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Abstract

The aim of this thesis is to study the inversion of Rayleigh-wave dispersion curves
in order to determine the shear-wave velocity profile. This is achieved by using a
set of codes in Matlab, which perform both forward modelling and Rayleigh-wave
phase velocity inversion [1]. I test two methods for retrieving shear-wave velocity
structure: a perturbational approach, which is based on a finite-element method,
and a nonperturbational approach, which is a direct calculation based on the Dix-
type formula. The second method provides an acceptable initial model that can be
further improved by the perturbational approach. First, some synthetic tests were
made simulating oceanic crust. Variations on the initial model or on the thickness
of the finite elements appear to have a great impact on the recovered model. In
the following, the perturbational inversion is applied to the phase-velocity database
constructed by seismic ambient noise from the work of Molinari et al. [2]. The
data are recorded in stations all over the Italian peninsula and the Alps. The initial
model used is a combination of the resulting model from the work of Molinari et al.
[2] for the crustal part, and the PREM [3] for the upper-mantle part. The 3D maps
of shear-wave velocity anomalies resulting from this work are further compared to
the equivalent ones from the aforementioned work. This thesis is concluded with the
inversion of phase-velocity data, for a few sample cases that belong to the already
used database. This time, the initial model is the result of the Dix-type nonpertur-
bational inversion [10]. This a priori model constitutes a satisfying reference model
for determining 1D shear-wave velocity structure, but some restrictions might exist
when using the method in order to obtain 3D structures.





Sommario

Questa tesi si pone come obiettivo lo studio del processo d’inversione nel caso di
curve di dispersione delle onde di Rayleigh, con lo scopo di determinare il profilo della
velocitá delle onde S. Ciò è ottenuto grazie all’uso di codici Matlab, i quali vengono
impiegati sia per la risoluzione del problema diretto che per il problema inverso [1].
Ho utilizzato due diversi metodi per determinare la struttura di velocità. Il primo
tipo riguarda un approccio perturbativo basato sul metodo degli elementi finiti; il
secondo, è un metodo di calcolo diretto basato sulla formula di Dix ricavata dalla
sismica a riflessione e costituisce un metodo non perturbativo. Quest’ultimo fornisce
un modello iniziale che potrà essere in seguito ottimizzato attraverso l’approccio
perturbativo. Inizialmente, test basati su dati sintetici sono stati effetuati al fine
di simulare la crosta oceanica. È stato notato che eventuali variazioni al modello
iniziale o variazioni allo spessore degli elementi finiti sembrano essere di grande
impatto per il modello risultante. Successivamente, l’inversione perturbativa è stata
applicata con dati di velocità di fase, appartenenti al database risultante dall’ analisi
del rumore sismico effettuata da Molinari et al. [2]. Tali dati sono stati registrati
da stazioni presenti in tutto il territorio italiano e nelle Alpi. Il modello iniziale
risulta da una combinazione del modello ottenuto dalla ricerca di Molinari et al. [2]
e dal modello PREM [3]. In particolare, per la parte crostale è stato preso come
riferimento il primo modello, per la parte riguardante il mantello superiore è stato
preso in considerazione il secondo modello. Le mappe 3D di velocità di S risultanti
da questo metodo vengono successivamente paragonate con le equivalenti mappe
risultate dal lavoro di Molinari et al. [2]. Infine, lo stesso procedimento è stato
ripetuto per un numero limitato di celle appartenenti al medesimo database. In
questo caso, il modello iniziale è il modello risultante dall’ inversione di Dix [10]
e può essere considerato un modello di riferimento adeguato per determinare la
struttura 1D delle celle prese singolarmente. Tuttavia, si riscontrerebbero alcune
limitazioni nel caso in cui il metodo venisse impiegato per ottenere strutture 3D.
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Introduction

Surface waves are the large-amplitude long-period waves that appear on a seismo-
gram after the P-wave and S-wave arrival. Their energy is concentrated in the Earth
surface and decays slower than the energy of the body waves. The two main types
of surface waves are the Rayleigh and the Love waves.

Rayleigh waves constitute a powerful tool for the study of the subsurface prop-
erties due to their dispersive character, the fact that their velocity is a function of
frequency. Velocity variations depend on the depth domain sampled by each fre-
quency. High frequencies sample the shallow structure, while low frequencies are
more sensitive to deeper structures. Measuring the surface wave dispersion along
different earthquake-receiver paths, or between two receivers in case of ambient noise
data, allows us to investigate the structure beneath and between the two points. In
other words, dispersion data received from different locations are used in tomo-
graphic inversion to visualize the distribution of phase or group velocity within the
defined area. Following this, the profile of the Earth model parameters (P-wave
velocity, S-wave velocity, density) at any point can be inferred by its dispersion
curve.

Consequently, inversion of dispersion curves for the determination of those model
parameters remains an important task to solve.

Although Rayleigh waves are depended on all model parameters, not all of them
contribute with the same manner to the dispersion curve. If a variation of a specific
parameter in a certain frequency range does not provide significant variation on the
dispersion curve, then that parameter is not worth being inverted. As addressed by
Xia [5], Rayleigh waves are mainly influenced by near-surface shear-wave velocity
and so, this is usually the model parameter determined by the inversion process.

The scope of the present thesis, is to study and improve the method of Rayleigh-
wave dispersion curves inversion in order to obtain reliable shear-wave velocity pro-
files. I follow the new approach presented by Haney and Tsai, 2017 [1], which
consists of two different inversion methods: a perturbational method based on fi-
nite elements and a nonperturbational method developed on the Dix formula. If
compared with the usual approach to retrieve the shear-wave velocity profile from
dispersion, this one presents the advantage of facing the forward problem as a simple
eigenvalue/eigenvector problem, which can be solved numerically by already estab-
lished codes. An other advantage is that the nonperturbational method can be used
in order to obtain an acceptable initial model, wherever there is lack of a priori infor-
mation. The thesis consists of two parts: the first part is focused on the theoretical
aspects of the forward and inverse problem, when working with Rayleigh-wave mea-
surements. The second part treats the modelling and inversion of both synthetic
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and real dispersion curves.
The forward problem of calculating dispersion curves from a 1D structural model

is based on the finite-element method of Lysmer [6]. The medium is represented by
finite rectangular elements, in the corners of which the mass exists. This method
does not use the displacement potentials for the formulation of the problem, but
with an appropriate representation of the continuous layered system, leads to an
eigenvalue/eigenvector problem to be solved. The advantages of this method are
the accuracy, since the layers are thinner with respect to the wavelength, and more
importantly, its direct link with the inverse problem, due to the matrix formulation
of the forward problem.

With this approach, the inverse problem constitutes an extension of the forward
problem, when calculating the perturbation in phase or group velocity caused by
perturbations in the material properties. Over a wide range of frequencies, phase
or group velocity can be expressed in terms of perturbations in material properties,
using the appropriate sensitivity kernels, whose formulation will be shown in section
3.2. To express the aforementioned relation in terms of the perturbed shear-wave ve-
locity, either the Poisson’s ratio and the density or the longitudinal velocity and the
density have to be considered fixed for the inversion process. By assuming constant
one of these two pairs of parameters, I obtain a relation between the perturbations
of phase and shear-wave velocity, and so I can proceed with the inversion for the
depth-dependent shear-wave velocity profile. Whatever the case may be, a linear
relation for the perturbed phase or group velocity and the perturbed shear-wave
velocity is found, related by the equivalent kernel, which is a weighted sum of the
kernel properties. The inversion method is based on the algorithm of total inversion
[7], and the solution is regularized on the basis of weighted-damped least squares.

The second part of this work consists of synthetic tests and an application to
real dispersion curves, as described in Chapter 4 and 5, respectively.

In the first section of Chapter 4 are presented the contributions of S-wave ve-
locity, P-wave velocity and density to the Rayleigh-wave phase velocity over a wide
frequency range.

Following this simple forward problem test, I present a series of tests simulating
the oceanic crust. This is the case whenever applying surface-wave inversion with
ocean bottom seismometers [8]. In this case the initial model is a smooth rapresen-
tation of CRUST 1.0 [9], for the chosen cell. The tests consist of variations in the
frequency range, in the thickness of the layered system and in the initial model. In
some cases fundamental mode and first overtone phase velocities are jointly inverted.

In the last Chapter, the linearized inversion is applied to the ambient noise
database from the work of Molinari et al.[2]. Ambient seismic noise is mainly dom-
inated by surface waves, and with the appropriate data processing, one can obtain
information on the propagation properties of the wavefield [26]. Cross-correlation is
applied to the vertical component of the seismic records from pairs of stations, and
with the two-station method the phase-velocity is obtained. The initial model, that
I use, for the crustal part is the average of the 500 best-fitting models, resulting from
the inversion of the same work. The upper-mantle parameter values are equal to the
PREM model values. Initially, the code is tested to the fundamental mode phase
velocity data for a few sample cells in Northern Alpine and so, the 1D shear-wave
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velocity structure is obtained. Next, the inversion is applied to data obtained all
over the Italian peninsula and the Alps. The database is dense enough to construct
the 3D shear-wave velocity maps over the entire region. The differences in shear-
wave velocity structure between the different existent types of crust (oceanic crust,
foreland basin, orogen crust) are well-imaged for different depth domains. The 3D
maps obtained by the linearized inversion are consistent with the maps of the work
of Molinari et al. [2], wherever exists sufficient resolution. This kind of study has a
vital role for the better understanding of the evolution of the lithosphere in complex
earth structures, like the ones existent around the Mediterranean region.

In the concluding part of the thesis, the inversion method is repeated to dis-
persion curves for some sample cells, that belong to the same database as before,
but this time a different a priori model is used. This particular initial model is the
result of a nonperturbational inversion method [10] applied to the same data that
are subsequently inverted following the perturbational theory. The idea behind the
aforementioned inversion originates from the Dix formula, often applied in reflection
seismology: in a series of flat, parallel layers the stacking velocity of a layer equals
the root mean square (rms) velocity of the layers that overlay the inteface of that
layer, weighted by traveltimes. Surface wave velocity can be considered as the stack-
ing velocity and shear-wave velocity as the interval velocity. The Dix-type inversion
can be made by assuming propagating Rayleigh waves mapped by different cases
of the shear-wave profile. In order to seek the best choice of the nonperturbational
inversion parameters, the resulting 1D shear-wave velocity structure is compared
with the best solution model [2].
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Part I

Theoretical Aspects
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Chapter 1

Seismic Waves

In physics there are two kinds of waves, progressive and standing. Seismic waves
are also divided into these two categories. Progressive elastic waves travel away
from the seismic source and through the layers of the Earth. Standing waves, also
known as Earth’s free oscillations, can be imagined as vibrations produced by large
earthquakes.

The two principal types of progressive elastic waves, according to the spatial
concentration of energy, are the body waves, which propagate in the interior of
the medium and the surface waves, concentrated at the surface. The latter can
be divided into longitudinal and transverse waves and Rayleigh and Love waves,
respectively.

Studying the body waves has probably provided with the most important in-
formation about the constitution of the Earth’s interior [11]. The structure of the
crust, mantle and core is the result of body wave studies.

Surface waves studies are important as well. They usually have the largest
amplitude on a seismogram, and can contribute greatly to the damaging effects that
an earthquake might produce. In addition to this, problems such as the existence
and structure of the low-velocity zone between the lithosphere and the asthenosphere
in the upper mantle, the discrimination between continental and oceanic crust, the
determination of the crustal properties and its lateral inhomogeneities can be faced
by studying the surface waves.

In this work, I will only deal with Rayleigh wave. The physics and the main
properties of this kind of waves are introduced in the following paragraphs, framed
in a greater theoretical context of wave propagation.

1.1 Body Waves

As already mentioned, body waves are of two types:
1) Longitudinal waves, also called P (primary) waves, since they are the first

to appear on seismograms. During propagation, they cause the compression and
rarefaction of the material, not the rotation, and every particle moves from its
equilibrium position following the direction of the wave.

2) Transverse waves, also called in seismology S (secondary) waves. In contrast
to the P waves, the S waves cause the shearing and rotation of the material. The
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Figure 1.1: Medium deformation when longitudinal waves propagate from left to right [4].

particles move in direction perpendicular to the direction of the wave propagation
and there is no volume change.

Figure 1.2: Medium deformation transverse waves propagate from left to right [4].

For a homogeneous and isotropic medium the velocity of the P waves, α, and
the S waves, β, is given by the following formulas

α =

√
λ+ 2µ

ρ
, β =

√
µ

ρ
,

where µ, the shear modulus, and λ are the Lamé coefficients and ρ the density.
For λ = µ, Poisson’s relation, we obtain

α = β
√

3,

an often used simplification in seismology.
An important difference between the two types of waves is that, although they

both propagate into solid, only P waves propagate to liquid and gas, where µ = 0.

1.2 Surface Waves Theory

In a finite extent, or bounded, medium the surface waves are guided along its surface.
They are high amplitude, long-period waves that appear in a seismogram after the
P and S waves. There are two types of surface waves:

1) Love waves, which are the trapped SH waves near the surface of the Earth.
They are horizontally polarized and provoke the transverse particle motion, parallel
to the surface of the medium. Love waves, in contrast to the Rayleigh waves, cannot
propagate in a homogeneous half-space. The simplest medium structure, in which
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Figure 1.3: Deformation of the medium when Love waves propagate from left to right [4].

these waves can travel, can be when a homogeneous isotropic layer resides in a
homogeneous isotropic half-space.

2) Rayleigh waves, which represent the result of the interaction of the P and SV
waves. They are elliptically polarized in a plane vertical to the surface and parallel
to the direction of motion. In the next section, I will discuss in detail the properties
and the physics of these waves.

Figure 1.4: Deformation of the medium when Rayleigh waves propagate from left to right
[4].

An important characteristic of the surface waves, useful for my purpose, is the
dispersion: the fact that the velocity is a function of frequency. Surface wave arrivals
break up, or disperse, as they propagate away from the source: a sequence of wave
arrivals is created, depending on each wave frequency. This phenomenon is greatly
used in order to study the structure of the medium, which the waves have passed
through.

In the following, I will describe the important theoretical characteristics of the
Rayleigh waves which are important for the main part of this work.

1.2.1 Rayleigh Waves in a half-space

The simplest medium structure in which the existence of the Rayleigh waves can be
studied is a homogeneous isotropic half-space with a free surface. By following the
Stein and Wysession [12], I will present the related formulation.

First of all, a Cartesian coordinate system is defined with its (x,y) plane being
parallel to the surface of the medium and z axis being equal to 0 in the free surface
and positive into the medium.

Since Rayleigh waves is the combination of the P and SV waves, I shall write
their potentials respectively
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Figure 1.5: Particle motion and direction of propagation

φ = Ae−ikxrzei(ωt−kxx) (1.1)

ψ = Be−ikxszei(ωt−kxx) (1.2)

where ω is the frequency, kx the x component of the wave-number, A and B the

amplitudes, r = ( c
2
x

α2 − 1)
1
2 and s = ( c

2
x

β2 − 1)
1
2 , with cx being the so-called apparent

velocity along the x-axis.
In order to proceed, the appropriate boundary conditions must be derived. The

nature of the surface-wave problem requires energy to be trapped near the surface.
Consequently, the energy cannot propagate at large distances, while the free-surface
condition is still valid.

For the first boundary condition to be satisfied, I must impose decaying displace-
ment away from the surface, as z −→∞. That means that the equations for r and
s will take the following form:

r = −i(1− c2x
α2

)
1
2 , s = −i(1− c2x

β2
)
1
2 ,

as it is required for the cx to be less than the shear-wave velocity β.
For the free-surface boundary condition, I apply zero stress components, τzx =

τzz = 0 for z = 0. After expressing the stress components in terms of the potentials
and substituting appropriately for this problem, I obtain:

τzx(x, 0, t) = 0 = 2rA+ (1− s2)B (1.3)

τzz(x, 0, t) = 0 = [λ(1 + r2) + 2µr2]A+ 2µsB, (1.4)

where λ and µ are the Lamé coefficients.
The next step is expressing the 1.3 and 1.4 in terms of the velocities α, β and

cx, so as to obtain the following system for A and B,

2(
c2x
α2
− 1)

1
2A+ (2− c2x

β2
)B = 0 (1.5)

(
c2x
β2
− 2)A+ 2(

c2x
β2
− 1)

1
2B = 0 (1.6)

and find the cx velocity formula for the Rayleigh waves in a half-space.
I obtain the non-trivial solution of the system by setting its determinant equal

to zero,

(2− c2x
β2

)2 + 4(
c2x
β2
− 1)

1
2 (
c2x
α2
− 1)

1
2 = 0. (1.7)
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Considering a Poisson solid, the velocities α and β, satisfy the relation α2

β2 = 3,
and so the previous equation takes the below form

(
c2x
β2

)[
c6x
β6
− 8

c4x
β4

+ (
56

3
)
c2x
β2
− 32

3
] = 0. (1.8)

After rejecting the trivial solution of c2x
β2 = 0, which describes a static situation,

and since the term in square brackets is a third degree polynomial in c2x
β2 , I expect

four roots and accept only those which are less than 1 (trapped waves, cx < β).
And so, the apparent velocity of Rayleigh waves for a homogeneous half-space,

which is also a Poisson solid, is
cx = 0.92β.

Substituting this result to the equations of the potentials 1.1 and then solving for
the equations of the displacement for x and z components, will provide information
about the polarization of the Rayleigh waves. When they propagate in the +x
direction, the particle motion is a retrograde ellipse.

The demonstration just illustrated describes a particular case of the surface
waves, the non-dispersive one. Although highly didactic, considering the Earth as
a homogeneous half-space is not realistic and so, the investigation of problems rep-
resenting more complicated media and structures is of high priority in Geophysics.
The Rayleigh waves in such media are dispersive, as will be discussed in detail in
the next section.

1.2.2 Rayleigh waves in a layer over a halfspace

The problem of Rayleigh-wave propagation in a layer over a half-space represents a
simple but still quite realistic case in the Earth and it is quite simple to algebraically
solve the equation of motion. The properties and physics of the Rayleigh waves
propagating in such media will be investigated in detail, by following Novotný [13].

Let’s consider the structure presented in figure 1.6. The parameters are the same
as in the previous section, with the only difference the index 1 and 2, which refers
to the layer and half-space, respectively. In addition to this, I will assume that the
layer thickness is equal to H and that α1 < α2 and β1 < β2.

Figure 1.6: Layer over a halfspace

A harmonic plane wave is propagating along the x-axis with a phase velocity c,
an angular frequency ω and polarization plane the (x, z). Then, the displacement
vector can be written as,

11



um = (um, 0, wm),m = 1, 2 (1.9)

with no dependence of the y coordinate.
In order to solve for the displacement field, I should seek for the potentials, as

the first can be described in terms of the second by the following relations,

um =
∂φm
∂x
− ∂ψm

∂z
, wm =

∂φm
∂z

+
∂ψm
∂x

. (1.10)

The potentials, represented in this case, take the form

φm(x, z, t) = fm(z)eiω(t−
x
c
), ψm(x, z, t) = gm(z)eiω(t−

x
c
), (1.11)

where the velocity c is the same in both media and for both potentials.
The 1.11 must satisfy the wave equations,

∇2φm =
1

α2
m

∂2φm
∂t2

,∇2ψm =
1

β2
m

∂2ψm
∂t2

, (1.12)

from which, after omitting some simple algebraic calculations, we may obtain
the following expression for fm(z) and gm(z),

fm(z) = a−me
ikrmz + a+me

−ikrmz, gm(z) = b−me
iksmz + b+me

−iksmz, (1.13)

where k = ω
c
, rm and sm are the characteristic lengths defined in 1.2.1, and a+,−m ,

b+,−m are arbitrary constants.
For the energy to be trapped near the surface of the layer, I must again assume

that
r2 = i(1− (

c

α2

)2)
1
2 , s2 = i(1− (

c

β2
)2)

1
2 ,

and so, c < β2 < α2. In addition to this, we must also impose a+2 = b+2 = 0 because
increasing exponentially terms in the half-space cannot exist.

At this point, and after writing the formulas 1.13 in a more convenient way, we
get

f1(z) = A cos kr1z +B sin kr1z, f2(z) = Ceikr2(z−H)

g1(z) = D cos ks1z + E sin ks1z, g2(z) = Feiks2(z−H).
(1.14)

The constants in the 1.14 are equal to

A = a−1 + a+1 , B = i(a−1 − a+1 ), C = a−2 e
ikr2H

D = b−1 + b+1 , E = i(b−1 − b+1 ), F = b−2 e
iks2H

(1.15)

Substituting in 1.11 will give the following relations for the layer and the halfs-
pace,

φ1 = (A cos ξ +B sin ξ)ei(ωt−kx), φ2 = Ce−ζei(ωt−kx)

ψ1 = (D cos η + E sin η)ei(ωt−kx), ψ2 = Fe−χei(ωt−kx)
(1.16)

12



where ξ = kr1z, η = ks1z, ζ = −ikr2(z −H), χ = −iks2(z −H).
After differentiating the potentials, which are given by 1.16, according to the

1.10, I obtain the formulas for the corresponding displacements,

u1 = −k[i(A cos ξ +B sin ξ) + s1(−D sin η + E cos η)], u2 = −ik(Ce−ζ + s2Fe
−χ),

w1 = −k[r1(A sin ξ −B cos ξ) + i(D cos η + E sin η)], w2 = ik(r2Ce
−ζ − F−χ).

(1.17)

I will use the same expressions for the potential, in 1.16, to find the stress
components, whose general formulas for the P − SV problems are

τzx = µ

(
2
∂2φ

∂x∂z
+
∂2ψ

∂x2
− ∂2ψ

∂z2

)
,

τzz =
λ

α2

∂2φ

∂t2
+ 2µ

(
∂2φ

∂z2
+

∂2ψ

∂x∂z

)
,

τzy = 0.

(1.18)

So, substituting the 1.16 into the 1.18 will give

(τzx
)
1

= ρ1ω
2[iγ1r1(A sin ξ −B cos ξ)− δ1(D cos η + E sin η)],

(τzz
)
1

= ρ1ω
2[δ1(A cos ξ +B sin ξ) + iγ1s1(D sin η − E cos η)],

(τzx
)
2

= ρ2ω
2(γ2r2Ce

−ζ − δ2Fe−χ),

(τzz
)
2

= ρ2ω
2(δ2Ce

−ζ + γ2s2Fe
−χ),

(1.19)

with γm = 2(βm
c

)2 and δm = γm − 1.
Undoubtedly, I need to determine the six unknown constants, from A to F . This

will occur after considering the appropriate boundary conditions at the free surface
and at the discontinuity created between the layer and the half-space.

The first one requires zero stresses at the free surface,

(τzx
)
1

= 0, (τzz
)
1

= 0 for z = 0

while the second one demands the continuity for both displacement and stress field
at the interface,

u1 = u2, w1 = w2, (τzx
)
1

= (τzx
)
2
, (τzz

)
1

= (τzz
)
2
for z = H.

The use of the boundary conditions leads to the following system of six homo-
geneous equations in six unknown constants, A to F ,

iγ1r1B + δ1D = 0,

δ1A− iγ1s1E = 0,

i(A cosP +B sinP )− s1(D sinQ− E cosQ)− iC − is2F = 0,

r1(A sinP −B cosP ) + i(D cosQ+ E sinQ) + ir2C − iF = 0,

iγ1r1(A sinP −B cosP )− δ1(D cosQ+ E sinQ)− ργ2r2C + ρδ2F = 0,

δ1(A cosP +B sinP ) + iγ1s1(D sinQ− E cosQ)− ρδ2C − ργ2s2F = 0.

(1.20)
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Please note that the first two equations come from the implementation of the
first boundary condition into the first two expressions of the 1.19, while the rest of
them come from applying the second boundary condition into the 1.17 and 1.19.

For the sake of simplicity, I have substituted with P = kr1H, Q = ks1H and
ρ = ρ1

ρ2
.

To have a non-trivial solution of the linear system in 1.20 I need to set its
determinant equal to zero. In this case, I obtain the dispersion equation for the
unknown phase velocity c.

Solutions obtained directly by solving for the condition that the sixth order
determinant equals zero can be found in the literature. However, in this work
following Novotný [13], I will try to solve a lower order determinant by reducing the
number of equations of the system 1.20 from six to four.

In order to do so, I modify properly the first two equations of the system 1.20
with the purpose of eliminating the constants B and E from the rest of them.

So, if

B = i
G

r1
D, E = −iG

s1
A, withG =

δ1
γ1

then, the new expression of the dispersion equation will be the third-order de-
terminant of the following four equations system,

iA(cosP −G cosQ)−D(Gr−11 sinP + s1 sinQ)− iC − is2F = 0,

A(r1 sinP +Gs−11 sinQ)− iD(G cosP − cosQ) + ir2C − iF = 0,

iA(γ1r1 sinP + δ1Gs
−1
1 sinQ) + δ1D(cosP − cosQ)− ργ2r2C + ρδ2F = 0,

Aδ1(cosP − cosQ) + iD(δ1Gr
−1
1 sinP + γ1s1 sinQ)− ρδ2C − ργ2s2F = 0.

(1.21)

Multiplying the second and the forth of the equations 1.21 by i and −i respec-
tively, will define two new unknowns, Ã = iA and C̃ = −iC. If the determinant of
the system for the unknowns Ã, D, C̃ and F equals zero, the non-trivial solution
will be found,

∣∣∣∣∣∣∣∣∣
cosP −G cosQ −Gr−11 sinP − s1 sinQ 1 −is2

r1 sinP +Gs−11 sinQ G cosP − cosQ −ir2 1
γ1r1 sinP + δ1Gs

−1
1 sinQ δ1(cosP − cosQ) −ir2ργ2 ρδ2

−δ1(cosP − cosQ) δ1Gr
−1
1 sinP + γ1s1 sinQ −ρδ2 iργ2s2

∣∣∣∣∣∣∣∣∣ = 0

(1.22)

By using the Laplace Expansion Theorem, the determinant 1.22 is represented
by

L1H1 + L2H2 + L3H3 + L4H4 + L5H5 + L6H6 = 0, (1.23)

where L1 to L6 are the six minors of the second-order derived by the first two
columns of the 1.22 and H1 to H6 the equivalent co-factors formulated by the last
two columns of the aforementioned. This particular development is chosen due to
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the fact that the first two columns represent the quantities of the layer, while the
last two columns represent the quantities of the half-space.

In particular, and if aij is the element in the i-th row and j-th column of the
matrix in 1.22, we calculate the minors

L1 =

∣∣∣∣∣a11 a12
a21 a22

∣∣∣∣∣ = 2G− (1 +G2) cosP cosQ+ r1 sinPs1 sinQ+G2r−11 sinPs−11 sinQ,

L2 =

∣∣∣∣∣a11 a12
a31 a32

∣∣∣∣∣ = δ1[(1 +G)(1− cosP cosQ) +G2r−11 sinPs−11 sinQ] + γ1r1 sinPs1 sinQ,

L3 =

∣∣∣∣∣a11 a12
a41 a42

∣∣∣∣∣ = cosPs1 sinQ+G2 cosQr−11 sinP,

L4 =

∣∣∣∣∣a21 a22
a31 a32

∣∣∣∣∣ = G2 cosPs−11 sinQ+ cosQr1 sinP,

L5 =

∣∣∣∣∣a21 a22
a41 a42

∣∣∣∣∣ = L2,

L6 =

∣∣∣∣∣a31 a32
a41 a42

∣∣∣∣∣ = δ21[2(1− cosP cosQ) +G2r−11 sinPs−11 sinQ] + γ21r1 sinPs1 sinQ.

(1.24)

For the co-factors, I have respectively

H1 =

∣∣∣∣∣a33 a34
a43 a44

∣∣∣∣∣ = ρ2(δ22 + γ22r2s2),

H2 = −

∣∣∣∣∣a23 a24
a43 a44

∣∣∣∣∣ = −ρ(δ2 + γ2r2s2),

H3 =

∣∣∣∣∣a23 a24
a33 a34

∣∣∣∣∣ = iρr2,

H4 =

∣∣∣∣∣a13 a14
a43 a44

∣∣∣∣∣ = iρs2,

H5 = −

∣∣∣∣∣a13 a14
a33 a34

∣∣∣∣∣ = H2

H6 =

∣∣∣∣∣a13 a14
a23 a24

∣∣∣∣∣ = 1 + r2s2.

(1.25)

Please note that, in order to be a co-factor, a minor has to be multiplied by
(−1)i+j+k+l, where i, j, k, l represent the corresponding rows and vectors. That is
why there is a − sign in H2 and H5.
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Finally, if I substitute L5 = L2 and H5 = H2 into the dispersion equation 1.23,
I obtain

L1H1 + 2L2H2 + L3H3 + L4H4 + L6H6 = 0, (1.26)

which is rather simple. Furthermore, for the simplification and calculation of
the minors, some trigonometric properties can be taken into considerations, such as
cos2 x+ sin2 x = 1.

One can follow a similar treatment for the case of Rayleigh waves in a multilayer
medium, which constitutes the representation of the system divided in n discrete
layers, together with the equivalent boundary conditions.

1.3 Dispersion of Surface Waves

Dispersion of waves can be of two types:

� material or physical dispersion and

� geometrical dispersion.

The material dispersion, as its name indicates, is closely related to the nature and
the physical properties of the material, or medium, in which the waves propagate.
In the case of the Earth, the material dispersion causes the attenuation of the elastic
waves.

On the other hand, the geometrical dispersion is the result of the interference of
waves. This is the kind of dispersion that happens to waves, when they propagate
to media with complicated structure. It is easy to understand why geometrical
dispersion is frequently studied for surface waves.

1.3.1 Phase and Group Velocity

The dispersion of surface waves is related to the dependence of the phase velocity on
frequency. Consequently, surfaces wave propagation is characterised by frequency-
dependent phase and group velocities.

In order to study their difference, I will first express the displacement field u(x, t)
as an integral over harmonic plane waves of all frequencies ω,

u(x, t) =

∫
A(ω) exp i[ωt− k(ω)x+ φ(ω)]dω, (1.27)

where the wavenumber k(ω) and the amplitude A(ω) depends on the angular
frequency ω. The argument of the exponential function in 1.27 consists of two
terms, ωt− k(ω)x and φ(ω). From the first term I can define the phase velocity

c(ω) =
ω

k(ω)
(1.28)

for every angular frequency.
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The second term, φ(ω), can be interpreted as the initial phase of the wave when
it was generated.

The individual harmonic waves that produce the displacement in 1.27 propagate
with different phase velocities c(ω), which will also be different from the velocity of
the wave packet.

In order to express the displacement both in terms of phase and group velocity,
which actually represents the velocity of the propagation of energy, we expand the
wavenumber k(ω) about ω0 in Taylor series,

k(ω) = k(ω0) +
dk

dω

∣∣∣∣
ω0

(ω − ω0) (1.29)

and substitute it to the 1.27. I obtain

u(x, t) =

∫ ω0+dω

ω0−dω
A(ω) exp

[
i
(
(ω − ω0)

(
t− dk

dω

∣∣∣∣
ω0

x
)

+ (ω0t− k(ω0)x) + φ(ω)
)]
dω.

(1.30)
The first two terms of the exponential correspond to propagating waves with

different velocities. The term (ω0t−k(ω0)x) describes the propagation of the carrier

wave at frequency ω0 with velocity c(ω0) = ω0

k(ω0)
. The term

(
t− dk

dω

∣∣∣
ω0

x
)

describes

a slowly varying envelope that propagates with a velocity U(ω0) = dω
dk

∣∣∣
ω0

.

It is straightforward to show that by expanding for a wide frequency band will
give the group velocity as a function of angular frequency,

U(ω) =
dω

dk
. (1.31)

The phase and group velocities are related to

U = c+ k
dc

dk
(1.32)

or in terms of wavelength

U = c− λ dc
dλ
. (1.33)

Note that for a non-dispersive wave the group velocity equals the phase velocity.
In general, for a typical Earth profile the phase velocity is always faster than the

group velocity, and increases monotonically. Alternatively, the group velocity can
increase or even decrease with an increasing period.

1.3.2 Dispersion Curves

We have pointed out that the surface waves propagate along the surface of the Earth,
with a ‘skin-depth’ that depends on the wavelength. Longer wavelengths penetrate
deeper than shorter wavelengths and so, are more sensitive to the elastic properties
of the deeper layers. On the contrary, short wavelengths ‘see’ the superficial layers.
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Approximately, the depth up to which the medium is affected by the propagation of
the wave is equal to a wavelength, and it is connected with the exponential decay of
the particle motion. As a consequence, when considering the surface wave propaga-
tion in vertically heterogeneous media, it is expected that based on the frequency,
they will involve different layers and so, the phase velocity will depend upon their
mechanical properties. The surface wave velocity depends on the frequency, and
this kind of plot is called dispersion curve 1.7 (a).

Phase and group velocity (for various periods) can be measured directly from
the seismograms using different measurement techniques. One of the main interest
in seismic tomography is to build an Earth model able to fit the observed surface
wave dispersion. A common approach is to calculate theoretical dispersion curves
for a given Earth model and compare them with the measured dispersion. A key
point is to quantitatively understand which part of the Earth model (parameters as
a function of depth) needs to be adjusted in order to fit the observed dispersion.
For that, sensitivity kernels are calculated in order to map the relationship between
phase and group velocities and the Earth structure. They determine the impact
of changing the structure at a certain depth on the velocity of the waves 1.7 (b).
Sensitivity kernels are equal to the partial derivatives of the Rayleigh phase and
group velocity, usually with respect to the model parameters (like S-wave velocity,
P-wave velocity, density) at different depths. The sensitivity of the surface wave
velocities differs in amplitude and shape (as a function of parameter depths) for
the various elastic parameters: for a fixed period, the sensitivity is maximum for
S-wave speed and (usually) negligible for P-wave speed and density. This point will
be better discussed in Chapters 4 and 5. The sensitivity kernels are used to invert
the dispersion curves for shear-wave velocity profiles.
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(a)

(b)

Figure 1.7: (a)Dispersion curves for phase (blue) and group (black velocity data. (b)
Sensitivity kernel for phase velocity. The frequency range is 0.1− 0.65 Hz. Low-frequency
kernels are peaked in deep depths, while high-frequency kernels in shallower depths.
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Chapter 2

Forward Study for Rayleigh waves

Various methods of numerically calculating Rayleigh wave velocities for layered me-
dia can be found in the literature. A well-known method is the Thomson-Haskell
Matrix Method [14], which seeks for the roots of the polynomial, formed by the calcu-
lation of the non-trivial solutions of the determinant of a square matrix, |a(ω, k)| = 0,
similar to the one presented in 1.2.2. According to the demonstration in 1.2.2, the
roots are expected to be a function of the wavelength, k, and the angular frequency,
ω.

Although, this way of handling the forward problem has been studied extensively
by many scientists ([15],[14]) Haney and Tsai [1] suggest an other approach, which
is based on Lysmer’s work [6] and the Thin Layer Method by Kausel [16].

In this method, the forward problem turns out in a particular matrix formulation,
as the layered medium is consistent horizontally and discrete vertically and so, it
is represented by a finite-element system with given elastic properties. Then, the
inversion approach, which is an extension of the finite-element method, is developed
by perturbing the phase, or group, velocity in the material properties, which uses
the same matrices used in the forward study.

In the next two sections of this chapter, I will introduce the fundamental theory
behind the Thin Layer Method and some key points to take into consideration when
the problem is treated numerically.

2.1 Lumped Mass Method for Rayleigh Waves

In this section, by following Lysmer [6], I show the process of calculating dispersion
curves for Rayleigh waves.

Initially, the parametrization of the medium must be chosen. That means di-
viding the space into finite rectangular elements and assigning for each of them the
appropriate elastic parameters, such as density ρj, shear modulus µj and the other

Lamé coefficient λj =
2µjνj

(1−2νj) , noted the Poisson’s ratio νj.

In order to study this system, some assumptions must be made:

1. The mass is considered to be at the element corners, thus the name lumped
mass.

2. The displacement varies in the x and y direction according to
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Figure 2.1: On the right: Representation of the layered system, and left: displacement
and force field acting on corners between two elements

Ux = c1x+ c2y + c3xy + c4

Uy = c5x+ c6y + c7xy + c8
(2.1)

with cs s = 1, ...8 being arbitrary constants.

3. All forces are applied at the element corners.

The forces and the displacements can be represented by the vectors

{U} =


U1

U2
...
U8

 , {P} =


P1

P2
...
P8

 (2.2)

and are connected by the linear relationship,

{P} = [K]j{U} (2.3)

due to the initial assumptions. The link between the two variables is an 8 × 8
symmetric matrix, that is called element stiffness matrix and whose elements are
a function of the elastic constants. The matrix will not be presented in its initial
formulation, but I will derive a 4× 4 version of it during this demonstration.

For a plane harmonic wave propagating in the x-direction I can define,
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Ux = ux(y) exp i(ωt− kx)

Uy = iuy(y) exp i(ωt− kx),
(2.4)

with c = ω
k

the phase velocity. For two adjacent elements A and B (figure 2.1 and
2.2), the displacement vectors are respectively,

Figure 2.2: Displacements for the adjacent elements A and B

{U}A =



u2j+1 exp(ikh)
iu2j+2 exp(ikh)

u2j+1

iu2j+2

u2j−1
iu2j

u2j−1 exp(ikh)
iu2j exp(ikh)


= [E]{u}j (2.5)

{U}B = {U}A exp (−ikh) = exp (−ikh)[E]{u}j. (2.6)

I have been also defined a simple matrix, [E],

[E] =



0 0 eikh 0
0 0 0 ieikh

0 0 1 0
0 0 0 i
1 0 0 0
0 i 0 0
eikh 0 0 0
0 ieikh 0 0


(2.7)

and the so-called layer displacement vector, which corresponds to the displace-
ment of the j-th layer,
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{u}j =


u2j−1
u2j
u2j+1

u2j+2

 . (2.8)

Since the displacement vector is known, I expect to find the equivalent force vec-
tor for the two masses being at the corners of the sharing side of the elements A and
B, namely mj and mj+1. This will happen by combining properly the expressions in
2.3 and 2.5 and again by consulting the figures 2.1 and 2.2. Consequently, I obtain

Q2j−1,j = {K5}{U}A + {K7}{U}B = ({K5}+ {K7} exp(−ikh))[E]{u}j
iQ2j,j = {K6}{U}A + {K8}{U}B = ({K6}+ {K8} exp(−ikh))[E]{u}j
Q2j+1,j = {K3}{U}A + {K1}{U}B = ({K3}+ {K1} exp(−ikh))[E]{u}j
iQ2j+2,j = {K4}{U}A + {K2}{U}B = ({K4}+ {K2} exp(−ikh))[E]{u}j

(2.9)

where {Kr} represents the r-th row of [K]j.
Following the same path as in 2.8, the layer force vector is defined by

{Q}j =


Q2j−1,j
Q2j,j

Q2j+1,j

Q2j+2,j

 (2.10)

and so a similar to the 2.3 relation can be found for the 2.9,

{Q}j = [L]j{u}j, (2.11)

where [L]j (fig. 2.3) is a reduced layer stiffness matrix 4×4, real and symmetric,
whose elements are in function of the same elastic properties as [K]j.

In order to generalize for an n layer system, I shall write the displacement and
force vector as,

{u} =


u1
u2
...
u2n

 , {Q} =



Q1

Q2

Q3

Q4
...

Q2n−1
Q2n


=



Q1,1

Q2,1

Q3,1 +Q3,2

Q4,1 +Q4,2
...

Q2n−1,n−1 +Q2n−1,n
Q2n,n−1 +Q2n,n


(2.12)

Here as well, a relation of the form

{Q} = [K]{u} (2.13)

can be defined by the relations 2.11 and 2.12. It is a 2n× 2n matrix.
Newton’s second law for the mass mj is, for x and y direction respectively
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Figure 2.3: A schematic way to relate the matrix [K]j with [L]j . The elemenents outside
[K] are not used.

−ω2u2j−1mj = −Q2j−1

−iω2u2jmj = −iQ2j.
(2.14)

Rewriting 2.14 in a generic form for the 2n equations of motion will give

ω2[M ]{u} = {Q} (2.15)

with [M ] being a 2n× 2n diagonal mass matrix, with terms[
m2j−1,2j−1
m2j,2j

]
= mj, j = 1, . . . , n. (2.16)

At this point, a clear link exists between 2.13 and 2.15, and so I will substitute
the first expression to the second expression and obtain the following eigenvalue
problem in terms of the unknown displacements {u}

([K]− ω2[M ]){u} = {0} (2.17)

A further simplification may occur in case of introducing the vector {ν}, defined

by {u} = [M ]
−1
2 {ν},

([B]− ω2[I]){ν} = {0}, (2.18)

with [B] = [B(k)], a real symmetric matrix with elements bij = kij/
√
mimj.

I expect 2n real positive eigenvalues ω2
i , and the associated {ν}i eigenvectors to

form the solution of the 2.18.
Summarizing, Lysmer [6] proposes that for a given value of the wave number

k and with the appropriate choice of the matrix [K], which is properly modified
to the matrix [B], the eigenvalue problem in 2.18 is solved and for each mode, the
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frequency ωi and thus, the phase velocity ci can be found. Every pair of (ωi, ci)
forms the 2n dispersion curves.

2.2 Forward numerical modeling

Although the forward solver of Haney and Tsai [1] used in the present work is primar-
ily based on Lysmer’s [6] approach discussed in 2.1, there are some key differences
worth noting.

The Rayleigh-wave eigenfunction is represented by a system of N linear finite
elements and the corresponding physical properties by boxcar functions, similar to
the figure 2.4.

Figure 2.4: Displacements for the adjacent elements A and B

While there are N elements in the grid, exists N + 1 nodes: that is chosen to
be in accordance with Nolet’s locked mode approximation [17], which treats the last
layer as a perfect reflector, meaning that there is no response coming from the rigid
bottom.

A similar to 2.18 eigenvalue problem can be found, if

v = [. . . rK−11 , rK−12 , rK1 , r
K
2 , r

K+1
1 , rK+1

2 . . .]T (2.19)

withK representing the number of element and r1 and r2 being the eigenfunctions
representing the horizontal and vertical nodal displacements respectively, and so

(k2B2 + kB1 + B0)v = ω2Mv. (2.20)

In the 2.20, the B0, B1, B2 represent the stiffness matrices, which are real and
symmetric and similarly to Lysmer [6] depend on the elastic properties ρ, λ and
µ but are developed as Kausel [16]. The way to calculate them is presented in
Appendix A.

As claimed by Haney and Tsai [1], instead of solving in terms of the angular
frequency for a known wavenumber, usually a more reasonable treatment of the
problem would be solving in terms of the wavenumber.

This leads in reformulating the problem as
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kB2a = ω2Mv −B1a−B0v (2.21)

where a = kv, a variable which facilitates the calculation.
So, the generalized linear eigenvalue problem to be solved is

k

[
I 0
0 B2

][
v
a

]
=

[
0 I

ω2M−B0 −B1

][
v
a

]
. (2.22)

As soon as the above calculation is done for a given mode, the group velocity
may also be computed by perturbing both wavenumber k and frequency ω, while
the stiffness matrices should stay as they are. Hence, the formula is

U =
δω

δk
=

vT (2kB2 + B1)v

2ωvTMv
. (2.23)

Some further key elements regarding the forward modeling to be made are the
accuracy and whether a mode is guided or not for a given frequency in a certain
depth.

The accuracy problem is bounded to the sensitivity depth of Rayleigh waves.
Haney and Tsai [1] have noticed that for a specific mode the sensitivity depth can
be found by 0.5mλ, where m = 1, 2, . . . represents the fundamental mode, first
overtone etc. Numerically, this can be controlled by appropriately defining the total
depth of the model and the thickness of the elements.

The depth of the model must be large enough in order to satisfy the already
mentioned locked-mode approximation, which is equivalent to the “vanishing con-
dition at infinite depth”. This demands the total depth, H, to be greater than
the maximum wavelength, which may also correspond to the maximum sensitivity
depth,

H > mλ, (H > 2zmax). (2.24)

Regarding the thickness of the elements, hN , the wavelength must be larger (in
the present work five times) than the elements’ thickness in order to sample properly
at each depth,

λ > 5hN . (2.25)

For the exclusion of the non-guided modes, the vertical component of the nodal
displacements is compared to a linear function decreasing from the surface to the
bottom of the model. More precisely, the model is divided in two halfs: then, for
the linear function, the ratio of the depth integral for the first half (0 to H/2) to
the depth integral for the second half (H/2 to H) is required to be equal to three.
If the equivalent ratio for an eigenvector is less than three, which means that is not
decaying fast enough, then it is considered as non-guided.
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Chapter 3

Inverse Problem Theory

In Chapter 2, I have seen how to deal with the forward problem: from the shear-wave
velocity structure to the Rayleigh-wave dispersion curves. So, if Earth’s structure
is assumed known and by using the propagation theory, the data can be predicted.

The inverse problem, as its name suggests, is working backwards. From the data,
which, in my case, are the observed Rayleigh-wave phase velocities as a function
of period (dispersion curves), I need to find the realistic velocity structure that
predicts the data. This problem is commonly faced by solving the inverse problem
which can be formulated with different approaches. For instance, in this work two
different inversion methods are used: the perturbational method for the iterative
improvement of an initial model, and the nonperturbational method which might
provide a good initial model (to be further improved by the perturbational method).

In the next two sections, I will give the basic theory of the Inverse Problem,
following the statistical approach defined by the Bayesian framework introduced
by Tarantola [18], together with the perturbational approach, by Haney and Tsai
[1], used at the data analysis part of this thesis. The last section is about the
nonperturbational method, which originates from the Dix formula [1].

3.1 Bayesian formulation for inverse problems

Solving an inverse problem means to seek for a solution of the following system,

d = g(m) (3.1)

where d are the data, m the model parameters to be found and g the forward
operator.

In order to do that, I first have to solve the forward problem, in which by starting
from an estimated model, we predict what the observations should be.

The solution of the inverse problem comes from the minimization of the misfit
of a functional which represents the differences between the observations and the
predictions. This is a deterministic point of view.

Since, in general the predicted values are different from the observed ones due to
uncertainties in measurements and modelization, the best way to describe any state
of information is by probability densities.
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For this reason, a probabilistic form of the 3.1 is needed [18], which will connect
the physical theory, the information on the model and the measurements (data).

The theoretical state of information can be represented by the joint probability
density Θ(d,m) which provides the existent correlations in the physical theory. As
for every joint probability density can be expressed by the product of a marginal
and a conditional, I can write,

Θ(d,m) = θ(d|m)µM(m) (3.2)

where µM(m) is the homogeneous probability density as marginal for the model
parameters and θ(d|m) the probability density of d given m.

At this point, one can assume different types of probabilistic model to express the
conditional probability density in the 3.2. If Gaussian uncertainties with covariance
matrix CT are assumed then we obtain,

Θ(d,m) = const exp (−1

2
(d− g(m))TC−1T (d− g(m)))µM(m). (3.3)

Regarding the measurements, which depend on uncertainties, in order to find the
corresponding state of information, I first must know the statistics of the instrument
from which the measurements are obtained. Let us assume that for an input d of the
instrument, its output is dout. I then can define the conditional probability density,
ν(dout|d), for the dout values given d.

If I assume a linear data space (which means that µD(d) is constant), the joint
probability density can be written

f(dout,d) = µD(d)ν(dout|d). (3.4)

Also, if dout = dobs, then the conditional probability density to obtain d when
the observed values are dobs is

ρD(d) = f(d|dobs) =
µD(d)ν(dobs|d)∫

D
ddµD(d)ν(dobs|d)

(3.5)

Again, I assume Gaussian uncertainties with CD the covariance matrix and ob-
tain,

ρD(d) = const exp (−1

2
(d− dobs)

TC−1D (d− dobs)). (3.6)

The prior information of the model parameters, has no connection to the data.
If there is no kind of a priori information then,

ρM(m) = µM(m) (3.7)

where µM(m) is the model parameters’ homogeneous probability density.
On the other hand, if it is of Gaussian type I obtain,

ρM(m) = const exp (−1

2
(m−mprior)

TC−1M (m−mprior)), (3.8)

where mprior is mean of the distribution and CM the covariance matrix.
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Let’s consider the probability density ρ(d,m), which express the information
that I have on model m and observable d parameters. This constitutes the a priori
information, which in combination with the probability density of the physical theory
Θ(d,m), can give the a posteriori state of information described by the probability
density σ(d,m). In other words, the conjuction of the two states of information
have produced,

σ(d,m) = k
ρ(d,m)Θ(d,m)

µ(d,m)
(3.9)

where µ(d,m) = µD(d)µM(m) and k a normalization constant.
Fron the equation 3.9, I can find the posterior information on the model param-

eters m, through the marginal probability density,

σM(m) =

∫
D

ddσ(d,m). (3.10)

As mentioned above, the information for the data has been obtained indepen-
dently of the information of the model parameters and thus, I can write

ρ(d,m) = ρD(d)ρM(m) (3.11)

This, together with the equations 3.2 and the µ(d,m) = µD(d)µM(m) can reduce
the model posterior information in

σM(m) = kρM(m)

∫
D

dd
ρD(d)θ(d|m)

µD(d)

= kρM(m)L(m)

(3.12)

where L(m) is the so-called likelihood function, which describes how well a model
m is in interpreting the data d.

In order to proceed, one must know whether the forward problem is linear or
not.

In the first case, where d = Gm, and if the equations 3.3, 3.6 and 3.8 are
still valid, I expect to obtain a Gaussian posterior probability density as well. The
solution will be the one ms that minimizes the misfit function,

2S(m) =‖Gm− dobs‖2D +
∥∥m−mprior

∥∥2
M

(3.13)

meaning that ms and Gms are close to mprior and dobs respectively.
For a nonlinear problem, d = g(m), σM(m) is not Gaussian.
For certain problems though, the forward equation can be linearised around

mprior and then σM(m) will be approximately Gaussian, and the solution will be
equivalent to the one of the linear problem.

In case of non-linearity, iterative algorithms are preferred. They converge to
an optimal point after some iterations. An example of this case is the inversion of
surface wave dispersion curves.
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3.2 Perturbational Inversion

The perturbational inversion approach that is used in the present work is proposed
by Haney and Tsai [1] and is based on the perturbation of the material proper-
ties and wavenumber while maintaining fixed the frequency [15]. This is how the
perturbations in phase velocity are calculated and given by,

δc

c
=

1

2k2UcvTMv

( N∑
i=1

∂(k2B2 + kB1 + B0)

∂µi
vδµi

+
N∑
i=1

vT
∂(k2B2 + kB1 + B0)

∂λi
vδλi − ω2

N∑
i=1

vT
∂M

∂ρi
vδρi

)
(3.14)

The formula 3.14 indicates how a perturbation in the model parameters affects
the phase velocity. Basically, the inverse problem is solved together with the for-
ward problem: first, the predicted phase velocity data are calculated from an initial
model, and then the appropriate model perturbations are found, which will bring
the predicted phase-velocity dispersion curve close to the observed one (real data).
The model perturbation, which after a number of iterations will fit accurately the
observations/data, is the resulting model from the whole inversion process.

The equation 3.14 applies to the mode of interest.
The stiffness matrices used in Chapter 2 for solving the forward problem are

exactly the same with those in equation 3.14. This great advantage is presented
clearly by using the matrix-vector notation.

By calculating the 3.14 for many frequencies and after defining the phase velocity
kernels for µ, λ and ρ, the above equation takes the form of

δc

c
= Kc

µ

δµ

µ
+ Kc

λ

δλ

λ
+ Kc

ρ

δρ

ρ
. (3.15)

Although, this is a linear relation between the perturbations in c and the three
material properties perturbations, I prefer to invert for shear wave velocity profiles,
because the change in shear-wave velocity produce great changes in Rayleigh-wave
velocity [5]. So, an equivalent perturbational relation between Rayleigh phase (or
group) and shear wave velocity is found.

The authors developed two ways to invert: the first one is to maintain fixed the
Poisson’s ratio and the density and the second one the P-wave velocity and density.

In the first case, I can use the following equations that describe the relative
perturbation in shear modulus and Lamé’s coefficient,

δλ

λ
= (

2α2

α2 − 2β2
)
δα

α
− (

4β2

α2 − 2β2
)
δβ

β
+
δρ

ρ
δµ

µ
= 2

δβ

β
+
δρ

ρ
.

(3.16)

For the Poisson’s ratio to be constant means that the P-wave to S-wave velocity
ratio will be constant as well (α/β = R) together with their relative perturbations
(δα/α = δβ/β).
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So, substituting in 3.15 we obtain,

δc

c
= 2(Kc

µ + Kc
λ)
δβ

β
= Kc,R

β

δβ

β
. (3.17)

The kernel Kc,R
β of the shear wave velocity is defined as twice the sum of the λ

and µ material kernels.
Again, the relations in 3.16 will be used, in order to proceed for the second case,

but first I will express them in matrix-vector notation,

δλ

λ
= D1

δα

α
−D2

δβ

β
+
δρ

ρ
δµ

µ
= 2

δβ

β
+
δρ

ρ

(3.18)

where D1 and D2 are matrices with entries in the main diagonal defined by the
initial relation.

Applying in the 3.18 for the two defining conditions gives,

δc

c
= (2Kc

µ −Kc
λD2)

δβ

β
= Kc,α

β

δβ

β
. (3.19)

In contrast to the first case, this result is a weighted sum of the involved kernels.
Needless to say that both resulting relations 3.17 and 3.19 are for perturbations

in phase velocity. Similar to these two relations can be obtained for group velocities
too [19],

KU
β = Kc

β +
Uω

c

∂Kc
β

∂ω
(3.20)

δU

U
= KU

β

δβ

β
. (3.21)

In the codes the absolute perturbations are used and so the perturbation kernels
can be written as,

Gc
β = diag(c)Kc

βdiag(β)−1. (3.22)

Solving this kind of inverse problem needs a sort of regularization in order to
obtain smooth and stable solutions. That means that both data and model must be
weighted properly. A good approach is the weighted-damped least square method
1, with which the calculation is made by two weighted matrices, one for the model
and one for the data (equation 3.24). A good choice for these weighted matrices is
the inverse of the equivalent covariance matrices 3.23. This implies that, data with
large variance are weighted less (not so accurate) than data with small variance
(more accurate) while for the model provides a way to control the distance from the
a priori model parameters.

1Weighted-damped least square method can be thought of as a weighted combination of
weighted minimum length solutions and weighted least squares [20], [21]
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Data and model covariance are given by

Cd(i, i) = σd(i)
2

Cm(i, j) = σ2
m exp (−

∣∣zi − zj∣∣ /d)
(3.23)

where σd(i) and σm is the data standard deviation and model standard deviation
respectively, zi − zj describes the distance between the i-th and j-th elements, and
d is the correlation length, which is chosen with respect to the desired extend of
smoothing. I will discuss more the choice of this parameter at the second part of
this thesis. The Cd is diagonal, which means that the data errors are uncorrelated.
The model standard deviation is calculated by multiplying a user-supplied factor
with the mean of the data standard deviation over all frequencies.

The algorithm of total inversion [7] is used to calculate the model updates βn,

[
C
−1/2
d

0

]
(U0 − f(βn−1) + Gβ(βn−1 − β0)) =

[
C
−1/2
d Gβ

C
−1/2
m

]
(βn − β0). (3.24)

The forward operator is f and the data are the U0. In this equation the top row
represents the data equation, while the bottom row the model equation: I note that
they appear symmetrically in the 3.24.

This damped inversion starts from an initial model and consecutively, calculates
its updates: at every iteration the dispersion curves and the partial derivatives are
computed in order to calculate the data discrepancy for the current update and
modify the model parameters accordingly. The total number of updates depends
upon the value of the chosen stopping criterion ,

χ2 = (f(βn)−U0)TC−1d (f(βn)−U0)/F (3.25)

which is the reduced χ2 with F being the number of measurements used. The
iterative process will stop at the n-th update model, which means that the current
χ2 value is less than a certain value, chosen by the user.

3.3 Nonperturbational inversion

The inversion method described in the previous section, improves efficiently any
initial model. However, not in all the Earth regions exist acceptable initial models.
Haney and Tsai [10] have extended the Dix equation, well-known in reflection seis-
mology for the determination of the velocities in the layered subsurface, in order to
construct shear-wave velocity profiles from phase or group velocity data. These 1D
profiles can then be used as initial models for nonlinear inversion.

If I consider a sequence of flat and parallel layers and all the potential reflections
made from it, the Dix equation provides the interval velocity of the n-th layer based
on the stacking velocities and the reflection arrival times. This is derived when
solving the equation 3.26 with the assumption of short offsets,

Vst,n =

√∑n
i=1 V

2
i ∆ti∑n

i=1 ∆ti
, (3.26)
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where Vst,n is the stacking velocity of the n-th interface, Vi is the velocity and
∆ti is the vertical two-way travel time through the i-th layer, which is a kind of
weighting.

The equation 3.26 can be extended to the surface waves by considering the phase
or group velocity as the stacking velocity and the shear-wave velocity as the interval
velocity for each layer (3.26). The weighting factor is a kernel, which is based on the
associated eigenfunctions of Rayleigh-waves. The counterpart of 3.26 in the surfaces
waves is,

c2 = Gβ2. (3.27)

It is straightforward to observe that the equation 3.27 is a direct and not some
kind of perturbative relation between the phase and the shear-wave velocity, in
contrast of the equations 3.17 and 3.19.

This inversion method is based on weighted-damped least squares, as it is in the
perturbative one. The covariance matrices for both model and data, are calculated
in the same manner. However, in this nonperturbative inversion code, in order to
best choose the correlation length and the model standard deviation factor (3.23), an
appropriate range for both parameters needs to be defined over which the inversion
problem is solved. The initial model is the average of all models, resulting from the
nonperturbational inversion, that fall into the acceptable χ2 window, supplied by
the user.

The linear inversion scheme is given by[
C
−1/2
d G

C
−1/2
m

]
β2 =

[
C
−1/2
d c2

C
−1/2
m β2

0

]
, (3.28)

where β0 is the shear-wave velocity obtained on the basis of the mapping of the
data at the minimum and maximum sensitivity depth ([5]). This kind of mapping
generates the model in this depth range. In order to extend the model in areas
of poor resolution linear extrapolation is made, i.e above and below the resolution
depths. By using the Dix-type method the final update will be an update of such
kind data-driven model.

For fundamental mode phase velocity measurements, there are three ways to
proceed with the linear inversion. The simple case is to assume that a Rayleigh
wave is propagating, at each frequency, in a different homogeneous medium, with
any value of Poisson’s ratio. The other two cases, which are more accurate, are
based on the assumption that the shear-wave velocity profile is described by power
laws, with Poisson’s ratio of 0.25 and 0.3.
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Part II

Data Analysis
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Chapter 4

Synthetic Testing

4.1 A short description of the Software Tools

The theory explained in the previous chapters is implemented in a set of Matlab
codes, that I modified to better achieve the purpose of this thesis. The software,
namely the RAYLEE package, for the inversion of both synthetic and real data,
was downloaded from the Society of Exploration Geophysicists (SEG) site [22]. The
codes can be used in order to generate Rayleigh wave phase or group velocities (in
case of synthetic tests), define the desired initial model and invert for shear-wave
velocity profiles in crustal and near-surface scale. Inversions in crustal scale can be
made for both continental and oceanic crust, by adding a water layer on top of the
model. It is also capable of joint inversions of the fundamental and higher modes.

4.1.1 Optimal Layering

When dealing with inversion of surface-wave dispersion curves using finite-element
based methods, attention must be paid to the layering of the model for the numerical
calculation. An array of elements with equal thickness is simple but not efficient
as a choice of layering: the waves need to be properly sampled at each depth,
otherwise they tend to be oversampled in depth for properly sampling at surface,
which might lead to instability problems and longer runtimes for the algorithm, and
undersampled in surface for properly sampling in depth, which will generate a not
so representative smooth model for the superficial layers. So, in order to prevent
from wrong sampling of the waves, a computational grid with increasing element
thickness in depth appears to be a more reasonable choice.

As a rule of thumb, a Rayleigh-wave phase velocity c with a wavelength l can
mostly be related to shear-wave velocity at an indicative depth equal to

z = al (4.1)

where a can take the values 0.63 ([5]) or 0.5 ([10]). This depth is the sensitivity
depth of Rayleigh waves. So, for a given dispersion curve, I am able to find the
minimum and maximum wavelength (lmin, lmax) and by extension the depth range
where the sensitivity is maximum.
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Consequently, on the basis of the above considerations about zmin and zmax can
be defined an optimal layering for Rayleigh-wave modelling.

First, I will see how to calculate the thickness of the layers lying in (zmin, zmax)
and then for the rest of them in (0, zmin) and (zmax,∞).

Let’s define a layer density as a function of wavelength given by,

ρlayers(l) = n/l (4.2)

where n is the desired number of layers to be sampled per wavelength. In terms of
the sensitivity depth, the relation 4.2 can be expressed by

ρlayers(z) = na/z. (4.3)

By integrating the relation 4.3 for the domain (zmin, z), which lies inside (zmin, zmax),
the equivalent number of layers up to that depth, z, can be found,∫ z

zmin

ρlayers(z
′)dz′ = N(z). (4.4)

The integration 4.4 gives,

N(z) = na ln

(
z

zmin

)
. (4.5)

In the same path, if the integration domain is the (zmin, zmax), then the maximum
number of layers, Nmax, can be found.

If I express the 4.5 relation, in terms of the depth of the layer interfaces I get,

z(N) = zmin exp (
N

na
), (4.6)

and its derivative with respect to the number of layers N , calculates approximately
the thickness of the N -th layer.

Figure 4.1: The optimal grid vector

The thicknesses increase exponentially from the first layer, whose interface is at
zmin, up to the last layer at zmax depth. This is how I obtain an optimal nonuniform
layering for the Rayleigh waves.

The relation 4.1 implies that Rayleigh waves are not sensitive to the domains
(0, zmin) and (zmax,∞), but this is not rigorous since this relation is an approximate
one. I impose uniform grids for both domains: the thicknesses in (0, zmin) are equal
to the first, and also minimum, layer thickness in (zmin, zmax), while the thicknesses
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in (zmax,∞) are equal to the last, and so maximum, thickness layer in (zmin, zmax)
as well. The complete layering is presented in the figure 4.1.

4.1.2 Smoothness Scale

The smoothness scale, or correlation length, as mentioned above, is the parameter
d on the denominator of the exponential function in the relation 3.23. It smooths
out the spatial variations in the model space and contributes to how the inversion
updates the size of heterogeneities. It depends on the surface waves’ wavelength.

In the finite-element approach and on the basis of the extension of the desired
spatial smoothness, usually it is a fixed value and equal to a multiple of the element
thickness. For instance, Haney and Tsai [1] posed it equal to four times the element
thickness while, Gerstoft et al. [23] twice, in their applications. In both cases the
grid was uniform.

It appears appropriate to use a smoothness scale that will not be fixed, but
will be variable with depth and still dependent on the element thickness. For the
nonuniform grid, and since the element thickness increase with depth, the smooth-
ness scale will increase too and will be equal to the sum of the thickness of two
adjacent elements.

Figure 4.2: The N ×N
∣∣ri − rj∣∣ matrix; the zeros in the diagonal correspond to the each

one of the N elements (layers).The arrows indicate the direction of the increasing depth
(the use of the word depth, in the present context does not necessarily imply that the
direction of the measurment is from the surface to the bottom).

Let us consider an N element grid vector. Then, the numerator of the fraction
in the model covariance matrix 3.23, will be an N × N matrix, whose diagonal
entries (i, i) are zeros and represent the top of the i-th element. Every previous or
subsequent elements of the (i, i), either in column or row, represents the distance
between the top of the i-th and that element, which is equal to the in-between grid
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spacing (figure 4.2). Consequently, and with respect to the diagonal of the N ×N
matrix, the depth increases by starting

1. from the surface and moving towards the bottom, passing from the element
(1, 1) to the elements (1, N) and (N, 1) and,

2. from the bottom and moving towards the surface, passing from the element
(N,N) to the elements (1, N) and (N, 1)

Taking this into consideration, and after creating a vector of N elements by sum-
ming the thickness of every two adjacent elements of the grid vector, the smoothness
scale N×N matrix can be created by placing the aforementioned vector in the same
direction/manner as the depth increases in the

∣∣zi − zj∣∣ matrix.
In this chapter, the smoothness scale is chosen to be fixed. In next chapter,

where some cases of real data are tested, the matrix smoothness has been used.

4.2 Analysis of the earth model parameters im-

pact on dispersion curves

Rayleigh-wave velocity is strongly depended on four parameters: the shear-wave
velocity V s, the longitudinal wave velocity V p, the density ρ and the thickness of
the layers. Every parameter has a different impact on the phase velocity dispersion
curve for a certain frequency range and in order to confirm and evaluate it, in
the present section, I present the parameters’ profiles together with the equivalent
dispersion curves, after varying, in the same manner, one parameter at a time. That
is to say, the forward problem is solved twice, first for the initial model and second,
for a variation of its own. This test is of high importance as it determines which
one of the parameters is more indicated to be inverted. If the effects on dispersion
curve are considered small for a certain parameter, then this parameter may not be
appropriate to invert for. A similar testing method has being used by Molinari [24]
to study the impact of the parameters on dispersion of surface waves.

Three variations have been applied on the profile of every parameter and that
is, an increase of 2.5% of the value of the parameter in the following domains

1. 0− 24 km (panels (a) and (b) in figures 4.3, 4.4, 4.5),

2. 24− 150 km (panels (c) and (d) in figures 4.3, 4.4, 4.5),

3. 150− 400 km (panels (e) and (f) in figures 4.3, 4.4, 4.5).

The initial model used for this test is the same as the one used for testing the
real data in section 5.2, for the case of Northern Alpine foreland. The frequency
range is (0.02− 0.2) Hz.

Since the total thickness of the model is equal to 400 km, it appears reasonable to
link the first domain (0−24km) to the crustal part and the other two, (24−150km)
and (150− 400km), to parts of the upper mantle.
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As it is easy to observe from the figure set 4.3, a small change of the shear
velocity in the superficial layers of the model, like the increase of 2.5%, carries out
a significant variation on the phase velocity curve, especially in the high-frequency
part of the range (0.08− 0.2) Hz.

For the intermediate domain, the change is well-observed at the low frequencies
(0.02− 0.08) Hz, while a velocity change in the last domain does not contribute at
all to the dispersion curve.

Regarding the other two parameters, V p and ρ, a change in their profile will not
contribute appreciably to a potential variation of the dispersion curve.

(a) (b)

(c) (d)

(e) (f)

Figure 4.3: Shear velocity variation in three different depth domains and the effect on
Rayleigh phase velocity. Every couple of the subfigures correspond to an increase of the
values of V s in the domain (0− 24) km, (24− 150) km and (150− 400) km respectively.
The blue dashed line indicates the variation.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4: Longitudinal velocity variation in three different depth domains and the effect
on Rayleigh phase velocity.Every couple of the subfigures correspond to an increase of the
values of V p in the domain (0− 24) km, (24− 150) km and (150− 400) km respectively.
The blue dashed line indicates the variation.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: Density variation in three different depth domains and the effect on Rayleigh
phase velocity. Every couple of the subfigures correspond to an increase of the values of
ρ in the domain (0 − 24) km, (24 − 150) km and (150 − 400) km respectively. The blue
dashed line indicates the variation.

To summarize, a shear-wave velocity change will be mapped clearly on the
Rayleigh wave phase velocity for a certain frequency range, which is connected to
the depth range as well. This simple test verifies the well-known fact that Rayleigh
waves are more influenced by the S-wave velocity than the P-wave velocity or den-
sity.

4.3 Synthetic tests for the Oceanic Crust

As mentioned at the beginning, the inversion method can be applied to retrieve
models of the oceanic crust as well and so, in this section a series of tests performed
in an arbitrary cell in North Pacific is presented. This case can be performed when
ocean-bottom seismometers are available [8].

The initial model is CRUST 1.0 [9]. This model assigns, for each 1°x 1 °a vertical
profile of the model parameters, which are the body waves velocity V p and V s in
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(km/s), the density ρ in (g/cm3), the thickness of each layer in km, the Lamé
parameters µ, λ and the Young’s modulus E in GPa and Poisson’s ratio ν. This is
a global crustal model and as such, it provides an eight-layer crustal profile (water,
ice, sediments, upper crust, etc) together with an uppermantle layer.

An arbitrary point was selected near Hawaii for synthetic testing. The target
model used for generating the data was one created with shear-wave velocity values
faster than those of the a priori model and the discontinuities kept the same but
in shallower depth. Then, a fixed V p/V s ratio is defined (= 1.7321) in order to
find the velocity of the P-waves. Regarding the density values, I use the Gardner
relation [25]

ρ = 309.6(V p)0.25. (4.7)

So, both initial and target model consist of 3 homogeneous layers and the halfspace.
For simulating actual data, Rayleigh-wave phase velocities obtained by solving

the forward problem with the target model as input are corrupted with 1.5% of
Gaussian noise. The smoothness scale value used for these tests is 5000 m.

Using this approach of inversion, the inverted model should represent the het-
erogeneities of the “real” model, while being guided by the a priori model. However,
since the very beginning of the testing process with non homogeneous initial models,
thus models with discontinuities, I have discovered that the inversion may recover
models too close to the initial model, and not by the “real” one. In order to avoid
this kind of behaviour, I use a polynomial fit of the a priori model, which is boxcar
function-like. For the inversion of a stratified model, the Moho discontinuity be-
tween crust and upper mantle is important to be well-presented and so, in some of
the tests below, I have defined it explicitly.

In all tests it has been added a 1 km of water layer above the solid medium in
order to simulate the oceanic crust. However, the shear-wave velocity profile (in the
following figures) determines the depth below the water-solid interface. The tests
concern variations in the initial model, in the total thickness of the model and in
the frequency range. They have been carried out as follows:

1. In the first two tests 78 fundamental mode and first overtone phase veloc-
ity measurements have been generated under the frequency range of (0.001 :
0.781) Hz. The layering is uniform with 900 elements of 250 m thickness each
and so, the total thickness of the model equals 225 km. The difference is in
the initial model.

(a) From the dispersion curve in figure 4.6 (a) it can be observed that not all
the data are used as for some frequencies the mode is non-guided. For
instance, the low frequency range is missing for the first overtone, where
the generated data appear at 0.2 Hz and the predicted data at 0.3 Hz.

Regarding the shear-wave velocity profile (fig. 4.6 (b)) it seems that
the recovered model (black), which is the last update of the inversion,
represents the theoretical model (blue) but without mapping the discon-
tinuities. Below the depth of the 10 km, the update model returns to the
initial one (red).
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Sensitivity kernels are plotted in figure 4.6(c), for the final inversion up-
date: for the low frequencies the sensitivity is transferred to the funda-
mental mode for depths shallower that 5 km, while for the high-frequencies
to the first overtone for the same depths. The kernels are similar for the
intermediate frequencies.

(b) The difference of this test with the previous one is that the a priori model
explicitly includes a discontinuity at 16.5 km, where, from the CRUST1.0,
is located the Moho (figure 4.7 (a),(b),(c)).

In this case, the inverted model (black dashed) is constrained by the
discontinuity and below it, reverts as expected to the initial model (red
dashed) (fig. 4.7 (b)). The discontinuity can be also observed in the
sensitivity kernel for the fundamental mode (fig. 4.7 (c)).

2. We will repeat the first set of tests by decreasing the range of frequencies,
which is going to be (0.02 : 0.26) Hz. There are 120 measurements generated.

(a) The plots (a), (b) and (c) in figure 4.8 are for the case of introducing an
initial model which is smooth.

As it can be seen by the plot of the dispersion curves (4.8 (a)), in this
frequency range the overtone does not exist, and so the inversion is made
only with the fundamental mode. This is why the recovered model is
smooth and representative of the theoretical model (black dashed and
blue in fig. 4.8 (b), respectively) for layers a little deeper than the 5 km
depth. This can also be confirmed by the plot of the sensitivity kernel,
where the sensitivity is large at that depth.

(b) The Moho discontinuity is explicitly imposed (plots (a), (b) and (c) in
4.9), similarly to the second case of the test 1. There is still the instability
under 5 km, but this time due to the existence of the aforementioned dis-
continuity at around 17 km, the inverted model returns to the theoretical
model but maps the discontinuity at the same depth as the initial model.

In both cases of the test 2, the inverted model is expected to revert to
the initial model after some kilometers.

3. (a) For the last test in the oceanic crust the nonuniform layering, calculated
in the way explained in section 4.1.1, represents the thin layer system and
its spacing. Therefore, the computational grid consists of three parts,
which are determined by the maximum and minimum sensitivity depths,
zmax and zmin, respectively. The first is a uniform part of 10 elements
with 700 m of thickness each, the second non-uniform part consists of
29 elements, whose thickness increase exponentially in to the range of
(700m-∼ 12 km ) and the third uniform part of 24 elements of ∼ 12 km
thickness each. The total thickness of the model is around 400 km.

From the test set 2, it has been clear that there are no first overtone
data for this specific range of frequencies and so, in the present case only
fundamental mode data are included in the inversion.
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The inverted model reconstructs the true model well down to a depth of
more or less 30 km. Then, as already seen, resolution is lost and returns
to the initial model (fig. 4.10 (b)).

In the case of the nonuniform layering, I plot the sensitivity kernel not as
in tests 1 and 2 in a matrix form, where the rows represent the depth and
the columns the frequencies, but for each frequency-column separately
(4.10 (c)). Phase velocity at ∼ 4 s is sensitive to variations of the S-wave
velocity at depths around 5 km. At ∼ 6 s Rayleigh waves sample the
crust at a thickness of 10 km, while at ∼ 8 s they are sensitive to a depth
of 16−17 km, and thus we may say that they contain information for the
crustal part of the model. Under that depth, some sensitivity still exists
nearly for 20 s, which suggests some influence from the upper-mantle
part.

(b) This last test is repeated after changing the smoothness scale value and
imposing it equal to 1000 m (fig 4.11 (a),(b) and (c)).

By comparing the plots of the two cases of the third test (4.10 (a), (b),
(c) with 4.11(a), (b) and (c) equivalently), it seems that the first choice
of the smoothness scale value, 5000 m, is better that the second one. The
predicted data (black dots) fit better the theoretical data (blue dots),
while the inverted model (black dashed in plot (b)) does not present the
instability at the depth interval of 10 − 20 km. There is no appreciable
difference in the kernel plots.

This analysis leads to some important conclusions that will be considered for the
inversion of the real data.

Initially, the inverted model is mainly guided by the a priori model. This is not so
surprising when using a linearised inversion approach, but still it is considered as a
problem when global reference models with large shear-wave velocity discontinuities,
like CRUST1.0, are used as initial models, since there cannot be retrieved a good
representation of the real Earth.

Second, for a low-frequency range, there are only fundamental mode data.
In addition to this, the predicted data (black dots) fit well the real (synthetic)

data (blue dots), especially for the higher frequencies. The low-frequency predicted
data do not seem to follow the trend of the equivalent “real” data. To fit better the
low frequencies, an appropriate smoothness scale should be used.

To conclude, using the nonuniform layering has definitely provided with shorter
execution times for the codes. This is essential when the inversion process is made
in big datasets, with the aim of obtaining 3D shear-wave velocity structures.
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(a)

(b)

(c)

Figure 4.6: (a) Dispersion curves for the fundamental and first overtone data (blue), initial
model (red) and predicted data from the inversion (black). (b) Shear-wave velocity profile
for true model(blue), initial model (red dashed, which is the polynomial fit of the green)
and the last update of the inversion (black). (c) Sensitivity kernels for the fundamental
mode and first overtone. The frequency range is (0.001-0.781) Hz.
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(a)

(b)

(c)

Figure 4.7: (a) Dispersion curves for the fundamental and first overtone data (blue), initial
model (red) and predicted data from the inversion (black). (b) Shear-wave velocity profile
for true model(blue), initial model (red dashed, which is the polynomial fit of the green)
and the last update of the inversion (black). (c) Sensitivity kernels for the fundamental
mode and first overtone. The frequency range is (0.001-0.781) Hz.
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(a)

(b)

(c)

Figure 4.8: (a) Dispersion curves for the fundamental and first overtone data (blue), initial
model (red) and predicted data from the inversion (black). (b) Shear-wave velocity profile
for true model(blue), initial model (red dashed, which is the polynomial fit of the green)
and the last update of the inversion (black). (c) Sensitivity kernel for the fundamental
mode. The frequency range is (0.02-0.26) Hz.
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(a)

(b)

(c)

Figure 4.9: (a) Dispersion curves for the fundamental and first overtone data (blue), initial
model (red) and predicted data from the inversion (black). (b) Shear-wave velocity profile
for true model(blue), initial model (red dashed, which is the polynomial fit of the green)
and the last update of the inversion (black). (c) Sensitivity kernel for the fundamental
mode. The frequency range is (0.02-0.26) Hz.
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(a)

(b)

(c)

Figure 4.10: (a) Dispersion curves for the fundamental data (blue), initial model (red)
and predicted data from the inversion (black). (b) Shear-wave velocity profile for true
model(blue), initial model (red dashed, which is the polynomial fit of the green) and the
last update of the inversion (black). (c) Sensitivity kernel for the fundamental mode. The
curves correspond to 3 s, 4 s, 5 s, 6 s, 7 s, 9 s, 13 s, 21 s, 50 s from shallow to deep depths.
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(a)

(b)

(c)

Figure 4.11: (a) Dispersion curves for the fundamental data (blue), initial model (red)
and predicted data from the inversion (black). (b) Shear-wave velocity profile for true
model(blue), initial model (red dashed, which is the polynomial fit of the green) and the
last update of the inversion (black). (c) Sensitivity kernel for the fundamental mode. The
curves correspond to 3 s, 4 s, 5 s, 6 s, 7 s, 9 s, 13 s, 21 s, 50 s from shallow to deep depths.
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Chapter 5

Perturbational inversion applied
to Italy

5.1 Ambient noise database

In chapter 4, I have presented the results of synthetic data inversion, simulating the
oceanic crust. In this chapter, I repeat the process for fundamental mode phase-
velocity data from seismic ambient noise. The database that I use, is the one from
the work of Molinari et al. [2], where cross-correlation of the vertical component of
seismograms recorded for 1 year at stations all over the Italian peninsula and the
Alps, has been made as explained in the aforementioned article (figure 5.1). In order
to obtain phase-velocity data, they apply the two-station method for every available
station pair that belongs to the network. In this way, they obtain data within the
period range of 5-37 s. The parametrization of the region remains the same and it
is divided in 0.25°x 0.25°cells.

Ambient noise, which constitutes a random wavefield over sufficiently long times,
is composed by surface waves [26], [27]. In short period band (<20 s), also known
as microseisms, is the product of the interaction of the swells 1 with the ocean floor
in the vicinity of the coastlines. The two strongest peaks in the short period band
are the primary (10-20 s) and the secondary (5-10 s). The primary microseisms are
related to the interaction of the water waves with the shallow ocean floor, which can
be represented by forces (friction on the ocean bottom in horizontal and pressure
on the surface of the sea in vertical) that generate the ambient noise, which is made
of Scholte surface waves. The secondary microseisms is the product of two same
frequency primary microseisms, that propagate in the opposite direction. This is a
nonlinear interference phenomenon, that can take place, again but not only, near
the coast where the direct and the coast-reflected waves meet.

From the cross-correlation of ambient noise records from two stations, one may
estimate the Green’s function between the stations, which provides information on
the propagation properties of the wavefield [26].

In the following sections, I present shear-wave velocity structures using two dif-
ferent a priori models. In the simplest case (5.2, 5.3) the inversion is made with an

1a ocean swell is a gravity wave generated by a distant weather system, and as such can prop-
agate along the interface of the ocean and atmosphere for long distances, if not dissipated.
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Figure 5.1: Stations where the seismograms were recorded.(After Molinari et al. [2])

initial model that was generated on the basis of the same data that I use in this
work. Subsequently, in section 5.4, I apply the inversion method in some test cases,
taken from the same database, but this time the a priori model is based on the
Dix-type inversion.

5.2 One-Dimensional shear velocity profiles

Before applying the linearised inversion to the entire desired region (Italy and Alps),
I implemented the inversion approach to a few sample cases as tests, and in the
present section I present two of them.

The a priori model at the crustal part is the average of the 500 best-fitting
solution models, resulting from the inversion made by Molinari et al. [2]. Their
inversion is a stochastic direct search applied by the Neighbourhood Algorithm [28],
[29], and so a number of possible solution models is retrieved. For the mantle, the
model parameters are the PREM model values [3].

The 1D layering and the smoothness scale are calculated as described in the
previous chapter. The element thicknesses are exponentially increased with depth
(section 4.1.1) and the smoothness scale follows that increase as well (section 4.1.2).
The a priori model is fitted to the nonuniform grid. The Vp/Vs ratio is not main-
tained fixed during the inversion.

The frequency range of the phase velocity is 0.027− 0.2 Hz. Not all of the data
exist for the entire range though.
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In order to calculate the standard deviation of the data, and so the covariance
matrix, I generate data in the same range frequency with the real ones and corrupt
them with 1% of Gaussian noise. The model parameters are the same with those
used in the inversion.

The standard deviation of the model, necessary for the calculation of the co-
variance matrix, is imposed to be larger by 30% of the mean value of the standard
deviation of the data.

In figures 5.2 and 5.3, I present the 1D shear-wave velocity structure (b), the
phase-velocity dispersion curves (a) and the sensitivity kernel (c) of two cells/cases
in Northern Alpine area and North Italy. The first three subfigures correspond to
the place with geographic coordinates (48°N, 9°E) which is located at the north of
the Alps (figure 5.2), while the rest of them in figure 5.3 correspond to (46.25°N,
10.75°E) in the Alpine belt. These cells correspond to examples of foreland basin
and orogenic crust, respectively (points C and E in figure 5.8).

With respect to the case of the Northern Alpine foreland, we can see that the
predicted data from the inversion result(black dots) fit well the data (blue dots) for
the range frequency of 0.08 − 0.197 Hz, while there is a small difference between
the curves for the lower frequencies (fig 5.2(a)). The update model, black dashed
in 5.2(b), follows the exact same trend of the initial model (red dashed) for the
superficial layers. For depths below the fifth km, the update model differs from the
initial and becomes slower for the depth domain of 10 − 27 km, where below that
is the Moho depth. Below the Moho depth at 30 km, the update model reverts
slowly to the initial one. In the subfigure (c) the sensitivity kernel for a number of
frequencies are plotted. As expected, in general shallow depths influence the high
frequency Rayleigh waves, while the deeper structures dominate at low frequencies.
In this case, I suggest that the Rayleigh waves of the period range (∼ 5 − 37)s are
sensitive to a depth domain of ∼ 6 km down to ∼ 30 km accordingly, which represent
in the chosen parametrization the upper crust and some layers in the upper mantle.
The three sensitivity kernels representing the low frequency range are not smoothed,
reflecting the discontinuity between the 20 and 30 km.

A similar analysis can be made for the case of the Alpine orogen crust, where
the frequency range of the data is 0.164− 0.027 Hz. The fit of the data (blue dots)
by the predicted data from the inversion (black dots) presents a deviation at the low
frequencies 5.3 (a), in this case as well. In the figure 5.3 (b), the update model (black
dashed) deviates from the initial one (red dashed) in the depth range of (∼ 10− 40)
km, while deeper returns to it. Shallow structures at around 10 km depth dominate
at high frequencies, like 0.164 Hz, while at lower frequencies 0.027 Hz, Rayleigh
waves are more sensitive to deeper structures, like those that appear in the upper
mantle.
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(a)

(b)

(c)

Figure 5.2: (a) Dispersion curves for the fundamental mode data (blue), initial model
(red) and predicted data from the inversion (black). (b) Shear-wave velocity profile for
true model(blue), initial model (red dashed, which is the preferred model in figure 5 of
Molinari’s et al. work [2]) and the last update of the inversion (black). (c) Sensitivity
kernel for the fundamental mode. (Northern Alpine foreland case)
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(a)

(b)

(c)

Figure 5.3: (a) Dispersion curves for the fundamental mode data (blue), initial model
(red) and predicted data from the inversion (black). (b) Shear-wave velocity profile for
true model(blue), initial model (red dashed, which is the preferred model in figure 5 of
Molinari’s et al. work [2]) and the last update of the inversion (black). (c) Sensitivity
kernel for the fundamental mode. (Alpine orogen crust case)

5.3 Three-dimensional shear velocity structure

In order to study the three-dimensional shear-wave velocity structure in the desired
region, I repeat the inversion process described above (section 5.2) to a number of
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cells, which are located in the domain of (6°-16.25°)N and (36.75°-51°)E (figure 5.1).
The space is parametrized with layers that fit the nonuniform layering and the

smoothness scale matrix increases with depth, as already described. Since the cal-
culation of the computational grid spacing is based on the minimum and maximum
wavelength of the data, I find the equivalent values in five representative cases all
over the area, and define a unique layering for all data points. In this inversion
scheme, the data covariance matrix is calculated in the same manner as in 5.2, but
this time I added 1.5% Gaussian noise, instead of 1% in the previous case. The
model standard deviation factor is also different, as I imposed it equal to twice the
mean value of the standard deviation of the data. Since the changes are small, they
should not noticeably affect the output.

The a priori model remains the same, as in the previous section. For each cell
I use the average of the 500 best models as intial model, provided by the work of
Molinari et al. [2].

The number of geographic points, that determine the vertical shear-wave velocity
map projection, surpasses the 1400. The regions covered by the cells are regions
of central and north Italy, together with parts of the Alpine countries: France,
Switzerland, Germany and Austria. Ligurian and Tyrrhenian sea are also visualised,
mostly near the italian west coast. The phase velocity dataset is at frequencies
between 0.027 Hz and 0.2 Hz.

Figures 5.4 and 5.5 represent the shear-wave velocity maps at different depths.
In order to visualize better the velocity differences as the depth increases, the scale
is different in the two figures.

The superficial part of the crust, together with a sedimentary layer, is presented
at the depth of 3 km. The two Alpine foreland basins are well-distinguished with
shear-wave velocity values ranging in the domain of 2 − 2.5 km/s. More precisely,
at the Northern Alpine basin the low shear-wave velocity values expand in parallel
of the northern part of the Alps, while at the southern part where the Po Plain
is located, there are low velocities (∼ 2km/s) at the part of the Adriatic sea and
higher (∼ 2 km/s) at the other part. This comes into contradiction with Molinari
et al.[2], since they have presented higher velocity values at the Northern part and
uniform low velocity values across the Po Plain basin. At that depth, the high
shear-wave velocity also starts to reveal at the two mountain ranges, the Alps and
the Apennines. The difference in the velocity can be seen better in the case of the
Alps. The velocity remains low at the part of the Ligurian and Tyrrhenian sea.

Increasing the depth, at 4 and 7 km the differences in shear velocity remain,
as there are low values in the Po Plain basin and the Tyrrhenian sea, while higher
values are mapped across the Alps and the Apennines. The map at 4 km section
seems to be more consistent with the equivalent map of the 3 km at the work of
Molinari et al. [2], mainly at the Molasse basin.

The upper crust can be visualised at a depth of 10 km. Even in this depth, it can
be seen the variabily of the velocity in the places mentioned above. This is in good
agreement with Molinari et al. [2]. The shear-wave velocity in the basin north of the
Alps takes values around the 3.2 km/s, while the Po basin presents values ranging
from 2.6− 2.8 km/s. This is an evidence of the different evolutionary history of the
two basin around the Alps.
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In the next figure (5.5), the maps at depths 20, 22, 29 and 36 km are presented.
At the depth of 20 km, there are low velocity values at the two mountain ranges

(Vs ∼ 3.2 km/s) while the velocity increases more smoothly than before, across
their edges. At the part of Northern Alpine basin the shear-wave velocity takes
values around ∼ 3.7 km/s and at the part of South Tyrrhenian and Ligurian sea
the velocity arrives at 4.5 km/s, which is a clue that the Moho has been reached.
The high velocity structure at the center of the Apennines is well-imaged, as it is
the western part of the Po basin.

The map at 22 km preserves the same velocity anomalies to a lower degree, as it
is expected. High velocity values dominate at the east part of the Italian Peninsula,
the west part of Po Plain and the South-West Germany.

The map in 5.5 (c) represents the 29 km depth, which at the west and north
part of Italy maps the upper mantle. In these places, the velocity ranges between
4.2 − 4.5 km/s, while still the pattern of low velocity values at the two mountains
(Alps and Apennines) and higher velocity values at the around basins (Po Plain and
Molasse basin) remains. The Moho discontinuity at these two places has not been
reached yet.

The last map (5.5 (d)) at 35 km depth is connected to the Moho depth. Overall,
the resulting shear-wave velocity values are equivalent with the ones presented for
the same depth at the work of Molinari et al. [2]. The only difference that I find
is that the high velocity regions (Vs >4.2 km/s) are masked and the discrepancies
presented in the aforementioned article, do not seem to appear in the present map.
This indicates some loss of resolution, which was expected after doing the first tests
in section 5.2.

In this work, I have found, in total agreement with Molinari et al. [2], for the
oceanic crust (Tyrrhenian and Ligurian sea) the low velocity values for depths down
to 10 km, while at the 20 km reveals the upper mantle structure. The Alps and the
center of the Apennines maintain their crustal structure down to the depth of 36 km,
which can be imaged by the low velocity values at the same depth. The Po Plain
and the Northern Alpine foreland, at the upper crust depth, have values greater
than the mountain belts. The only noticeable difference between the two works is
in the uppermost part of the crust, where, in the present work, the velocity values
at the two basins, and mainly at the Po Plain basin, are not uniformly distributed
in the areas. It appears that the resolution is not sufficient at that depth.
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(a) (b)

(c) (d)

Figure 5.4: Shear velocity maps at depths (a)3 km (b) 4 km (c) 7 km and 10 km.
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(a) (b)

(c) (d)

Figure 5.5: Shear velocity maps at depths (a)20 km (b) 22 km (c) 29 km and 36 km.

In order to conclude this chapter, I present the vertical section of the resulting,
from the inversion, model (figure 5.6). It is a N-S profile that extends from 43°N
12°E to 49°N 12°E (figure 5.7) and practically crosses part of the Eastern Alps. This
kind of profile is an other way of “visualizing” the shear-wave velocity structure as
it reveals a complete image of the structure and its differences in depth.

In this case, it is well-distinguished a small part of the North Apennines, the
Po Plain, the Alps and the Northern Alpine foreland. Under the Alps the shear
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velocity structure evolves more uniformly than it does under the two basins. The
Moho depth extends from 25−30 km under the basins, while under the Alps arrives
at 40 km. This is also implied by the low velocities at a depth of 36 km in figure
5.5 (d), which means that this depth is still part of the low crust for the Alps.

Figure 5.6: Vertical section starting from central Italy (B) up to South Germany (A).
The distance is about 700 km. ( 1°corresponds to 96 km)

Figure 5.7: The two points A and B that set the limits to the vertical section presented
in 5.6.
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5.4 A priori model based on the Dix-type inver-

sion

So far, I have had the opportunity to use a reliable a priori model, either because
I was dealing with synthetic tests, or because I was using data that had already
been inverted. Both of the cases constitute favourable circumstances, which may
not always occur. Whenever that is the case, it is useful to devise an inversion
strategy that does not rely on significant already established knowledge. This can
be accomplished using a preliminary Dix-type inversion (as explained in section 3.3),
to be used as initial model for the formal iterative inversion. Using the Dix-type
method for inverting in order to obtain a satisfying initial model, first I have to
settle some key parameters in order to build the layered model, as explained briefly
in 3.3. This model is defined in a nonuniform layering, calculated in almost the
same manner as 4.1.1.

The parameters that are user-supplied are the multiplicative coefficient between
the wavelength and the sensitivity depth a, the number of layers per wavelength to
be sampled in the sensitivity depth n and since the mapping of the data is made
only between the range of minimum and maximum sensitivity depth (zmin, zmax),
there is the need to introduce two multiplicative coefficients of the minimum and
maximum layer thicknesses, that will determine the layer thicknesses and allow the
model to extend to areas beyond that range. For the depth domain between surface
and minimum depth of sensitivity (0, zmin) the coefficient is equal to 1, covering
the area with uniform layers of thickness equal to the minimum thickness found
in (zmin, zmax). For the depth domain of (zmax,∞), the coefficient has to be >1,
in order to treat that domain as a single layer. This approach is different than
the one that I used in section 5.2 and 5.3 to calculate the thicknesses of this area
which is the subdivision of the domain to smaller uniform layers of thickness equal
to the maximum thickness found in the (zmin, zmax). In these test examples a = 0.5,
n = 10, zcmin = 1 and zcmax = 4.

The acceptable models are defined by the χ2 window which is set to 1− 1.5 for
the cells in Northern Alpine foreland and Alpine Orogen crust, while for the case of
South-West Alpine foreland I imposed it equal to 0.5− 1.

The sample cells chosen for this test are shown in figure 5.8 and represent four
different types of crust: Northern Alpine foreland (C), South-West Alpine foreland
(D) and Alpine Orogen Crust (E).
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Figure 5.8: Sample cells in Nothern Alpine, that was made the pertubational and nonper-
turbational inversion.

I used the phase-velocity data constructed at each cell. Since the construction
of the nonuniform computational grid is based on the data, for each cell the builded
layered model is different and as such, in order to find an acceptable initial model,
the type of inversion and the range of the correlation length and the model standard
deviation factor has to be implemented differently for each case.

The parameters that need to be defined for the perturbational inversion, are the
same as in section 5.2. The covariance matrices for the data and the model are
calculated in the same manner and the inversion is made without maintaining fixed
the Vp/Vs ratio. For the cases of Northern Alpine foreland and Alpine Orogen
crust, the noise equals 1%, while for the case of South-West Alpine foreland equals
0.5%.

After testing for all three nonperturbational inversion ways (section 3.3) the
data of each cell over different ranges of correlation length and of model standard
deviation factor, and comparing the final update model from the perturbational
inversion with the best model provided by Molinari et al. [2], I found the best
choice of the aforementioned parameters.

For the case of the Northern Alpine foreland (point C in 5.8), the correlation
length factor runs from 100 to 5000, while the model standard deviation factor
from 0.3 to 0.7. The nonperturbational inversion is made by assuming the wave
propagation on a different homogeneous medium, at each frequency, with a Poisson’s
ratio of 0.45. The χ2 values for the models defined by the two ranges and which
fit the data between the χ2 window, are included between the two white dashed
lines in figure 5.9 (a). In the same figure, I present the dispersion curves (b), the
shear-wave velocity models (c) and the sensitivity kernel of the final inversion update
(d). In order to evaluate both initial and final update models, I have included in
the subfigures (b) and (c) the predicted data and the 1D vertical profile of the best
model.

Although, I used the simplest case for the formulation of the Rayleigh-wave
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eigenfunctions, the initial model, although slow at the superficial layers, in general
is close to the values of the best model and after the perturbational inversion, it is
improved (figure 5.9 (c)). The depth resolution is between 4 − 15 km ( figure 5.9
(d)).
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(a) χ2 misfit the Dix-type phase inversion. The dashed
white lines indicate the acceptable limits on chi-squared
for models to be considered.

(b) Dispersion curves of the data(blue), the data from
the Dix-initial model (red), the predicted data inversion
(black) and the predicted data from the best-fitting model
of Molinari et al. [2].

(c) Shear-wave velocity of the Dix-initial model (red), final
update (black) and best-fitting model [2].

(d) Sensitivity Kernel of the final update for the periods
of 5 s, 9 s, 16 s, 24 s, 32 s and 37 s.

Figure 5.9: Nothern Alpine foreland (C)
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A similar approach is followed for the rest of the cases.
For the South-West Alpine foreland, the inversion for the research of an initial

model is made by considering that the shear-wave velocity profile is described by
a power law, with a Poisson’s ratio equal to 0.3. The range over the correlation
length factor is 100 − 2000 and over the standard deviation factor 1 − 60 (figure
5.10 (a)). Even in this case, at the superficial layers the initial and inverted models
are slower than the best one(figure 5.10 (c) red dashed, black dashed and green
dashed, respectively). The resolution depth, which is defined by the sensitivity of
the Rayleigh velocity at a certain time to the variations of the shear-wave velocity
at a certain depth, is between 4 and 15 km. We can observe that although the
predicted data do not fit well the observed data for the high frequencies ( 0.14−0.19
Hz), convergence is found anyway and the iteration process stops when the data
discrepancy produces a χ2 value, that enters the predefined limits.

For the cell case in the Alpine Orogen crust, the range over the correlation
length factor is from 100 to 5000 and over the model standard deviation factor
1− 40. Again, the power law shear velocity profile is used, with a Poisson’s ratio of
0.25. Although in figure 5.11 (c), we can see that the nonperturbational inversion
generates an initial model (red dashed) not so close to the best model for the same
cell, after some updates of the perturbational inversion the resulting inverted model
has the same velocity evolution as the best model, for the first 10 km. Below that
depth ( 15 km), the initial model becomes slower, and so the final update of it, but
at this depth there is poor resolution (figure 5.11 (d)).
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(a) χ2 misfit the Dix-type phase inversion. The dashed
white lines indicate the acceptable limits on χ2 for models
to be considered.

(b) Dispersion curves of the data(blue), the data from
the Dix-initial model (red), the predicted data inversion
(black) and the predicted data from the best-fitting model
of Molinari et al. [2].

(c) Shear-wave velocity of the Dix-initial model (red), final
update (black) and best-fitting model [2]

(d) Sensitivity Kernel of the final update for the periods
of 5 s, 8 s, 12 s, 18 s, 24 s, 30 s and 37 s.

Figure 5.10: South-West Alpine foreland (D)
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(a) χ2 misfit the Dix-type phase inversion. The dashed
white lines indicate the acceptable limits on χ2 for models
to be considered.

(b) Dispersion curves of the data(blue), the data from
the Dix-initial model (red), the predicted data inversion
(black) and the predicted data from the best-fitting model
of Molinari et al. [2].

(c) Shear-wave velocity of the Dix-initial model (red), final
update (black) and best-fitting model [2].

(d) Sensitivity Kernel of the final update for the periods
of 6 s, 10 s, 18 s, 26 s, 34 s and 37 s.

Figure 5.11: Alpine Orogen crust(E)
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Conclusion

The present thesis is based on the study of Rayleigh-waves and their particular
property, the dispersion, which make a valuable tool to study the Earth subsurface.
From the seismic records and after some elaboration, the dispersion curves (group
and phase velocity as a function of frequency) are obtained: since Rayleigh waves
are strongly affected by the elastic properties of the medium across which they have
propagated, the dispersion data contain information relative to the structure. In-
verting the dispersion curves with appropriate methods and procedures, it is possible
to determine the shear-wave velocity structure of the medium.

In this particular work, and by following Haney and Tsai [1], two kinds of inver-
sion are introduced. The perturbational approach, which is based on finite elements,
and the nonperturbational approach, which is developed on the Dix formula for the
calculation of the velocity values in a layered medium.

The first approach constitutes the iterative process used in order to improve
an initial model. It is based on the perturbational theory, which relates the per-
turbations in the model parameters with the perturbations in the phase velocity.
Practically, the forward and inverse problem are solved together: this happens be-
cause firstly from an initial model, phase-velocity data are predicted and then, the
inversion procedure is looking for an appropriate model perturbation, until when
the predicted dispersion curve fits well enough the observed one (data). In order to
achieve accuracy, a certain number of iterations is needed.

In order to formulate the forward problem, the continuous system is represented
by a stack of finite elements, whose corners are occupied by masses [6]. By consid-
ering the appropriate displacement and force vectors applied to these masses, the
problem reduces to a simple eigenvalue/eigenvector problem to be solved by estab-
lished numerical codes. The difference of the lumped mass method with the often
used propagator matrix methods [14] is that there is no use of the displacement
potentials, which leads to the seeking the roots of a polynomial.

With this solution of the forward problem, phase-velocity inversion proceeds
using the algorithm of total inversion [7]. The solution is regularized on the basis of
weighted-damped least squares.

This method is a linearised inversion and as such, a recovered model might bear
some influence from the initial reference.

This is why, finding a good initial model remains an important task. Haney
and Tsai [10] have found analogy between the relations of surface and shear-wave
velocity and stacking and interval velocity, in flat, parallel layers. Consequently,
based on the resulting direct relation between phase and shear-wave velocity, they
have devised the nonperturbational inversion strategy.

73



At the beginning of the data analysis part, I solve the forward problem for specific
initial models. Since the phase-velocity dispersion curve is in function of the Earth
parameters (Vs, Vp, density), I apply to the initial model depth-dependent varia-
tions for every of the first three parameters, and observe the resulting perturbation
in the dispersion curve.

The variation, that I implement to the parameters is a small increase from their
initial value for three different depth domains. As expected, the variations in shear-
wave velocity provide a dramatic effect on the Rayleigh-wave phase velocities. Vari-
ations in shallow layers affect the dispersion curve in the high-frequency range, while
at lower frequencies the waves are more sensitive to deeper structure.

There is a resulting effect from the P-wave speed as well, especially at the high
frequency band, but it is not comparable to the contribution of the S-wave speed
to the data. However, sometimes inversion for the P-wave velocity might provide
valuable information.

There is negligible effect from the variation of the density. In fact, most of the
times this parameter is not even included in the inversion procedure.

Following, I implemented some synthetic test in order to better understand the
sensitivity of the different parameters used in the inversion procedure. The tests
were made for an arbitrary sample cell in oceanic crust. The initial model is taken
from CRUST1.0 [9], while a target model has been created with elastic parameters
close to the initial model. During the tests I considered variations in the frequency
range, in the initial model and in the total thickness of the layered grid. In some of
the cases the fundamental mode and first overtone phase velocity data are jointly
inverted. In all of the tests the finite-element computational grid consists of layers
with equal thickness, apart from the last one in which a nonuniform grid was used.

CRUST 1.0 is a global reference model with well-defined velocity differences
between the assigned Earth layers. When such kind of initial model is implemented
to a linearised method, like the one used in the present thesis, its final update will
be affected by the discontinuities, and will mask any potential heterogeneity, that
exists in the same depth domain, provided by the data. For this reason, I choose to
implement an initial model which is a smooth representation of the boxcar form-like
CRUST 1.0. Since the Moho is an important discontinuity, I explicitly add it to the
tests.

An important finding of these tests was the importance of changing the regular
computational grid to a nonuniform one and increasing the smoothness scale in
depth. In this way, the Rayleigh-waves are well-sampled, which can be seen by the
smaller computational times and the non-existence of instabilities in the resulting
model. In order to well-represent any heterogeneity at the considered depth-domain,
the smoothness scale should be in the same order of magnitude with depth.

Thanks to the findings of the synthetic tests, I was able to apply the whole inver-
sion procedure to an already existing Rayleigh wave phase velocity database. This
database was constructed by measuring the surface wave phase velocity obtained
from the cross-correlation os seismic ambient noise [2]. The main results, in this
case, is a 3D shear velocity model of the Alpine and the Italian crust, that can be
compared to the one obtained by Molinari et al [2]. There are two distinct cases in
terms of the a priori model.
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In the first case, the a priori model that I use, is the crustal part of an average
of the 500 best solutions obtained by the nonlinear inversion of Molinari et al. [2],
and at the upper mantle part the PREM [3]. The 3D model presented in the third
section of the Chapter 5 are mostly consistent with the equivalent maps of the
aforementioned article.

The uppermost part of the crust together with the sediment basin are well-
imaged at the 4 km map. The two basins in the north and the south of the Alps
are evident, as it is part of the Ligurian oceanic crust. Although, in the work of
Molinari et al. the Po Plain basin and Ligurian crust reveal lower velocities from the
Northern Alpine basin, in the present work the two basins seem to have the same
velocity, which is lower than the velocities in Ligurian crust. In the Po Plain basin
the velocity is not uniformly distributed , which might be a clue of poor resolution or
instability. The Alps and the Apennines, in both works have the same high velocity
values (∼ 3.2 − 3.5 km/s). The differences in the shear-wave velocity indicate the
different subsurface evolution.

In 10 km depth the difference in velocity between the Alps and its two basins is
well-observed. The Po Plain basin seems to have lower velocities than the Northern
Alpine foreland basin, which is an evidence of their different evolution. The Alps
appears to have higher velocity values. The velocity range in the Tyrrhenian crust
indicates that the Moho depth is reached, which seems to be reasonable when the
oceanic crust is the case.

In the 20 km deep section, the velocity in the Alps is close to the value of 3.2 km/s,
while in the south-east and south-west domains the velocities are higher. There is
also a well-distinguished velocity difference between the high values of the Tuscan
Apennines and low values of the Marche area. This velocity map is in accordance
with the equivalent map in the work of Molinari et al. [2].

At around 30 − 35 km depth, the shear-wave velocity values indicate that the
Moho discontinuity has been reached for almost all the areas shown in the map:
exception for the Alps and the Apennines, whose velocities 3.5− 3.8 km/s are con-
sistent with the lower crust velocity values.

A vertical section of the shear velocity model is presented across the Eastern
part of the Alps. The shear-wave velocity values of parts of the Apennines, the Po
Plain basin, the Alps and the Northern Alpine Foreland are imaged vertical, and
indicate clearly the Moho depth.

To conclude the work of this thesis, I repeated the inversion just described to
a few sample cells, from the same database, using a different a priori model. This
model is the result of a nonpertubational inversion based on the Dix-formula.

Since this model is based on the phase velocity measurements, it provides a
potent solution in the choice of the a priori model, when the shear-wave velocity
structure has to be found in areas with no a priori information.

This is in part true, because in the code the user has to provide some a priori
information. The Poisson’s ratio or the parameters needed for the calculation of
the nonuniform computational grid must be supplied in order to proceed with the
nonperturbational inversion.

This was demonstrated and presented in section 5.4. Tests over the user-supplied
parameters were made in order to obtain a satisfying initial model. “Satisfying” in
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this work is defined the initial model which will be close to the already established
best model from the work of Molinari et al. [2].

The three sample cells are representative of the Northern Alpine foreland, the
Alpine Orogen crust and the South-West Alpine foreland.

Individually, there can be found a satisfying initial model for all of the cases,
which with the perturbational inversion is further improved. It was challenging
though, to find a unique set of parameters that will provide an acceptable initial
model for all of the cases. It was even more difficult to apply the same nonpertur-
bational inversion scheme in a wider area, like the Northern Italy. Whenever an
acceptable model was not found over the specific parameters for a given cell, a gap
was created in the 1D shear-wave velocity profile for that cell. In addition to this,
there has to be found a compromise between runtime and search over the defined,
by the user, parameter ranges for any potential solutions.

But even the perturbational inversion, which constitutes the main algorithm of
this work, presents some salient points that need to be considered.

An important task was to define the computational grid. For the scope of this
work, I have used two ways of determining the spacing on the finite-element layering.
The first one is the uniform layering. The layers, whose sum represents the contin-
uous system, are assigned with the same thickness. The second type of layering is
the nonuniform one. In this case, the element thicknesses are defined on the basis
of considerations made about the approximate depth domain where the Rayleigh
waves reveal the maximum sensitivity.

There is one main advantage of using the second approach of layering over the
first one. Since the sensitivity depth domain is calculated on the basis of phase
velocity dispersion curves, the Rayleigh waves are properly sampled over both shal-
low and deep depth domains. This is why the computational grid contains thin
layers in surface, which increase with increasing depth. With this proper sampling,
instabilities are avoided and the computational times are shorter.

An other important issue was the determination of the smoothness scale. This
parameter scales the size that any potential heterogeneity might obtain at the final
inversion update. I made its calculation on the basis of the nonuniform optimal
layering, and so it increases with increasing depth.

As already mentioned, in order to calculate the model standard deviation, I
need to multiply the average of the data standard deviations with a user-supplied
coefficient. This coefficient, which controls the size of the model standard deviation
with respect to the size of the data standard deviations, should be kept near the
values of 1− 2, otherwise provokes instabilities to the recovered model.

I have also implemented both of the two different ways to calculate the sensitivity
kernel: either P-wave velocity and density fixed or Vp/Vs ratio and density fixed.
The synthetic tests were realized with the second choice, while the inversion of the
real dispersion curves with the first one. I found that with the second choice, and
since the P-wave velocity equals the product of the S-wave velocity with the Vp/Vs
ratio, restricts the recovered model, mainly in the low frequencies.

The most important factor for the execution of a linearised inversion, like the
one that I used for the present work, is the a priori knowledge. Since the influence of
the initial model to the recovered one is large, I must choose a good starting model

76



which will be improved in a iterative way by the inversion procedure.
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Appendix A:Stiffness Matrices

Kausel [16] showed that the elemental matrix associated to the N -th element is

MN = hN


ρN/3 0 ρN/6 0

0 ρN/3 0 ρN/6
ρN/6 0 ρN/3 0

0 ρN/6 0 ρN/3

 (5.1)

After the mass lumping (by Lysmer [6]) the matrix becomes

ML
N = hN


ρN/2 0 0 0

0 ρN/2 0 0
0 0 ρN/2 0
0 0 0 ρN/2

 (5.2)

The matrix M can be calculated in the same way as shown in figure 2.3. The
rest of the matrices B0, B1, B2 are calculated similarly.
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