CMS level-1 trigger muon momentum assignment with machine learning

Diotalevi, Tommaso (2018) CMS level-1 trigger muon momentum assignment with machine learning. [Laurea magistrale], Università di Bologna, Corso di Studio in Fisica [LM-DM270]
Documenti full-text disponibili:
[img] Documento PDF (Thesis)
Disponibile con Licenza: Creative Commons: Attribuzione - Non commerciale - Non opere derivate 3.0 (CC BY-NC-ND 3.0)

Download (22MB)


With the advent of the High-Luminosity phase of the LHC (HL-LHC), the instantaneous luminosity of the Large Hadron Collider at CERN will increase up to 7,5 10^34 cm^-2s^-1. Therefore, new algorithmic techniques for data acquisition and processing will be necessary, in preparation for a high pile-up environment that would eventually make the current electronics and trigger devices obsolete. Nowadays, Machine Learning techniques represent a promising alternative to this problem, as they make possible the selection of multiple information - collected by the detector - and build from them different models, able to predict with a certain efficiency fundamental physical quantities, including the transverse momentum pT. The analysis presented in this Master Thesis consists in the production of such models - with data obtained through Monte Carlo simulations - capable of predicting the transverse momentum of muons crossing the Barrel region of the CMS muon chambers, and compare the results with the pT assigned by the current CMS Level 1 Barrel Muon Track Finder (BMTF) trigger system.

Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Diotalevi, Tommaso
Relatore della tesi
Correlatore della tesi
Corso di studio
Curriculum B: Fisica nucleare e subnucleare
Ordinamento Cds
Parole chiave
physics,machine learning,lhc,trigger,muon,CMS
Data di discussione della Tesi
20 Luglio 2018

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento