Studying the alignment of 5-cyanobiphenyl on a polydimethylsiloxane surface through Molecular Dynamics simulations

Babbi, Matteo (2018) Studying the alignment of 5-cyanobiphenyl on a polydimethylsiloxane surface through Molecular Dynamics simulations. [Laurea magistrale], Università di Bologna, Corso di Studio in Chimica industriale [LM-DM270], Documento ad accesso riservato.
Documenti full-text disponibili:
[img] Documento PDF (Thesis)
Full-text non accessibile fino al 9 Febbraio 2023.
Disponibile con Licenza: Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0

Download (3MB) | Contatta l'autore

Abstract

For 40 years, at the University of Bologna, a group of researchers coordinated by professor Claudio Zannoni has been studying liquid crystals by employing computational techniques. They have developed effective models of these interesting, and still far from being completely understood, systems. They were able to reproduce with simulations important features of some liquid crystal molecules, such as transition temperature. Then they focused their attention on the interactions that these molecules have with different kinds of surface, and how these interactions affect the alignment of liquid crystals. The group studied the behaviour of liquid crystals in contact with different kinds of surfaces, from silica, either amorphous and crystalline, to organic self assembled monolayers (SAMs) and even some common polymers, such as polymethylmethacrylate (PMMA) and polystyrene (PS). Anyway, a library of typical surfaces is still far from being complete, and a lot of work must be done to investigate the cases which have not been analyzed yet. A hole that must be filled is represented by polydimethylsiloxane (PDMS), a polymer on which the interest of industry has enormously grown up in the last years, thanks to its peculiar features, allowing it to be employed in many fields of applications. It has been observed experimentally that PDMS causes 4-cyano-4’-pentylbiphenyl (well known as 5CB), one of the most common liquid crystal molecules, to align homeotropically (i.e. perpendicular) with respect to a surface made of this polymer. Even though some hypothesis have been presented to rationalize the effect, a clear explanation of this phenomenon has not been given yet. This dissertation shows the work I did during my internship in the group of professor Zannoni. The challenge that I had to tackle was to investigate, via Molecular Dynamics (MD) simulations, the reasons of 5CB homeotropic alignment on a PDMS surface, as the group had previously done for other surfaces.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Babbi, Matteo
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
CHIMICA INDUSTRIALE
Ordinamento Cds
DM270
Parole chiave
PDMS 5CB MD simulations
Data di discussione della Tesi
12 Ottobre 2018
URI

Altri metadati

Gestione del documento: Visualizza il documento

^