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Abstract

The amount of turbulent pressure support residual gas motions at the periphery of
galaxy clusters is not well known. Direct (e.g. X-ray Doppler shift) or indirect
(e.g. X-ray brightness fluctuations, radio halo emission or Faraday Rotation) prox-
ies of turbulence are not effective at the periphery of galaxy clusters. On the other
hand, the presence a significant non-thermal pressure support in galaxy clusters on
large scales is suggested by the mass modelling of combined X-ray and Sunyaev
Zel’dovich observations. Cosmological simulations may help estimating this bud-
get, yet in the literature a still wide range of estimates (from a few percent to half
of the gas pressure) is typically found, depending on the specific procedure to dis-
entangle bulk from random turbulent motions. In this Thesis, we tested different
operative choices for the filtering of laminar and bulk gas motions from simulated
datasets, and we produced new analysis of turbulence in galaxy clusters with a large
catalog of cluster simulations using the adaptive mesh refinement code ENZO.
Several methods have been produced in the literature to extract turbulence in the
simulated intracluster medium, and in this Thesis we have explored the application
of different filtering scales for the velocity field, exploring the range from 60 to 600
kpc, in order to robustly tell laminar from turbulent motions apart. Moreover, since
shocks can introduce spurious terms in the non-thermal pressure, so to avoid these
terms, we apply a tailored shocks finding algorithm to minimise their contribution
to the estimated turbulent budget.
We mostly focused on the ratio of non-thermal pressure versus total pressure (ther-
mal and non-thermal pressure) and its dependence with the distance from the cen-
ter of the cluster, finding that the radial behavior is well described by a simple
polynomial formula. The typical non-thermal pressure support we measured in the
center of cluster is∼0.1%-5% (depending on the filtering scale), while this reaches
∼0.5%-10% within the same range of spatial scales for the filtering. We have also
compared our results with recent numerical and observational literature. In partic-
ular, from the comparison with Nelson et al. (2014), we found that the different
definition of turbulent velocity generates very different amount of turbulent sup-
port. As we also discussed in a related paper (Vazza et al., 2018, in press) previous



techniques overestimate the turbulent pressure by a factor 2 or 3, while from the
fitting procedure which we used, we found that our fitting formula is more statisti-
cally significant than the Nelson’s model.
In the paper by Eckert et al. (2018) estimates of the non-thermal to total pressure for
a sample of 13 galaxy clusters observed with XMM-Newton have been reported,
at R500 and R200. Our results allow us to compare with these latest estimates, and
assess which turbulent spatial scale best reproduces the observed trends.
We have also studied the relation between the ratio of non-thermal pressure versus
total pressure at R200 and smoothing scale, in order to test whether the ”standard”
relation between rms velocity and turbulent scale (e.g. σ2 ∝ L

2
3 ) based on Kol-

mogorov theory also holds for our data. We found an overall close match to the
Kolmogorov model, with differences related to the fact that the power spectra of
the velocity field in simulated galaxy cluster are typically steeper than 5

3 , because
of the stratified cluster atmosphere.
We also studied the relations between non-thermal support and cluster’s mass or
dynamical state. In particular, these study have shown that there are not any strong
correlations between these quantities. We conclude that our no complete mass se-
lection of the sample affect the study of any possible correlation. However, we
found that the X-ray morphological parameter ’c’ and ’w’ shown different behav-
ior. In particular, the first is a weak indicator of turbulence in the innermost region
of the cluster, but it could not be used as an indicator of turbulent motions in the
outskirts. Indeed, ’w’ parameter is a weak indicator of turbulent motions at most
radii.
Some of the key results of this Thesis are already part of a work which is submit-
ted (Vazza et al., 2018, in press) and will be further documented in a dedicated
scientific paper (Angelinelli et al., in prep.).



Sommario

La quantità di pressione assocciata ai moti residui turbolenti del gas nelle re-
gioni esterne degli ammassi di galassie non è ben nota. Osservazioni dirette (e.g.
Doppler shift dei fotoni X) o indirette (e.g. fluttuazioni della brillanza X, emis-
sione degli aloni radio o effetti della rotazione di Faraday) non riescono ancora a
caratterizzare la pressione turbolenta nelle zone più periferiche degli ammassi. Da
modelli combinati di osservazioni in banda X e Sunyaev Zel’dovich, dai quali è
possibile ricavare la massa degli ammassi, emerge la necessità di una componente
non termica alla pressione del gas. Le simulazione cosmologiche possono essere
usate per determinare l’intervallo in cui questo contributo non termico (da pochi
percento fino a circa il 50% della pressione totale) può variare, ma tale intervallo
è fortemente dipendente dalle procedure colle quali si filtrano i moti turbolenti e i
moti laminari. In questa tesi, abbiamo testato diverse scelte operative di questi fil-
traggi con un campione di ammassi simulati e generati usando il codice con griglia
adattiva ENZO.
In letteratura sono presenti diversi metodi di estrazione dei moti turbolenti dal
mezzo intracluster simulato, e in questa tesi abbiamo studiato gli effetti di un fil-
traggio a diverse scale del campo di velocità, con filtri da 60 a 600 kpc, in modo da
avere una definizione robusta di moti turbolenti e moti laminari. Inoltre, anche gli
shocks possono introdurre nel mezzo una componente di pressione non termica e
quindi per escludere termini spuri alla pressione turbolenta, abbiamo applicato un
algoritmo per l’identificazione e la rimozione dei contributi aggiuntivi degli shock
all’energia cinetica turbolenta.
In particolare abbiamo incentrato il nostro studio sul rapporto pressione non ter-
mica su pressione totale (la somma di pressione termica e non termica), e stu-
diandone l’andamento radiale. Abbiamo trovato che questo è ben descritto da una
semplice funzione polinomiale. I valori tipici del contributo non termico nel cen-
tro degli ammassi si attestano tra ∼0.1% e 5% (con una dipendenza dalla scala di
filtraggio scelta), mentre raggiungono ∼0.5%-10% nelle zone più esterne (con la
stessa dipendenza dalla scala di filtraggio). Abbiamo inoltre confrontato i nostri
risultati con lavori presenti in letteratura, sia con risultati derivanti da osservazioni



che da simulazioni. In particolare, dal confronto con Nelson et al. (2014) abbiamo
notato che la diversa definizione di moti turbolenti genera risultati molto differenti
nel contributo non termico alla pressione. Abbiamo anche discusso nell’articolo
Vazza et al. (2018, in press) come le tecniche precedentemente usate sovrastimino
la pressione turbolenta di un fattore 2 o 3, mentre dal confronto statisco tra il nostro
modello e quello di Nelson applicato al nostro campione, è emerso che il modello
da noi proposto è statisticamente più significativo.
Nell’articolo di Eckert et al. (2018) viene stimato il rapporto tra la pressione non
termica e quella totale a R500 e R200 per un campione di 13 ammassi osservati con
XMM-Newton. Abbiamo usato questi risultati per determinare quale scala di fil-
traggio da noi usata meglio riproduce i dati osservati.
Abbiamo anche studiato la relazione tra la pressione non termica e totale calcolata
a R200 e la scala di filtraggio, per verificare se la relazione ’standard’ tra dispersione
di velocità e scala turbolenta (e.g. σ2 ∝ L

2
3 ) derivata dalla teoria di Kolmogorov

è applicabile ai nostri dati. Abbiamo verificato che le previsioni attese dalla teoria
sono state rispettate, trovando tuttavia come lo spettro di potenza del campo di ve-
locità negli ammassi di galassie simulati sia più ripido del valore 5

3 previsto dalla
teoria di Kolmogorov, a causa della stratificazione in densità del mezzo intraclus-
ter.
Abbiamo quindi studiato le relazioni tra supporto non termico alla pressione e
massa o stato dinamico degli ammassi. In particolare, abbiamo trovato che non
ci sono forti correlazioni tra le quantità studiate. Abbiamo concluso che il fatto di
non avere un campione completo in massa rende difficile studiare a fondo queste
dipendenze. Abbiamo però potuto esplorare la dipendenza della turbolenza da due
parametri morfologici usati nelle osservazioni X, i parametri ’c’ e ’w’. Questi
parametri mostrano un comportamento nettamente diverso tra loro. Il parame-
tero ’c’ è un indicatore debole di turbolenza nelle zone più centrali degli ammassi,
ma non può essere utilizzato come estimatore di pressione turbolenta nelle regioni
esterne. Il parametro ’w’, invece, è un indicatore debole di turbolenza in tutta
l’estensione dell’ammasso.
Alcuni dei risulati trovati in questa tesi sono già parte di un articolo che è stato
sottomesso (Vazza et al., 2018, in press), ed altri saranno parte di un articolo scen-
tifico interamente dedicato a tutti gli argomenti trattati in questa tesi (Angelinelli
et al., in prep.).
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Chapter 1

Introduction

In this first chapter we analyses the role of galaxy clusters in cosmological context
and we make a brief introduction of the basics mechanisms that they are typical of
large scale structures formation.

1.1 Clusters of galaxies in a cosmological context

In this section we describe the modern cosmological scenario and the importance
of galaxy clusters in cosmology. We follow the review by Planelles et al. (2015)
and the references therein.
The current hierarchical paradigm of structure formation is set within the spatially
flat Λ-Cold Dark Matter model (ΛCDM) with a cosmological constant. In this
paradigm the Universe, whose age is estimated to be 13.8 Gyr, is composed of dark
energy (ΩΛ ≈0.7), dark matter (ΩDM ≈0.25) and baryonic matter (Ωb ≈0.05),
with a Hubble constant given by H0 ≈67 [km s−1 Mpc−1].
In the hierarchical paradigm of structure formation, the massive objects like galax-
ies and galaxy clusters are formed through accretion and mergers. The first objects
which are formed in early Universe, from redshift 30 to 10, are believed to be mas-
sive isolated stars of about ∼100-300 M�. The formation sites of these stars are
mini halos of dark matter with masses in a range between ∼105-108 M�.
Galaxy clusters, the largest and most massive objects in our Universe, formed from
the smaller units into a sequence of mergers. A simplistic and commonly accepted
model is the self-similar model by Kaiser (1986) which is based on Einstein-de
Sitter background cosmology and a power law shape for the power spectrum of
primordial density fluctuations. As result of this model we obtain the self-similar
relations which describe the intra-cluster medium and which will be investigated
in section 1.3.2. However, the full description of cluster formation requires de-
tailed modeling of the nonlinear processes of collapse and the dissipative physics

1
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of baryons.
The study of galaxy clusters is fundamental to understand some cosmological is-
sues and to compute the values of some cosmological parameters in a way comple-
mentary to other astrophysical probes (e.g. high redshift supernovae and cosmic
microwave background). In particular, the abundance and spatial distribution of
clusters are useful to have information about the background cosmology, gravity
law, and initial conditions, while the nearly closed-box nature of cluster gravita-
tional potentials makes it possible to study the processes operating during galaxy
formation and their effects on the surrounding intergalactic medium.
The fundamental role of clusters in the cosmological context is also highlighted by
future space missions. As described in Sartoris et al. (2016) the space mission Eu-
clid, whose launch is scheduled for 2021, will enable to identify photometrically
more than one million clusters, of which about half a million of which redshift
higher than 1 and ∼2000 with redshift greater than 2. The fundamental quan-
tity use as cosmological probes is cluster mass. Using the effects of gravitational
lensing, the number counts and the total luminosity of the galaxies in the clusters
and their velocity distribution, it will be possible to calibrate the relations mass-
dependent with excellent precision (∼10%) down to redshift ∼1.5. The Euclid
mission therefore has the power to determine the fundamental cosmological con-
stants with excellent precision and therefore to define which model best describes
our Universe.

1.2 Observational features

Now we summarize the principal observational features obtained from optical, X-
ray and radio band observations and Sunyaev-Zel’dovich effect (SZ effect).

• Optical band: in this band the radiation is dominated by the Black Body
emission of the stars within galaxies. This emission is described by Plank’s
law. In particular, it is possible to study the radial velocity of the galaxies and
the interactions between galaxies (e.g. ram pressure stripping, high speed
galaxy encounters, tidal stripping and etc.). Other possible studies are the
galaxy morphological distribution (e.g. how many early type or late type
galaxies are confined in the cluster) and the evolution of the galaxies in a high
density environment. A further phenomenon that can be studied in this band
is gravitational lensing. Photons from a source placed beyond the cluster
are deflected by the cluster’s gravitational field. The cluster therefore acts as
a gravitational lens and through the study of lensing maps it is possible to
determine the mass of the cluster with considerable precision;
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• X-ray band: in this band there are mainly two emission mechanisms. The
first is the thermal bremsstralung, whose X brightness depends on the tem-
perature and density of the gas. The second is the lines emission of metals,
which emit at specific energies (e.g. the FeXV fluorescence line Kα at 6.4
keV). From the observations in this band it is possible to derive density and
temperature profiles of the ICM gas and to study the broadening of the metal
lines, which give us information on the velocity fields of the gas. Thanks
to the broadening of the metal lines, it is in principle possible to study the
turbulence in the ICM medium observably, but a high spectral resolution is
required, which is presently difficult to achieve in this band. From the obser-
vation of the density, temperature and entropy profiles, it has been possible
to infer the ’Cooling flow problem’ and the distinction between cool-core
clusters (CC) and no cool-core ones (NCC). CC clusters have density peak
in the central areas. Their profile is well described by the double β-model,
an empiric fit which, however, does not explain the origin of this peak. Fur-
thermore, these clusters have a drop in the temperature profile. From the
observed density peak, CC clusters are thought to be relaxed systems that do
not undergo major mergers from some Gyr. The NCC clusters are instead
associated with recent merger phenomena and are believed to be more tur-
bulent systems. The cooling flow problem is stems from the fact that for too
large gas density, the gas in the center of many galaxy clusters should have
radiated away most of its energy in a Hubble time. This motivated the idea of
feedback mechanisms. In fact, it is expected from the theory that in the cen-
ter of the cluster a considerable quantity of gas is observed at temperatures
below 104K, but from the observations, it has never been detected. To date,
the main candidate is AGN feedback, a self-regulated mechanism which al-
ternates cooling and heating phases (see Brighenti & Mathews, 2002; Gas-
pari et al., 2011, 2018, for details). There are some morphological parame-
ters in this band (e.g. ’w’ centroid shift and ’c’ concentration which will also
be used in this thesis in section 4.4.2), which are used to distinguish relaxed
and perturbed clusters. A more detailed overview of the properties of the
ICM in galaxy clusters is given in the next section;

• Radio band: in this band the observed radiation is dominated mainly by syn-
chrotron radiation. Synchrotron emission occurs when a relativistic electron
coils around the lines of a magnetic field. Assuming a distribution of the en-
ergy for the individual electrons proportional to E−δ, where δ is derived from
the energy spectrum of cosmic rays, the total synchrotron emission spectrum
is described by a power law. In galaxy clusters we can observe radio emis-
sion typically from three classes of objects: relics, halos and mini-halos.
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The first are located in the periphery of the clusters, and generally elongated
shape in a direction perpendicular to the radial direction. The magnetic field
of these objects is oriented along their major axis and they present polarized
radiation. They are used as major merger tracers. The halos are cluster scale
objects (∼ 1Mpc), at the center of the merging cluster, with a regular shape
and without optical counterpart. They are not associated with galactic ac-
tivities, they have low surface brightness and low polarization and they are
associated with merger clusters. Mini-halos have a size comparable to the
cooling radius of clusters (∼ 100-500 kpc), with low surface brightness, low
polarization and no optical counterpart. However, they are not ’small’ halos
because they are not associated with merger events, but they are observed in
cool-core clusters, or relaxed objects. They are probably the result of AGN
feedback because the central BCG is always observed in their center;

Figure 1.1: X-ray emission in red (XMM-Newton), radio emission at 323 MHz in
blue (low resolution, beam FWHM ∼ 22′′×18′′) by Bonafede et al. (2014)

• SZ effect: this effect was proposed by Sunyaev & Zeldovich (1970). The
thermal-SZ effect is caused by the inverse-Compton scattering between the
thermal free electrons of the Intra Galactic Medium (IGM) (105–108K) and
Cosmic Microwave Background (CMB) photons (∼K). Photons gain energy
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causing a distortion of the of Black Body (BB) spectrum of the CMB. The
following picture shows how the spectrum is modified by the thermal SZ
effect.

Figure 1.2: Original figure by Sunyaev & Zeldovich (1980). In solid line is shown
the original CMB spectrum, while in dashed line is shown the spectrum after a
multiple Compton scattering (i.e. the thermal SZ effect)

For a given direction in the sky, the distortion of the BB spectrum can be
calculated as a function of the observational frequency and of the thermo-
dynamical conditions of the gas along the line-of-sight. This effect is fully
described by the dimension-less Compton y-parameter, which is defined as:

y ≡ kbσt
mec2

∫
neTedl

where the ’e’ subscript we indicate electron quantities, kb is the Boltzmann
constant, σt is the Thomson cross section and c is the light speed. In order
to use the SZ effect, we define two quantities derived from the parameter y
which make the observations independent of distance. These quantities are:

Y ≡
∫

Ω
ydΩ
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Υ ≡ d2
AY

With these definitions we passed from y which is a superficial brilliance, to
Y (Integrated y-parameter) which is defined as a flow and we have arrived
at Υ (Intrinsic y-parameter) which is a luminosity. In this way a distance
independent measurement can be obtained. The SZ effect is used to study
high-z clusters, as it is independent of redshift, determine cluster mass and
baryon content, and the outskirts regions of clusters can also be studied.
In recent years, the Planck Satellite provided fundamental insight on the
cosmological and physical properties of galaxy clusters, observed via the SZ
effect (e.g. Planck Collaboration et al., 2011, 2013)

1.3 ICM: Intra Cluster Medium

The Intra Cluster Medium (ICM) is plasma that permeates galaxy clusters. This
plasma is heated to temperatures from 106 to 108 K and it is dectable through
X-ray observations. It radiates energy through bremsstralung, a process that it is
proportional of temperature.
In order to study the physics of this plasma is useful to introduce the basis of
our treatment: the Virial theorem, the self-similar scaling relation, the hydrostatic
equilibrium.

1.3.1 Virial Theorem

In classical mechanics, the virial theorem binds the temporal mean of the kinetic
energy and the potential energy of a stable system of N particles confined in a
limited region of space. This can be applied to the study of galaxy clusters. The
first formulation of this theorem is attributed to Clausius (1870).
To prove this theorem we start from the case of single particle of mass m, that is
identified by position vector ~r and subject to conservative force ~F. We indicate
with T its kinetic energy, we define A as follows and we calculate its temporal
derivative:

A = m~v ·~r
dA

dt
= m

d~v

dt
·~r + m~v · d~r

dt
=

= m~a ·~r + m v2 =

= ~F ·~r + 2T

(1.1)

F is a conservative force, ~v ·~r, A, T and v2 are limited. The temporal mean of
dA
dt tends to zero because:
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〈dA

dt

〉
= lim

τ→∞

1

τ

∫ τ

0

dA

dt
dt =

= lim
τ→∞

1

τ

∫ A(τ)

A(0)
dA =

= lim
τ→∞

A(τ) − A(0)

τ
= 0

From the result just found and obtaining the time average of the equation 1.1
we found a relation between 〈T〉 and 〈~F ·~r〉:

〈T〉 = −1

2
〈~F ·~r〉

The amount that equals 〈T〉 is called virial of the particle.
In the case that F is a central conservative force, we can write the previous equation
of function of T and the potential U(r):

~F = −r̂
dU

dr

〈T〉 =
1

2
〈rdU

dr
〉

If U is Coulomb attractive potential we obtain:

〈T〉 = −1

2
〈U(r)〉 (1.2)

1.2 relates the temporal mean of kinetic energy and the temporal mean of po-
tential energy of the particle.
We now investigate the case of multiple particles. We define mi and ri as the mass
and position of the i-th particle, the force must be divided in internal force ~Fi,j

(where j identifies a particle different from i) and external force ~Fext
i . Similar to

the case of a single particle, by introducing the summation on all the particles that
form the system, we obtain a form for 〈T〉:

〈T〉 = −1

2

〈∑
i

~Fext
i · ~ri +

∑
i<j

~Fi,j · ~ri,j

〉
We now define the average work of internal and external force and we get the

final definition of 〈T〉:
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〈Lext〉 =
〈∑

i

~Fext
i · ~ri

〉
〈Lint〉 =

〈∑
i<j

~Fi,j · ~ri,j

〉
〈T〉 = −〈L

ext〉 + 〈Lint〉
2

Gas subject to a field of central external forces, such as the ICM case confined
by the cluster’s gravitational potential, the contribution of internal forces is null
and the formula above:

〈T〉 = −1

2
〈U〉 (1.3)

where now T is the total kinetic energy of the system and U is the total potential
energy described by the summation

∑
i U(ri).

In the following, we will see how this model can be extended to the case of "mi-
croscopic" kinetic energy (i.e. gas temperature) in the case of a collisional gaseous
atmosphere.

1.3.2 Self-similar scaling relations

For the presentation of the scale laws and their function in relation to our work, we
referred to the review Gitti et al. (2012) and the references therein.
Considering the formation of cosmological structures as a process originated from
scale-free density and the thermodynamical properties of the ICM determined by
gravity alone, as presented in the work by Kaiser (1986). Under these assumptions,
galaxy clusters of different masses may be considered as a scaled version of each
other.
This last statement is based on the fact that considering the proportionality between
the total density ρ and the average density of the universe to given redshift, defining
the parameter of overdensity ∆ and the average density ρc,z as:

ρc,z =
3H2

z

8πG
(1.4)

∆ =
ρ

ρc,z
(1.5)

Where H2
z is the definition of Hubble constant for a Universe ΛCDM:

H2
z = H0

√
Ωm(1 + z)3 + ΩΛ = H0E(z) (1.6)
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We obtain that all the clusters have the same properties if rescaled for ∆, factor
of overdensity.
M∆ and R∆ as the mass and the radius at the critical density ∆, we obtain the first
relation, which relates precisely mass and radius:

M∆ ∝ ρc,z ·∆ · R3
∆

M∆ ∝ ρc,0 · E(z)2 ·∆ · R3
∆

R ∝ M
1
3 · E(z)−

2
3 (1.7)

where the relation 1.7 is the so-called ’M-R relation’.
If we assume that the collapse of the gas inside the potential well is slow, it is
regulated by the Virial equilibrium. We can relate the infall velocity and the tem-
perature of the gas, applying the relations obtain by the Virial theorem (1.8) and by
the kinetic theory of the gas (1.9):

m v2 =
G M m

rvir

v2 =
G M

rvir

(1.8)

ρ v2 ∝ ρ

mp µ
k T

v2 ∝ k T

mp µ

(1.9)

Combing the previous relations, we obtain the following equation that which
allows us to calculate the virial temperature of the cluster:

Tvir =
G M µ mp

k rvir
∼ 108[K] (1.10)

where M is the total mass and rvir is the virial radius.
The temperatures that are reached are so high that the gas emits in the X band.
Recalling that that the brightness in this band is directly proportional to the square
of the density, we obtain a sphere at hydrostatic equilibrium, for which we obtain
the relationship between virial temperature and mass:

kT ∝ M

R
∝ M

2
3 · E(z)

2
3

M ∝ T
3
2 · E(z)−1 (1.11)
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where the relation 1.11 is the so-called ’M-T relation’.
However, it is more useful to relate mass and temperatures with observable quan-
tities. It is possible to relate brightness to the density of the gas:

Lx ∝ ρ2 · Λ ·V

ρ is the average density of the gas and it is possible to consider it as a tracer for
the dark matter density:

ρ ∝ ρDM ∝ ρc,z

Λ is the cooling function that for the temperatures we are considering it is
dominated by the bremsstralung and it is proportional to square root of temperature.
Under these assumptions:

Lx ∝ ρ · T2 ·M

Lx ∝ ρ0 · E(z)2 · T
1
2 ·M

Lx ∝ E(z)2 · T
1
2 T

3
2 · E(z)−1

Lx ∝ T2 · E(z) (1.12)

where the relation 1.12 is the so-called ’L-T relation’.
By combining the 1.11 and 1.12 we obtain:

Lx ∝ (M
2
3 · E(z)

2
3 )2 · E(z)

M ∝ Lx
3
4 E(z)−

7
4 (1.13)

where the relation 1.13 is the so-called ’M-L relation’.
This relation suggests that the assumption of collapse guided by gravity alone is not
entirely correct and the model must be modified to consider phenomena that alter
the formation of the structure (e.g. resiudal gas motions, feedback from galaxies,
etc.).
In particular works like Ettori et al. (2004) suggest that the ’L-T relation’ is much
steeper than the self-similar predictions, changing the index of T from 2 to 2.5-3.
This behavior requires a modeling that considers non-gravitational phenomena.
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1.3.3 Hydrostatic model

The sound speed is:

cs
2 =

γ k T

µ mp

where γ = 5
3 for a monatomic gas, hence we define the sound crossing time ts

as:

ts = 6.6 · 108

(
T

108 K

)− 1
2
(

D

1 Mpc

)
[yr]

where D is the cluster’s diameter.
First approximation we can considered the cluster age of the order of 1010 year
and we note that the ts is shorter than cluster age. We can therefore apply the
hydrostatic equilibrium to model the ICM profile.
This model assum that the gas is in hydrostatic equilibrium in the gravitational
potential of the cluster and the pressure gradient is determined by:

∇p = −ρ ∇φ (1.14)

where φ is the gravitational potential of the cluster and p is the gas pressure
and it is defined as:

p =
ρ k T

µ mp

If we assume that the gas is homogeneous and the cluster is spherically sym-
metric, the equation 1.14 reduces to:

1

ρ

dp

dr
= −dφ

dr
= −G M(r)

r2
(1.15)

where r is the radius from the cluster center and M(r) is the mass within r.
From the equation 1.15 and assuming T=T(r) and φ=φ(r), we can estimate the total
mass of the cluster within r from the following equation:

Mtot(< r) = − k T r

G µ mp

[
dlnρ

dln r
+

dlnT

dln r

]
(1.16)

The equation 1.16 is used to estimate the cluster total mass from X observation,
from which is possible to obtain density and temperature radial profiles.
Both results obtained with simulations (Rasia et al., 2006; Piffaretti & Valdarnini,
2008) and observational tests (Voigt & Fabian, 2006; Ghirardini et al., 2017) show
how the hydrostatic model underestimates the cluster total mass. This suggests the
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need to introduce non-thermal pressure terms and to consider the ICM as a non-
equilibrium gas.
An application of hydrostatic model was proposed in Cavaliere & Fusco-Femiano
(1976). In this work the authors hypothesize that gas and galaxies are in equilib-
rium in the same gravitational potential and using the King’s approximation for
the galaxies distribution (King, 1962), they obtain the so-called ’β model’. In this
model the density profile is written as:

ρ(r) = ρ0

[
1 +

(
r

rcore

)2
]− 3

2
β

where the parameter β is defined as:

β = σ2
r ·
µ mp

k T
(1.17)

where σr is the line-of-sight velocity dispersion and represents the ratio of spe-
cific kinetic energies of galaxies and gas. Using the equation 1.17 is possible to
obtain the following analytic form to calculate the cluster total mass:

Mtot(< r) =
k r2

G µ mp

[
3 β r T

r2 + r2
core

− dT

dr

]
(1.18)

This model still presents issue, particularly in the description of the cool-core
cluster, clusters that exhibit peculiar behaviors in the innermost region of their vol-
ume.
Because of the importance of mass estimation for cosmology, it is necessary for
the models to be able to give the most accurate predictions. It is therefore neces-
sary to understand non-gravitational terms, such as AGN contributions or turbulent
motions, which will be in the next chapter.



Chapter 2

Turbulence

In the previous chapter we have shown that simplistic models based on the hydro-
static equilibrium of the ICM are not good enough to explain the variety of dynam-
ical processes observed in X-ray and radio waves. Therefore, it is useful also to
include a description of what residual gas motions (naturally produced by a num-
ber of mechanisms present in galaxy clusters) can do in the intracluster medium.
The most successful (and simplistic) model of turbulence is the "Kolmogorov
model", that it is an important mathematical simplification and, under a few lim-
iting physical assumptions on the behavior of the gas, it can also give reasonable
expectations about the evolution of turbulent gas motions in the plasma of galaxy
clusters.
The intents of this chapter are the introduction of turbulence and the presentation
of modern results of simulations and observations of turbulent motions in ICM.

2.1 Theoretical bases

Describing in a complete and exhaustive way the ICM implies the study of the
turbulent motions that are generated in the continuous gravitational interactions in
the whole evolutionary history of the clusters. The models presented below are the
Kolmogorov theory and Ram Pressure Stripping.
The first can be applied to most type of gas dynamics study and it is particularly
useful because under a few but fundamental assumptions it can describe analyti-
cally the behavior of the gas.

Baseline Kolmogorov theory for turbulence

The first formulation of this theory is by Kolmogorov (1941) but in this work we
used the formalism presented in the book ’Astrophysical Hydrodynamics: An In-
troduction’ written by Shore (2007).

13
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The assumptions that underlie Kolmogorov’s theory are:

• fluid is solenoidal: ~∇ · ~v = 0 (i.e. the fluid is incompressive)

• steady state

• fully developed turbulence

• the fluid is homogeneous and isotropic

Under these assumptions turbulence is described by "eddies". The role of the
latter is fundamental because it is through them that the energy fed into the system
on large-scale eddies is dissipated, through a cascade, to smaller and smaller ed-
dies, until the energy is dissipated into heat.
We identify with ε the rate of energy dissipation and with υ the coefficient of molec-
ular viscosity. The Reynolds number of the medium is:

Re =
U L

υ

where U is the typical velocity of the fluid at the typical scale L. What follows
from these assumptions is a velocity structure that will be independent of the length
scale and we can use dimensional analysis to obtain its form.
Dimensionally ε is L2T−3 = U3L−1 and it is constant for:

ul = ε
1
3 l

1
3

In turbulence regime the viscosity is given by:

υ = ul l = ε
1
3 l

4
3

The upper length scale is determined by the size of the energy source. On
the other hand the minor length is the scale where the viscous time scale becomes
equal to the eddy turn-over time:

lK =

(
υ3

ε

) 1
4

where we use the subscript ’K’ to indicate the Kolmogorov (or dissipation)
length for which the characteristic velocity is:

vK = (υ ε)
1
4

At the Kolmogorov length the energy transfer becomes irreversible. We can
also define a time scale related to the Kolmogorov length:
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tK =
(υ
ε

) 1
2

Having defined these fundamental quantities, we can now state the main ap-
plication of Kolmogorov theory. There is a range of length over which turbu-
lence spectra appear to be “universal”, they do not depend on the properties of the
medium with which one is dealing. However, the energy spectrum is still linked to
the viscosity of the medium:

E(k, t) = υ2
K E?(lKk)

where E? is a universal dimensionless function of the wave number and k is
the wave number related with eddies length (k = 2π

l ). The form of the spectrum is
given by:

ε = −3

2

du2

dt
= 2υ

∫ ∞
0

E(k, t) k2 dk

Substituting our dimensional analysis:

E(k, t) ∼ ε
2
3 k−

5
3 (2.1)

The relation 2.1 is the Kolmogorov Power Spectrum. Therefore, in a wide
range of scales between the injection and the dissipation of turbulent eddies (called
the "inertial range", see figure 2.1), the spectrum can be considered universal, and it
is independent of the mechanism responsible for its ultimate dissipation into heat.
The population of eddies of a given region of the spectrum remains constant over
time because the larger eddies are separated in smaller eddies and this considering
also the cascade effect, keeps constant the number of eddies of fixed size.
The following plot shows the energy spectrum as a function of the wave number
and it shows that at a smaller size of the Kolmogorov scale (major k) the energy is
entirely damped by the dissipation effect.

Figure 2.1: Energy spectrum as a function of the size of the eddies (Sinha, 2013)
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Beyond the Kolmogorov model

In order to study real, low-density and possibly magnetised gas the assumptions
which are at the base of Kolmogorov model can not be used and it is necessary to
generalize the model, having to deal with the turbulence in a qualitative way, as
it is not possible to give an analytical description. In this section we discuss the
cases of supersonic, magneto hydrodynamic, self gravitating and no steady-state
turbulence.
The case of non stationary turbulence was studied by Kolmogorov (1962). In this
paper the author expanded his model including the evolution of the power spectrum
with time. The assumption of steady-state is verified when the source of turbulence
is continued, but if its effect break down, the power spectrum evolves as:∫

E(k, t) k2dk ∼ t−
5
2 (2.2)

This relation became from the analysis of the moment of the turbulent velocity
in Fourier space and the introduction of the two-point correlation function in the
following form:

Ri,j(r) =
(2π3)

1
2

16[ν(t− t0)]
5
2

[
Cijll − Cijlm

rlrm
4ν(t− t0)

]
exp

(
− r2

8ν(t− t0)

)
(2.3)

where Cijll and Cijlm are constants. The turbulence correlation function, and as a
result the energy, therefore decays according to:

Ri,j(r) ∼ [ν(t− t0)]−
5
2 exp

(
− r2

8ν(t− t0)

)
(2.4)

and so we obtain the integral relation in the equation 2.2.
Kolmogorov thus described the power spectrum in case of unsteady state as:

E(k) = E0 k−
5
3 exp

(
−3

2
α k

4
3 ν ε−

1
3

)
(2.5)

where α is a universal constant and E0 is the normalization of the spectrum.
In this form the spectrum is essentially the same of the state-steady case, but there
is a characteristic wave number which is the point where the assumption of Kol-
mogorov theory breaks down and it also represents the critical scale for the gener-
ation of cascades. This characteristic wave number k? is:

k? =

(
2

3 α

) 3
4 ( ε

ν3

) 1
4 (2.6)

We write the equation for the spectral evolution of the turbulence as
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∂E(k, t)

∂t
= T(k, t)− 2νk2E(k, t) (2.7)

where T is defined as

T(k, t) = 4πk2

∫
Q(~k, ~k′, t) d~k′ (2.8)

and Q is the dissipation rate. The steady-state turbulence gives T=2νk2E.
We introduce now the magneto hydrodynamic turbulence. Magnetic fields on the
large scale can couple distant parts of the fluid, thus violating the simple locality
assumption which we used for the Kolmogorov theory. Alfvèn waves can transfer
energy away from an eddy faster than it can be otherwise dissipated by viscos-
ity and, therefore, the energy dissipation rate gets faster than in the simpler Kol-
mogorov’s model. In order to find the power spectrum in presence of magnetic
field we analyze the typical velocities which characterize the phenomena, Alfvèn
speed va and the velocity associated at wave number vk. In particular we compare
the characteristic time scale of coupling, which is defined as L/va and which de-
scribes the typical time in which a Alfvèn wave connects two gas zones located
at distance L (i.e. the magnetic crossing time), and the hydrodynamic time scale,
which describes the eddy turnover time and which is defined as 1/(k vk). When
these times are comparable, we can described the power spectrum as:

E(k) ∼ va

l0
k−

3
2 (2.9)

where l0 is the length associated at the wave number which equals the times
scale above defined. This spectrum is the Kraichnan spectrum which was described
for the first time by Kraichnan (1965).
More recent studies also included, it was introduce the intrinsic anisotropy of the
cascade. This is introduced by the assumption that the time scale for orthogo-
nal scattering l⊥/vl is approximately the same as for parallel, l‖/va, and since ε=
v3
a/L. With these dependences, the eddies become more elongated with decreasing

length, because k⊥/k‖ ∼(Lk⊥)
1
3 . Numerical simulations show that, on the smallest

scales, the turbulence becomes extremely filamentary and intermittent. An other
fundamental result is that for the perpendicular direction the power spectrum has
the same slope of the spectrum presented by Kolmogorov (1941). In the parallel
direction, however, the spectrum is steeper:

E(k‖) ∼ (ε3va
−5)

1
2 k‖
− 5

2 (2.10)

If the turbulent region becomes supersonic, internal shocks become the primary
mode for dissipation. From simulations and experiments it is found that strongly
compressed regions develop, with high vorticity, at high-flow Mach numbers, and
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the medium rapidly evolves into localized structures. Some of these regions move
with bulk supersonic velocities, but as they collide and the overall temperature rises
and thus the motions become progressively more subsonic. The contact surfaces
are formed by the intersections of shocks. These will form on collision of the tur-
bulent eddies and locally planar fronts within a supersonic medium. the results of
these interactions is the inject vorticity which is, however, on a small scale. Un-
like the Kolmogorov model, these do not necessarily proceed from the large-scale
structures through a cascade to smaller scale. The inertial range does not exist in
these conditions.
The most important difference between supersonic and subsonic turbulence is found
in magneto-hydrodynamics (MHD) turbulence. In this case initially supersonic,
but sub-Alfvénic, modes propagate nonlinearly and turn into internal shocks and
the energy is rapidly dissipated. The main results are obtained from simulations,
which reported that there are many relations between dynamical helicity and mag-
netic helicity. These relations indicates that the local vorticity (an indicator of
turbulence) is influenced by the structure of the overall field.
From the study of Molecular Clouds emerges that their structure and internal ve-
locities are supported by supersonic turbulence. Indeed, the observed velocity dis-
persions in molecular lines are often a few kilometers per second which are greater
than the typical sound speed in molecular clouds. However, the motions are dis-
sipative because the clouds can radiate their turbulent energy in the infrared and
millimeter. The waves that are developed in the medium are turbulent and they de-
velop a pressure term which is add to total pressure support. This type of support is
called self-gravitating turbulence and its study is just beginning with the two- and
three-dimensional modeling.
In summary, given the above variety of models for turbulence, we expect that turbu-
lence in the intracluster medium can display a variety of interesting (and complex)
features, which are not fully captured by a unique model. The intracluster medium
is indeed internally stratified (we observe a density radial profile), shaken by non-
stationary motions which can inject turbulence across different scales, alternatively
in subsonic or transonic regime depending on its merger state, and also affected by
magnetic fields, which can locally become dynamically dominant.

2.2 Turbulence in galaxy clusters

For a long time the modeling of the ICM has relied on the simplistic assump-
tion that proton-proton collisions were the leading mechanism of energy exchange,
thereby suggesting that the Coulomb mean free path sets lower limit for the size of
hydrodynamical features in the ICM:
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λp ≈ λe =
3

3
2 (kT )2

8
√
πnee4ln(Λ)

' 23

(
T

108[K]

)2( n

10−3[cm−3]

)−1

[kpc] (2.11)

where n is the number density of the gas.
Under this hypothesis, the ICM should be very viscous as its Reynolds number
should be rather small (see Roediger & Brüggen (2008) and references therein):

Re =
UL

ν
∼ vgas · λ
µ/ρgas

=
[cm s−1] · [cm]

[g cm−1 s−1]/[g cm−3]
(2.12)

and if we consider the typical values for the ICM, we obtain:

Re =
UL

ν
∼ vgas · λ
µ/ρgas

∼ 108 · 106 · 3, 08 · 1018

103/10−27
∼ 100 (2.13)

where µ in equation 2.13 is the relevant coefficient of viscosity which is given by
Braginskii (1958) and Spitzer (1962) and it is:

µ ≈ 6.0 · 10−17 ·
(
lnΛ

37

)
· T

5
2

[
g

cm s

]
(2.14)

Therefore, such a modest Reynolds number implies that in the ICM an insta-
bility hardly evolves in turbulence and the motions tend to remain laminar.
More recently, many authors have studied the role of magnectic field in proton-
proton interactions and how the presence of magnetic fields varies the compute of
viscosity. In particular in a recent paper by Beresnyak & Miniati (2016), it is dis-
cussed how the presence of amplified magnetic fields should reduce the effective
mean free path of ICM protons from 20 kpc to� kpc, thus greatly reducing the
effective viscosity of the ICM. The presence of small-scale velocity and magnetic
fluctuations in the ICM is also indirectly supported by a number of high resolution
X-ray (e.g. Zhuravleva et al., 2014; Hitomi Collaboration et al., 2016) and radio
observations (e.g. Bonafede et al., 2010; Rajpurohit et al., 2018), suggesting the
presence of ICM flucutations at least down to ∼ kpc scales. With tipical value of
gas velocity and cluster’s dimension we can calculate the Reynold’s number for
ICM and we find value between 106 and 1029. These values are orders of magni-
tudine larger than 102, the minimun value of Reynold’s number that it is normally
used to defined a turbulence medium.
Based on the above expectations, it is clear that ICM is a gas where a little instabil-
ity can evolve to became a turbulence motion very easily, which motivates the idea
that turbulence can indeed be an ubiquitous source of pressure support in galaxy
clusters.
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2.2.1 Ram Pressure Stripping

Minor and major mergers occur in clusters have a fundamental role of dynamical
quantities. In the study of turbulence motions is important to characterize phenom-
ena called Ram Pressure Stripping. For the treatment of this phenomenon we rely
on the description given by Cassano & Brunetti (2005).
The typically velocity of the passage of the in-falling sub-halos through the main
cluster during mergers induces large-scale bulk flows of the order ∼ 1000 km s−1.
The crossing of the sub-halos in the volume of primary cluster induces in ICM
eddies by Kelvin-Helmoltzs instability. These eddies, in few Gyr, redistribute the
energy of merger in cluster volume by injecting random and turbulent velocity
fields. Depending on the initial conditions and on the mass ratio of the two sub-
clusters, during the merging process the in-falling halos may be efficiently stripped
due to the ram pressure. The sub-halo is stripped until the equipartition between
static and ram pressure is established, which allows writing:

ρ̄max v2
i =

ρmin(rs) kb Tmin

µ mp

where ’min’ it refers to sub-halo quantities, while ’max’ it refers to main cluster
quantities. The velocity vi is the relative impact velocity between cluster and sub-
halo.
The injection rate per unit volume of turbulence is predicted to be:

Et
τcross ×VH

' ρ̄max,s

Rmax
v3

i

(
Vt

VH

)
(2.15)

where the main quantities in the equation 2.15 are the total energy Et injected
in turbulence during a merger event and the ratio between the volumes of the cluster
and sub-halo. Indeed, the velocity of the impact is determined for the most part by
the mass of the cluster and it is about the same for all the mergers, so the energy
injected is determined by volume of the clump in in-fall.
Total energy injected in ICM by mergers is about 10-15 per cent of the thermal
energy, that is obtained by ’M-T relation’ (see the relation 1.11).
This result is also confirmed by simulations and observations, as we also analyze
in this thesis in the next paragraphs. Exactly which fraction of this energy gets
channeled into turbulent motions is more difficult to predict, and this motivates the
role of numerical simulations in the detailed study of turbulence in the intracluster
medium.
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2.2.2 Injection of turbulence by shocks

Shocks can, both, inject or amplify vorticity in a fluid, and are therefore an im-
portant contributor to the overall evolution of turbulence in the ICM (e.g. Porter
et al., 2015). In Vazza et al. (2017) and Wittor et al. (2017) the authors present re-
sults on the generation of solenoidal and compressive turbulence in the ICM. Their
work focused in different type of filtering which can be used in study of turbulent
velocity. They decomposed the velocity in two different contribution: solenoidal
motions and compressive motions. The first ones are responsible for stretching and
folding of the structure and they influence the evolution of magnetic field, while
the second ones are responsible for the generation of weak shocks, which in turn
generate solenoidal motions. In order to avoid spurious terms induced by shocks,
the authors apply the same shock finder algorithm that we use in this work, which
is presented in 3.2.
As shown in Vazza et al. (2017), the shocks affect both the solenoidal motions and
the compressive ones. Weak merger shocks are often associated with true turbulent
motions, while strong shocks and and those whose extents exceed the cluster core
scales do not generate turbulent motions.
It is, however, non trivial separate which shocks generate turbulence and which
instead do not generate non-thermal pressure contributions. There are some algo-
rithms able to identify the presence of shocks that generate turbulence and to mask
them, such as the one presented in the section 3.2.

2.2.3 Injection by AGN

A further source of turbulence in the ICM is represented by the central Active
Galactic Nuclei (AGN). This contribution is originated by the interaction between
the feedback mechanisms of the central Black Hole (BH) and the gas which sur-
rounds the core. As discussed by many authors, also using numerical simulations
(e.g. Brighenti & Mathews, 2002; Brüggen, 2003; Gaspari et al., 2011) the in-
jection of turbulence by AGN feedback is relevant for the evolution of different
astronomical objects, from this source of turbulence can be studied in very differ-
ent astronomical objects, from massive galaxies to galaxy clusters.
Recently, Gaspari et al. (2018) presented a model based on the top-down multi-
phase condensation. In this model hot and warm phases coexist. The hot gas is
contained in hot gaseous halos, while warm gas is organized in filaments which
are composed by a combination of ionized and neutral medium. The hot halos are
perturbed by subsonic turbulence, while the filaments are able to condense out of
the turbulent eddies and increase very efficiently on the central BH. The authors
show that this type of accretion, which is call Chaotic Cold Accretion (CCA),
is about ∼100 times more efficient than Bondi’s accretion. This phenomenon is
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self-regulated and causes alternating phases of efficient accretion with the related
feedback mechanisms, for which the turbulence is sub-dominant, and phases for
which the turbulent motions are instead to support the gas structure.
The multiphase nature of the gas is very important because it is difficult to study
the hot phase for the low spatial resolution of the X-ray telescopes, while the warm
phase is studied with IR or radio observation for which the spatial resolution allows
to studied the internal kinematic of the gas. Probably the main result for the inter-
nal kinematic in hot gas was obtained by the observation of the Persus cluster by
the Hitomi space telescope. In Hitomi Collaboration et al. (2016) (see also section
2.4 below) the authors presented the results obtained by studying the line-of-sight
velocity dispersion in central region of Perseus and they found that this value is
∼160 [km s−1] on scales of a ∼ 50 kpc, which is less than what is required to
balance the gas cooling rate in this region solely by dissipating turbulent kinetic
energy. This suggests that in the core of the cluster, the turbulence energy dissipa-
tion is not the primary heating of ICM and that only the study of multiphase gas
can be explain the real nature of the ICM, especially in the central region of the
clusters.

2.3 Simulated turbulence in the ICM

Below we discuss the results of the current numerical simulations about turbulence
in ICM. As we explained in previous paragraphs, these simulations resolve the nu-
merical equations and the results are the time dependent solutions of the behavior
of the gas.
Probably the first work which studied the statistical properties of ICM was pre-
sented in Norman & Bryan (1999). In this paper the authors presented the results
obtained from high resolution hydrodynamic simulations of the formation and evo-
lution of X-ray clusters of galaxies. They used the accurate Piecewise Parabolic
Method (PPM) on fixed and adaptive meshes which allow them to resolve the flow
field in the intracluster gas. They found that the turbulence is strongest in the out-
skirts of the cluster and weaker in the core, with values which are about ∼25% of
σvir (where σvir is the value of velocity dispersion at virial radius) in the core and
about ∼60% in the outskirts. They argued that the major mergers are more infre-
quent and so they can not sustain the observed level of turbulence in the core. They
discussed two possible ways which can explain the value of turbulence in the core.
The first is associated to the energy which is dissipated in ICM by the shocks, but
the authors showed that this possibility generates a turbulent velocity which is less
than the value which they observed. The second way, which they consider more
likely, is that the turbulence is driven by the more frequent minor mergers.
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Dolag et al. (2005) developed a new way to study the numerical viscosity in smoothed
particle hydrodynamics (SPH) simulations. In a set of nine high-resolution simu-
lations of cosmological galaxy cluster formation, they found that low-viscosity
formulation of SPH produces higher levels of turbulent gas motions in the ICM.
The kinetic energy content in random gas motions was up to 5–30 per cent of the
thermal energy content, depending on cluster mass. This also has significant ef-
fects on radial gas profiles and bulk cluster properties. They shown that this type
of viscosity can be used to study in more efficient way the shocks and the turbulent
energy content. They found a turbulent energy content up to 30 percent (about 50
percent in the inner part of the massive clusters) and they shown that this content
influenced many physical quantities as density, X-ray luminosity and the shape of
metal lines observable with high-resolution X-ray spectrographs. The main result
of this paper is the first power spectrum of the turbulence which shown how the
turbulent content in simulated ICM change with the scale.
Ryu et al. (2008) studied the relation between turbulence and vorticity. They stud-
ied three-dimensional power spectra found in the simulation. They decomposed
the velocity in three components and they focused their study in the vorticity com-
ponent. They found a clear trend for the vorticity when they compared vorticity
and the local eddy turnover time. In particular they found that the vorticity is larger
at higher gas density and temperature. They also noted that after a few turnover
time, vorticity decays and develops into turbulence. Finally, they suggested that
the turbulence in clusters that was induced by the cascade of vorticity can amplify
magnetic fields from seeds of any possible origin through stretching, twisting, and
folding, the process known as turbulence dynamo.
Lau et al. (2009) studied the hydrostatic mass bias in a sample of 16 simulated
galaxy clusters. They focused on the effects of residual gas motions on the esti-
mates of the total mass of clusters. They analyzed systems that appear morpho-
logically relaxed and perturbed in mock Chandra X-ray images separately to study
the effects of dynamical state of clusters on the resulting mass. They found that
gas motions contribute up to 5%–15% of the pressure support in relaxed clusters,
which leads to the underestimate of the total virial mass in the hydrostatic analysis
accounting only for the thermal pressure. On average they found that for relaxed
systems the mass is underestimated by 6%-8% while at the same radii, for per-
turbed systems the mass is underestimated by 9%-11%. The authors suggested
that this bias can be explain with turbulent motions of ICM, but it is also necessary
take in account the role of cosmic rays and magnetic field as terms of non thermal
pressure.
Vazza et al. (2011) studied the profiles and the power spectrum of turbulent motions
as a function of dynamical state of the clusters. They used a sample of 20 simulated
galaxy clusters, using the adaptive mesh refinement code ENZO. They developed
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two methods to detect turbulent motions in the ICM. One is based on a filtering
in the Fourier space of the component of velocities associated with wave numbers
larger than the wavenumber of the maximum spectral energy, and the other is based
on the filtering in the real space of the velocity component with coherence scales
smaller than the fixed length of lmax. They showed that the results are independent
of the particular method adopted. They also found that post-merger and merging
clusters have large values of turbulent energy compared to the thermal energy of
the ICM, with a ratio Eturb/Etherm ∼0.2−0.3 in the innermost cluster regions. On
the other hand, relaxed clusters show much lower values of the turbulent ratio,
Eturb/Etherm ∼0.05 within the same radius. Thanks to the very high dynamical
range, the authors also studied the power spectra of the 3D velocity fields extend
across nearly two orders of magnitude. They shown that the energy E(k) is pro-
portional to k−

5
3
÷−2, and the typical scale for the peak of the energy spectrum at

the scales of 1−2 Rvir, with the tendency of merging clusters to extend across the
largest outer correlation scales.
This thesis extend some of the methodologies developed in this paper to a more
recent and resolved set of simulations, and also introduces more sophisticated anal-
ysis techniques to identify turbulence in such simulations.

2.4 Observational indications of turbulence in the ICM

After the discussion of theoretical results, it is useful to present the observational
evidences of turbulence in real galaxy clusters. The observations that are used in
this studies are mainly carried out in the X-band and they present considerable dif-
ficulties due to the low resolution of the space telescopes.
Probably the first observational work constraining turbulence in ICM was Schuecker
et al. (2004). In this paper the authors studied spatially-resolved gas pseudo-
pressure maps of the Coma galaxy cluster, which are obtained from a mosaic of
XMM-Newton observations in the scale range between a resolution of 20 kpc up
to 2.8 Mpc. Using the Fourier analysis they found that for scales from 40 to 90
kpc the power spectrum of the pressure was well described the Kolmogorov power
spectrum. This suggests that the pressure in this scale range is supported by tur-
bulent pressure and they give a lower limit to this support, of about ∼10 percent.
They also computed the value of kinematic viscosity and they give a reliable upper
limit of ν < 3 · 1029 [cm2 s−1], for turbulent velocity of 250 [km s−1] at scale
of λ=100 kpc and Reynolds number of 20. This suggests that in ICM a instability
can easily develop turbulence. This work suggests that the turbulence in ICM can
explain some observational bias and in the following years many other groups have
improved observational techniques to further investigated these issues.
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Figure 2.2: Detailed view of the projected pressure distribution of the central region
of the Coma cluster, presented by Schuecker et al. (2004) and observed with XMM-
Newton. The 145 kpc scale corresponds to the largest size of the turbulent eddies
indicated by the pressure spectrum. The smallest turbulent eddies have scales of
around 20 kpc.

Sanders et al. (2011) used the width of emission lines in XMM–Newton Re-
flection Grating Spectrometer (RGS) spectra, and they constrained the turbulent
velocities of the X-ray emitting medium in the cores of 62 objects, including also
galaxy clusters. For objects which have significant turbulent broadening they used
also Chandra spectral maps. The main result of this work is that there is a little
evidence for an extra broadening in the emission lines due to turbulence. Only for
15 sources they could limit the contribution of turbulent energy below 20 per cent
of the thermal energy.
The main contribute at the study of turbulence in galaxy clusters was given by the
space mission JAXA Hitomi X-ray Observatory, launched in February 2016. Hit-
omi worked over an energy range of 0.3-12 keV with X-rays focused by a mirror
with angular resolution of 1.2 arcmin (HPD). The main characteristic of the space
telescope Hitomi was its calorimeter which was cooled to 0.05K and this cooling
allowed the detection of a Full Width Half Maximum (FWHM) of emission lines
of 4.9 eV. This allowed to separate the contributions at gas velocity in thermal sup-
port, Doppler effect and many other terms, among which turbulent support.
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In Hitomi Collaboration et al. (2016) the results of the study of gas dynamic in
Persus cluster were discussed. In particular they found that the contribution at gas
velocity from the turbulent motions is about ∼160 [km s−1] on scales of ∼50 kpc.
This suggests that in the central region of the cluster, the turbulent motions give
a small contribution at the total pressure and that the turbulent pressure is given
by the central AGN. Unfortunately, the space mission was supposed to perform
several observations on the gas dynamics in the clusters, but ended earlier than
expected.

Figure 2.3: Spectra of FeXXV He-α from the outer region. Gaussian fits have
been made to lines with energies (marked in red) from laboratory measurements in
the case of He-like FeXXV, Instrumental broadening with (blue line) and without
(black line) thermal broadening are indicated. The redshift is the cluster value to
which the data were self-calibrated using the He-α lines. The strongest resonance
(w), intercombination (x,y) and forbidden (z) lines are indicated. Spectra from
paper Hitomi Collaboration et al. (2016)



Chapter 3

Numerical Analysis

In this chapter we will present main part of the code that we created for our anal-
ysis. We focus on the parts of the code which mostly influences scientific un-
derstanding of the results we will achieve. In appendix A we explain the whole
workflow of our code which explains the whole analysis and its characteristic.

3.1 Effects of the filtering scale on turbulence

In this Section we test our filtering techniques for turbulence using a typical simu-
lated galaxy cluster (with a mass of 7.12 1013 M� at z=0), taken from the cluster
sample described in section 4.1. The output is made of 3203 cells, with a fixed
resolution of 20 kpc, centered on the cluster center of mass.
To disentangle turbulent motions from bulk motions, it is useful to use define a
small-scale filtering approach. In this approach the turbulence velocity is approxi-
mated as the part of the 3D gas velocity that fluctuates on the smallest scales. This
makes sense because turbulence motions interest small regions of the cluster and if
we will find motions on large scale, it is possible to evaluate this like bulk motion
of the gas. Most of the turbulence we expect to detect in the internal region of
galaxy clusters should follow from the mixing of ram-pressure stripped gas, as we
already presented in the paragraph 2.2.1.

With the use of a small-scale filter, it is possible to define the velocity of the
bulk motions and to calculate the velocity of the turbulence motions like the differ-
ence between total velocity and bulk ones.
In particular we used scales of 60, 100, 200, 400 e 600 kpc and the GDL’s proce-
dure SMOOTH.PRO. The drawback of this procedure is that the velocity fluctua-
tion cannot be defined for cells at a distance ≤ ∆ from the edge of the computing
volume, where ∆ is the assumed filtering scale.
The study of different scales allowed us to identify the best scale that enables the
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identification of turbulence motions. In the following plots, the profiles of the
thermal energy and kinetic energies associated at two different velocity fields are
reported with name ’Turbulence’, energy calculate with smoothed velocity, and
with ’Kinetic’ the profile associated at the non-smooth velocity. In this case we
give the minor (on the top) and major (on the bottom) scales.

Figure 3.1: Cumulative profile of kinetic, turbulence and thermal energy for cluster
IT90_3 at z = 0, considering two different smoothing scales (60 kpc on the top
and 600 kpc on the bottom)

The effect of different scales is about two orders of magnitude in the center of
the grid and about one order of magnitude in the periphery.
It is thus useful to present in this chapter the different fields that are used in our
work. In the following figure we show three different maps: on the top left there is
the unsmoothed velocity field, on the top right the smoothed ones, on the bottom
the turbulence ones.
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Figure 3.2: Maps of volume-weighted mean unsmoothed velocity field (on the top-
left panel), smoothed velocity field (on the top-right panel) and turbulence velocity
field (on bottom panel) for the cluster IT90_3 at z = 0.

We observe that the smoothing procedure filters the velocity field and results
in a velocity field that we call ’turbulent’. From this field we will obtain the non-
thermal pressure of the ICM that we will use throughout our analysis. However, it
is necessary to apply a second type of filter which allows to exclude any spurious
contributions to this turbulent velocity due to the shocks.

3.2 Limiting the spurious contribution from shocks to the
turbulent budget

As discussed in section 2.2.2, the role of spurious terms introduced by shocks may
affect the turbulence velocity field. In the following maps we present the turbulence
velocity field before and after the application of our shock filtering algorithm (for
a detailed explanation of our shock filtering procedure see next section).
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Figure 3.3: Map of central slice of IT90_3, turbulence velocity field without the
application of shocks filter on the left panel and map of the same region with shocks
filter on the right one.

In the figure 3.3 it is possible to see how the amount of turbulence velocity gets
reduced in the region where shocks are detected.
In the following plots we give the profiles of turbulence velocity fields of all clus-
ters, with and without the application of shocks filtering on the left panel and the
median of these profiles on the right panel.

Figure 3.4: All turbulence velocity profiles for shock unfiltered velocity field and
shock filtered velocity filed (on the left panel) and median of the same profiles (on
the right panel)
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3.2.1 Shock Finder

In the study of turbulence, shocks crossing the simulated volume can introduce
spurious terms in the estimate of turbulent kinetic energy (i.e. velocity jumps after
shock crossing may be mislead by small-scale velocity fluctuations due to turbu-
lence). In order to avoid this bias we use the same shock finder algorithm presented
in Vazza et al. (2017) with the goal of masking shocked cells from our analysis.
In the presence of shocks it is possible to use the Rankine-Hugoniot condition and
use velocity or temperature jumps find the Mach number. The Mach number is
used to calculate the flux of kinetic energy that is dissipated into gas thermal en-
ergy and this is the principal term that can affect our estimate of turbulent motions.
The shock finder algorithm that we use follows the velocity jump prescription de-
scribed in Vazza et al. (2009). In this paper the authors have shown that in order
to compute the Mach number in post-processing, the velocity jumps are in general
more suitable than temperature jumps, because in the latter case a typically larger
amount of pre-shock temperature fluctuations in the intergalactic medium can af-
fect the exact measurement of temperature jumps.
In the following there is a schematic work flow of the algorithm Vazza et al. (2009):

1. only cells with negative 3D velocity divergence are considered candidate
shocked cells;

2. the center of the shocks region (typically few cells) is the cell with the mini-
mum divergence velocity;

3. the three Cartesian axes are scanned with a 1D procedure measuring the
velocity jump ∆vx,y,z between a few cells across the shock center. In the
case the shock is assumed to belong only to the cell vx,y,z, the value of ∆v

is calculated between the shock center and the pre-shocked cell, while the
shock jump is spread over few cells (placed at a maximum distance of 2n),
the value of ∆v is calculated between the two cells at distance n (in opposite
direction) from the center of the shock;

4. the Mach number of the shock is given by equation:

∆v =
3

4
vs

1−M2

M2
(3.1)

where the sound speed is that of the pre-shock region;

5. we finally assign to shocked cells a Mach number

M2 =
√
M2

x +M2
y +M2

z (3.2)
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that minimizes projection effects in the case of diagonal shocks, and restrict
the to shocks withM>1.

Detecting shocks with high Mach number is relatively easy with this algorithm,
but the detection of shocks with small Mach number is affected by several factors
like numerical error due to strong gradient or oblique direction of the shocks. In
order to reduce the role or weak shocks in the following turbulence analysis, we
decide to fix a lower limit to Mach number at 1.3.
In histogram 3.5 is clear how the shocks with low Mach number are more recurring
than the shocks with high Mach number. From Mach number 1.3 to ∼ 103, the
number of cells interested by a shock drop by three order of magnitude.

Figure 3.5: Mach number histogram of the shocks withM≥1.3 in cluster IT90_3
z = 0.

In addition to the distribution presented in the histogram 3.5, we also show the
spatial distribution of the shocks inside the cluster’s volume. The following maps
are projections of the distribution of Mach number and flux of energy dissipated
by the shocks along an arbitrary line of sight, for the sake of simplicity choice in
parallel to z-axis of the grid of the simulation.
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Figure 3.6: Map of central slice of IT90_3 at z = 0; map of projected Mach
number (on the left panel) and map of projected flux of kinetic energy (on the right
panel).

In figure 3.6, we note that in the center of the cluster only shocks with low
Mach number are found, while in the outskirts shocks with a higher Mach number
are possible. This effect occurs because in the periphery the gas temperature is
smaller than in the center and the sound speed decreases. From equation 3.1, a
larger sound speed entails a major velocity difference and hereupon Mach number
increase. The map of flux of kinetic energy dissipated by shocks shows a more uni-
form behavior. This is due to the frequency of shocks sweeping the cluster volume.
In fact, the gas mass processed by weak shocks is generally larger in the innermost
cluster regions, hence the dissipated kinetic energy flux across internal shocks can
be comparable (or larger) than the total dissipation in cluster outskirts, because the
flow of kinetic energy through the shock is regulated by the equation:

f =
ρgasVcellv

3
s

2ts
=
ρgas

2
· V

2
3
cell · M

3 ·
(

5kbT

3mp

) 3
2

(3.3)

where vs = Mcs is the shock velocity, ts = V
1/3
cell /vs is the shock crossing

time across the cell.
As presented at the beginning of this paragraph, it is therefore appropriate to con-
sider the dissipation of kinetic energy by the shocks in order to correctly estimate
the genuine turbulent budget of the intracluster medium and work out the hydro-
static mass bias in a robust way.
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Chapter 4

Results and analysis

In this chapter we present all important results of our analysis. After a first presen-
tation of the sample used, with particular attention to introduce the main techniques
used and the physical parameters of the clusters, we give the results obtained for the
analysis of the complete sample. In 4.4 section we discuss the results of the study
of the two sub-samples. We divided our catalog in low and high mass compared to
the average mass and relaxed and perturbed clusters compared to the average value
of X-ray morphological parameters (see 4.1 for the definition of these parameters).
In the last section we compare our results with two papers present in literature.

4.1 Cluster catalog

We used the "Itasca Simulated Cluster" sample (ISC) which is a set of 14 galaxy
clusters in the 5 · 1013 ≤ M100/M� ≤ 6 · 1014 mass range (at z=0), simulated
at uniform high spatial resolution (∆x = 19.6 kpc) with the Eulerian Adap-
tive Mesh Refinement and the Piecewise Parabolic method (PPM) in the ENZO

code (Bryan et al., 2014). These simulations are non-radiative and assume the
WMAP7 ΛCDM cosmology (Komatsu et al., 2011), with Ω0=1.0, ΩB=0.0445,
ΩDM=0.2265, ΩΛ=0.728, Hubble parameter h=0.702, σ8=0.8 and a primordial in-
dex of n=0.961. For each cluster are generated two levels of nested grids as initial
conditions (each with 4003cells and dark matter particles and covering 633 [Mpc3]
and 31.53[Mpc3], respectively). At run time, two additional levels of static mesh
refinement are imposed in the innermost 6.33 [Mpc3] volume around each cluster
center, down to the ∆x=19.6 [kpc/cell]. More information on the ISC sample can
be found in Vazza et al. (2017) and Wittor et al. (2017).
Although the objects selected in this sample represent among the most massive
objects in equivalent cosmic volume sampled by all runs, they do not define a
mass-complete sample, which has some impact in the interpretation of some of our
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results, as we shall see in the following sections.
In order to present the sample used in this work we shown the maps of projected
density and the maps of temperature. The figure 4.1 shows the same line of sight
for density and temperature projected maps. The clusters are sorted by the dynam-
ical state from the most perturbed to the most relaxed (in the following section we
discuss this division).

Figure 4.1: Density maps (on the top panel) and temperature maps (on the bottom
panel) for all clusters used in this work (density color scale in unit of [g cm−3] and
temperature color scale in unit of Kelvin degrees)

The radial profiles of gas density and volume weighted temperature are given
in Figure 4.2. For each system, we defined the center based on the maximum value
of the total density (the sum of gas and dark matter density). All profiles are nor-
malized to their value at R200, which we measured where the value of total (gas +
dark matter) density was greater than the value 200 of overdensity.
Furthermore, for each object we computed the total mass (Mtot), measured by the
total density enclosed in R200 assuming spheroidal symmetry, the hydrostatic mass
(Mhyd), measured from the equation 1.15, where the pressure is the thermal pres-
sure of the gas, and the 〈c〉 and 〈w〉 morphological parameters of projected bolo-
metric X-ray maps, made accessible by collaborators and computed as in Savini
et al. (2018).
In detail, 〈w〉 is the emission centroid shift and 〈c〉 is the concentration parameter.
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The first is defined as the standard deviation of the projected separation between
the peak and centroid of the X-ray surface brightness distribution, when the aper-
ture used to compute it decreases from a maximum radius of 500 kpc to smaller
radii. 〈c〉 is defined as the ratio of the X-ray surface brightness within a radius of
100 kpc over X-ray surface brightness within a radius of 500 kpc. High values of w
indicate a dynamically disturbed system, whilst high values of c indicate a peaked
core, typical of non-merging systems.
We defined 〈c〉 and 〈w〉 because in simulations we have the 3D structure of the
cluster, so we can compute the value of each parameter for any line of sight. We
decided to use the projections parallel to the x, y and z axes and the final value for
〈c〉 and 〈w〉 is the mean of the three projected values.

Figure 4.2: Density profiles (on the left panel) and temperature profiles (on the
right panel)

All 14 clusters are used in our analysis and the table 4.1 shows the main prop-
erties of the clusters. In addiction to identification name, mass and radius at over-
density 200 (called M200 and R200) we report also the mass bias (i.e. total mass
minus hydrostatic mass) and the total mass , parameters used to distinguish more
or less massive clusters, and two parameters, 〈c〉 and 〈w〉, that they are used to
distinguish between perturbed and relaxed clusters.
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ID R200 [Mpc] M200 [Mo]
Mtot,200−Mhyd,200

M200
〈c〉 〈w〉

IT90_0 0.80 5.73·1013 -1.52·10−1 7.48 · 10−2 8.44 · 10−3

IT90_1 1.32 2.57·1014 3.94·10−2 2.72 · 10−2 6.62 · 10−3

IT90_2 1.00 1.12·1014 2.80·10−1 4.45 · 10−2 6.63 · 10−3

IT90_3 0.86 7.12·1013 9.63·10−2 6.81 · 10−2 1.22 · 10−2

IT90_4 0.78 5.31·1013 -1.82·10−1 5.58 · 10−2 1.27 · 10−2

IT92_0 1.46 3.48·1014 1.55·10−1 2.72 · 10−2 3.84 · 10−3

IT92_1 0.96 9.90·1013 1.25·10−1 9.44 · 10−2 1.13 · 10−2

IT92_2 1.10 1.49·1014 4.34·10−1 8.09 · 10−2 6.67 · 10−3

IT1 1.04 1.26·1014 1.02·10−1 1.14 · 10−1 5.65 · 10−3

IT3 0.84 6.63·1013 -4.45·10−1 8.47 · 10−2 1.07 · 10−2

IT7 0.62 2.67·1013 1.17·10−1 1.06 · 10−1 7.35 · 10−3

IT10 1.16 2.18·1013 8.35·10−2 1.21 · 10−1 5.72 · 10−3

IT62 1.52 7.47·1014 2.93·10−1 5.19 · 10−2 4.66 · 10−3

IT6 1.04 1.26·1014 7.84·10−2 1.27 · 10−1 3.75 · 10−3

Table 4.1: Catalog of clusters at z = 0 used in our analysis. The bold values are
used to identify the perturbed clusters, based on the ranking of their 〈c〉 or 〈w〉
values, respectively.

For some clusters we observe that the value of the difference between total
mass and hydrostatic mass versus total mass is negative. In the following analysis,
in seeking the correlation between this quantity and other parameters, we use only
the clusters that have their ratio positive.
We will use often data fitting with different models. In order to verify which model
is better, we use the following definition of χ2, mathematical tool used in statistics
which has different possible applications by varying its definition.

χ2 =
N∑
i=0

(datai −modeli)2

σ2
data,i

(4.1)

where σdata,i is the value of data dispersion within each radial bin ’i’. In GDL’s
procedure, it is definifed as the square root of the variance of data, that it is defined
as 1:

σ2 =
1

N− 1

N−1∑
i=0

(xi − x̄) (4.2)

1When we obtain the parameters of best fit, we do not show the error associated at these value,
because some of the outputs of the χ2 procedure implemented in GDL resulted unreliable and po-
tentially affected by bugs.
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We define the non-thermal pressure Pnt and the thermal pressure Pth as:

Pnt =
1

3
· ρ · vturb

2 (4.3)

Pth =
kb

µ mp
· ρ · T (4.4)

where ρ is the gas density, T is the gas temperature, kb is the Boltzmann con-
stant, mp is the proton mass, µ is the mean molecular mass for electrons gas and
its value is 0.59, vturb is the turbulence velocity of the no shocked cells presented
in the top panel of figure 3.4.
In order to study the ratio non thermal pressure versus total pressure (the sum of
the non thermal and thermal pressure) we used the average radial profile of the
pressures, always considering the same selection of cells. We call this ratio α and
we defined it as follow:

α ≡ Pnt

Pnt + Ptot
(4.5)

4.2 Complete sample analysis

In the figure 4.3 we show the profile of α for all the clusters as a function of
smoothing scale. This ratio increases with the smoothing scale but for smoothing
scales larger than few hundreds kilo-parsec the ratio approaches ∼ 10% at R200.
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Figure 4.3: α radial profile for all clusters and for each smoothing scales
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We compute the median of the profiles at single smoothing scale. The follow-
ing figure shows all the median in the same plot.

Figure 4.4: Median profiles for each smoothing scales

The profile is very regular at all scales and this it allows us to look for an
analytical approximation to describe the behavior of α in function of radius.
In order to find this approximation, we investigated the application of the following
simple formula:

α = a0 ·
(

r

r200

)a1

+ a2 (4.6)

The parameters that we use in this equation are a0, a1 and a2. a0 represents the
normalization of α at R200 and from the trend of the profiles we expect an increase
of this value with the filtering scale.
The parameter a1 is the slope of the profile and to give a physical explanation and
a prediction about his behavior we refer to the paper of Shi & Komatsu (2014). In
this paper the authors develop an analytic model to describe the trend of α with
the radius. They use three fundamental time scales to develop their model: the
turbulence dissipation time-scale, td; the time elapsed between the initial time and
the time of observation, (tobs−ti), which characterizes the age of the cluster; and
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a time-scale characterizing the mass growth rate of the cluster defined by tgrowth.
They defined also the turbulence injection efficiency η and which they constrained
to η ≈ 0.5−1 based on simulations. The turbulence injection efficiency is strongly
correlated with the slope of the fitting formula, and we notice (as we shall see
below) that our simulations suggest a lower efficiency than Shi & Komatsu (2014).
Last parameter is a2 that it represents the value of α at center of the cluster. In
the center of clusters the turbulence is dominated by radiative cooling and AGN
feedback (see sections 1.2 and 2.2.3), but they are not present in our simulations. It
is however reasonable to expect small values of a2, because in the center of clusters
there are chaotic motions of the gas connected with the dynamical history of the
cluster.
The sum of a0 and a2, which we defined as α200, gives us the value of α at R200.
This parameter might be used in section 4.5 to compare our results with the results
presented in Eckert et al. (2018). An other application that can be made with α200

is the study of a its possible relationship with the smoothing scale. With this study
we investigate the process that controls the evolution of turbulence and we report
our results later in this chapter.
We expect a strong dependence of the parameters by the smoothing scale, while the
shape of the fits should be approximately independent of filtering. This behavior
is regulated by Kolmogorov power spectrum, that it has the same slope for all the
scales included from injection scale to the dissipation scale. The scales that we use
for the smoothing of the velocity fields are included in this range and this explains
why the slope of the fit of the individual scales should be approximately constant.
The results of the fitting procedure, for all the smoothing scales, are given in the
table 4.2.

Smoothing Scale [kpc] a0 a1 a2 χ2

60 0.007 0.167 −0.004 0.49
100 0.022 0.219 −0.008 0.69
200 0.081 0.186 −0.028 3.11
400 0.061 0.749 0.033 1.35
600 0.182 0.225 −0.056 5.70

Table 4.2: Fitting parameters for our model

In the figure 4.5 we show the median profile and its fit for all the smoothing
scales.
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Figure 4.5: Median profiles and best fit relation for each smoothing scales

From both table 4.2 and figure 4.5 our fitting formula 4.6 well describes the
data, yielding small χ2.
The parameters of the fits ensue the expectations described below. The terms that
describe α in the center and at R200 increase with the smoothing scale, while the
slope of fits is approximately the same for all the scales.
In section 4.5 we will compare our best fit formulas with other models proposed in
the literature and we discuss which scale better describe the most recent observa-
tions.

4.3 Relation between the filtering scale of turbulence and
the non-thermal pressure support

In order to test whether the standard Kolmogorv theory of turbulence (see section
2.1) applies to our data, we study the relation between the value of α200 and the
smoothing scale. As shown in the previous paragraph, any smoothing scale gener-
ates different values of α200. The smoothing scales can be associated at a different
scales in Kolmogorov’s spectrum. If we apply the ”standard” relation between rms
velocity and turbulent scale (e.g. σ2 ∝ L

2
3 ) in the stationary subsonic turbulent

regime described by Kolmogorov theory, we expect that the relation is described
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by the following function:

α200 = a · xb (4.7)

where ’x’ is the value of smoothing scale in physical quantities and ’a’ and ’b’
are the parameters obtain from Kolmogorov’s theory. The expected value for ’b’,
the slope of fit, is very close to 2

3 in case the turbulence is stationary and subsonic,
but ICM is not such an idealized environment (considering density stratification,
self-gravity and un-stationary flow patterns), so the value expect for ’b’ is relatively
close to 2

3 but not exactly this value. The figure 4.6 shows the relation α200 versus
smoothing scale.

Figure 4.6: The symbols in the plot give the value of α parameter for the different
smoothing scales, while the fit is obtain as described in the paragraph above

In order to find the value of parameters ’a’ and ’b’, we fit the data with the
function 4.7 and we obtain:

• a=8.00·10−4

• b=0.77

The measured exponent a1
∼=0.77 is reasonably close to the 2

3 exponent ex-
pected in Kolomogorov, and is consistent with the fact that the power spectra of
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the velocity field in simulated galaxy cluster are typically steeper than the Kol-
mogorov’s slope, because of the stratified cluster atmosphere, as presented in para-
graph 2.1. Thus the scales 60 and 100 kpc are not well described by best fit re-
lation. One sure reason for such steeper behavior at small scales is the effect of
numerical dissipation, that is expected to artificially dampen velocity structures on
scales close to the spatial resolution (e.g, Porter & Woodward 1994). If this scale
is grater than the smoothing scale, the slope of Kolmogorov’s spectrum is strongly
steepened, as it is possible to observe in our plot. The typical scale for which this
behavior is observable is ∼8 times the resolution of the simulation. Our resolution
is 20 kpc, so the scale for which the effect described in Porter & Woodward (1994)
is observable is∼160 kpc. In figure 4.6 we note that the steepening of the spectrum
occurs precisely by scales immediately below the 200 kpc scale. This suggests that
for the scales below 200 kpc the value of α is strongly influenced by numerical
effects. For scales greater than ∼200 kpc these effects do not occur and the rela-
tion between α and the smoothing scale is well fitted by Kolmogorov’s spectrum.
Since a number of physical and numerical effects may affect the dynamics of the
turbulent flow on <100-200 kpc, with these simulations it is hard to tell the differ-
ent effects apart, and in what follows we will mostly focus on the dynamics of the
turbulence in the ICM on >100 kpc scales.

4.4 Sub-samples analysis

In order to study any possible dependence of α on the mass and on the dynamical
state of the clusters, we have studied our sample after dividing it in high and low
mass compared to median mass and relaxed or perturbed clusters compared to me-
dian of w or c parameters.
In this section we introduce a new smoothing scale. This scale is not at fix value
like the previous ones, but its value is defined as R200

3 . Being so defined, this
smoothing scale depends on the total mass of the single cluster and its value changes
for each cluster. We have decided to use this scale to study possible relations be-
tween α and the type of filtering used to defined turbulence motions, as the maxi-
mum spatial scale of turbulent motions is likely connected to the cluster size (see
ram pressure stripping section 2.2.1). From now, we will refer to this new scale
calling it ’R200

3 ’. In the following section we show only the plot and we discuss the
results for the two sub-samples. The tables like 4.2 that show the values of fitting
parameters are showed in appendix B.
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4.4.1 Mass division

From the table 4.1 we identify IT92_1 as the cluster with the median mass of our
sample, so we divide our catalog in two sub-samples, that they are presented in the
following table:

ID
High Mass IT62 IT92_0 IT90_1 IT92_2 IT1 IT6 IT90_2
Low Mass IT92_1 IT90_3 IT3 IT90_0 IT90_4 IT7 IT10

Table 4.3: Mass sub-samples

After defining the two sub-samples, we have separately analyzed the two groups,
using the same technique used in section 4.2.
In the figure 4.7 we show the median profiles for the two sub-samples.

Figure 4.7: Median profiles for each smoothing scale and for high and low mass
sub-samples

We apply the function 4.6 at the sub-samples, obtaining the fitting parameters
reported in tables B.1 and B.2, and the following plots.
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Figure 4.8: Less massive clusters (on the top panel) and more massive clusters (on
the bottom panel) fitted for each smoothing scale

From figure 4.7, for fixed smoothing scales the difference between the two sub-
samples is small, while for R200

3 the difference is appreciable. Clusters with high
mass are more perturbed than low mass ones. If we had a mass-complete sam-
ple this behavior could be explained by the fact that from the structure formation
theory, we expect that more massive structure are formed at a later time than less
massive ones. This suggests us that more massive clusters are far from virialization
and they are more perturbed than the less massive clusters which have had time to
virialize the ICM and we observe at them more relaxed.
However, we do not have a mass-complete sample so we can not entirely explain
the behavior of the two sub-samples as presented below. However, we can explain
this finding by analyzing the role that the filtering scale has on the final result. With
fixed scales the larger eddies in more massive clusters are systematically filtered
and the contribution of the bigger scales at the Kolmogorov’s spectrum is lost. If
we use a mass variable scale, which in our work is the same of using the R200

3 scale,
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we do not filter the bigger eddies in more massive clusters so their contribution at
the computing of the turbulent pressure is not lost. This behavior is well shown
in the figure 4.7 where the more massive clusters and the less massive ones have
about the same shape for fixed smoothing scale, but for R200

3 scale the shapes are
appreciably different.
In summary, from figure 4.8 we observe that our model well fit the two sub-
samples, which is confirmed by the χ2 reported in tables B.1 and B.2.
From all the evidence above described, it emerges that the mass division of the
sample do not show strong evidence of dependence of turbulent pressure from the
cluster’s mass. This would be surprising if we used a mass-complete sample, for
which we should observe more turbulent pressure in more massive clusters since
they were formed last. Without a mass-complete sample, we can not give any
constrains about mass-turbulent pressure relation, but we could still study rela-
tion between smoothing scales and α and the difference between the use of fixed
smoothing scale or an adaptive mass scale.

4.4.2 Dynamic state division

In this section we investigated a possible relation between α and two X-ray mor-
phological parameters often employed in the study of galaxy clusters to disentangle
relaxed and perturbed clusters. We use the standard definitions for 〈w〉, the emis-
sion centroid shift, and 〈c〉, the concentration parameter (Mohr et al., 1993). In
particular, the first is defined as the standard deviation of the projected separation
between the peak and centroid of the X-ray surface brightness distribution, while
the second is defined as the ratio of the X-ray surface brightness within a radius of
100 kpc over X-ray surface brightness within a radius of 500 kpc. Recalling that
high values of w indicate a dynamically disturbed system, whilst high values of c
indicate a relaxed cluster, now we present the results that we have obtained. The
following tables show the two sub-samples used for the different parameters:

ID
Perturbed IT92_0 IT90_1 IT90_2 IT62 IT90_4 IT90_3 IT90_0
Relaxed IT92_2 IT3 IT92_1 IT7 IT1 IT10 IT6

Table 4.4: 〈c〉 sub-samples

ID
Perturbed IT7 IT90_4 IT90_3 IT92_1 IT3 IT90_0 IT92_2
Relaxed IT90_2 IT90_1 IT10 IT1 IT62 IT92_0 IT6

Table 4.5: 〈w〉 sub-samples
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Before starting our analysis we notice that it is reasonable to expect a correla-
tion between the cluster’s mass and the dyamical state, because in a mass-complete
sample the largest masses are associated to objects lately formed, which should be
more turbulent on average. In the following plots we show the relations between
mass and 〈c〉 or 〈w〉.

Figure 4.9: Mass-〈c〉 relation (on the top panel) and mass-〈w〉 relation (on the
bottom panel) for each clusters

For 〈c〉 parameter we do not expect a strong trend of α with mass because this
parameter is defined from quantities which are mostly determined by the dynamics
in the central regions of the cluster only .
For 〈w〉 we expect that for fixed smoothing scale the α profiles for the two sub-
samples (relaxed and perturbed) the difference are small, but for the R200

3 scale the
difference between the two sub-samples are appreciable. In particular, from the
bottom panel of figure 4.9, we expect that for relaxed sub-sample α is for each
radius greater than for perturbed sub-sample. This prediction comes from the fact
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that less massive clusters have a value of 〈w〉 greater than more massive clusters.
As discussed in section 4.1, high values of 〈w〉 identify perturbed clusters, so we
expect that for R200

3 scale, which separates the clusters in mass range, the value
of α for perturbed clusters is smaller than for relaxed clusters. This behavior is
therefore explained by a combination of effects due to the dynamic state but also
by the relation between the mass and the filtering scale.
After this preliminary analysis, we focused on the individual parameters starting
with 〈c〉 parameter. In the figure 4.10 are shown the median profiles of relaxed
(identified with ’Relaxed’) and perturbed (identified with ’Perturbed’) clusters for
each smoothing scales.

Figure 4.10: Median profiles for each smoothing scale and for perturbed and re-
laxed sub-samples for 〈c〉 parameter

For all the smoothing scales the difference between the two sub-samples is very
small (≤2). The shape of the profile is similar to other samples used in our work,
so we decide to fit these profiles with the same equation 4.6.
We observe also that in the core of the clusters, out to ∼0.4R200, the two samples
have appreciable differences. Until 0.4R200 the perturbed sample has a larger α
than the relaxed sample, for all smoothing scales. This behavior suggests that 〈c〉
parameter is a good indicator of turbulent motions only limited to the innermost
regions of the cluster. Indeed, above 0.4R200 the shape of the perturbed and relaxed
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samples is almost indistinguishable, which suggests the impossibility of using 〈c〉
as an indicator of turbulence outside of the cluster core. In the following plot we
show the innermost region of the figure 4.10 where it is observed the behavior
above described.

Figure 4.11: Median profiles for each smoothing scale and for perturbed and re-
laxed sub-samples for 〈c〉 parameter, zoomed in the region 0<r<0.4R200

From the tables B.3 and B.4, we observe that our fitting formula well described
the profiles and for perturbed clusters the χ2 is smaller than for relaxed ones, for
all the smoothing scales.
In order to study a possible correlation between α200 and value of 〈c〉 for each
clusters, we derived the values of α200 as described in section 4.2. We study also
the correlation between α in the core of the clusters and 〈c〉 parameter. We obtain
the results shown in the following figure:
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Figure 4.12: Comparison between α in the core and 〈c〉 parameter for each cluster
(on the top panel) and comparison between α200 and 〈c〉 parameter for each cluster
(on the bottom panel).

From the distribution of the data is not possible identify a correlation between
α200 and 〈c〉. This means that it is not possible use the parameter 〈c〉 as a indicator
of turbulence in ICM above 0.4R200. We remark that, even if a slightly more
evident correlation between 〈c〉 and α may be present limited to the innermost
≤0.4R200 region, the scatter in our data is still to large to allow any firm conclusion
(see right panel of figure 4.12).
In order to verify if this behavior is due to real nature of ICM or it is due to the fact
that 〈c〉 is not the best indicator for this type of study, we have decide to apply the
same technique at 〈w〉 parameter.
We show in the figure 4.13 the median for relaxed and perturbed clusters with the
same nomenclature adopted for the analysis of 〈c〉 parameter.
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Figure 4.13: Median profiles for each smoothing scale and for high and low mass
sub-samples for 〈w〉 parameter

As discussed at the begin of this section, we note that for fixed filtering scale
the difference between the two sub-samples is negligible, but for the R200

3 scale this
difference gets significant. Our prediction turns out to be correct and the explana-
tion we gave seems to be correct.
As for 〈c〉 analysis, we apply the function 4.6 at two samples separately and from
tables B.5 and B.6 we observe that our function well fits the data, with a behavior
similar to 〈c〉 parameter. Comparing statistically 〈w〉 and 〈c〉, the results of fitting
procedure of 〈w〉 sample is slightly less accurate than the 〈c〉 one.
It is important to study the correlation between 〈w〉 and α200, in order to verify
whether the parameters normally used to identify relaxed and perturbed clusters
could be used also to identify the clusters more turbulent.
In Figure 4.14 we show the result of correlation between 〈w〉 and α200.
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Figure 4.14: Comparison between α200 and 〈w〉 parameter for each cluster

As the case of 〈c〉 parameter it is not possible to identify a strong correlation
between the two parameters, but in this case a weak correlation is observable.
From our analysis, it emerges that 〈c〉 is not a reliable indicator of turbulent pres-
sure at radii greater than 0.4R200. It is however a weak indicator of turbulence
motions in the core of the cluster only. This is interesting for the future X-ray
space telescope missions as Athena, for which the resolution of observation will be
such as to be able to study in depth the core of the clusters.
For 〈w〉 we conclude that it is a weak but reliable indicator of turbulent pressure at
R200. In particular, its relation with the cluster’s mass and and its relatively easy
determination, makes it a good indirect indicator of turbulence motions in the out-
skirts of the cluster.
In conclusion, from the analysis of the two parameters 〈w〉 and 〈c〉 does we report
no strong correlation between dynamical state of clusters and their turbulent mo-
tions. This goes against our expectations and it makes necessary a more in-depth
study of all the possible sources of correlations between dynamic state and turbu-
lent motions, including the impact of not having a mass-complete sample of galaxy
clusters. In the chapter 5 we discuss a possible approach a these studies and some
expectations of their results.
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4.5 Comparison with recent literature

After the analysis presented above, we compare our work with the recent literature.
In particular, we compare our results with a theoretical work published in Nelson
et al. (2014) and an observational work published by Eckert et al. (2018).
In Nelson et al. (2014), the authors used a sample of 65 cosmological clusters sim-
ulated in cosmology, using the Adaptive Refinement Tree N-body+gas-dynamics
code ART. The clusters are selected with successive mass-cut, fixing different mass
for different redshift. This sample was analyzed in order to estimate the non-
thermal pressure support from gas motions as a function of radius.
The difference between our work and the work of Nelson et al. (2014) is the filter-
ing procedure of velocity field. They followed the procedure presented in Zhuravl-
eva et al. (2013). For each radial bin they excluded the contribution from gas in
the high-density tail in the gas distribution, with the goal of removing small-scale
fluctuations in the non-thermal pressure due to gas substructures while preserving
the profiles of the global ICM. In addition, they smoothed the profiles and then
they computed the mean 〈vi〉 and mean-square gas velocities 〈vi

2〉 weighted by the
mass of each gas cell. The velocity dispersion is computed as σi =

√
〈vi

2〉 − 〈vi〉2,
distinguishing between radial and tangential velocity components, σr and σt. The

3D velocity dispersion is computed as σgas =

√
σ2
r+σ2

t
3 .

For their samples, the authors find that the following fitting formula best describes
their data:

Prand
Ptotal

(r) = 1−A
{

1 + exp

[
−
( r
r200

B

)γ]}
(4.8)

with A=0.452±0.001, B=0.841±0.008 and γ=1.628±0.019.
In order to verify which method gives statistically better results, we apply the fitting
formula 4.8 to our clusters and we obtain the parameters shown in the following
table:

Smoothing Scale [kpc] A B γ χ2

60 0.73 0.43 3.97 · 10−3 0.61

100 0.73 0.41 1.56 · 10−2 0.93

200 0.70 0.34 6.14 · 10−2 3.28

400 0.69 0.24 0.13 5.18

600 0.68 0.27 0.19 5.25

in Nelson et al. (2014) paper 0.45 0.84 1.63

Table 4.6: Fitting parameters for Nelson model



56 4. Results and analysis

Table 4.6 must be compared with table 4.2 and the following figure compares
our model and the Nelson model.

Figure 4.15: Comparison between our model and the model proposed by Nelson
et al. (2014)

From the comparison between the tables 4.6 and 4.2 we can conclude that our
model describes better the data, or is substantially comparable with Nelson model
at most filtering scales. From figure 4.15 it is possible to observe that the shape
of the best fit is about the same for both the fitting formula. This suggests that the
formula suggested by Nelson is flexible enough to equally accommodate the fitting
of our data. However, the advantage of our proposed best fit formula is that the free
parameters have a simple physical meaning (see section 4.2). On the other hand, if
we directly compare with the best fit parameters suggested in Nelson et al. (2014),
we find that the function 4.8 with the parameters proposed in there (in plot above
dotted line) is not able to describe the data in any smoothing scales.
The differences between our results and the results presented in Nelson et al. (2014)
are attributable to the different choice in filtering velocity fields because there the
authors apply a type of filter which considers the turbulent velocity as the contri-
bution of radial motions and tangential motions. This assumption tends to over-
estimate the real turbulent velocity field, as presented in Vazza et al. (2018). As
presented in this paper, the amount of turbulent pressure is overestimated by a fac-
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tor 2-3 when radial motion are left unfiltered. In our work we use a filter that is
more conservative and is more suitable to yield the isotropic pressure support from
turbulent gas motions. Furthermore, in this work we also apply a shock filter which
allow us to exclude the spurious contributions of shocks. The importance of this
filter is discussed in section 3.2. These considerations let us believe that our fil-
tering procedure is likely better compared to the procedure used in Nelson et al.
(2014). In particular, our definition of kinetic pressure is more realistic because we
consider this pressure as an isotropic pressure.
To verify if our procedure can also better describe the observed data, we compare
our results with a recent observational work (Eckert et al., 2018). In this paper the
authors study the turbulence in ICM on a sample of 12 clusters observed in X-ray
band using the space telescope XMM-Newton. In particular the authors focus their
study at two radius, R500 and R200. The authors compared the hydrostatic mass
that can be derived up to R200 using SZ data from the Planck satellite, with the
total mass that can be derived up to the same radius based on the observed X-ray
emission profile, which is converted into a total mass under the assumption (sup-
ported by simulations) that the baryon fraction in clusters approaches its cosmic
value at ∼ R200. From the mis-match between the two esimates of the total mass,
it is thus possible to derive the non-thermal pressure bias. Following Eckert et al.
(2018), in the presence of isotropic non-thermal pressure, the hydrostatic equilib-
rium equation can be generalized as:

d

dr
(Pth(r) + PNT (r)) = −ρgas

GMtot(< r)

r2
(4.9)

with Pth and PNT the thermal and non-thermal pressure components, respec-
tively. They set the non-thermal pressure fraction as α(r) = PNT (r)

Ptot(r)
and the equa-

tion above can be rewritten as:

Mtot(< r) = Mhyd(< r) + α(r)Mtot(< r)− Pthr
2

(1− α)ρgasG

dα

dr
(4.10)

from which we get α as:

α = 1−
ρgasGMhyd +

√
(ρgasGMhyd)2 − 4MtotρgasGPthR2 dα

dr

2MtotρgasG
(4.11)

Therefore, from the observed bias between the hydrostatic mass and the total
mass it is indeed possible to estimate the value of non-thermal pressure in the outer
regions of galaxy clusters, and this is the same quantity that we can independently
derive from our simulations.
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We investigate now the possibility of the most appropriate smoothing scales of fil-
tering that best reproduce the data derived by Eckert et al. (2018), by benchmarking
the outcome of the different scales against the results based on recent XMM obser-
vations. In figure 4.16 we show the median profiles at each smoothing scales and
the results of α for the clusters of paper Eckert et al. (2018).

Figure 4.16: Comparison between our α median profiles for each smoothing scale
and the observed data points by Eckert et al. (2018)

While the smaller scales (60 and 100 kpc) do not explain well the data of Eck-
ert et al. (2018), the scales from 200 to 600 kpc fit the data in a good way. This
is reasonable, because the scales from 200 to 600 kpc are the scales at which the
turbulence is injected in ICM. These are the typical scales of the ram pressure strip-
ping and the clumps which are observed in X-ray maps. Also the choice of a scale
that depends on the cluster radus (i.e. R200

3 in figure 4.16) well matches the obser-
vations. Based on these observations and from what we discussed in the previous
sections, we can conclude that the scale R200

3 is probably the best one to filter the
velocity fields and therefore this may be the best guess for the typical outer scale
of turbulent motions in the ICM, implied by our work.



Chapter 5

Conclusions and future
perspectives

In this chapter we summarize the main results of our work, we discuss the main
sources of uncertainty and we present what our future perspectives may be.

Methods and data

We have analyzed a recent high-resolution sample of galaxy clusters, simulated
with the cosmological code ENZO, specifically designed to study turbulent motions
in the ICM.
We optimized existing algorithms to disentangle laminar from bulk motions in the
simulated ICM, and we developed new tools to limit the spurious contribution from
gas clumps and shocks in the simulated volume.
We therefore produced the 3-dimensional distribution of turbulence in simulated
clusters at z=0, which represents the starting point of our analysis. From this dis-
tribution we defined the turbulent velocity field and we compute the non-thermal
contribution of pressure.
We computed the 3-d profiles of non-thermal and thermal pressure. For the thermal
support we used the simulations data of temperature, while for the non-thermal one
we used the turbulent velocity which is obtained from the filtering above described.
Then we defined the ratio of non-thermal pressure versus the total pressure (non-
thermal and thermal contribution) as α and we computed the radial profile of this
quantities for each cluster.
From the profiles of each clusters, we further built the average profile across our
sample, by re-normalizing and fixing the radial length in order to have a compara-
ble distribution for each cluster.
In order to study possible correlations between turbulent pressure and mass or dy-
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namical state of the cluster, we further divided our dataset into sub-samples. In
particular, we computed the mass of the each cluster and we divided our sample in
low and high mass compared to the median mass. Furthermore, we could divide
our sample in relaxed and perturbed clusters using the dynamical state, which is
defined by two different morphological X-ray parameter ’w’ and ’c’. In particular
we used the mean of the two parameters along three different line of sight and we
indicate these parameters as 〈w〉 and 〈c〉. 〈w〉 is the emission centroid shift and 〈c〉
is the concentration parameter. The first is defined as the standard deviation of the
projected separation between the peak and centroid of the X-ray surface brightness
distribution, when the aperture used to compute it decreases from a maximum ra-
dius of 500 kpc to smaller radii. 〈c〉 is defined as the ratio of the X-ray surface
brightness within a radius of 100 kpc over X-ray surface brightness within a radius
of 500 kpc. High values of w indicate a dynamically disturbed system, whilst high
values of c indicate a peaked core, typical of non-merging systems.

Results

Our work has produced several results that can be summarized in this section. Part
of these results have also been crucial for a peer-reviewed article, Vazza et al.
(2018) which I coauthored.
We developed a new fitting formula for the radial profile of α in the form:

α = a0 ·
(

r

r200

)a1

+ a2

This formula well fits the data of our simulations, both for complete sample and
for the different sub-samples which we studied. We found that the three parame-
ters can be easily related to the physics of the ICM (see section 4.2 for a detailed
explanation and the necessary bibliographic references).
Our results imply that on average the ratio between non-thermal to total pressure,
supplied by gas turbulence , is over∼0.5% at R200 considering velocity scales <60
kpc, and ∼10% within the same radius, considering velocity scales from 400 to
600 kpc. The pressure ratio in the very center of clusters is on average ∼0.1% and
∼5%, respectively.
We study the relation between the value of α at R200 and the value of smoothing
scale, finding that the trend expected from the Kolmogorov theory well fits our data
only for the largest smoothing scales (∼200-600 kpc). This is likely due to the fact
that the ICM in the simulations is stratified and there are many numerical effects
that change the slope of the spectrum.
We compare our results with the results presented in Nelson et al. (2014). We
notice that the main different between the two approaches is in the definitions of
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turbulent velocity. We applied a shock filter and a smoothing procedure to the ve-
locity, while in Nelson et al. (2014) the authors defined the turbulent velocity from
the radial motions of the gas. Our results overall suggest that our definition of tur-
bulent velocity is more accurate than the definition used in Nelson et al. (2014). In
particular we refer a recent work by Vazza et al. (2018) where the authors demon-
strate that the definition which is used by Nelson et al. (2014) overestimated the
turbulent pressure by a factor 2 or 3.
We also compare our results with a recent observational work by Eckert et al.
(2018). In this paper the authors use a sample of observed X-ray clusters and they
measured the non-thermal pressure at two radii, R500 and R200. We have shown in
4.5 that the smoothing scales from 200 to 600 kpc well fit the observational data
and it suggest us that our definition of turbulent motions is sufficiently correct to
explain observational features. The comparison with observational data suggests
us that the best scale that described the turbulent motions is in the range between
200 and 600 kpc, so we focused our study in this range.
Thanks to all the previous conclusions, we found that a practical approach to best
extract the turbulent kinetic energy in cluster outskirts is to filter out motions with
a coherence scale larger than ∼ R200

3 , where R200 is the cluster’s radius. With this
choice, we can automatically account for the change in the outer injection scale
of clusters with different masses, owing at the fact that smaller clusters typically
accrete smaller substructures compared to larger objects, following self-similarity.
This scale allowed us to study particular features as the relation between α, X-ray
morphological parameters and the cluster’s mass (see the section 4.4.2).
Thanks to the dynamical state division we can conclude that the c parameter is a
weak indicator of turbulence only in the innermost region of the cluster (typically
inner to 0.4R200) while in the outskirts it is not possible use c as an indicator of
turbulence. However, the w parameter is a weak but good indicator of turbulence
in the outskirt region of the cluster. In particular, for the w parameter we found
a possible relation between 〈w〉 and the mass of the cluster, when we smooth the
velocity field with a mass sensible scale (in our analysis R200

3 scale).

Present limitations

From the conclusions presented above we notice that there are some important
physical and numerical issues that we have to consider in our analysis. In particular
we can summarize them in:

• Limited numerical resolution: the resolution of the simulation which is used
in this work in 20 kpc. The main effect is already discuss and may lead to
an underestimate of non-thermal pressure at scales which are less than ∼8
times the numerical resolution (Porter & Woodward, 1994);
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• Statistical completeness: our sample was not designed to be complete in
mass, hence it is difficult to clearly identify physical effects that depends on
the total size of the host cluster and not on its internal dynamics;

• Physical issues: a number of additional physical effects (from radiative gas
cooling to AGN feedback) can indeed increase the level of turbulence, at
least within cluster cores. Based on Vazza et al. (2013), however, we ex-
pect these effects not to be relevant for the estimate of the turbulent pressure
support in cluster outskirts and on >200 kpc scales, which is our main focus
here.

In addition to numerical and physical issues we notice that also the sample that
we use in this work may introduce some biases. In particular we can summarize
these effects in:

• Incomplete-mass sample: this may affect the conclusions derived from the
analysis of the mass division and dynamical state division of the sample. In
particular we found that there is little to no correlation between the mass of
the clusters and the non-thermal support, but also there are not correlations
between dynamical state and the non-thermal pressure. This is contrary to
our expectations as already discuss in the sections 4.4.1 and 4.4.2. This likely
stems from the fact that the sample that we have select to this work is not a
mass complete sample, so we can not draw firm conclusions;

• No massive clusters in the sample: the sample which we use lacks of clus-
ters with value of total mass higher than 7.5·1014. This could be affect the
conclusions of our work, because we expect that more massive clusters are
formed in later time compared to the less massive ones. Moreover, the most
massive clusters are also the one for which more observational results are
available. From these different formation times we expect that more massive
clusters are also more perturbed and they are characterized by more turbulent
motions , while less massive clusters are more relaxed and their non-thermal
support is less than more massive clusters. However, this behavior is not ob-
served in our sample and we relate this to the fact that in our sample there are
no clusters with high mass and the mass range is not so extend as to allow us
to see these evolutionary effects.

Future developments

After presenting the results and the main issues of our work, we conclude this
chapter with some possible future perspectives that we think are interest upgrade
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of this work. Some of the above issues could be addressed by using a larger, mass-
complete sample. In particular with an other type of selection we may be able to
observe the typical behavior expect from the structure formation theory, like the
fact that more massive clusters are more perturbed and turbulent than the less mas-
sive ones. From the simulations we used in this work, we can access many time
steps of the individual clusters. If we consider separate time steps of at least one
dynamic scale time, we will be able to the same cluster at several different times
as two separate clusters. This would allow us to increase our statistics and have a
mass-complete sample.
Different definition of X-ray parameters: for the dynamical state division we use
the typical X-ray definition of c and w parameters and we considered the mean
value of three line of sight. These definitions are often used in observational works,
but in numerical work we can use many line of sight and we can define the dynam-
ical state of the cluster as the mean of more line of sight. We think that the mean
of the parameters which is calculated from many line of sight, it could be enclose
the information necessary to find the relationships between dynamical state and
non-thermal support.

In conclusion, this work was born as an analysis of the turbulence in the ICM
gas, but it has opened the possibility of new studies on the relationships that link the
turbulent pressure to the dynamic state of the cluster and its mass. The origin of the
problems we have discussed in our work are not fully constrained, but with future
and more focused work on specific details, we will be able to better constrain the
linke between the turbulent pressure support in cluster outskirts also as a function
of cluster’s mass and dynamical state.
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Appendix A

Numerical algorithm

In this appendix we presented the numerical algorithms which we used and devel-
oped for our analysis. The main parts which need a more detailed explanation are
presented in the section 3. Here we summarize the main steps that we followed to
obtain our results.
With gray color in scheme A.1 we show all the inputs used in different part of
the code. In particular we report the fields from simulations (density, temperature
and velocity), the shock finder algorithm (see Vazza et al., 2017, for details), the
procedures used to compute the mass and other physical quantities of each cluster,
the estimate of X-ray morphological parameters, which are computed by collabo-
rators, and the procedure used to normalized the radial profile of α.
As result of the procedure which we developed, we obtain radial profiles of α and
a catalog, with mass, virial radius and X-ray parameters, which in the scheme are
colored in yellow.
With these results we produced the analysis of different samples. In particular be-
gun with the complete sample, from which we obtained the new fitting formula
described in section 4.2. After this first analysis, we divided our sample in more
massive clusters and less massive ones, compared to the median mass. After the
mass division, we also divided our sample in perturbed and relaxed clusters, using
two different X-ray morphological parameters, 〈c〉 and 〈w〉. In the scheme A.1
these division are shown in green.
The results obtained with the algorithm above are the data products that we used
to investigate the physical properties of the ICM and to further compare with the
literature. This final analysis part is showed in the bottom of the scheme and it is
colored in blue.
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66 A. Numerical algorithm

Figure A.1: Schematic work-flow



Appendix B

Fitting parameters for
sub-samples

In this appendix we shown the table of best fit parameters for each sub-samples
used in our analysis. The fitting formula used is:

α = a0 ·
(

r

r200

)a1

+ a2 (B.1)

In particular the tables B.1 and B.2 refer to the results obtained for more massive
sub-samples and less massive sub-samples, which are presented in section 4.4.1.
The tables B.3 and B.4 refer to perturbed and relaxed sub-samples obtained from
the 〈c〉 parameter division, while B.5 and B.6 refer to perturbed and relaxed sam-
ples obtained from 〈w〉 parameter division. The dynamical state division is de-
scribed in section 4.4.2.
The physical meaning of the parameters A0, A1 and A2 is the same presented in
section 4.2, while the χ2 is described in section 4.1.
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Smoothing Scale [kpc] A0 A1 A2 χ2

60 9.84 · 10−3 1.11 · 10−1 −6.27 · 10−3 0.73

100 2.40 · 10−2 1.73 · 10−1 −1.14 · 10−2 1.16

200 4.63 · 10−2 4.24 · 10−1 4.05 · 10−3 2.78

400 3.65 · 10−1 8.79 · 10−2 −2.69 · 10−1 3.88

600 2.93 · 10−1 2.01 · 10−1 −1.70 · 10−1 3.16
R200

3 −2.16 · 10−1 −1.29 · 10−1 3.04 · 10−1 2.27

Table B.1: Fitting parameters for high mass sample

Smoothing Scale [kpc] A0 A1 A2 χ2

60 7.38 · 10−3 1.85 · 10−1 −3.57 · 10−3 0.49

100 2.40 · 10−2 2.21 · 10−1 −9.66 · 10−3 0.63

200 1.23 · 10−1 1.52 · 10−1 −6.94 · 10−2 2.93

400 −3.19 · 10−1 −9.41 · 10−2 4.18 · 10−1 7.51

600 8.38 · 10−2 8.01 · 10−1 3.30 · 10−2 2.00
R200

3 5.18 · 10−2 5.45 · 10−1 8.32 · 10−3 2.14

Table B.2: Fitting parameters for low mass sample

Smoothing Scale [kpc] A0 A1 A2 χ2

60 2.89 · 10−3 3.75 · 10−1 8.02 · 10−4 2.06

100 3.14 · 10−2 1.42 · 10−1 −1.74 · 10−2 1.16

200 5.26 · 10−2 3.21 · 10−1 −1.98 · 10−3 1.33

400 3.37 · 10−1 8.77 · 10−2 −2.44 · 10−1 1.55

600 1.22 · 10−1 3.84 · 10−1 −2.20 · 10−3 0.84
R200

3 5.61 · 10−2 7.38 · 10−1 2.14 · 10−2 1.47

Table B.3: Fitting parameters for perturbed clusters selected by 〈c〉 parameter



69

Smoothing Scale [kpc] A0 A1 A2 χ2

60 5.03 · 10−3 2.71 · 10−1 −1.38 · 10−3 2.85

100 1.68 · 10−2 3.16 · 10−1 −3.05 · 10−3 3.28

200 3.85 · 10−2 6.31 · 10−1 1.24 · 10−2 3.19

400 1.22 · 10−1 4.16 · 10−1 4− 2.52 · 10−2 5.77

600 9.14 · 10−2 8.43 · 10−1 2.45 · 10−2 4.49
R200

3 5.10 · 10−2 7.86 · 10−1 1.58 · 10−2 1.44

Table B.4: Fitting parameters for relaxed clusters selected by 〈c〉 parameter

Smoothing Scale [kpc] A0 A1 A2 χ2

60 7.16 · 10−3 1.78 · 10−1 −3.30 · 10−3 0.94

100 2.28 · 10−2 2.26 · 10−1 −8.20 · 10−3 1.10

200 4.97 · 10−2 4.09 · 10−1 3.97 · 10−3 2.51

400 1.04 · 10−1 3.93 · 10−1 −6.71 · 10−3 3.38

600 1.79 · 10−1 3.02 · 10−1 −5.38 · 10−2 4.83
R200

3 5.35 · 10−2 4.45 · 10−1 8.85 · 10−3 1.69

Table B.5: Fitting parameters for perturbed clusters selected by 〈w〉 parameter

Smoothing Scale [kpc] A0 A1 A2 χ2

60 3.43 · 10−3 3.75 · 10−1 3.26 · 10−5 0.85

100 1.76 · 10−2 2.76 · 10−1 −4.83 · 10−3 1.08

200 5.94 · 10−2 3.58 · 10−1 −1.26 · 10−2 2.98

400 7.66 · 10−2 6.14 · 10−1 1.22 · 10−2 2.20

600 5.74 · 10−1 9.39 · 10−2 −4.51 · 10−1 3.20
R200

3 1.25 · 10−1 3.16 · 10−1 −4.17 · 10−2 1.20

Table B.6: Fitting parameters for relaxed clusters selected by 〈w〉 parameter



70 B. Fitting parameters for sub-samples



Acknowledgments

I would like to thank first of all my parents, my sister and all my family for the
support they gave me during all my academic path, supporting each choice and
decision of mine.
A huge thank you goes to the supervisor of this thesis, Doctor Franco Vazza, for
all that he taught me and the patience with which he followed me, providing me
with knowledge and support, and transmitting the passion for the covered topics.
Thanks also for letting me directly know some collaborators and giving me the op-
portunity to exchange opinions and ideas about this work with them.
It would be impossible to forget all friends with whom I shared this path. Thanks
to the old friends, who -despite the distance- always had a minute to talk to me;
thanks to the ’new’ friends with whom we have shared studying moments (few)
and funny ones (many). Thanks to Giacomo, Michael and Silvia and to their sofa
that hosted me for months when there was the need; thanks to Attilio for sharing
with me the days and the evenings between a thesis, an exam and ‘na bireta’.
Last but not least, thanks to Valentina, a everyday support, an essential person in
my life and without whose help I would have never arrived where I am now.
Thanks to all those who have shared their time with me, their ideas and who have
supported and held me up me during these years.





Ringraziamenti

Vorrei ringraziare in primis i miei genitori, mia sorella e tutta la mia famiglia per il
supporto che mi hanno dato durante tutti gli anni dell’univesrità, appoggiando ogni
mia scelta e decisione.
Un enorme grazie va al supervisore di questa tesi dottor Franco Vazza, per tutto ciò
che mi ha insegnato e la pazienza con la quale mi ha seguito, fornendomi nozioni e
supporto e trasmettendomi la passione per gli argomenti trattati. Grazie anche per
avermi permesso di conoscere direttamente alcuni dei suoi collaboratori e avermi
dato la possibilità di scambiare con loro pareri e idee sul lavoro svolto.
Come non ringraziare tutti gli amici con i quali ho condiviso questo percorso. Agli
amici di sempre, che se pur lontani, hanno sempre un minuto per scambiare due
chiacchiere, ai ’nuovi’ amici con i quali abbiamo condiviso momenti di studio
(pochi) e divertimento (tanti). Grazie a Giacomo, Michael e Silvia e al loro divano
che mi ha ospitato per mesi quando c’è stato bisogno; grazie a Attilio per aver con-
diviso con me le giornate e le serate tra una tesi, un esame e ‘na bireta.
Per ultima ma non ultima, grazie a Valentina, sostegno di tutti i giorni, persona
fondamentale della mia vita e senza il cui aiuto non sarei mai arrivato dove sono
ora.
Grazie a tutti coloro che hanno condiviso con me il loro tempo, le loro idee e che
mi hanno supportato e sopportato in questi anni.





List of Figures

1.1 X-ray emission in red (XMM-Newton), radio emission at 323 MHz
in blue (low resolution, beam FWHM ∼ 22′′×18′′) by Bonafede
et al. (2014) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Original figure by Sunyaev & Zeldovich (1980). In solid line is
shown the original CMB spectrum, while in dashed line is shown
the spectrum after a multiple Compton scattering (i.e. the thermal
SZ effect) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Energy spectrum as a function of the size of the eddies (Sinha, 2013) 15

2.2 Detailed view of the projected pressure distribution of the central
region of the Coma cluster, presented by Schuecker et al. (2004)
and observed with XMM-Newton. The 145 kpc scale corresponds
to the largest size of the turbulent eddies indicated by the pressure
spectrum. The smallest turbulent eddies have scales of around 20
kpc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Spectra of FeXXV He-α from the outer region. Gaussian fits have
been made to lines with energies (marked in red) from laboratory
measurements in the case of He-like FeXXV, Instrumental broad-
ening with (blue line) and without (black line) thermal broadening
are indicated. The redshift is the cluster value to which the data
were self-calibrated using the He-α lines. The strongest resonance
(w), intercombination (x,y) and forbidden (z) lines are indicated.
Spectra from paper Hitomi Collaboration et al. (2016) . . . . . . . 26

3.1 Cumulative profile of kinetic, turbulence and thermal energy for
cluster IT90_3 at z = 0, considering two different smoothing
scales (60 kpc on the top and 600 kpc on the bottom) . . . . . . . 28



LIST OF FIGURES

3.2 Maps of volume-weighted mean unsmoothed velocity field (on the
top- left panel), smoothed velocity field (on the top-right panel) and
turbulence velocity field (on bottom panel) for the cluster IT90_3
at z = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Map of central slice of IT90_3, turbulence velocity field without
the application of shocks filter on the left panel and map of the
same region with shocks filter on the right one. . . . . . . . . . . 30

3.4 All turbulence velocity profiles for shock unfiltered velocity field
and shock filtered velocity filed (on the left panel) and median of
the same profiles (on the right panel) . . . . . . . . . . . . . . . . 30

3.5 Mach number histogram of the shocks withM≥1.3 in cluster IT90_3
z = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 Map of central slice of IT90_3 at z = 0; map of projected Mach
number (on the left panel) and map of projected flux of kinetic
energy (on the right panel). . . . . . . . . . . . . . . . . . . . . . 33

4.1 Density maps (on the top panel) and temperature maps (on the bot-
tom panel) for all clusters used in this work (density color scale
in unit of [g cm−3] and temperature color scale in unit of Kelvin
degrees) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Density profiles (on the left panel) and temperature profiles (on the
right panel) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 α radial profile for all clusters and for each smoothing scales . . . 40

4.4 Median profiles for each smoothing scales . . . . . . . . . . . . . 41

4.5 Median profiles and best fit relation for each smoothing scales . . 43

4.6 The symbols in the plot give the value of α parameter for the dif-
ferent smoothing scales, while the fit is obtain as described in the
paragraph above . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.7 Median profiles for each smoothing scale and for high and low
mass sub-samples . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.8 Less massive clusters (on the top panel) and more massive clusters
(on the bottom panel) fitted for each smoothing scale . . . . . . . 47

4.9 Mass-〈c〉 relation (on the top panel) and mass-〈w〉 relation (on the
bottom panel) for each clusters . . . . . . . . . . . . . . . . . . . 49

4.10 Median profiles for each smoothing scale and for perturbed and
relaxed sub-samples for 〈c〉 parameter . . . . . . . . . . . . . . . 50

4.11 Median profiles for each smoothing scale and for perturbed and re-
laxed sub-samples for 〈c〉 parameter, zoomed in the region 0<r<0.4R200 51



LIST OF FIGURES

4.12 Comparison between α in the core and 〈c〉 parameter for each clus-
ter (on the top panel) and comparison between α200 and 〈c〉 param-
eter for each cluster (on the bottom panel). . . . . . . . . . . . . 52

4.13 Median profiles for each smoothing scale and for high and low
mass sub-samples for 〈w〉 parameter . . . . . . . . . . . . . . . . 53

4.14 Comparison between α200 and 〈w〉 parameter for each cluster . . . 54
4.15 Comparison between our model and the model proposed by Nelson

et al. (2014) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.16 Comparison between our α median profiles for each smoothing

scale and the observed data points by Eckert et al. (2018) . . . . . 58

A.1 Schematic work-flow . . . . . . . . . . . . . . . . . . . . . . . . 66



LIST OF FIGURES



List of Tables

4.1 Catalog of clusters at z = 0 used in our analysis. The bold values
are used to identify the perturbed clusters, based on the ranking of
their 〈c〉 or 〈w〉 values, respectively. . . . . . . . . . . . . . . . . 38

4.2 Fitting parameters for our model . . . . . . . . . . . . . . . . . . 42
4.3 Mass sub-samples . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4 〈c〉 sub-samples . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.5 〈w〉 sub-samples . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.6 Fitting parameters for Nelson model . . . . . . . . . . . . . . . . 55

B.1 Fitting parameters for high mass sample . . . . . . . . . . . . . . 68
B.2 Fitting parameters for low mass sample . . . . . . . . . . . . . . 68
B.3 Fitting parameters for perturbed clusters selected by 〈c〉 parameter 68
B.4 Fitting parameters for relaxed clusters selected by 〈c〉 parameter . 69
B.5 Fitting parameters for perturbed clusters selected by 〈w〉 parameter 69
B.6 Fitting parameters for relaxed clusters selected by 〈w〉 parameter . 69



LIST OF TABLES



Bibliography

Beresnyak A., Miniati F., 2016, ApJ, 817, 127

Bonafede A., Feretti L., Murgia M., Govoni F., Giovannini G., Dallacasa D., Dolag
K., Taylor G. B., 2010, A & A, 513, A30

Bonafede A., Intema H. T., Brüggen M., Girardi M., Nonino M., Kantharia N., van
Weeren R. J., Röttgering H. J. A., 2014, ApJ, 785, 1

Braginskii S. I., 1958, Soviet Journal of Experimental and Theoretical Physics, 6,
358

Brighenti F., Mathews W. G., 2002, ApJ, 573, 542

Brüggen M., 2003, ApJ, 593, 700

Bryan G. L., et al., 2014, ApJS, 211, 19

Cassano R., Brunetti G., 2005, MNRAS, 357, 1313

Cavaliere A., Fusco-Femiano R., 1976, A & A, 49, 137

Clausius R., 1870, De la fonction potentielle du Potentiel

Dolag K., Vazza F., Brunetti G., Tormen G., 2005, MNRAS, 364, 753

Eckert D., et al., 2018, preprint (arXiv:1805.00034)

Ettori S., Tozzi P., Borgani S., Rosati P., 2004, A & A, 417, 13

Gaspari M., Melioli C., Brighenti F., D’Ercole A., 2011, MNRAS, 411, 349

Gaspari M., et al., 2018, ApJ, 854, 167

Ghirardini V., Ettori S., Amodeo S., Capasso R., Sereno M., 2017, A & A, 604,
A100

Gitti M., Brighenti F., McNamara B., 2012, Advances in Astronomy, 2012, 950641

http://dx.doi.org/10.3847/0004-637X/817/2/127
http://adsabs.harvard.edu/abs/2016ApJ...817..127B
http://dx.doi.org/10.1051/0004-6361/200913696
http://adsabs.harvard.edu/abs/2010A%26A...513A..30B
http://dx.doi.org/10.1088/0004-637X/785/1/1
http://adsabs.harvard.edu/abs/2014ApJ...785....1B
http://adsabs.harvard.edu/abs/1958JETP....6..358B
http://adsabs.harvard.edu/abs/1958JETP....6..358B
http://dx.doi.org/10.1086/340763
http://adsabs.harvard.edu/abs/2002ApJ...573..542B
http://dx.doi.org/10.1086/376734
http://adsabs.harvard.edu/abs/2003ApJ...593..700B
http://dx.doi.org/10.1088/0067-0049/211/2/19
http://adsabs.harvard.edu/abs/2014ApJS..211...19B
http://dx.doi.org/10.1111/j.1365-2966.2005.08747.x
http://adsabs.harvard.edu/abs/2005MNRAS.357.1313C
http://adsabs.harvard.edu/abs/1976A%26A....49..137C
http://dx.doi.org/10.1111/j.1365-2966.2005.09630.x
http://adsabs.harvard.edu/abs/2005MNRAS.364..753D
http://arxiv.org/abs/1805.00034
http://dx.doi.org/10.1051/0004-6361:20034119
http://adsabs.harvard.edu/abs/2004A%26A...417...13E
http://dx.doi.org/10.1111/j.1365-2966.2010.17688.x
http://adsabs.harvard.edu/abs/2011MNRAS.411..349G
http://dx.doi.org/10.3847/1538-4357/aaaa1b
http://adsabs.harvard.edu/abs/2018ApJ...854..167G
http://dx.doi.org/10.1051/0004-6361/201630209
http://adsabs.harvard.edu/abs/2017A%26A...604A.100G
http://adsabs.harvard.edu/abs/2017A%26A...604A.100G
http://dx.doi.org/10.1155/2012/950641
http://adsabs.harvard.edu/abs/2012AdAst2012E...6G


BIBLIOGRAPHY

Hitomi Collaboration et al., 2016, Nature, 535, 117

Kaiser N., 1986, MNRAS, 222, 323

King I., 1962, ApJ, 67, 471

Kolmogorov A., 1941, Akademiia Nauk SSSR Doklady, 30, 301

Kolmogorov A. N., 1962, Journal of Fluid Mechanics, 13, 82–85

Komatsu E., et al., 2011, ApJS, 192, 18

Kraichnan R. H., 1965, The Physics of Fluids, 8, 1385

Lau E. T., Kravtsov A. V., Nagai D., 2009, ApJ, 705, 1129

Mohr J. J., Fabricant D. G., Geller M. J., 1993, ApJ, 413, 492

Nelson K., Lau E. T., Nagai D., 2014, ApJ, 792, 25

Norman M. L., Bryan G. L., 1999, in Röser H.-J., Meisenheimer K., eds, Lecture
Notes in Physics, Berlin Springer Verlag Vol. 530, The Radio Galaxy Messier
87. p. 106 (arXiv:astro-ph/9802335), doi:10.1007/BFb0106425

Piffaretti R., Valdarnini R., 2008, A & A, 491, 71

Planck Collaboration et al., 2011, A & A, 536, A10

Planck Collaboration et al., 2013, A & A, 550, A131

Planelles S., Schleicher D. R. G., Bykov A. M., 2015, Science & Space Review,
188, 93

Porter D. H., Woodward P. R., 1994, ApJS, 93, 309

Porter D. H., Jones T. W., Ryu D., 2015, ApJ, 810, 93

Rajpurohit K., et al., 2018, ApJ, 852, 65

Rasia E., et al., 2006, MNRAS, 369, 2013

Roediger E., Brüggen M., 2008, MNRAS, 388, L89

Ryu D., Kang H., Cho J., Das S., 2008, Science, 320, 909

Sanders J. S., Fabian A. C., Smith R. K., 2011, MNRAS, 410, 1797

Sartoris B., et al., 2016, MNRAS, 459, 1764

http://dx.doi.org/10.1038/nature18627
http://adsabs.harvard.edu/abs/2016Natur.535..117H
http://dx.doi.org/10.1093/mnras/222.2.323
http://adsabs.harvard.edu/abs/1986MNRAS.222..323K
http://dx.doi.org/10.1086/108756
http://adsabs.harvard.edu/abs/1962AJ.....67..471K
http://adsabs.harvard.edu/abs/1941DoSSR..30..301K
http://dx.doi.org/10.1017/S0022112062000518
http://dx.doi.org/10.1088/0067-0049/192/2/18
http://adsabs.harvard.edu/abs/2011ApJS..192...18K
http://dx.doi.org/10.1063/1.1761412
http://dx.doi.org/10.1088/0004-637X/705/2/1129
http://adsabs.harvard.edu/abs/2009ApJ...705.1129L
http://dx.doi.org/10.1086/173019
http://adsabs.harvard.edu/abs/1993ApJ...413..492M
http://dx.doi.org/10.1088/0004-637X/792/1/25
http://adsabs.harvard.edu/abs/2014ApJ...792...25N
http://arxiv.org/abs/astro-ph/9802335
http://dx.doi.org/10.1007/BFb0106425
http://dx.doi.org/10.1051/0004-6361:200809739
http://adsabs.harvard.edu/abs/2008A%26A...491...71P
http://dx.doi.org/10.1051/0004-6361/201116457
http://adsabs.harvard.edu/abs/2011A%26A...536A..10P
http://dx.doi.org/10.1051/0004-6361/201220040
http://adsabs.harvard.edu/abs/2013A%26A...550A.131P
http://dx.doi.org/10.1007/s11214-014-0045-7
http://adsabs.harvard.edu/abs/2015SSRv..188...93P
http://dx.doi.org/10.1086/192057
http://adsabs.harvard.edu/abs/1994ApJS...93..309P
http://dx.doi.org/10.1088/0004-637X/810/2/93
http://adsabs.harvard.edu/abs/2015ApJ...810...93P
http://dx.doi.org/10.3847/1538-4357/aa9f13
http://adsabs.harvard.edu/abs/2018ApJ...852...65R
http://dx.doi.org/10.1111/j.1365-2966.2006.10466.x
http://adsabs.harvard.edu/abs/2006MNRAS.369.2013R
http://dx.doi.org/10.1111/j.1745-3933.2008.00506.x
http://adsabs.harvard.edu/abs/2008MNRAS.388L..89R
http://dx.doi.org/10.1126/science.1154923
http://adsabs.harvard.edu/abs/2008Sci...320..909R
http://dx.doi.org/10.1111/j.1365-2966.2010.17561.x
http://adsabs.harvard.edu/abs/2011MNRAS.410.1797S
http://dx.doi.org/10.1093/mnras/stw630
http://adsabs.harvard.edu/abs/2016MNRAS.459.1764S


BIBLIOGRAPHY

Savini F., et al., 2018, MNRAS, 478, 2234

Schuecker P., Finoguenov A., Miniati F., Böhringer H., Briel U. G., 2004, A & A,
426, 387

Shi X., Komatsu E., 2014, MNRAS, 442, 521

Shore S. N., 2007, Astrophysical Hydrodynamics: An Introduction

Sinha N., 2013, Towards RANS Parameterization of Vertical Mixing by Langmuir
Turbulence in Shallow Coastal Shelves

Spitzer L., 1962, Physics of Fully Ionized Gases

Sunyaev R. A., Zeldovich Y. B., 1970, APSS, 7, 3

Sunyaev R. A., Zeldovich I. B., 1980, ARAA, 18, 537

Vazza F., Brunetti G., Gheller C., 2009, MNRAS, 395, 1333

Vazza F., Brunetti G., Gheller C., Brunino R., Brüggen M., 2011, A & A, 529, A17

Vazza F., Brüggen M., Gheller C., 2013, MNRAS, 428, 2366

Vazza F., Jones T. W., Brüggen M., Brunetti G., Gheller C., Porter D., Ryu D.,
2017, MNRAS, 464, 210

Vazza F., Angelinelli M., Jones T. W., Eckert D., Brüggen M., Brunetti G., Gheller
C., 2018, MNRAS, in press

Voigt L. M., Fabian A. C., 2006, MNRAS, 368, 518

Wittor D., Vazza F., Brüggen M., 2017, MNRAS, 464, 4448

Zhuravleva I., Churazov E., Kravtsov A., Lau E. T., Nagai D., Sunyaev R., 2013,
MNRAS, 428, 3274

Zhuravleva I., et al., 2014, Nature, 515, 85

http://dx.doi.org/10.1093/mnras/sty1125
http://adsabs.harvard.edu/abs/2018MNRAS.478.2234S
http://dx.doi.org/10.1051/0004-6361:20041039
http://adsabs.harvard.edu/abs/2004A%26A...426..387S
http://dx.doi.org/10.1093/mnras/stu858
http://adsabs.harvard.edu/abs/2014MNRAS.442..521S
http://dx.doi.org/10.1007/BF00653471
http://adsabs.harvard.edu/abs/1970Ap%26SS...7....3S
http://dx.doi.org/10.1146/annurev.aa.18.090180.002541
http://adsabs.harvard.edu/abs/1980ARA%26A..18..537S
http://dx.doi.org/10.1111/j.1365-2966.2009.14691.x
http://adsabs.harvard.edu/abs/2009MNRAS.395.1333V
http://dx.doi.org/10.1051/0004-6361/201016015
http://adsabs.harvard.edu/abs/2011A%26A...529A..17V
http://dx.doi.org/10.1093/mnras/sts213
http://adsabs.harvard.edu/abs/2013MNRAS.428.2366V
http://dx.doi.org/10.1093/mnras/stw2351
http://adsabs.harvard.edu/abs/2017MNRAS.464..210V
http://dx.doi.org/10.1111/j.1365-2966.2006.10199.x
http://adsabs.harvard.edu/abs/2006MNRAS.368..518V
http://dx.doi.org/10.1093/mnras/stw2631
http://adsabs.harvard.edu/abs/2017MNRAS.464.4448W
http://dx.doi.org/10.1093/mnras/sts275
http://adsabs.harvard.edu/abs/2013MNRAS.428.3274Z
http://dx.doi.org/10.1038/nature13830
http://adsabs.harvard.edu/abs/2014Natur.515...85Z

	Introduction
	Clusters of galaxies in a cosmological context
	Observational features
	ICM: Intra Cluster Medium
	Virial Theorem
	Self-similar scaling relations
	Hydrostatic model


	Turbulence
	Theoretical bases
	Turbulence in galaxy clusters
	Ram Pressure Stripping
	Injection of turbulence by shocks
	Injection by AGN

	Simulated turbulence in the ICM
	Observational indications of turbulence in the ICM

	Numerical Analysis
	Effects of the filtering scale on turbulence
	Limiting the spurious contribution from shocks to the turbulent budget
	Shock Finder


	Results and analysis
	Cluster catalog
	Complete sample analysis
	Relation between the filtering scale of turbulence and the non-thermal pressure support
	Sub-samples analysis
	Mass division
	Dynamic state division

	Comparison with recent literature

	Conclusions and future perspectives
	Numerical algorithm
	Fitting parameters for sub-samples

