ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA

SCUOLA DI INGEGNERIA E ARCHITETTURA
DIPARTIMENTO DI INFORMATICA — SCIENZA E INGEGNERIA

CORSO DI LAUREA MAGISTRALE IN INGEGNERIA INFORMATICA

TESI DI LAUREA
in

COMPUTER VISION AND IMAGE PROCESSING

3D Object Detection from Point Clouds with dense pose voters

Candidato Relatore:
Mattia Fucili Chiar.mo Prof. Luigi Di Stefano

Correlatore/correlatori
Dott. Ing. Federico Tombari!
PhD Fabian Manhardt!

ITechnische Universitit Miinchen

Anno Accademico 2017/18

Sessione 111

Summary

1.1 Computer Vision|
[I.1.1 _Pinhole cameral
(1.2 Machine Learning|
(1.3 Supervised Learning algorithms
[L3.1 Classification
[1.3.2 Regression|,
[1.3.3 Semi-supervised Learning algorithms|
[1.4 Unsupervised Learning algorithms|.
(1.4.1 Clustering
[L4.2 Association Rules

[1.5.1 Compute the error
Illsilz !;I;!!lig:lll !1§={l£:§211! ---------------------

[1.6.1 Convolutional layer|
[.L6.2 Activation function|
[1.6.3 Pooling layer|
[1.6.4 Fully Connected layer]
[.6.5 Convolutional Neural Networkl

2 Related Work

2.1 2D object detection|o
[2.2 3D object detection|
[2.2.1 Hand crafted features proposal generation|
[2.2.2 Monocular-based proposal generation
[2.2.3 3D region proposal networks|
[2.2.4 Region proposal from LIDAR and images

2.2.5 RPN free architectures/
2.2.6 Our approach

10
11

12
12
12
13
14
15
16
17
18
18
18
19
20
21
24
25
27
28
28
29

[3 Data Analysis|

[3.1 Datasets for autonomous driving]

[3.3 Data preparation

[3.3.1 Class labeling of Lidar points

[3.3.2 Computing the centroid

[3.3.3 Annotation of 3D Bounding Box|

[4 Project and Solution

4.1 Classification|

4.2 Centroid vectors regression|

4.3 Bounding boxes regression|

4.3.1 Robust corner detection|

[4.3.2 Clustering for real application of the model|.

[4.3.3 Other improvements to our model

[5 Experiments|
[5.1 Data Augmentation|. . .
[5.2 Network configuration| .

[5.3.2 Bounding box results|

[3.3.3 Test on the "road”

[5.3.4 Other results . .
[5.3.5 Numerical results

[Conclusion
[List of figures|
[List of tablesl
[Referencesl

35
35
36
39
40
42
43

46
46
49
52
95

56

58
58
58
o8
o8
60
61
64
67

73

75

78

79

85

Abstract

Object detection has been always a challenging task in Computer Vision.
It finds application in many fields, mostly in industry, such as finding the
objects to be grabbed by a robot. In the last decades, such tasks have found
new ways to be addressed thanks to the reemergence of Neural Networks, es-
pecially Convolutional Neural Networks. This kind of networks has reached
impressive results in many applications for object detection and image clas-
sification. The trend now is to use such networks also in the automotive
industry to make the dream of cars that drive alone become a reality.
There are many prominent works on car recognition from 2D images. In this
thesis we present our Convolutional Neural Network architecture for recog-
nizing cars and estimating their positions in space, using only lidar inputs.
We store the information of the bounding box around the car at point level
ensuring us good prediction also in occluded situations. Tests are performed
on the most used data set for car and pedestrian detection in autonomous
driving applications.

Prefazione

Il riconoscimento di oggetti "e sempre stato un compito sfidante per la
Computer Vision. Trova applicazione in molti campi, principalmente
nell’industria, come ad esempio per permettere ad un robot di trovare gli
oggetti da af- ferrare. Negli ultimi decenni tali compiti hanno trovato
nuovi modi di es- sere raggiunti grazie alla riscoperta delle Reti Neurali, in
particolare le Reti Neurali Convoluzionali. Questo tipo di reti ha raggiunto
ottimi risultati in molte applicazioni per il riconoscimento e la
classificazione degli oggetti. La tendenza, ora, "e quella di utilizzare tali
reti anche nell’industria automo- bilistica per cercare di rendere reale il
sogno delle automobili che guidano da sole. Ci sono molti lavori importanti
sul riconoscimento delle auto dalle immagini. In questa tesi presentiamo la
nostra architettura di Rete Neurale Convoluzionale per il riconoscimento di
automobili e la loro posizione nello spazio, utilizzando solo input lidar.
Salvando le informazioni riguardanti le bounding box attorno all’auto a
livello del punto ci assicura una buona pre- visione anche in situazioni in cui
le automobili sono occluse. I test vengono eseguiti sul dataset pi u utilizzato
per il riconoscimento di automobili e pedoni nelle applicazioni di guida
autonoma.

Introduction

Autonomous driving has been one of the most challenging research in the
past decade. Experiments in self-driving cars have been conducted since the
1920s. The first promising trials took place in the 1950s with cars guided
by lights installed on the edge of the road and from that time the work still
proceeds. The first truly self-guided car appeared in the 1980s with the ALV
project|L]. So far, the obstacles are identified as clusters in the street but
the approach is changing. To address this task, now, the most used tools are
the Convolutional Neural Networks (CNNs) which, in the last decade, have
achieved impressive results for object recognition in lots of application with
images and for this reason they have been used also for autonomous driving
purposes. Major car companies started to invest and test self-driving cars
from the 2010s. Computer vision is a core part of these systems because it
allows vehicles to know the environments, to see the obstacles and navigate
the world.

Self-driving cars must be able to recognize 3D objects in the space in order
to navigate. To do that they must be equipped with cameras and/or 3D sen-
sors, like LIDAR|2]. There are many works implemented using RGB images,
LIDAR and both. Some promising examples are VoxelNet[3] which works
only with LIDAR data organized in voxel. AVOD[4] which uses both inputs
to extract features and ROI-10D[5] which uses an image approach together
with depth maps to detect cars.

In our work we have chosen to use point clouds because they carry more in-
formation about the shapes of the obstacles, the spatial distributions and the
depth, instead of simple 2D images which may carry problems of ambiguity.
For example big car far away can be as small as car very close. Point clouds
are captured using 3D scanners which fire pulsed laser light to a target and
measure the reflected pulses with a sensor. This allows making the 3D model
representation of the target. Point clouds found place in many fields; they
are mostly used in the industrial world as 3D CAD models for manufactured
parts, rendering and animation in film and games and even in medical appli-
cations. In recent years they have found usage also in autonomous driving
applications together with deep learning. Due to the high number of points
inside a point cloud, work with them can be computationally very expensive.
In the next chapters we show how to build a CNN model to solve two prob-
lems: estimate the 3D bounding boxes surrounding the cars, pedestrians and
vans and estimate their orientation along the street.

10

Thesis outline

First, we give a brief introduction to the thesis. In the first Chapter, we
introduce the reader to computer vision and machine learning, its application
in the real world and a dedicated sub-chapter focused on convolutional neural
networks.

In Chapter [2| we explore the related works on object detection, especially in
the autonomous driving context.

In the third Chapter we analyze a bunch of autonomous driving datasets,
giving pros and cons compared to our goal. We then introduce the reader to
the dataset we use, motivating the choice, and explain how it is structured
using both images and tables. Lastly, we talk about how we have modified
the data in order to feed them into our model.

Chapter |4 describes the convolutional model we present to solve the problem
and explains all the design choices we have taken to get the final result.
The experiments we did are presented and discussed in Chapter [3]

Finally, we conclude with the Conclusion Chapter in which we also give future
work discussion.

11

1 Theory

In this chapter we introduce the reader to the concept of Machine Learning
(ML) and its applications. In the beginning, we give some general infor-
mation regarding what is ML, the different types of algorithms and their
applications. In the last subchapter, we dive into the Convolutional Neural
Network, which is the branch of ML we choose to accomplish the thesis.

1.1 Computer Vision

Computer vision is a scientific field, inspired by the human vision system,
which deals with acquire, process, analyze and extract information from im-
ages. A naive model to capture images is the pinhole camera model.

1.1.1 Pinhole camera

The simplest and well known camera model in computer vision is the pinhole
model. It is an imaging device which gathers the light rays reflected by 3D
objects to create a 2D representation of the scene. It can also be used to
extract 3D information from 2D images. The image is captured by drawing
the rays from scene points through the hole to the image plane.

Photosensitive plane

*Pinhole”
\\ EBE image
\5."-.-""

object

Figure 1: Pinhole camera

The image formation process is known as perspective projection. The model
is described with a center point C, the focal length f from C to the image

12

plane and c the intersection point between optical axis and image plane,
called piercing point.

y
Vx R ,.',.»~' M(x’y’)
f - .A._,... -
.-4.,.... = C

Figure 2: Pinhole camera model

Mathematically the model for the image formation process is described as

U fe 0 ¢ O .
ul =10 f, ¢ Ofx ‘Z
1 0 0 1 0 1

1.2 Machine Learning

Machine Learning is a topic which is getting more and more famous nowa-
days. Its fields of application are increasing everyday. Firstly hypothesized
in 1950 by Alan Turing who proposes a learning machine that could learn
and become artificially intelligent[6]. Since that time a lot of new discoveries
comes up; the first Neural Network machine in 1951, K-Nearest Neighbour
algorithm in 1967, Recurrent Neural Network in 1982 and many more. To
better understand all of this we give some theory explanations.

First of all, what does it mean Machine Learning? Machine Learning is a sci-
ence who study algorithms and mathematical models to allow the computer

13

learning. In particular using a specific sample data, known as training data,
the computer learns a mathematical model, which can be used to predict out-
put without being programmed to do that. ML, as said before, find usages in
different fields, such as email filtering, speech recognition, computer vision,
data analysis, fraud detection, even auto-tag in Facebook and countless other
examples. Given a training dataset the computer progressively tries to find
a function to map the input to output labels.

Depending on whether we have output labels or not, every ML algorithm
could be grouped into two main categories: Supervised Learning algorithms
and Unsupervised Learning algorithms.

1.3 Supervised Learning algorithms

In this class belong all the algorithms which in the training phase try to find
a map function between the input and the output based on specific pairs of
values called training dataset.

Given a set of pairs input-output {(x1, y1), (2, y2), ...(Tn, yn) } the supervised
learning algorithm tries to find a function such that Y = f(X), with X as
input space and Y as output space. The way an algorithm learns is modelled
as adjustments in the mathematical model based on the output error of the
model’s prediction.

There are several algorithms for Supervised Learning, few examples are:

e Naive Bayes Classifier
This classifier is based on the Bayes’ Theorem and on the assumption
of independence between the predictions.

e Support Vector Machines
Also abbreviated as SVM, this method seeks a hyperplane to separate
the samples into two classes. One goal is to maximize the distance
between the closest sample of the classes.

e Decision Trees
As the name suggests the structure of this method recall the shape of
a tree. The dataset is split into parts based on an attribute value test
inside the decision nodes and the classification are stored in the leaf
nodes.

e Random Forest
This method consists of building more than one different decision tree

14

at training time and to produce an output computing the mode of the
classes for all the trees.

e K-Nearest Neighbour
This algorithm takes a bunch of labelled samples and uses them to
learn how to label unseen examples. The K in the name of the method
means the number of neighbours the algorithm checks to assign the

label.

e Neural Networks
A Neural Network consists of layers of neurons that takes an input
vector and outputs another. A neuron is the simplest brick of this
method and is described as

y=wzr+b (1)

Typically to a neuron is applied a non-linear function which is needed
to be able to stack multiple layers. The Network is built connecting
together several neurons where the output of one neuron is the input
of another.

These problems can be further grouped in classification problems and regres-
sion problems (Figl3).

Machine
\ Learning y

Assoclation
Al 4

Figure 3: Machine Learning structure

1.3.1 Classification

A Supervised Learning algorithm is called a classification problem when the
output variable to be predicted is a discrete value. For example, a standard

15

classification problem is to determine if the email is spam or not spam.

In a nutshell a classification problem tries to predict discrete labels, class
or categories. If the number of discrete values in output is two, usually the
problem is called a binary classification problem; if there are more, then the
problem is a multi-class classification problem.

The prediction could be also a continuous value as a probability to belong
to a class or to another. Then this value, usually, is converted into the class
with the highest probability. Using the example of the emails, one email can
have the probability of being a spam email of 30% and 70% to not be spam.
In this case, the email is labelled as not spam, since the highest probability
suggests it.

INBOX
SPAM o —
e
WAC
LN CLASSIFIER <
K SPAM FOLDER
e gy]
SPAM 8 g 8

Figure 4: Email example

To estimate the goodness classification skills of these algorithms there are
several indices, but the most common is the accuracy index.

It consists on computing the percentage of correctly classified over all the
predictions:

correctprediction

accuracy = * 100 (2)

totalprediction

1.3.2 Regression

Regression tasks are very similar to classification tasks except for the type of
output prediction, which is continuous. This means that with these kinds of
methods we aim to predict: amount, price, weights, etc. A pretty standard
example of this category is to estimate the price of a house in a specific region
of the world.

16

The simplest method used to solve this problem is linear regression. This
method is based on finding the best linear function that maps the input to
the output. In the case of one variable the equation is the following:

y=wx+b (3)

with w and b called intercept and slope, which are the parameter to learn.
The Figl5| represents the graphical representation of the problem.

15000 |

10000 -

5000 |

0.0 0.5 1.0 1.5
X le7

Figure 5: House price example

To estimate the goodness of the regressor, usually is used the Root Mean
Squared Error (RMSE) index.

It consists of computing the square root of the average error between the
predictions and the labels:

RMSE =

with p; being the predicted value and [; denoting the label.

1.3.3 Semi-supervised Learning algorithms

This is a particular class that during the training phase uses both labelled
and unlabelled samples. Typically, this approach is used when there are more

17

unlabeled sample than labelled ones. These algorithms use the labelled data
to produce labels for the other samples, reducing consistently the time and
the cost needed to produce an entire labelled dataset. Moreover, since some
samples have the label the whole process gains an improvement in learning
accuracy with respect to the Unsupervised Learning.

1.4 Unsupervised Learning algorithms

An Unsupervised Learning algorithm is characterized by a training dataset
without labels. These approaches are used to find common information in the
input data, to group them and use the model obtained to label more unseen
samples. Since there aren’t any labels to compute the error, is difficult to
define a good model.

The most common algorithms to work with are:

o K-Means][7]
e Neural Networks
e Principal Component Analysis (PCA)[§]

These methods can be further grouped in clustering problems and association
rules problems.

1.4.1 Clustering

This approach is used when we want to discover hidden grouping in the input
data. An example could be grouping costumer by a purchasing behaviour.
There are many algorithms such as K-Means[7] which is a common algo-
rithm used to tackle this kind of problems. Other well known algorithms
are Mean-Shift[9], DBSCANJ10] and agglomerative hierarchical clustering
(HCA)[11][12].

1.4.2 Association Rules

This method is used to discover rules that describe your data in order to help
the user to make decisions. Using the above example of the customers, an
association rules algorithm is useful to find which products the customer buy
together with other products. Apriori algorithm implements this behaviour.

18

1.5 Focus on Neural Networks

Artificial Neural Networks (ANN) are one of the recent tool used in Machine
Learning. They are computing systems inspired by the human brain, as sug-
gested the word "neural”. A neural network is a collection of a units called
neurons organized in layers connected together similar as synapses. Each
neuron receives a signal modelled as input real value, processes it and then
outputs it into the other neurons of the next layer, till the very last which
outputs the prediction. This framework is very useful when the task requires
to find a pattern which is very complex to discover by a human.

Neural networks have been introduced in the ’50 as perceptrons realized in
hardware from Rosenblatt[I3]. In the last decades, they have seen their
widespread use thanks to the growth in computational power of the comput-
ers.

The structure of a simple neural network is shown in Fig6]

input layer hidden layer 1 hidden layer 2 output layer

Figure 6: Neural Network sample structure

Each neuron and connection have its own weight which are adjusted as the
learning process proceeds. They increase or decrease depending on the gra-
dients from the error in the output. This process of updating the weights is
called back-propagation. Moreover, every neuron also has a function which
applies to the output, except for the final layer. This function is called the
activation function. The activation functions are used to stack layers other-
wise we can not model deep networks.

A neuron mathematically is modelled as follows:

Y= f(z w;T;) (5)

19

with y as the output value, f the activation function and w;x; respectively
the weights and the inputs. Typically a neural network with one hidden layer
is used to model linear problems, on the contrary network with more than
two hidden layers are used to model non-linear problems. Some common,
non-linear, activation function are Sigmoid, ReLU, TanH and Leaky ReLU.
The most used is the (Rectified Linear Units) ReLU function because it has a
first order derivative which is a desirable property for enabling gradient-based
optimization methods. It is defined as follows

y = max(0,x) (6)

In Fig[7] are shown three activation functions.

Sigmoid TanH RelLU
12 15 10

f(E) e — 10 tanh(z) = T
05
00 4
-05

00 - 1.0

-02 15 -2
% -4 - 4 6 g 4 2 0 2 4 6 6 -4 2 0 2 4 6

Figure 7: Activation functions

The basic neural network possible is the feed-forward neural network, which
is a one-way network where the input passes through all the hidden layers to
the output layer, without any weights updates.

1.5.1 Compute the error

Before dive into the weights updates we define the most used error functions
and how to compute them. The loss is defined as y = L(y,7). There are
many different ways to compute it and they depend on the type of the value,
but the most known are:

e Mean Squared Error (MSE)
Known also as L2 Loss Function, it’s the most used for regression tasks
and consists on computing the mean over the squared error difference
between the output and the ground-truth. £ = - Zfil(yz —7)?

20

e Mean Absolute Error
It’s also called L1 Loss Function and it’s defined as follows:

N _
L= % Zi:l \vi — il

e Log Loss
The Cross Entropy is used for classification tasks and is computed as:

L=—3" Tilog(y:)

1.5.2 Gradient descent

Since we want to minimize the error in the output of our network we need an
optimization algorithm able to find the local minimum of a function. This
concept is implemented following the gradient descent algorithm.

To explain this approach we must remind that if a multi-variable function
F(x) is definite and differentiable in a neighbourhood of a point p then, F(x)
decreases very fast if we move from p to the direction of the negative gradient
V F(p). This could be applied in the neural network to update the weights
trying to find optimal values. A single step of an update can be written as

Wi =W —aVf(z) (7)

with W, as the next step, W the current step and « the learning rate. The
learning rate plays a big role in this formula because it determines how big
is the update. It is difficult to set a good one, because if the learning rate is
too high the step is big and may happen that it will not reach the minimum
but it bounces back and forth causing the so-called ”overshooting”. If the
learning rate is set too small it will take a very long time to reach the solu-
tion.

Too low Just right Too high
1) | / 1o | 10) e T
i p \ y /
X \ > ‘&4
\ / \ v \ '
’/ e /e \ Y
N s Nt St o
/] 0]

A small learning rate The optimal learning
requires many updates rate swiftly reaches the
before reaching the minimum point
minimum point

Too large of a learning rate
causes drastic updates
which lead to divergent
behaviors

Figure 8: Learning rate examples

21

To update the weights we must compute the partial derivative 0f/0w for
any weight in the network. It’s clear that if the network is big this ap-
proach in unfeasible. To overcome this problem has been introduced the
back-propagation [14]. This method allows computing the derivatives from
the output to the input passing through all the intermediate weights using
the chain rule, which states:

oy _ dyou

or Oudr (8)

A good explanation example is shown in Figl9]
oL oL of
drg Of = Oxy

XO
\ f
f(x)

X, a_f

Figure 9: Back-propagation example

The problem of the Gradient Descent is that it must see the entire dataset
before performing a weights update step, making it very slow and even un-
feasible with huge datasets.

To address this problem have been introduced many other methods based on
it. Here a list of the most known:

e Stochastic Gradient Descent (SGD)
It updates the weights after each batch, making this process faster.
Due to this high update frequency and fluctuation of the loss function,
it struggles to converge.

Wi =W —aVf(x) (9)

22

e Momentum [15]
This techniques was invented to speed up the convergence of the SGD
forcing the step updates in the right direction and softens the oscilla-
tions.

v = pv+9Vf(z) (10)

Wi =W —avy (11)

e Nesterov Momentum
It fixes a problem in the Momentum SGD which could lead to miss the
minimum. Near the minimum the Momentum has a high value and
since it does not know when to slow down the speed it may miss that
point.
v = pv + 7V f(z + pv) (12)

Wi =W —avy (13)

e AdaGrad [16]
It uses different learning rate based on the past gradients. It makes
big updates for infrequent parameters and small updates for frequent
parameters.

g1 =g+ (Vf(x))? (14)

V/(z)
v 9+1+ le=7

e Adaptive Moment Estimation (Adam) [17]
It compute adaptive learning rates and an exponential decay average
of the past moments

W+1 - W — (15>

There are many other types of Neural Networks, such as:

e Convolutional Neural Networks (CNN)[18]
Particularly suitable to deal with images and for this reason are widely
used in Computer Vision tasks.

23

e Recurrent Neural Networks (RNN)

RNN are a family of Neural Network for processing sequential data.
Their hidden layers are characterized by having their output signal in
input to the next layer and also in the input of themselves. This partic-
ular configuration grants them the power to make a decision influenced
by the past iterations. Are used for example in text analysis. particular
types of RNN are the Long Short-Term Memory Networks (LSMT)[19]
and GRU|[20].

e Generative Adversarial Networks (GAN)|[21]
Is a network composed of two networks, one used to generate samples
and one to evaluate them. GANs are applied to align distribution by
having a generator G. The generator generates a sample and a discrim-
inator D tells if this sample comes from the corresponding distribution
or not. The network is trained doing cycles of generate and test.

In the next subsection, we will give more information about CNNs which is
the tool used to carry out the thesis.

1.6 Convolutional Neural Networks

As aforementioned, CNNs are a category of the Neural Networks that are a
powerful tool to address image recognition and classification tasks. They are
largely used in face recognition (like in the smart-phones), robotic vision and
self-driving cars.

The first artificial neural network was proposed by Kunihiko Fukushima in
1980s for handwritten character recognition [22]. It has inspired the first work
on CNNs which was the pioneering Yann LeCunn network named LeNet5[18],
used firstly to recognize characters.

The basic units to build a CNN are the following:

e Convolutional layer
e Activation function
e Pooling layer

e Fully Connected (FC) layer

24

First, we define what is the standard input of a CNN. As we said it works
with images, and the simplest image in the input is a grey-scale image. Let
the input image has a shape of W x H, so the input of our network is a grid

of WxH numbers which span from 0 to 255.

1.6.1 Convolutional layer

Figure 10: Grey-scale image example

150 152 129 [1:1 172 e |1ss [1se

75| 62| 3| 17 |10 |20 150 | 154

M| 6| 0| 1| 40619 1

[120 [204 166 | 5 | 56 150

=
o
=
8
L]
H

This layer is the most important, because it has the job to extract the fea-
tures. It owes its name to the Convolution operator.
extract features working with a small square portion of the image preserving
the spatial information.
Suppose we have a grey-scale image and the top left corner portion of it.

105 | 102 | 100 97 96
103 99 103 | 101 | 102
101 98 104 | 102 | 100
99 101 | 106 | 104 99
104 | 104 | 104 | 100 98

Figure 11: Grey-scale image

This operator can

Then we define a matrix called ”Kernel” which for example is the one of
the Figl12] below.

0 -1 0
-1 5 -1
0 -1 0

Figure 12: Kernel matrix

The convolution consists of summing up all the products between the input
image and the kernel, applied in all the pixels. The Fig[13| gives an intuition
of a step of the whole process.

Kernel Matrix

o 0o | 0
102 -1 5 1 89
a8 0o | 0

99

104 | 104 | 104 | 100 98

Image Matrix 1050+ 102 —1+4 1000 Output Matrix
+103%—-1+99 %54+ 103 x—1
+101%0+98%—1+104x0 =89

Figure 13: Convolution example

An important parameter that we must define is the stride, this number in-
dicates the number of pixel we want to skip when we slide our kernel on the
image. Every time we apply a convolution process in a image, we get a a
feature map with the size of

Linput - Ksize + 2P
stride

+1 (16)

L output —

with Loytpue as the output size, Lin,ye as the input size, Ky, as the size of
the kernel and P padding size.

For example if we have a 727 image and we apply a kernel of size 222 with

26

stride 1 we end up with an image of size 6x6.

When the kernel is applied in the border of the image some pixels of the
kernel don’t have the corresponding pixels of the image. In this case, the
image is padded with zeros in order to not change the result of the sum.

1.6.2 Activation function

As we discussed before there are many non-linear activation functions that
could be applied. The most used is ReLU.

If we do not add an activation function to our Network it can only model a
linear function. This could be considered good because a linear function is a
polynomial of one degree, but it lacks the power to learn complex functions,
which is what we are looking for.

Just a reminder of the formula of the ReLLU function

y = maz(0,x) (17)

A good visualization of its application to an image is shown in Fig[l4]

Input Feature Map Rectified Feature Map

N
RelU ‘l‘ \ ,u

)

G
A

white ="positive values Only non-negative values

Figure 14: ReLU example

27

1.6.3 Pooling layer

Pooling layers are used to group features and usually to reduce the dimension
of the space feature. Reducing the dimensions the number of parameters of
the network is reduced and so the computational cost. The pooling layer can
be of different types:

e max-pooling
e sum-pooling
e average-pooling

All of them consist in a window of a fixed size (for example 222) which is
slide over the image and inside of it is applied the related operation.
Here, in Fig[l5] an example of the max-pooling operation.

max pool with 2x2
window and stride 2 6 8

11214
6|78
21110 3| 4
213 |4

— | | U1]| —

Figure 15: Max-pooling example

As in the convolution operation, we can have the stride parameter and the
padding.

The pooling operation, as can be seen in the example, is used to reduce the
feature dimension smaller, reducing the number of parameters and compu-
tation in the network. Moreover, it also makes the network robust to small
transformation, distortions and translations in the input image.

1.6.4 Fully Connected layer

This layer, usually, is used at the very end of the network and it’s a Multi-
Layer Perceptron (MLP). In the case of a multi class classification task, a
softmax activation function is applied in the output layer in order to classify
it. This network is fed with the flattened high-level feature extracted by the
previous convolution layers.

28

1.6.5 Convolutional Neural Network

In a very standard CNN the pieces discussed above are used in this sequence:
input-(conv-activation-pool)*-fen-output, ”*” means that this block can be

repeated several times.
The Fig|16] shows an example of a CNN.
: é :

D — BICYCLE

FULLY
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING i FLATTEN e Ep SOFTMAX
FEATURE LEARNING CLASSIFICATION

Figure 16: Convolution Neural Network example

As we go further as the layer of the network can learn hierarchical features. In
the ”Convolutional Deep Belief Networks for Scalable Unsupervised Learn-
ing of Hierarchical Representations” 23] the researchers show in a picture
(Fig the visualization of the feature maps inside a CNN.

e
1% 'T’ ,E’ El’ Layer 3
Oahdhern

Layer 2

L L] TN ALYV Layer 1
W VINSSEW eSS

Figure 17: Visualization of the feature maps
We can see that in the first layer the network focuses its search on simple
things like edges. It the last layer it can recognize faces.

Another good example is the visualization of digits of the MNIST dataset

29

(Fig performed by Adam Harley in its work ” An Interactive Node-Link
Visualization of Convolutional Neural Networks” [24].

Output
Layer
FC
Layer 2
FC
Layer 1
Pooling
Layer 2

Convolution
Layer2

Pooling
Layer 1

Convolution
Layer 1

Figure 18: Visualization of the digits in MNIST

30

2 Related Work

2D object detection tasks and 3D objects detection tasks are very challenging
problem in computer vision nowadays. In the past, they were carried out
using mathematical models, for example sliding window approaches, but in
the last decade neural networks have become more common.

2.1 2D object detection

Briefly talking about 2D object detection we must cite one of the first con-
volutional neural network, which achieved great results, presented by Alex
Krizhevsky, called AlexNet[25]. This was proposed for the ”ImageNet Large
Scale Visual Recognition Challenge” in 2012. Thanks to this new approach,
convolutional neural networks together with a big dataset and advanced com-
puting technology opened a new era for computer vision.

After AlexNet[25], lots of different architectures have been presented and
they achieve better results as moving onward. We can find tons of differ-
ent architectures but the ones considered milestones are Region-based Con-
volution Neural Networks (RCNN)[26], along with its newer versions Fast-
RCNN[27] and Faster-RCNN|[28], then VGGNet[29], YOLO[30], Inception or
GoogLeNet[31] and SSD[32].

2D objects detectors have achieved very good results in almost all fields,
such as in autonomous driving where they can reach up to ~92% of accurate
classification of cars (Reference to the KITTI[33] dataset).

2.2 3D object detection

Regarding 3D object detection the work is more complicated and for this
reason, the results still lack high accuracy.
There are several different ways to address this kind of problems.

2.2.1 Hand crafted features proposal generation

This methods first generate a small set of candidate bounding boxes which
cover most of the objects in the space, then use them to detect the objects.
Two examples of this approach are 3DOP[34] and Mono3DJ[35]. To obtain the
templates they clustered the ground-truth 3D bounding boxes in the training
set. In particular, they took all the sizes of the possible objects in the dataset

31

and through an iterative process they clustered the boxes. They then choose
the average box for each cluster. At the end of the architecture, they used a
modified version of Fast-RCNN[27] to generate the final prediction.

2.2.2 Monocular-based proposal generation

Another way to implement 3D object detection is to utilize a 2D object de-
tector for boxes proposal generation in 2D, which are then transformed in
3D. This was firstly hypothesized by a group of researchers in their work [36]
in which they tried to detect indoor objects.

An example based on this method and more related to our work is the Frus-
tum PointNets[37]. Their work is structured in three different blocks. The
first one consists of frustum proposals; they extract a 2D bounding box from
an image containing a single car, using a 2D CNN object detector. Em-
ploying projection matrix, they then obtain a frustum which defines the 3D
search space for the object. The second block performs, through a FPN|[3§]
structure, an instance segmentation to classify how likely each point belongs
to the object of interest. The last step uses a simple Fully Connected Layer
(FCN), which takes the segmented points and predicts the 3D bounding box.
Another interesting paper that uses 2D region proposal and outputs 3D
bounding boxes is [5]. According to their results, they achieve state-of-the-
art results on KITTI3D[33] using monocular data only.

To use a monocular-based method a good 2D object detector is mandatory
because any missed object in the region proposal generation phase cannot be
recovered and will lead to bad performances.

2.2.3 3D region proposal networks

These methods extend the 2D approach of the Faster-RCNN[28] to 3D space.
One example is MV3D[39]. In this work, they firstly process the bird’s eye
view (BEV) of the point cloud to generate the 3D object proposals using a
convolution-deconvolution process similar to [38]. Given the 3D proposals,
they project them in the bird’s eye view, in the front view of the point
cloud and in the image. Then, before the 3D box regression, they fuse the
information coming from these different sources employing a deep fusion
approach, inspired by [40].

32

2.2.4 Region proposal from LIDAR and images

To this category belong all the methods that use an RPN approach on both
LIDAR data as well as on images to get better region in which look for an
object. Two examples are AVOD[4] and Deep Continuous Fusion[41].
AVOD[4] using a FPN[38] architecture extracts features from both the vox-
elized point cloud and image, then passes them to a 3D RPN. The RPN
uses fixed anchor boxes whose dimensions are determined by clustering the
training samples for each possible class in output. For the bounding boxes
regression, they propose to encode a box as four corners and two height rep-
resenting the top and bottom corner offsets from the ground plane.

Deep Continuous Fusion[41] uses a mixed approach in which they fuse the
features from the 2D detection on images with the features from the 3D de-
tection on the bird’s eye view of the LIDAR data. For both methods uses
ResNet18[42] as a backbone network, then the features extracted from the
image are fused in a multi-scale feature map which is concatenated to each
intermediate result of the BEV detection. To generate the detection out-
put they use a 1zl convolution layer to the final BEV layer obtaining the
bounding boxes and the class scores.

2.2.5 RPN free architectures

These methods do not use a region proposal approach in which search for an
object and predict 3D bounding boxes. One example is VeloFCN[43] which
works directly and only with the LIDAR data fed as a 3D voxel map. It is
structured with three convolution layers, two deconvolution layers and the
last layer split into an objectness classification map and a 3D bounding boxes
map.

Other two approaches which work directly with point cloud but using a dif-
ferent input are 3SDFCN[44] and VoxelNet[3]. The major difference between
these two and the previous paper is that [44] and [3] take as input a voxels
and not a 2D point map. A voxel is the counterpart of a pixel in 3D, it’s
a three-dimensional space in which belong, in this case, points of the point
cloud.

The [44] work can be summarized in two tasks such as [43], objectness clas-
sification map and a 3D bounding boxes map. Their network is structured
some layers of convolution, to extract features, and one of deconvolution, to
get the prediction. Since they are working with voxel, they must apply a

33

3D convolution. The usage of 3D convolution allows the network to achieve
better results, but the computation, clearly, is slower.

VoxelNet[3] is composed of three blocks. The first block is a feature learning
network. With that they voxelize the point cloud, subsample the points in
each voxel to reduce the imbalance. They then create a stacked feature en-
coding that uses a point-wise feature extraction, which is the main difference
from [44]. In the second block they create a network with 3D convolutional
layers to aggregate the features. At the end they apply a 3D RPN, inspired
by [28], to process the final features and regress the bounding boxes repre-
sented by the coordinate of the center box, the size and the yaw rotation
around Z-axis.

2.2.6 Our approach

Our approach falls into the "RPN free architectures” category because we
model an architecture that works only with the point clouds and gives a per-
pixel prediction. The network we have implemented uses a pyramid structure
inspired by [38] in which we go deep using convolution layers, reducing the
size of the input and trying to find particular structures. We then go up
using deconvolution layers until the size of the input. Our approach is very
similar to a segmentation task, in fact we have to classify, at point level,
the objectness. Then using this objectness prediction we try to regress a
good bounding box for all the objects in the input point cloud. Precisely,
each point is trained to estimate a vector from itself to each corner of the
bounding box. Then using a RANSAC[45] approach all these vector are
analyzed and the bounding box is chosen. We also apply other optimization
techniques to get better results, such as an outlier removal algorithm and a
box rectification.

34

3 Data Analysis

In this chapter we first summarize some dataset related to the autonomous
driving field, then we provide information about the dataset we use, the data
inside it and all the transformation we have done to get the final dataset.

3.1 Datasets for autonomous driving

Autonomous driving has been an active research area these years which
means lots of new datasets collected for this purpose.

We can find private datasets, such as the one from NVIDIA. So far, they
have collected more than 30PB (Petabyte) of data and the amount is grow-
ing every day with a speed of 1PB per week. The data are collected by a
small fleet of 30 cars, each equipped with various sensors such as cameras
and LIDAR. The data are then labelled by a team of 1.500 labellers which
are able to categorize up to 20 million objects per month. All these data are
available, for their clients, in the platform MagLev that is a dedicated cloud
to develop Al deep learning models for autonomous driving. Moreover, the
platform is supported by a dedicated 4.000-GPUs cluster.

Beyond this gigantic and private dataset, there are lots of freely available
dataset to work with. One of the first datasets for autonomous driving is the
Cambridge-driving Labeled Video database (CamVid)[46]. It’s a collection
of videos with object class semantic labels. It contains 701 images, obtained
from the videos, with 32 per-pixel annotated class. This dataset has not been
chosen because of its very small dimension and because it does not contain
any data for 3D object detection.

Another interesting dataset is Cityscapes[47]. This dataset gathers images
from 50 different cities in Germany and mainly focuses on 2D semantic la-
belling. It has roughly ~ 25.000 images, 5.000 of them are detailed labelled
with 30 different object classes and the remaining 20.000 are coarse labelled.
It also provides the video in which have been obtained the images.

Similar to [47], the Mapillary Vistas dataset[48] is another large-scale street-
level image dataset, which contains the same number of images of [47], but
with more object categories, in detail 66. Its images are collected from all
around the world at various weather conditions and with different imaging
devices. Unfortunately, both [47] and [48] are not suitable for our purpose
since they are focused on 2D object segmentation and scene segmentation.
A big dataset collected using LIDAR is the TorontoCity benchmark[49]. Its

35

data are collected from both drones and moving vehicles and cover the whole
area of the city and surroundings. This dataset, unluckily, cannot be used
as it is for [47] and [48], because the main tasks this dataset is built to test
are building and road footprint segmentation and building instance segmen-
tation.

Not always it is possible to collect data and, because annotate them could
be laborious and complex. For this reason have been also proposed synthetic
datasets. One example is SYNTHIA[50] which is built using Unity develop-
ment platform[51], but it can not be used for our purpose since they provide
only images.

Another good and new dataset is ApolloScape[52]. Tt has been collected us-
ing a car equipped with both LIDAR scanner and cameras driven in Chinese
cities. It contains data acquired in different weather conditions and day time.
In total it has more than 90.000 images with 8 different classes for instance
segmentation, more than 160.000 images for per-pixel segmentation using 35
object classes and more than 70.000 cars annotated in 3D space. The prob-
lem is still that it mainly focuses on semantic segmentation and, even if it
has a good portion of the whole dataset related to point clouds it lacks 3D
bounding boxes.

The last dataset we present is KITTI dataset[33], which is the dataset we use
to perform our tests and will be described in detail in the next sub-section.

3.2 The KITTI dataset

This dataset is widely used as a benchmark for lots of papers because it
is the first large scale 3D detection dataset for autonomous driving. The
dataset has been collected by the Karlsruhe Institute of Technology (KIT)
and Toyota Technological Institute at Chicago (TTI-C). With this dataset is
possible to benchmark stereo, optical flow and visual odometry tasks, but it
is mostly used for 2D and 3D object detection and tracking. The data are
captured by driving around the mid-size city of Karlsruhe, in rural areas and
on highways. To collect the data they used a car equipped with an eight-core
i7 computer running Ubuntu and a real-time database. The car also mounted
several sensors to acquire data, such as one laser-scanner (Velodyne HDL-
64E), 2 grey-scale cameras and 2 color cameras. The scanner was able to
capture approximately 100.000 points per scanning cycle.

For 2D and 3D object detection the dataset consists of 7481 training images
and 7518 testing images along with the corresponding point clouds for a total

36

number of 80.256 labelled objects. Each point cloud is structured as a Nz4
matrix with the rows equal to the number of points and columns as x, vy,
z coordinates and the fourth value is the reflectance. In each image/point
cloud, there is at least one object up to 30 cars or 15 pedestrians. They also
provide, for each pair of image/point cloud a label file and calibration file.
The label files are structured as a table of 15 columns as follows

Object	Truncated	Occluded	Alpha	Box L	Box T	Box R	Box B	Di ion H	Di ion W	Di sion L	Location X	Location Y	Location Z	Rotation
Car	0.00	1	210	11856	193.18	262.614	260.06	1.59	172	3.86	-11.48	2:20	19.99	158
Cyelist] 0.00	3	269	954.72	181.07	1128.96	300.22	1.68	0.86	2.01	6.28	181	10.65	-3.08	
Va	0.00	3	-1.71] 692,96	163.61	790.66	256.30	2.12	1.86	4.41	3.29	1.96	19.05	-1.54	
Pedestrian	0.00 I [012	409.17	176.96	444.84	287.63	1.87	0.64	0.65	-3.24	1.94	12.56	-013		
DontCare	-1	-1	-10	556.78	174.06	593.30	187.29	-1	-1	-1	-1000	-1000	-1000	-10

Table 1: KITTI label file example

Each field can be summarized in:

e Object
Describes the type of the object in the scene. There are various classes:
‘Car’, "Van’, "Truck’, 'Pedestrian’, "Person_sitting’, 'Cyclist’, "Tram’,
"Misc’ or "DontCare’.

e Truncated
Float number from 0 (non-truncated) to 1 (truncated), where truncated
refers to the object leaving image boundaries.

e Occluded
Integer between 0 to 3 indicating occlusion state: 0 = fully visible, 1
= partly occluded, 2 = largely occluded, 3 = unknown.

e Alpha
Observation angle from —7 to 7 of the object from the camera.

e Box
2D bounding box coordinates of the object in the image plane in the
order left, top, right, bottom. The ”.” split the x and y coordinates.

e Dimension
3D object dimensions in meters in the order height, width and length.

e Location
3D object location coordinates in meter referred to the camera system.

37

e Rotation
Rotation around the Y-axis from —m to 7 in camera coordinates.

DontCare labelled objects are cars that are too far away from the camera
and are not interesting in that particular frame.

In the calibration files, instead, there are stored 6 different matrices used to
pass from image to point cloud coordinate system and viceversa. As afore-
mentioned, each image comes along with a point cloud and they are linked
together with an ID which is the name itself. An example visualization of a
pair image/point cloud is shown in Fig and Fig

Figure 19: KITTT image example

Figure 20: KITTI point cloud example

38

To visualize the bounding boxes we have applied the transformation ma-
trices inside the calibration files to project the 2D bounding boxes into the
3D space.

The example in Fig[20] becomes:

Y I<

Figure 21: KITTI point cloud example with bounding boxes

3.3 Data preparation

From this subsection onward the word ”data” refers only to the point clouds
since our work is based on them.

The average number of points inside a point cloud is ~ 100.000, but not all
the points can be considered interesting for our purpose. The task to solve
is to recognize and detect cars and vans in front of "our car”, but the data
are recorded from all around the LIDAR sensor (see for example Fig[20).
Moreover, the labels are referred only to the object in front of the camera.
Thus, the first step to do is to remove the unused points in order to reduce
the amount of data and, more important, to reduce the input size of our
network (discussed later on).

To get this new visualization of the point cloud we have taken the frustum
view of the point cloud using the corresponding image. Then, applying the
right transformation matrices from the calibration files and cropping the
point cloud sizes to the image sizes we obtained a new point cloud showed

in Fig22}

39

Figure 22: KITTT frustum view point cloud

3.3.1 Class labeling of Lidar points

Our first data transformation consists in adding a new column which indi-
cates whether the point belongs to an object of interest or not. Therefore,
we seek all points inside the annotated 3D bounding boxes and label them
as interesting points. Exploiting geometry, a general point (x,y, 2) is inside
an axis-aligned box if:

Tmin < T < Tmax (18)
Ymin <) < Ymax (19)
Zmin < 2 < Zmax (20)

Since the cars and the other objects are not aligned with the axis this ap-
proach cannot be used, but a more general representation is required. So,
let one vertex be expresse_d) as O and A, B, C the three adjacent vertices, the
point P = (z,y,2) and OA = A — O as the vector distance between O and
A the new formulas are:

0.-0A<P.-OA<A-0A (21)

40

0.-0B<P-OB<A-OB (22)
0.0C < P-0C < A-0C (23)

A graphical representation of the result is shown in Fig[23] with the points
belonging to a car in blue:

I<

Figure 23: Points of interest

Using this method we have kept track of all the points of interest and built
our new dataset. This dataset is used in the first step of the thesis in which
we have tried to do a point-wise classification of the point clouds. An exam-
ple of the data is shown in the Tab[2]

41

‘ X ‘ Y ‘ Z ‘ Class
| 52.385 | 0.936 | 1.996 | 0
| 35.726 | 1.134 | 0.982 | 0
| 41.112 | 7.765 | 2.213 | 1
| 32.456 | 4.836 | 1.337 | 2
| 22.733 | 3.110 | 3.701 | 0

Table 2: Classification dataset example

Here 0 depicts background points, while numbers greater than 1 show points
belonging to one of the classes. The numbering is used later for evaluation
purpose especially for the output visualization of the bounding boxes.

3.3.2 Computing the centroid

The second data transformation has been done to test new further features
of our network and the main thing that led us to make changes was the
feasibility to regress vectors. In particular, we added the centroids to our
dataset. Specifically, we have stored the vector distance from each point of
a car to its centroid. To get all the centroids we computed the 3D center of
the bounding box.

A view of one example result is shown in Fig[24]

Figure 24: Centroid of a car

A graphical representation of the vectors is shown in Fig25] In green, we

42

have the vectors from each point of the car to the centroid and in red we
have the car points.

Figure 25: Centroid of a car with vectors

Tab 3] shows the structure example of a input file of the network.

‘ X ‘ Y ‘ Z ‘ Class ‘ Xctd ‘ Yctd ‘ Zctd ‘
52.385	0.936	1.996	0	0 o Jo		
35.726	1.134	0.982	0	0 o	0	
41.112	7.765	2.213	1	2.802	5.001	1.112
32.456	4.836	1.337	2 -1.489	4.330	2.112	

| 22.733 | 3.110 | 3.701 | 0 |0 o Jo |

Table 3: Centroid vectors dataset example

We can see that in the correspondence of the Class value 0 the vector’s
centroid information is absent, on the contrary, in the labelled objects the
coordinates Xctd, Yctd and Zctd store the information of the distance vector
between that point and the centroid of the object it belongs to.

3.3.3 Annotation of 3D Bounding Box

The third and last manipulation of the dataset consists of removing the cen-
troid information and adding the distance vectors from the points to the eight
corners of the bounding box. Using the same car of the example in Fig[25]

43

Figure 26: Example vectors from point cloud to a vertex

and focusing our process only for one vertex the result is shown in Fig[26]
Each red point is a car point and the green lines are the vectors which go
from the point to the corner.

Another transformation that has been made concerns the objects to be recog-
nized. Since the pedestrian and the bicycle are very small object with respect
to the whole point cloud it is really tough to detect them. Even trams and
trucks are difficult to recognize, so what we did was to remove all of these
objects and leave only cars and vans. To make this possible we have nulli-
fied all the rows in the dataset corresponding to this list of objects making
them not interesting for our network. Moreover, the number of points of a
car depends on the distance between it and the sensor; if the car is very far
away the number of points belonging to it could be also equal to one. For
this reason, we have chosen to remove all the cars and vans with less than
50 points.

The final representation of the data in input is:

44

X |Y |Z |Class|Xbb (x8) |...| Ybb (x8) | ... | Zbb (x8) | ... |
| 52.385 | 0.936 | 1.996 | 0 |0 .. |0 ..]0 |
| 35.726 | 1.134 [0.982 | 0 |0 .. |0 ..]0 |
| 41.112 | 7.765 | 2.213 | 1 | 1.802 | ... | 2.003 | o-3211 | L
| 32.456 | 4.836 | 1.337 | 2 | 2.349 | .. [-1.230 | ... | 3.452 |
| 22.733 | 3.110 | 3.701 | 0 |0 .. |0 .. |0 |

Table 4: Bounding boxes dataset example

The labels Xbb, Ybb and Zbb regard the coordinates of the bounding box
which are stored as the eight X coordinates, then the eight Y coordinates
and then the eight Z coordinates. In detail, the first triplet of them (which
means first X, first Y and first Z) represents the vector distance between that
point and the first corner of the bounding box and so forth.

The full numbering of corners is shown in Fig[27]

Figure 27: Order numbering of the corners

45

4 Project and Solution

In this chapter we talk about the three steps of our proposed solution for the
task, giving an explanation for the choices we made. In particular in sec.
we explore the classification network. In sec. we extend the solution to
the centroid vector estimation and finally in sec. we talk about the final
model.

4.1 Classification

In this part, we have performed the first experiments with the TensorFlow
library and we have built the foundations of our final network. As afore-
mentioned in sec. [2.2.6 our architecture is built with 6 convolution layers
followed by other 6 deconvolution layers. Our approach for the classification
task uses a simple conv-deconv network made from scratch as follows:

Input conv2 dconvs conv_out

/ convs dconv2 W

— = " QOutput
convl conv3 conv4 convb dconv1 dconv3 dconv4 dconvé

Figure 28: Classification network

The input of our network are batches of 8 entire point clouds, with a number
of points down-sampled at 13545, so the input shape is [8,13545,3]. The
13545 points in input has not been picked randomly, but it is equal to the
size of the smallest point cloud obtained after the transformation process in
sec. To downsample the point cloud to the required input size, we have
chosen to remove the specific amount of points in surplus from the points
labelled as not interesting (class label 0).

The output we get is a tensor of the same shape as the input, but with the

46

last dimension equal to 1, since the output prediction could be either 0 or 1.
In specific, the shape of the output tensor is [8, 13545, 1]
In detail each layer is:

‘ Name ‘ Kernel size ‘ Stride ‘ Padding ‘ Input channels ‘ Output channels ‘ BN ‘ Activation

|
‘ convl ‘ 5x5 ‘ 1 ‘ same ‘ 1 ‘ 128 ‘ Y ‘ ReLU ‘
| conv2 | 5x5 |1 | same | 128 | 128 | Y | ReLU \
| conv3 | 3x3 | 2 | valid | 128 | 128 |Y | ReLU \
‘ conv4 ‘ 3x3 ‘ 1 same ‘ 128 ‘ 256 ‘ Y ‘ ReLU ‘
‘ convd ‘ 3x3 ‘ 1 ‘ same ‘ 256 ‘ 256 ‘ Y ‘ ReLU ‘
| conv6 | 1x1 ! | same | 256 | 256 |Y | ReLU \
‘ dconvl ‘ 1x1 ‘ 1 ‘ same ‘ 256 ‘ 256 ‘ Y ‘ ReLU ‘
‘ dconv2 ‘ 3x3 ‘ 1 ‘ same ‘ 256 ‘ 256 ‘ Y ‘ ReLU ‘
‘ dconv3 ‘ 3x3 ‘ 1 ‘ same ‘ 256 ‘ 128 ‘ Y ‘ ReLU ‘
‘ dconv4 ‘ 3x3 ‘ 2 ‘ valid ‘ 128 ‘ 128 ‘ Y ‘ ReLU ‘
‘ dconvh ‘ 5x5 ‘ 1 ‘ same ‘ 128 ‘ 128 ‘ Y ‘ ReLU ‘
‘ dconv6 ‘ 5x5 ‘ 1 ‘ same ‘ 128 ‘ 1 ‘ N ‘ / ‘
‘ conv_out ‘ 1x1 ‘ 1x3 ‘ same ‘ 1 ‘ 1 ‘ N ‘ / ‘

Table 5: Classification network parameters

Here, the word "same” in the padding means that we add enough zeros, such
that the shape of the output is equal to the shape of the input. On the
contrary ”valid” means no padding so the output shape is reduced. In fact,
we use ”valid” when the size of our tensor changes.

We have made a test on a training set composed of one point cloud repeated
several times to try if we can successfully overfit to the desired outcome. To
train it we have used as error loss function a sigmoid cross entropy since
the output is binary. We have trained it for 80 epochs with a learning rate
of 0.001 using an Adam optimizer to update the weights. Figl29] shows the
results.

The image shows really bad results. This is due to an imbalanced dataset
with a large number of zeros and a few ones. For instance taking the example
point cloud of the image [22| the total number of zeros is 10626 and the ones
are 2919. To overcome this problem we have split the error formula into two
factors called "positive error” and "negative error”. Basically, the negative
error computes the error for the class label 0 and the positive error is used
for the class label 1. In particular, for each factor we have counted the total

47

Classification accuracy 60 epochs

60 1

50 q

40 4

30

204

10 20 30 40 50 60

Figure 29: Classification result

number of zeros and ones in the label column, we have then summed up the
error computed with the sigmoid cross entropy in the corresponding of zeros
and ones to get the "positive error” and "negative error”. Finally, we divide
these two errors for the corresponding total number of sample.

An example in pseudo-code is:

def classification_loss (labels, predict):

tot_positive

count (labels , 1)

tot_negative = count(labels, 0)
loss = sigmoid_cross_entropy (labels, predict)

loss_positive
loss_positive
loss_positive
loss_negative
loss_negative
loss_negative

multiply (loss, labels)

= sum(loss_positive)
= divide(loss_positive , tot_positive)

multiply (loss , 1 — labels)
sum(loss_negative)
divide (loss_negative , tot_negative)

return loss_positive 4+ loss_negative

The formula of the loss is:

LOSSclassification = LOSSpositive + LOSSnegative (24>

After this technique the results have improved massively as can be seen in

Figl30]

48

Classification accuracy 80 epochs

90 A

80 4

70 4

60 4

50 4

40

10 20 30 40 50 60 70 80

o

Figure 30: Classification result

Tests regarding the whole dataset have been carried out with the final model
and their results will be discussed in sec. [l

4.2 Centroid vectors regression

This section talks about the regression of the vectors distances between the
points and the centroid of the object they belong to. The data structure of
the input files is shown in sec. |3.3.2. To address this task we have used the
same network as before, changing just the output layer to add the 3 output
columns for the components of the vector’s coordinates.

Input conv2 dconvs conv_out

/ convs dconv2 W
AL

B e . . MY Outpot
convl conv3 conv4 convé dconv1 dconv3 dconv4 dconvé

Figure 31: Centroid vectors network

49

The results shown in this subsection have been obtained using the same
dataset composed of one point cloud as before.

To choose the right loss function we have performed several tests. In partic-
ular, we have tried with three functions:

1. L2 loss function
2. L1 loss function

3. Smooth L1 loss function

The L1 and L2 loss functions have been already defined in sec. [1.5.1. The
Smooth L1 loss is less sensitive to outliers than the L2 loss and is defined as:

1 _ Jaa? |z| < threshold
smeoth = |z| — a otherwise

with «a as a scaling factor usually set to 0.5, threshold usually set to 1 and
|z| as the normal L1 loss. This formula means that after computing the L1
loss, for each element check the loss value and if it is below the threshold
square it otherwise no action.

To compute the loss we have used the same method in the classification task
slitting the error in "negative error” and ”positive error”. The final loss is:

Loss = LOSSclassification + LOSSvectors (25)

The next three images (Fig Fig. and Fig. show the results respec-
tively for L2 loss, L1 loss and Smooth L1 loss in one car of the point cloud.

50

Figure 34: Smooth L1 loss function

51

In these figures, the green dots show the ground-truth and the red dots
show the prediction. This "red car” is obtained adding to the real centroid
all the vectors predicted by every single point of the cloud. Looking at these
images we can immediately see that the L2 loss function is the one that has
the worse results. Between the L1 loss and Smooth L1 loss is a bit more com-
plicated to see who is the best, but empirically, we discovered that smooth
L1 provided the best results. The "red car” plotted using this loss function
follows the shape of the ground-truth in a better way.

4.3 Bounding boxes regression

This task is the main focus of the thesis, therefore, the model proposed and
the choices taken have to be considered as part of the final solution.

Our decision to do a point-wise prediction enforcing the points to regress
the vector direction to the corners has three main advantages. Firstly, the
network learns a 3D region which depends on the size of the object. Sec-
ond, more important, even if a car has an occluded part, the corners of the
bounding box can be predicted by the visible points. Lastly, we have less
features than regress the rotation, the translation and the dimensions of the
boxes like most paper do.

In a first attempt we have used the same model as the previous tasks, just
changing the output size tensor in order to use the 24 bounding boxes coor-
dinates.

Input conv2 dconvs conv_out

/ convs dconv2 //

— " " Output
convl conv3 conv4 convb dconv1 dconv3 dconv4 dconvé

Figure 35: First bounding boxes approach network

52

We have trained it for 250 epochs using the same design choices as before
regarding learning rate and optimizer. As loss function, we have used the
same technique with positive examples and negative examples ending with a

final loss described as

Loss = Lossclassification + LOSSboundingboxes (26>
Even if the model performed well in the previous experiments in the bound-
ing boxes regression task its results looked very bad.

A couple of examples are shown in Fig[36]

F—————
e L

ENF

Figure 36: Example result first bounding boxes prediction approach

Even tuning the various parameters mentioned before like learning rate, op-
timizer and batch size, our network could not achieve good results. This
meant that our model had to be changed trying to build a new one more
robust and more powerful.

A first modification we have thought about was to go one step deeper with
the encoder block in order to capture better features. After that, the other
big change we have done was to add the skip connections from the layers
in the encoder block to the ones in the decoder block. We have chosen to
add these links between layers, inspired by the good results of [53], [54] and
[55], in order to enhance the features learned by the network and ease the
optimization. The final model is shown in Fig)37|

53

dconv4 conv7 Output

&

iconv_conc4 conv_out

Input conv1conv2 dconv3d

i conv_conc2 1 conv_conc3

Figure 37: Final network

This model has the same input as the others, a tensor of shape [8, 13545, 3]
and the output of shape [8,13545,25]. The 25 numbers are 1 for the classi-
fication label, either 0 or 1 as explained in sec. The 24 others are the
coordinates z,y, z for the vectors from the specific point to all the 8 corners
of the bounding box. The specification of the layers is reported below in
Tab 6l

We have run it on the same overfit task to see if this model could achieve
better results.

Figure 38: Example result bounding boxes prediction using the new final
model

o4

‘ Name ‘ Kernel size ‘ Stride ‘ Padding ‘ Input channels ‘ Output channels ‘ Activation ‘ Dropout

|
convl	5x5	1	same	1	64	ReLU	/
conv2	5x5	1	same	64	64	ReLU	/
conv3	3x3	2 valid	64	128	ReLU	/	
conva	3x3	1	same	128	128	ReLU	/
convh	1x1	2x1	valid	128	256	ReLU	/
conv6	1x1	1	same	256	256	ReLU	/
deconvl	1x1	2x1	valid	256	128	ReLU	/
concl	/	/	/	/	256	/	/
‘ conv_concl ‘ 3x3 ‘ 1 ‘ same ‘ 256 ‘ 128 ‘ ReLU ‘ / ‘							
‘ dconv2 ‘ 1x1 ‘ 1 ‘ same ‘ 128 ‘ 128 ‘ ReLU ‘ / ‘							
foon2	/ VATV, 250 / VA						
‘ conv_conc2 ‘ 3x3 ‘ 1 ‘ same ‘ 256 ‘ 128 ‘ ReLU ‘ / ‘							
dconvd	3x3	2	valid	128	64	ReLU	/
conc3	/	/	/	/	128	/	/
‘ conv_conc3 ‘ 3x3 ‘ 1 ‘ same ‘ 128 ‘ 64 ‘ ReLU ‘ / ‘							
‘ dconv4 ‘ 5xH ‘ 1 same ‘ 64 ‘ 64 ‘ ReLU ‘ / ‘							
conct	/ VATV, 2 7/ VA						
‘ conv_concd ‘ 3x3 ‘ 1 same ‘ 128 ‘ 64 ‘ ReLU ‘ 40% ‘							
conv?	1x1	1	same	64	25	/	/
conv_out	1x3	1 valid	25	25	/	/	

Table 6: Bounding box network parameters

The results shown in Fig[3§ looks really better than the previously obtained
with the old model. Since every point predicts a vector from itself and the
corners we have a lot of possible corners’ positions. For this reason, at the
moment, we extract the final bounding box computing the median of all the
coordinates of the corners.

From this bunch of pictures it’s possible to note that as the number of car
points increases, the prediction improves.

Once we have found a good model we could proceed doing experiments with
the entire dataset and see how our network performs in a real task.

4.3.1 Robust corner detection

To enhance the bounding boxes prediction, we have chosen to forecast the
corners position in the space building a RANSAC[45] method to select the
vectors which count in the voting for a corner. Briefly, RANSAC (RANdom

95

SAmple Consensus) is a technique to estimate parameter in a model by
random sampling the data. It is an iterative and non-deterministic algorithm
which implements a voting scheme to get rid of outliers. Precisely, for this
reason, an advantage of RANSAC is its ability to do a robust estimation
of the model parameters. In our solution RANSAC is applied with a max
iteration parameter of 10. In each iteration the algorithm selects at most 5
vectors for each corner and computes the centroid point of all the destination
point of the vectors. Giving that point RANSAC selects and count all the
other vectors which casts a prediction in a confidence region of the centroid.
At the end the centroid with more votes is selected to be the output.

4.3.2 Clustering for real application of the model

Moreover, in order to use our network in real tasks we had to add something
more after the prediction output from the model. Our network focuses on
two tasks; one is the classification of the points of interest and the other the
bounding box regression. All the images showed before had the ground-truth
bounding box plotted to see how the network predicts good with respect to
the true coordinates. In a possible deployment in a car the system does not
have the label, so the ground-truth for the point and for the bounding box.
The classification result just categorizes the point as 0 or 1, but not specify
to which car or van it belongs to. To solve this issue we have applied a
clustering method to all the points labelled as 1, trying to find the cars in
the scene.

The clustering algorithm we have chosen is DBSCANJ[I0]. Our choice is
forced by the fact that we do not know how many objects we have in the
scene and one of the advantages of using DBSCAN is this, we don’t need to
tell the algorithm the number of clusters to find. Additionally, it can identify
outliers as noise and skip them instead of adding in a known cluster similar
to what mean-shift[9] does.

4.3.3 Other improvements to our model

Fig[39 show clearly that the boxes predicted are not exactly squared but have
some skewed edges. In order to have a better visualization we have chosen
to apply a rectification process to our predictions. To be able to draw such
boxes we first compute the length, width and height for all boxes calculating
the center difference between opposite faces. We then move them to (0,0, 0)

56

in order to use SVD[56] to solve least squares applied on the corners and get
the rotation. Finally, we create the boxes uses those sizes and move them
back to the original position.

Figure 39: Cars with not rectified bounding boxes

In addition, to improve the results, we have applied a geometric filter to
remove outliers after the clustering. We have seen that outliers have bounding
boxes which are not rectangular, they are just 8 corners drew randomly. An
example is shown in Fig/40]

Figure 40: Example of acute angled corner

To remove such objects we apply a filter to check all the angles between the
corners and if one or more is less than 60°, then the entire object is removed.

o7

5 Experiments

In this section, we show how the model is trained explaining the design
choices we took. Later we show both qualitative and quantitative results.
All the experiments are carried out using Python 3.6 and TensorFlow[57],
running on a NVIDIA Titan X GPU.

5.1 Data Augmentation

After the entire process of data preparation in sec[3.3| the total number of
point clouds has decreased from 7481 to 5760. This happened because we
chose to remove all the point clouds without cars. We have then split the
dataset into 5696 files for the training and 64 for the evaluation. Since
the task was very challenging and the number of training sample was very
small we have chosen to adopt a data augmentation process on the fly. In
particular, we applied mirroring of the point clouds and introduced noise.
With this augmentation, the size of the input dataset ended up in ~ 17000
point clouds, which is not that much but better than before.

5.2 Network configuration

The training has been executed using the momentum optimizer with momen-
tum equal to 0.9, a learning rate of 0.001, dropout of 40% and the gradient
capped to 5 to stabilize optimization. We have trained the model for 250
epochs in a Titan X GPU evaluating the classification accuracy and preci-
sion after each epoch. We also have evaluated the quality of the training
process displaying images of the bounding boxes every 20 epochs.

5.3 Results
5.3.1 Classification results

After a training of 250 epochs we plotted the error loss curve for the three
different augmented input of before; normal point clouds, mirrored point
clouds and noised point clouds. We have also tracked the error during the
evaluation step to be aware of possible overfit problems. The plots have rea-
sonable trends which means that our network works properly. The results
are shown in Figl1]

58

Error normal 250 epochs Error flip 250 epochs

2.50
24
225
22
2.00 2.0
175 L8
16
150
14
125
12
1.00 200
0 50 100 150 200 250 0 50 100 150 200 250
Error noise 250 epochs Error eval 250 epochs
2.50 2.50
225 225
2.00 2.00
175 175
150 150
125 125
1.00 1.00
o 50 100 150 200 250 o 50 100 150 200 250

Figure 41: Error curves of training phase

The error trend in the evaluation set goes down as for the other errors plots
which signalizes that we are able to generalize to unseen data.

Even the results on classification accuracy and precision are good, Fig[42]and
Fig[43] show the curves.

CLS 250 epochs.

Figure 42: Classification accuracy for both interesting points and not

59

PREC 1 250 epochs

°
5
3
5
8
N
S
8
]
8

Figure 43: Precision of interesting points

The Figld2] shows the trend accuracy for both classification of zeros and
ones. The top value of the accuracy reaches 96.71% after 246 epochs.
What’s important for us is the plot of the precision value (Fig because it
tells us how many true ones are correctly classified over all the ones predicted
by the network. The maximum is reached in the epoch 240 with a precision
value of 84.5%.

5.3.2 Bounding box results

A couple of example results is shown regarding the bounding box prediction
is shown in Figld4]

Figure 44: Bounding boxes example result

60

Here the green bounding box is the ground-truth of the car, in blue the pre-
dicted bounding box computing the median for each coordinate of the corners
and in red the predicted bounding box using RANSAC method. The green
dots are the ground-truth point of a car and the red ones are predicted by
the model. Certainly, the number of red dots is smaller or at most equal to
the number the greens depending on the accuracy of the classification.

The are also failure cases due to the toughness of this task. The major prob-
lem is that the rotational distribution of the cars is very imbalanced[33][5].
This involves the network to work very good with the cars straight to ”our”
car and bad with cars oriented differently.

Fig[45] shows a bunch of examples to give an intuition.

Figure 45: Bad bounding boxes example result

5.3.3 Test on the "road”

In the KITTI Raw[58] website, the researches give download links to short
street videos recorded during their experiments. These videos have both im-
ages and point clouds as for the whole dataset.

We have chosen a 16 seconds video in the city for a total of 160 frames. Inside
it, there are 9 cars and 3 vans which are the objects our network is trained to
recognize. Moreover, there are 2 pedestrians, 1 cyclist in movement in front
of the car and various bicycles and scooters parked along the street.

In Figf46] we can see an example of the clusters found by DBSCAN algorithm,

61

discussed in sec[4.3} on one point cloud from the video described above.

Figure 46: Clusters visualization after DBSCAN application on our results

The image shows the clusters found by the algorithm each colored differently.
An unexpected cluster is the one in dark orange between the two lines of cars.
This small cluster represent the cyclist who drives in front of ”our” car.
Below, in Figld7] are shown two frames from the video along with the boxes
prediction from our network.

Figure 47: Frames from video

62

The network sometimes fails, in fact, looking at the first picture in Figd7]
we have two boxes in the newspaper shop which clearly don’t have vehicles
inside. Another problem can be seen looking at the two cars on the right side
which are detected but they have bad bounding boxes. This is the applica-
tion on a real scene of the problem depicted when we talk about the Figl45|
We can see that it can detect also other objects it is not trained to do, for
example the scooter and the bicycle parked in the center of the image.

In the second picture of Figld7] we can clearly see that the classification of
the cars and the bounding boxes are both done with high accuracy. We said
that the prediction of the cars oriented parallel with ”our” car is much more
accurate than the oriented cars and this image proves that. Even in this case
there are two objects not expected, one the cyclist which is not a real issue,
since it this a vehicle in the road. The other is the most left bounding box
which doesn’t contain any interesting objects.

63

5.3.4 Other results

In the website the data are grouped by environment, so we have chosen also
to test the network in these different environments. We have taken 5 images
from the same video sequence for city environment, residential environment
and road environment. The results are respectively shown in Fig{48] Fig[49|

and Fig[50]

Figure 48: Results on city environment

64

Figure 49: Results on residential environment

65

Figure 50: Results on road environment

What we can see from all these images is that can recognize with a high
precision the cars in all environments. There are some objects depicted as
cars which are not desired such as the road sign in the fourth image of Fig/50]
or the bush in the first image on Figfd9] Red squared faces in the bound-
ing boxes mean the direction of the cars and from these images can be seen
clearly that the network almost in all cars can recognize the direction.

Two major problems can be seen from these images: first the dimension of

66

the bounding box and second their orientation, as we have already discussed
in the previous section.

5.3.5 Numerical results

In the KITTTI dataset they also give an evaluation script to compute the AP
(Average Precision) using the IoU method (Intersection over Union).

IoU is a metric to evaluate the prediction of an object detector. It computes
the intersection area between the predicted bounding box and the ground-
truth bounding box then divide this value by the union area of those boxes.

Mathematically:
IntersectionArea

IoU = 27
0 UnionArea (27)

A graphical representation of the method is shown in Fig[5]]

Area of Overlap
loU =

Area of Union

Figure 51: IoU graphical explanation

Then is set a threshold to estimate the goodness of the classification. The
most used thresholds are 0.7 (70%), 0.5 (50%) and 0.3 (30%); they are re-
ferred to the percentage of overlapping between the predicted bounding box
and the ground-truth bounding box.

We have executed this script on our validation set composed of 64 labelled
point clouds. We could not use the 7518 testing point clouds since they don’t
have the labels, making this IoU method not feasible.

We first have tried using a threshold of 0.7 and the results are shown in
Tab/7l

67

‘ Challenge

‘ Easy ‘ Moderate ‘ Hard ‘

‘ Detection

| 8.10% | 4.27%

| 3.90% |

‘ Orientation ‘ 7.9% ‘ 4.10%

| 3.78% |

Table 7: ToU results for 70% of overlapping

Car

Precision

T

' Easy
Moderate

Hard ——— |

0.4 0.6 08

Recall

Car

Orientation Similarity

. Easy .
Moderate
Hard

0.2 0.4 0.6 08

Recall

Figure 52: Precision-Recall plot for IoU 0.7

68

Here the columns ”Easy”, "Medium” and ”Hard” classifies the cars depend-
ing on their distance from the point of observation. Easy cars are the closest
and hard cars are the farthest.

These results are bad mostly because, as we already discussed above in this
section, our bounding boxes are smaller than the ground-truth, therefore the
calculation provides small results. In Fig[53] we show some failure example
of the bounding boxes obtained for the IoU evaluation, while Fig/54] shows
good images in terms of classification and prediction of bounding boxes.

69

Figure 53: Examples of bad prediction images in [oU evaluation

70

Figure 54: Examples of good prediction images in IoU evaluation
Evaluating our network with 0.5 metric for lou we obtain better results

with an increase up to 5 times in detection challenge and 4.5 times in orien-
tation challenge. Tab[8 and Fig[55] show the results for this evaluation.

71

‘ Challenge ‘ Easy ‘ Moderate ‘ Hard ‘
| Detection | 33.10% | 23.53% | 19.60% |
| Orientation | 30.30% | 19.17% | 17.15% |

Table 8: ToU results for 50% of overlapping

Car
1 . .
Easy
Moderate
08 r Hard —]
5 06}
@
]
& 04 ¢
02 t
0
0 0.2 04 06 08 1
Recall
Car
1 .
Easy
Moderate
g 08 Hard
3
£
&5 06 |
[
il
w® 04 ¢
c
Q
o 02t
0 n
0 0.2 04 06 08 1
Recall

Figure 55: Precision-Recall plot for IoU 0.5

72

Conclusion

In this thesis, we have presented how Convolutional Neural Networks work
and how they can be exploited for autonomous driving purposes. Then we
have proposed our model aimed at facing the same problems using point
clouds input.

We have designed from scratch an encoder-decoder architecture which gives
a per-point classification and a car bounding box regression.

We tested this model on the KITTI dataset and showed how this network
can achieve good results in predicting whether a point is of interest or not.
Moreover, the bounding boxes, beyond the sizes and the rotations, are well
placed around the cars and even the directions are almost always predicted
correctly.

Due to the sizes problem of the bounding boxes, our evaluation and compar-
ison with other papers related to cars detection is not feasible yet.

Thus, in the future, we want to find a robust loss function for the bounding
boxes regression, in order to get better results, in terms of sizes of the boxes
and accordingly get better results on evaluation. Also, an improvement of
the classification score might be helpful to get rid of all the mistaken clusters
such as bushes, road signs and so on. Finally, a further modification of our
method is to reinsert pedestrians and other categories at training phase in
order to make our network able to find all the possible objects in the street.

73

74

Greetings

I would like to thank Prof. Luigi Di Stefano and Prof. Federico Tombari for
giving me this great chance to prepare my thesis at Technische Universitat
Miinchen (TUM), one of Europe’s leading universities. Special thanks also
to my tutor Fabian Manhardt, for all his help and ideas even from the other
side of the world!

I would like also to thank, of course, my family for supporting me over this 5
years economically and morally. Many many thanks to my girlfriend, Erika,
for cheering and supporting me during this period abroad, but mostly to
bear me. Thanks to Alessio for his help in my first days in Miinchen and for
lending me his computer in emergency situations. Thanks to Romeo for our
”Schweinshaxe und zwei helles” evenings. I can’t forget also the ”Inter Club
Miinchen”, thanks to all mates!

I would like to thank all my friends from Bologna, my roommate Bombo,
my crew Tab, Gianna, Buro, Simo and all the others Luca, Paolo, Matte,
Ferro, Fiocco, ... Special thanks to my ”Italian Lithuanian Family” for the
great moments spent in Erasmus! Last but not least many thanks to all my
childhood friends from Calcinelli; Costa, Rago, Scop, Mano, lervo, Giammi,
Zanco, Bebe, ...

75

76

List of Figures

[l Pinhole cameral 12
2 Pinhole camera modell 13
[3 Machine Learning structure| 15
4 Email example| oo 16
[> House price example 0. 17
(6 Neural Network sample structure 19
[Activation functionsl 20
[8 Learning rate examples|, 21
9 Back-propagation example|o 22
(10 Grey-scale image example| 25
(11 Grey-scale image| 25
12 Kernelmatrix 26
(13 Convolution examplel 26
14 ReLUexample| 27
(15 Max-pooling example 28
[I6 Convolution Neural Network example 29
[17 Visualization of the feature maps 29
[18 Visualization of the digits in MNIST 30
(19 KITTI image example 38
20 KITTI point cloud example 38
21 KITTI point cloud example with bounding boxes| 39
22 KITTI frustum view point cloud 40
23 Points of interest 41
24 Centroidofacar 42
25 Centroid of a car with vectors| 43
26 Example vectors from point cloud to a vertex| 44
27 Order numbering of the corners| 45
28 Classification network 46
29 Classification result 48
B0 Classification result 49
[31 _ Centroid vectors networkl 49
32 T2 1loss function 51
B3 Tiloss function 51
B4 Smooth L1 Joss function| L. 51
[35 First bounding boxes approach network/ 52

[36 Example result first bounding boxes prediction approach| . . . 53

77

[38 Example result bounding boxes prediction using the new final |

modell 54
[39 Cars with not rectified bounding boxes| 57
40 Example of acute angled corner 57
41 Error curves of training phase 59
[42 Classification accuracy for both interesting points and not . . 59
43 Precision of interesting points| 60
44 Bounding boxes example result| 60
45 Bad bounding boxes example result| 61
46 Clusters visualization after DBSCAN application on our results| 62
47 _ Frames from video 62
48 Results on city environment| 64
49 Results on residential environment 65
B0 Results on road environment/ 66
[51 ToU graphical explanation| 67
[52 Precision-Recall plot for IoU 0.7 68
[53 Examples of bad prediction images in IoU evaluation| 70
(b4 Examples of good prediction images in IoU evaluation|. 71
[55 Precision-Recall plot for IoU 0.5 72

78

List of Tables

(1 KITTI label file example| 37
[2 Classification dataset example| 42
[3 Centroid vectors dataset example 43
4 Bounding boxes dataset example| 45
[5 Classification network parameters| 47
(6 Bounding box network parameters|. 55
[7 ToU results for 70% of overlapping| 68
18 IoU results for 50% of overlapping|. 72

79

References

1]

[10]

[11]

T. Kanade, C. Thorpe, and W. Whittaker, “Autonomous land vehicle
project at cmu,” in Proceedings of the 1986 ACM Fourteenth Annual
Conference on Computer Science, CSC 86, (New York, NY, USA),
pp. 71-80, ACM, 1986.

Wikipedia contributors, “Lidar — Wikipedia, the free encyclopedia,”
2019. [Online; accessed 8-January-2019].

Y. Zhou and O. Tuzel, “Voxelnet: End-to-end learning for point cloud
based 3d object detection,” CoRR, vol. abs/1711.06396, 2017.

J. Ku, M. Mozifian, J. Lee, A. Harakeh, and S. L. Waslander, “Joint
3d proposal generation and object detection from view aggregation,”

CoRR, vol. abs/1712.02294, 2017.

F. Manhardt, W. Kehl, and A. Gaidon, “ROI-10D: monocular lifting of
2d detection to 6d pose and metric shape,” CoRR, vol. abs/1812.02781,
2018.

A. M. TURING, “COMPUTING MACHINERY AND INTELLI-
GENCE,” Mind, vol. LIX, pp. 433-460, 10 1950.

J. MacQueen, “Some methods for classification and analysis of multi-
variate observations..” Proc. 5th Berkeley Symp. Math. Stat. Probab.,
Univ. Calif. 1965/66, 1, 281-297 (1967)., 1967.

K. P. F.R.S., “Liii. on lines and planes of closest fit to systems of points
in space,” The London, Edinburgh, and Dublin Philosophical Magazine
and Journal of Science, vol. 2, no. 11, pp. 559-572, 1901.

Y. Cheng, “Mean shift, mode seeking, and clustering,” IEEFE TRANS-
ACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLI-
GENCE, 1995.

M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based al-
gorithm for discovering clusters in large spatial databases with noise,”
pp. 226231, AAAI Press, 1996.

R. Sibson, “SLINK: An optimally efficient algorithm for the single-link
cluster method,” The Computer Journal, vol. 16, pp. 30-34, 01 1973.

80

[12]

[13]

[14]

[15]

[21]

R. Sibson, “SLINK: An optimally efficient algorithm for the single-link
cluster method,” The Computer Journal, vol. 16, pp. 30-34, 01 1973.

F. Rosenblatt, “The perceptron—a perceiving and recognizing automa-
ton,” Cornell Aeronautical Laboratory, 1957.

D. E. Rumelhart, R. Durbin, R. Golden, and Y. Chauvin, “Backprop-
agation,” ch. Backpropagation: The Basic Theory, pp. 1-34, Hillsdale,
NJ, USA: L. Erlbaum Associates Inc., 1995.

I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance
of initialization and momentum in deep learning,” in Proceedings of
the 30th International Conference on Machine Learning (S. Dasgupta
and D. McAllester, eds.), vol. 28 of Proceedings of Machine Learning
Research, (Atlanta, Georgia, USA), pp. 1139-1147, PMLR, 17-19 Jun
2013.

J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” J. Mach. Learn. Res.,
vol. 12, pp. 2121-2159, July 2011.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proceedings of the IEEFE, vol. 86,
pp. 2278-2324, Nov 1998.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 17351780, 1997.

K. Cho, B. van Merrienboer, C. Giilgehre, F. Bougares, H. Schwenk,
and Y. Bengio, “Learning phrase representations using RNN encoder-
decoder for statistical machine translation,” CoRR, vol. abs/1406.1078,
2014.

J.M. M. X. B. W-F. D. O. S. C. A. B. Y. Goodfellow, Ian; Pouget-
Abadie, “Generative adversarial networks,” CoRR, vol. abs/1406.2661,
2014.

81

22]

23]

[24]

[25]

K. Fukushima, “Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift in position,”
Biological Cybernetics, vol. 36, pp. 193-202, Apr 1980.

H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional deep
belief networks for scalable unsupervised learning of hierarchical repre-
sentations,” in Proceedings of the 26th Annual International Conference
on Machine Learning, ICML ’09, (New York, NY, USA), pp. 609-616,
ACM, 2009.

A. W. Harley, “An interactive node-link visualization of convolutional
neural networks,” in ISVC, pp. 867-877, 2015.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural Infor-
mation Processing Systems 25 (F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger, eds.), pp. 1097-1105, Curran Associates, Inc.,
2012.

R. B. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
CoRR, vol. abs/1311.2524, 2013.

R. B. Girshick, “Fast R-CNN,” CoRR, vol. abs/1504.08083, 2015.
S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: to-

wards real-time object detection with region proposal networks,” CoRR,
vol. abs/1506.01497, 2015.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014.

J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi,
“You only look once: Unified, real-time object detection,” CoRR,
vol. abs/1506.02640, 2015.

C. Szegedy, S. loffe, and V. Vanhoucke, “Inception-v4, inception-
resnet and the impact of residual connections on learning,” CoRR,
vol. abs/1602.07261, 2016.

82

32]

[33]

[34]

[35]

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C. Fu, and A. C.
Berg, “SSD: single shot multibox detector,” CoRR, vol. abs/1512.02325,
2015.

A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in Conference on Computer
Vision and Pattern Recognition (CVPR), 2012.

X. Chen, K. Kundu, Y. Zhu, A. Berneshawi, H. Ma, S. Fidler, and
R. Urtasun, “3d object proposals for accurate object class detection,”
in NIPS, 2015.

X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler, and R. Urtasun,
“Monocular 3d object detection for autonomous driving,” in 2016 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 2147-2156, June 2016.

J. Lahoud and B. Ghanem, “2d-driven 3d object detection in rgh-d
images,” pp. 46324640, 10 2017.

C.R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas, “Frustum pointnets for
3d object detection from rgh-d data,” arXiv preprint arXiv:1711.08488,
2017.

T. Lin, P. Dollar, R. B. Girshick, K. He, B. Hariharan, and S. J.
Belongie, “Feature pyramid networks for object detection,” CoRR,
vol. abs/1612.03144, 2016.

X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, “Multi-view 3d object
detection network for autonomous driving,” in 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 6526-6534,
July 2017.

J. Wang, Z. Wei, T. Zhang, and W. Zeng, “Deeply-fused nets,” CoRR,
vol. abs/1605.07716, 2016.

M. Liang, B. Yang, S. Wang, and R. Urtasun, “Deep continuous fusion
for multi-sensor 3d object detection,” in Computer Vision — ECCV 2018
(V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, eds.), (Cham),
pp- 663678, Springer International Publishing, 2018.

83

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” CoRR, vol. abs/1512.03385, 2015.

B. Li, T. Zhang, and T. Xia, “Vehicle detection from 3d lidar using fully
convolutional network,” CoRR, vol. abs/1608.07916, 2016.

B. Li, “3d fully convolutional network for vehicle detection in point
cloud,” CoRR, vol. abs/1611.08069, 2016.

M. A. Fischler and R. C. Bolles, “Random sample consensus: A
paradigm for model fitting with applications to image analysis and auto-
mated cartography,” Commun. ACM, vol. 24, pp. 381-395, June 1981.

G. J. Brostow, J. Fauqueur, and R. Cipolla, “Semantic object classes in
video: A high-definition ground truth database,” Pattern Recogn. Lett.,
vol. 30, pp. 88-97, Jan. 2009.

M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Be-
nenson, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset

for semantic urban scene understanding,” CoRR, vol. abs/1604.01685,
2016.

G. Neuhold, T. Ollmann, S. Rota Bulo, and P. Kontschieder, “The
mapillary vistas dataset for semantic understanding of street scenes,”
in International Conference on Computer Vision (ICCV), 2017.

S. Wang, M. Bai, G. Mattyus, H. Chu, W. Luo, B. Yang, J. Liang,
J. Cheverie, S. Fidler, and R. Urtasun, “Torontocity: Seeing the world
with a million eyes,” CoRR, vol. abs/1612.00423, 2016.

G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. M. Lopez, “The
synthia dataset: A large collection of synthetic images for semantic seg-
mentation of urban scenes,” in 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 3234-3243, June 2016.

Wikipedia contributors, “Unity (game engine) — Wikipedia, the free
encyclopedia,” 2019. [Online; accessed 18-January-2019].

X. Huang, X. Cheng, Q. Geng, B. Cao, D. Zhou, P. Wang, Y. Lin, and
R. Yang, “The apolloscape dataset for autonomous driving,” CoRR,
vol. abs/1803.06184, 2018.

84

[53]

[54]

[55]

[56]

[57]

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” CoRR, vol. abs/1512.03385, 2015.

X. Mao, C. Shen, and Y. Yang, “Image restoration using con-
volutional auto-encoders with symmetric skip connections,” CoRR,
vol. abs/1606.08921, 2016.

R. K. Srivastava, K. Greff, and J. Schmidhuber, “Training very deep
networks,” CoRR, vol. abs/1507.06228, 2015.

C. Eckart and G. Young, “The approximation of one matrix by another
of lower rank,” Psychometrika, vol. 1, pp. 211-218, Sep 1936.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kud-
lur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wat-
tenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale ma-
chine learning on heterogeneous systems,” 2015. Software available from
tensorflow.org.

A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The kitti dataset,” International Journal of Robotics Research (IJRR),
2013.

85

	Introduction
	Thesis outline

	Theory
	Computer Vision
	Pinhole camera

	Machine Learning
	Supervised Learning algorithms
	Classification
	Regression
	Semi-supervised Learning algorithms

	Unsupervised Learning algorithms
	Clustering
	Association Rules

	Focus on Neural Networks
	Compute the error
	Gradient descent

	Convolutional Neural Networks
	Convolutional layer
	Activation function
	Pooling layer
	Fully Connected layer
	Convolutional Neural Network

	Related Work
	2D object detection
	3D object detection
	Hand crafted features proposal generation
	Monocular-based proposal generation
	3D region proposal networks
	Region proposal from LIDAR and images
	RPN free architectures
	Our approach

	Data Analysis
	Datasets for autonomous driving
	The KITTI dataset
	Data preparation
	Class labeling of Lidar points
	Computing the centroid
	Annotation of 3D Bounding Box

	Project and Solution
	Classification
	Centroid vectors regression
	Bounding boxes regression
	Robust corner detection
	Clustering for real application of the model
	Other improvements to our model

	Experiments
	Data Augmentation
	Network configuration
	Results
	Classification results
	Bounding box results
	Test on the "road"
	Other results
	Numerical results

	Conclusion
	Greetings
	List of figures
	List of tables
	References

