
Alma Mater Studiorum · Università di Bologna
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Introduction

In this thesis we present a method to solve high-dimensional nonlinear

PDEs by using the Deep Learning theory. The algorithm was introduced by

Weinan, Han and Jentzen in 2017 [WHJ17] and it can produce a solution

to semilinear PDEs even in dimension one hundred. This method allows to

overcome the major drawbacks of working in high-dimensional spaces. As we

know the most evident difficulty lies in the “curse of dimensionality”, namely,

as the dimensionality grows the algorithm complexity exponentially grows

too. There is a limited number of methods that can solve high-dimensional

PDEs. For linear parabolic PDEs, one can use the Feynman-Kac formula

and Monte Carlo methods to develop algorithms to evaluate solutions at

any given space-time location. In [HJK17] it was developed a quite efficient

algorithm to approximate the solution to nonlinear parabolic PDEs based

on the nonlinear Feynman-Kac formula and the multilevel Picard technique.

The complexity of this algorithm is shown to be O(dε−4) for semilinear heat

equations, where d is the dimensionality of the problem and ε is the required

accuracy.

In recent years, Deep Learning techniques have emerged in a wide variety

of different topics. The main aim of Machine Learning is to solve problems

with a large number of data or features, for example; computer vision, natu-

ral language processing, time series analysis etc. This change of programming

paradigm has assisted the Machine Learning to reach its potential in both

statistics and computer science. Many papers have been published with the

aim of improving theoretical and empirical knowledge. This success stimu-

lates speculations that Deep Learning might hold the key to solve the curse

of dimensionality problem.
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Introduction 5

This thesis is structured as follows.

• Chapter 1. We introduce some results about the theory of Backward

Stochastic Differential Equations and we prove the nonlinear version of

the Feynman-Kac formula. This formula will be used to transform the

nonlinear PDE solving problem into a BSDE solving problem.

• Chapter 2. We introduce the most important concepts of the Machine

Learning theory. We define the Deep Learning problem and Multilayer

Neural Networks. We show an example of Deep Neural Networks ap-

plied to an engineering problem.

• Chapter 3. We present the Deep Learning-based BSDE solver in or-

der to approximate the solution to a semilinear parabolic PDE. After a

brief introduction to the option pricing problem, we will apply the Neu-

ral Network algorithm to the 100-dimensional nonlinear Black-Scholes

equation.

• Appendixes. We report some theorems about stochastic analysis and

we introduce a modern approach to Deep Learning. This approach con-

sists of giving theoretical results to explain why Deep Neural Networks

work so well.



Chapter 1

Backward Stochastic

Differential Equations and

PDEs

The main aim of this chapter is to present the theory and results about the

link between (nonlinear) Partial Differential Equations (PDEs) and Stochas-

tic Differential Equations (SDEs). In particular, we consider the Feynman-

Kac formula, which in its classical statement provides the solution to a PDE

through probabilistic properties of stochastic processes. We will see a possi-

ble extension of this result in the case that the PDE is not linear.

In the first section we explore the Backward Stochastic Differential Equations

(BSDEs) theory by giving proof of an existence and uniqueness theorem of

BSDEs solution (([MMY99], [PR14], [Z17]). After that we present the non-

linear Feynman-Kac formula ([P98], [P15], [PP92]). Finally, we give a brief

introduction of the main numerical methods to solve BSDEs.

1.1 Basic properties of BSDEs

We assume that T ∈ (0,∞). Let W = (Wt)0≤t≤T be a d−dimensional

Brownian motion on a filtered probability space (Ω,F ,F, P ), where F =

6



1.1 Basic properties of BSDEs 7

(Ft)0≤t≤T is the natural filtration associated to W . Furthermore, we define

Ft := {F ts}t≤s≤T , F ts = σ(Wr −Wt, t ≤ r ≤ s)

with 0 ≤ t ≤ T .

Definition 1.1. Let S2(0, T )k be the set of Rk-valued stochastic processes

Y , progressively measurable, such that

E

[
sup

0≤t≤T
|Yt|2

]
<∞.

Definition 1.2. Let H2(0, T )d be the set of Rd-valued stochastic processes

Z, progressively measurable, such that

E

[ ∫ T

0

|Zt|2dt
]
<∞.

Stated differently, H2(0, T )d is the set of all progressively measurable

processes, subset of L2([0, T ]×Ω, dt⊗dP ;Rd) (i.e., for t fixed, the Rd-valued

square integrable process Z restrict to [0, t]×Ω is B([0, t])⊗Ft -measurable).

We define a pair of variables (ξ, f) and suppose that the following properties

are valid:

(A) ξ ∈ L2(Ω,FT , P ;Rk);

(B) f : Ω× [0, T ]× Rk × Rk×d → Rk s.t.:

– f(·, t, y, z), abbreviate f(t, y, z), is progressively measurable ∀y, z;

– f(t, 0, 0) ∈ H2(0, T )k;

– f is uniformly Lipschitz in (y, z), i.e. ∃ Cf constant such that

|f(t, y1, z1)− f(t, y2, z2)| ≤ Cf (|y1 − y2|+ ‖z1 − z2‖)

∀y1, y2 ∈ Rk, ∀z1, z2 ∈ Rk×d, dt⊗dP a.s., with ‖z‖ = [Tr(zzT )]
1
2 ;

A solution to the BSDE characterized by (ξ, f), is a pair of Rk × Rk×d-

valued progressively measurable stochastic processes {(Yt, Zt); 0 ≤ t ≤ T}
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such that (Y, Z) ∈ S2(0, T )k ×H2(0, T )k×d and the following equation holds:

− dYt = f(t, Yt, Zt)dt− ZtdWt, YT = ξ (1.1)

Equivalently, the same BSDE can be stated as an integral stochastic equation

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdWs, 0 ≤ t ≤ T.

We call (ξ, f), respectively, the Terminal Condition and the Driver (or

Generator) of BSDE.

The next result is the existence and uniqueness theorem for BSDEs.

Theorem 1.1.1. Let (ξ, f) be the Terminal Condition and the Driver of a

BSDE, which satisfies the conditions (A) and (B). Then, exists the solution

(Y, Z) to BSDE (1.1) and it is unique.

Proof. The proof is based on the fixed-point method.

We consider a function Φ on S2(0, T )k × H2(0, T )k×d, mapping (U, V ) ∈
S2(0, T )k ×H2(0, T )k×d to (Y, Z) = Φ(U, V ) defined by

Yt = ξ +

∫ T

t

f(s, Us, Vs)ds−
∫ T

t

ZsdWs. (1.2)

More precisely, we construct the stochastic processes (Y, Z) as follows: first

we consider the martingale

Mt = E[ξ +

∫ T

0

f(s, Us, Vs)ds|Ft]

. By the conditions on (ξ, f), this is a d-dimensional square-integrable mar-

tingale. We can use the martingale representation theorem (see Appendix

A, Theorem A.0.1), which allows us to represent a random variable by using

the Itô’s integral. This theorem gives us a proof of existence and uniqueness

of the stochastic process Z ∈ H2(0, T )k×d such that

Mt = M0 +

∫ t

0

ZsdWs. (1.3)
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Now we define the process Y as follows

Yt = E

[
ξ +

∫ T

t

f(s, Us, Vs)ds|Ft
]

= Mt −
∫ t

0

f(s, Us, Vs)ds, 0 ≤ t ≤ T.

We can replace the representation of M (1.3) in the previuos equation, and

by noting that YT = ξ, we obtain the Equation (1.2). By Doob’s inequality

(see Appendix A, Theorem A.0.2) we observe that

E

[
sup

0≤t≤T
|
∫ T

t

ZsdWs|2
]
≤ 4E

[ ∫ T

0

|Zs|2ds
]
<∞.

Hence, by the conditions on (ξ, f), we obtain that Y ∈ S2(0, T )k. From this

we deduce that Φ is a well-defined function from S2(0, T )k×H2(0, T )k×d into

itself. The next step is to show that the pair (Y, Z) is a solution to the BSDE

(1.1) if and only if it is a fixed point of Φ.

Let (U, V ), (U ′, V ′) ∈ S2(0, T )k ×H2(0, T )k×d and

(Y, Z) = Φ(U, V ), (Y ′, Z ′) = Φ(U ′, V ′).

We set

(Ū , V̄ ) = (U ′ − U, V ′ − V ), (Ȳ , Z̄) = (Y − Y ′, Z − Z ′)

and

f̄t = f(t, Ut, Vt)− f(t, U ′t , V
′
t ).

We define β > 0, and apply the Itô’s formula to the process eβs|Ȳs|2 between

s = 0 and s = T :

|Ȳ0|2 = −
∫ T

0

eβs(β|Ȳs|2 − 2Ȳsf̄s)ds−
∫ T

0

eβs|Z̄s|2ds− 2

∫ T

0

eβsȲ T
s Z̄sdWs.

(1.4)

Notice that

E

[
(

∫ T

0

e2βt|Yt|2|Zt|2dt)
1
2

]
≤ eβT

2
E

[
sup

0≤t≤T
|Yt|2 +

∫ T

0

|Zt|2dt
]
<∞,
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results from Burkholder-Davis-Gundy inequality (see Appendix A, Theorem

A.0.3) and shows that the process∫ t

0

eβsȲ T
s Z̄sdWs

is a uniformly integrable local martingale. We observe that the left-hand

side (l.h.s.) of the previous inequality is the Quadratic Variation Process of

the local martingale. The second inequality derives from Y ∈ S2(0, T )k and

Z ∈ H2(0, T )k×d. By taking the expectation, the Equation 1.4 becomes:

E[|Ȳ0|2] + E

[ ∫ T

0

eβs(β|Ȳs|2 + |Z̄s|2)ds

]
= 2E

[ ∫ T

0

eβsȲsf̄sds

]

≤ 2CfE

[ ∫ T

0

eβs|Ȳs|(|Ūs|+ |V̄s|)ds
]

≤ 4C2
fE

[ ∫ T

0

eβs|Ȳs|2ds
]
+

1

2
E

[ ∫ T

0

eβs(|Ūs|2 + |V̄s|2)ds

]
.

Here the first inequality is verified by the Lipschitz uniform condition on f

and f̄ . We set β = 1 + 4C2
f . Hence, by substituting in previous inequalities,

we get

E

[∫ T

0

eβs(|Ȳs|2 + |Z̄s|2)ds

]
≤ 1

2
E

[∫ T

0

eβs(|Ūs|2 + |V̄s|2)ds

]
.

We define the norm on the Banach space S2(0, T )×H2(0, T )d:

‖(Y, Z)‖β =

(
E

[∫ T

0

eβs(|Ys|2 + |Zs|2)ds

]) 1
2

.

From the above inequality:

‖Φ(U, V )− Φ(U ′, V ′)‖β = ‖(Y, Z)− (Y ′, Z ′)‖β ≤
1

4
‖(U, V )− (U ′, V ′)‖β.

So, Φ is a strict contraction mapping. Hence, we conclude that Φ, by using

the contraction mapping theorem, admits a unique fixed point. This point
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is the solution to the BSDE.

1.1.1 Linear BSDEs

In this section we will focus on linear BSDEs, historically the first Back-

ward Stochastic Equations that have been studied [B73]. The main result

that we report provides us an important tool to obtain the solution to this

type of BSDEs. Such proposition will be useful in the next section to prove

more general conclusions.

Now we consider the case where the drive of BSDE f is a linear function in

y and z. We can write the linear BSDE as follows

− dYt = (AtYt + ZtBt + Ct)dt− ZtdWt, YT = ξ (1.5)

or equivalently

Yt = ξ +

∫ T

t

[AsYs + ZsBs + Cs]ds−
∫ T

t

ZsdWs

where A and B are, respectively, two Rk and Rk×d-valued bounded and pro-

gressively measurable processes, and C ∈ H2(0, T )k. Under these conditions

we can solve explicitly the above BSDE. Note that such BSDE is well-defined

by general theory in the previous section. Here, we only want to determine

a representation formula for the solution.

Proposition 1.1.2. Under appropriate regularity hypothesis on coefficients

(see above), the unique solution (Y, Z) to the linear BSDE (1.5) is given by

ΓtYt = E

[
ΓT ξ +

∫ T

t

ΓsCsds|Ft
]
, (1.6)

where Γ is the solution process to the linear SDE

dΓt = Γt(Atdt+BtdWt), Γ0 = 1
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or

Γt = exp

(∫ t

0

BsdWs +

∫ t

0

[
As −

1

2
|Bs|2

]
ds

)
Proof. The result follows applying Itô’s formula to the process ΓtYt. We then

obtain

d(ΓtYt) = −ΓtCtdt+ Γt(YtBt + Zt)dWt

hence

ΓtYt +

∫ t

0

ΓsCsds = Y0 +

∫ t

0

Γs(YsBs + Zs)dWs. (1.7)

The fact that A and B are bounded processes combined with the definition

of Γ, guarantees us that E[supt |Γt|2] < ∞. Denote by b∞ the upper bound

of B, then the following inequalities are true

E

[(∫ T

0

Γ2
s|YsBs+Zs|2ds

) 1
2
]
≤ 1

2
E

[
sup
t
|Γt|2+2

∫ T

0

|Zt|2dt+2b2
∞

∫ T

0

|Yt|2dt
]
<∞

By the Burkholder-Davis-Gundy inequality we prove that the local martin-

gale in (1.7) is uniformly integrable. Then, by taking the expectation,

ΓtYt +

∫ t

0

ΓsCsds = E

[
ΓTYT +

∫ T

0

ΓsCsds|Ft
]

=

= E

[
ΓT ξ +

∫ T

0

ΓsCsds|Ft
]

and we obtain (1.6). By the martingale representation theorem on (1.7), we

achieve the process Z (by considering the expectation of ΓtYt as a martin-

gale).

1.1.2 Comparison Principles of Solutions

In this section we present a comparison theorem, which allows us to com-

pare solutions related to different BSDEs.

Theorem 1.1.3. Let (ξ1, f1) and (ξ2, f2) be two pairs of Terminal Conditions

and Drivers that satisfy the assumptions (A) and (B) (see Section 1.1). Let
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(Y 1, Z1), (Y 2, Z2) be two solutions to BSDEs of the form (1.1) related to

(ξ1, f1) and (ξ2, f2). Moreover, if the following conditions hold:

• ξ1 ≤ ξ2 P − a.s.

• f 1(t, Y 1
t , Z

1
t ) ≤ f 2(t, Y 1

t , Z
1
t ) dt⊗ dP − a.s.

• f 2(t, Y 1
t , Z

1
t ) ∈ H2(0, T )k×d,

then Y 1
t ≤ Y 2

t for all 0 ≤ t ≤ T, P − a.s.
Furthermore, if Y 2

0 ≤ Y 1
0 , then Y 1

t = Y 2
t , 0 ≤ t ≤ T .

In particular, if P (ξ1 < ξ2) > 0 or f 1(t, ·, ·) < f 2(t, ·, ·) on a set endowed

with a strictly positive measure dt⊗ dP , then Y 1
0 < Y 2

0 .

Proof. We set Ȳ = Y 2 − Y 1, Z̄ = Z2 − Z1. Moreover, let

∆y
t =

f 2(t, Y 2
t , Z

2
t )− f 2(t, Y 1

t , Z
2
t )

Y 2
t − Y 1

t

1Y 2
t −Y 1

t 6=0

∆z
t =

f 2(t, Y 1
t , Z

2
t )− f 2(t, Y 1

t , Z
1
t )

Y 2
t − Y 1

t

1Z2
t−Z1

t 6=0

f̄t = f 2(t, Y 1
t , Z

1
t )− f 1(t, Y 1

t , Z
1
t ).

Then, (Ȳ , Z̄) satisfy the linear BSDE

− dȲt = (∆y
t Ȳt + ∆z

t Z̄t + f̄t)dt− Z̄tdWt, ȲT = ξ2 − ξ1. (1.8)

By the uniform Lipschitz continuity of f 2 in y and z, we obtain that ∆y and

∆z are bounded. Furthermore, f̄t ∈ H2(0, T )k×d. By using Proposition 1.1.2

it follows that Ȳ is given by

ΓtȲt = E

[
ΓT (ξ2 − ξ1) +

∫ T

t

Γsf̄sds|Ft
]
,

where Γ is a strictly positive process. From the hypothesis we can see that

ξ2 − ξ1 ≥ 0 and f̄ ≥ 0. Therefore, we can conclude that Ȳ ≥ 0.

Remark 1. An important observation is that in the proof of Theorem 1.1.3,

we have to impose the regularity condition only on the generator f 2. It is

not necessary to impose the uniform Lipschitz condition on f 1.
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Corollary 1.1.4. If the pair (ξ, f) satisfies ξ ≥ 0 P − a.s. and

f(t, 0, 0) ≥ 0 dt⊗ dP − a.s., then we have Yt ≥ 0, 0 ≤ t ≤ T P − a.s.
Moreover, if P (ξ > 0) > 0 or f(t, 0, 0) > 0 dt⊗ dP − a.s, then Y0 > 0.

Proof. The proof immediately follows by the comparison Theorem 1.1.3,

when (ξ1, f 1) = (0, 0). In this case, the solution to BSDE is definitely

(Y 1, Z1) = (0, 0).

1.2 Feynman-Kac Formula and Its Extension

to the Nonlinear Case

We introduce a central tool in the stochastic analysis of PDEs, the Feynman-

Kac formula. After the classical formulation by Feynman and Kac, we give a

possible extension to the nonlinear case. We consider the BSDE of the form:dXs = b(s,Xs)ds+ σ(s,Xs)dWs, X0 = x ∈ Rn

−dYs = f(s,Xs, Ys, Zs)ds− ZsdWs, YT = g(XT )
(1.9)

where (t, x) ∈ [0, T )× Rn and x ∈ Rn.

In literature these kind of BSDEs are also called Forward BSDEs (FBSDEs),

because of the presence of a forward stochastic differential equation in the

system. We also prove, under certain regularity conditions on coefficients,

that the solution to FBSDE (1.9) has the Markov property. This charac-

teristic is crucial to determine stochastic processes, that are the solution to

FBSDEs (1.9). We want to find the classical solution to a semilinear PDE

of the form:

− ∂v

∂t
(t, x)− Lv(t, x)− f(t, x, v(t, x), 〈σ(t, x), Dxv(t, x)〉) = 0 (1.10)

v(T, x) = g(x) (1.11)

We also demonstrate that in certain cases the vice versa is true. It is possible

to find the solution to a semilinear PDE by knowing the solution to the

BSDE. However, in this case the solution to (1.10) - (1.11) does not satisfy
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the regularity property as in classical solutions. Hence, we introduce the

notion of Viscosity Solution.

First and foremost we recall the linear version of Feynman-Kac formula.

This result allows us to express the solution to a parabolic PDE (with final

condition, i.e. backward) of the form:

−∂v
∂t
− Lv − f(t, x) = 0, (t, x) ∈ [0, T )× Rn,

v(T, x) = g(x), x ∈ Rn,

using stochastic processes and probability theory

v(t, x) = E

[ ∫ T

t

f(s,X t,x
s )ds+ g(X t,x

T )

]
, (1.12)

where {X t,x
s , t ≤ s ≤ T} is the solution to

dXs = b(s,Xs)ds+ σ(s,Xs)dWs, t ≤ s ≤ T, Xt = x

where W is a d-dimensional Brownian motion and L is a second order differ-

ential operator:

Lv(t, x) =
〈
b(t, x), Dxv(t, x)

〉
+

1

2
Tr(σσT (t, x)D2

xxv(t, x)).

We would generalize this result when semilinear (nonlinear) PDEs are ex-

pressed in the form (1.10) - (1.11).

For the rest of the chapter we suppose that processes X, Y and Z, that form

the solution of (1.9) are, respectively, Rn, Rk and Rk×d-valued processes.

Moreover, let W be a Rd-valued Brownian motion. We assume some nec-

essary conditions on terms of BSDE (1.9) and PDE (1.10)-(1.11). These

conditions are summed up in the following remark.

Remark 2. Assumptions

(i) b, σ, f, g are, respectively, Rn, Rn×d, Rk,Rk-valued deterministic func-

tion. Moreover, b(·, 0), σ(·, 0), f(·, 0, 0, 0) and g(0) are bounded.
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(ii) b, σ, f, g are uniform Lipschitz continuous functions in (x, y, z) with

Lipschitz constant L.

(iii) f is a continuous function on [0, T ]× Rn × Rk × Rk×d

(iv) f satisfies the linear growth condition in (x, y, z), i.e.

|f(t, x, y, z)| ≤ K(1 + |x|p + |y|+ |z|)

with K > 0 and (x, y, z) ∈ Rn × Rk × Rk×d

(v) g is a continuous function that satisfies the linear growth condition

|g(x)| ≤ K(1 + |x|p), K > 0

Remark 3. Equivalently, it is possible to define the FBSDE problem (1.9) by

using integral stochastic equationsXt = x+
∫ t

0
b(s,Xs)ds+

∫ t
0
σ(s,Xs)dWs

Yt = g(XT ) +
∫ T
t
f(s,Xs, Ys, Zs)ds−

∫ T
t
ZsdWs

(1.13)

It is possible to prove that the Terminal Condition and the Generator of

BSDE in (1.9) satisfy (A) and (B) (1.1).

1.2.1 Markov Property of the Solution

For all (t, x) ∈ [0, T ]× Rn and for any η ∈ L2(Ft), the process

{X t,x
s , t ≤ s ≤ T}

is the solution to the SDE in (1.9), which starts from x at time t. Let

{(Y t,x
s , Zt,x

s ), t ≤ s ≤ T} and {(Y t,ηs ,Z t,ηs ), t ≤ s ≤ T} be the solution of the

BSDE in (1.9) with Xs = X t,x
s and Xs = X t,η

s where t ≤ s ≤ T . By the

uniqueness of the solution to the BSDE, we have (Ys, Zs) = (Y t,Xts ,Z t,Xts ).
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Theorem 1.2.1. We assume 0 ≤ t ≤ T . If the assumptions (i)-(v) in

Remark 2 are valid, then

• exists a version of (Y t,x, Zt,x) for each x such that the mapping (x, s, ω) 7→
(Y t,x

s (ω), Zt,x
s (ω)) is Ft-progressively measurable. Furthermore, (Y t,x, Zt,x)

is indipendent of Ft.

• For any η ∈ L2(Ft), we have

(Y t,ηs (ω),Z t,ηs (ω)) = (Y t,η(ω)
s (ω), Zt,η(ω)

s (ω)), ds⊗ dP − a.s.(s, ω).

• Consequently, (X, Y, Z) is Markov.

For the detailed proof we refer to [Z17].

Now we define

v(t, x) := Y t,x
t (1.14)

Then v(t, x) is both Ft-measurable and independent of Ft, and thus is de-

terministic. Since Yt = Y t,Xtt = Y t,Xt
t , we have

Yt = v(t,Xt), 0 ≤ t ≤ T.

1.2.2 Nonlinear Feynman-Kac Formula

We introduce a fundamental result that allows us to extend the Feynman-

Kac formula, that we saw at the beginning of this section, to a nonlinear

framework. This shows how the classical solution of a semilinear PDE pro-

vides a process-solution to the associated BSDE.

We assume that the conditions in the Remark 2 are valid.

Proposition 1.2.2. Let v ∈ C1,2([0, T )×Rn) ∩ C0([0, T ]×Rn) a classical

solution to the semilinear PDE (1.10)-(1.11). Let v satisfy the linear growth

condition and, for some positive constants C and q, we have |Dxv(t, x)| ≤
C(1 + |x|q) for all x ∈ Rn. Then, the pair of stochastic processes

Yt = v(t,Xt), Zt = 〈σ(t,Xt), Dxv(t,Xt)〉 , 0 ≤ t ≤ T,
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is a solution to the BSDE in (1.9).

Proof. The proof directly follows from the Itô’s formula on v(t,Xt). We

observe that (Y, Z) ∈ S2(0, T )k×H2(0, T )k×d in accord with the linear growth

condition of v and Dxv.

The Proposition 1.2.2 is theoretically important but in some circum-

stances the practical use could be more difficult. Often, the solution to PDE

could not be C1,2 or, in some cases, the PDE could not have any solution.

Excluding the latter, it may be useful to find an “admissible” solution. These

do not satisfy the regularity condition of the classical solution and are called

Viscosity Solutions.

Definition 1.3. Let v : [0, T ]×Rn → R be a locally bounded function, then:

• v ∈ C([0, T ]×Rn) is called a Viscosity Subsolution of (1.10)-(1.11),

if v(T, x) ≤ g(x), x ∈ Rn and ∀ Φ ∈ C1,2([0, T ] × Rn) whenever the

map v − Φ attains a local maximum at (t, x) ∈ [0, T )× Rn, it holds:

∂tΦ(t, x) + LΦ(t, x) + f(t, x, v(t, x), 〈σ(t, x), DxΦ(t, x)〉) ≥ 0

• v ∈ C([0, T ] × Rn) is called a Viscosity Supersolution of (1.10)-

(1.11), if v(T, x) ≥ g(x), x ∈ Rn and ∀ Φ ∈ C1,2([0, T ] × Rn) when-

ever the map v − Φ attains a local minimum at (t, x) ∈ [0, T )× Rn, it

holds

∂tΦ(t, x) + LΦ(t, x) + f(t, x, v(t, x), 〈σ(t, x), DxΦ(t, x)〉) ≤ 0

• v ∈ C([0, T ]×Rn) is called a Viscosity Solution of (1.10)-(1.11) if it

is both a Viscosity Subsolution and a Viscosity Supersolution.

We note that in the above definition, the only hypothesis made on v is the

continuity. Thus, we can say that it is a solution to the differential equation,

without its differentiability.

The following result can be interpreted as the reverse of the Proposition 1.2.2.
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We prove that the solution to the BSDE (1.9) provides a Viscosity Solution

to the PDE (1.10)-(1.11).

Theorem 1.2.3. The function v(t, x) = Y t,x
t is continuous on [0, T ] × Rn

and it is a Viscosity Solution to the PDE (1.10)-(1.11).

Proof. • First of all we have to prove that the function v(t, x) = Y t,x
t is

continuous. Let us choose (t1, x1), (t2, x2) ∈ [0, T ]× Rn, where t1 ≤ t2.

We denote X i
s = X ti,xi

s , i = 1, 2 and, conventionally, assume that X2
s =

x2, with t1 ≤ s ≤ t2. We indicate with (Y i
s , Z

i
s) = (Y ti,xi

s , Zti,xi
s ), i =

1, 2, which is well defined for t1 ≤ s ≤ T . Applying the Itô’s formula

to |Y 1
s − Y 2

s |2 between s = t ∈ [t1, T ] and s = T , we have

|Y 1
t − Y 2

t |2 = |g(X1
T )− g(X2

T )|2 −
∫ T

t

|Z1
s − Z2

s |2ds

+2

∫ T

t

(Y 1
s − Y 2

s )(f(s,X1
s , Y

1
s , Z

1
s )− f(s,X2

s , Y
2
s , Z

2
s ))ds

−2

∫ T

t

(Y 1
s − Y 2

s )′(Z1
s − Z2

s )dWs.

As in the Theorem 1.1.3, the local martingale∫ s

t

(Y 1
u − Y 2

u )T (Z1
u − Z2

u)dWu, t ≤ s ≤ T

is uniformely integrable. Hence, by taking the expectation in the above

equation, we have

E[|Y 1
t − Y 2

t |2] + E

[∫ T

t

|Z1
s − Z2

s |2ds
]

= E[|g(X1
T )− g(X2

T )|2]

+2E

[∫ T

t

(Y 1
s − Y 2

s )(f(s,X1
s , Y

1
s , Z

1
s )− f(s,X2

s , Y
2
s , Z

2
s ))ds

]
≤ E[|g(X1

T )− g(X2
T )|2]

+2E

[∫ T

t

|Y 1
s − Y 2

s ||f(s,X1
s , Y

1
s , Z

1
s )− f(s,X2

s , Y
1
s , Z

1
s )|ds

]
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+2CfE

[∫ T

t

|Y 1
s − Y 2

s |(|Y 1
s − Y 2

s |+ |Z1
s − Z2

s |)ds
]

≤ E[|g(X1
T )− g(X2

T )|2]

+E

[∫ T

t

|f(s,X1
s , Y

1
s , Z

1
s )− f(s,X2

s , Y
1
s , Z

1
s )|2ds

]

+(1 + 4C2
f )E

[∫ T

t

|Y 1
s − Y 2

s |2ds+
1

2
E

[∫ T

t

|Z1
s − Z2

s |2ds
]]
,

where Cf is the Lipschitz constant of f in y and z. So we have

E[|Y 1
t −Y 2

t |2] ≤ E[|g(X1
T )−g(X2

T )|2]+E

[∫ T

t

|f(s,X1
s , Y

1
s , Z

1
s )−f(s,X2

s , Y
1
s , Z

1
s )|2ds

]

+(1 + 4C2
f )E

[∫ T

t

|Y 1
s − Y 2

s |2ds
]

and, by the Gronwall’s lemma, we then obtain:

E[|Y 1
t − Y 2

t |2] ≤ C

{
E[|g(X1

T )− g(X2
T )|2]

+E

[∫ T

t

|f(s,X1
s , Y

1
s , Z

1
s )− f(s,X2

s , Y
1
s , Z

1
s )|2ds

]}
.

This last inequality, combined with the continuity of f and g in x and

with the continuity of X t,x in (t, x), allows us to prove the mean-square

continuity of {Y t,x
s , x ∈ Rn, 0 ≤ t ≤ s ≤ T} (i.e. we say that a

Rd-valued stochastic process Z is mean-square continuous in s ∈ Rd

if E[|Xs|2] < ∞ and limx→sE[|Z(x) − Z(s)|]2 = 0). It follows the

continuity of (t, x)→ v(t, x) = Y t,x
t . The final condition (1.11) is easily

satisfied.

• Now, we have to prove that v(t, x) = Y t,x
t is a Viscosity Solution to

the PDE (1.10). We only show the Viscosity Subsolution property, the

Viscosity Supersolution property is similarly proved.

Let Φ be a smooth test function and (t, x) ∈ [0, T )×Rn, such that (t, x)

is a local maximum of v − Φ. We suppose, without loss of generality,
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that v(t, x) = Φ(t, x). We argue by contradiction by assuming that

−∂Φ

∂t
(t, x)− LΦ(t, x)− f(t, x, v(t, x), 〈σ(t, x), DxΦ(t, x)〉) > 0.

From the continuity of f , Φ and its derivatives, there exist h, ε > 0

such that, for all t ≤ s ≤ t+ h, |x− y| ≤ ε,

v(s, y) ≤ Φ(s, y) (1.15)

− ∂Φ

∂t
(s, y)−LΦ(s, y)−f(s, y, v(s, y), 〈σ(s, y), DxΦ(s, y)〉) > 0 (1.16)

Let τ = inf{s ≥ t : |X t,x
s − x| ≥ ε} ∧ (t+ h), and consider the pair

(Y 1
s , Z

1
s ) = (Y t,x

s∧τ ,1[0,τ ](s)Z
t,x
s ), t ≤ s ≤ t+ h.

By concluding, (Y 1
s , Z

1
s ) is a solution to the BSDE

−dY 1
s = 1[0,τ ](s)f(s,X t,x

s , u(s,X t,x
s ), Z1

s )ds− Z1
sdWs, t ≤ s ≤ t+ h,

Y 1
t+h = v(τ,X t,x

τ ).

On the other hand, by the Itô’s formula, the pair

(Y 2
s , Z

2
s ) = (Φ(s,X t,x

s∧τ ),1[0,τ ](s)
〈
σ(s,X t,x

s ), DxΦ(s,X t,x
s )
〉
), t ≤ s ≤ t+h,

satisfies the BSDE

−dY 2
s = −1[0,τ ](s)(

∂Φ

∂t
+ LΦ)(s,X t,x

s )− Z2
sdWs, t ≤ s ≤ t+ h,

Y 1
t+h = Φ(τ,X t,x

τ ).

From inequalities (1.15)-(1.16) and from the Theorem 1.1.3, we can

conclude Y 1
0 < Y 2

0 , i.e. v(t, x) < Φ(t, x), that is a contradiction.
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1.3 Numerical Issues

In the previous section, we established a link between parabolic nonlinear

PDEs and stochastic processes. We involved above all Backward Stochastic

Differential Equations (BSDEs). The aim of this section is to introduce the

main idea which stands behind classical numerical methods to approximate

the solution to a BSDE. Once the solution is approximated and then ap-

plying the Feynman-Kac formula, it is possible to derive the solution of the

associated PDE.

The first step to solve BSDE numerically is the temporal discretization:

• Euler Scheme for SDEs (Forward Process). We consider the temporal

discretization of the interval [0, T ]. The set π = {t0 = 0 < t1 < · · · <
tn = T}, with |π| := maxi=1,··· ,n ∆ti, ∆ti := ti+1 − ti, denotes the

temporal partition. We approximate the forward diffusion process X

of (1.9) by the following Euler Scheme Xπ

Xπ
ti+1

:= Xπ
ti

+ b(Xπ
ti

)∆ti + σ(Xπ
ti

)∆Wti , i < n, Xπ
0 = x

where ∆Wti = Wti+1
−Wti .

• Euler Scheme for BSDEs (Backward Process). First, we approximate

the terminal condition YT = g(XT ) by substituting X with the For-

ward Euler Scheme: YT ' g(Xπ
T ). Then we approximate the backward

process of (1.9) with the following Euler Scheme:

Yti = Yti+1
+

∫ ti+1

ti

f(Xs, Ys, Zs)ds−
∫ ti+1

ti

ZsdWs

' Yti+1
+ f(Xπ

ti
, Yti , Zti)∆ti − Zti∆Wti .

We define the time discrete approximation of BSDE:

(1) by taking the conditional expectation with respect to Fti ,

Yti ' E[Yti+1
|Fti ] + f(Xπ

ti
, Yti , Zti)∆ti
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(2) by multiplying both sides by ∆Wti and taking the conditional expec-

tation,

0 ' E[Yti+1
∆Wti|Fti ]− Z∆ti.

From (1)-(2) we obtain the Euler Scheme for the backward solution (Y π, Zπ):Z
π
ti

= E

[
Y π
ti+1

∆Wti

∆ti
|Fti
]

Y π
ti

= E[Y π
ti+1
|Fti ] + f(Xπ

ti
, Y π

ti
, Zπ

ti
)∆ti, i < n

(1.17)

with final condition Y π
tn = g(Xπ

tn).

Remark 4. The above schema is implicit since Y π
ti

appears in both sides of

the Equation (1.17). By the Lipschitz condition of f , for ∆ti small enough,

then the implicit scheme equation can be solved by a fixed point method, by

substituting the second equation in (1.17) with

Y π
ti

= E[Y π
ti+1

+ f(Xπ
ti
, Y π

ti+1
, Zπ

ti
)∆ti|Fti ].

The rate of convergence is the same.

Remark 5. It is possible to prove, by Lipschitz regularity conditions on f

and g, that the discrete time approximation error is

E(π) ≤ C|π|
1
2

with C independent of π.

Remark 6. The practical implementation of the numerical method in (1.17)

requires to compute the conditional expectation with respect to Fti . This

calculation may be onerous in some cases. However, since we work into a

Markovian framework, the expectations can be transorm in regressions:

E[Y π
ti+1
|Fti ] = E[Y π

ti+1
|Xπ

ti
], E[Y π

ti+1
∆Wti |Fti ] = E[Y π

ti+1
∆Wti |Xπ

ti
]

These regressions can be approximate by statistical methods like Least Squares

Regression ([LS01], [LGW06]), Integration by Parts ([BET04]) and Quantiza-

tion ([PPP04]). The main advantage of these methods is that, using Monte
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Carlo simulations, they are less affected by the “curse of dimensionality”

problem, typical of deterministic methods.

In the next chapter we introduce some fundamental concepts about Arti-

ficial Neural Networks. Then we reformulate the BSDEs numerical approx-

imation method in a Machine Learning framework. The numerical results

will be compared with standard probabilistic algorithms. We highlight ad-

vantages and disadvantages of using this new method.



Chapter 2

An Introduction to Machine

Learning

We are going to illustrate the principal characteristics and peculiarities

of Machine Learning, a recent field in computer science that uses statistical

techniques to give computer systems the ability to “learn” through data. The

tools and knowledge that we present in this chapter will be useful to better

understand the BSDE solver algorithm of the last chapter. This algorithm,

by Deep Learning techniques, provides a numerical approximation method

to solve high dimensional, nonlinear PDEs.

After a brief introduction to Machine Learning [SV08], we propose the main

learning algorithms and consider some practical problems. Next, we present

the Neural Network theory ([B06], [H09], [R13]) and Deep Learning theory

[GBC16]. Finally, we expose the algorithm which stands behind the Neural

Network learning techniques. We also report and analyze some optimization

methods, that are used for training [GS03].

2.1 Basics and Applications

Machine Learning (ML) is a field of Artificial Intelligence (AI) that studies

how computer systems “learn” using data. This can be interpreted as a dif-

ferent programming paradigm. Unlike Procedural Programming, a Machine

25
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Learning algorithm does not required a sequence of detailed instructions.

It learns from experience (data). The computer scientist Tom M. Mitchell

(1997) provided a widely quoted definition of the algorithms studied in the

ML field:

“A computer program is said to learn from experience E with respect to some

class of tasks T and performance measure P if its performance at tasks in T,

as measured by P, improves with experience E.”1

Hence, the paradigm shift induces the programmer to implement an algo-

rithm that allows the machine to develop its own “logic”.

In the last few years, Machine Learning has had a wide impact of applications

in every aspect of technology. Think of the so-called Recommender Systems

(or Recommendation Systems), a subclass of information filtering systems

that seeks to predict the preference a user would give to an item or a web

service. Recommender Systems are utilized in a variety of fields and aspects

of everyday life. Think of the most popular entertainment services such as,

YouTube, Spotify or Netflix. These suggest to the user contents in line with

the analyzed profile.

Also email spam filters are an implementation of ML techniques, they allow

to avoid possible phishings or infected files.

Machine Learning is widely used in biomedical research [MP99]. These kind

of algorithms support increasingly accurate predictions to avoid the outbreak

of epidemics and are also used to detect tumors.

In the next sections we introduce three methods that are crucial for ML

techniques.

2.1.1 Supervised Learning

The majority of Machine Learning applications use Supervised Learn-

ing. In this case, the machine receives a labeled dataset as input2, this is

1[M97]
2Each Machine Learning system receives input data characterized by a collection of

vectors (the so-called feature vector). A good choice of features could be very challenging.
It is important to select which information is useful and which is redundant. This process
(also called feature extraction or feature selection) permits to reduce dimensionality and
optimizing system performance.
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known as the training set. Supervised Learning requires that the algo-

rithm’s possible outcomes (ouputs or targets) are already known. Therefore,

the data in the training set are already labeled with the correct answers. For

example, this kind of learning is commonly used in email spam filters.

The training set used for classification problems, is represented like a se-

quence of pairs

{(x1, y1), · · · , (xn, yn)}

where xi stands for an input vector and yi stands for the corresponding class

label. Supervised Learning algorithms share the same crucial characteristics:

training takes place through the minimization of a certain loss function. This

function represents the error made by the system in classifying an input xi

with the label ŷi, instead the target yi.

The widely used loss function is the so-called Mean Squared Error :

MSE =

∑n
i=1(yi − ŷi)2

n
.

MSE measures the average squared difference between the estimated and the

correct values. With this measure, during the system training, the machine

adjusts its own parameters (often called “weights”) to reduce the MSE. The

function that defines the Input-Output process of a ML system is completely

defined by its parameters.

There are many optimization algorithms that are used for minimizing the

loss function and finding the optimal values for system parameters. In the

Neural Networks section we introduce some of these.

Once training is complete, it is appropriate to see if the model is correct,

using test (or evaluation). Evaluation allows us to test our model against

data that has never been used for training. This is meant to be representative

of how the model performs well in the real world. A good rule of thumb for

training-evaluation is to split the order of 80/20 or 70/30. Much of this

depends on the size of the original source dataset3.

3One of the most critical problems in Machine Learning theory is the training-test
data split. Choosing the right ratio of the source dataset affects heavily the system per-
formances. This topic is beyond the aim of this work. In merit of this we refer to some
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2.1.2 Unsupervised Learning

On the other hand, Unsupervised Learning is when you only have

input data without corresponding output labeled variables. The purpose of

Unsupervised Learning is to model the underlying structure or distribution

of the dataset in order to learn more about the experiments. Algorithms

are left to their own to organize data. Looking for common features and

identifying the internal structure in the data. That is to say, if the aim of

Supervised Learning is to estimate the conditional probability distribution

p(y|x). Then the main purpose of Unsupervised Learning is to approximate

the probability distribution p(x) of the whole dataset. We notice that p(y|x)

represents the probability of the target y, given a features vector x.

Therefore, some of the most used methods in Unsupervised Learning are

Kernel Density Estimation and Mixture Models. However, a widely used

technique is Clustering. In this case, the system splits the dataset into

several groups (or clusters) of elements that share some common features.

2.1.3 Reinforcement Learning

In Reinforcement Learning the system does not receive a fixed dataset.

Instead it receives a logical or real value after completion of a sequence. This

defines whether the decision is correct or incorrect. In this case the result

of the Machine Learning algorithm is conditioned by the enviroment. After

each action of the model it receives a reward signal (called reinforcement)

from the enviroment. If the action is correct the feedback will be positive

and the algorithm continues to follow the same strategy. Otherwise, if the

feedback is negative, the ML model is forced to search for an alternative

startegy.

Reinforcement Learning is widely used where the system works in high-

dimensional spaces. Atari games are a widely accepted benchmark for Re-

inforcement Learning. The implemented algorithm was able to play Atari

games and learn the best strategy to win in a competitive time block. Using

Supervised or Unsupervised Learning presents two main drawbacks. First,

results of Isabelle Guyon [G97] and [GMSV98].
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the model receives high dimensional sensory input through RGB images

(game screen). In return, the problem associated with the curse of dimen-

sionality becomes unbearable. The other issue is the training complexity.

With Supervised (or Unsupervised) Learning, the model needs millions of

hours of play to give a correct response. Hence it requires a large quantity

of memory and time. With Reinforcement Learning the machine training is

quite simple, the model receives a reward every time one of its actions leads

to winning the game.

This example explains the key idea behind the Reinforcement Learning. In

order to study this topic in depth, we refer to the papers by Sutton and Barto

[SB98] and by Bertsekas and Tsitsiklis [BT95].

2.1.4 Overfitting and Underfitting Issues

We have already mentioned that one of the dominant skills of Machine

Learning algorithms is the “generalization capacity”. The machine ability

to generalize means solving new tasks by using a different dataset from the

training set. We can define an error measure of training process. This is

called Training Error. In the previous section we have seen that the prob-

lem of minimizing the Training Error can be transformed in an optimization

problem. The difference between Machine Learning and Mathematical Pro-

gramming can be represented by the introduction of the Generalization Error,

also called Test Error. Generalization Error is defined by the expectation of

the error on a new input, hence chosen from the test set.

Discriminant features that measure the ML algorithm performances are:

• The capacity to reduce Training Error.

• The capacity to minimize the increase of the Test Error with respect

to the measure of the Training Error.

These aspects are related to two well-known Machine Learning problems:

the Underfitting and the Overfitting. These issues are often the cause of

poor performance in Machine Learning.

Underfitting refers to a model that can neither represents the training data
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nor generalizes to new data. An underfit Machine Learning model is not

suitable and will result in poor performances in the training data. Overfit-

ting, however, refers to a model that represents the training data correctly,

but has poor performances on new data. In other words, overfitting hap-

pens when an ML algorithm learns the details and noise in the training data,

loosing the ability to generalize. In this case, the Error Test is greater than

the Training Test. A measure that controls the inclination of a model to-

wards Overfitting or Underfitting is its Capacity. Informally, a model with

low Capacity does not accurately approximate data in the trainig set (this

is Underfitting). Meanwhile, an algorithm with high Capacity goes towards

Overfitting. It losses the ability to generalize, memorizing the training set

patterns. The Vapnik-Chervonenkis (VC)4 Dimension is a mathematically

rigorous formulation of Capacity, but it is more on the theoretical end, and

there can be a large gap between the VC Dimension and the model’s actual

Capacity. A very rough and easy way to estimate Capacity is to count the

number of parameters. The more parameters, the higher the Capacity.

There are several tricks to avoid these issues. If we have a great number of

data, then we obtain good performances in the training and in the test phase.

Another way to avoid Overfitting is to limit the training time. If we choose

a high number of iterations (epochs), the model will perfectly memorize the

data training patterns, with poor performances in the test phase.

2.2 Artificial Neural Networks

An Artificial Neural Network (ANN) is a mathematical computing system

vaguely inspired to the biological neural network that controls functionalities

of the mammals brain. The most important component of these systems is

the interconnection between elementary units of calculation (or nodes) called

neurons. The network learns from input data through a training process (see

Section 2.1). The information mined from the data is stored in the internal

parameters of the network. These parameters are called synaptic weights

4[V13]
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and they refer to the amplitude of a connection between two nodes5.

The Artificial Neural Network model has many semplifications compared

to the biological network. Results obtained in an ANN framework cannot

be transferred on real brain models. However, the use of this statistical-

programming algorithm ranges from Voice Recognition problem to Data Min-

ing and from Face Detection to Financial Engineering.

A Neural Network can be mathematically formalized by a directed graph.

Here neurons are the nodes of this graph. Nodes receive signals from the ex-

ternal enviroment or from other neurons. They usually transform and trans-

mit information like complex elaboration units. Inside each neuron there is

an activation function which regulates and propagates signals throughout

the network6. As we mentioned above, the main aim of a Machine Learn-

ing algorithm is to approximate an Input-Output function. Also, when we

train a Neural Network there are several parameters that allow us to im-

prove the Input-Output function approximation. We indicate some of these

parameters:

• Neurons, or elementary units are characterized by a more or less com-

plex internal structure and by their activation function.

• The Neural Network architecture is defined by the number of neu-

rons, the structure and the directing of synaptic connections.

• Synaptic weights represent the internal parameters of a Neural Net-

work and they are adjusted by specific learning techniques. We will

describe learning algorithms for Neural Networks in the next sections.

We distinguish different kinds of Neural Networks by varying the above pa-

rameters. The connections topology is a central feature. A Feedforward

Neural Network is a network wherein the connective structure can be rep-

resented by a directed acyclic graph. The data elaboration takes place from

the starting point to the end and there is no loop inside the network. A

5In biology it corresponds to the ammount of the firing effect that one neuron has on
another.

6The Threshold Potential is the neurological counterpart of activation function.



2.2 Artificial Neural Networks 32

Recurrent Neural Network has feedback connections and cycles between

units. This kind of Artificial Neural Network is more complex but it owns

fascinating qualities. Feedforward Networks are widely used to predict out-

comes and classify different items. Recurrents are used to simulate systems

that own “internal memory”. They are applied to forecast stock market

prices, speech recognition and handwriting recognition.

There are other features to characterize the nature of a neural network. These

refer to the way in which the system receives the training set data.

• On-Line Learning: Items are sequentially provided to the system.

The machine uses these data to improve the performances of the next

iteration.

• Batch Learning: We assume that the entire dataset is available before

the training phase starts. In this case the training takes place once on

the whole set of elements.

There is a variation of this learning, named Mini-Batch Learning.

In this case the system is trained on a fixed size subset of data7.

For more details we refer to the essays by Bishop [B06] and Haykin [H09].

2.2.1 The Perceptron

The first Neural Network model was proposed in the 1960s by the Amer-

ican psychologist Frank Rosenblatt and it took the name of Rosenblatt

Perceptron (a.k.a. Formal Neuron). The Perceptron is characterized by

a neuron local memory that consists of a vector of weights. Input data are

multiplied by these weights, which represent the strength of connections.

The weighted algebraic sum obtained is compared with a threshold value

by using the activation function. If the result is greater than the threshold

value, then the output is equal to 1 and the signal is transmitted along the

network. Otherwise, the signal is inhibited and it cannot participate in the

7The choice of correct batch size is a necessary step to improve the network perfor-
mances, in Appendix B we describe a fundamental approach which gives theoretical basis
to the Neural Network learning.
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Figure 2.1: The Rosenblatt Perceptron architecture

final output. In this case the activation threshold value is equal to −1 (or 0).

Let us try to formalize this concept. We assume that x ∈ Rn is the input

vector, we denote by w ∈ Rn the vector of synaptic weights and by θ ∈ R the

threshold value (or bias). Let y ∈ {−1, 1} be the output of the Perceptron

and g be the activation function. Hence we set

y(x) = g

( n∑
i=1

wixi − θ
)

= g(w′x− θ).

Two widely used activation functions in Perceptron applications are the sign

function and the Heaviside step.

The Figure 2.1 shows a simple Formal Neuron scheme.

A basic result for Perceptron theory states that, with an appropriate choice

of weights and threshold, it is possible to approximate the main logical func-

tions, like NOT, AND and OR. The Perceptron model fits as a classifier of

linearly separable data.

As we have just seen, the Perceptron architecture is quite simple and its

practical implementation is very easy. However, it has numerous limitations.

The American cognitive scientist Marvin L. Minsky and the mathematician

Seymour Papert pointed out the major drawbacks in the Rosenblatt model

([MP70]). After the training, the Perceptron approximates only linearly sep-

arable functions. For example, it fails when it tries to estimate the logical
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function XOR (exclusive disjunction). In the 1970s, after the Minsky and

Papert essay, the interest in Neural Networks drastically decreased.

2.2.2 Deep Neural Networks

Immediately after the paper by Minsky and Papert, Machine Learning

scientists hypothesized that a multilayer Perceptron network could overcome

the drawbacks of a single Perceptron. However, the high computational cost

made the implementation infeasible. Only in the late 1980s, thanks to the

development of more advanced technologies, it was possible to construct the

first Multilayer Feedforward Neural Network. This kind of network consists

of a sequence of neuron layers connected in cascade. This is a part of a larger

family of Neural Networks, the Deep Neural Networks. Deep Neural Net-

works can approximate any kind of continuous function on a compact set,

simply by adjusting the weights and the activation functions of the model.

This kind of Machine Learning structure allows us to solve nonlinear classifi-

cation problems. The appropriate choice of vector of weights can be seen as a

nonlinear optimization problem. Generally speaking, Deep Neural Network

learning is more complex than the Perceptron learning, due to the nonlin-

ear optimization. Nevertheless, the potential of Neural Networks with more

than one layer cannot be compared with Perceptron features. We will present

some important theorems of Deep Neural Networks in the next section. Deep

Neural Networks can cluster several millions of data, by identifying similar

features in different elements (let us think of the Smart-Photo Album). This

kind of network can also perform an authomatic feature extraction process,

unlike the other machine learning algorithms. Intuitively, during the train-

ing, the network recognizes the correlations among relevant features and it

optimizes the result.

In the next paragraph we are going to explore the structure and learning

algorithms of Feedforward Deep Neural Networks (or Feedforward Neural

Networks). Let us make a clarification, the theory of Recurrent Neural Net-

works is little different from the Feedforwards and we will not consider it in

this thesis.
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Deep Neural Networks Architecture

The architecture of a Deep Neural Network is generally characterized by

the following structure:

• An input layer consists of n units without elaboration capacity, where

n is the number of network entrances. We notice that n is also the

dimensionality of the vector of features, which describes the data char-

acteristics.

• A set of neurons which are split into L ≥ 2 layers where:

– L − 1 consist of neurons whose outputs are connected with the

inputs of the successive layer. These layers are called hidden

layers.

– The last layer consists ofK ≥ 1 neurons whose outputs correspond

to the network outputs. The network output is y ∈ RK and this

layer is called the output layer.

• A set of directed and weighted edges which represent all the possible

synaptic connections among the hidden layers and input and output

layers. Let us suppose that there is no connection among neurons of

the same layer and there is no feedback loop between the inputs of one

layer and the outputs of the previous one.

An example of Multilayer Deep Neural Network is shown in Figure 2.2.

Each neuron is characterized by an activation function g
(l)
j : R → R, where

j represents the neuron index into the l-th layer and l = 1, · · · , L. This

function acts on a weighted combination of the vector of inputs and threshold

value w
(l)
j0

, let a
(l)
j indicate this sum. If we denote the output of a single neuron

by ŷ
(l)
j , then we have:

a
(1)
j =

n∑
i=1

w
(1)
ji xi − w

(1)
j0
, ŷ(1) = g

(1)
j (a

(1)
j ).
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Figure 2.2: A simple Deep Neural Network structure

Let N (l) be the number of neurons in the l-th layer. For the generic j-th

neuron of the l > 1-th layer, we have:

a
(l)
j =

N(l−1)∑
i=1

w
(l)
ji z

(l−1)
i − w(l)

j0
, ŷ(l) = g

(l)
j (a

(l)
j )

Figure 2.3 shows activation functions that are frequently used in Neural

Network applications.

Approximation Properties for Deep Neural Networks

In this section we introduce some central results about the approximation

theory for Deep Neural Networks8. Let

M(g) = span{g(〈w, x〉 − θ), θ ∈ R, w ∈ Rn}

be the set of all linear combinations from a set of activation functions applied

over an affine transformation of x. This transformation is defined by w and

θ.

8[P99]
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Activation Function Equation Example of Use Plot

Heaviside Step φ(x) =


0, x < 0

0.5, x = 0

1, x > 0

Perceptron

Sign φ(x) =


−1, x < 0

0, x = 0

1, x > 0

Perceptron

Linear φ(x) = x Linear Regression

Logistic (Sigmoid) φ(x) = 1
1+e−x

Logistic Regression, Deep NN

Tangente Iperbolica φ(x) = ex−e−x
ex+e−x

Multi-Layer NN

Rectifier (ReLu) φ(x) = max(0, x) Deep NN

Figure 2.3: Activation functions for Artificial Neural Networks

Theorem 2.2.1 (Pinkus, 1996).

Let g ∈ C(R). In the topology of the uniform convergence on compact sets,

the set M(g) is dense in C(Rn) if and only if g is not a polynomial.

The corollary follows:

Corollary 2.2.2. Let Ω ⊂ Rn be a compact set, let us assume ε > 0 and g

is an activation function (continuous and not polynomial). Given a function

f ∈ C(Rn), it is possible to construct a two-layer Neural Network (with an

appropriate choice of number of neurons, vector of weights and biases), such

that the Input-Output function y ∈M(g) satisfies the condition:

max
x∈Ω
|f(x)− y(x)| < ε.

In other words, each two-layer Neural Network, with 1 hidden layer, can

approximate any continuous function on a compact subset of Rn.

Two-layer Neural Networks allow us to construct data interpolating function.

Theorem 2.2.3 (Pinkus, 1999).

Let g ∈ C(R) and let g not be a polynomial. Given K distinct points

{xi}Ki=1 ⊂ Rn and K numbers {αi}Ki=1 ⊂ R, then exist K vectors {wj}Kj=1 ⊂
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Rn and 2K numbers {vj}Kj=1, {θj}Kj=1 ⊂ R such that

K∑
j=1

vjg(
〈
wj, x

i
〉
− θj) = αi, i = 1, · · · , K.

2.3 Training Algorithms for Neural Networks

Once we have chosen the network architecture (number of hidden layers

and number of neurons for each layer), we must adapt the optimal weights

w ∈ Rn, by training the learning system. In this section we introduce the

most widely used method, the backpropagation algorithm9. Applying an

optimization algorithm like Gradient, Conjugate Gradient or a Quasi-Newton

method to Neural Networks it can be quite difficult, especially when the

network is very deep (it owns many hidden layers). To solve this drawback,

in the mid-1980s the backpropagation algorithm was developed. This is a sort

of Gradient Descent method which it was built ad hoc for Neural Networks.

2.3.1 Differentiable Activation Function

The backpropagation algorithm looks for the minimum of the loss function

in the weight space using the Gradient Descent method. Since this algorithm

requires computation of the gradient of the loss function at each iteration,

it is important to guarantee its continuity and differentiability. The

Heaviside Step function, that is used in the training of the Perceptron, does

not satisfy continuity and differentiability conditions. By the Figure 2.3 it

results that the most common used function in Neural Networks learning

is the real-valued Logistic Function (Sigmoid), sc : R → (0, 1) which is

defined by

sc(x) =
1

1 + e−cx

The constant c characterizes the Sigmoid form, higher values of c bring the

shape of the Sigmoid closer to the Heaviside function. In the limit c→∞ the

Sigmoid converges to a Step function at the origin. To simplify the notation,

9[RHW86]
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Figure 2.4: Internal structure of a neuron

we assume that c = 1.

We consider a Deep Neural Network with n input and m output. Let

{(x1,y1), · · · , (xp,yp)}

be the training set. This consists of p ordered pairs of vectors in Rn × Rm.

We denote by ŷi, i = 1, · · · , p the set of network outcomes with respect to

the training set elements. The aim is to minimize the loss function

E =
1

2p

p∑
i=1

‖yi − ŷi‖2.

The backpropagation algorithm is used to seek the local minimum of this

function. Since the neural network is comparable with a complex chain made

by composing functions, we expect that the central idea of this algorithm is

the chain rule. We use this rule to compute the derivative of the composition

of two or more functions.

Each neuron in the network has a composite structure, as it is shown in

Figure 2.4. This depiction is called B-Diagram (Backpropagation Diagram).

The right side is used to compute the Input-Output function of the neuron,

while the left side deals with the derivative of the same function. Both

functions are computed at each element of the same input dataset. We

report the two main steps of backpropagation algorithm. In the next section

we will describe the details of those steps.

(1) Feedforward phase: the training set elements are passed by the net-

work (there are three ways to do it: on-line, batch or mini-batch). The

direction is from the left side to the right side. Input-Output function
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and its derivative are both computed at each element. This information

about Input-Output function is stored into the corresponding neuron.

In this phase, only the right side is used to transmit information to the

next neuron.

(2) Backpropagation phase: this consists of the backpropagation of sig-

nal error along the network. In this phase we only use the left side

of each neuron. The informations coming from the right side of the

network are added together and they are multiplied by the derivative,

which is contained in the left side of the neuron.

2.3.2 Backpropagation Algorithm

At first, synaptic weights of the network are randomly chosen. For the

sake of simplicity, we consider a Neural Netwok with only one hidden layer.

The backpropagation algorithm can be naturally extended to the multilayer

case.

However, there are 4 steps:

(i) Feedforward computation

(ii) Backpropagation to the output layer

(iii) Backpropagation to the hidden layer

(iv) Weights update

As in optimization theory, the early stopping methods are concerned with

the problem of choosing a time to stop the process. In order to maximize an

expected reward or minimize an expected cost.

Here are some examples:

• The sequence is interrupted when the last value is in the neighborhood

of a local minimum. In other words, when the Euclidean norm of the

function gradient is less than a fixed threshold value.

• When the error variation percentage between two consecutive epochs

is sufficiently small.
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Figure 2.5: Extended multilayer network for the computation of E

• The learning algorithm is stopped when it reaches the maximum num-

ber of iterations.

Feedforward computation

The input vector x is presented to the network. The vectors ŷ(1) and

ŷ(2) are, respectively, the output vector produced by the first layer and the

output vector produced by the second layer. They are computed and stored,

as we see in Figure 2.5. The evaluated derivatives of the activation functions

are also stored in each neuron.

Backpropagation to the output layer

We are looking for the value of partial derivatives ∂E/∂w
(2)
ij . We denote

by w
(2)
ij the weight of the synaptic connection between the i-th neuron of the

hidden layer and the j-th neuron of the output layer. By the definition of

derivative of sigmoid function, we have ṡj = ŷ
(2)
j (1 − ŷ(2)

j ). By multiplying

the terms in the left side of each unit we obtain that the backpropagated

error in this step is:

δ
(2)
j = ŷ

(2)
j (1− ŷ(2)

j )(ŷ
(2)
j − yj),
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and the partial derivative we are looking for is

∂E

∂w
(2)
ij

= [ŷ
(2)
j (1− ŷ(2)

j )(ŷ
(2)
j − yj)]o

(1)
i = δ

(2)
j ŷ

(1)
i .

Backpropagation to the hidden layer

Now we want to compute the partial derivatives ∂E/∂w
(1)
ij . Each neuron

j in the hidden layer is connected to each unit q in the output layer, with an

edge of weight w
(2)
jq , for q = 1, · · · ,m. The backpropagated error is

δ
(1)
j = ŷ

(1)
j (1− ŷ(1)

j )
m∑
q=1

w
(2)
jq δ

(2)
q .

Therefore, the partial derivative is

∂E

∂w
(1)
ij

= δ
(1)
j oi.

Weights update

After computing all partial derivatives the network weights are updated

by using a Gradient Descent method. A constant γ defines the step length

of the correction. The weights update is given by:

∆w
(2)
ij = −γŷ(1)

i δ
(2)
j , for i = 1, · · · , k + 1; j = 1, · · · ,m,

and

∆w
(1)
ij = −γŷiδ(1)

j for i = 1, · · · , n+ 1; j = 1, · · · , k,

The step length γ is also called the learning rate. A correct choice of this

parameter fundamental for the convergence of the algorithm. The learning

rate can be fixed or can be adaptive, in order to improve the algorithm’s

performances.

In the next section we will introduce some optimization algorithms that are

used in Neural Network applications, in combination with the backpropaga-

tion method.
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2.3.3 Optimization Algorithms

In this section we present some of the most used optimization methods

within Neural Networks. For each algorithm we will explain briefly the main

features.

Let {(x(i), y(i))} be the input-target set of pairs and f(x;w) be the Input-

Output function of the neural network, which depends on the input values

and the synaptic weights.

Stochastic Gradient Descent (SGD)

The Stochastic Gradient Descent algorithm10 is one of the most used

methods in practical applications. It is very simple to implement and the

computational cost is quite low. Like every Gradient Descent method, the

weight correction takes place along the negative direction of the gradient g.

We consider a subset (mini-batch) of the dataset of size m, it follows that

g =
1

m

m∑
i=1

∇wE(f(x(i);w), y(i))

∆w = −γg

The objective function is the loss function E which is the difference between

estimated and true values for a sample of data. The learning rate is heuristi-

cally fixed at 0.01. We observe that, if the step length is too big (γ � 0.01),

then the method may not be converge. Instead, a learning rate that is too

small (γ � 0.01) leads to slow convergence.

Momentum

SGD has trouble descending ravines, i.e. areas where the surface curves

much more steeply in one dimension than in another, that are common

around local minima. In this scenario, SGD oscillates across the slopes of

the ravine while only making hesitant progress along the bottom towards

the local minimum. The momentum method accelerates SGD in the relevant

10[R16]
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direction and dampens oscillations. The method uses the momentum α,

which depends on previous iterations. Let gt be the gradient of the objective

function at iteration t.

vt+1 = αvt − γgt

wt+1 = wt + vt+1.

Usually, α is equal to 0.5 or 0.9.

RMSProp

The Root Mean Square Propagation method (RMSProp)11 is an adap-

tive algorithm. Hence, the learning rate is adapted for each of the param-

eters. It provides good performance in practice. The running average is

calculated in terms of mean squared,

E[g2]t = ηE[g2]t−1 + (1− η) 〈g, g〉

where η ∈ [0, 1] is the exponential decaying factor (forgetting factor). Usually,

η = 0.9. Intuitively, the choice of η defines how the previous iteration memory

is important in the running average computation. The weights update is

∆wt = − γgt√
E[g2]t + ε

.

We observe that the root square to the denominator indicates the mean

square (RMS, root mean square). In this case the learning rate γ is dynam-

ically controlled by the root mean square of the gradient norm. It has been

added to the denominator the factor ε, in order to prevent it from tending

to 0.

Adam

The Adaptive Moment Estimation method (Adam)12 is the most popular

today and it can be seen as a combination of RMSProp and Momentum

11[TH12]
12[KB14]
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method. Adam uses the running average of the objective function gradient

and its second momentum. The parameters update follows the below scheme:

Mt+1 = β1Mt + (1− β1)gt

vt+1 = β2vt + (1− β2) 〈gt, gt〉

and the bias correction

M̂ =
Mt+1

1− (β1)t+1

v̂ =
vt+1

1− (β2)t+1
.

The weight correction is

wt+1 = wt − γ
M̂√
v̂ + ε

.

The term ε is used to ensure numerical stability. The parameters β1 and

β2 are used to control the exponential decay of the gradient and its second

momentum. Usually we set ε = 10−8, β1 = 0.9 and β2 = 0.999.

2.4 Comparing Methods

We now compare the performances of the three methods that we have

previously seen: Stochastic Gradient Descent (SGD), RMSProp and Adam.

These algorithms have been applied to a practical problem. Localizing and

detecting impacts on a metal plate equipped with piezoelectric sensors using

an Artificial Neural Network. It is obvious how important this problem is.

For instance, the fuselages and the wings of airplanes, as well as some parts

of ships are continuously monitored by this kind of sensors. This topic has

been studied by several engineering research groups, including the Bologna

division of CNAF, the National Computing Center of INFN (Italian Institute

for Nuclear Physics) in collaboration with ARCES (Advanced Research Cen-
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Optimizer: SGD Activation Function: Sigmoid (Logistic)
Test Size Batch Size Neurons Epoch Loss Time [ms] Early Stop
35 1 4 10 0.026939 1484.68 No
25 1 4 50 0.031312 3107.15 No
35 1 4 50 0.031956 2265.69 No
25 25 4 50 0.033919 995.13 No
25 1 4 10 0.035291 1122 No

Figure 2.6: Table of results and model loss plot of SGD

ter on Electronic System) of Alma Mater Studiorum University of Bologna13.

We used the same network architecture in all of the examples: 1 input layer

consisting of 4 units (in this case the features correspond to the 4 angles of

incidence that the impact forms with the 4 sensors), 1 hidden layer (with a

number of neurons that can vary) and 1 output layer consisting of 2 units

(the impact point coordinates). Other varying parameters are: the test set

size, the batch size for training and the number of epochs. We reported the

results related to some experiments in Figures 2.6, 2.7 and 2.8.

The Early Stop column refers to the stopping method. It can be the num-

ber of iterations before it reduced the error variation, or the fixed maximum

number of iterations. As we can see the same activation function (Sigmoid)

is used in all three examples.

The tables in Figures 2.6, 2.7 and 2.8 are listed in increasing order with re-

spect to the loss. From these, the best methods are Adam and RMSProp.

The latter reaches the minimum in a few iterations. SGD is fast but in-

accurate, the loss is better than the RMSProp algorithm, despite that the

13The candidate has carried out a period of apprenticeship at CNAF-INFN of Bologna,
where he had the opportunity to deepen the neural networks theory and their application
in physics and engineering problems.
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Optimizer: RMSProp Activation Function: Sigmoid (Logistic)
Test Size Batch Size Neurons Epoch Loss Time [ms] Early Stop
35 1 4 10 0.019360 1677.61 9
30 1 4 50 0.024174 2826.11 No
25 1 4 50 0.025436 1867.11 21
25 1 4 10 0.030676 995.13 No
25 25 4 50 0.031823 1402 No

Figure 2.7: Table of results and model loss plot of RMSProp

Optimizer: Adam Activation Function: Sigmoid (Logistic)
Test Size Batch Size Neurons Epoch Loss Time [ms] Early Stop
35 1 4 50 0.019570 2801.97 38
30 1 4 50 0.020769 2334.97 No
30 15 4 50 0.022412 1626.56 No
30 1 4 10 0.027391 2953.65 No
25 1 4 50 0.027817 2067.44 20

Figure 2.8: Table of results and model loss plot of Adam
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parameters are equal.

We use Python and Keras (the TensorFlow API that is used for Deep Learn-

ing). All the numerical examples are run on a MacBook Pro with a 2.2 GHz

Intel Core i7 processor and 16 Gb of memory.

In the next chapter we will introduce an algorithm that produces an approx-

imation of a solution to a high-dimensional nonlinear PDE, by using BSDE

theory and Deep Neural Networks.



Chapter 3

Deep Neural Network-Based

BSDE Solver

In this chapter we provide an algorithm that solves high-dimensional non-

linear PDEs, by combining the BSDE stochastic theory (see Chapter 1) with

the power of Machine Learning (see Chapter 2).

Partial Differential Equations are among the most popular tools used in

modeling phenomena problems. The most important models are formu-

lated as PDEs in high-dimensional spaces. For example, let us think of

the Schrödinger equation in quantum many-body problems. In this case the

dimensionality of the PDE is three times the number of electrons or quantum

particles within the system. The practical use of these models can be very

limited due to the “curse of dimensionality” problem. The computational

cost of solving them grows exponentially with the dimensionality. Systems

characterized by a high number of parameters are closely related to the real

phenomenon but they are often impossible to solve. Sometimes, when we

can find an approximation for the solution, the computational cost to obtain

it is unbearable.

Another area where the curse of dimensionality plays a fundamental role is

Machine Learning and Data Analysis. In Deep Neural Network applications

the drawback is to balance the trade-off between the number of characteris-

tics and the computational cost for training the network.

49
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The algorithm was introduced by Weinan, Han and Jentzen [WHJ17]. This

is formulated from the results of Chapter 1. We will transform the problem

of solving a PDE into a BSDE (utilizing the nonlinear Feynman-Kac formula,

Section 1.2). In this framework, the BSDE is solved by using a Deep Neu-

ral Network. The associated learning algorithm resembles the reinforcement

learning, but built ad hoc specifically for this method.

Firstly, we describe the details of the algorithm. This can be used to solve a

wide variety of problems that are based on high-dimensional nonlinear PDEs

(e.g. the Schrödinger equation, the Hamilton-Jacobi-Bellman equation in

dynamic programming and the Allen-Cahn equation)1. After that we con-

centrate on a practical financial problem, the option pricing problem. The

goal is to determine a fair price for a derivative by using nonlinear Black-

Scholes equation with default risk. We compare the results of this method

with some classical algorithms based on Monte Carlo simulations. We will

talk about the advantages of using Deep Neural Network and we will analyze

possible improvements.

3.1 The Algorithm

The Neural Network BSDE Solver algorithm is used on a particu-

lar family of Partial Differential Equations, the semilinear parabolic PDEs.

These PDEs can be represented as follows:

− ∂v

∂t
(t, x)− Lv(t, x)− f(t, x, v(t, x), 〈σ(t, x), Dxv(t, x)〉) = 0 (3.1)

where

Lv(t, x) =
〈
b(t, x), Dxv(t, x)

〉
+

1

2
Tr(σσT (t, x)D2

xxv(t, x))

and with some specified terminal condition v(T, x) = g(x).

In this case, t and x represent the time and the d-dimensional space variable.

The term b is a known Rd-valued function, σ is a known Rd×d-valued function

1[WHJ17]
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and σT denotes the transpose associated to σ. We denote the gradient and

the Hessian of the function v respect to x by Dxv and D2
xxv, respectively.

Tr(·) denotes the trace operator of a matrix and f is a known nonlinear

function. The algorithm allows us to find the solution v to the PDE (3.1) at

t = 0, x = ξ, for some vector ξ ∈ Rd.

3.1.1 BSDE Reformulation of the Problem

In Chapter 1 we presented the nonlinear Feynman-Kac formula (Section

1.2). This formula, under some conditions, permits us to represent the solu-

tion to a semilinear parabolic PDE as a Markov solution to the corresponding

BSDE. We now briefly recall the main results of Chapter 1.

Let (Ω,F , P ) be a probability space and W : [0, T ] × Ω → Rd be a d-

dimensional Brownian motion. F = (Ft)0≤t≤T denotes the natural filtration

on (Ω,F , P ) associated to (Wt)0≤t≤T . We consider the FBSDE2

Xt = ξ +
∫ t

0
b(s,Xs)ds+

∫ t
0
σ(s,Xs)dWs

Yt = g(XT ) +
∫ T
t
f(s,Xs, Ys, Zs)ds−

∫ T
t
ZsdWs

(3.2)

We are looking for a F-adapted solution process {(Xt, Yt, Zt)}0≤t≤T with value

in Rd×R×Rd. Under suitable regularity assumptions on the coefficient func-

tions b, σ and f , it can be proved the existence and up-to-indistinguishability

uniqueness of the solution theorem (see Theorem 1.1.1). Moreover, by the

nonlinear Feynman-Kac formula, the solution to the PDE (3.1) is related to

the solution to the BSDE (3.2). Hence, for all t ∈ [0, T ] it holds P -a.s. that

Yt = v(t,Xt) and Zt = σT (t,Xt)∇v(t,Xt), (3.3)

Therefore, we can compute the value v(0, X0) associated to the PDE through

Y0 by solving BSDE. We plug the identities (3.3) in the second equation of

2We recall that FBSDE indicates a pair of differential stochastic equations. This pair
consists of a forward and a backward SDE. The BSDE depends on the FSDE unknown
variable. In this framework we talk about “decoupled” BSDE. The reverse is the “coupled”
BSDE but it is not very common in applications, so we will not analyze it.
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(3.2) and we obtain

Yt = g(XT ) +

∫ T

t

f(s,Xs, v(s,Xs), σ
T (s,Xs)∇v(s,Xs))ds

+

∫ T

t

σT (s,Xs)∇v(s,Xs)dWs

(3.4)

In particular, for any t1, t2 ∈ [0, T ] with t1 ≤ t2, it holds P -a.s. that

Yt2 = Yt1 −
∫ t2

t1

f(s,Xs, v(s,Xs), σ
T (s,Xs)∇v(s,Xs))ds

+

∫ t2

t1

σT (s,Xs)∇v(s,Xs)dWs

(3.5)

Next, we apply a time discretization to (3.5). More specifically, let N ∈ N
and let t0, t1, · · · , tN ∈ [0, T ] be real numbers that satisfy

0 = t0 < t1 < · · · < tN = T.

ForN ∈ N sufficiently large the Equation (3.5), combined with (3.3), provides

an incremental law to compute the solution on the time interval nodes:

v(tn+1, Xtn+1) ≈ v(tn, Xtn)− f(tn, Xtn , v(tn, Xtn), σT (tn, Xtn)∇v(tn, Xtn))(tn+1 − tn)

+σT (tn, Xtn)∇v(tn, Xtn)(Wtn+1 −Wtn)

(3.6)

From the first equation in (3.2) we obtain

Xtn+1 ≈ Xtn + b(tn, Xtn)(tn+1 − tn) + σ(tn, Xtn)(Wtn+1 −Wtn) (3.7)

Each term in the r.h.s. of (3.6) and (3.7) approximations are known (the dif-

ference between two consecutive independent Brownian motions is normally

distributed with mean 0 and variance tn+1 − tn). The only unknown term

is σT∇v. Next, we try to approximate the gradient of the solution by using

Machine Learning techniques.
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3.1.2 Deep Neural Network Approximation

For the sake of simplicity, we assume that the diffusion coefficient σ in

(3.1) is the identity matrix, i.e. for all x ∈ Rd it holds that σ(x) = IdRd .

From the Equation (3.6) we have to approximate

(∇xv)(tn, x) ∈ Rd (3.8)

with x ∈ Rd, n ∈ {0, 1, · · · , N}. This approximation takes place by using

Feedforward Deep Neural Networks. We notice that in this framework Ma-

chine Learning is used to approximate the gradient of the solution function

instead of the solution itself. The value v will be obtained by using the Equa-

tion (3.6).

In other words, we think of ρ ∈ N as the number of parameters in the Neu-

ral Network. Let θ ∈ Rρ be the vector of parameters and Vθ be a suitable

approximation of the solution at t = 0 and x = ξ,

Vθ ≈ v(0, ξ)

for all appropriate parameters vector θ ∈ Rρ. Let Gθn : Rd → Rd be a family

of continuous functions, with θ ∈ Rρ and n ∈ {0, 1, · · · , N − 1}. For all

appropriate values of θ ∈ Rρ, x ∈ Rd and n ∈ {0, 1, · · · , N − 1}, the function

Gθn approximates (∇xv)(tn, x). Hence,

Gθn ≈ (∇xv)(tn, x).

Let X : {0, 1, · · · , N} × Ω → Rd and Yθ : {0, 1, · · · , N} × Ω → R be two

stochastic processes. They satisfy, for all θ ∈ Rρ,

Yθ0 = Vθ, X0 = ξ

and

Xn+1 = Υ(tn, tn+1,Xn,Wtn+1 −Wtn),

Yθn+1 = Yθn − f(tn,Xn,Yθn,Gθn(Xn))(tn+1 − tn) + Gθn(Xn)(Wtn+1 −Wtn)
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Figure 3.1: Neural Network architecture for the BSDE solver

where Υ : [0, T ]2×Rd×Rd → Rd is a function that represents the incremental

law in (3.7).

3.1.3 Neural Network Architecture

Figure 3.1 shows the Multilayer Neural Network for the BSDE solver

algorithm. We notice that in Figure 3.1 the value ∇v(tn, Xtn) is directly

approximated by the network, while the solution v(tn, Xtn) is computed re-

cursively.

The graph consists of a total of N − 1 multilayer sub-network, one for each

internal node of the time partition. Each sub-network has H hidden layers

h1
n, · · · , hHn . Therefore, the whole network has (H+2)(N −1) layers in total.

Summing up, there are three types of connections in this network:

(i) N − 1 Feedforward Multilayer Neural Networks Xtn → h1
n → h2

n →
· · · → hNn → ∇v(tn, Xtn). They approximate the spatial gradient of

the solution at t = tn. The parameters of these networks are the

weights of the synaptic connections θn, with n ∈ {1, · · · , N−1}. These

parameters are adjusted by using appropriate training algorithms (op-

timization algorithms).
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(ii) The connection (v(tn, Xtn),∇v(tn, Xtn),Wtn+1 −Wtn)→ v(tn+1, Xtn+1)

represents the forward iteration. This is characterized by the Equation

(3.6). It allows us to compute the final network output v(tN , XtN ).

There are no parameters to be optimized in this network.

(iii) (Xtn ,Wtn+1−Wtn)→ Xtn+1 represents the connection between different

time blocks. This is characterized by (3.7). Also in this case there are

no parameters to be optimized.

3.1.4 Neural Network Training

As we have seen in Chapter 2, the aim of the Neural Networks training

is to adjust synaptic weights in order to minimize the loss function. Hence,

the training problem is converted into an optimization problem. There are

many algorithms to compute the optimum θ. The most used are based on

the Stochastic Gradient Descent method (see Chapter 2, Section 2.3.3). We

consider the Mean Square Error between the real and the approximate ter-

minal condition of the BSDE (3.2). We use this MSE to define the expected

loss function

Rρ 3 θ 7→ E[|YθN − g(XN)|2] ∈ [0,∞] (3.9)

We assume that the function in (3.9) has a unique global minimum and let

Λ ∈ Rρ be the real vector for which the function in (3.9) is minimal. The

minimizing loss function is inspired by the fact that

E[|YT − g(XT )|2] = 0

according to the BSDE (3.2).

The total set of Deep Neural Network parameters is θ = {θv0 , θ∇v0 , θ1, · · · , θN−1}.
Weights {θv0 , θ∇v0} characterize two additional Neural Networks that are

used to approximate the functions x 7→ v(0, x) ∈ R and x 7→ ∇v(0, x) ∈ Rd

respectively. Therefore, under appropriate regularity conditions, the algo-

rithm can estimate the vector Λ ∈ Rρ by using Stochastic Gradient Descent

methods. We denote the sequence of approximations of Λ by Θ : N0 × Ω→
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Rρ. This is obtained by the following formula

Θm = Θm−1 − γΦm(Θm−1)

where m ∈ N0. In this case Φ is the approximation of the loss function

gradient in (3.9) and γ is the learning rate. For sufficiently large ρ,N,m ∈ N
and sufficiently small γ ∈ (0,∞), we obtain an approximation of the PDE

(3.1) at t = 0 and x = ξ,

VΘm ≈ v(0, ξ).

Of course, the above iterative formula to compute the sequence of Θ is generic

and it is only esplicative of the method. In the next sections we will specify

the various optimization methods that we are going to use (Adam, RM-

SProp). We will test the performances of all of them.

Therefore, the Deep Neural Network BSDE solver algorithm can be used to

approximate the solution to the semilinear parabolic PDE that appears in

many real problems, from quantum physics to optimal control theory. In the

next section we are going to present a financial problem.

We will apply the above algorithm to solve the nonlinear PDE that con-

trol the option pricing in dimension one hundred. We use it in a financial

mathematics context.

3.2 Black-Scholes Option Pricing Problem

For a better understanding of the application of the Deep Neural Network

BSDE solver algorithm we have to introduce a digression about a classical

financial mathematics problem.

The problem consists of assigning a fair price to a financial derivative (in our

case an option). This issue becomes more complex when we transfer the

model into the real market framework. Let us go step by step.

The Market Exchange 3 is an example of complex system. In the market,

the apparently random price fluctuations are the result of the combination

3The Exchange or Bourse is a highly organized market where brokers and traders sold
and bought tradable securities, commodities, foreign exchange and option contracts.
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of different responses by speculators and traders. These responses are often

highly correlated. The difficulty of forecasting traders’ behavior led to de-

velop stochastic models, in order to simulate the random nature of these be-

haviours. In this framework we can contextualize the financial-mathematical

models to price options, derivatives and other financial instruments.

We start with the classical Black-Scholes equation [BS73] and we will con-

clude with an introduction to a more realistic model, by including the default

risk [CGGN13].

3.2.1 European Call Option

A simple financial derivative is the European Call Option 4. We sup-

pose that at a certain time t = 0 an agent decides to make a contract with

a seller (a bank, for instance). The call option contract gives the owner the

right, but not the obligation, to buy an action at a specific price, the strike

price K, on a certain expiration date t = T . If the share price at time t = T ,

x(T ), is larger than the strike price K, then the owner can exercise the op-

tion right and buy the share at the agreed price. The profit, by immediately

selling the shares on the market, is x(T )−K. In contrast, if x(T ) < K, then

the option owner can decide not to buy the share. The profit in this case is

equal to zero. Hence, the payoff of an European Call Option is:

(x(T )−K)+ = max{x(T )−K, 0}.

Symmetrically, an European Put Option gives the owner the right, but not

the obligation, to sell a share at the strike price K, on the expiration date

T . In this case the payoff is

(K − x(T ))+ = max{K − x(T ), 0}.
4“European” options are contracts that give the owner the right (but not the obligation)

to buy or sell the underlying security at a specific price, only on the option’s expiration
date. They are different from the “American” counterpart, which gives the owner the
right to buy or sell in any time between the purchase and the expiration date.
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These type of contracts have their own price of activation. Assigning the fair

price to these derivatives is called the option pricing problem. The option

pricing depends on several variables5.

• The Price of the Underlying Asset: when the underlying asset

increases (resp. decreases), then the value of a call option increases

(resp. decreases). Although, the value of a put option decreases (resp.

increases).

• The Strike Price: This is the price of the underlying asset that agents

agree when they make the contract. Usually, it is assigned by the seller

and it can be lower, equal or higher than the current price of the asset.

• The Volatility of the Underlying Asset: The volatility is a statis-

tical measure of the dispersion of returns for a given security or market

index. An asset with high volatility is subject to frequent and strong

oscillations of its price. Commonly, the higher the volatility, the riskier

the asset and the more likely the profit.

• The Expiration Date: If the expiration date T is close to the pur-

chase date, then the temporal value component tends to be zero. Hence,

under the same assumptions, the farther the expiration date, the higher

the option price.

Now, we report a real example of an European Call Option. For the rest of

the thesis we will concentrate on these kind of derivatives.

Example 3.1. An investor purchases a 90-day European Call Option on a

stock of 1000 Google’s shares (GOOG) with a strike price of 125e.

To purchase an option contract the buyer has to pay the seller an option price

of 0.05e for each share. The total amount of the option price is 50e (1000×
0.05e = 50e). On the expiration date there may be two scenarios:

• The Price of the Underlying Asset is Increased

At expiration, the spot price of the stock GOOG is 130e. Therefore,

5[B01]
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the current price is higher than the strike price.

In this case, the owner of the call option has the right to purchase the

stock at 125e and exercises the option, making 5e (or 130e − 125e)

for each share. The trader’s profit margin is

1000× (130e− 125e)− (1000× 0.05e) = 4950e

• The Price of the Underlying Asset is Decreased

In this scenario, if the spot price of the stock GOOG is 120e at expi-

ration. It does not make sense to exercise the option to purchase the

stock at 125e. In this case, the payoff is 0e and the buyer claims a

loss of 50e, the option price.

Why Use Options?

Derivatives like put or call options are frequently used for two purposes:

• As a financial coverage for medium/high risk investments (hedging with

options);

• For the speculation;

For example, we can think of hedging as an insurance policy, just as we insure

our house or car. Options can be used to insure our investments against a

downturn. There is no doubt that hedging strategies can be useful, especially

for large institutions.

Options can be used also for speculation purposes. Let us think of the strat-

egy of a put option. In this case, the seller earns only when the value of the

underlying asset decreases. Put options are the easiest way to earn a profit

after a financial crash.

In the next section we will intoduce the Black-Scholes model. Firstly we will

describe the one-dimensional equation and classical solver methods. After

that, we will introduce the multi-dimensional model and the Black-Scholes

equation with the default risk. For the latter we are going to apply the

Deep Neural Network-based BSDE solver to approximate the solution of the

model.
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3.2.2 Black-Scholes Model

The Black-Scholes-Merton model initially appeared in the works by Mer-

ton [M73] and by Black and Scholes [BS73]. This is the standard method

to attribute a fair price for financial derivatives such as options. In the next

paragraph we are going to describe the main properties and the principal

applications of this model.

Model Assumptions

We assume several “idealistic hypothesis” on the market and on the

shares:

• The rate of return on the riskless asset is constant and thus called the

risk-free interest rate.

• The underlying stock price is a random walk with drift, more precisely,

it is a Brownian motion, and its drift and volatility are constant.

• It is allowed the short sale of underlying asset.

• There is no arbitrage opportunity (i.e. there is no way to make riskless

profit).

• The option transactions do not incur any fees or costs.

• It is possible to buy and sell any amount, even fractional, of the stock.

The above conditions are an interesting topic to study but they are often far

from the reality.

Model Derivation

In this section we derive the Black-Scholes model from the previous hy-

pothesis and other financial-mathematical conditions6. Let us consider a

financial derivative, whose price is indicated by f(St, t), where t is the tem-

poral variable and St is the underlying price. From the previous assumptions,

6[G13], [P11]
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we observe that the price St is a Brownian motion which satisfies the following

Stochastic Differential Equation:

dS = rSdt+ σSdWt, (3.10)

where r ∈ R is the interest rate of the stock and σ ∈ R>0 is its volatility. Let

us formulate a portfolio7

π = f − ∂f

∂S
S.

We notice that ∂f/∂S is the derivative price variation with respect to the

underlying price8. Equation (3.10) is the key of the Black-Scholes model. Let

us apply the Itô’s Lemma and obtain the Stochastic Differential Equation

that the portfolio π has to satisfy.

dπ = df−∂f
∂S

dS =

(
∂f

∂S
rS+

∂f

∂t
+

1

2
σ2S2 ∂

2f

∂S2

)
dt+

∂f

∂S
σSdWt−

∂f

∂S
rSdt−∂f

∂S
σSdWt

We have assumed that the portfolio is riskless in an infinitesimal time interval.

Under the hypothesis of no arbitrage, we have

dπ = r

(
f − ∂f

∂S

)
dt.

By merging the two previous equations, we obtain

rS
∂f

∂S
+
∂f

∂t
+

1

2
σ2S2 ∂

2f

∂S2
− rf = 0 (3.11)

This is a parabolic PDE and is called the Black-Scholes equation. The

above PDE has to be satisfied by any derivative instrument, with no arbitrage

opportunity.

Black-Scholes Pricing for European Call Option

If we give the boundary conditions for the Black-Scholes PDE (3.11), then

it is possible to obtain a unique solution, in order to determine the option

7A portfolio, is a collection of investments held by an investor subject
8Usually, in literature we can find this quantity indicated by the Greek letter ∆.
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price. The quantitative finance consultant P. Wilmott et al. [WHD95] were

the first to formulate these conditions for the European Call Options. In the

following examples we only consider these kind of options.

The payoff for European Call Options, as we have already seen, is defined by

f(S, T ) = max{S −K, 0} = (S −K)+.

We notice that, by the Equation (3.10), we can conclude that if S = 0 also

dS = 0. Hence, in this particular case, the underlying price is constant.

Therefore, if S = 0 on the expiration date, then the call option is worthless,

f(0, T ) = 0.

If the underlying price increases with no limits, then the owner will use the

option right. In this case the strike price can be neglected. Hence,

f(S, t) ∼ S, for S →∞

Once we have set these boundary conditions, we can find a unique solution

to the PDE (3.11).

f(S, t) = SN(d1)−Ke−r(T−t)N(d2) (3.12)

where S is the underlying asset price at t. In the previous equation, K is

the strike price, r is the (annualized) risk-free interest rate and N(·) is the

Standard Normal Cumulative Distribution function

N(x) =
1√
2π

∫ x

−∞
e−

1
2
y2dy.

By d1 and d2 we denote

d1 =
ln( S

K
) + (r + σ2

2
)(T − t)

σ
√
T − t

;

d2 = d1 − σ
√
T − t.
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Here, σ is the (annualized) volatility of returns of the underlying asset.

3.3 Numerical Methods

In this section we present the most popular algorithm to compute the

approximate solution for the Black-Scholes method. In this framework the

Monte Carlo estimator 9 is the key idea of the approximation process.

3.3.1 Principles of Monte Carlo

In mathematics, Monte Carlo methods are a broad class of computational

algorithms that are based on the analogy between volume and probability.

Their essential idea is to solve deterministic problems by using randomness.

The theory of measure formalizes the intuitive notion of probability. If we

consider an event as a collection of different states or configurations, then

the probability of the event is its volume or measure. This is relative to a

set of all possible outcomes. Monte Carlo methods use this observation in

reverse. We compute the measure of a set by interpreting the volume as a

probability. We will briefly analyze the formal idea behind the Monte Carlo

method.

Let X be a random variable and f ∈ mB (i.e. f is a Borel-measurable

function). We also assume that f(X) ∈ L2(Ω, P ). We want to compute the

expectation E[f(X)]. By the law of large numbers,

E[f(X)] ≈ 1

n

n∑
k=1

f(X(k)), n� 1

where X(1), X(2), · · · , X(n) are independent realizations of the random vari-

able X. The variable X may assume different probability distribution (e.g.

Uniform, Gaussian, Exponential, etc.). The more recent numerical comput-

ing software provide the main kind of distributions. Therefore, when we know

the probability distribution of a random variable, the Monte Carlo method

9[G13]



3.3 Numerical Methods 64

permits to approximate it. In the next paragraph we evaluate the efficiency

of Monte Carlo algorithms with reference to an option pricing problem.

3.3.2 Pricing Options Using Monte Carlo Simulations

As we have seen in Section 3.2, the underlying price evolution for a par-

ticular financial derivative follows the stochastic differential equation (3.10).

The solution to this equation is

S(T ) = S(0) exp[(r − 1

2
σ2)T + σW (T )]. (3.13)

In the above expression, S(0) is the known underlying price at time t = 0, σ

is its volatility and r is the risk-free interest rate. W (T ) is a random variable,

which is normally distributed with mean 0 and variance T . W (T ) can be

manipulated to become the distribution
√
TZ, where Z is a standard normal

random variable with mean 0 and variance 1. Substituting this back into the

Equation (3.13), we have

S(T ) = S(0) exp[(r − 1

2
σ2)T + σ

√
TZ]. (3.14)

Thus, we can compute the expected value of the discounted payoff10

E[e−rT (S(T )−K)+].

By using Monte Carlo simulations it is possible to approximate this expected

value. It can be proved that there is a correlation between the discounted

payoff and the option price, for more datails we refer to [G13].

Example 3.2. By using the Equation (3.12) it is possible to obtain the exact

price for a European Call Option with S(0) = 90, K = 100, r = 0.05, σ =

0.2 and T = 1. Therefore, the result is f(S, 0) = 5.0912.

In the numerical simulations we used two different approaches to price the

option. We reported the results in the tables in Figure 3.2. In the first imple-

mentation we directly compute the price at T = 1 (the expiration date). In

10It refers to the discount factor e−rT which consider the interest rate.
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Monte Carlo method without discretization
Number of simulation Price 99% confidence interval Computation time [s]
1000 4.8121 [4.0128, 5.6115] 0.0007
10000 5.0518 [4.7921, 5.3115] 0.0009
100000 5.0790 [4.9969, 5.1611] 0.0144
1000000 5.0811 [5.0550, 5.1072] 0.0838

Monte Carlo with discretization, ∆t = 0.01
Number of Simulation Price 99% Confidence Interval Computation Time [s]
1000 4.6645 [3.8904, 5.4386] 0.3779
10000 5.0952 [4.8381, 5.3523] 3.7425
100000 5.0751 [4.9920, 5.1581] 37.1450
1000000 5.0911 [5.0650, 5.1172] 374.3505

Figure 3.2: Option pricing by using Monte Carlo

the second framework we discretized the time interval into 100 sub-intervals

of the same length. In each node we used a Monte Carlo simulation. We con-

clude that the Monte Carlo method with discretization provides better results,

despite the high computational cost. In the tables we reported the 99% confi-

dence interval. This confirms the convergence of the Monte Carlo method. By

the law of large numbers, increasing the number of iterations, the confidence

interval is going to reduce.

Multi-Dimensional Case

Now, we want to apply the Monte Carlo algorithm to price an option

with many underlying assets. We consider d assets, each of them with value

Si(t), i = 1, · · · , d. The equation which describes the evolution of a single

stock price is

dSi(t) = Si(t)ri(S(t), t)dt+ Si(t)σi(S(t), t)TdW (t) (3.15)

W is a k-dimensional Brownian motion, each of σi is a Rk-valued vector and

ri is a real-valued function. We assume that both σi and ri are deterministic

functions and they depend on S(t) = (S1(t), S2(t), · · · , Sd(t))T . Itô calculus

gives us the solution to the Equation (3.15),

Si(T ) = Si(0) exp[(r − 1

2
σ2
i )T + σiWi(T )] (3.16)
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Wi(T ) is a k-dimensional Brownian motion for any i = 1, · · · , d, with mean 0

and variance T . We ideally would use, as well as in the one-dimensional case,

a standard Random Number Generation software to generate samples of each

Wi(T ). However, there is a problem. In the multi-dimensional case different

assets do not behave independently. On average, they tend to move up

and down together. This is modeled by introducing the correlation between

different Brownian motions. Hence,

E[Wi(T )Wj(T )] = Ωi,jT

where Ωi,j is the correlation coefficient. Let us see how to create correlated

normal random variables. Let x be a vector of independent N(0, 1) variables

and we define a new vector y = Lx. Each element of y is normally distributed,

with mean E[y] = LE[x] = 0 and variance

E[yyT ] = E[LxxTLT ] = LE[xxT ]LT = LLT .

Thus, in order to obtain E[yyT ] = Ω, we need to know L, such that

LLT = Ω.

L is not uniquely defined, we could use the Cholesky decomposition of Ω to

find it. Therefore, from a symmetric and positive-definite matrix (usually,

these conditions are satisfied by a generic correlation matrix) we can obtain

a lower-triangular matrix with a positive diagonal. Once we find L we can

construct a vector of normally distributed correlated variables. Hence, we

simulate the underlying Brownian motions and compute the expected value

of the discounted payoff.

The main issue of this method is that, almost always, we do not know the

correlation matrix of the assets. A way to solve this problem is to compute

the empirical covariance matrix of underlying assets and then compute the

associated correlation matrix. It is a time-consuming algorithm and the com-

plexity grows exponentially with the number of underlying assets. Moreover,

collecting and memorizing a massive number of data is quite difficult.
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Monte Carlo method on an option with 10 underlying assets
Number of Simulation Price 99% Confidence Interval Computation Time [s]
1000 5.7451 [1.1120, 10.3781] 0.2670
10000 5.0669 [3.6317, 6.5022] 2.5625
100000 4.9806 [4.5218, 5.4393] 26.3427
1000000 4.8644 [4.7198, 5.0090] 259.4046

Figure 3.3: Multi-dimensional option pricing using Monte Carlo

In the next example we use a correlation matrix which is randomly gener-

ated11. This example is useful to explain the multi-dimensional Monte Carlo

algorithm but it can not be considered as a real scenario.

Example 3.3. We consider a European Call Option with 10 underlying as-

sets. We assume that

S(0) = (S1(0), S2(0), · · · , S10(0)), Si(0) = 100, i = 1, · · · , 10

and σ = (0.4, 0.4, · · · , 0.4). The strike price is K = 150 and the interest rate

is r = 0.05. The results are reported in the table in Figure 3.3. In this case,

we do not know the exact option price. However, the law of large numbers

ensures the convergence of the method. Of course, the computation time is

much higher than in the one-dimensional case.

One of the main drawbacks of this algorithm is the necessity to provide a

correlation matrix a priori. Also the estimation of an empirical correlation

matrix may be difficult with a large number of assets.

3.3.3 Pricing Options Using Deep Learning

Previously, the conditions imposed on the market and the nature of

derivatives allowed us to obtain a solution to the Black-Scholes linear PDE.

This model can be modified in order to simulate a more realistic evolution of

the option price. The Black-Scholes model can be augmented for real mar-

ket fundamental factors. These include defaultable securities, higher interest

11For this purpose we use NumPy and Pandas that are two fundamental packages for
scientific computing with Python 3.
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rates for borrowing and lending, transaction cost, etc. Each of these exten-

sions return a nonlinear contribution in the final pricing model. Despite the

difficulties in approximating a solution to this kind of PDE, these nonlin-

ear integrations can be often indispensable in modeling real phenomena. In

particular, the credit crisis and the European sovereign debt crisis have high-

lighted the basic risk that has been neglected in the classical Black-Scholes

model, the default risk. Moreover, there is the “curse of dimensionality”

problem. This is typical of the financial derivatives with many underlying

assets. Therefore, there is no possibility to use standard numerical algo-

rithms. Monte Carlo simulations are unworkable due to the nonlinearity of

the model. The other numerical methods like FEM or Galerkin are impossi-

ble to use because of the high dimensionality.

In order to overcome these drawbacks we will use the Deep Learning-based

technique that we have introduced in Section 3.1. In this section we are going

to apply this new kind of method to a practical problem. We would like to

price a European Call Option based on 100 underlying assets, conditioned

to the default risk.

When default of the contract’s issuer occurs, the contract’s holder only re-

ceives a fraction of the current value δ ∈ [0, 1). In this case the (possible)

default is modeled by the first jump time of a Poisson process with intensity

Q. This is a decreasing function of the current value. In other words, the

default becomes more likely when the option value is low. Hence, the value

process can be modeled by (3.1) with the generator

f(t, x, v(t, x), 〈σ(t, x), Dxv(t, x)〉) = −(1− δ)Q(v(t, x))v(t, x)− rv(t, x)

where r is the risk-free interest rate of the assets. We assume that the

underlying asset price moves as a geometric Brownian motion. We then

select the intesity function Q as a piecewise-linear function of the current

value within three different intervals (wh < wl, γh > γl):

Q(y) = 1(−∞,wh)(y)γh + 1[wl,∞)(y)γl + 1[wh,wl)(y)[
(γh − γl)
(wh − wl)

(y − wh) + γh]
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The nonlinear Black-Scholes equation in [0, T ]× R100 becomes

∂v

∂t
+ b̄x · ∇v(t, x) +

σ̄2

2

d∑
i=1

|xi|2
∂2v

∂x2
i

(t, x)

− (1− δ − r) min{γh,max{γl, (γh − γl)
(wh − wl)

(v(t, x)− wh) + γh}}v(t, x) = 0

(3.17)

We choose T = 1, δ = 2/3, r = 0.02, b̄ = 0.02, σ̄ = 0.2, wh = 50, wl =

70, γh = 0.2, γl = 0.02 and terminal condition g(x) = min{x1, · · · , x100}
for x = (x1, · · · , x100) ∈ R100.

Regarding the neural network architecture we choose H = 4. Hence, the

number of hidden layers of each sub-network (i.e. the “vertical” neural net-

works in 3.1) is equal to 4. We notice that the first and the last layer of

these sub-networks have the number of neurons equal to the dimensionality

of the problem (100). Meanwhile, the second and the third layer have the

number of units equal to 110 (dim + 10). In this case, the learning rate is

heuristically set to 0.008. The batch size is 64 and the time interval of one

year is discretized into 40 equal sub-intervals.

In this framework the exact solution to the semilinear parabolic PDE is

not known (during the training, the error function is minimized with re-

spect to the known terminal condition). By using the Multilevel Picard

Approximation method to estimate the solution to (3.17) at t = 0 and

x = (100, · · · , 100), we obtain

v(t = 0, x = (100, 100, · · · , 100)) ≈ 57.300.

We use this approximation to compare the performances. The Multilevel

Picard algorithm uses standard estimation processes, like Monte Carlo sim-

ulations (on different accuracy levels12) and the Picard iterations algorithm.

The main difference between the Picard method and the other deterministic

methods (FEM, Galerkin, Finite Differences, etc.) is the computational cost.

12The multilevels.
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Figure 3.4: Activation Function: Sigmoid; Optimizer: Adam; Learning Rate
= 0.008; ∆t = 0.03; Maximum Number of Iterations = 3000; Batch Size =
64; v̄(0, (100, · · · , 100)) ≈ 56.3244.

In the deterministic case the cost grows exponentially with the dimension-

ality. Instead, in the Picard method the growth is polynomial. For more

details we refer to [HJK17].

Figure 3.4 shows the performances of the Deep Neural algorithm. The first

is the plot of the mean value and the standard deviation of the price approx-

imation for 5 independent runs. The second one is the error function plot

with respect to the same runs. In this first example we used the Sigmoid

as the activation function and the Adam algorithm to optimize the network

parameters. The results are good and the average of the computational time

is equal to 362.6 seconds. We compare this method with the RMSProp op-

timizer.

Figure 3.5 shows the results with reference to the RMSProp method. The

average of the computational time is 346.8 seconds. Let us notice that, over

2000 iterations, the results do not vary and the approximation is close to the

mean. The performances seem to be better than Adam.

We would like to reduce the computational cost. There are several ways to

do it. For example, we can use less iterations or less units per layer. In this

case the results may not be better. We try to reduce the number of time

nodes (hence, we also reduce the number of layers). Figure 3.6 shows the

results with reference to 5 independent runs on 10 time nodes. In this case

the computational time is 84.4 seconds. The random component seems to be

reduced. The standard deviation of the approximation and the error function
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Figure 3.5: Activation Function: Sigmoid; Optimizer: RMSProp; Learning
Rate = 0.008; ∆t = 0.03; Maximum Number of Iterations= 3000; Batch Size
= 64; v̄(0, (100, · · · , 100)) ≈ 57.0745.

Figure 3.6: Activation Function: Sigmoid; Optimizer: RMSProp; Learning
Rate = 0.008; ∆t = 0.1; Maximum Number of Iterations = 3000; Batch Size
= 64; v̄(0, (100, · · · , 100)) ≈ 56.4303.
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is minimized after 1000 iterations. The accuracy of the solution is reduced

too. With 40 sub-networks the average approximation is v̄40 ≈ 57.0745.

While, with 10 sub-networks is v̄10 ≈ 56.4303.

We notice that, without the default risk the option price is v(t = 0, x =

(100, 100, · · · , 100)) ≈ 60.781. In this case, the Black-Scholes model is linear

and it can be solved with a Monte Carlo method, as we have seen in Section

3.3.2. However, if we do not consider the default risk, the error could lead to

serious consequences.

For the above experiments we used the programming-language Python, by

using TensorFlow13, the open-source software library for Deep Learning pro-

gramming. All the numerical examples are run on a MacBook Pro with a

2.2 GHz Intel Core i7 processor and 16 Gb of memory.

13We used the implementation proposed by [WHJ17].
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Partial Differential Equations (PDEs) are the most important tool used

in modeling a large number of practical problems. From physics to financial

mathematics, the evolution models are based on PDEs in high-dimensional

spaces. However, solving these kind of PDEs is difficult due to the “curse

of dimensionality” problem. For this reason, many deterministic algorithm

(Finite Element Method or Finite Difference Method) are unfeasible. More-

over, if we apply the PDE-based model to a real phenomenon, then we must

consider some nonlinear factors (in the thesis we saw the default risk for

Black-Scholes equation). Therefore, we can not use probabilistic algorithms,

like Monte Carlo simulation, due to the nonlinearity of the problem.

In order to overcome these issues, we have presented a new algorithm, intro-

duced by [HJ17] and [WHJ17], that use Deep Learning techniques to solve

these kind of problems. Numerical results suggest that the proposed algo-

rithm is quite effective for a variety of real problems, especially in terms of

accuracy. We can approximate the solution to a high-dimensional nonlinear

PDE without knowing the correlation matrix.

However, there is some restrictions for this new algorithm due to the execu-

tion time and the computational cost. The most obvious drawback is that

the number of parameters involved in the deep neural network grows with

the number of points N , used to discretized time. This leads to an high com-

putational cost. There are some improvements that can be implemented, for

example we can use a different Neural Network architecture. Recurrent Neu-

ral Networks, attempting to imitate the brain’s long and short-term memory,

work well if we investigate the phenomena that have a temporal evolution.

Furthermore, the algorithm mentioned above can be extended to second order
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nonlinear PDEs [BJ17]. In this case we use the Deep Learning to approxi-

mate the Hessian of the solution.

In recent years, Machine Learning techniques have had a big improvement

both in theoretical and empirical aspects. By using these kind of algorithms

we have the advantage of knowing that this topic is constantly growing.



Appendix A

Useful Results

Theorem A.0.1 (Martingale Representation Theorem).

Let Wt be a Brownian motion on a filtered probability sapce (Ω,F ,F, P ) and

F be the natural filtration associated to W . Then, every square integrable

martingale (Mt)0≤t≤T can be written in the form

Mt = M0 +

∫ t

0

ZsdWs

with (Zt) ∈ H2(0, T ) predictable process.

This theorem can be naturally extended to the case that W is a vectorial

Wiener process.

Theorem A.0.2 (Doob’s Martingale Inequality).

Let M = (Mt)0≤t≤T be a submartingale taking non-negative real values, either

in continuous or discrete time. Then, for any constant λ > 0 and for all

p > 1,

P

[
sup

0≤t≤T
|Mt| ≥ λ

]
≤ E[|MT |]

λ

E

[
sup

0≤t≤T
|Mt|p

]
≤
(

p

p− 1

)p
E[|MT |p].
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Theorem A.0.3 (Burkholder-Davis-Gundy Inequality).

For all p > 0, there exist two positive constants cp and Cp such that, for each

local continuous martingale M = (Mt)0≤t≤T , it holds:

cpE[
〈
M
〉p/2
T

] ≤ E

[
sup

0≤t≤T
|Mt|

]p
≤ CpE[

〈
M
〉p/2
T

].



Appendix B

Generalization Theory

In the last few years a new modern theory has been developed about

Deep Learning. This tries to explain not ”how” a Machine Learning algo-

rithm works but ”why”. This is an interesting question also because these

kind of models are similar to black-boxes and their capacity is often com-

pared to an alchemical result. The Generalization Theory that explains

why Deep Learning generalizes so well. In this section we will discuss most

recent theoretical and empirical advances in this particular field.

The first topic of study was dealt within the context of Generalization The-

ory and it concerns the theoretical base for the problem of generalization

accuracy. Why if we improve accuracy during the training, we have better

performance in the testing?1 A quantity that measures the difference be-

tween the training accuracy and the test accuracy is the Generalization

Error or “Generalization Gap”. More rigorously, Generalization Gap can

be defined as

EGen := R[fA(Sp)]− R̂p[fA(Sp)]

where R is the non-computable expected risk. This is the expectation of the

loss function. Whereas R̂ is the computable empirical risk. Both risks refer

to a function f on a dataset Sp given a learning algorith A. Essentially, if we

bound the Generalization Error with a small value it would guarantee that

1We recall that in a classification problem, the accuracy is a metric for evaluating the
model. Informally, it is the percentage of data correctly classified on the total number of
elements.
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Deep Learning algorithm f generalizes well in practice. Multiple theoreti-

cal bounds exist for the Generalization Gap and they are based on model

complexity, robustness and stability. For a classical approach we refer to the

paper about Statistical Learning Theory [V13]. Informally, Statistical Learn-

ing Theory is a field of Machine Learning that uses statistical arguments to

improve the automatic learning performances.

More recently a method that can analyzes the theoretical bound of the Gen-

eralization Gap has been developed, by using the optimization algorithms

that we saw in Section 2.3.3. Previously, we have seen some variations of the

Stochastic Gradient Descent (SGD) method. Now we analyze its generaliza-

tion capacity.

In a recent paper [KL17] it has been proved that SGD method is an on-

average stable2 algorithm under some additional conditions on the loss func-

tion. These conditions are fulfilled in commonly used loss functions in Neural

Networks, like Sigmoid or Hyperbolic Tangent . It was proved that the follow-

ing inequality is true for non-convex functions as in Deep Neural Networks.

E[R[fA(Sp)]− R̂p[fA(Sp)]]

≤ O
(

1 + 1
cξ

p
·max

{(
E[R̂p[fA(Sp)]] ·N

) cξ
1+cξ

, (
N

p
)(cξ)

})
.

(B.1)

Where p is the training set size, N is the number of iterations and ξ char-

acterizes how the curvature at the initialization point of the SGD method

affects the stability. If ξ is small, then the algorithm stability is great. Thus,

the SGD results are less affected by small perturbations in the training set.

Therefore, we can reach a faster generalization. Moreover, the above in-

equality shows that the greater the training set size (p� 1), the smaller the

generalization gap.

As we can see by (B.1), another important parameter is the batch size m.

Informally, a small batch training introduces noise to the gradient and this

noise drives the SGD away from sharp minima. Thus, enhancing general-

2Stability, in this case, means how sensitive is SGD to small perturbations in the
training set.
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ization. It was proved3 that the optimum batch size is proportional to the

learning rate and the training set size. Instead of decaying the learning rate,

we can obtain the same results by increasing the batch size during the train-

ing. This procedure is successful for SGD, Momentum and Adam. In the

SGD methods with momentum it is possible to express these observation by

γp

m(1− α)
= constant

where γ is the learning rate, α is the momentum, p is the training set size

and m is the batch size.

These results can confirm that Deep Learning is far from being called “Alchemy”.

The theoretical study that we have shown has to support the software devel-

opment and empirical experience, in order to achieve better results with the

best performances.

3[SL18]
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