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1. Abstract 

 

t the beginning of the Information Age, malware has been a 

problem only for a very restricted circle of people who had the 

possibility and the knowledge to access computers. Nowadays, 

however, due to the large adoption of mobile devices, the Digital 

Revolution re-shaped everyone’s life; more and more people have been 

brought into the cyberspace and, at the very same time, malware reached 

its widest attack surface: the world. 

In the nefarious fight against attackers, a wide range of smart algorithms 

have been introduced, in order to block and even prevent new families of 

malware before their appearance. Machine learning, for instance, recently 

gained a lot of attention thanks to its ability to use generalization to possibly 

detect never-before-seen attacks or variants of a known one. During the 

past years, a lot of works have tested the strength of machine learning in 

the cybersecurity field, exploring its potentialities and weaknesses. In 

particular, various studies highlighted its robustness against adversarial 

attacks, proposing strategies to mitigate them [1].  

Unfortunately, all these findings have focused in testing their own 

discoveries just operating on the dataset at feature layer space, which is the 

virtual data representation space, without testing the current feasibility of 

the attack at the problem space level, modifying the current adversarial 

sample [2] . 

For this reason, in this dissertation, we will introduce PRISM, a framework 

for executing an adversarial attack operating at the problem space level.  

Even if this framework focuses only on Android applications, the whole 

methodology can be generalized on other platforms, like Windows, Mac 

or Linux executable files. 

The main idea is to successfully evade a classifier by transplanting chunks 

of code, taken from a set of goodware to a given malware. Exactly as in 

medicine, we have a donor who donates organs and receivers who receive 
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them, in this case, goodware applications are our donors, the organs are 

the needed code and the receiver is the targeted malware. 

In the following work we will discuss about concepts related to a wide 

variety of topics, ranging from machine learning, due to the target classifier, 

to static analysis, due to the possible countermeasures considered, to 

program analysis, due to the extraction techniques adopter, ending in 

mobile application, because the target operating system is Android. 

The whole work idea was born thanks to constructive confrontations with 

the members of Systems Security Research Lab (S2LAB) [3] and the whole 

framework has been developed into their laboratories. All of this has been 

possible thank to them, for their resources and smart ideas. 

The whole dissertation has been developed in five main sections. The next 

Section, which is Section 2, contains all the background knowledge needed 

for correctly understand this work, without getting in deep into PRISM. 

Instead, in Section 3 and 4, the whole framework will be presented. Section 

3 presents the high-level ideas and strategies behind it, while Section 4 

contains information on the current implementation, examples included. 

The last Section contains the conclusions, final reflections regarding its 

effectiveness and future works plus the experiments done. 
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2. Background 

 

n this first paragraph we will introduce the basic concepts needed for 

understand PRISM, starting from what a malware is, followed by a 

brief introduction on basics static analysis concepts and the different 

possible usages of machine learning in malware analysis. At last, we will 

introduce the Android mobile framework, which is the mobile framework 

that this dissertation focuses on. 

Indeed, this work can be summarized as an advanced Android code 

injector which is going to be used to successfully evade a target classifier, 

supposing a white-box scenario, in which the attacker has full knowledge of 

the target classifier to be evaded. This can be successfully accomplished by 

extracting benign features from goodware and transplant all the features 

environment (dependencies, invocation, variables, etc.) into the malware 

application in order to bypass the target classifier check. 

One of the main ideas is translating the whole attack from a feature-space 

attack, which consist in creating a perturbation in the feature space layer, 

to a problem-space attack, instrumenting the adversarial application at 

bytecode level. This kind of contribution totally lacks in the current 

academic literature, bringing an interesting opportunity in proposing a new 

approach to the adversarial attack scenario. The whole framework focuses 

on the Android platform, allowing to successfully extract and inject chunks 

of code from different source and destination applications and successfully 

evading a target classifier. Of course, this has also several limitations for 

now and needs future development, but the same approach could be 

generalised an applied on different kind of binaries, suggesting an 

alternative way for look at adversarial attacks. 
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2.1. Mobile malware 

 

irst and foremost: what is a malware?  Shortly, malware is malicious 

software created with the only purpose to harm or manipulate a 

target device in some ways. 

Malware does the damage after it is implanted or introduced in some way 

into a target’s computer and can take the form of executable code, scripts, 

active content, and other software. The “executable code” we are referring 

to is often labelled as computer viruses, worms, Trojan horses, 

ransomware, spyware, adware, and scareware, among other terms. Malware 

has a malicious intent, acting against the interest of the end-user; so it does 

not include any software that causes unintentional harm due to some 

deficiency, which is typically described as a software bug. 

 

 

 

The number of these malicious programs is rising over and over during the 

years, reaching alarming peaks: a noteworthy example is WannaCry, which 

F 

Figure 2.1 

https://en.wikipedia.org/wiki/Executable_code
https://en.wikipedia.org/wiki/Script_(computing)
https://en.wikipedia.org/wiki/Computer_virus
https://en.wikipedia.org/wiki/Computer_worm
https://en.wikipedia.org/wiki/Trojan_horse_(computing)
https://en.wikipedia.org/wiki/Ransomware
https://en.wikipedia.org/wiki/Spyware
https://en.wikipedia.org/wiki/Adware
https://en.wikipedia.org/wiki/Scareware
https://en.wikipedia.org/wiki/Software_bug
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outbreak is reported as one of the most concerning episodes of malware 

infection during the last years [4].  

The only way to protect from these kind of threats is using proper antivirus 

software, which try to cope with the constant virus evolution by leveraging 

novel analysis techniques: machine learning algorithms, for instance, can 

spot malware by analysing their behaviour, without solely relying on known 

fingerprints. Even if this kind of protection has been consolidated for 

standard devices, like laptop and computers, there is substantial lack of 

protection in the mobile world, thus leading virus creators and hackers to 

focus on deploying mobile malware. This also depends on the role that 

these mobile devices have in our lives and how they are integrated in the 

all-day routine. 

The mobile OS which count the highest number of malicious application 

is Android, reaching almost the 3.5 million during the last year [5]. Indeed, 

it is more exposed to malicious application than iOS because it is possible 

to download and install applications from unofficial stores, which usually 

offers paid applications for free or applications which are not listed on 

Google Play, and also because the security checks done by Google Play 

Store are lighter if compared with the ones done by the Apple Store. The 

latter uses different dynamic and static analysis techniques in order to 

deeply understand the application execution and evaluate its compatibility 

with their policies. Moreover, Apple devices do not allow to install 

applications which are not approved by the Apple Store, further limiting 

the final user freedom, protecting him at the same time. 

For all those reasons, Android OS is targeted by malicious applications.  

So, what specifically is a mobile malware? There are different forms of 

mobile malware, not all of which are the same as those affecting desktop 

operating systems, even if sharing one common goal: taking control of the 

target device. 

As following, some examples of malware categories: 

 Trojans: provide a backdoor, enabling an attacker to remotely 

execute code or control a device. 

 Keyloggers: which also sometimes include screenscrapers, sit on 

a user's device, logging all keystrokes in an attempt to capture 

valuable information. 
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 Bank trojans: this type of malware is particularly attractive to 

mobile attackers, as it combines a trojan with a keylogger. 

Attackers either intercept a user's legitimate banking app 

information or trick users into downloading fraudulent banking 

apps. 

 Ransomware: a type of malware that will encrypt a user's data and 

hold it for "ransom" until a payment is sent to the attacker. 

 Ghost push: a malware form that can target Android devices, 

getting root access and then pushing software updates or 

malicious ads onto a user device. 

 Adware: even if not always defined or identified as malware, ads 

can sometimes be laced with tracking components (sometimes 

called spyware) that will collect information on user activity.  

There are currently some vendors that propose antivirus applications for 

mobile, but their effectiveness is very limited since they are less robust than 

the standard ones on desktop pc. 
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2.2. Malware static analysis 

 

asic static analysis consists of examining the executable file without 

running the executable code. Basic static analysis can confirm 

whether a file is malicious, providing information about its 

functionalities. Static analysis may be represented by alternative 

abstractions built atop of a program, which could lead to different kind of 

resource consumption and complexity, allowing to analyse distinct 

characteristics of a program from different point of views, as deeply 

explained later. 

On the other side dynamic analysis is the evaluation of a program or 

technology using real-time data. This method of analysis can be done on a 

virtual processor or on a real processor. Instead of taking code offline, 

vulnerabilities and program behaviour can be monitored while the program 

is running, providing visibility into its real-world behaviour.  A dynamic test 

will monitor system memory, functional behaviour, response time, and 

overall performance of the system. Further details are not covered since 

dynamic analysis is out of the scope of this dissertation. 

One of the major benefits of static-based detection is that it can be performed 

before the file is executed (also referred as pre-execution). This is obviously 

useful because it is much easier to remediate malware if it is never allowed to 

execute. An ounce of prevention is worth a pound of cure. A corollary of this 

benefit is that even corrupt and malformed executables which will not execute 

can still be detected statically. An example of basic static analysis indeed relies 

on the pipeline showed in Figure 1.8: given a program to analyse, the first 

thing is trying to extract strings and to compare the signatures of the file, 

searching for some malicious entry.  

As for disadvantages of static detection, it is more difficult to detect completely 

new and novel threats that are sufficiently unlike any previously analysed 

sample. One reason for this is that it is much easier to manipulate the structure 

of an executable than it is to alter its behaviour. Consider the behaviour of 

ransomware: a legitimate app can be modified in such a way that it does not 

appear to be malicious, yet it acts like a ransomware. Looking just at the file 

structure, it is possible to figure out which functions it imports, but there is no 

way to know if and when they are called or in what order. Since most of the 

B 

https://www.offensive-security.com/metasploit-unleashed/backdooring-exe-files/
https://github.com/rapid7/metasploit-framework/blob/master/modules/encoders/x86/shikata_ga_nai.rb
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app’s code and structure is legitimate, it may be hard to detect a particular file 

depending on the sophistication of the static analysis technique that is been 

used. On the other hand, a trivial dynamic analysis tool can raise suspicion on 

a program opening many files, calling cryptography functions, writing new 

files, and deleting existing ones soon after starting. This behaviour looks 

highly suspicious and is mostly endemic to ransomware. 
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2.2.1. Graphs 

Static analysis strongly relies on the evaluation of the following 

representational trees: 

o Abstract Syntax Tree:  is a tree representation of the abstract syntactic 

structure of source code written in a programming language. Each 

node of the tree denotes a construct occurring in the source code. The 

syntax is "abstract" in the sense that it does not represent every detail 

appearing in the real syntax, but rather just the structural, content-

related details. For instance, grouping parentheses are implicit in the 

tree structure, and a syntactic construct like an if-condition-then 

expression may be denoted by means of a single node with three 

branches. 

o Control Flow Graph: is the graphical representation of the execution 

flow of a program, i.e. the order in which instructions and functions are 

executed. They are mostly used either in static analysis or in compiler 

applications. 

o Call Graph: is an artefact produced by program analysis tools to record 

the relationships between a function and the functions it calls. A static 

call graph is a call graph intended to represent every possible run of the 

program. The exact static call graph is an undecidable problem, so 

static call graph algorithms are generally over-approximations. That is, 

Figure 2. 2 

https://en.wikipedia.org/wiki/Directed_tree
https://en.wikipedia.org/wiki/Abstract_syntax
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Bracket#Parentheses
https://en.wikipedia.org/wiki/Undecidable_problem
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every call relationship that occurs is represented in the graph, and 

possibly also some call relationships that would never occur in actual 

runs of the program. 

 

A basic static analysis is shown in Figure 2.2. Anyway, by static analysis it is 

also possible to classify each reference to a variable in a program as a 

definition or a use, focusing then on Data Flow Information. Indeed, by 

inspecting each statement in a program, we can identify the definitions and 

uses in that statement. This identification is called local data flow analysis. 

Although local data flow information can be useful for activities such as local 

optimization, many important compiler and software engineering tasks 

require information about the flow of data across statements. Data flow 

analysis that computes information across statements is called global data flow 

analysis, or equivalently, intraprocedural data flow analysis. Another kind of 

static analysis is the one that focus on program dependencies, extracting which 

are the set of dependencies for a specific program or more specifically a code 

part. A first example is the Control Dependence Graph, which encodes 

control dependencies and assumes that nodes do not postdominate [6, p. 3] 

themselves. Into this kind of graph the nodes represent statements, or regions 

of code that have common control dependencies. Another important 

program representation is the Program Dependence Graph, which represents 

both control dependencies and data dependencies for a program. A PDG 

consists of a control dependence, to which data dependence edges have been 

added. 
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2.2.2. Program slicing 

The concept of a program slice was originally developed by Weiser [7] for 

debugging purposes. Based on his original definition, informally, a static 

program slice 𝑆 consists of all statements in program 𝑃 that may affect the 

value of variable 𝑣 in a statement 𝑥. The slice is defined for a slicing criterion 

𝐶 = (𝑥, 𝑣), where x is a statement in program 𝑃 and 𝑣 is variable in 𝑥.  

A static slice includes all the statements that can affect the value of variable 𝑣 

at statement 𝑥 for any possible input. Static slices are computed by 

backtracking dependencies between statements. More specifically, to 

compute the static slice for (𝑥, 𝑣), we first have to find all the statements that 

can directly affect the value of 𝑣 before statement 𝑥 is encountered. 

Recursively, for each statement 𝑦 which can affect the value of 𝑣 in statement 

𝑥, we compute the slices for all variables 𝑧 in 𝑦 that affect the value of 𝑣. The 

union of all those slices is the static slice for (𝑥, 𝑣).  

This is called backward slice and it is represented in the Figure 2.3 as example.  

 

 

 

 

There have been several useful extensions to slicing algorithms. One problem 

with the static backward slice that was developed by Weiser is that it contains 

all the statements that may affect a given statement during any program 

Figure 2.3 
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execution. A refinement of this static slice that eliminates the problem of 

additional statements is a dynamic slice [8]. Whereas a static slice is computed 

for all possible executions of the program, a dynamic slice contains only those 

statements that affect a given statement during one execution of the program. 

Thus, a dynamic slice is associated with each test case for the program. 

Another useful type is the forward slice [9]. A forward slice for a program 

point 𝑃 and a variable 𝑣 consists of all those statements and predicates in the 

program that might be affected by the value of 𝑣 at 𝑃. A forward slice is 

computed by taking the transitive closure of the statements directly affected 

by the value of 𝑣 at 𝑃. 
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2.2.3   Drebin Model 

 

This approach can be successfully adopted also for the Android platform. 

The model that we have adopted for PRISM is Drebin [10]. As the first step, 

Drebin performs a lightweight static analysis of a given Android application. 

Accordingly, it becomes essential to select features which can be extracted 

efficiently. It indeed focuses on the manifest and the disassembled dex code 

of the application, which both can be obtained by a linear sweep over the 

application’s content. To allow for a generic and extensible analysis, we 

represent all extracted features as sets of strings, such as permissions, intents 

and API calls. In particular it distinguishes between features extracted from 

the Manifest and the ones extracted from the dex.  

Every application developed for Android must include a manifest file called 

AndroidManifest.xml which provides data supporting the installation and later 

execution of the application. The information stored in this file can be 

efficiently retrieved on the device using the Android Asset Packaging Tool,  

which enables us to extract the following sets: 

o S1 Hardware components: This first feature set contains requested 

hardware components. If an application requests access to the camera, 

touchscreen or the GPS module of the smartphone, these features 

need to be declared in the manifest file. Requesting access to specific 

hardware has clearly security implications, as the use of certain 

combinations of hardware often reflects harmful behaviour.  

o S2 Requested permissions: One of the most important security 

mechanisms introduced in Android is the permission system. 

Permissions are actively granted by the user at installation time – and 

from Android 6.0 also at runtime - and allow an application to access 

security-relevant resources. For example, malicious software tends to 

request certain permissions more often than innocuous applications. 

o S3 App components: There exist four different types of components 

in an application, each defining different interfaces to the system: 

activities, services, content providers and broadcast receivers. Every 

application can declare several components of each type in the 

manifest. The names of these components are also collected in a 
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feature set, as the names may help to identify well-known components 

of malware. 

o S4 Filtered intents: Inter-process and intra-process communication on 

Android is mainly performed through intents: passive data structures 

exchanged as asynchronous messages and allowing information about 

events to be shared between different components and applications. 

We collect all intents listed in the manifest as another feature set, as 

malware often listens to specific intents.  

Another set of features can be extracted from the disassembled code of 

Android applications: the bytecode can be efficiently disassembled and 

provides Drebin with information about API calls and data used in an 

application. The framework uses this information to construct the following 

feature sets: 

o S5 Restricted API calls: The Android permission system restricts 

access to a series of critical API calls. Our method searches for the 

occurrence of these calls in the disassembled code in order to gain a 

deeper understanding of the functionality of an application.  

o S6 Used permissions: The complete set of calls extracted in S5 is used 

as a foundation to determine the subset of permissions that are both 

requested and actually used.  

o S7 Suspicious API calls: Certain API calls allow access to sensitive data 

or resources of the smartphone and are frequently found in malware 

samples. As these calls can specially lead to malicious behaviour, they 

are extracted and gathered in a separated feature set.  

o S8 Network addresses: Malware regularly establishes network 

connections to retrieve commands or exfiltrate data collected from the 

device. Therefore, all IP addresses, hostnames and URLs found in the 

disassembled code are included in the last set of features.  
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2.2.4    Soot framework 

In order to understand all the operations done in this dissertation, we will 

introduce Soot, which is the main framework on which all the modules are 

based on.  

Soot is the core framework of both the Extractor and Injector module. Soot 

is a product of the Sable research group from McGill University, whose 

objective is to provide tools leading to the better understanding and faster 

execution of Java programs [11]. One of the main benefits of Soot is that it 

provides four different Intermediate Representations (IR) for analysis 

purposes. Each of the IRs has different levels of abstraction that give 

different benefits when analysing, they are: Baf, Grimp, Jimple and 

Shimple. During this thesis work we have mostly used the Jimple IR which 

is going to be deeply explained later. Soot builds data structures to 

represent:  

 Scene. The Scene class represents the complete environment the 

analysis takes place in. Through it, it is possible to set e.g., the 

application classes (the ones supplied to Soot for analysis), the main 

class (the one that contains the main method) and access information 

regarding interprocedural analysis (e.g., points-to information and 

call graphs).  

 SootClass. Represents a single class loaded into Soot or created using 

Soot.  

 SootMethod. Represents a single method of a class.  

 SootField. Represents a member field of a class. Body. Represents a 

method body and comes in different flavours, corresponding to 

different IRs (e.g., JimpleBody).  

These data structures are implemented using Object-Oriented techniques 

and designed to be easy to use and generic where possible. A statement in 

Soot is represented by the interface Unit, which there are different 

implementations of, one for each IR (e.g. Jimple uses Stmt). Through a 

Unit we can retrieve values used, values defined or both. 
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Additionally, we can get at the units jumping to a specific unit and units a units 

is jumping to, by jumping we mean control flow other than falling through.  

Unit also provides various methods of querying about branching behaviour. 

A single datum is represented as a Value. Examples of values are: locals 

(Local), constants (in Jimple Constant), expressions (in Jimple Expr), and many 

more. An expression has various implementations, e.g. BinopExpr and 

InvokeExpr, but in general can be thought of as carrying out some action on 

one or more Values and returns another Value.  

References in Soot are called boxes, which can be distinguished in ValueBox 

and UnitBox. UnitBoxes refer to Units. Used when a single unit can have 

multiple successors, i.e. when branching. ValueBoxes refer to Values. As 

previously described, each unit has a notion of values used and defined in 

it, this can be very useful for replacing use or def boxes in units, for instance 

when performing constant folding. All these elements are summarized in 

Figure 2.4. 

 

 

As we already mentioned, the Soot framework provides four intermediate 

representations for code: Baf, Jimple, Shimple and Grimp. The 

representations provide different levels of abstraction on the represented 

code and are targeted at different uses. Because this work has focused only 

on the Jimple IR, we will explain only this one with further details.  

Figure 2.4 
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Jimple is the principal representation in Soot. The Jimple representation 

is a typed, 3-address, statement based intermediate representation. Jimple 

representations can be created directly in Soot or based on Java source 

code and Java bytecode/Java class files. The translation from bytecode to 

Jimple is performed using a naïve translation from bytecode to untyped 

Jimple, by introducing new local variables for implicit stack locations and 

using subroutine elimination to remove jump-to-subroutine instructions. 

Types are inferred for the local variables in the untyped Jimple and added. 

The Jimple code is cleaned for redundant code, like unused variables or 

assignments. An important step in the transformation to Jimple is the 

linearization (and naming) of expressions: this makes statements only 

reference at most 3 local variables or constants, resulting in a more regular 

and very convenient representation for performing optimizations. In 

Jimple an analysis only has to handle the 15 statements in the Jimple 

representation compared to the more than 200 possible instructions in Java 

bytecode. 

An example of Jimple transformation is the following, shown in Figure 2.5. 

 

Figure 2.5 
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Soot also provides several different control flow graphs (CFG), defining 

methods to get:  

 entry and exit points to the graph; 

 successors and predecessors of a given node; 

 an iterator to iterate over the graph in some undefined order and 

the graphs size (number of nodes).  

The following implementations are those that represent a CFG in which 

the nodes are Soot Units. Furthermore, we will only describe those that 

represent an intraprocedural flow. The base class for these kinds of graphs 

is UnitGraph, an abstract class that provides facilities to build CFGs. There 

are three different implementations of it: BriefUnitGraph, ExceptionalUnitGraph 

and TrapUnitGraph. The one adopted in PRISM is the ExceptionalUnitGraph 

which includes all the basic blocks and also edges from throw clauses to 

their handler (catch block, referred to in Soot as Trap), that is if the trap is 

local to the method body. Additionally, this graph takes into account 

exceptions that might be implicitly thrown by the VM (e.g. 

ArrayIndexOutOfBoundsException). For every unit that might throw an implicit 

exception, there will be an edge from each of that unit predecessors to the 

respective trap handler’s first unit. Furthermore, in case the excepting unit 

would contain side effectsm an edge will also be added from it to the trap 

handler.  

Over the Control Flow Graph, Soot allows to build a Call Graph, which is 

crucial for interprocedural analysis. A call graph in Soot is a collection of 

edges representing all known method invocations. This includes: 

 explicit method invocations  

 implicit invocations of static initializers  

 implicit calls of Thread.run() 

 implicit calls of finalizers  

 implicit calls by AccessController  
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 and many more  

Each edge in the call graph contains four elements: source method, source 

statement (if applicable), target method and the kind of edge. The different 

kinds of edges are e.g. for static invocation, virtual invocation and interface 

invocation. The call graph has methods to query for the edges coming into 

a method, edges coming out of method and edges coming from a particular 

statement. Each of these methods return an Iterator over Edge constructs. 

Soot provides three so-called adapters for iterating over specific parts of an 

edge: 

 Sources iterates over source methods of edges; 

 Units iterates over source statements of edges; 

 Targets iterates over target methods of edges. 
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2.3 Machine Learning in malware analysis 

 

achine learning is a set of methods that gives “computers the ability 

to learn without being explicitly programmed1”. 

In other words, a machine learning algorithm discovers and 

formalises the principles that underlie the data it sees. With this knowledge, 

the algorithm can reason about the properties of previously unseen samples. 

In malware detection, a previously unseen sample could be a new file. Its 

hidden property could be either a malicious or a benign one. A 

mathematically formalised set of principles underlying data properties is 

called the model. Machine learning has a broad variety of approaches that it 

takes to a solution rather than a single method. These approaches have 

different capacities and different tasks that they suit best. We have two 

possible approaches to this, unsupervised learning and supervised learning. 

In the first setting scenario, we are given only a dataset without the right 

answers for the task: the goal is to discover the structure of the data or the law 

of data generation. One important example is clustering. Clustering is a task 

that includes splitting a data set into groups of similar objects. Another task is 

representation learning –this includes building an informative feature set for 

objects based on their low-level description. Large unlabelled datasets are 

available to cybersecurity vendors and the cost of their manual labelling by 

experts is high – this makes unsupervised learning valuable for threat 

detection. Clustering can help with optimizing efforts for the manual labelling 

of new samples. With informative embedding, we can decrease the number 

of labelled objects needed for the usage of the next machine learning 

approach in our pipeline: supervised learning.  

This other kid of setting is used when both the data and the right answers for 

each object are available. The goal is to fit the model that will produce the 

right answers for new objects. Supervised learning consists of two stages: 

                                                 

1 Arthur Samuel, 1959 

M 



 

 

 

25 

o Training a model and fitting a model to available training data. This 

mainly consists on using some amount of data to teach a method on 

how to estimate 𝐹, which is a function that roughly fits the data. Our 

goal is to apply a statistical learning method to the training data in 

order to estimate the unknown function 𝑓. In other words, we want 

to find a function 𝐹 such that 𝑌 ≈  𝐹(𝑋) for any observation (𝑋, 𝑌). 

o Applying the trained model to new samples and obtaining 

predictions. 

The task is that, given a set of objects, in such a way that each one is 

represented with feature set X and mapped to right answer or labelled as Y, 

we want to create the best possible model that will produce the correct label 

Y’ for previously unseen objects given the feature set X’.  In the case of 

malware detection, X could be some features of file content or behaviour, for 

instance, file statistics and a list of used API functions. Labels Y could be 

“malware” or “benign”, or even a more fine-grained classification, such as a 

virus, Trojan-Downloader or adware.  

In the “training” phase, we need to select some family of models, for example, 

neural networks or decision trees. Usually each model in a family is 

determined by its parameters. Training means that we search for the model 

from the selected family with a particular set of parameters that gives the most 

accurate answers for train objects according to some metric. In other words, 

we “learn” the optimal parameters that define valid mapping from X to Y. 

After we have trained a model and verified its soundness, we are ready for the 

next phase – applying the model to new objects. In this phase, the type of the 

model and its parameters do not change: the model only produces 

predictions. In the case of malware detection, this is the protection phase. 

Vendors often deliver a trained model to users where the product makes 

decisions based on model predictions autonomously. Mistakes can cause 

devastating consequences for a user – for example, removing an OS driver. It 

is crucial for the vendor to select a model family properly. The vendor must 

use an efficient training procedure to find the model with a high detection rate 

and a low false positive rate. 

It is important to emphasise the data-driven nature of this approach. A 

created model depends heavily on the data it has seen during the training 
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phase to determine which features are statistically relevant to predict the 

correct label.  

We will explain why making a representative data set is so important. Imagine 

we collect a training set, and we overlook the fact that occasionally all files 

larger than 15 MB are all malware and not benign, which is certainly not true 

for real world files. While training, the model will exploit this property of the 

dataset, and will learn that any files larger than 15 MB are malware. It will use  

 

this property for detection. When this model is applied to real world data, it 

will produce many false positives.  

To prevent this outcome, we needed to add benign files with larger sizes to 

the training set. Then, the model would not rely on an erroneous data set 

property. Generalising this, we must train our models on a dataset that 

correctly represents the conditions where the model will be working in the 

real world. This makes the task of collecting a representative dataset crucial 

for machine learning to be successful. 

Figure 2. 6 



 

 

 

27 

False positives happen when an algorithm mistakes a malicious label for a 

benign file. Our aim is to make the false positive rate as low as possible, or 

“zero”. This is untypical for machine learning application. It is important, 

because even one false positive in a million benign files can create serious 

consequences for users. This is complicated because there are lots of clean 

files in the world, and they keep appearing. To address this problem, it is 

important to impose high requirements for both machine learning models 

and metrics that will be optimized during training, with the clear focus on low 

false positive rate (FPR) models. This is still not enough, because new benign 

files that go unseen earlier may occasionally be falsely-detected. We take this 

into account and implement a flexible design of a model that allows us to fix 

false-positives on the fly, without completely retraining the model. Examples 

of this are implemented in our pre- and post-execution models, which are 

described in following sections. 

Of course, this approach has also its own limits and can be tricked by different 

kind of adversarial examples. In order to make it understandable, we will start 

to explain the issue from the images. 

Indeed, several machine learning models consistently misclassify inputs 

formed by applying small but intentionally worst-case perturbations to 

examples from the dataset, such that the perturbed input results in the model 

outputting an incorrect answer with high confidence. 

 

 

Figure 2. 7 
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For example, starting with an image of a panda Fig 2,7, the attacker adds a 

small perturbation that has been calculated to make the image be recognised 

as a gibbon with high confidence. The challenge for the adversary is figuring 

out how to generate an input with the desired output, as in the source-target-

misclassification attack. In such an attack, the adversary starts with a sample 

that is legitimate (such as a Panda) and modifies it through a perturbation 

process to attempt to cause the model to classify it in a chosen target class 

(which in our case is a gibbon ). 

For an attack to be worth studying, from a machine learning point of view, 

it is necessary to impose constraints that ensure that the adversary is not 

able to truly change the class of the input. For example, if the adversary 

could physically replace a stop sign with a yield sign or physically paint a 

yield symbol onto a stop sign, a machine learning algorithm must be able 

to still recognize it as a yield sign [12]. In the context of computer vision, 

we generally consider only modifications of an object's appearance that do 

not interfere with a human observer's ability to recognize the object. The 

search for misclassified inputs is thus done with the constraint that these 

inputs should be visually very similar to a legitimate input. Consider the 

images in Fig 2.8 , potentially consumed by an autonomous vehicle. To the 

human eye, they appear to be the same, and our biological classifiers 

(vision) identify each one as a stop sign. The image on the left is indeed an 

ordinary image of a stop sign. We produced the image on the right by 

adding a small, precise perturbation that forces a particular image 

classification deep neural network to classify it as a yield sign. Here, the 

adversary could potentially use the altered image to cause the car to behave 

dangerously, especially if the car lacks of fail-safes (such as maps of known 

stop-sign locations). In other application domains, the constraint differs. 

When targeting machine learning models used for malware detection, the 

constraint becomes that the input—or malware software—misclassified by 

the model must still be in a legitimate executable format and execute its 

malicious logic when executed. 
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The same approach could exactly be adopted for malwares: if we apply a 

string perturbation to a malware we could achieve the misclassification of 

it for a single classifier, evading it. This is a challenging problem and we 

can suppose two different scenarios: the white-box one and the black-box 

one. One way to characterise an adversary's strength is the amount of access 

the adversary has to the model. In a white-box scenario, the adversary has full 

access to the model whereby the adversary knows what machine learning 

algorithm is being used and the values of the model's parameters. In this case, 

we show in the following paragraphs that constructing an adversarial example 

can be formulated as a straightforward optimization problem. In a black-box 

scenario, the attacker must rely on guesswork, because the machine learning 

algorithm used by the defender and the parameters of the defender's model 

are not known. Even in this scenario, where the attacker's strength is limited 

by incomplete knowledge, the attacker might still succeed. We now describe 

the white-box techniques first because they form the basis for the more 

difficult black-box attacks. 

We will keep clarifying a bit more on the white-box case because it is the 

one on which we have focused on during the PRISM implementation.  

An adversarial example x* is found by perturbing an originally correctly 

classified input x. To find x*, one solves a constrained optimization 

problem. One very generic approach, applicable to essentially all machine 

learning paradigms, is to solve for the x* that causes the most expected loss 

(a metric reflecting the model's error), subject to a constraint on the 

maximum allowable deviation from the original input x; in the case of 

Figure 2.8 
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machine learning models solving classification tasks, the loss of a model 

can be understood as its prediction error. Another approach, specialised 

to classifiers, is to impose a constraint that the perturbation must cause a 

misclassification and solve for the smallest possible perturbation 

 𝑥′ = 𝑥 + 𝑎𝑟𝑔𝑚𝑖𝑛{||𝑧|| ∶  𝑓(𝑥 + 𝑧)  =  𝑡} 

where x is an input originally correctly classified, || • || a norm that 

appropriately quantifies the similarity constraints discussed earlier, and t is the 

target class chosen by the adversary. In the case of "untargeted attacks," t can 

be any class different from the correct class f (x). For example, for a malware 

the adversary might use the ℓ0 "norm" to force the attack to modify very few 

pixels, or the ℓ∞ norm to force the attack to make only very small changes to 

each pixel. All of these different ways of formulating the optimization problem 

search for an x* that should be classified the same as x (because it is very 

similar to x) yet is classified differently by the model. These optimization 

problems are typically intractable, so most adversarial example-generation 

algorithms are based on tractable approximations. 

The limitations of existing defences point to the lack of theory and practice of 

verification and testing of machine learning models. To design reliable 

systems, engineers engage in both testing and verification. By “testing”, we 

mean evaluating the system under various conditions and observing its 

behaviour, watching for defects. By “verification”, we mean producing a 

compelling argument that the system will not misbehave under a broad range 

of circumstances. 

Machine learning practitioners have traditionally relied primarily on testing. 

A classifier is usually evaluated by applying the classifier to several examples 

drawn from a test set and measuring its accuracy on these examples. 

To provide security guarantees, it is necessary to ensure properties of the 

model besides its accuracy on naturally occurring test-set examples. One well-

studied property is robustness to adversarial examples. The natural way to test 

robustness to adversarial examples is simply to evaluate the accuracy of the 

model on a test set that has been adversarial perturbed to create adversarial 

examples. 

Unfortunately, testing is insufficient to provide security guarantees, as an 

attacker can send inputs that differ from the inputs used for the testing 
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process. In general, testing is insufficient because it provides a "lower bound" 

on the failure rate of the system when an "upper bound" is necessary to provide 

security guarantees. Testing identifies n inputs that cause failure, so the 

engineer can conclude that at least n inputs cause failure; the engineer would 

prefer to have a means of becoming reasonably confident that at most n inputs 

cause failure. 

Putting this in terms of security, a defence should provide a measurable 

guarantee that characterises the space of inputs that cause failures. Conversely, 

the common practice of testing can only provide instances that cause error 

and is thus of limited value in understanding the robustness of a machine 

learning system. Development of an input-characterizing guarantee is central 

to the future of machine learning in adversarial settings and will almost 

certainly be grounded in formal verification. 

Adversarial machine learning is at a turning point. In the context of adversarial 

inputs at test time, we have several effective attack algorithms but few strong 

countermeasures. Can we expect this situation to continue indefinitely? Can 

we expect an arms race with attackers and defenders repeatedly seizing the 

upper hand in turn? Or can we expect the defender to eventually gain a 

fundamental advantage? 

We can explain adversarial examples in current machine learning models as 

the result of unreasonably linear extrapolation but do not know what will 

happen when we fix this particular problem; it may simply be replaced by 

another equally vexing category of vulnerabilities. The vastness of the set of 

all possible inputs to a machine learning model seems to be cause for 

pessimism. Even for a relatively small binary vector, there are far more 

possible input vectors than there are atoms in the universe, and it seems highly 

improbable that a machine learning algorithm would be able to process all of 

them acceptably. On the other hand, one may hope that as classifiers become 

more robust, it could become impractical for an attacker to find input points 

that are reliably misclassified by the target model, particularly in the black-box 

setting. 

These questions may be addressed empirically, by actually playing out the 

arms race as new attacks and new countermeasures are developed. We may 

also be able to address these questions theoretically, by proving the arms race 

must converge to some asymptote. All these endeavours are difficult, and we 

hope many will be inspired to join the effort. 



 

 

 

32 

2.4 Android mobile framework 

he mobile OS on which we are focusing on is Android. The whole 

Android stack is show in the Figure 2.9, and can be divided in the 

following sections: 

 Linux kernel: At the bottom of the layers is Linux - Linux 3.6 with 

approximately 115 patches. This provides a level of abstraction 

between the device hardware and it contains all the essential 

hardware drivers like camera, keypad, display etc. Also, the 

kernel handles all the things that Linux is really good at such as 

networking and a vast array of device drivers, which take the pain 

out of interfacing to peripheral hardware. 

 Libraries: On top of Linux kernel there is a set of libraries 

including open-source Web browser engine WebKit, well known 

library libc, SQLite database which is a useful repository for 

storage and sharing of application data, libraries to play and 

record audio and video, SSL libraries responsible for Internet 

security etc. 

 Android libraries: This category encompasses those Java-based 

libraries that are specific to Android development. Examples of 

libraries in this category include the application framework 

libraries in addition to those that facilitate user interface building, 

graphics drawing and database access. 

 Android Runtime: This is the third section of the architecture and 

available on the second layer from the bottom. This section 

provides a key component called Dalvik Virtual Machine which 

is a kind of Java Virtual Machine specially designed and 

optimized for Android. The Dalvik VM makes use of Linux core 

features like memory management and multi-threading, which is 

intrinsic in the Java language. The Dalvik VM enables every 

Android application to run in its own process, with its own 

instance of the Dalvik virtual machine. The Android runtime also 

provides a set of core libraries which enable Android application 

developers to write Android applications using standard Java 

programming language. 
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 Application Framework: The Application Framework layer 

provides many higher-level services to applications in the form of 

Java classes. Application developers are allowed to make use of 

these services in their applications. 

 Applications: You will find all the Android application at the top 

layer. You will write your application to be installed on this layer 

only. Examples of such applications are Contacts Books, 

Browser, Games etc. 

 

 

It is a complex architecture as we could notice, including different modules 

and components. 

The main Android components are the following four: 

 Activity which is the component associated to the UI. Almost all 

activities interact with the user, so the Activity class takes care of 

creating a window for you in which you can place your UI. The 

lifecycle of this component is shown in Fig 2.10. 

Figure 2.9 
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 Broadcast Receivers, components that Android apps can use for 

send or receive broadcast messages from the Android system and 

other Android apps, similar to the publish-subscribe design 

pattern. Generally speaking, broadcasts can be used as a 

messaging system across apps and outside of the normal user 

flow. 

 Content Provider, which can help an application manage access 

to data stored by itself, stored by other apps, and provide a way 

to share data with other apps. They encapsulate data and provide 

mechanisms for defining data security. 

 Services, application components that can perform long-running 

operations in the background, and that do not provide a user 

interface. Another application component can start a service, and 

it continues to run in the background even if the user switches to 

another application. 

 

Another important entity of the Android framework are Intents. An Intent 

is a messaging object you can use to request an action from another app 

Figure 2. 10 

https://developer.android.com/reference/android/content/Intent.html
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component. Although intents facilitate communication between 

components in several ways, there are three fundamental use cases:  

 Starting an activity: one can start a new instance of an Activity by 

passing an Intent to startActivity(). The Intent describes the 

activity to start and carries any necessary data. 

 Starting a service: to start a service and perform a one-time 

operation (such as downloading a file) by passing an Intent to 

startService(). The Intent describes the service to start and carries 

any necessary data. If the service is designed with a client-server 

interface, you can bind to the service from another component 

by passing an Intent to bindService(). For more information, see 

the Services guide. 

 Delivering a broadcast: i.e. a message that any app can receive. 

The system delivers various broadcasts for system events, such 

as when the system boots up or the device starts charging. It is 

possible to deliver a broadcast to other apps by passing an Intent 

to sendBroadcast() or sendOrderedBroadcast(). 

We will deal with Intents during the Extraction phase, when we will search 

for eligible Activity invocations, which consist into a startActivity() call. 

Android is nowadays the most spread and adopted mobile OS in the world, 

counting now over 2 billion monthly active devices all over the globe.  

Android and iOS have created a duopoly in the smartphone market, 

accounting for more than 95% of the 3.1 billion active smartphone devices 

in the world. In terms of the sheer volume of devices in use, Android 

dominates iOS by a large margin with a 75.9% market share in November 

of 2017 or 2.3 billion smartphones in use. [13] 

This gap keep increasing over and over the years, rising also the attentions 

of virus creator. Indeed, due to this mass adoption and its openness to 

unofficial applications, Android owns the largest number of malicious 

applications in the mobile world, counting, in the first half of 2018, 

2,040,293 new malware samples recorded. 

https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/content/Context.html#startActivity(android.content.Intent)
https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/content/Context.html#startService(android.content.Intent)
https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/content/Context.html#bindService(android.content.Intent,%20android.content.ServiceConnection,%20int)
https://developer.android.com/guide/components/services.html
https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/content/Context.html#sendBroadcast(android.content.Intent)
https://developer.android.com/reference/android/content/Context.html#sendOrderedBroadcast(android.content.Intent,%20java.lang.String)
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The forecasts are not even better: Android malware on the march, with 

ransomware an ever-increasing threat [14]. According to a SophosLabs 

analysis, the number of attacks on Sophos customers using Android 

devices increased almost every month in 2017 as shown in the Fig 2.12. 

 

Creating a malicious apk is not even hard, there are several ways to 

accomplish that. On the web it is possible to find various tutorial that 

Figure 2.11 

Figure 2. 12 
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explain how to create a simple malicious application by just injecting a 

malicious reverse shell into an arbitrary application. 2 This can be 

accomplished by just decompiling the apk in smali code and choose the 

best injection point for being sure that the malicious code is always 

executed; then Metasploit framework will handle the rest. 

  

                                                 

2 Null-Byte, “How to do a persistent backdoor into an Android apk,” [Online]. Available: https://null-

byte.wonderhowto.com/how-to/create-persistent-back-door-android-using-kali-linux-0161280/ 
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3 PRISM framework overview  

 

s previously introduced, PRISM is a program synthesis framework 

which allows to successfully inject chunks of code accurately 

picked from a set of benign application into a desired malware, in 

order to successfully misclassify it against a specific classifier. 

We decide to transpose the feature layer attacks to the problem space, 

operating directly on the bytecode instrumentation of the desired 

application to verify the feasibility of these kind of attacks. 

The core characteristics that must be provided are: 

 Successfully extract and transplant the whole dependency chain of 

the desired feature 

 Being the more realistic as possible, in order to adapt to real world 

scenario 

 Being stealthy  

 Being flexible and robust for support different kind of applications 

The whole deployment strategies focus on the satisfaction of all these 

requirements, in order to create a tool suitable for real-world usage 

scenarios. During the development we took advantage of various 

techniques from different computer science fields, like program analysis 

instruments for extract the dependencies, inject realistic invocation and use 

opaque predicates for shield our injected code. This grants this framework 

a high degree of robustness to static analysis tool, leaving the dynamic part 

for future expansion. 

During this chapter we will discuss in detail which is the intuition behind 

the proposed work, starting from the need of operating at problem space 

level. Then we will explain the components of the overall framework and 

how they interoperate. 

  

A 
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3.1 From feature space to problem space 

 

n the current literature the almost entire set of proposed adversarial 

attacks work on feature layer level. It means that these attacks verify 

their effectiveness only operating on modifying the features in the data 

domain, without reflecting those changes also on the analysed object. They 

just focus on altering the value or the presence of a specific feature at 

dataset level, without testing the feasibility of this action. 

A clear example of this is the SecSVM evasion algorithm [1]. It mainly 

consists in ordering by absolute weight the features of a specific classifier 

and decide to remove or add some to a given malicious application in order 

to misclassify it, operating only at feature layer space. The limitation of this 

study lies on the fact that they have not tested its feasibility in real world 

scenarios, but they limited the scope of the tests at the feature layer space, 

modifying the chosen features only in the dataset. 

In the proposed work, we adopt the same assumptions: PRISM uses a 

LinearSVM classifier, due to the simple need to classify a goodware from a 

malware, which is represented simply as a linear space, as true or false. We 

worked into a Perfect Knowledge scenario, which is the worst-case setting 

because also the targeted classifier is known to the attacker. Indeed, this 

setting is particularly interesting as it provides an upper bound on the 

performance degradation incurred by the system under attack and can be 

used as reference to evaluate the effectiveness of the system under the other 

simulated attack scenarios. 

Taken the inspiration from the previous evasion attack proposed, we 

slightly modified it, adding some basic constraint to preserve the semantic 

equivalence of the malware. The adopted attack can be explained as 

follows: first, we extract the estimated weights [𝑊1, 𝑊2, 𝑊3, … 𝑊𝑛] from 

the classifier and sort them in descending order of their absolute values. 

Since we are only interested in adding features for maintaining the program 

semantic equivalence from the original malware to the instrumented one, 

we discard any positive weight (which are malicious features) and hold all 

the negative ones (which are benign). Then, for all the extracted features, 
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we verify the current presence in the target malware and, if not, we add it. 

After every injection, we check the current entity of the perturbation 

created and so, given 𝑤𝑖  one of the weights of the feature considered, 𝜑𝑚𝑖𝑛 

the minimum perturbation needed for the misclassification and 𝛼 an ad 

hoc constant: 

∑ 𝑤𝑛
𝑖=1 𝑖

 > 𝜑𝑚𝑖𝑛 +  𝛼 

If the condition is satisfied we stop the process and we verify that effectively 

the malware is now misclassified from the SVM.  

This way we are able to obtain the minimum set of features needed in order 

to misclassify the target malware, but we only have the list of the needed 

features at features space. We do not obtain the real set of features to inject, 

but only the seeds of them. Indeed we want to consider the whole set of 

dependencies of a single component containing the searched feature. 

Simply adding a single feature to a program implies considering all its 

dependency chain and not doing that would be deeply inconsistent and 

easy to detect.  

Getting from this feature-layer attack to its corresponding problem space is 

not immediate as one could imagine and, most of the times, a single feature 

drags a large set of other entities in order to work correctly. For this reason, 

we need to understand if considering all this set of dependencies the gadget 

to be injected preserve its benign properties, which is not an assumed 

property. 

Indeed it is possible to include by dependency also malicious feature whose 

weight could totally overwhelm the initial benign one and turn the all 

injection into a malicious injection instead of a benign one, increasing the 

malicious property of the final malware, which is absolutely what we want 

to avoid. 
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This is real for both kind of features we are considering in this project, 

which are Activities and URL-like features, which include URL or API 

calls. So, for example, in the case that a feature to inject is an Activity, 

PRISM will extract recursively all the classes referenced from the initial 

class, looking deeply inside the various class fields and variables and 

method invocation, gathering everything. On the other hand, if it is a URL-

like feature, like an API invocation, internet call, etc., the invocation 

method is found and all the relative dependencies of the class containing it 

are extracted recursively.  

Considering a relative simple goodware application, with few activities and 

classes the whole set of dependencies would consist of a total amount of 

10-15 entities, while if the application is a huge one with a complex 

architecture scheme the final extracted gadget could easily reach 100 extra 

classes. For this reason, this evaluation part is critical for the correct 

operation of the framework, avoiding the chance to inject malicious code 

into a malware. 

Figure 3.1 
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In order to evaluate the single gadgets and understanding their complex 

nature, we adopt a simple strategy which will be explained in detail in 

Section 3.2.5: the main idea is to create an empty apk, as template 

containing the minimum set of features possible, and using it for gadget 

evaluation. Every time we want to inject a gadget, we first try to inject it in 

the template; then evaluate the final result. This way we are sure that the 

final result will be in line with our goal, discarding all the malicious gadgets. 

Another challenge by operating at problem space layer is how to correctly 

inject pieces of code without altering the correct operation of the original 

malware. It is necessary to identify a reasonable method for choosing the 

class in which injecting the code, otherwise we would risk to leave an 

evident trace of instrumentation, that could easily be detected by an 

analyser, either human or automatic. For this reason, we chose to adopt 

the Cyclomatic Complexity [15], which is used to indicate the logic 

complexity of a program. In PRISM we use it to retrieve a suitable list of 

classes, calculating the average CC of them and choosing one that fits our 

need. All this procedure will be explained in detail later in Section 3.2.3. 

All these issues are not only limited at the feature layer, but they become a 

real problem when this kind of attack faces the reality at a problem space 

level. With this work we coped with all these issues and found an 

acceptable solution to them, in order to guarantee a deep correctness of all 

the actions taken for reaching a successful instrumentation. 

Moreover, this changes the reference system of the attack, modifying also 

the constraints. For example, in usual adversarial attacks there is a 

constraint on the amount of perturbation applied at feature space level, but 

in our situation this limit cannot be applied, because we are in a total 

different reference space. Our main constraint is the size of the final 

application: we do not want to exceed a specific percentage of increase, in 

order to produce all the time a reasonable application 

The main goal of this project is to create a successful framework which is 

able to correctly solve problem-space adversarial attacks on Android 

application, facing all the problems discussed before. 
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3.2 Infrastructure graph 

 

he whole framework is composed by different modules that 

combine their own capabilities for reach the final goal. Due to the 

likely future use of this framework in S2LAB researches, we have 

decided to separate the roles in order to achieve better code modularity. 

The infrastructure process is shown in Figure 3.2, containing all the 

different operational phases. The two main modules have been developed 

in the Java language, totally based on Soot framework, which has been 

already introduced in Section 2.2.4. We have mainly used its 

instrumentation capabilities, in order to detect, extract and reinject the 

needed code parts. 

Moreover, before choosing Soot, we tried different other static analysis 

frameworks, like WALA and SAAF, but in the end they had not the 

expected characteristics (explained later in Section 5.6).  

The two jar file modules are: 

 The Extractor, which handles the extraction of the needed classes 

and dependencies from the benign applications, including also 

components, like Broadcast Receivers, Content Provider, etc. 

 The Injector, which on the other hand handles the injection of all 

the set of dependencies inside the malware. A modified version of 

the injector is used also for the gadget evaluation part, in order to 

inject a specific gadget into the template apk, for verify if the whole 

set of features is benign or malicious 

Another core module is the Drebin feature extractor, which is a faithful 

implementation of the Drebin extraction model written in Python. It 

basically is able to correctly extract all the features from a specific Android 

application following the Drebin model. This is possible by decompil ing 

the target application and analysing the files contained in it. It makes also 

use of both smali/baksmali, which have been discussed before, and of 

AAPT (Android Asset Packaging Tool). AAPT takes an application 
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resource files, such as the AndroidManifest.xml file and the XML files for the 

Activities, and compiles them. This is a great tool which helps to view, 

create, and update your APKs (as well as zip and jar files). It can also 

compile resources into binary assets. It is the base builder for Android 

applications. Using both tools, it can correctly match the presence of a 

certain features and the respective permission, by using an ad hoc file 

containing all the mappings between a specific call and the relative 

permission. It saves all the results into a JSON file, which contains all the 

features extracted. It has been extensively used into the PRISM framework 

in order to extract the features from a specific application during all the 

needed phases. 

All these components are successfully coordinated by a Python program 

which contains the full logic of the framework: it includes the creation of 

the data model, the setup of the classifier and the invocation of the various 

modules described before. This orchestration script verifies that every step 

concludes correctly, making all the necessary checks on the single 

operations. It includes also the final application signature and the final 

evaluation to check whether the attack has ended successfully. 

We tested this script on a huge dataset for the experiment part, so in order 

to achieve this we have coordinated the whole set of invocation by a 

multiprocessing strategy, also full implemented in python and run over the 

S2LAB cluster. 
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Figure 3.2 
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3.2.1 Classifier 

s already mentioned before, the classifier we have adopted is a 

Linear SVM. Generally speaking, a Support Vector Machine 

(SVM) is a discriminative classifier formally defined by a 

separating hyperplane. In other words, given labelled training data 

(supervised learning), the algorithm outputs an optimal hyperplane which 

categorizes new examples. In a two-dimensional space this hyperplane is a 

line dividing a plane in two parts where in each class lay in either side.  

An example is represented by Figure 3.3. It fairly separates the two classes. 

Any point that is under the line falls into blue square class and everything 

above falls into red square class.  The decision function is fully specified 

by a subset of training samples, the support vectors. 

 

 

A 

Figure 3.3 
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So mainly for a SVM: 

 Input: set of (input, output) training pair samples; call the input 

sample features 𝑥1, 𝑥2, … , 𝑥𝑛 and the output result y. Typically, there 

can be lots of input features x i .  

 Output: set of weights w (or w i), one for each feature, whose linear 

combination predicts the value of y.  

Moreover, each SVM classifier has tuning parameters, like 

the regularization parameter, gamma or kernel, which defines whether we 

want a linear of linear separation. 

The learning of the hyperplane in linear SVM is done by transforming the 

problem using some linear algebra. This is where the kernel plays role.  

For linear kernel the equation for prediction for a new input using the dot 

product between the input (x) and each support vector (xi) is calculated as 

follows: 

 

f(x) = B(0) + sum(a i * (x,xi)) 

 

This is an equation that involves calculating the inner products of a new 

input vector (x) with all support vectors in training data. The coefficients 

B0 and ai (for each input) must be estimated from the training data by the 

learning algorithm. 

The Regularization parameter (often termed as C parameter in Python’s 

sklearn library) tells the SVM optimization how much you want to avoid 

misclassifying each training example. For large values of C, the 

optimization will choose a smaller-margin hyperplane if that hyperplane 

does a better job of getting all the training points classified correctly. 

Conversely, a very small value of C will cause the optimizer to look for a 

larger-margin separating hyperplane, even if that hyperplane misclassifies 

more points. The gamma parameter defines how far the influence of a 

single training example reaches, with low values meaning ‘far’ and high 

values meaning ‘close’. In other words, with low gamma, points far away 

from plausible separation line are considered in calculation for the 
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separation line. Whereas high gamma means the points close to plausible 

line are considered in calculation. 

And finally, the last but very important characteristic of SVM classifier is 

the margin. SVM to core tries to achieve a good margin, which is a 

separation of line to the closest class points. A good margin is one where 

this separation is larger for both the classes. The image below, Fig. 3.4, 

gives a visual example of good and bad margin. A good margin allows the 

points to be in their respective classes without crossing to other class.  

 

The advantages of the SVM technique can be summarised as follows:   

 SVMs provide a good out-of-sample generalization, if the parameter 

C is appropriately chosen. This means that, by choosing an 

appropriate generalization grade, SVMs can be robust, even when 

the training sample has some bias.  

Figure 3.4 
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 SVMs deliver a unique solution, since the optimality problem is 

convex. This is an advantage compared to Neural Networks, which 

have multiple solutions associated with local minima and for this 

reason may not be robust over different samples. 

 With the choice of an appropriate kernel one can put more stress 

on the similarity between elements, because the more similar the 

element structure of two data is, the higher is the value of the kernel.  

 

On the other hand, the disadvantages are that the theory only really covers 

the determination of the parameters for a given value of the regularisation 

and kernel parameters and choice of kernel. In a way the SVM moves the 

problem of over-fitting from optimising the parameters to model selection. 

Sadly, kernel models can be quite sensitive to over-fitting the model 

selection criterion. Please note, however, that this problem is not unique to 

kernel methods, most machine learning methods have similar problems. 

The hinge loss used in the SVM results in sparsity. However, often the 

optimal choice of kernel and regularisation parameters means you end up 

with all data being support vectors. 

The Linear SVM classifier is suitable for what we need because we only 

need to classify a target application as malware or goodware, which is 

represented as a binary problem. We do not have any multiclass 

classification need, so the Linear SVM fits perfectly. Due to the risk of 

overfitting we have trained the classifier on a large-scale dataset, already 

used into other previous experiment done by the S2LAB team during other 

researches on malware classification with machine learning. 
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3.2.2 Extractor 

he Extractor module focuses on extracting all the set of necessaries 

dependencies from a specific goodware. This represents the first 

step after the identification of the set of the needed features to 

transplant and the correspondence hash of the application that contains it. 

The whole module has been built on top of Flowdroid [16], which is built 

on Soot framework. The module has been designed in order to being able 

to successfully extract Activity features and URL-like ones, like URLs and 

T 

Figure 3.5 
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API calls. Of course, the two extraction methods are slightly different. The 

process graph is represented in Figure 3.5. Getting into the details on how 

the extraction process works: 

 For the Activity features, the Extractor module at first searches if the 

searched feature is inside the target application. Indeed, there are 

cases in which the activities are imported from some C/C++ libraries 

[17] and unfortunately our analysis tool is not able to catch them. 

After having identified the target Activity, it analyses the whole target 

body class and extract all the dependencies needed using a PDG. 

These include field types, interfaces and other external classes 

needed for the correct operation of the target class.  

The next step consists in trying to extract a slice containing the 

invocation of the current focused Activity. This is particularly 

complicated for complex applications. Our approach can be 

compared to a greedy algorithm: we analyse the body of all the 

methods of all the classes in the current Scene, see Section 2.2, 

searching for the presence of the startActivity method invocation 

and of the declaration of our target Activity. If the module finds a 

match, then the Extractor tries to extract the Activity invocation 

leveraging on the CFG, getting the set of basic blocks that contain 

the invocation. Of course, we need to be sure that the extracted set 

is independent and for this reason we double check if it contains all 

the needed dependencies to correctly work. In case it doesn’t, we try 

to extract also the set of missing dependencies and add them to the 

final Scene. In case we do not find any match, the extraction part 

stops just after having found all the set of dependencies of the target 

activity. 

 On the other hand, for the URL-like features, we decided to change 

the last part of the extraction process: if an Activity is a pure Android 

component and the extraction is a pretty straightforward operation, 

for a generic URL-like string the whole operation gets more 

articulated. In order to make it robust enough to be generalised we 

decided to focusing on extracting the callee method that invokes the 

method containing the feature we are searching for. For example, if 

we have a method M0 which contains the feature F0 in class C0, we 



 

 

 

52 

are searching for a method M1 of another class C1 which calls M0, 

emulating the same goodware operation. 

In order to make this approach successful, we adopted the following 

methodology: at first we search in the current application for the 

presence of the searched feature, identifying the class which contains 

it. That will represent our extraction seed, from which the whole 

extraction procedure starts, identifying also the method of that class 

that contains the searched feature. From that point, we will add all 

the set of dependencies recursively, guaranteeing the correct 

operation of the extracted class, with the same methodology adopted 

for Activities features type, using the modified PDG. 

After this first phase, we scan the Call Graph of the whole 

application, searching for an invocation to the method containing the 

searched feature recursively. In order to not introduce too much 

overhead during the whole process we have decided to set a custom 

threshold which indicates the maximum level of recusivity of the 

greedy search algorithm, otherwise it could have brought to a 

timeless execution. If everything works fine, the module has been 

able to identify the method and the class that in the benign 

application are used to invoke the feature we are searching for and 

we are then able to replicate the same mechanism into the malware. 

After that we try to extract the method invocation in a pretty similar 

way to the Activity features: we use the CFG to identify the necessary 

basic blocks for build an independent slice of code containing the 

needed invocation. During the whole process all the dependencies 

are recursively found and added to the final output, in order to 

guarantee an independent set of entities. If the slice extraction ends 

successfully, the whole process is terminated, returning a positive 

result, and the module execution ends. Otherwise, it retries on other 

eligible classes if during the identification process more than a class 

has been matched, otherwise just return an error and exit. 

 

During both processes the module creates some basic metadata files which 

are necessary for the correct execution of the Injector module. 
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3.2.3 Injector 

he Injector module handles all the injection part, importing all the 

needed entities to inject and injecting those into the target T 

Figure 3.6 
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malware. As the Extractor module this is also fully implemented on top of 

FlowDroid [16], granting a huge instrumentation flexibility. The whole 

operation process is represented in Figure 3.6, showing the various entities 

and operation that are part of the whole module. 

Due to being robust to a larger case set, we decided to implement the 

injection using the opaque predicates, specifically implementing the 3SAT 

type of them. Generally speaking, an opaque predicate is a predicate—an 

expression that evaluates to either "true" or "false"—for which the outcome 

is known by the programmer a priori, but which, for a variety of reasons, 

still needs to be evaluated at run time. Opaque predicates have been used 

as watermarks, as it will be identifiable in a program's executable. 

For this reason, we use the opaque predicates to protect our injection 

operation against static dead code elimination techniques. Indeed, our 

main goal is not to change the semantic equivalence of the malware and in 

order to obtain it we need to be sure that the code we are going to inject 

won’t be executed in any case. And here is where the opaque predicates 

play their role: using this kind of construct is possible to obfuscate the CFG 

of that instruction statically speaking, forcing an hypothetic analyser to 

dynamically analyse the application to figure out if that specific branch is 

going to be executed or not.  

Since we do not need any complex obfuscation, we adopted the 3SAT 

construction strategy deeply explained in this paper [18]. In a nutshell, the 

idea of the following opaque constant is that we encode the instance of an 

NP-hard problem into a code sequence that calculates our desired 

constant. That is, we create an opaque constant such that the generation of 

an algorithm to precisely determine the result of the code sequence would 

be equivalent to finding an algorithm to solve an NP-hard problem. For 

our primitive, we have chosen the 3-satisfiability problem, explained as 

here [19] as a problem that is known to be hard to solve. The 3SAT 

problem is a decision problem where a formula in Boolean logic is given 

in the following form: 

 

∧𝑖=1
𝑛

(Vi1 ∨ Vi2 ∨ Vi3) 

https://en.wikipedia.org/wiki/Predicate_(mathematical_logic)
https://en.wikipedia.org/wiki/Run_time_(program_lifecycle_phase)
https://en.wikipedia.org/wiki/Watermark
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where Vij ∈ {v1, ..., vm} and v1, ..., vm are Boolean variables whose value can 

be either true or false. The task is now to determine if there exists an 

assignment for the variables vk such that the given formula is satisfied (i.e., 

the formula evaluates to true). This problem in NP-Hard to solve, 

guaranteeing overhead for a generic static solver. Moreover, we though that 

having an invocation for the feature searched is fundamental for bypassing 

by construction dead code elimination features. 

We have also implemented the functionality that adapts extracted code 

sliced to different features, in order to use features from which was not 

possible to find an eligible slice. For this reason, we created then a slice 

database folder in which are contained all the benign invocation that could 

be reused for future iterations. This situation could occur for example in 

the case in which the feature to inject is a Main Activity and for this reason 

there is no explicit invocation inside the Android application, because it is 

automatically launched by the intent filters in the manifest. We made the 

module also robust to this kind of situation, loading some external 

invocation slices and modifying the referenced class, by instrumenting it 

with Soot. 

Getting back to the general module operation, the first thing this module 

does is to collect all the necessary entities to inject into the malware, 

analysing them and, if necessary, adding the Android components to the 

AndroidManifest of the target malware. This step is crucial to correctly 

misclassify the malware, because the Manifest file is the biggest source of 

metadata of any Android application and it is the first file analysed to 

understand the current application structure. The whole injection must be 

clean and the final Manifest must not include any duplicate or malformed 

tag, in order to not seem instrumented. It is able to inject all the Android 

components and their relative tags, which we want to import as well due to 

a matter of correctness. 

Then the module proceeds identifying the needed invocation slice to inject, 

searching if it is possible to extract it directly from the original goodware. In 

case it is not possible, as already mentioned, it randomly choose one of the 

available ‘mined slices’ in order to shape it and adapt it to the current 

invocation we need. 
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The last and crucial step is selecting in which malware class inject the 

invocations of the various features. In order not to introduce any 

instrumentation evidence, we decided to adopt the Cyclomatic Complexity 

(CC) score as meter in order to select a set of eligible classes. The CC of a 

section of source code is the number of linearly independent paths within 

it. For instance, if the source code contains no control flow 

statements (conditionals or decision points), the complexity would be 1, 

since there would be only a single path through the code. If the code has 

one single-condition IF statement, there would be two paths through the 

code: one where the IF statement evaluates to TRUE and another one where 

it evaluates to FALSE, so the complexity would be 2. Two nested single-

condition IFs, or one IF with two conditions, would produce a complexity 

of 3. 

Mathematically, the CC of a structured program is defined with reference 

to the CFG of the program, a directed graph containing the basic blocks of 

the program, with an edge between two basic blocks if control may pass 

from the first to the second. For a single program (or subroutine or 

method), P is always equal to 1. So, a simpler formula for a single 

subroutine is: 

 

M = E – N + 2 

 

where: 

 E = the number of edges of the graph. 

 N = the number of nodes of the graph. 

 

An example of different ways to calculate CC is shown in Figure 3.7, and, 

as it is clear, all of them bring to the same result. We adopted the above 

formula because we have access to the CFG, so we are free to iterate 

between Nodes and Edges. 

 

https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Control_flow
https://en.wikipedia.org/wiki/Control_flow
https://en.wikipedia.org/wiki/Control_flow
https://en.wikipedia.org/wiki/Structured_programming
https://en.wikipedia.org/wiki/Directed_graph
https://en.wikipedia.org/wiki/Basic_block
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Figure 3.7 

 

After having identified all the malware classes, we calculate the average CC 

of the whole malware program, and we find those classes that have a CC 

score that satisfies the following equation: 

c + δ = Α ± Δ 

where c is the CC of the injected class, ∂ is the whole slice CC, A is the CC 

average of the malware and ∆ is the current adaptation level, allowing some 

kind of flexibility. This is done in order not to create any CC score spike 

in certain classes, which could lead to a strong signal of instrumentation 

from a hypothetic analyser. 

The module then tries to inject the invocation in all the eligible classes, 

until it can successfully inject in one. We decided to randomly select the 

starting point inside the method body in which we are going to inject the 

slice, in order not to introduce any constant mechanism in our injection 
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mechanism, with the goal to make it even harder for an analyser to 

understand some kind of pattern. As already mentioned, the final injected 

slice is composed by the extracted invocation shielded into one of the 

available opaque predicates, shielding it. 

  



 

 

 

59 

3.2.4 Slices evaluation 

 

s introduced before, during the experiments we noticed that each 

feature extraction inevitably drags with itself some other side-effect 

features because of all the dependencies identified and extracted. 

For this reason, we need to evaluate them, in order to weight their 

contribution to the whole gadget score. The whole process is described in 

Figure 3.8. 

 

A 

Figure 3.8 
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This demonstrates that injecting a feature at problem space level is not 

trivial as it seems because it is necessary to consider also all the set of 

external entities from which a specific feature depends on. Indeed, a single 

entity could rely on a huge number of external resources, building a large 

dependency chain and adding a large set of side effect classes. From the 

final score point of view there are two possible scenarios: the external 

dependencies strengthen the whole benign score or it reduces it. 

For this reason we created a separated module which is a modified version 

of the Injector one that simply focuses on injecting a particular gadget set 

into an ad-hoc Android application, without using any mined slice.  

For this set of operations, we created a specific basic Android application 

that we used as template. This template application consist into an empty 

Android app that  does not contains any particular component, just 

including the basic elements for make an application suitable for 

instrumentation.  

Indeed, it has no role except that verifying the nature of the gadgets we are 

going to work with.  The first important thing is verifying that no particular 

feature is removed during the injection, which could compromise the initial 

malware workflow and operation. 

After this, we verify which are the added features and which is the final 

gadget score. During this operation we also check if the permissions 

required by the gadget are already included in the malware. Indeed, we 

have decided to put a custom threshold T in order to avoid the injection 

of an excessive number of permissions. Even if we need to extend the 

feature injection also to them due to attack secrecy, application permissions 

are one of the core points of Android malware analysis, so we need to be 

discrete. For this we decided to hold goodware gadgets only if we are not 

forced to add more than T further permissions, letting that malware part 

slightly modified. 

This phase is crucial in order to understand the effective and real impact 

that a single feature has on the target malware, considering the whole gadget 

set. 
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4 PRISM realization 

 

n this section we will present the technical details and the choices 

made for implementing PRISM. Indeed, after having provided the 

general idea of the behaviour of each component during the previous 

section, in this one we will discuss the implementation strategies 

adopted and the reasoning behind them, due to the problem faced. 

In this section we will explain the transition between the theoretical attacks 

explained in Section 3 to their concrete implementation, using also a 

Minimum Working Example (MWE) in order to show clearly how each 

single module operates. We will use a complete example, composed by a 

single malware and a set of features needed to being injected in order to 

misclassify it. 

We will cover in details all the modules of the framework, starting with the 

classifier used, in particular focusing on the dataset adopted and the scores 

obtained. Then we will present in details the Extractor java module, starting 

from the implementation overview, followed by an example both for 

Activity and URL-like feature. As following then the Injector module and 

how the whole injection is computed, with particular focus on how we 

achieve the safeguard of the semantic equivalence of the instrumented 

malware. The whole explanations will be integrated with parts of the final 

orchestrator script, in order to give to every module the right context in the 

whole execution flow. 

Moreover, due to the will to test its robustness in large scale scenario we 

tested the current framework on a large dataset of Android applications, 

thanks to the resources of S2LAB. Due to this, the whole framework has 

been built with the purpose of correctly handle also multiprocessing 

scenarios, avoiding anomalies. An example of this prevention measure is 

that the framework creates for each malware run a temporary environment, 

avoiding in this way to have shared resources.  

I 
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4.1 Classification and Dataset 

he classifier used is a Linear SVM and in order to train and test 

it we have used the Python language. In particular we have 

adopted the Scikit-lean library set, which is a simple and efficient 

set of tools for machine learning and data analysis [20].  

The whole classifier has been trained on the same dataset used for 

Tesseract [21], which is composed by a temporal slice extracted from the 

AndroZoo [22] dataset. Indeed, this dataset contains more than 5.8 million 

application between 2010 and 2018, including a timestamp and, until the 

apps of 2016, also a VirusTotal metadata results. The dataset is constantly 

updated by crawling from different markets (e.g., more than 4 million apps 

from Google Play Store, and the remaining from markets such as Anzhi 

and AppChina). In order to select malware and goodware from this dataset 

we rely on the VirusTotal metadata entry, considering a specific application 

a malware if there are at least 4 entries into the relative metadata section, 

indicating the number of anti-virus report that classify that app as malicious. 

The number 4 has been adopted due to past researches by Miller [23]. The 

opposite is valid for the goodware: we classify as benign all the apps with 

less than 4 positive anti-virus reports. 

We choose to use a slice of the available dataset, precisely only the three 

years between the 2014 and the 2016. Getting more into the details, we 

subdivided this temporal slice dataset in a way that the applications between 

2014 and 2015 compose the training dataset, while the ones belonging to 

2016 year represent the test dataset. This way we could also observe also 

the time decay effect on the whole attack. Training the classifier with these 

settings we are able to obtain the following scores: 

F1 score 0.91749 

Precision 0.90756 

Recall 0.92764 

Fig 4.1 

Precision is the fraction of relevant instances among the retrieved instances, 

while recall is the fraction of relevant instances that have been retrieved 
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over the total amount of relevant instances. On the other hand, the F1 score 

indicates the accuracy of a specific test, considering both precision and 

recall and can be expressed as following: 

2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

The classifier is then able to recognize if a specific Android application is 

a malware or not depending on the features contained in it. Indeed, the 

whole dataset can be represented as a huge matrix containing as rows the 

whole set of considered features and as columns the application analysed, 

as in Figure 4,2 

 

 App i+1 App i+2 App i+3 App i+5 App +6i App n 

Feat i 0 1 1 0 1 1 

Feat i+1 1 1 0 0 1 0 

Feat i+2 

... 

0 1 1 1 0 0 

Feat n 1 1 1 0 1 0 

Figure 4.2 

 

In order to correctly classify a malware with the classifier, we need the 

feature extractor module in order to extract the features contained in a 

single application. The final output, which is a JSON file, can be then 

loaded in memory and formatted to create a similar vector to the one 

showed in Figure 4.2. This way we can represent an arbitrary application 

by its own feature vector, which is understandable for the classifier, which 

will output the supposed classification category. 

If the classification is then successful and the application is identified as a 

malware we will start the feature layer attack introduced in Section 3.1. 

Specifically, the attack can be explained with the following algorithm: 
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{w1
’, wi

’, … , wn
’ } = sort({w1, wi, … , wn }) 

For wj in {wi
’, wi+1

’, … , wk
’ }: 

 If wj < 0: 

  M.add(wj) 

    If | ∑ 𝑤𝑘
𝑙
𝑘 | > β: 

  Stop 

 

Algorithm 1 

where {w1, wi, … , wn } are the weights of the features of the classifier, sort() 

is a function that sorts by absolute value the given input vector, and then 

we add to a malware M all the benign features (weight less than 0) of the 

considered feature vector. | ∑ 𝑤𝑘
𝑙
𝑘 |  represents the sum in absolute value 

of the weights considered until now, while β is the minimum perturbation 

needed for the misclassification. This way we are adding to the initial 

malware the minimum feature set that generates enough perturbation for 

crossing the hyperplane boundary. An example is shown in Figure 4.3, in 

which se red square become a green one, crossing the boundary.  We 

transfer the injected malware from the malicious hyperplane to the benign 

one, operating the misclassification. When the boundary has been crossed, 

the attack is considered successful and ends, returning a set containing the 

features added, which represents the minimum set to inject in order to 

misclassify M. 

After this step, the whole pipeline will continue searching for the best 

candidate apps for each feature contained in the extracted vector, trying to 

extract the necessaries entities from the selected goodware. In case that 

there are multiple donors, the framework tries to extract the best option 

between them. This whole phase can be looped in case during the 

evaluation phase the benign score of the organs is reduced, do the other 

side-effect features. 
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4.1.1 PoC 

We will now introduce a malware application as example during the whole 

current Section. We will indicate this malicious application as MT. So, 

taking the example of MT it has been successfully identified as malware 

from the classifier C, which gave as output the malware class as prediction 

with a correspondent total weight of 2.69, which correspond to𝛽. This 

means that the minimum perturbation needed for misclassify MT is β.  

After this step, we launch the described attack on MT, which identifies two 

features to add in order to evade C, more being precise two activities, 

cxim.qngg.Tehr.sFiQa and .guessidiom. At feature space level, injecting 

those two features is enough in order to evade the target classifier, so the 

framework use both of them as seed in order to extract the whole 

dependency set from the goodware containing them. The whole gadget has 

then to be evaluated in order to weight also the contribution of the side-

effect features. 

  

Figure 4.3 
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4.2 Extraction  

fter having identified the set of goodware that we need for the 

attack, the next phase is extracting the needed features from 

them. As already underlined previously, the core operation is the 

extraction of the full dependency chain of the interested code part, 

including static fields, superclasses, methods, variables, etc. 

In order to avoid any kind of conflict directly at design level, every single 

process, starting from this phase, creates a temporary environment in which 

it operates, preventing any type of file-sharing issue. Indeed, we create a 

temporary folder and copy all the needed files for the current run, making 

a dedicated file for each single malware we operate on, even if it means a 

higher consumption of resources. 

The whole extraction phase consists in calling the Extractor module, 

already presented at high level at Section 3.2.2. After the necessary 

arguments are computed by the whole orchestration script, this module 

handles the entire extraction of the needed entities, including the 

invocation code slice. Moreover, it is also robust to the lack of an 

invocation section for the Activity features, thanks to the ‘mined slice’ 

functionality of PRISM. This allows to increase the eligibility of the tool in 

different kind of scenario. 

The main extraction strategy is the following, despite the difference 

between the URL-like and Activity: using a PDG, introduced in Section 2.2, 

we are able to gather all the needed dependencies, which is a functionality 

provided by Soot. Because its PDG implementation had some limits, we 

integrated the functionalities provided. Our implementation of PDG is 

indeed able to inspect interface dependencies, superclasses, static fields 

and other classes called, retrieved by inspecting the value of the variables 

passed. This way in the final malware is possible to guarantee that there are 

no dead references to other ghost components. If the feature is an Activity, 

the whole dependency extraction can be summarized in this way. Due to 

the inclusion inside an Android device of the Android library classes, this 

analysis automatically excludes from the scope all the native libraries, such 

as Android ones or Java. 
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On the other hand, if the feature is a URL-like features, like an API call or 

a general URL, the whole process is different, as explained in Section 3.2.2. 

Indeed, as first we need to identify which is the class containing the feature 

searched and which kind of entity it is. In order to achieve this, we use a 

parser that inspect the whole body of all the classes in the current Scene 

searching for that specific String. Once it identifies the class containing the 

it, the same process using the PDG explain previously is invoked, extracting 

the whole chain of needed java entities. 

While for an Activity feature the next step would have been the exclusion of 

all the entities not needed from the Scene to export, for a URL-like feature 

there are still few more steps. Indeed, after having identified the class 

containing the URL feature, we need to figure out in which method M it is 

currently used, in order to extract that invocation. In order to do this, we 

use again a parser, which scans all the class static fields and methods 

searching for the target feature. For the matter of robustness, we decide to 

extract all the possible methods and iterate between them until we can find 

the right seed. 

Indeed a method represent the initial node from which start the backward 

search into the Call Graph of the current goodware. As a matter of fact, the 

module tries to find the method M’ calling our target method M, in order 

to identify a subset of eligible entities for extract the code slice containing 

the invocation of M. The whole research needs to be recursive because it 

could happen that some operations are called from the class itself or during 

the creation phase (constructor), so we want to understand which entity 

triggers the whole set of operations. 

Moreover some features could be declared as static fields, so the whole 

module needs to be robust even for that kind of declaration. In that case 

the smali bytecote representation provides the code with a <clinit> method, 

which is a static constructor in case the class has some static fields and it is 

called every time that there is a class initialization. So basically, it is invoked 

during every method invocation that uses any of the declared static 

variables. 

After these phases, we are able to define our set of target entities to extract, 

so we proceed by excluding all the classes that do not belong to the output 

dependency set from the current Scene. From this set the only missing 
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entity that we miss in order to have a complete extraction is the invocation 

slice, which is a startActivity() method invocation for the Activity feature 

and a  general method invocation for the URL-like features.  

The whole slicing process can be seen as an execution of a backward slice 

of the target method. Indeed after we have discovered the class containing 

the searched feature, the slicer is able to identify the statement that contains 

the target invocation. It tries then to gather all the needed previous 

statements in order to create an autonomous code section that can be freely 

exported: a slice. In order to achieve this, we have mainly used the CFG 

representation of the method, considering also the set of data dependencies 

that they need. The CFG representation that we used is the most reliable 

block one that Soot provides in term of control flow analysis: the 

ExceptionalBlockGrap [24]. This class includes edges from throw clauses to 

their handler (catch block, referred to in Soot as Trap) and also takes into 

account exceptions that might be implicitly thrown by the VM. For every 

Unit that might throw an implicit exception, there will be an edge from each 

of that units predecessors to the respective trap handler’s first unit. 

Furthermore, should the excepting unit contain side effects an edge will 

also be added from it to the trap handler.  

Then we deeply inspect the Jimple IR of the seed block, which is the one 

containing the invocation and tries to reconstruct the chain of needed 

blocks in terms of dependencies. We focus on literally select all the needed 

statements in order to make the target autonomous and exportable, 

extracting all the variables needed, even the static ones. In the end we create 

a subset of the CFG composed by the minimum set of basic blocks that 

contains the entire set of dependencies of the method invocation. During 

this process we need to make sure not to include any kind of ghost 

reference, so after the initial export we double check the output for 

removing those.  

In case there are multiple slices available, we choose the less complex in 

term of dependencies and procedures. Indeed, we estimate the current 

complexity of a slice with the following formula : 

𝛾 +  𝛿 + 𝐶𝐶 



 

 

 

69 

in which 𝛾 is the number of complex objects contained into the slice, 𝛿 is 

the number of variables and CC is the Cyclomatic Complexity of the slice 

considered.  

The extracted slice is then stored into an ad-hoc Java object, which defines 

some basic utilities for operate on the slice. Indeed, in order to export the 

slice as a Jimple file, which is the format in which we store the gadgets, we 

need to create a temporary class due to Soot conformity. In this class we 

store all the statements composing the slice, which is stored as body of the 

only method of the class. It will be then loaded back from the Injector 

module in the next phase, which is going to be discussed in Section 4.4.  

In case of success, the extracted slice is moved into the folder containing 

the mined slices, which are used in case it is not possible to extract any slice 

from certain goodware. Indeed, in the case these pre-made slices are used, 

the Injector tries to modify the needed statements to adapt the slice for the 

current feature. This is going to be deeply explained in Section 4.4.  

 

4.2.1 PoC 

Getting back to our example MT , both of the features selected are Activity 

and the Extractor module will be called twice. Due to the fact that both of 

them are the same component, We will just take as example the iteration  

Dependency
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Dependency
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of the feature cxim.qngg.Tehr.sFiQa. For example, considering the 

method onCreate() of the target class we can extract the dependencies 

shown in Fig 4.3. As we can notice in this little piece of code we can identify 

four dependencies, two from the declared variables $r2, $r4 and two more 

from the string declaration of $r5. The whole identification process 

proceeds along all the others methods of the class. In the end we will obtain 

a set D = { d0, di, di+1, … , dn } , which includes all the dependencies extracted 

recursively. Then   ∀ 𝑑𝑖 ∉ 𝐷  is going to be removed from the current Soot 

Scene, which represents the whole gadget.  

The last step is the slice identification. Unfortunately both these goodware 

have no slice available, so we will report the example of another feature 

from another example goodware, com.revmob.FullscreenActivity. After having 

inspected all the classes for an invocation and having identified the class 

from which extract the slice, which in this case is com.revmob.internal.e, the 

Extractor tries to define the statements belonging to the slice and the relative 

dependencies: 

final class com.revmob.internal.e extends java.lang.Object implements java.lang.Runnable 

{ 

    private java.lang.String a; 

    private com.revmob.internal.d b; 

    public final void run() { 

        com.revmob.internal.e $r0; 

        android.content.Intent $r1; 

        com.revmob.internal.d $r2; 

        android.app.Activity $r3; 

        java.lang.String $r4; 

        $r0 := @this: com.revmob.internal.e; 

        $r1 = new android.content.Intent; 

        $r2 = $r0.<com.revmob.internal.e: com.revmob.internal.d b>; 

        $r3 = staticinvoke <com.revmob.internal.d: android.app.Activity a(com.revmob.internal.d)>($r2); 

        specialinvoke $r1.<android.content.Intent: void <init>(android.content.Context,java.lang.Class)>($r3, class "Lcom/revmob/FullscreenActivity;"); 

        $r4 = $r0.<com.revmob.internal.e: java.lang.String a>; 

        virtualinvoke $r1.<android.content.Intent: android.content.Intent putExtra(java.lang.String,java.lang.String)>("marketURL", $r4); 

        $r2 = $r0.<com.revmob.internal.e: com.revmob.internal.d b>; 

        $r3 = staticinvoke <com.revmob.internal.d: android.app.Activity a(com.revmob.internal.d)>($r2); 

        virtualinvoke $r3.<android.app.Activity: void startActivityForResult(android.content.Intent,int)>($r1, 0); 

        return; 

    } 

} 

 

Figure 4.5 
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By looking the CFG of the method run(), which contains exactly what we 

are searching,  it is possible to observe that it is composed by one single 

basic block containing the whole body. This is the luckiest scenario, in 

which in the same basic block we find both the feature declaration and also 

the startActivity() invocation. After having identified the needed 

statements of the slice, this module analyses each statement searching for 

unresolved dependencies and adding the needed variables to the final slice. 

Automatically the module adds all this set of dependencies to the final 

output, classifying those as ‘slice dependencies’. This information is going 

to be used during the slice gathering, in which we collect single slices for 

the ‘mining’ feature. 
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4.3 Slice evaluation 

fter the extraction of the gadgets we need to evaluate them, in 

order to weight the whole set of dependencies. The problem is 

already deep introduced in Section 3.2.5 and here we are looking 

at it in details. 

Because this problem could lead to very different scenarios, due to the fact 

that it is possible to discover features with a real small dependency chain 

or with an enormous one, we need to make our solution is general enough 

to adapt to every situation. In a nutshell, our strategy consists in creating a 

mock basic app T in which inject the target gadget g i and extract the feature 

by the feature extractor. More formally: 

𝑓𝑜𝑟 𝑔𝑖 𝑖𝑛  { 𝐺 }: 

          𝐸(𝐼(𝑔𝑖)) 

Where {G} is the whole set of gadgets to evaluate, I is the injection function 

that inject the input gadget in T and E is the evaluation function, which 

extract the new gadgets from the injected T. During the evaluation we 

double check that the injection adds only features, without removing any 

of them. This is crucial due to the Sematic Equivalence that we want to 

preserve, as explained in Section 3.1. The implementation of I is a 

simplified version of the Injector module, which does not include the 

mining slice feature, because in this phase we want to evaluate the pure 

gadget, without adding any extra component to it. 

The template application T is the most basic application, containing only a 

MainActivity to allow the correct launch of the app, without any extra 

features. This way we use this set of features as base to subtract from the 

final feature set detected  from the instrumented T and the difference 

represents the whole set of the features of the gadget. 

During the Evaluation phase, we check which kind of features are added 

for two main reasons: 

 Firstly, we do not want to insert too many permissions into the 

manifest. Indeed, for each attack, we set a maximum threshold of 

the total amount of permissions that can be added to the 
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instrumented malware. Moreover, we do not want to add any extra 

dangerous permission in order to not increase the risk of 

identification [25]. 

 Secondly, we do not want to count any feature that is already 

included in the initial malware. For this reason, we extract all the 

initial features from the starting malware and store them in memory, 

ready for the match. 

Last, our algorithm automatically excludes gadgets with a superficial 

contribute, in order to limit the total number of injected features.  

 

4.3.1 PoC 

Once we extract the two needed features from the previous phase, we need 

to evaluate them. Because cxim.qngg.Tehr.sFiQa gadget is really little, I will 

explain in detail .guessidiom.  

This single feature implies the following set of features: 

  "api_permissions::android_permission_INTERNET": 1, 

  "interesting_calls::getCellLocation": 1, 

  "activities::org_cocos2dx_lib_Cocos2dxActivity": 1, 

  "api_permissions::android_permission_READ_LOGS": 1, 

  "interesting_calls::getSystemService": 1, 

  "interesting_calls::Read/Write External Storage": 1, 

  "api_calls::java/net/HttpURLConnection": 1, 

  "api_permissions::android_permission_ACCESS_WIFI_STATE": 1, 

  "activities::template_template_TemplateMainActivity": 1, 

  "interesting_calls::printStackTrace": 1, 

  "api_calls::android/net/wifi/WifiManager;->getConnectionInfo": 1, 

  "interesting_calls::Cipher(r0)": 1, 

  "activities::_TemplateMainActivity": 1, 

  "interesting_calls::Cipher(DES)": 1, 

  "api_permissions::android_permission_READ_PHONE_STATE": 1, 

  "api_permissions::android_permission_ACCESS_FINE_LOCATION": 1, 

  "api_calls::android/telephony/TelephonyManager;->getDeviceId": 1, 
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  "api_calls::android/telephony/TelephonyManager;->getCellLocation": 1, 

  "interesting_calls::getDeviceId": 1, 

  "api_calls::android/content/Context;->startActivity": 1, 

  "activities::_guessidiom": 1, 

  "api_calls::java/lang/Runtime;->exec": 1 

 

Figure 4.6 

 

As we can notice, from a single feature we have extracted a complex set of 

other extra n features. So we search for the weight w i  of the feature f i into 

the classifier weight set and we calculate S = ∑ 𝑤𝑖
𝑛
𝑖  . Then, if S > T, where 

T is the minimum contribute, we add the whole gadget to the final malware. 
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4.4 Injection 

fter having collected the whole set of entities needed for the 

misclassification and evaluated them, the next step is to inject all 

of them into the target malware. As already introduced, this 

whole phase is handled by the Injector module, previously 

discussed in Section 3.2.3. 

The first operation done by this module is loading into the current Scene 

all the classes needed for the injection. This includes also the opaque 

predicates, already deeply explained in Section 3.2.3, and all the mined 

slices, which could be used during the application. In order to make it 

work, all the dependencies are loaded as ad-hoc Jimple classes, that the 

module knows how to handle for extract only the needed code parts (more 

in the Example part of this section). Secondly the module inspects all the 

current gadgets in order to understand where to use the ‘mined slices’. 

Indeed, it probes all the classes contained into a gadget searching for the 

Slice class and if it does not find it, it just marks the current gadget as 

‘sliceless’. This is going to be used to decide which injection strategy use.   

Then, for each gadget it also checks which are the Android components 

and Permission to add to the final Manifest. In order to achieve it, the 

module is provided by a recursive function that checks if the ancestor of 

the current class hierarchy matches with one of the Android components, 

as Activity, Broadcast Receivers, Service or ContentProvider. If one of 

these components is detected the module provides to add the relative tag 

to the manifest. In order not to dramatically warp the behaviour of the 

application, we have decided not to add any extra intent-filter tag to the 

malware manifest because it would be sensible to implicit intents. 

For example, in case the module discovers a Broadcast Receiver if we inject 

the relative intent-filters, for example reading a file, our instrumented 

application will answer to any ‘read file’ intent that passes through the 

Android system. This could bring to an unwanted behaviour, in particular 

in case the instrumented malware has absolutely no relation with the intent 

caught. E.g. the instrumented malware is a mobile game and the intent-

filter injected is a READ_FILE one. Moreover, we have chosen not to import 
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multiple MAIN_ACTIVITY intent filters, in order to not deeply compromise 

the application flow, compromising the first launched activity 

In the case of some extra permissions are needed, the module proceeds by 

adding them to the final malware. As already mentioned, during each 

injection, the number of permissions added is limited and it cannot exceed 

a custom threshold, due to the importance of this kind of feature.  

Then, the module needs to identify the malware classes and which of them 

are eligible for the injection process. The identification of the malware 

classes is done by exclusion: indeed, it is known a-priori the whole set of 

classes composing all the gadgets and the default android libraries. From 

this knowledge base it is possible to automatically identify the classes that 

belong to the original malware class-set. Subsequently it calculates the 

average Cyclomatic Complexity of the whole malware set, which is going to 

be used as our classification meter as already explained in Section 3.2.3. In 

this way we obtain a set of eligible classes { C } = { c 0 , ci , ci+1 , … , cn  }.   

After this phase the module focuses on the injection of the feature 

invocation. Here two different scenarios are possible: in the first one the 

selected gadget contains the slice, while in the second one it does not and 

the module need to use a mined slice. This feature is applicable only to 

Activity features, due to the slice structure. The slices are represented using 

the same Java Object adopted in the Extractor.  

In the first case scenario, the Injector extracts the actual slice from the Jimple 

class, crafted by the Extractor. Then it will try to inject the slice into the 

selected class c i ∈ C. For each method contained into c i , the module tries 

to implant the slice starting from a random statement. This randomness 

has been introduced in order not to introduce any logical artefact in term 

of instrumentation, so for a hypothetical analyser it would be harder to 

identify an instrumentation because it operates randomly. The slice is then 

shielded into one of the available OP i , which is also chosen randomly for 

the same reason. After that the whole slice has been successfully build, it is 

then injected into the chosen method of c i .  

On the other hand, in the second case scenario, there is no slice available 

for the feature invocation and the only possibility is to use a mined slice. A 

mined slice is a slice extracted from a different goodware which can be 

adapted for the invocation of a different feature. This is done by identifying 
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which is the variable containing the invocation target and by changing the 

reference class, as showed in the Example part of this Section. These slices 

contain only the necessary dependencies needed from the current 

invocation and need to be added to the final Scene of the instrumented 

malware as well, otherwise the invocation will fail and it would create dead 

references into the final code. Once a random mined slice is chosen 

between the whole set, the injection process is the same as before. 

In the end, we double check that all the necessary classes are contained 

into the final Soot Scene and extract them as Android application. The 

instrumented malware is going to include new components into the 

manifest, new classes and some modified ones, in which it has injected the 

feature invocation.  

 

4.4.1 PoC 

Getting back our example MT , once we have extracted the two features , 

cxim.qngg.Tehr.sFiQa and .guessidiom, and evaluated them, they will feed 

the Injector.  

After it loads into the current Scene all the necessary entities, it inspects the 

current entities to inject, searching for Android Components to inject into 

the final AndroidManifest.xml. Taking the example of 

cxim.qngg.Tehr.sFiQa , the whole dependency set is composed by other 5 

classes : 

 cxim.qngg.TEhr.c, which is a simple Java Class 

 cxim.qngg.TEhr.d, which is a simple Java Class 

 cxim.qngg.sFiQs, which is a Service  

 cxim.qngg.sFiQr, which is a Boradcast Receiver 

 cxim.qngg.sFiQa, which is an Activity 

 

When the Injector understands that they are Android Components, it 

create the ad-hoc xml tag to add to the final Manifest. 
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Figure 4.7  shows the final manifest file of M’T, which is the instrumented 

version of MT . As we can notice all the needed features has been added 

correctly.  This way they will be recognized from the Drebin Extractor and 

considered in the final evaluation. 

In order to simplify the entire operation we have stored all these 

information into a Set iterable by CC value, like : CC i  { c0 , ci , … , cn }. We 

obtain a set {C} containing all the eligible malware classes, depending on 

the current average value that we want to obtain. The module starts then 

iterating between all the classes belonging to {C} trying to inject the selected 

slice. 

In our case the feature does not have any slice. So, we need to use a mined 

slice. The module selects randomly one between the available slice, we are 

supposing that during this iteration the slice S. This is composed by: 

0. this := @this: Slice00ADBDEE7ED68BB4C243F30EA0BABD56C034574303783924DC9654F2916A43E8;  

1. $r0 = virtualinvoke this.<android.content.Context: android.content.Context getApplicationContext()>();  

2. $r2 = new android.content.Intent; 

3. $r3 = staticinvoke <com.yteu.hfdh.c.h: java.lang.Class a(android.content.Context,java.lang.Class)>($r0, class 

"Lcom/yteu/hfdh/Bona;"); 

 4. specialinvoke $r2.<android.content.Intent: void <init>(android.content.Context,java.lang.Class)>($r0, $r3);  

5. $i3 = staticinvoke <com.yteu.hfdh.c.h: int p(android.content.Context)>($r0);  

6. virtualinvoke $r2.<android.content.Intent: android.content.Intent putExtra(java.lang.String,int)>("l", $i3);  

7. virtualinvoke $r2.<android.content.Intent: android.content.Intent addFlags (int)>(268435456); 

8. virtualinvoke $r0.<android.content.Context: void startActivity(android.content.Intent)>($r2);  

Figure 4.7 
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9. staticinvoke <com.yteu.hfdh.c.h: void x(android.content.Context)>($r0);  

10. return; 

Figure 4.8 

The Figure 4.8 shows the Jimple representation of S, which is a mined slice 

gathered from the extraction of the feature com.yteu.hdh.Bona. All the 

dependencies are circled, in black the ones that are already included in the 

standard libraries and will not be extracted, while in red the only 

dependency which is going to be considered. The next step is to adapt this 

mined slice, which in this case consists in a single modification. Indeed we 

need to modify only the line 3, replacing the string "Lcom/yteu/hfdh/Bona;" 

in "Lcxim/qngg/sFiQa;", which is possible through Soot. 

The last step is the injection of the adapted slice into a selected class ci. As 

already mentioned the entire slice will be injected inside an opaque 

predicate, which will shield it from static analysis tool. In Fig 4.9 is indeed 

shown the final injected code, divided in three main regions: the blue 

section identifies the code already present into the method, the black 

section represents the Opaque predicate part, while the red one is the Slice. 
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.method public handleMessage(Landroid/os/Message;)V 

    .locals 24 

    .param p1, "msg"    # Landroid/os/Message; 

 

    .line 295 

    move-object/from16 v0, p0 

 

    .line 295 

    move-object/from16 v1, p1 

 

    .line 295 

    invoke-super {v0, v1}, Landroid/os/Handler;->handleMessage(Landroid/os/Message;)V 

 

    .line 296 

    move-object/from16 v0, p1 

 

    .line 296 

    .local v3, "$i0":I, "" 

    iget v3, v0, Landroid/os/Message;->what:I 

 

    .line 296 

    sparse-switch v3, :sswitch_data_0 

 

    .line 296 

    goto :goto_0 

 

    .line 296 

    :goto_0 

    return-void 

 

    .line 298 

    :sswitch_0 

    move-object/from16 v0, p0 

 

    .line 298 

    .local v4, "$r2":Ljava/lang/String;, "" 

    iget-object v4, v0, Lcn/domob/android/a/a/d$c;->b:Ljava/lang/String; 

 

    .line 298 

    const/4 v5, 0x0 

 

    .line 298 

    move-object/from16 v0, p0 

 

    .line 298 

    invoke-direct {v0, v4, v5}, Lcn/domob/android/a/a/d$c;->a(Ljava/lang/String;Z)V 

 

    .line 299 

    invoke-static {}, Lcn/domob/android/a/a/d;->b()Lcn/domob/android/m/i; 

 

    move-result-object v6 

 

    .line 299 

    .local v6, "$r3":Lcn/domob/android/m/i;, "" 

    const-string v7, "upload picture failed" 

 

    .line 299 

    invoke-virtual {v6, v7}, Lcn/domob/android/m/i;->b(Ljava/lang/String;)V 

 

    new-instance v8, Ljava/util/Random; 

 

    .local v8, "$r2":Ljava/util/Random;, "" 

    invoke-direct {v8}, Ljava/util/Random;-><init>()V 

 

    const/16 v5, 0x32 

 

    invoke-virtual {v8, v5}, Ljava/util/Random;->nextInt(I)I 

 

    move-result v9 

 

    .local v9, "$i0":I, "" 

    if-gez v9, :cond_0 

 

    const/4 v10, 0x0 

 

    .local v10, "$z7":Z, "" 
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    goto :goto_1 

 

    :cond_0 

    const/4 v10, 0x1 

 

    :goto_1 

    move v11, v10 

 

    .local v11, "z0":Z, "" 

    const/16 v5, 0x14 

 

    invoke-virtual {v8, v5}, Ljava/util/Random;->nextInt(I)I 

 

    move-result v12 

 

    .local v12, "$i1":I, "" 

    if-gez v12, :cond_1 

 

    const/4 v13, 0x0 

 

    .local v13, "$z8":Z, "" 

    goto :goto_2 

 

    :cond_1 

    const/4 v13, 0x1 

 

    :goto_2 

    move v14, v13 

 

    .local v14, "z1":Z, "" 

    invoke-virtual {v8}, Ljava/util/Random;->nextBoolean()Z 

 

    move-result v15 

 

    .local v15, "z3":Z, "" 

    invoke-virtual {v8}, Ljava/util/Random;->nextBoolean()Z 

 

    move-result v16 

 

    .local v16, "z4":Z, "" 

    invoke-virtual {v8}, Ljava/util/Random;->nextBoolean()Z 

 

    move-result v17 

 

    .local v17, "z5":Z, "" 

    invoke-virtual {v8}, Ljava/util/Random;->nextBoolean()Z 

 

    move-result v18 

 

    .local v18, "z6":Z, "" 

    if-nez v15, :cond_2 

 

    if-nez v16, :cond_2 

 

    if-nez v17, :cond_a 

 

    :cond_2 

    if-eqz v16, :cond_3 

 

    if-nez v15, :cond_3 

 

    if-eqz v17, :cond_a 

 

    :cond_3 

    if-nez v17, :cond_4 

 

    if-nez v14, :cond_4 

 

    if-nez v15, :cond_a 

 

    :cond_4 

    if-eqz v16, :cond_5 

 

    if-nez v18, :cond_a 

 

    :cond_5 
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    if-nez v17, :cond_6 

 

    if-eqz v16, :cond_6 

 

    if-nez v18, :cond_a 

 

    :cond_6 

    if-eqz v16, :cond_7 

 

    if-nez v17, :cond_a 

 

    :cond_7 

    if-nez v11, :cond_8 

 

    if-nez v14, :cond_8 

 

    goto :goto_3 

 

    :cond_8 

    if-nez v11, :cond_9 

 

    if-nez v14, :cond_9 

 

    goto :goto_3 

 

    :cond_9 

    new-instance v19, Landroid/content/Intent; 

 

    .local v19, "$r2":Landroid/content/Intent;, "" 

    const-class v22, Lcxim/qngg/TEhr/sFiQa; 

 

    move-object/from16 v0, v21 

 

    move-object/from16 v1, v22 

 

    invoke-static {v0, v1}, Lcom/yteu/hfdh/c/h;->a(Landroid/content/Context;Ljava/lang/Class;)Ljava/lang/Class; 

 

    move-result-object v20 

 

    .local v20, "$r3":Ljava/lang/Class;, "" 

    move-object/from16 v0, v19 

 

    move-object/from16 v1, v21 

 

    move-object/from16 v2, v20 

 

    invoke-direct {v0, v1, v2}, Landroid/content/Intent;-><init>(Landroid/content/Context;Ljava/lang/Class;)V 

 

    move-object/from16 v0, v21 

 

    invoke-static {v0}, Lcom/yteu/hfdh/c/h;->p(Landroid/content/Context;)I 

 

    move-result v23 

 

    .local v23, "$i3":I, "" 

    const-string v7, "l" 

 

    move-object/from16 v0, v19 

 

    move/from16 v1, v23 

 

    invoke-virtual {v0, v7, v1}, Landroid/content/Intent;->putExtra(Ljava/lang/String;I)Landroid/content/Intent; 

 

    const v5, 0x10000000 

 

    move-object/from16 v0, v19 

 

    invoke-virtual {v0, v5}, Landroid/content/Intent;->addFlags(I)Landroid/content/Intent; 

 

    move-object/from16 v0, v21 

 

    move-object/from16 v1, v19 

 

    invoke-virtual {v0, v1}, Landroid/content/Context;->startActivity(Landroid/content/Intent;)V 

 

    move-object/from16 v0, v21 
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    invoke-static {v0}, Lcom/yteu/hfdh/c/h;->x(Landroid/content/Context;)V 

 

    return-void 

 

    :cond_a 

    :goto_3 

    return-void 

 

    .line 299 

    return-void 

 

    .line 302 

    :sswitch_1 

    move-object/from16 v0, p0 

 

    .line 302 

    iget-object v4, v0, Lcn/domob/android/a/a/d$c;->b:Ljava/lang/String; 

 

    .line 302 

    const/4 v5, 0x1 

 

    .line 302 

    move-object/from16 v0, p0 

 

    .line 302 

    invoke-direct {v0, v4, v5}, Lcn/domob/android/a/a/d$c;->a(Ljava/lang/String;Z)V 

 

    .line 303 

    invoke-static {}, Lcn/domob/android/a/a/d;->b()Lcn/domob/android/m/i; 

 

    move-result-object v6 

 

    .line 303 

    const-string v7, "upload picture successful" 

 

Figure 4.9 

Each slice is injected in a different class in order to avoid any kind of 

conflict during the execution of the instrumented application.  

After the injection it is verified that the target feature has been correctly 

injected and that the final malware is able to correctly evade the target 

classifier. 
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5 Conclusions 

In this section we will present the results obtained with the developed 

framework. We will consider different aspects of injection success: 

indeed we can consider an implant successful if the current 

application keep works correctly, preserve its malicious behaviour 

after the injection, if it is able to correctly evade the classifier and if it 

is resistant to dead code elimination. All these aspects are 

fundamental for the final evaluation because the combination of these 

characteristic guarantees a stealth and efficient injection strategy. For 

the evaluation phase we have used different tools that we are going to 

present in the following sections. 

This phase has been performed in part on my local computer and in 

part on the cluster computer provided by S2LAB. Indeed, while the 

experiments were focused on a reduced size sample set they could be 

handled in local, while if they focus on large scale experiment it could 

not have been performed on a single computer, due to the high 

resource consumption of the whole pipeline. Indeed, due to the huge 

number of operation needed and the number of objects to save in 

memory, the whole pipeline needs high resource availability, which is 

going to be discussed in the following sections. 
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5.1 Resource consumption 

 

he whole PRISM pipeline, which includes all the steps 

described, is a heavy and expensive process.  Figures 5.1, 5.2, 

5.3 and 5.4 show the actual load on the RAM, one of the CPU 

cores, the total system load and the fork activity during a full pipeline 

operation. As it is possible to notice, it consumes a high amount of 

resources, particularly in terms of memory consumption: for a single 

run on a target malware it requires an average of 5 GB of memory. The 

whole process starts around the 17:17 and terminates at 17:23, for an 

average time of 6 minutes. The graphs have been extracted by Collectd 

[26]. 

For this reason, a lot of data that are reused iteration after iteration are 

stored into persistent folders in order to reduce the amount of 

computational resources, in particular on large scale experiments. An 

example are the current features contained into a gadget: once they are 

extracted once, they are saved into a JSON file and all the times they 

are needed they are directly loaded from there, without re-extracting 

and re-evaluating the whole gadget. This strategy works pretty fine; 

indeed, for example considering the same execution shown in the 

T 

Figure 5.1 
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Figures, with this approach takes an average of 3min, instead of the 

initial 6 minutes. 

 

 

 

 

 

 

 

Figure 5.2 

Figure 5.3 
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5.2 Working application 

n order to verify the correct behaviour of the final instrumented 

malware, we have and analysed it with Android Studio. Indeed, it is  

the official integrated development environment (IDE) 

for Google's Android operating system, built on JetBrains' IntelliJ 

IDEA software and designed specifically for Android development. It is a 

replacement for the Eclipse Android Development Tools (ADT) as the 

primary IDE for native Android application development.  

Included in Android studio we can find a huge set of tools, like for example 

ProGuard, which is a Java class file shrinker, optimizer, obfuscator, and 

preverifier. The shrinking step detects and removes unused classes, fields, 

methods and attributes. The optimization step analyses and optimizes the 

bytecode of the methods. The obfuscation step renames the remaining 

classes, fields, and methods using short meaningless names. These first 

steps make the code base smaller, more efficient, and harder to reverse-

engineer. 

Another interesting built-in-tool is Lint, which provides a similar ProGuard 

feature set as: 

I 

Figure 5.4 

https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/Android_(operating_system)
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/JetBrains
https://en.wikipedia.org/wiki/IntelliJ_IDEA
https://en.wikipedia.org/wiki/IntelliJ_IDEA
https://en.wikipedia.org/wiki/Android_software_development
https://en.wikipedia.org/wiki/Eclipse_(software)#Android_Development_Tools
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 Missing translations (and unused translations) 

 Layout performance problems (all the issues the old layout tool used 

to find, and more) 

 Unused resources  

 Unused code 

 Accessibility and internationalization problems (hardcoded strings, 

missing contentDescription, etc.) 

Moreover, it includes the whole SDK platform tools, which is needed to 

Soot in order to correctly instrument Android applications. In order to 

being robust to every Android application, we decided to include the whole 

set of Android platforms starting from Android 10 until the last one, which 

is Android 28. 

The last set of components that was essential for our tests were the 

emulators, that simulates Android devices on your computer so that you 

can test your application on a variety of devices and Android API levels 

without needing to have each physical device. The emulator provides 

almost all of the capabilities of a real Android device allowing to simulate 

incoming phone calls and text messages, specify the location of the device, 

simulate different network speeds, simulate rotation and other hardware 

sensors, access the Google Play Store, and much more.  For testing the 

instrumented malware we used emulators with the lasts Android versions, 

as API 26,27 and 28. 

Unfortunately, this kind of evaluation requires a large set of resources, 

because each instrumented application should be installed on an emulator 

and verify the current run. Moreover, it is almost impossible to automate 

the verification of the correct behaviour of the app: we would need a smart 

Android app tester that remembers how the non-instrumented malware 

work in order to compare with the instrumented one, which is not an easy 

problem and even more absolutely not cheap from the resources point of 

view. 
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For these reasons we decided not to include this feature in the whole 

pipeline, testing it only on a limited set of 15 malware. We have successfully 

verified that all these malware successfully work after the injection, 

preserving their natural behaviour, confirming that the gadgets have been 

correctly instrumented and the code is never executed. Each application 

has been deeply tested and none of them crashes in any tested actions.  

 

5.3 Evasion ratio 

e have currently tested the framework against 512 malwares 

and we have successfully verified that it works in all the 

situation tested. Unfortunately, due to Soot limits, for some 

application some exceptions are thrown, making impossible to correctly 

ending the attack. As far we have tested we have encountered two main 

errors that we have already issued on the Soot Github: the first error derives 

from Android Manifest parsing, while the second one derives from an error 

thrown from the Jimple parser, which apparently is only thrown during the 

multiprocessing, never during single-core execution. 

Fortunately, these application are a limited number, on the current 

experiment set. As shown in Figure 5.5 we have recorded 467 (91.2%) 

malware successfully instrumented, 21 (4.1%) which are not recognised as 

malware from our classifier and 24 (4.7%) which are affected by the Soot 

errors I have mentioned before. Indeed even if our model has a high score 

set, as shown in Figure 4.1 – Section 4.1, some malware are misclassified 

as goodware even before the attack takes place, which are automatically 

skipped from the framework. The whole attack on 512 malware on 40 cores 

has taken 2h 4m and has been run on the S2LAB computer cluster. We run 

a different malware attack on each core, using multiprocessing for speed the 

whole process.  

These results demonstrate that PRISM is able to correctly instrument and 

misclassify a large set of real-world application and that Linear SVM 

classifier are currently vulnerable to this kind of attack, even at problem 

space level. 
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5.4 Dead code elimination 

In order to verify the robustness of our injection to static analysis 

techniques, we tried to use static analysis tools and strategies on out final 

results. For the same reason of the high resource consumption and the 

difficulty of automate the whole process, we decided to test this robustness 

on the same sample set of Section 5.2.  

As first we have used Android Studio tools for dead code elimination, 

which uses ProGuard and Lint, using two different approaches. In the first 

approach we directly load the final Android app into Android Studio, make 

it decompile the .dex files and analyse them. The result has been always 

positive and no unused code has been detected by it. Secondly, we tried to 

extract the java code from the instrumented apk and directly run the dead 

code elimination feature on it. It has been possible by using dex2jar [27], 

which is a tool able to convert a .dex file into a .jar . This way it was possible 

to successfully extract the whole injected invocation in java code and copy 

it into Android Studio and evaluate it directly as source code. Also, in this 

Experiments

Attack successfull Not recognized as malware Error

Figure 5.5 
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case the static analysers failed to identify our invocation as dead code, 

thanks to the effectiveness of our opaque predicates. 

We have also tried to run Soot for dead code elimination. Indeed, Soot is 

also a Java Optimizer and during the transformation to its IR it 

automatically eliminates any dead code discovered. We have then 

extracted the slice from the converted jar and created a new Java class 

containing only the injected code slice, as showed in Figure 5.5. Then we 

replaced the inner code with a simple System.out.println(“DEAD”) because the 

goal is just to verify that the inner part of the loop survives the conversion. 

In the Figure 5.6 it is shown the Jimple representation of this example class 

and as we can notice the body of the inner loop is still present, confirming 

the robustness of our strategy. 

 

 

 

 

 

 

 

Figure 5.6 
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5.5 Future works 

e are now working for attacking the SecSVM classifier 

proposed in [1], which bases its robustness assumption on 

the fact that distribute the weights of a classifier between a 

larger feature set. Indeed, in this way the attacker should 

modify a higher number of features in order to bypass the classifier, and 

they suppose that if a large number of features has to be manipulated to 

evade detection, it may not even be possible to construct the corresponding 

malware sample without compromising its malicious functionality. We 

want to demonstrate that the SecSVM assumption is wrong and that the 

real perturbation threshold regards the application size, not the number of 

feature modified. 

Indeed, PRISM focuses only on the addition of extra features, exactly for 

preserve the malicious behaviour of the initial malware. The whole 

framework focuses on being able to extract and transplant autonomous 

W 

Figure 5.7 
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gadgets with all the needed dependencies without interfering with the 

malicious functionality of the initial malware or between them. This way 

the number of features to modify does not represent an constraint, except 

they imply a huge size increase. 

While this modification is going to happen soon, there are also long-term 

future works. Indeed, while currently it is resistant only against static 

analysers, we would like to extend the whole robustness also against 

dynamic malware analysis providing stealth also during the app execution, 

which represents a huge challenge. 

Moreover, we would like to create a module for the automatic generation 

of opaque predicates. For the current state of work, we are using a limited 

set of opaque predicates, which potentially bring to the creation of artefacts 

into the final malware. Indeed, if we are going to inject a huge number of 

features, as we normally do, it is just a matter of probabilities that the same 

opaque predicate appear multiple times. But we decided to have this limit 

because at least it is robust to static dead code pruning. 

At last, we would like to extend the attack also for removing features from 

a target Android app, maintaining the correct malicious behaviour. This 

issue is really complex because the semantic equivalence of the program is 

not preserved by design. It is necessary to find a successful strategy for 

achieve it. 

 

5.6 Tools tried but not adopted 

uring the development of PRISM we tried different solutions in 

order to find the most suitable tool for instrumenting the target 

application and extract the code slices. 

The two other main projects that we have tried but that we could not adopt 

for our purposes have been: 

 SAAF 

 WALA 

SAAF (Static Android Analysis Framework) is a static analyser Proof of 

Concept of the following paper [28] [29]. It supports Program Slicing on 
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smali code. It offers several quick-checks to check if some given app makes 

uses of certain features (e.g., uses classloaders, calls a method of interest, 

contains likely patched code, etc.). It has a GUI where the APK contents 

can be viewed and bytecode can be searched. CFGs can be created for 

(selected) methods. Analysis results can be persisted to a MySQL DB or 

to XML files. The main feature is the ability to calculate program slices for 

arbitrary method invocations and their corresponding parameters. SAAF 

will then calculate a slice for this so called slicing criterion and search for 

all constants which are part of that slice. In other words, SAAF will create 

def-use chains with the def information being the result and the use 

information being the slicing criterion. 

For example, the slicing criterion could describe the method 

android/telephony/SmsManager->sendTextMessage(...) and the first 

parameter of that method (the telephone number). SAAF will then search 

for all invocations of that method in the smali code and will search for all 

constants which could be used as input for that parameter. 

But unfortunately, it has a huge limit, because currently does not backtrack 

into methods found this way while backtracking a register. This would be 

fundamental to PRISM to correctly work, because if for example the 

searched feature is a URL-like feature we need to being able to 

backtracking until we find a suitable method invocation. For this reason, it 

has been discarded. 

Then we tried WALA [30], which is an awesome framework for static 

analysis in general and it also support mobile application, as Android ones. 

It is indeed a set of  Java libraries for static and dynamic program analysis, 

initially developed at IBM T.J. Watson Research Center. 

It provides: 

 Pointer analysis / call graph construction  

 Interprocedural dataflow analysis framework  

 Context-sensitive slicing framework, with customizable dependency 

tracking 

 Multiple language compatibility 
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 Generic analysis utilities and data structures 

 Limited code transformation 

Indeed, it was the last point that prevented to use this framework for 

PRISM. Even if the static analysis part was excellent and it was possible to 

retrieve the needed slice, we have not found any way to export it for inject 

it in the target application. Moreover, it was declared into the WALA 

Intermediate Representation, that was difficult to translate into smali or java 

bytecode in order to export it and injecting it with Soot. 

After these tries we have decided to adopt Soot for the whole 

Instrumentation part of the malware, which allows a higher grade of 

flexibility. 
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