L,K). For K ≥ 33 · 2L they found the better
approximation

c̃(L,K)2 ≈ d(L) +
e(L) · 2L

K
(3.27)
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where d(L) and e(L) are functions which take into account di�erent case studies on vari-
ance of An (i.e. on L).

NIST embedded values of c(L,K) derived by Maurer however, after checking the
correctness of our code using these ones, we decided to use new approssimations from
[17] in order to make the test more precise. Since values of mean and variance remain
the same, we report, in the following table, values of d(L) and e(L) which are necessary
to compute new values of the corrective factor c̃(L,K), using formula (3.27):

L d(L) e(L)
6 0.3489769 0.3941338
7 0.3631815 0.3813210
8 0.3732189 0.3730195
9 0.3800637 0.3677118
10 0.3845867 0.3643695
11 0.3874942 0.3622979
12 0.3893189 0.3610336
13 0.3904405 0.3602731
14 0.3911178 0.3598216
15 0.3915202 0.3595571
16 0.3917561 0.3594040

so that one can compute the standard deviation as

σ = c̃(L,K)

√
variance(L)

K

and �nd the P-value using the complementary error function.

3.2.10 Linear complexity test

This test is focused on the fact that if a random binary sequence has to be un-
predictable, it can't be created by a too simple algorithm. In particular the Linear
complexity test detects if the sequence could be created by a linear feedback shift reg-
ister (LFSR) or, alternatively, if the length of this LFSR is long enough to make the
sequence random. Indeed random sequences have longer LFSR so that sequences with a
short LFSR can be considered non-random. In other words, the test analyzes whether
the sequence is complex enough to be considered random.

To better understand the test, we give here the following

De�nition 3.2.9 (Feedback Shift Register).
A feedback shift register (FSR) of length L is a stage recursive algorithm. At each stage,
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a Boolean function f : FL2 7→ F2, called feedback function, generates a bit, taking values
from the previous stage.
Starting from an initialization sequence sL−1, . . . , s0 of length L, each step of the algo-
rithm, the following operation are performed:

i) the content of stage 0 is given as output and forms part of the output sequence;

ii) the content of stage i is moved to stage i− 1 for each i = 1, . . . , L− 1;

iii) the new content of stage L−1, called feedback bit, is created by the recursive formula
sn = f(sn−1, . . . , sn−L) mod 2, for n ≥ L.

At step j ≥ L the sequence s0, s1, . . . , sj−1, sj is created.

Figure 3.6: Scheme for a feedback shift register. At this step the bit sj−L is outputed
and added to the sequence. Credits to [51].

A special case of FSR is the

De�nition 3.2.10 (Linear Feedback Shift Register).
A linear feedback shift register (LFSR) consists of a feedback shift register where the
feedback function f is linear, so that

f(sn−1, . . . , sn−L) =
n∑
j=1

ajsn−j mod 2. (3.28)

For suitably chosen parameters ai and the initial state sL−1, . . . , s0, sequences created
by a linear feedback shift registers are hardly distinguishable from uniformly distributed
random sequence, so that LFSRs could be considered a good pseudo-random generators,
if the the length L is su�ciently large: indeed, in this case the generated sequences have
a period of 2L−1, while the maximum possible period is 2L − 1, see [58] or [51].

Lemma 3.2.2.
A bit sequence u ∈ FN

2 is generated by an LFSR if and only if it is (eventually) periodic.
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This lead us to look for the shortest LFSR that generates a sequence and the following

De�nition 3.2.11 (Linear complexity).
The linear complexity λ(s) of a bit sequence s ∈ Fn2 is the length of the shortest LFSR
that generates a sequence having s as its �rst n terms, where s can be �nite or in�nite.
By de�nition we set λ(s) = 0 if s is formed only by 0s and λ(s) =∞ if s is non-periodic.

Some important fact are the followings:

• The sequence sL = 0, . . . , 0, 1 (formed by L− 1 zeros, followed by an 1) has period
L and linear complexity L.

• For s ∈ FN2 we have 0 ≤ λ(s) ≤ N .

• λ(s) = N ⇔ s = (0, . . . , 0, 1).

• If λ(s) is the linear complexity of s, to predict each following bit of the sequence
one need to know the �rst 2λ(s) bits.

Linear complexity can be e�ciently determined by the Berlakamp-Massey algorithm
(BM-algorithm in the sequel). Since we wont use any property of the �eld F2, we will
work over an arbitrary �eld K and look for the shorter linear generator that generates a
�nite sequence s ∈ KN . As in (3.28) our LFSR is determined by the recursive formula

sk = a1sk−1 + · · ·+ aLsk−L for k = L, . . . , N − 1. (3.29)

From the coe�cient vector (a1, . . . , aL) ∈ KL we can also consider the polynomial in
the variable T

ϕ(T ) = 1− a1T − . . . aLTL ∈ K[T ],

called feedback polynomial.

We introduce, here, some lemmata, which will be useful for the construction of the
BM-algorithm (we refer to [58] for proofs).

Lemma 3.2.3.
Let s = (s0, . . . , sn−1) ∈ Kn be a segment of the output of the linear generator described
by (3.29), and let ŝ = (s0, . . . , sn) ∈ Kn+1 be a sequence not generated by the algorithm.
Then every homogeneous linear generator of length m ≥ 1 that generates ŝ satis�es
m ≥ n+ 1− L.

Lemma 3.2.4.
For every sequence s ∈ KN we have:

i) λn+1 ≥ λn for all n.
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ii) There is a homogeneous linear generator of recursion depth λn that produces (s0, . . . , sn)
if and only if λn+1 = λn.

iii) If there is no such generator, then λn+1 ≥ n+ 1− λn.

These two lemmata lead us to the

Theorem 3.2.5 (Massey).
Let s ∈ KN , 0 ≤ n ≤ N − 1 and λn+1(s) 6= λn(s). Then

λn(s) ≤ n

2
and λn+1 = n+ 1− λn(u).

Proof.
The case λn = 0 is trivial, since we have s0 = · · · = sn−1 = 0 and sn = 0, then λn+1 = λn
and there's nothing to prove. Otherwise sn 6= 0, then λn+1 = n+ 1 = n+ 1− λn.
We can observe that the �rst statement follows from the second one since, if λn 6= λn+1,
then λn < λn+1, so that 2λn < λn + λn+1 < n+ 1.
Let's prove the second statement by induction on n. If n = 0 we have λ0 = 0 and we fall
into the previous case, so let's suppose n ≥ 1.
Assuming L := λn ≥ 1, we have

sj = a1sj−1 + · · ·+ aLsj−L for j = L, . . . , n+ 1

and the corresponding feedback polynomial is

ϕ = 1− a1T − · · · − aLTL ∈ K[T ].

We de�ne the n-th discrepancy as

dn := sn − a1sn−1 − . . . ,−aLsn−L

so that if dn = 0, the generator outputs un as the next element, and there is nothing to
prove. Otherwise, if dn 6= 0, let r be the length of the segment before the last increase
of linear complexity, then

t := λr < L, λr+1 = L.

By induction L = r + 1− t and we have the relation

sj = b1sj−1 + · · ·+ btsj−t for j = t, . . . , r − 1.

The corresponding feedback polynomial is

ψ = 1− b1T − · · · − btT t ∈ K[T ]
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and the r-th discrepancy is

dr = sr − b1sr−1 − · · · − btsr−t 6= 0.

If t = 0 we have ψ = 1 and dr = sr.
We form now the polynomial

η := ϕ− dn
dr
· T n−r · ψ = 1− c1T − · · · − cmTm ∈ K[T ]

and let's compute the corresponding output. Directly following for j = m, . . . , n− 1 and
taking into account that dn − (dn/dr) · dr for j = n, we have:

sj −
m∑
i=1

cisj−i = sj −
L∑
i=1

aisj−i −
dn
dr
·

(
sj−n+r −

t∑
i=1

bisj−n+r−i

)
= 0 forj = m, . . . , n.

so that the output is (s0, . . . , dn).

By that
λn+1 ≤ m ≤ max{L, n− r + t} = max{L, n+ 1− L},

but we also know that linear complexity is increasing, so that m > L and lemma (3.2.3)
tells us that m ≥ n + 1 − L. We obtained that m = n + 1 − L and λn+1 = m, which
concludes the proof.

Useful consequences of this theorem are that:

• If dn 6= 0 and λn ≤ n
2
, then λn+1 = n+ 1− λn > λn.

• If s ∈ FN2 is generated by an LFSR of length ≤ L, then such a LFSR may be
determined from s0, . . . , s2L−1.

The proof of Theorem 3.2.5 gives us an algorithm that builds the LFSR which gen-
erates the sequence. We can summarize it as follows:

Algorithm 3.2.6.
Given a sequence sN = s0, . . . , sN−1 of length N , initialize ϕ = 1, λ = 0, r = −1, ψ = 1.
For n = 0, . . . , N − 1:

d = sn − a1sn−1 − · · · − aLsn−L
If d = 1
η = ϕ− d

d′
· T n−r · ψ

If l ≤ n
2

m = n+ 1− L
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t = l
l = m
ψ = ϕ
r = n
d′ = d

ϕ = η
λN(s) = L and ϕ are given as output.

The test uses this algorithm to compute the linear complexity blocks of the observed
sequence and compares with the truly random one.

Algorithmic description

1. Partition the sequence into N = b n
M
c blocks of length M (and discard the possible

remainder).

2. Determine the linear complexity Li of each of the N created blocks through the
Berlekamp-Massey algorithm.

3. Compute the theoretical mean as

µ =
M

2
+

(
9 + (−1)M+1

)
36

−
(
M
3

+ 2
9

)
2M

.

4. For each block compute the value

Ti = (−1)M · (Li − µ) +
2

9
.

5. Fixed classes ν0, . . . , ν6 increment them by one in the following way

if Class to increment
Ti ≤ −2.5 ν0

−2.5 < Ti ≤ −1.5 ν1

−1.5 < Ti ≤ −0.5 ν2

−0.5 < Ti ≤ 0.5 ν3

0.5 < Ti ≤ 1.5 ν4

1.5 < Ti ≤ 2.5 ν5

Ti > 2.5 ν6

6. Compute the χ2 statistic:

χ2(obs) =
K∑
i=0

(νi −Nπi)2

Nπi
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where π0 = 0.010417, π1 = 0.03125, π2 = 0.125, π3 = 0.5, π4 = 0.25, π5 = 0.0625,
π6 = 0.020833.

7. Compute P-value using the incomplete gamma function:

P-value = igamc

(
K

2
,
χ2(obs)

2

)
.

Interpretation of results

A small P-value (which leads to a rejection) would occur when observed frequency of
Ti are too far from the theoretical probabilities. In particular that would indicate that
the sequence is locally too simple or, on the other hand, that it has a too high complexity
to be e�ectively random.

An example

Since the rest of the algorithm itself is almost the same of many other algorithms we
already analyzed, this example will focus on the Berlekamp-Massey algorithm, which is
the core (and the algorithmically most complicate part) of the test, and on what the test
does inside one of the N created blocks.

1. Let's suppose M = 9 and one of the created blocks is sN = 001101110.

2. The Berlekamp-Massey algorithm proceed as follows (rows of the table represent
steps of the algorithm):

sNsNsN d ηηη ϕϕϕ L m ψψψ N
- - - 1 0 -1 1 0
0 0 - 1 0 -1 1 1
0 0 - 1 0 -1 1 2
1 1 1 1− T 3 3 2 1 3
1 1 1− T 3 1− T − T 3 3 2 1 4
0 1 1− T − T 3 1− T − T 2 − T 3 3 2 1 5
1 1 1− T − T 2 − T 3 1− T − T 2 3 2 1 6
1 0 1− T − T 2 − T 3 1− T − T 2 3 2 1 7
1 1 1− T − T 2 1− T − T 2 − T 5 5 7 1− T − T 2 8
0 1 1− T − T 2 − T 5 1− T 3 − T 5 5 7 1− T − T 2 9

so that the linear complexity of the block is Li = 5.

3. µ = 9
2

+ (9+(−1)9+1)
36

− ( 9
3

+ 2
9

)

29
= 4.7715.
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4. Ti = (−1)9 · (5− 4.7715) + 2/9 = −0.0063.

5. The Ti we found is such that −0.5 ≤ Ti ≤ 0.5, so that ν3 would be incremented by
one.

After computing values Ti for each block, one can evaluate the χ2 distribution and �nd
the P-value through the incomplete gamma function, as described in the Algorithmic
description section.

Mathematical background

To perform this test we need to know the distribution of linear complexity λ(s) and,
in particular, its mean, since we use it to form the successive statistic Tn.
Obviously, aN -bit sequence s = (s0, . . . , sN−1) ∈ FN2 can be extended to s̃ = (s0, . . . , sN) ∈
FN+1

2 depending on the bit SN ∈ {0, 1}. The Berlekamp-Massey algorithm discussed
above gives us a relation between the linear complexity λ(s) and λ(s̃), depending on the
discrepancy, that we can simply write as

δ =

{
0 if the prediction is correct

1 otherwise

where for "prediction" we mean the one the Berlekamp-Massey algorithm do, i.e. if or
not the previous founded LFSR can generate the extendend string s̃. Theorem 3.2.5 gave
us the following relation

λ(s̃) =


λ(s) if δ = 0;

λ(s) if δ = 1 and λ(s) > N/2;

N + 1− λ(s) if δ = 1 and λ(s) ≤ N/2.

In order to �nd the number µN(L) of sequences of length N which have linear com-
plexity L, let's denote

MN(L) := {s ∈ FN2 s.t. λ(s) = L},

so that we can think of µN(L) as the cardinality of MN(L). Obviously, we have the
following conditions

i) 0 ≤ µn(L) ≤ 2N ,

ii) µN(L) = 0 if L > N ,

iii)
∑N

L=0 µN(L) = 2N .

From these considerations we can derive the following
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Lemma 3.2.7.
The frequency µN(L) of bit sequences of length N and linear complexity L satis�es the
following recursion:

µN+1(L) =


µN(L) if 0 ≤ L ≤ N/2,

2 · µN(L) if L = (N + 1)/2,

2 · µN(L) + µN+1−L(L) if L ≥ N/2 + 1.

Proof.
If 0 ≤ L ≤ N/2, s can be continued in two di�erent ways, but only one of that matches the
prediction, leading to s̃ ∈MN+1(L). The other continuation lead to s̃ ∈MN+1(N+1−L),
so that we can conclude that, in this case, µN+1(L) = µN(L).
If N is odd and L = N+1

2
(note that this can't occur if N is even), both correctly

predicted and incorrectly predicted sequences leads to MN+1(L) due to the Berlekamp-
Massey algorithm. In this case, we have µN+1(L) = 2 · µN(L).
Finally, if L ≤ N

2
+1, both predictions lead to s̃ ∈MN+1(L), but we also have to consider

the wrong prediction of the �rst case. Hence µN+1(L) = 2 · µN(L) + µN+1−L(L), which
concludes the proof.

From that, by induction on N , one could �nd the following

Theorem 3.2.8 (Rueppel).
The frequency µN(L) of bit sequences of length N and linear complexity L is given by

µN(L) =


1 if L = 0,

22−L if 1 ≤ L ≤ N
2
,

22(N−L) if N+1
2
≤ L ≤ N,

0 if L > N .

From the distribution of linear complexity we just found, one can determine its mean
and variance for sequences of �xed length N . The key is to observe that, under random-
ness hypothesis, our sequence s ∈ FN2 can be seen as a sequence of N independent binary
random variables, so that the mean can be computed as

EN =
∑
s∈FN2

λ(s)P (s) =
1

2N

∑
s∈FN2

λ(s)

where the second equality comes, obviously, from the hypothesis of randomness.
If we suddivide the set of all s ∈ FN2 into equivalence classes, according to respective
linear complexity, we can revrite the sum∑

s∈FN2

λ(s) =
N∑
L=1

∑
s s.t. λ(s)=L

L.
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Now each equivalent class contains exactly µN(L) elements, so that

∑
s∈FN2

λ(s) =
N∑
L=1

L · µN(L)

and the expected value becomes

EN =
1

2N

N∑
L=1

L · µN(L).

By explicitly distinguishing between cases N odd and N even and using the recursive
formulas for µN , as in [62], one can prove the

Theorem 3.2.9 (Rueppel).
The expected linear complexity of a sequence s = (s0, . . . , sN−1) of N independent and
uniformly distributed binary random variable is given by

EN(L) =
N

2
+

4 +R2(N)

18
− 1

2N

(
N

3
+

2

9

)
and its variance is

V arN(L) =
86

81
− 1

2N

(
14−R2(N)

27
N +

82−R2(N)

81

)
− 1

22N

(
1

9
N2 +

4

27
N +

4

18

)
.

Here, and in the following, R2(n) is the parity function: it equals 0 if n is even and 1 if
it's odd.

For moderately large N mean and variance can be approximated as

µN ≈

{
N
2

+ 2
9

if N is even,
N
2

+ 5
18

if N is odd;

σ2 ≈ 86

81
,

so that (LN − µN)/σ2 is close to a standard normal variable, and P-values can be found
by

P-value = erfc

(
LN − N

2√
81/86

)
.

Though Gustafson et al. in [27] assume that as a good approximation and the linear
complexity test is embedded in the Crypt-X package [10] in that way, NIST assumes that
this approximation is too inaccurate due to the di�erence on expected value between
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the case of even/odd length, then they decided to adapt the statistic TN to shift the
distribution and make it as symmetric as possible de�ning

TN = (−1)N(LN − ξN) +
2

9

where

ξN =
N

2
+

4 +R2(N)

18
.

The limiting distribution of this random variable T , which only assumes integer values,
approximates the normal distribution, but it's still skewed to the right:

P (T = k) =


1

22|k|+1 if k < 0,
1
2

if k = 0,
1

22k
if k > 0.

From these probabilities we can compute the probabilities of P (T ≥ k > 0) as (3·22k−2)−1

and of P (T ≤ k < 0) as (3 ·22|k|−1)−1, by which we can compute probabilities πi of classes
νi of the algorithm, and apply the χ2-test and �nd the P-value through the incomplete
gamma function, as described in section (3.1.1). We shall note that, choosing block
su�ciently large (i.e. choosingM su�ciently large) is really important, in order to make
the approximation the more precise as possible: for this purpose NIST recommends
500 ≤M ≤ 5000.

Remark 3.2.10.
The choice between the Standard Normal Distribution and the distribution T is relevant,
since the di�erence on probabilities are relatively large.
Comparing the probabilities of chosen classes intervals ν0, . . . , ν6, we �nd that, for the
statistic T , probabilities are π0 = 0.010417, π1 = 0.03125, π2 = 0.125, π3 = 0.5, π4 =
0.25, π5 = 0.0625, π6 = 0.020833, while the ones from the Standard Normal Distribution
would have been π′0 = 0.0041, π′1 = 0.0432, π′2 = 0.1944, π′3 = 0.3646, π′4 = 0.2863, π′5 =
0.0939, π′6 = 0.0135.

3.2.11 Serial test

This test analyzes frequencies of all m-bit patterns of the sequence, counted with
overlapping. m-bit binary patterns are 2m in total and, under randomness assumption,
any of them has the same probability to appear as the others, since the distribution as
to be uniform. Note that this is a test based on frequency and that, if m is equal to 1,
it degenerates to the frequency test (3.2.1).
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Algorithmic description

1. Starting from ε = ε1 . . . εn, form an augmented sequence ε′ = ε1 . . . εnε1 . . . , εm−1 by
appending the �rst m− 1 bits to the end of the sequence.

2. Count the frequency of

• each possible overlapping m-bit block (pattern);

• each possible overlapping (m− 1)-bit block;

• each possible overlapping (m− 2)-bit block.

This will provide:

• vi1,...,im with ij ∈ {0, 1}, the number of occurrences of the pattern i1, . . . , im
for all j = 1, . . . ,m;

• vi1,...,im−1 with ij ∈ {0, 1}, the number of occurrences of the pattern i1, . . . , im−1

for all j = 1, . . . ,m− 1;

• vi1,...,im−2 with ij ∈ {0, 1}, the number of occurrences of the pattern i1, . . . , im−2

for all j = 1, . . . ,m− 2.

3. Compute the statistics

ψ2
m =

2m

n

∑
i1,...,im

(
vi1,...,im −

n

2m

)2

=
2m

n

∑
i1,...,im

v2
i1,...,im

− n;

ψ2
m−1 =

2m−1

n

∑
i1,...,im−1

(
vi1,...,im−1 −

n

2m−1

)2

=
2m−1

n

∑
i1,...,im−1

v2
i1,...,im−1

− n;

ψ2
m−2 =

2m−2

n

∑
i1,...,im−2

(
vi1,...,im−2 −

n

2m−2

)2

=
2m−2

n

∑
i1,...,im−2

v2
i1,...,im−2

− n,

setting, by de�nition, ψ2
0 = ψ2

−1 = 0.

4. Compute distances (statistics themselves):

∇ψ2
m = ψ2

m − ψ2
m−1

∇2ψ2
m = ψ2

m − 2ψ2
m−1 + ψ2

m−2

5. Compute P-values using the incomplete gamma function:

P-value1 = igamc

(
2m−2,

∇ψ2

2

)
P-value2 = igamc

(
2m−3,

∇2ψ2

2

)
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Interpretation of results

A small P-value occurs when values of the two statistic ∇ψ2
m and ∇2ψ2

m are large:
that implies that there is large non-uniformity between pattern: some m-bit patterns
occur too many (or too few) times, compared to other m-bit patterns and to what is
expected from a random sequence.

An example

Let ε = 0011011101 be the testing sequence (so that n = 10) and let m = 3.

1. m = 3, then we append the �rst m−1 = 2 bits of the sequence to its end, obtaining
ε′ = 001101110100.

2. Possible 3-bit overlapping templates (2m = 8) are 000, 001, 010, 011, 100, 101, 110
and 111 so that respective frequencies are v000 = 0, v001 = 1, v010 = 1, v011 =
2, v100 = 1, v101 = 2, v110 = 2, v111 = 0; For the 4 possible 2-bit patterns we have
v00 = 1, v01 = 3, v10 = 3, v11 = 3 and (m− 2)-bit frequencies are v0 = 4 and v1 = 6.

3. ψ2
3 = 23

10
(0 + 1 + 1 + 4 + 1 + 4 + 4 + 1)− 10 = 12.8− 10 = 2.8

ψ2
2 = 22

10
(1 + 9 + 9 + 9)− 10 = 11.2− 10 = 1.2

ψ2
1 = 2

10
(16 + 36)− 10 = 10.4− 10 = 0.4.

4. ∇ψ2
3 = 2.8− 1.2 = 1.6 ∇2ψ2

m = 2.8− 2 · 1.2 + 0.4 = 0.8

5. P-value1 = igamc
(
2, 1.6

2

)
= 0.9057 and P-value2 = igamc

(
1, 0.8

2

)
= 0.8805. Both

P-values are greater than α = 0.01, then the sequence is accepted as random.

Mathematical background

The serial test uses two di�erent types of statistic, the one of ψ2
m, ψ

2
m−1 and ψ2

m−2

and the statistics of distances ∇ψ2
m and ∇2ψ2

m. We will show, here, the reason why ∇ψ2
m

and ∇2ψ2
m are used instead of ψ2

ν with ν ∈ {m,m− 1,m− 2} and we'll prove that used
statistics have a χ2 distribution, then the incomplete gamma function can be used to
�nd the P-value.

First we used statistics of the form

ψ2
m =

2m

n

∑
i

(
vi −

n

2m

)
where, for briefness, we used i to indicate i1, . . . , im. Even though ψ2

m has the form of a
χ2 statistic with 2m − 1 degrees of freedom, in fact it hasn't a χ2 distribution (not even
asymptotically) since, as Good proved in [26], one can see that its expected value is

E[ψ2
m] = 2m − 1
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while the real number of degrees of freedom of ψ2
m is strictly minor than 2m − 1, and

the expected value of a χ2 distribution equals the number of degrees of freedom. This
depends on the fact that, under randomness hypothesis, we have some restraints on
frequencies. For example, for 2-bit sequences, we have the following two linear restraints
on ψ2

2:
vi1,0 + vi1,1 = v0,i1 + v1,1i for i1 = 0, 1

i.e. the number of sequence of the form i, 0 or i, 1 has to be the same of the number of
0, i or 1, i and, similarly, for sequences of each �xed length m. This implies that, in fact,
the number of degrees of freedom is not 22− 1 as expected, but only 2, for the example.
In general the expected number of degrees of freedom was 2m − 1 but, in fact, they are
2m−1, so that the statistic couldn't have a χ2 distribution (see [5] for detailed proof).

To �nd a statistic that e�ectively has a χ2 distribution, the two following statistics
are formed:

∇ψ2
m = ψ2

m − ψ2
m−1

and
∇2ψ2

m = ψ2
m − 2ψ2

m−1 + ψ2
m−2.

Good in [26] decomposes ψ2
m into a sum of normal distributed functions so that ∇ψ2

m

and ∇2ψ2
m satisfy the de�nition of the χ2 distribution. The decomposition is made by

mean of

De�nition 3.2.12 (m-dimensional discrete Fourier transform).
The m-dimensional mod 2 discrete Fourier transform of a function v = vi is de�ned
by

v∗s =
∑
i

viω
<i,s>,

where ω = exp(2πi/2), i = i1, . . . , im as above and < i, s >= i1s1 + · · · + imsm is the
scalar product of vectors i and s.

Observing that the discrete Fourier transformation is linear, one can observe that the
transform of

(
vi − n

2m

)
is v∗s minus the transform of the constant n

2m
. The transform of

the latter is zero, unless s = (0, . . . , 0) when it equals to n; we can also observe that
v∗0 =

∑
i vi = n. By previous remarks, using the Rayleigh-Parseval formula (

∑
i v

2
i =

2−m
∑

s v
∗
sv
∗
−s) in its discrete version, we �nd that∑

i

(
vi −

n

2m

)
=

1

2m

∑
s 6=0

|v∗s |2.

If we classify the 2m vectors s into m + 1 classes depending on how many non-zero
values they have, we can use the previous formula to rewrite ψ2

m as

nψ2
m =

∑
d=m

|v∗s |2 + 2
∑

d=m−1

|v∗s |2 + · · ·+m
∑
d=1

|v∗s |2 (3.30)
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where d = j indicates the number of non-zero values of the vector. Bartlett in [5] has
proved that the joint distribution of vi is a asymptotically multivariate normal distribu-
tion and, covariances, Good proved that sums in (3.30) have approximately independent
χ2 distribution with 2d−2 degrees of freedom, respectively. Following from that ∇ψ2

m and
∇2ψ2

m have χ2 distributions with, respectively, 2m−1 and 2m−2 degrees of freedom.

3.2.12 Approximate entropy test

As Maurer's universal statistical test, the approximate entropy test analyzes the
entropy of the sequence ε = ε1 . . . εn by the frequencies of m-bit patterns with the ones
of (m+ 1)-bit patterns, in analogy with the serial test. Moreover, as in the overlapping
template matching test, patterns can overlap.

Algorithmic description

1. Starting from ε = ε1 . . . εn, form an augmented sequence ε′ = ε1 . . . εnε1 . . . , εm−1

by appending the �rst m − 1 bits to the end of the sequence: this will create n
overlapping sub-sequences of length m to analyze.

2. For each m-bit pattern i count the number of occurrences through the entire se-
quence. The count is made in an "overlapping way", i.e. if at j-th step bits from
εj to εj+m−1 are examined, the (j + 1)-th step will analyze bits from εj+1 to εj+m.
Let #i be te number of occurrences of the pattern i through the sequence.

3. Compute Cm
i = #i

n
the frequency of pattern i inside the sequence, for each possible

i.

4. Compute

ϕm =
∑
i

πilogπi, where πi = Cm
log2i

;

here i indicates the corresponding decimal value of the string i.

5. Repeat steps from 1 to 4 replacing m by m+ 1, obtaining ϕm+1.

6. Compute the approximate entropy

ApEn(m) = ϕm − ϕm+1.

7. Compute the statistic

χ2(obs) = 2n[log2− ApEn(m)].

8. Compute P-value through the incomplete gamma function:

P-value = igamc

(
2m−1,

χ2(obs)

2

)
.
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Interpretation of results

A small P-value will occur when the value of the statistic ApEn(m) is too small or
too large: the �rst case would indicate that the sequence shows strong regularity between
pattern (i.e. there is no change of entropy between m-bit strings and m+ 1 strings) and
the second one would imply �uctuation or irregularity on patterns of the string, and in
particular between patterns of subsequent length.

An example

Let's take the sequence ε = 0100110101, so that n = 10, and m = 3.

1. ε′ = 010011010101, appending the �rst m− 1 = 2 bit to the end of the sequence.

2. We count the number of occurrences of the 2m = 23 = 8 possible templates, �nding
that #000 = 0,#001 = 1,#010 = 3,#011 = 1,#100 = 1,#101 = 3,#110 =
1,#111 = 0.

3. C3
i = #i

10
so that C3

000 = 0, C3
001 = 0.1, C3

010 = 0.3, C3
011 = 0.1, C3

100 = 0.1, C3
101 =

0.3, C3
110 = 0.1, C3

111 = 0.

4. ϕ3 = 0(log0) + 0.1(log0.1) + 0.3(log0.3) + 0.1(log0.1) + 0.1(log0.1) + 0.3(log0.3) +
0.1(log0.1) + 0(log0) = −1.64341772.

5. Let's repeat steps from 1 to 4 by replacing m with m+ 1:

i) m = 4 so that we append the �rstm−1 = 3 bits, obtaining ε′ = 0100110101010.

ii) Computed values are #0011 = 1,#0100 = 1,#0101 = 2,#0110 = 1,#1001 =
1,#1010 = 3,#1101 = 1 and all the other values are 0.

iii) C4
0011 = C40100 = C4

0110 = C4
1001 = C4

1101 = 0.1, C4
0101 = 0.2, C4

1010 = 0.3, and
all other values are zero.

iv) ϕ4 = 0 + 0 + 0 + 0.1(log0.01) + 0.1(log0.01) + 0.2(log0.02) + 0.1(log0.01) + 0 +
0 + 0.1(log0.01) + 0.3(log0.03) + 0 + 0 + 0.1(log0.01) + 0 + 0) = −1.83437197.

6. ApEn(3) = ϕ3 − ϕ4 = −1.643418− (−1.834372) = 0.190954.

7. χ2 = 2 · 10 · (0.693147− 0.190954) = 0.502193.

8. P-value= igamc
(
22, 0.502193

2

)
= 0.261961 > α, and the sequence is accepted as

random.
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Mathematical background

The theory behind this test is mostly based on the concept of approximate entropy
ApEn, introduced by Pincus in [55]. The purpose of approximate entropy is to charac-
terize the idea of randomness and study what happens when the sequence grows, one bit
after another. To better understand why the approximate entropy can be used to detect
regularity, or irregularity, we shall give the following

De�nition 3.2.13 (Distance between two blocks).
Let n,m ∈ N \ {0} with m ≤ n, r ∈ R and s = s1, . . . , sn be a sequence of real numbers.
Given two blocks of the same length x(i) = si, si+1, . . . , si+m−1 and x(j) of s, the distance
between blocks x(i) and x(j) is de�ned as

d(x(i), x(j)) = maxk=1,...,m(|s(i+ k − 1)− s(j + k − 1)|).

The previous notion allows to de�ne a measure of how blocks of consecutive length
(m and m + 1) di�er or remain the same through the entire sequence and to measure
the frequency of how often this occurs, by the use of

Cm
i (r) =

#{j ≤ N −m+ 1 s.t. d(x(i), x(j)) ≤ r}
N −m+ 1

We can now give the

De�nition 3.2.14 (Approximate entropy).

ϕm(r) =
1

n−m+ 1

N−m+1∑
i=1

logCm
i (r)

and the approximate entropy is de�ned as

ApEn(m, r,N)(s) = ϕm(r)− ϕm+1(r)

with ApEn(0) = −ϕ1.

For completeness we gave de�nitions for strings with values in R but, in our case, the
sequence takes values in {0, 1}, so that the distance will only assume values 0 or 1, and
could be de�ned as

d(x(i).x(j)) =

{
0 if x(i) = x(j),

1 if x(i) 6= x(j),

and r could only be equal to 1, so that we won't be interested in it anymore. As written
by Pincus and Huang in [54] "analytic proofs of asymptotic normality and expecially
explicit variance estimates for ApEn appear to be extremely di�cult", so the key is to
de�ne a new type of approximate entropy, which will have the same asymptotic behavior
of the approximate entropy but it is simpler to estimate. Indeed Pincus characterizes
randomness for �nite sequences as
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De�nition 3.2.15 ((m,n)-random sequence).
A binary sequence ε of length n is said to be (m,n)-random if

ApEn(m,n)(ε) = maxsApEn(m,n)(s ∈ S),

where S is the set of all possible 2n binary sequences of length n.

Let ε̃ = ε1, . . . , εnε1 . . . , εm−1 be the augmented (or in a certain sense circular) version
of the original string, as we do at the �rst step of the algorithm, and let the "modi�ed"
version of the empirical distribution be

ϕ̃m =
∑

i1,...,im

νi1,...,imlogνi1,...,im ,

where νi1,...,im is the relative frequency of the pattern i1, . . . , im in ε̃. If ωi1,...,im = nνi1,...,im
is the frequency of the pattern, by this de�nition we have that ωi1,...,im =

∑
k ωi1,...,im,k

so that
∑

i1,...,im
νi1,...,im = n.

We de�ne the modi�ed approximate entropy as

ÃpEn(m) = ϕ̃m − ˜ϕm+1.

If we use Jensen's inequality (ψ (
∑
aixi) ≤

∑
aiψ(xi)) with the function ψ which ex-

tends the string, we obtain a �rst upper bound for the modi�ed approximate entropy:

ÃpEn(m) ≤ logs, where s is the cardinality of the set of value, so that in our case s = 2,

so that the largest possible value of ˜ApEn(m) is log2.

On the other hand, we also have that ApEn and ÃpEn can't di�er much, for large values
of n: if Yi(m) = i1, . . . , im and ν ′i1,...,im = Cm

i , we have

ϕm =
∑

i1,...,im

ν ′i1,...,imlogν
′
i1,...,im

,

then, if ωi1,...,im = (n−m+ 1)ν ′i1,...,im we have that∑
i1,...,im

= n−m+ 1

and ωi1,...,im − ω′i1,...,im ≤ m− 1.

We �nally obtain that

|νi1,...,im − ν ′i1,...,im| ≤
m− 1

n−m+ 1
, (3.31)
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which implies that, if m is �xed, ApEn(m) and ÃpEn(m) are close together for large
values of n.

The last thing we need to know to perform the test is the distribution of the statistic
n[log2 − ApEn(m)] since, if we get that, we have the theoretical distribution to use
to compute the P-value. Rukhin, in [63], proved that, whether we use the augmented
sequence and the modi�ed approximate entropy or the ones de�ned by Pincus, we always
have that the statistic has a χ2 distribution with (s − 1)sm degrees of freedom. Indeed
the following theorem holds:

Theorem 3.2.10 (Rukhin).
For �xed m, as n→∞, one has the following convergence in distribution:

2n[logs− ÃpEn(m)]→ χ2(sm+1 − sm). (3.32)

Also

n[ApEn(m)− ÃpEn(m)] = O

(
1

n

)
, (3.33)

so that

2n[logs− ApEn(m)]→ χ2(sm+1 − sm).

Proof.
Let Zi1,...,im be the di�erence between empirical and theoretical probabilities:

Zi1,...,im =
√
n

(
νi1,...,im −

1

sm

)
;

The vector formed by Zi1,...,im has, by the central limit theorem, asymptotic multivariate
distribution which mean is zero and variance of the form

Σm =
1

Sm
Im −

1

22m
eme

T
m,

where Im stands for the sm × sm identity matrix and eTm is the vector (1, . . . , 1) which
length is sm.
Chaitin, in [13], showed that

ϕ̃m = −
∑

i1,...,im

[
1

sm
+
Zi1,...,im√

n

]
·
[
−mlogs+

smZi1,...,im
2n

+O

(
1

n3/2

)]
∼ mlogs+

sm

2n

∑
i1,...,im

Z2
i1,...,im

.
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Using analogous notations for pattern of length m+ 1 one can easily see that

Zi1,...,im,k =
s∑

k=1

Zi1,...,im,k

and

ϕ̃m+1

∑
(m+ 1)logs+

sm+1

2n

∑
i1,...,im,im+1

Z2
i1,...,im,im+1

.

Using the approximations for ϕ̃m and ϕ̃m+1 we have

ϕ̃m − ϕ̃m+1 ∼ logs− sm

2n

 ∑
i1,...,im

(∑
k

Zi1,...,im,l

)2

− s
∑

i1,...,im,im+1

Z2
i1,...,im,im+1


= logs− sm

2n
ZTQZ

where Q is an sm+1 × sm+1 block-diagonal matrix, formed by sm blocks Q0 which have
the form

Q0 = sI1 − e1e
T
1 ,

and Z is a normal vector of length sm+1.
By spectral decomposition, the quadratic form ZTQZ has the same distribution of∑
li1,...,im,im+1W

2
i1,...,im,im+1

whereWi1,...,im,im+1 are independent standard normal variables

and li1,...,im,im+1 are the eigenvalues of the matrix Σ1/2QΣ1/2.
By direct computing one can see that

Σ
1/2
m+1 =

1

s(m+1)/2
Im+1 −

1

s3(m+1)/2
em+1e

T
m+1,

and Σ
1/2
m+1QΣ

1/2
m+1 = 1

sm+1Q.

Directly computing the eigenvalues of Σ
1/2
m+1QΣ

1/2
m+1 one can �nd that needed eigenvalues

are equal to s with multiplicity (s− 1)sm and 0 with multiplicity sm, so that

ϕ̃m − ϕ̃m+1 ∼ logs− 1

2n
χ2((s− 1)sm)

and

n[logs− ÃpEn(m)] ∼ 1

2
χ2(sm+1 − sm).

Now (3.31) shows that if Z ′i1,...,im =
√
n[ν ′i1,...,im − s

−m], then |Z ′i1,...,im − Zi1,...,im| ≤ (m−
1)
√
n/(n−m+ 1) and

|ϕ̃m − ϕm| ∼
sm

2n

∣∣∣∣∣ ∑
i1,...,im

Z2
i1,...,im

−
∑

i1,...,im

Z ′2i1,...,im

∣∣∣∣∣ ≤ s2m(m− 1)2

2(n−m+ 1)2
.
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(3.33) comes directly from that last inequality so that the last convergence in distribution
of the statement follows, using (3.32) and (3.33) together.

This theorem, applied to our case where s = 2, tells us that the statistic χ2, computed
at step 7 of the algorithm, e�ectively has a χ2 distribution with 2m degrees of freedom,
so that the P-value can be computed using the incomplete gamma function igamc as

P-value = igamc

(
2m

2
,
χ2

2

)
.

3.2.13 Cumulative sums (Cusum) test

In this test, the sequence is considered as a random walk by transforming the binary
string into a string of −1 and +1. As a random walk, we analyze excursions from zero of
the walk by computing partial sums and we check if these are too far from zero. Indeed
the random walk created by a truly random sequence tends to stay near zero, since the
number of zeros and ones has to be approximately the same and the alternation between
them has to be relatively fast. Note that a sequence won't pass the test though its
excursion in too low.

Algorithmic description

1. The sequence is transformed into a string of −1 and +1.

2. Partial sums are computed: this could be done both forward and backward, pro-
viding two di�erent tests (and P-values):

Forward Backward
S1 = X1 S1 = Xn

S2 = X1 +X2 S2 = Xn +Xn−1

S3 = X1 +X2 +X3 S3 = Xn +Xn−1 +Xn−2
...

...
Sk = X1 +X2 +X3 + . . .+Xk S3 = Xn +Xn−1 +Xn−2 + . . .+Xn−k+1
...

...
Sn = X1 + . . .+Xk + . . .+Xn Sn = Xn + . . .+Xk + . . .+X1

Note that, obviously, Sk = Sk−1 +Xk for the forward sum and Sk = Sk−1 +Xn−k+1

for the backward one.

3. Compute the maximal excursion from zero:

z = max
k∈{1,...,n}

|Sk|.
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4. Compute P-value as

P-value = 1−
(nz−1)/4∑

k=(−nz +1)/4

[
Φ

(
(4k + 1)z√

n

)
− Φ

(
(4k − 1)z√

n

)]
+

(nz−1)/4∑
k=(−nz −3)/4

[
Φ

(
(4k + 3)z√

n

)
− Φ

(
(4k + 1)z√

n

)]

where Φ is the cumulative probability distribution function of the Standard Normal
distribution, as de�ned in (2.1).

Interpretation of results

A small P-value (i.e. a rejection) can occur if 0 and 1 are intermixed too frequently,
and this will correspond to small values of the largest excursion z. A large z in the
forward testing would indicate that there are too many ones or too many zeros in the
�rst part of the sequence and, on the other hand, that there are too many ones or zeros
in the �nal part, if the computation is made backwards.

An Example

Let ε = 1011010111 be the test sequence. The test proceeds as follows:

1. X = 1,−1, 1, 1,−1, 1,−1, 1, 1, 1

2. If we compute partial sums in forward mode the computation is:

S1 = 1
S2 = 1 + (−1) = 0
S3 = 1 + (−1) + 1 = 1
S4 = 1 + (−1) + 1 + 1 = 2
S5 = 1 + (−1) + 1 + 1 + (−1) = 1
S6 = 1 + (−1) + 1 + 1 + (−1) + 1 = 2
S7 = 1 + (−1) + 1 + 1 + (−1) + 1 + (−1) = 1
S8 = 1 + (−1) + 1 + 1 + (−1) + 1 + (−1) + 1 = 2
S9 = 1 + (−1) + 1 + 1 + (−1) + 1 + (−1) + 1 + 1 = 3
S10 = 1 + (−1) + 1 + 1 + (−1) + 1 + (−1) + 1 + 1 + 1 = 4

3. z = 4 since 4 it's the largest value reached by partial sums.

4. P-value= 0.4116588 < α and the sequence is accepted as random.
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Mathematical background

P-value for this test is computed in a way di�erent to other tests, since we can't reduce
the distribution of partial sums of a random walk to a Standard Normal Distribution or
to a χ2 distribution: we have to �nd the distribution of partial sums Sk = X1 + . . .+Xk.
Through combinatorial argument one can prove the following

Proposition 3.2.11.
Let Sn with n ∈ N be the partial sum of the output of a Bernoulli process. The following
equalities hold:

P (S2n = 2k) =

(
n

k

)
2−2n for k = −n,−n+ 1, . . . , n;

P (S2n+1 = 2k + 1) =

(
2n+ 1

n− k

)
2−2n−1 for k = −n− 1,−n, . . . , n.

These two equalities give

P (Sn = k) =

{(
n

(n−k)/2

)
2−n if k ≡ n mod 2

0 otherwise
(3.34)

for k = −n,−n+ 1, . . . , n.
From those

E[Sn] = 0, E[S2
n] = n, E[etSn ] =

(
et + e−t

2

)2

. (3.35)

Now we introduce a notation for the equivalent theoretical maximum and to consider
the maximum positive (left) and negative (right) excursion of the random walk:

M = max
k∈{1,...,n}

|Sk|, M+ = max
k∈{1,...,n}

Sk, M− = − min
k∈{1,...,n}

Sk.

Using these notations we can enunciate and prove the following theorem, �rst pro-
posed by Renyi in [59]:

Theorem 3.2.12 (Renyi).

pn,k = P (M+ = k)

=

(
n

[(n− k)/2]

)
2−n (3.36)

for k = 0, 1, . . . , n.
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Proof.
We prove the equality by induction. Let

M̄+ = max
1≤k≤n+1

k∑
j=2

Xj

then, for k ≥ 1,

pn+1,k = P (X1 = 1, M̄+ = k − 1) + P (x1 = −1, M̄+ = k + 1)

=
1

2
(pn,k−1 + pn,k+1)

For k = 0, in a similar way

pn+1,0 = P (X1 = −1, M̄+ ≤ 1) =
1

2
(pn,1 + pn,0).

We know that p1,0 = p1,1 = 1
2
so that we obtain (3.36) by induction.

The theorem which follows is due to Billingsley: we omit the proof and refer to [6].

Theorem 3.2.13 (Billingsley).
For any integers a ≤ 0 ≤ b, a ≤ ν ≤ b we have

pn(a, b, ν) = P (a < −M− ≤M+ < b, Sn = ν)

=
∞∑

k=−∞

qn(ν + 2k(b− a))−
∞∑

k=−∞

qn(2b− ν + 2k(b− a)) (3.37)

where, for j = −n,−n+ 1, . . . , n,

qn(j) = P (Sn = j) =

{(
n

(n−j)/2

)
2−n if j ≡ n mod 2,

0 otherwise.

A direct consequence of this theorem is the following

Theorem 3.2.14.
For any integers a ≤ 0 ≤ b and a ≤ u ≤ ν ≤ b we have

P (a < −z− ≤M+ < b, u < Sn < ν)

=
∞∑

k=−∞

P (u+ 2k(b− a) < Sn < ν + 2k(b− a))

−
∞∑

k=−∞

P (2b− ν + 2k(b− a) < Sn < 2b− u+ 2k(b− a)), (3.38)
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P (a < −M− ≤M+ < b)

=
∞∑

k=−∞

P (a+ 2k(b− a) < Sn < b+ 2k(b− a))

−
∞∑

k=−∞

P (b− ν + 2k(b− a) < Sn < b− a+ 2k(b− a)) (3.39)

and

P (M < b) =
∞∑

k=−∞

P ((4k − 1)b < Sn < (4k + 1)b)

−
∞∑

k=−∞

P ((4k + 1)b < Sn < (4k + 3)b). (3.40)

Proof.
(3.38) follows directly from (3.37); (3.39) is the special case of (3.38) with u = a, ν = b
and (3.14) follows from (3.39) taking a = −b.

Formula (3.40) is what we need, since it is exactly the complementary of the P-value
so, by complementing

P-value = P ( max
1≤k≤1

|Sk| ≥ z)

= 1−
∞∑

k=−∞

P ((4k − 1)z < Sn < (4k + 1)z)

+
∞∑

k=−∞

P ((4k + 1)z < Sn < (4k + 3)z).

As in (3.35) the distribution of Sn has mean µ = 0 and variance σ2 = n, so that
we can use the Standard Normal cumulative distribution function Φ with z = z/

√
n

to compute probabilities of the summations. Obviously, in practice summations are
truncated, however simulations showed that bound proposed in the algorithm provide a
good approximation.

Remark 3.2.11.
Note that indices k of summations at 4th step of the algorithm would be non-integer,
however the theory at the base of the test shows that they must be integers: that's why
indices have to be approximated to obtain truthful results.
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3.2.14 Random excursion test

As the previous one, this test considers the binary string as a random walk, inspecting
cycles of the walk to check if their behavior is as expected from a true random walk.
Cycles of a random walk are de�ned as

De�nition 3.2.16 (Cycle of a random walk).
A cycle of a random walk is a sequence of steps (each of length 1) which start from and
ends at the origin.

The focus is the number of visits of the totality of the cycles to a particular state k
and the test checks if this is as expected under hypothesis of randomness. Visits which
are examined are the ones to states −4,−3,−2,−1, 1, 2, 3, 4 producing 8 P-values (one
for each state checked).

Algorithmic description

1. The sequence is transformed into a string of −1 and +1.

2. Partial sums Si are computed to obtain the set S = {Si}i=1,...,n.

S1 = X1

S2 = X1 +X2

S3 = X1 +X2 +X3
...
Sk = X1 +X2 +X3 + . . .+Xk
...
Sn = X1 +X2 +X3 + . . .+Xk + . . .+Xn

3. Create a new sequence S ′ from S by attaching a zero at the beginning and at the
end, forming S ′ = 0, S1, S2, . . . , Sn, 0.

4. Let J = #{zero crossing in S ′ with the exception of the �rst 0}. Observe that
J = #zero crossings = #Cycles.
If J < 500 do not perform the test, since it doesn't satisfy the empirical rule for
χ2 computations.

5. For each cycle and for each non-zero state (i.e. for −4,−3,−2,−1, 1, 2, 3, 4) count
frequencies of state within each circle.

6. For each state x, and for k = 0, 1, . . . , 5, compute

vk(x) = total number of cycles where state x occurs exactly k times,

with the convention that v5(x) also stores frequencies which are ≥ 5.
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7. Compute the following statistic of each of the eight states:

χ2(obs)(x) =
5∑

k=0

(vk(x)− Jπk(x))2

Jπk(x)
,

where πk(x) is the probability that state x occurs k times (i.e. occurs k time inside
a cycle) under hypothesis of randomness H0. (A table with probabilities follows
the algorithm.)

8. Compute the P-value for each state x through the incomplete gamma function, so
that 8 P-values are computed:

P-value(x) = igamc

(
5

2
,
χ2(obs)

2

)
.

Probabilities to compare by means of the χ2 distributions are (for completeness it
contains value for 1 ≤ x ≤ 7. Our implementation, as of NIST's, embedded values from
−4 to 4):

π0(x) π1(x) π2(x) π3(x) π4(x) π5(x)
x = 1 0.5000 0.2500 0.1250 0.0625 0.0312 0.0312
x = 2 0.7500 0.0625 0.0469 0.0352 0.0264 0.0791
x = 3 0.8333 0.0278 0.0231 0.0193 0.0161 0.0804
x = 4 0.8750 0.0156 0.0137 0.0120 0.0105 0.0733
x = 5 0.9000 0.0100 0.0090 0.0081 0.0073 0.0656
x = 6 0.9167 0.0069 0.0064 0.0058 0.0053 0.0588
x = 7 0.9286 0.0051 0.0047 0.0044 0.0041 0.0531

We only reported values for positive x since, due to randomness hypothesis, probabilities
are symmetric with respect to 0, i.e. πk(x) = πk(−x).

Interpretation of results

A small P-value of a chosen state x, corresponds to large values of the statistic χ2

and denotes large deviations from randomness of cycles of the random walk, i.e. the
analyzed state is visited too often or too rarely by the random walk.

An Example

Let ε = 0110110101 so that n = 10.

1. X = −1, 1, 1,−1, 1, 1,−1, 1,−1, 1.

2. Partial sums are:
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S1 = −1 S6 = 2
S2 = 0 S7 = 1
S3 = 1 S8 = 2
S4 = 0 S9 = 1
S5 = 1 S10 = 2

and S = {−1, 0, 1, 0, 1, 2, 1, 2, 1, 2}.

3. The extended random walk is S ′ = 0,−1, 0, 1, 0, 1, 2, 1, 2, 1, 2, 0.

Figure 3.7: Random walk from the example. Credits to [64].

4. After the starting zero, we have J = 3 returns to the origin, since we have zeros in
positions 3, 5 and 12 of the extended walk. We therefore have 3 cycles, consisting
of {0,−1, 0}, {0, 1, 0} and {0, 1, 2, 1, 2, 1, 2, 0}.

5. Counting the frequency of each state we see that the �rst cycle has a single occur-
rence of −1, the second cycle has one occurrence of 1 and the last one has three
occurrences of both 1 and 2. The following table provides a more clear visualiza-
tion:

State Cycle 1 Cycle 2 Cycle 3
x (0,−1,0) (0,1,0) (0,1,2,1,2,1,2,0)
-4 0 0 0
-3 0 0 0
-2 0 0 0
-1 1 0 0
1 0 1 3
2 0 0 3
3 0 0 0
4 0 0 0

6. Computing vk(x) for k = 0, 1, . . . , 5 we have that
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• v0(−1) = 2, since the state −1 occurs exactly 0 time ins two cycles;
v1(−1) = 1, since the state −1 occurs exactly one time in 1 cycle;
v2(−1) = v3(−1) = v4(−1) = v5(−1) = 0, since the state −1 occurs exactly
2, 3, 4,≥ 5 times, respectively, in 0 cycles.

• v0(1) = 1 (the 1 state occurs exactly 0 times in 1 cycle);
v1(1) = 1 (the 1 state occurs only once in 1 cycle);
v3(1) = 1 (the 1 state occurs exactly three times in 1 cycle);
v2(1) = v4(1) = v5(1) = 0 (the 1 state occurs exactly 2, 4,≥ 5 times in 0
cycles).

And so on, as in the following table:

State Number of cycles
x 0 1 2 3 4 5
-4 3 0 0 0 0 0
-3 3 0 0 0 0 0
-2 3 0 0 0 0 0
-1 2 1 0 0 0 0
1 1 1 0 1 0 0
2 2 0 0 1 0 0
3 3 0 0 0 0 0
4 3 0 0 0 0 0

7. For the state x = 1 the statistic is

χ2(1) =
(1− 3(0.5))2

3(0.5)
+

(1− 3(0.25))2

3(0.25)
+

(0− 3(0.125))2

3(0.125)
+

(1− 3(0.0625))2

3(0.0625)

+
(0− 3(0.0312))2

3(0.0312)
+

(0− 3(0.0312))2

3(0.0312)
= 4.333033.

8. P-value(1)= igamc
(

5
2
, 4.333033

2

)
= 0.502529 > α and the sequence is accepted as

random, at least for what concerns the state x = 1: analogous computation has to
be done for other values of x to �nd other P-values.

Mathematical background

In order to evaluate the χ2 statistic at seventh step of the algorithm, we need to
know the distribution of the number of visit for a random walk and, in particular, we
need theoretical probabilities πj(x) for each state x and for each number of occurrences
j. Let Sk = X1 + . . . ,+Xk be the k-th partial sum of the random walk where Xi

are independent random variables which take values +1 and −1 with probability p and
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q = 1 − p respectively. Setting S0 = 0 by de�nition, let ρ1 < ρ2 < · · · < ρJ be the
times when the random walk returns to the origin, i.e ρ1 = min{k, k > 0 s.t. Sk = 0},
ρ2 = min{k, k > ρ1j s.t. Sk = 0} . . . .

The respective sequence of excursions will be

(S0, . . . , Sρ1), (Sρ1 , . . . , Sρ2), . . . .

Let J denote the total number of such excursions in the string (corresponding to the
number of zeros among partial sums Sk), which can be considered as a random variable
itself, the limiting distribution of J is widely studied and known (see for example [60])
to be

lim
n→∞

P

(
J√
n
< z

)
=

√
2

π

∫ z

0

e−u
2/2du for z > 0

If J is too small we'd have that the value of the integral is small and then the P-value
would be small, since

P-value = P (J < J(obs)) ≈
√

2

π

∫ J

0

e−u
2/2du,

that's why the randomness hypothesis is straight rejected if J < max(0.005
√
n, 500) at

fourth step of the algorithm and the test doesn't go on.

If the previous, preliminary, test is passed, let ξ(x) be the number of visit to the
state x (with x 6= 0, since this case is already evaluated), during a �xed excursion. The
distribution of ξ(x) is given by the following

Theorem 3.2.15.
For p 6= 1/2

P (ξ(x) = 0) = 1− |p− q|∣∣∣1− ( qp)x∣∣∣ (3.41)

and for k = 1, 2, 3, . . .

P (ξ(x) = k) =


|p−q|2

|1−(q/p)x|2

[
1− |p−q|

1−(q/p)x

]k−1

p > q, x > 0 or p < q, x < 0,

|p−q|2
|1−(p/q)x||1−(p/q)x|

[
1− |p−q|

1−(p/q)x

]k−1

p > q, x < 0 or p < q, x > 0.

(3.42)
For p = 1/2

P (ξ(x) = 0) = 1− 1

2|x|
(3.43)
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and for k ≥ 1

P (ξ(x) = k))
1

4x2

(
1− 1

2|x|

)k−1

. (3.44)

Proof.
First of all we shall observe that if the excursion is �nite, then ξ(x) = k, with k ≥ 1,
if and only if the random walk Sk reaches the stage x for the �rst time, it �uctuates
(without touching the stage 0) visiting the chosen state k − 1 times and then it returns
to the origin. Observe that if we consider the process Sk − x, that doesn't visit level
−x in its �rst k − 1 excursions. Taking into account this fact, we can observe that, by
independence of these excursions

p(ξ(x) = k, ρ <∞) = P (ξ(x) > 0)[P (ξ(−x) = 0, ρ <∞)]k−1P (ξ(−x) > 0). (3.45)

Let's suppose, for the moment, that x > 0, then

P (ξ(x) > 0) = P (S1 = 1)P ("x-1 is reached before -1").

The second factor of the right hand side it is equivalent to the probability of winning
in the classical gambler's ruin problem with initial capital 1 and total capital x (see for
example [22]), so that

P (ξ(x) > 0) = p
q/p− 1

(p/q)x − 1
=

q − p
(q/p)x − 1

.

Since we are considering a 1-dimensional random walk, to obtain probabilities of sym-
metrical (with respect to the origin) stage we can simply swap roles of p and q, obtaining

P (ξ(−x) > 0) =
p− q

(p/q)x − 1
,

and then

P (ξ(x) > 0) =

∣∣∣∣ p− q
(q/p)x − 1

∣∣∣∣ ∀ x,

so that (3.41) is proved since, banally, P (ξ(x) = 0) = 1 − P (ξ(x) > 0). To distinguish
cases let's de�ne I such that

I =

{
0 if p > q, x < 0 or p < q, x > 0,

1 otherwise,

then

P (ξ(x) = 0, ρ =∞) = (1− I)P (ρ =∞) = (1− I)|p− q|.
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By the previous and (3.41), taking into account that P (ξ(x) = 0, ρ < ∞) = P (ξ(x) =
0)− P (ξ(x) = 0, ρ =∞), we obtain

P (ξ(x) = 0, ρ <∞) = 1−
∣∣∣∣ p− q
(q/p)x − 1

∣∣∣∣− (1− I)|p− q|, (3.46)

so that, by substituting it in (3.45), we obtain

P (ξ(x) = k, ρ <∞) = (pq)x
(

p− q
px − qx

)2 [
1−

∣∣∣∣ p− q
(p/q)x − 1

∣∣∣∣− I|p− q|]k−1

.

Now, if the excursion is in�nite, the case ξ(x) = k occurs if and only if the random
walk Sk visits the stage x for the �rst time, returns to it k − 1 times (without visiting
the origin) and than it continues without visiting both x and 0. Since we're considering
an in�nite excursion (so that in�nite time), this case is only possible if x > 0, p > q or
x < 0, p < q (i.e. the excursion continues above x, if x > 0, and below x, otherwise).
This observation permits us to assert that P (ξ(x) = k, ρ =∞) = 0 if I = 0.
Now, taking −x in place of x in (3.46) we obtain

P (ξ(x) = k, ρ =∞) = IP (ξ(x) > 0)(P (ξ(−x) = 0, ρ <∞))k−1P (ρ =∞)

=
I(p− q)2

1− (q/p)x

(
1−

∣∣∣∣ p− q
(p/q)x − 1

∣∣∣∣− |p− q|)k−1

.

Formula (3.42) is obtained by computing P (ξ(x) = k, ρ = ∞) + PI1(ξ(x), ρ < ∞) +
PI2(ξ(x), ρ <∞), where I1 and I2 are used here to distinguish between the two possible
cases.
Finally, by taking the limit p→∞ in (3.41) and (3.42), one obtains formulas (3.43) and
(3.44) respectively.

The case we are interested in is, obviously, the one with p = q = 1
2
: the theorem tells

us that ξ(x) = 0 with probability 1 − 1
2|x| and that, otherwise (with probability 1

2|x|), it

is a geometric random variable with parameter 1
2|x| . From this we can easily evaluate its

mean and variance, �nding that

E[ξ(x)] = 1, V ar(ξ(x)) = 4|x| − 2. (3.47)

From considerations above, one can also �nd that

P (ξ(x) ≤ a+ 1) = 2xP (ξ(x) = a+ 1) =
1

|x|

(
1− 1

2|x|

)a
for a = 0, 1, 2, . . . (3.48)

For each x = −4, . . . ,−1, 1, . . . , 4, formulas (3.44) and (3.48) are used to evaluate prob-
abilities πj for j = 0, 1, . . . , 5, which are necessary to compare to empirical frequencies
vj through the χ2 distribution and, after that, to compute P-value using the incomplete
gamma function igamc.
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3.2.15 Random excursion variant test

Similarly to the previous test, this one focuses on the number of visits of the sequence,
considered as a random walk, to di�erent states. The purpose is to detect whether the
behavior is compatible with the expected number of visits of a random sequence. This
test analyzes stages −9,−8, . . . ,−1, 1, . . . , 8, . . . , 9, producing a total of 18 P-values.

Algorithmic description

1. The sequence is transformed into a string of −1 and +1.

2. Partial sums Si are computed to obtain the set S = {Si}i=1,...,n.

S1 = X1

S2 = X1 +X2

S3 = X1 +X2 +X3
...
Sk = X1 +X2 +X3 + . . .+Xk
...
Sn = X1 +X2 +X3 + . . .+Xk + . . .+Xn

3. Create a new sequence S ′ from S by attaching a zero at the beginning and at the
end, forming S ′ = 0, S1, S2, . . . , Sn, 0.

4. For each state x, x = −9,−8, . . . ,−1, 1, . . . , 8, 9 compute ξ(x), the total number
of times that state x occurs across all cycles (we indicate the number of cycles, i.e.
the number of zero crossing but the �rst, with J).

5. For each x compute the P-value using the complementary error function:

P-value(x) = erfc

(
|ξ(x)− J |√
2J(4|x| − 2)

)
.

Interpretation of results

As for the previous test, a small P-value occurs when there are strong deviations from
the expected behavior of the random walk which, under randomness hypothesis, has to
form a Gaussian curve.
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An Example

Let ε = 0110110101 so that n = 10.

1. X = −1, 1, 1,−1, 1, 1,−1, 1,−1, 1.

2. Partial sums are:

S1 = −1 S6 = 2
S2 = 0 S7 = 1
S3 = 1 S8 = 2
S4 = 0 S9 = 1
S5 = 1 S10 = 2

and S = {−1, 0, 1, 0, 1, 2, 1, 2, 1, 2}.

3. The extended random walk is S ′ = 0,−1, 0, 1, 0, 1, 2, 1, 2, 1, 2, 0.

Figure 3.8: Random walk from the example. Credits to [64].

4. We have J = 3 returns to the origin and the total number of visits at each state
are ξ(−1) = 1, ξ(1) = 4, ξ(2) = 3 and ξ(x) = 0 for all other x.

5. For example, for x = 1, P-value(1) = erfc

(
|4−3|√

2·3(4|1|−2)

)
= 0.683091 > α and

the sequence is accepted as random, at least for what concerns the state x = 1:
analogous computation has to be done for other values of x to �nd other P-values.

Mathematical background

Using notations of the "Mathematical background" section of the previous test, let

ξJ(x) = #(visits to stage x during the J-th excursion).
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Under randomness hypothesis, for �xed x, ξJ(x) are independent and identically dis-
tributed, so that the limiting distribution ξ(x) =

∑
J ξJ(x) is normally distributed with

mean and variance, respectively,

E[ξ(x)] = E[
∑
J

ξJ(x)] = J · E[ξJ(x)] = J

and
V ar(ξ(x)) = V ar(

∑
J

ξJ(x)) = J · V ar(ξJ(x)) = J(4|x| − 2)

where mean and variance of ξJ(x) are exactly the ones of formulas (3.47) in the mathe-
matical background of the previous test.

By direct use of the Central Limit Theorem (Theorem 2.1.2), we have that

lim
J→∞

P

(
ξJ(x)− J√
J(4|x| − 2)

< z

)
= Φ(x),

where Φ is the cumulative distribution function of the Standard Normal distribution,
as in (2.1). The P-value we are looking for is exactly the complementary of that prob-
ability, so that we can directly compare theoretical and empirical distribution by the
complementary error function erfc.



120 3. Statistical tests for randomness



Chapter 4

Properties of a RNG

In this section we want to study the e�ciency of a RNG. As discussed in section
(3.1), a single test on a single sequence is not enough to assess whether or not an RNG
generates random sequences. A second level testing is necessary to give a response with
a certain level of con�dence, computing the probability that a truly random sequence s
fails one or more tests. For briefness, in this section we will consider each sub-test as a
di�erent test so that we'll have a total of 188 test.

Let's suppose to test a single sequence, which length is consistent with tests require-
ments, on k tests. The probability that a truly random sequence s fails a test is α and the
probability that it passes it is it's complementary 1− α, as from our hypothesis, so that
the probability P (k, k̃) that k̃, with k̃ ≤ k, tests are passed has a binomial distribution
(2.2.3), so that we obtain

P (k, k̃) =

(
k

k̃

)
(1− α)k̃αk−k̃. (4.1)

By this formula, using α = 0.01, the probability that a single sequence passes all the
188 tests (by considering each sub-test as a di�erent test) is 0.99188 = 0.15 = 15%. This
shows that we should take into account that, as a test-passing doesn't mean that our
data is random, a fail doesn't give evidence of non randomness, but multiple tests have
to be performed.

Sýs et al. ([69]) by using 100 GB of data from a good random generator ([19])
computed the empirical probability that a sequence fails exactly i test and the empirical
probability that it fails i or more tests, comparing them with theoretical probabilities
of formula (4.1). Their analysis was made both in the case that all the 188 test was
applicable and in the case that Random Excursion test and its Variant were not applicable
(since the Random Excursion tests require a sequences which length is on the order of
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Failed tests (i) 0 1 2 3 4 5 6 7 8 9 10 11
theoretical 15.1 28.7 27.1 17.0 7.9 2.9 0.9 0.2 0.1 0.0 0.0 0.0
P (i, 188) 19.4 28.9 23.8 14.3 7.2 3.3 1.5 0.7 0.3 0.2 0.1 0.1
C(i, 188) 100 80.6 51.7 28.0 13.6 6.4 3.0 1.6 0.8 0.5 0.3 0.1
P (i, 162) 20.0 29.5 23.8 14.1 6.9 3.1 1.3 0.6 0.3 0.1 0.1 0.0
C(i, 162) 100 80.0 50.4 26.6 12.5 5.6 2.5 1.2 0.6 0.3 0.2 0.1

Table 4.1: Probabilities P (i, 188) (P (i, 162)) that a truly random sequence fails exactly i
of the whole 188 (162) tests. C(i, 188) and C(i, 162) are the probabilities that a sequence
fails i or more tests of 188 and 162 respectively. Probability are reported in percentage.
Credits to [69]

106). We report, in table 4.1, their results together with the theoretical probabilities
obtained from the above formula.

These values can be used to make a �rst evaluation on randomness of a single sequence
s: if for example a tested sequence, for which each tests are applicable, fails 5 of 188
tests, we have that 6.4% of random sequences are "equally or less random" than the
sequence; 6.4% > α = 1% so that randomness hypothesis could not be rejected, and the
sequence is considered random.

Remark 4.0.12.
As the above table shows, a sequence should be considered non-random, with α = 0.01,
if it fails 8 or more tests.

The above discussion clarify that even if a sequence is random, we can decide if more
speci�c test are needed to decide if a RNG e�ciently generates random number, where
more than one sequence is tested on a single test (4.1) and where more than one sequence
is tested with more then one test, i.e. all tests (4.2).

4.1 Second level testing

Let's focus now on the case where a certain number k of sequences are tested using
only one of the 188 available tests. NIST, in [64], proposes two ways to analyze results
to perform a second level testing:

• to test the proportion of sequences passing a certain statistical test;

• to test the uniformity of obtained P-values from a certain statistical test.

We'll analyze, in the following, how to perform these tests and how to decide if the RNG
generates random sequences.
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4.1.1 Test for proportion of sequences passing a test

Let's suppose to test k sequences on a certain test and that the number of sequences

passing it is k̃, whit k̃ ≤ k, so that ν = k̃
k
is the proportion of sequences passing the test.

This value has to fall between the con�dence interval, which is de�ned by

(1− α)± c
√
α(1− α)

k
, (4.2)

where the value c is the critical value, i.e. the value which splits the domain of our
statistic between the values which have a probability greater than the signi�cance level
α and lower than α, as shown in the �gure below1, and the term under the square root is
the standard error of the statistic (standard normal, under randomness hypothesis). The
two terms together give us the margin of error our analysis has: the more the sequences
we test, the more this error is small.

Figure 4.1: Standard Normal Distribution and critical values. Credits to [47].

If we choose α = 0.01 and c = 3, as NIST, we have that, to pass a test, the proportion
of sequence passing that has to be in the range

0.99± 3

√
0.01 · 0.99

k
(4.3)

so that if, for example, we are testing k = 1000 sequences, the passing rate has to fall
in the interval 0.99± 0.0094392. If the proportion falls outside this interval, we consider
the chosen test not passed by our RNG. We should observe that the value c = 3 is an

1Tables of critical values can be found, for example, in [1] or in
https://www.itl.nist.gov/div898/handbook/eda/section3/eda3671.htm
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approximation of the correct value c = 2.6 (reported in the tables) so that one should
use it for a more precise testing. Note that the interval is computed approximating the
Standard Normal Distribution, so that NIST recommends to test at least k = 1000 se-
quences. This test can be visualized as in �gure (4.2).

Figure 4.2: Proportion of sequences passing tests. In this example tests 7 and test 14
are not passed, according to this second level test. Credits to [64].

Since the con�dence interval is computed by approximation of the Standard Normal
Distribution, we couldn't evaluate cases where the number of testing sequence is lower
than k=1000, however we could observe that the probability P (k, k̃) that k̃ of the se-
quences pass a test can be also modeled by the binomial distribution (2.2.3), so that we
can �nd this probability using formula (4.1) again. Under randomness hypothesis, the
distribution of probabilities is symmetric about the mean so that we could also compute
the probability that the proportion ν of passing sequences falls into that interval by

P (
k1

k
≤ ν ≤ k2

k
) =

k2∑
i=k1

(
k

i

)
(1− α)iαk−i.

Unlike the one from NIST, this formula is modeled on the exact distribution and
it isn't an approximation so that we can use it to test a smaller number of sequences.
However we should take into account that, in this case, the loss on con�dence could be
signi�cant.
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4.1.2 Test for uniformity of P-values

Under randomness hypothesis H0, P-values obtained by di�erent sequences by the
same test have to be uniformly distributed, so that this uniformity forms a hypothesis
itself, which can be statistically tested. This can be done by a χ2 goodness-of-�t test
(3.1.1) by splitting the interval [0, 1] which contains P-values into classes (NIST suite
uses 10 classes), compute the frequency Fi of P-values falling into each classes e compare
them by the use of a χ2 statistic, which will have a number of degrees of freedom equal
to the number of chosen intervals. By uniformity, if we are examining k P-values (i.e.
k sequences), each theoretical frequency will be k/10, so that the statistic will have the
form

χ2 =
10∑
i=1

(Fi − k
10

)2

k
10

.

As before we can compute the P-value of the statistic by the use of the incomplete
gamma function, as

P-valueT = igamc(
9

2
,
χ2

2
)

and see whether or not this P-values is greater than the signi�cance level2 αT , which
in this case should be set at 0.0001. If P-valueT < 0.0001 the generator is considered
to create sequence too similar one another, and the test is considered not passed. We
should note that this test provides a good approximation for k/10 ≥ 5.5, so that at least
55 sequences as to be tested to obtain meaningful results.

This test can also be visualized by the use of an histogram, as in �gure 4.1.2.

Remark 4.1.1.
We should take into account that failing this test doesn't necessarily mean that sequences
are non-random themselves, but that the Random Number Generator is not a good
random number generator since it creates sequences which are very similar one another.
In other words, even if each sequence could behave as if it's e�ectively random, inspecting
more sequences together shows evidence that created bits are non-random.

2Note that this signi�cance level αT refers the second level uniformity testing and it's independent
by the level of signi�cance α one chooses for individual tests
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Figure 4.3: Visualization of the test for the uniformity of P-values. Credits to [64].

4.2 Complete testing

We want to discuss, in this section, the most common and complete case where many
sequences are tested using all of the 188 tests of the suite. This �nal analysis can be
performed by comparing P-values obtained from a set of tests by a set of sequence, by
comparing the proportion of sequences passing more than one test and by comparing the
P-values from the uniformity test.

4.2.1 Set of tests

If we are performing a set of tests on a set of sequences s1, . . . , sk, we should take
into account that on hypothesis of independence between tests, the probability to fail
a test is the same of any other test and that the probability of passing more than one
test (i.e. the intersection) factorizes. By this observation, it's clear that we can make an
evaluation by the use of the table at the beginning of this chapter as follows:

i) For each test sj, consider the number of tests k̂j it failed.

ii) Let Cj be the probability that a test fails k̂j or more tests (the applicability of the
Random Excursion tests should be taken into account), compute the product of
these probabilities

p =
k∏
j=1

Cj,

which is the probability that k random sequences are less random than s1, . . . , sk.
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iii) If p > α, sequences s1, . . . , sk can be considered random, otherwise the randomness
hypothesis is rejected.

For example, if we are testing two sequences s1 and s2 which failed respectively 1
and 2 tests we have that C1 = 0.806 and C2 = 0.504, so that the probability to have two
sequences which are less random than the tested one is p = 0.806 · 0.504 = 0.406 > α, so
that the two sequences are considered random.

4.2.2 Proportion of sequences passing more than one test

As we have seen in section (4.1.1), a set of k sequences could be examined through
each test by the evaluation of the proportion of sequences passing that speci�c test. In
order to give a more complete answer to the "does my RNG produces random sequences?"
question, one should consider if the passing rate of RNG's output of the whole battery
of tests (i.e. the inspection by any point of view) is consistent to what expected from
a Random Number Generator which e�ectively generates random numbers. To do that,
one can compare his results to the ones obtained by Sýs et al. in [69] by extensive
simulations on sets of k = 100 and k = 1000 sequences. Results are reported, in the
following table, by taking either the constant c of the test as approximated by NIST (i.e.
c = 3) and the more accurate value c = 2.6.

Failed tests (i) 0 1 2 3 4 5 6 7 8 9 10 11 12
theoretical 15.1 28.7 27.1 17.0 7.9 2.9 0.9 0.2 0.1 0 0 0 0
observed 46.9 33.7 14.7 4.3 0.5 0 0 0 0 0 0 0 0
C(103, 3) 100 53.1 19.4 4.8 0.5 0 0 0 0 0 0 0 0
C(103, 2.6) 100 79.2 48.6 25.2 9.4 3.2 1.2 0.6 0.1 0 0 0 0
C(102, 3) 100 95.9 84.3 66.3 45.6 28.1 15.6 8.2 4.1 1.8 0.8 0.3 0.2

Table 4.2: Probabilities that random sequences fail exactly i out of 188 proportion tests,
and cumulative probabilities that a set of k = 100 and k = 1000 sequences fail i or
more proportion tests. Cumulative probabilities, obtained by extensive simulations, are
computed both for c = 3 and c = 2.6. Values are reported in percentage. Credits to [69]

These probabilities can be used to assess the randomness of a set of sequences as
follows: let's suppose to test k = 1000 sequences through the whole battery of tests and
to perform the test for proportion to all of them. Assume that 4 tests of proportion
are failed: using the constant c = 3 proposed by NIST, the probability to obtain an
equivalent or worst case from a good-working RNG is 0.5% which is smaller than the
signi�cance level α = 1%; tested sequences can be considered non-random. On the other
hand, if we assume the constant c = 2.6, the probability that sequences fail 4 or more
test is 9.4% which is grater than the signi�cance level α, so that we can consider our
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sequences random. In cases like the one we just proposed is recommended to test another
set of sequences obtained from the RNG, in order to make a more accurate answer.

Remark 4.2.1.
A set of k = 100 sequences should be considered non-random if it fails 11 or more test
for the proportion of sequences passing a test.
Similarly, a set of k = 1000 sequences should be considered non-random if it fails 8 or
more test for the proportion of sequences passing a test.
Take into account that the more the sequences we test, the more is the con�dence we have
from results: to test 1000 sequences is recommended, however, if for some reasons (such
as computation limits) this is not possible, to make this test on a set of 100 sequences
also produces reliable results.

4.2.3 Uniformity of P-values from multiple tests

Let's suppose to test k = 100 sequences and to make the test for uniformity of P-
values (4.1.2) for each of the 188 test, obtaining 188 P-values (i.e. 188 passed/failed
responses). Results can be compared to the probability obtained by Sýs et al. in [69]
through extensive simulations on 8192 sets of k = 100 sequences, which are reported in
the following table together with the theoretical probabilities.

Failed tests (i) 0 1 2 3 4 5 6 7 8 9
theoretical 15.1 28.7 27.1 17.0 7.9 2.9 0.9 0.2 0.1 0.0
observed 11.3 24.8 26.6 19.0 10.8 4.8 1.8 0.5 0.2 0.1

C, αT = 1% 100 88.7 63.9 37.3 18.3 7.5 2.7 0.85 0.33 0.09
C, αT = 0.1% 100 21.8 3.1 0 0 0 0 0 0 0
C, αT = 0.01% 100 3.3 0.12 0 0 0 0 0 0 0

Table 4.3: Probabilities that 100 random sequences fail exactly i uniformity tests
and cumulative probabilities that the set fails i or more uniformity tests for αT =
0.01, 0.001, 0.0001 (values are reported in percentage). Note that αT is not the sig-
ni�cance level of individual tests, but the signi�cance level of the second level uniformity
test. Credits to [69]

If, for example, we test 100 sequences using the whole 188 tests and the uniformity
test is failed for 5 tests (i.e. 5 of the whole 188 P-values obtained from the test for
uniformity of P-values are lower than 0.0001) the probability that this occurs for truly
random sequences is 0, which is obviously smaller than α = 0.01%, so that the data
could be considered non-random since the tested RNG produces sequences which are
non uniform.
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Remark 4.2.2.
A set of k = 100 sequences should be considered non-random if it fails 7 or more uni-
formity test (with the classical con�dence level α = 0.01). For smaller con�dence levels,
such as α = 0.001 or α = 0.0001, the maximum number of failed test to consider the set
random is 2.
Testing only 100 sequences through this test could be considered enough since, as dis-
cussed in section (4.1.2), this test produces a good characterization of the random gen-
erator, however it doesn't bring a real answer on the randomness of the sequences.
Anyhow, failing this test should be taken in account, since that indicates that the RNG
produces sequences which could be similar one another, although their behavior could
be considered random.
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Chapter 5

Testing ECU's RNG

We studied how each of the 15 tests work, we saw how to perform a second level
testing and how to evaluate whether a certain RNG is working properly or not, ana-
lyzing if randomness properties are satis�ed and if generated sequences are su�ciently
di�erent one another. Now we want to describe how we checked the good behavior of
our implementation and how to test the RNG embedded into an ECUs.

The main purpose of our work was to make an implementation which makes possible
to completely test ECU's RNG by simply connect the target ECU to the computer,
without the need of any other actions. To do that we decided, �rst of all, to implement
the whole test suite by the use of MatLab [48] which allows to perform in the easiest
way all mathematical tasks of each test. After that, we embedded the whole test suite
in CANoe [70], a software which permits to interact with ECUs: we'll describe this step
in section 5.2. We will report examples of each step of the implementation process in
appendix A.

5.1 Validation of MatLab codes

To check our implementation we assumed that the one wrote by NIST in C language
is correct and we compared P-values (and any other output) we obtained from our code to
the ones one obtains testing the same sequences through the NIST test suite, available at
https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software.
Due to reproducibility reasons we decided to make the comparison using the binary ex-
pansion of some classical values, i.e. π, e,

√
2 and

√
3, truncated to 106 digits, which is

the recommended length for sequences to test. Figures from 5.1 to 5.4 show the behavior
of P-values for the four sequences and the relative error between our results and NIST's.

As �gures show, the error of our implementation is attested between the machine
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accuracy of MatLab, which is 2.2204 · 10−16, and 10−8. The grater error is obtained
by test 11 and test 12, i.e. the serial test and the approximate entropy test: the error
remains close to the MatLab epsilon and to 10−14 through the whole respective test, since
values which carries the error (frequencies vm, vm−1 and vm−2 for test 11 and the value of
the approximate entropy ApEn) are multiplied, respectively, to 2m = 216 ∼ 0.6 · 105 and
to n = 106. According to error analysis theory, this multiplication produces the rising of
errors to our values: anyway, we should observe that, since the level of signi�cance α is
typically chosen as 0.01 or 0.001 and it wouldn't be meaningful to choose a lower value,
this error doesn't ruin our implementation since one would always be interested up to
the third or fourth signi�cant �gure.
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Figure 5.1: P-values and respective relative errors for binary expansion of π.

Remark 5.1.1.
Successive implementations (i.e. the Simulink models and their porting into CANoe)
were also checked to ensure that each value one obtains using the CANoe implementation
is correct: to do that we used values obtained from our MatLab code as the �xed point
of the whole process, from single tests to the complete testing of 1000 sequences.
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Figure 5.2: P-values and respective relative errors for binary expansion of e.
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Figure 5.3: P-values and respective relative errors for binary expansion of
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5.2 CANoe integration of test suite

Once we were sure that our MatLab codes were correct, we decided to bring that
codes into CANoe and to use those same codes to test ECUs RNG. In this section we
wish to give an overview of what CANoe is, how to use MatLab codes through the use
of Simulink and State�ow and how to embed and use these things into CANoe.

5.2.1 Vector CANoe

CANoe [70] is a software developed by Vector Informatik GmbH since 1996: it permits
the user, principally automotive manufacturers and electronic control unit suppliers, to
interface with an individual ECU or to a complete network in order to develop, make
analysis, test and diagnosis. In particular CANoe can be used both to simulate a CAN-
bus network (or a single ECU) without the need to materially build one, at the beginning
of the production of a vehicle, and to diagnose malfunctions, when a car shows any type
of issue.

Connecting to a network through CANoe (by the use of a computer or by any other
dedicated hardware which supports it) it is possible to access the CAN-bus in order to
read messages which �ow in it or to send some to the system. Analogously, connecting
an individual ECU allows to interact with it, to simulate the behavior when it is set
together with other ECUs (the software could simulate them) or to (re)program it.

The user interface of CANoe is based on many windows which user can show, hide,
move or customize: each of these windows have di�erent functionality and permits both
to extract information from the CAN-bus (e.g. to see messages on the bus, to read values
of interest or to take trace of the telemetry) and to interact with the system (e.g. to
push the brake pedal or to move the steering wheel, in a simulated environment or to
send a speci�c message via CAN-bus, in both simulated or real environment). Figure
5.5 shows an example of these windows, together with their use.

Apart from windows showed in �gure, another useful window is the measurement
setup window, which permits, on one hand, to choose if the simulation is performed in
online or o�ine mode and, on the other hand, to choose which value to observe or not; the
measurement setup also manages the saving of logging, i.e. the trace of last measurement.

The most useful window for simulations is the simulation setup window, showed in
�gure 5.6: it permits to choose the environment of the simulation. This window is fun-
damental for development, since it allows the user to build the complete setup he wants
to simulate. Through this window it is possible to add an arbitrary number of blocks :
each block represents an element of the environment and could be a node (nodes rep-
resent ECUs of the simulated environments), a signal generator (it generates and sends
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Figure 5.5: CANoe interface example. This example is made of a control interface by
which user can simulate the ignition, a graphics and data interface by which it is possible
to monitor values of interest (e.g. gear, engine and car speed as in this example), a tester
window to choose the situation to test, an explorer to choose the object to observe and
a trace window to trace messages which run inside of each CAN channel. Credits to [70].
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signals to the bus; signals could be random or customized: they are used to simulate
extra hardware or bus, in addition to the ones of interest), a replay block (it reproduces
a previous simulation, sending the same signals) or logging block (stores signals/mes-
sages of interest). These blocks can be connected, in di�erent ways, to create the desired
simulation setup by simulated CAN-bus connections: it is possible to create (and eventu-
ally connect) di�erent network, where each network is provided of a dedicated CAN-bus
(each network can then be interfaced to one or more networks through an ECU which
works as a gateway). The ECU node, which is the one we are most interested in, is the
most customizable one, since it represents the control unit and could simulate each of its
functions. It's possible to program each ECU node, de�ning its tasks, input and output:
to do that each ECU node is provided with a script in CAPL1 language.

Figure 5.6: Example of a simulation setup window. This setup is made of four nodes
which simulate ECUs (each of them endowed with its CAPL script), a signal generator
and a replay block: all of these nodes are connected by a CAN-bus and form a unique
network.

Finally, there is a write window where values from the execution of CAPLs are printed
together with error in compilation or execution and any other information useful for the
user.

1CAPL is a C-based programming language created by Vector Informatik GmbH: it contains most
of C main functions to which new functions are annexed. CAPL speci�c functions permit to manage
the communication between nodes, e.g. by input and output variables, detecting if external variable are
changed or perform action when an external input is given (e.g. the vehicle is started).



5.2 CANoe integration of test suite 137

5.2.2 From MatLab to CANoe

Since the way to directly communicate with an ECU is the CANoe software, together
with a dedicated hardware to connect the ECU and the computer (showed in �gure 5.7),
we needed to export our MatLab functions to this software in order to use them. CANoe
allows users to associate one or more DLLs2 to each ECU node, and call it inside of the
CAPL script: this feature permitted us to embed our MatLab functions inside of our
con�guration.

Figure 5.7: Vector Base Module: a dedicated hardware used to connect ECUs to a
computer. Credits to [70].

To create DLLs to embed in the CANoe con�guration we used Simulink [49], a
MatWorks graphical programming environment that permits to create models where op-
erations are performed by graphical objects in the form of blocks and arrows: a block
could stand for a variable, a constant, an operator and so on, while arrows are used to
connect blocks to de�ne inputs, outputs and relations between them. Simulink, obvi-
ously, interface with MatLab: it is possible to use MatLab variables inside the Simuliunk
model, to send values from the Simulink model to MatLab and also to use user de�ned
MatLab functions through speci�c blocks (where the function can be wrote in a standard
MatLab script). Simulink also interfaces with CANoe, allowing to convert models into
DLLs which could be compiled and used by CANoe (through calls inside of the CAPL
script): this can be done through the Vector CANoe add-on for Simulink, which provides
the cn.tlc target for the compiler (we used the Microsoft Visual C++ compiler [52] to
export Simulink models into DLLs).

Besides compatibility between Simulink and CANoe versions and formats, at this
step, we had to take into account the limits of each software, in order to make the gen-

2Dynamic-Link Libraries: software libraries which can be dynamically loaded and compiled into a
program or an executable �le in order to execute them as part of the main software itself.
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erated DLLs working on CANoe: the main problem we had to overcome was the fact
that CANoe couldn't deal with too long variable arrays and sequences we had to test
had to be at least 106 digits long. To overcome the problem we made use of the State-
�ow logic tool for Simulink: State�ow allows the user to create a �nite-state machine3

as a Simulink block (called chart); we inserted a State�ow chart inside of our Simulink
model so that CANoe could deal with and send shorter parts of the sequence: the chart
accumulates the sequences till the end and, when it is complete, it sends the complete
array to requested test(s).

Another requirement for the building of DLLs from Simulink was that, since gener-
ated DLLs use static memory allocation, we couldn't create a model which contained
the whole test suite, so that we had to split tests inside of di�erent models (depending
on the size of each test code) and link them all to the CANoe node. Figure 5.8 shows
created DLLs inside of the con�guration window for a CANoe node.

Moreover, since Simulink allows to perform the discrete Fourier transform on vectors
which length is a power of 2 only, our CANoe porting of the test suite requires it too:
since, due to the asymptotic theory behind the test, 106 is the minimum allowed length
we decided to require a length of 220 = 1048576 for sequence to test, that is the �rst
power of 2 value which is greater than 106. This requirement only applies to the testing
through CANoe (i.e. directly test ECU's RNG): indeed we used 220-long sequences when
we tested ECU's RNG through the CANoe suite and 106-long strings in other cases,
through the MatLab implemetation.

All other tasks are submitted to the CAPL script, inside of CANoe: reading sequences
from �les (or directly from the ECU), send inputs and outputs to models (that is done
by the use of particular CANoe variables, called system variables4), store results into
�les and run the second level testing (also implemented by Simulink models) when a
su�cient number of sequences was tested. After that, the CAPL checks if second level
testings are passed or not, as described in the previous chapter, and writes �nal results
on a �le.

The general scheme of a complete testing execution could be summarized as follows:

1. the user chooses how many sequence to test (typically 100 or 1000 sequence are
chosen), which test to perform, the desired level of signi�cance and if he wants to

3A model of computation which passes from a state to another depending on external inputs (e.g. it
performs the next step each time the function is called or each time a variable changes its value etc.).

4System variables are used in CANoe as variables which could be used in the whole con�guration:
while standard variables can be used inside each CAPL only (i.e. only for a node of the con�guration),
system variables can be used and modi�ed by each node and sent to external functions, such as DLLs.



5.2 CANoe integration of test suite 139

Figure 5.8: Linked DLLs to a CANoe node. This �gure shows the con�guration of our
test suite.

perform the second level testing (in the case he tested enough sequence on every
test);

2. CANoe reads the �le which contains the binary sequence to test (or directly reads
output values of ECU's RNG): a part of it is inserted into a system variables and
sent to the DLL (i.e. the model), which waits and accumulate till the desired length
is reached;

3. the Simulink model executes desired tests and sends results back to CANoe, by the
use of some other system variables.

That is done for each requested test on the whole set of sequences and results are stored
into �le.

If the second level testing is requested, the process goes on:

4. results and P-values, of a speci�c test for all the tested sequences, are red from �les
which contains them and stored into dedicated system variables;

5. system variables are sent to other Simulink models that perform the second level
testing and send results to CANoe.

This is performed for each test, obtaining 188 results from the test for proportion of
passing and 188 results from the test for the uniformity of P-values: results are stored
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into �les.

After that, the CAPL (i.e. CANoe) reads results from this second step and writes a
�le which contains the �nal result (i.e. if or not the RNG passed the complete testing)
using bounds of remarks 4.2.1 and 4.2.2, together with information from eventually not-
passed tests and possible problems of the Generator.

5.2.3 Results from our implementation

Once we implemented the test suite, we decided to use it to test, apart from the
Random Number Generator embedded into two di�erent ECUs, the randi function of
MatLab. This section reports main results of these validations.

randi results

The randi function creates random integers (single values, vectors or matrices)
through a Pseudo Random algorithm: the PRNG used for this function is the same
of the rand and randn functions. randi generates values between 1 and the input, so
that to obtain a binary sequence one can use 2 as the max value and subtract it by a
unitary vector, so that to generate a 106-length vector one can simply use the command
randi(2, [106, 1]) − 1. We tested 1000 sequences, performing the whole test suite and,
after that, the second level testing, in order to evaluate the goodness of the function.
Table 5.1 shows the proportion of passing for each test, stored for type of test (i.e. test
composed by more sub-tests are reported together)

For 1000 sequences, using bounds of formula (4.3), the proportion test is considered
to be passed if the proportion of passing lies inside the interval [0.9805, 0.9994], so that,
to pass the proportion test, at least 981 of 1000 sequences have to pass a single test.
In this case, the function randi passed 185 of 188 test for proportion (i.e. more than
981 strings on 1000 passed a single test) and 187 of 188 uniformity test so that both
test were passed and the PRNG embedded in MatLab could be considered to be a well
designed and good working Random Number Generator (the acceptance ranges for 1000
sequences are 180/188 and 182/188, respectively).

Histograms reported in �gures 5.9 and 5.10 represent an example for the distribution
of P-values of a passed and a failed uniformity test: respectively one of sub-tests of the
random excursion test and one of the sub-test of the non-overlapping template matching
test (the only one which didn't pass the test for uniformity of P-values). As for the test,
P-values are stored into 10 classes between 0 and 1.
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Test Proportion of passing Uniformity pass rate
Frequency 979/1000 1/1
Frequency within a block 990/1000 1/1
Runs 988/1000 1/1
Longest run of ones 990/1000 1/1
Matrix rank 987/1000 1/1
DFT 994/1000 1/1
Non-overlapping 146526/148000 147/148
Overlapping 992/1000 1/1
Maurer 987/1000 1/1
Linear complexity 991/1000 1/1
Serial 1982/2000 2/2
Approximate Entropy 991/1000 1/1
Cumulative sums 1969/2000 2/2
Random excursions 7893/8000 8/8
Random excursions variant 17786/18000 18/18

Table 5.1: Results from second level testing of randi output: eventual sub-tests are
added together.

Figure 5.9: Histogram for a passed uniformity test: random excursion test (one of the
8 sub-tests). The number of P-values into each class is su�ciently close to a uniform
distribution.
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Figure 5.10: Histogram for a failed uniformity test: non-overlapping template matching
test (one of the whole 148). The number of P-values into each class is far from a uniform
distribution: in particular, compared to other classes, there is a huge disproportion
between the number of P-values falling into the interval [0.8, 0.9[ (66 P-values).

TRNG results

ECUs at our disposal were provided with a True Random Number Generator, pro-
duced by In�neon Technologies [31], of which we was not aware of the structure: in this
case it's very important to validate the Generator, in order to make sure that everything
works as it has to do. Moreover, apart from the structure of the TRNG (which could
be known or unknown), it often happens that RNG's output values are used and pro-
cessed by various software functions: it becomes fundamental, then, to ensure that these
functions don't spoil produced randomness, for example by adding some recurrences or
hidden structures.

Due to the, relatively higher compared to the MatLab PRNG, time to generate a
huge amount of digits and the need to convert these value from binary format to ASCII,
we decided to perform the testing on 100 sequences only which length, due to the porting
by the use of Simulink (as described in the previous section), was 220.
Table 5.2 reports results we obtained from the second level testing applied to ECU's
TRNG, in the same format of results from the randi function.

For 100 sequences, using bounds of formula (4.3), the proportion test is considered
to be passed if the proportion of passing lies inside the interval [0.9641, 1.0159], so that,
to pass the proportion test, at least 97 of 100 sequences have to pass a single test.
In this case, the TRNG passed 178 of 188 test for proportion and 183 of 188 uniformity
test (the acceptance ranges for 100 sequences are 177/188 and 182/188, respectively), so
that both test were passed and the TRNG could be considered to be a well designed and
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good working Random Number Generator.

Test Proportion of passing Uniformity pass rate
Frequency 99/100 1/1
Frequency within a block 95/100 1/1
Runs 98/100 1/1
Longest run of ones 99/100 1/1
Matrix rank 99/100 1/1
DFT 96/100 1/1
Non-overlapping 14615/14800 145/148
Overlapping 99/100 1/1
Maurer 100/100 1/1
Linear complexity 99/100 1/1
Serial 198/200 1/2
Approximate Entropy 99/100 1/1
Cumulative sums 200/200 2/2
Random excursions 792/800 7/8
Random excursions variant 1764/1800 17/18

Table 5.2: Results from second level testing of TRNG's output: eventual sub-tests are
added together.

As for the previous, histograms reported in �gures 5.11 and 5.12 represent an example
for the distribution of P-values of a passed and a failed uniformity test: respectively the
linear complexity test and one of the sub-tests of non-overlapping template matching
test.
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Figure 5.11: Histogram for a passed uniformity test: linear complexity test. The number
of P-values into each class is su�ciently close to a uniform distribution.

Figure 5.12: Histogram for a failed uniformity test: non-overlapping template matching
test (one of the whole 148). The number of P-values into each class is far from a uniform
distribution: in particular, compared to other classes, there is a disproportion between
the number of P-values falling into intervals [0.6, 0.7[ (3 P-values) and [0.8, 0.9[ (23 P-
values).
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PRNG results

We also had the opportunity to test the PRNG embedded into an old ECU which
generated numbers using a not performing method. The inspected PRNG generated
numbers between 0 and 255 in hexadecimal format: in order to test them by the test
suite, we converted numbers into binary format and we built 220-long sequences by
concatenating them.

We tested, as for the TRNG, 100 sequences: the PRNG didn't pass the test, since
generated sequences passed only 53 of 188 tests for proportion and 44 of 188 uniformity
tests. That shows that generated numbers were non-random and that they were similar
one another. Table 5.3 reports results from the second level testing.

Test Proportion of passing Uniformity pass rate
Frequency 0/100 0/1
Frequency within a block 0/100 0/1
Runs 0/100 0/1
Longest run of ones 75/100 0/1
Matrix rank 100/100 1/1
DFT 0/100 0/1
Non-overlapping 8198/14800 28/148
Overlapping 3/100 0/1
Maurer 51/100 0/1
Linear complexity 100/100 1/1
Serial 103/200 1/2
Approximate Entropy 0/100 0/1
Cumulative sums 0/200 0/2
Random excursions 755/800 3/8
Random excursions variant 1771/1800 10/18

Table 5.3: Results from second level testing of PRNG's output: eventual sub-tests are
added together.

Histograms reported in �gures 5.13 and 5.14 show an example of a passed and a failed
uniformity test, respectively: the binary matrix rank test and the longest run of ones in
a block test.
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Figure 5.13: Histogram for a passed uniformity test: binary matrix rank test. The
number of P-values into each class is su�ciently close to a uniform distribution.

Figure 5.14: Histogram for a failed uniformity test: longest run of ones in a block. The
number of P-values into each class is far from a uniform distribution: in particular,
compared to other classes, there is a huge disproportion between the number of P-values
falling into interval [0, 0.1[ (51 P-values) and other intervals.



Conclusions

We opened this thesis with an overview of the ECUs structure of modern vehicles,
focusing on possible entry points and hackings. We described typical use of randomness
in cryptography and, in particular, of how random numbers are used in the cyber secu-
rity system of vehicles together with an idea of what a lack on randomness, derived from
a problem of the embedded RNG, could imply.

The main aim of this thesis is to study randomness so that we analyzed the general
procedure to perform a statistical test. That permitted us to focus on the more speci�c
case of statistical tests for randomness, by describing it and proposing theoretical bases
and proofs for each them. Tests are then placed together to obtain the answer we were
looking for, i.e. to know whether or not the RNG is working properly, through a second
level testing on previously obtained results.

We �nally reached the point where we used all of these information to build a method
to validate RNGs: we did that through MatLab and Simulink, in order to use them into
CANoe. Finally we could use our implementation to, positively, evaluate randomness
of the True Random Number Generator embedded into our ECU and of the MatLab's
Pseudo Random Generator.

This constructions obviously has its limits: by this test suite it is impossible to
distinguish a Pseudo Random Number Generator from a True one, and that could be
a not trivial trouble for cryptographic purposes. Moreover, the 15 tests of this suite
couldn't ful�ll all possible aspect of randomness (in fact none �nite number can do it)
so that this suite could be extended, if new tests uncover.
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Appendix A

Examples from implementation

This appendix is intended to give the reader an example of our implementation, pre-
senting two samples of MatLab code for single test (in particular codes described in
3.2.11 and 3.2.14) and, after those, an example of one of the Simulink models (the one
relevant to test from 1 to 3: other models are approximately the same).

1 function [R,PVs ,S_obs ,err]= serial_test(s,alpha ,m)

2 % Test 11: Serial test
3 % INPUT: s = binary string to test (array)
4 % alpha = level of significance
5 % m = length of templates to analyze
6 % OUTPUT: R = results (#2)
7 % PVs = P−value for each statistic (#2)
8 % S_obs = values of the statistic (#2)
9 % err = error from the execution

10 % RECOMM: choose m < log2(n)−2
11

12 % default length of window
13 if nargin ==2

14 m=16;

15 end

16

17 % pre−allocation of used values
18 R=NaN*zeros (2,1);

19 PVs=R;

20 S_obs=R;

21 err=ERRORS.NO_ERROR;

22

23 % sequence is non−empty
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24 n=length(s);

25 if n==0

26 err=ERRORS.GENERIC;

27 return

28 end

29

30 % form augmented sequence and initialize frequency vectors
31 s=vertcat(s,s(1:m-1));

32 vm=zeros (2^m,1);

33 v1=zeros (2^(m-1) ,1);

34 v2=zeros (2^(m-2) ,1);

35

36 % count occurrences
37 i=1;

38 while i+m-1<= length(s)

39 if m==0 || m==-1

40 break

41 end

42 % convert patterns into respective decimal value (index)
43 index=binvec2dec(s(i:i+m-1))+1;

44 vm(index)=vm(index)+1;

45 i=i+1;

46 end

47 i=1;

48 while i+m-1<= length(s)

49 if m-1==0 || m-1==-1

50 break

51 end

52 index=binvec2dec(s(i:i+m-2))+1;

53 v1(index)=v1(index)+1;

54 i=i+1;

55 end

56 i=1;

57 while i+m-1<= length(s)

58 if m-2==0 || m-2==-1

59 break

60 end

61 index=binvec2dec(s(i:i+m-3))+1;

62 v2(index)=v2(index)+1;

63 i=i+1;

64 end
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65

66 % compute values of statistics
67 psim =0;

68 psi1 =0;

69 psi2 =0;

70 if m~=0 && m~=-1

71 psim =2^m/n*sum(vm.^2)-n;

72 end

73 if m-1~=0 && m-1~=-1

74 psi1 =2^(m-1)/n*sum(v1.^2)-n;

75 end

76 if m-2~=0 && m-2~=-1

77 psi2 =2^(m-2)/n*sum(v2.^2)-n;

78 end

79

80 % compute distances
81 nabla=psim -psi1;

82 nabla2=psim -2* psi1+psi2;

83 S_obs (1)=nabla;

84 S_obs (2)=nabla2;

85

86 % compute P−values and check results
87 PVs (1)=gammainc(nabla /2 ,2^(m-1)/2,'upper ');

88 PVs (2)=gammainc(nabla2 /2,2^(m-2)/2,'upper ');

89

90 if PVs(1)<alpha

91 R(1)=RESULTS.FAILED;

92 else

93 R(1)=RESULTS.PASSED;

94 end

95

96 if PVs(2)<alpha

97 R(2)=RESULTS.FAILED;

98 else

99 R(2)=RESULTS.PASSED;

100 end
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1 function [R,PVs ,S_obs ,err]= random_excursions_test(s,alpha)

2 % Test 14: Random excursions test
3 % INPUT: s = binary string to test (vector)
4 % alpha = level of significance
5 % OUTPUT: R = results (#8)
6 % PVs = P−value for each state x (#8)
7 % S_obs = values of statistics (#8)
8 % error = error from the execution
9

10 % pre−allocation of used values
11 R=NaN*ones (8,1);

12 PV=R;

13 S_obs=R;

14 err=ERRORS.NO_ERROR;

15

16 % sequence is non−empty
17 n=length(s);

18 if n==0

19 err=ERRORS.GENERIC;

20 return

21 end

22

23 % Compute partial sums (random walk)
24 s=2*s-ones(size(s)); % 0,1 to −1,1
25 S=zeros(n,1);

26 S(1)=s(1);

27 for i=2:n

28 S(i)=S(i-1)+s(i);

29 end

30

31 % Compute number of 0s in S2 (i.e. #cycles)
32 S2=[0; S; 0];

33 J=nnz(~S2) -1;

34 if J<500 % check on number of cycles
35 R=RESULTS.FAILED;

36 return

37 end

38

39 % compute occurrences of values inside each cycle
40 table=zeros(8,J);

41 j=1;
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42 i=2;

43 while j<=J

44 while S2(i)~=0

45 el=S2(i);

46 if el >-5 && el <5

47 if el <0

48 table(el+5,j)=table(el+5,j)+1;

49 else

50 table(el+4,j)=table(el+4,j)+1;

51 end

52 end

53 i=i+1;

54 end

55 i=i+1;

56 j=j+1;

57 end

58

59 % compute frequencies, statistic and P−value for each state
x=−4,...,−1,1,...4

60 PVs=zeros (8,1);

61 S_obs=zeros (8,1);

62 for i=1:8

63 v=zeros (6,1);

64 for j=0:4 % compute frequencies
65 v(j+1)=sum(table(i,:)==j);

66 end

67 v(6)=sum(table(i,:) >4);

68 p=p_table_aux(i); % pre−allocate probabilities
69 chi=chi_stat(v,p,J); % chi−squared statistic
70 S_obs(i)=chi;

71 PVs(i)=gammainc(chi/2,5/2,'upper'); % P−values
72 if PVs(i)<alpha % results
73 R(i)=RESULTS.FAILED;

74 else

75 R(i)=RESULTS.PASSED;

76 end

77 end
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Figure A.1: Example of Simulink model. The yellow block is the State�ow chart, where
the sequence is build from 1000-bit sub-blocks; the red block initializes outputs to −1:
if the test is not executed, the only value of an eventual error is updated; blue blocks
contain MatLab functions for tests; the gray block updates outputs to the last executed
test.
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