
Alma Mater Studiorum - Università di Bologna 

 

 
 

SCUOLA DI SCIENZE 

Dipartimento di Chimica Industriale“Toso Montanari”  

 

Corso di Laurea Magistrale  in 

Chimica Industriale 
 

Classe LM-71 - Scienze e Tecnologie della Chimica Industriale 

 

Stereodivergent synthesis of β-trifluoromethyl-α-

amino acids by sequential catalytic processes 

Tesi di laurea sperimentale 

CANDIDATO 

Riccardo Riccioli 

RELATORE 

Chiar.mo Prof. Luca Bernardi 

  CORRELATORE 

Vasco Corti 

 

_________________________________________________________________________________________________________________ 

Anno Accademico 2017-2018 

  



 

ABSTRACT 

In this work is presented a sequential organocatalytic process for the stereodivergent synthesis of β-

trifluoromethyl-α-amino acids using Erlenmeyer azlactones as starting material. The strategy 

developed consist of a sequential catalytic approach, employing two catalysts that act independently 

to control the absolute configuration of two different stereocenters. The first step is a catalytic 

asymmetric hydrogen transfer of the activated double bond of the azlactone promoted by a Jacobsen 

type thiourea and Hantzsch ester as hydride donor. The second step involves a nucleophilic addition 

of an alcohol to the carbonyl moiety controlled by a chiral bifunctional catalyst typically used in the 

dynamic kinetic resolution of azlactones. The catalyst structure for the second synthetic step was 

thoroughly investigated in order to maximize the selectivity. Both product were achieved with a 

good diastereoselectivity and high enantioselectivity. Taking into account the obtained result was 

possible to set up an initial study for the feasibility of straightforward one-pot procedure. In 

conclusion, with this works was possible to set up a synthetic strategy for the synthesis of all four 

diastereoisomers starting from the set of starting material. 
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1. INTRODUCTION 

1.1. Stereodivergence in asymmetric catalysis 

In the few past decades research in asymmetric catalysis saw a remarkable development. In 

the case of a molecule with two or more stereogenic centers the complete control of both 

absolute and relative configuration become challenging. However, several systems have 

proven to be able to give excellent absolute and relative stereocontrol. For example, proline 

catalyst in direct cross-aldol reaction of aldehydes is able to control efficiently the 

stereochemistry approach of the reacting species, both in an absolute and relative sense 

(Figure 1). 

 

Figure 1:Proline catalyzed direct cross-aldol reaction aldehydes 

However, as a consequence, we can be obtain only two of the four possible stereoisomers (the 

two enantiomers of one diastereoisomer) of a molecule with two stereogenic centers. Such 

limitation is not only correlated to proline-based catalysts but is rather general in 

stereoselctive catalysis. It is worth to note the example reported by Asaf Alimardanov et al.
1
 

who tried to obtain a 3-aryl-3-trifluoromethyl-2-amminopropanol-I planning to use an 

asymmetric hydrogenation of a tetrasubstituted olefin as a short and efficient synthetic 

pathway (Figure 2). Due to the stereospecificity of this reaction, in order to obtain the product 

whit required relative syn-stereochemistry is mandatory starting with the right olefin (the E-

isomer II), which however proved not to be possible. 
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Figure 2 

In more detail, the Schöllkopf olefination afforded only the Z-isomer (>99%) of this olefin; 

same results were obtained using another olefination reaction such as Horner–Wadsworth–

Emmons olefination with a glycine derivative. They tried to convert the starting ketone into 

an Erlenmeyer azlactone that also produced the Z-isomer as major in Z:E = 96/6. Due to the 

stereoselectivity problem in the formation of the olefin, the authors were thus forced to 

operate in a different way throughout a multistep synthesis. The starting ketone III was 

converted to an ester using triethyl phosphonoacetate in a Horner-Wadsworth-Emmons 

olefination followed by acidic hydrolysis achieving the acidic species IV. This species was 

then converted to an oxazolidinone derivative V. Finally, the intermediate VI was obtained 

diastereoselectively by hydrogenation in presence of a Lewis acid (MgBr2). The L.A. forced 

the molecule in the right conformation achieving VI (S,S) predominantly (95:5). At this point, 

the nitrogen functionality was introduced via an electrophilic amination reaction. 

Problem correlated to the stereospecifity of a reaction could be frustrating and force the 

synthesis in more long and complex way as seen above. An approach that goes around this 

problem is to set up a stereodivergent synthesis. This method allows the chemist to achieve all 
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the possible stereoisomers for a given molecule with multiple stereogenic centers. Ideally, 

such process use the same set of reagents, catalysts and reaction conditions to produce all the 

diastereoisomers. Stereodivergence is the result of ad hoc tuning of the catalyst structure and 

reaction conditions. Be able to synthetize all the stereoisomers of a given molecule become a 

powerful instrument, for example in the preparation of a drug candidate. Nowadays, it is well 

known that certain drugs can interact with more than one biological target and this can lead to 

side effects. For that reason, is important to be in a position to modulate the structure of a 

drug candidate, not only for safety aspects but also for develop more effective API’s (active 

pharmaceutical ingredients). For this kind of application the evaluation of therapeutic and 

toxicological properties are necessary for all the stereoisomers and is required by regulatory 

agencies. In order to achieve a stereodivergent strategy, there are many parameters that can be 

changed such as: reaction conditions, ligands and metal cations, as summarized by Carreira in 

his perspective
2
. An appealing and predictable route involves cascade (sequential) catalysis 

(Figure 3). It is carried out with the use of two or more catalysts where they act independently 

in control of the absolute configuration without influencing each other.  

 

Figure 3:Sequential stereodivergent catalysis 

A remarkable example of diasterodivergence was reported by Buchwald and co-workers
3
 for 

the synthesis of a 1,3-amino alcohol. This example, which is based on the combination of 

stereodivergency based on substrate and sequential catalysis, is stunning since they achieved 

the creation of three contiguous stereocenters using copper/biphosphine catalyst systems 

(Figure 4). 
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Figure 4: Buchwald and co-workers stereodivergent synthesis 

The synthesis consists in a first step of copper-catalyzed enantioselective hydrosilylation of an 

α,β-unsatured carbonyl compound, with formation of an allylic alcohol VIII bearing the first 

chiral center. Once the allylic alcohol has formed, it can be isolated and used for the following 

hydroamination step, also performed with copper/bisphosphine catalyst system. Essentially, 

the two step process using copper as central active metal is guided by choice of the ligand. 

More in detail, changing the aryl group on phosphinic ligand and its chirality, together with 

the olefin geometry, allowed Buchwald et al. to completely control the three contiguous 

stereocenters in IX. 
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1.2. Erlenmeyer azlactone as precursor of β,β-disubstituted-α-amino acid 

derivatives 

The development of a practical method for the synthesis of enantiomerically pure natural and 

non-natural α-amino acids is a challenge. Amino acids are widely used in synthesis of chiral 

ligand, catalysts, API’s, peptides and many other valuable target molecules. β,β-

Disubstituted-α-amino acids with two different β substituents are molecules bearing 2 chiral 

centers at α and β position. In order to achieve all the four possible stereoisomers we plan a 

stereodivergent synthesis involving a prochiral molecule. Regarding the different 

stereodivergent approaches, a sequential (cascade) approach could be a suitable route from 

arylidene azlactones (Figure 5). The first step involves a Michael addition under the 

stereochemical control of catalyst 1, able to control the stereochemical outcome in β position. 

The Michael product is then brought to the second step that involves a ring opening through 

alcoholysis reaction under DKR (dynamic kinetic resolution) exploiting the activity of 

catalyst 2 (see below). 

 

 

Figure 5: streodivergent synthesis of β,β-disubstituted α-aminoacids 

The first step of the synthesis is accomplished with an asymmetric hydrogen transfer onto the 

double bond. The reduction can be achieved with Hantzsch ester as donor under the 

stereochemical control of a Jacobsen-type thiourea as chiral catalyst. Hantzsch-type esters are 

often use as reduction agent for electrophilic double bonds;
4,5

 such activity is driven by ring 

aromatization after the hydride donation (Figure 6b). The approach of the Hantzsch ester on 

the right prochiral face of the azlactone is guided from the catalyst. The transition state is 

formed through hydrogen bonds between catalyst, arylidene azlactone and the Hantzsch ester 

where the acidic moiety of catalyst interact with the carbonyl compound and the basic with 

the N-H of the Hantzsch ester. This system forces the molecules in a fixed spatial 

conformation where only one of the two prochiral faces of the azlactone is able to undergo 

hydride addition (Figure 6a). Now the β-carbon is fixed in a specific configuration while the 

α-position cannot be controlled in this step due to the epimerization equilibria; as a 

consequence, two diastereoisomers are formed. 
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Figure 6: a) transition state in the reaction mechanism between arylidene azlactone and Hantzsch ester; b) Hantzsch 

ester aromatization reaction 

As mentioned above, the second step concerns an asymmetric transformation under DKR 

conditions, where one of the two stereoisomers (in equilibrium) reacts faster than the other. 

Due to the presence of defined β-carbon chiral center, that was previously fixed, the ring 

opening can lead to the formation of two stereoisomers. The right selection of catalyst allow 

to obtain one of them as major diastereoisomer. 

Azlactone can easily undergo under dynamic kinetic resolution, due to the acidity of the α-

carbonyl proton (pKa 9) which is caused by the aromatic character of the corresponding 

tautomer as shown in the Figure 7a. Thanks to this easy racemization, DKR of azlactone is 

well known in literature. For example, Berkessel and co-worker showed the preparation of 

amino acids from the alcoholysis reaction of azlactone under DKR condition using a 

bifunctional organocatalyst
6
.  

In order to achieve a high value of enrichment the epimerization equilibrium has to be faster 

than the rate of the asymmetric transformation (krac > k1, k2; Figure 7b). In this way, it is 

feasible to convert the racemic mixture in the desired diastereoisomer, virtually in 100% 

yield. The reaction occurs with a nucleophilic addition of an alcohol to the carbonyl moiety, 

in the presence of a bifunctional catalyst. The catalysis in this step works in same way as the 

first, the hydrogen bond donor of the catalyst coordinates the carbonyl group activating the 
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azlactone, while the basic moiety activates the nucleophile. Besides, the basic catalyst can 

promote the racemization at the α-carbonyl center. 

 

Figure 7: a) aromatic tautomer of azlactone; b) Dynamic kinetic resolution of azlactone 

Song and co-workers
7
 reported squaramide-based cinchona alkaloids as the most selective 

catalysts in dynamic kinetic resolution of azlactone in alcoholysis reaction; they found that 

dimeric catalysts were slightly better than more common benzyl substituted ones for this 

application (Figure 8a). 

 

Figure 8: a) squaramides-based cinchona alkaloids catalyst; b) Cinchona alkaloids 

Cinchona alkaloids are a class of natural compounds obtained from a plant called Cinchona. 

These compounds exist in two couples of pseudo-enantiomers (Figure 8b): quinine (QN)-

quinidine (QD) and cinchonidine (CD)-cinchonine (CN). These natural product are not fully 

enantiomers since only two out of five chiral centers have an opposite configuration; 

nevertheless, they behave as enantiomers. Cinchona alkaloids are bifunctional organocatalysts 

and they can be transformed in different structures such as squaramide catalysts. In this type 

of catalysts the basic moiety is located on the quinuclidine (tertiary amine). The acidic part is 

represented by squaramide that acts as an efficient hydrogen bond donor. 
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2. AIM AND OBJECTIVES  

At the beginning of my internship, the project was already under investigation (Figure 9). The 

best conditions for the first step were found to involve a Jacobsen type thiourea (20 mol%) as 

chiral catalyst, the Hantzsch Ester HE with isobutoxy substituents (1.5 equiv.) as hydride 

donor, at a temperature of -30° C in CH2Cl2 as solvent. The azlactone with p-metoxyphenyl 

group at the 2-position seemed to be the best starting material to work with. Under these 

reaction conditions, this protocol afforded the reduced product with 85% enantiomeric excess 

in both diastereoisomers, measured upon ring-opening reaction (in an achiral fashion 

employing triethylamine as base) since it was not possible to isolate the intermediate due to 

its instability. 

Starting from these results regarding the first step, in order prepare two stereoisomers of the 

target compounds 5 from 3, the use of dynamic kinetic resolution (DKR) was planned. In 

literature, several examples of enantioselective alcoholysis reactions under DKR for 

azlactones involving bifunctional catalysts are reported. A remarkable result was achieved 

from Song and co-workers using dimeric squaramide-based cinchona alkaloids. Bis-HQD-

SQA catalyst was able to guide the resolution toward the R-isomer with 91 % ee, while the 

corresponding S-isomer was selectively obtained in 96 % ee employing Bis-HQN-SQA. 

Taking into account the results obtained for the intermediate 3, and these catalysts as suitable 

candidates for the dynamic kinetic resolution, it seemed to be possible to setting up a 

stereodivergent synthesis. 

 

Figure 9 
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Setting the aforementioned results as starting point, objectives of the present work are: 

 A thorough optimization of the reaction conditions for the dynamic kinetic resolution, 

with a particular focus on the catalyst design, in order to obtain higher value of 

selectivity; 

 A preliminary study of the influence of different aryl groups at the β-position of 

substrate 1 during the alcoholysis step; 

 The development of a straightforward one-pot procedure thus skipping the 

troublesome purification and isolation of intermediate 3. 
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3. RESULTS AND DISCUSSION 

3 Optimization of the second synthetic step 

During this decade, dynamic kinetic resolution of azlactones has been widely studied. For this 

reason, since the first period of my internship I have tried to increase the diastereoselectivity 

based on precedent results and literature data. Setting as starting point the results obtained by 

Song and co-workers, I have studied the influence of squaramide-based dimeric cinchona 

alkaloid in DKR with allyl alcohol as nucleophile on my own azlactone in order to investigate 

the diastereoselectivity. Taking into account the natural bias of the substrate in the ring-

opening reaction (5.7:1 dr towards the syn diastereoisomer 5’a), a lot of effort was expected 

to be required in order to maximize the selectivity. 

Table 1: First screening of catalyst 

 

ENTRY Cat. T (° C) t (h) X % e anti:synd ee % 

1 6a 0 30 66,4 2.3:1 > 95 

2 6b 0 24 70 1:10 90 

3 6c 0 18 > 99 2.4:1 93 
 a
General method: azlactone 3a 0,04 mmol, allyl alcohol alcohol 0,08 mmol, solvent: 160 µL; 

d 
Determined by 

19
F NMR analysis on the crude mixture; 

e
 Determined by 

19
F NMR after a short silica plug. 

As shown in the  

Table 1, the use of these catalysts seemed to be promising: we were able to control the 

absolute configuration in the newly formed stereocenter and also to obtain the major 

diastereoisomer with high enantiomeric excess. Paying more attention to this latter data, the 

enantiomeric excess increased during the transformation, going from 85 to 90 % and more. 

This trend is in accord with the Horeau principle; in a multistep process that involves the 
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formation of two (or more) chiral centers on the same molecule, each step increases the 

enantiomeric excess of the major diastereoisomer. From these preliminary results, it could be 

deduced that when a squaramide-based quinidine as catalyst is employed the reaction afforded 

10:1 diastereoisomeric ratio (entry 2), therefore this catalyst promotes the alcoholysis reaction 

toward the same diastereoisomers (syn-5’a) of an achiral promoter such as triethylamine 

(matched case). On the other hand, the use of squaramide-based quinine 6a is able to switch 

the stereoselectvity in favor of the anti-diastereoisomer 5a with a 2.3:1 diastereomeric ratio 

(mismatched case). The lower selectivity of the anti diastereoisomer can be attributed to the 

tendency of the substrate to give the syn product in the ring opening reaction (substrate 

control). For these reasons, we focused our efforts on the synthesis of anti diastereoisomer 5a 

aiming for better values of diastereoselectivity. From the results reported in entry 3 with 

catalyst 6c, it seemed a better option to work with monomeric squaramide-based cinchona 

alkaloid. 

3.1. Screening of urea/thiourea-based cataslysts 

Even if the best catalyst to work with has turned out to be the monomeric squaramide-based 

cinchona alkaloid 6c, in the literature there are also reported a series of urea and thiourea-

based catalysts
8
. Therefore, such catalysts were tested in order to fully understand the acidic 

center property and confirming the literature’s data. In Table 2 are reported the results, all the 

catalysts performed almost in same way, except for catalyst 10b (entry 2) that shown to be the 

most active but with lower selectivity. After these results no more urea/thiourea catalyst have 

been further investigated. 

Table 2: Urea and thiourea screening

 

ENTRY Cat. t (h) X (%) anti:syn 

1 10a 68 90 1.8:1 

2 10b 68 > 99 1.1:1 

3 10c 96 94 1.5:1 

4 10d 96 > 99 1.6:1 
a
General method: azlactone 3a 0,05 mmol, alcohol 2 0,1 mmol, 800µL; 

b 
Determined by 

19
F NMR analysis on 

the crude mixture; 
e
 Determined by 

19
F NMR after a short silica plug. 
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3.1.1. Reaction conditions: screening of solvents, concentration and 

catalyst loading 

In order to optimize the selectivity of the dynamic kinetic resolution the effect of solvent was 

investigated (Table 3). The best results were previously achieved with 10 mol% catalyst 

loading, allylic alcohol as nucleophile, CH2Cl2 as solvent and 0.25 M substrate concentration 

at room temperature. In these conditions the reaction performed full conversion in 16 h and 

2.5:1 diastereoisomeric ratio. As you can see in Table 3 (entry 2-9), many solvents were 

tested, however no improvements in selectivity were observed. Even though the dicloroethane 

(DCE) showed to be a possible candidate for future experiments, dichloromethane (DCM) 

had better performances and an easier availability. 

Table 3: screening of solvents

 

ENTRYa Cat. (mol%) Solvent (M) t (h) X % anti:syn 

1 (10%) CH2Cl2 (0,25) 16 >99  2.5:1 

2 (10%) Toluene (0,25) 16 >99  1.3:1 

3 (10%) THF (0,25) 16 74 1.4:1 

4 (10%) CH3CN (0,25) 16 80 1.1:1 

5 (10%) ClCH2CH2Cl (0,25) 16 >99  2.0:1 

6 (10%) Ph-CF3 (0,25) 16 >99 1.14:1 

7 (10%) EtOAc (0,25) 16 >99  1.4:1 

8 (10%) CH3Cl (0,25) 16 >99  1.7:1 

9b (10%) CH2Cl2 (0,125) 16 >99  2.5:1 

10 (10%) CH2Cl2 (0,06) 16 >99  2.9:1 

11c (10%) CH2Cl2 (0,5) 16 >99  2.2:1 

12 (10%) CCl4 24 50 1.5:1 

13c (5%) CH2Cl2 (0,06) 17 >99 2.8:1 

14c (2,5%) CH2Cl2 (0,06) 24 73 2.1:1 

a
General method: azlactone 3a 0.05 mmol, alcohol 2 0.1 mmol, solvent: 200 µL, 

b
400 µL, 

c
800 µL; 

d 
Determined 

by 
19

F NMR analysis on the crude mixture; 
e
 Determined by 

19
F NMR after a short silica plug. 

Thanks to the work of Song and co-workers, it is known that the aggregation of these 

catalysts is possible. Speculating on this, we diluted the catalyst in order to overcome the self-
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aggregation. In Table 3 are reported the data from these observations, entry 9 shows that 

reducing the concentration from 0.25 M to 0.125 M with a 10 mol% as catalyst loading no 

improvements in selectivity were observed. Decreasing further the concentration, 0.06 M, the 

diastereoisomeric ratio goes from 2.5:1 to 2.9:1. In accordance with these results, a reaction in 

more concentrated conditions was performed (0.5 M, entry 10) affording 2.2:1 as d.r. 

demonstrating the beneficial effect of the dilution. As final setting for the reaction condition 

the catalyst loading was lowered achieving a similar performance when a 10 mol% is used 

(entry 13). A further reduction to 2.5 mol%, resulted in a worse selectivity (entry 14). 

3.1.2. Reaction conditions: temperature, co-catalyst and drying agents 

In this phase of the project, other several attempts were done for the purpose of increasing the 

diastereoselctivity towards the anti-stereoisomer. Even though in this part of the project the 

catalyst was not fully investigated, two types of catalyst 6 were used, 6c quinine-based and 

catalyst 6d based on cinchonidine, since they showed similar diastereoselectivities. 

Table 4: temeperature, cocatalyst and drying agent 

 

ENTRYa Alcohol Cat. (5 mol%) T (°C) t (h) X (%) e anti:syn d 

1 2a 6d r.t. 16 73 3.1:1 

2 2a 6d 0 24 60 3.2:1 

3 2a 6d 35 24 > 99 2.3:1 

4 2b 6d r.t. 24 > 99 2.7:1 

5 2b 6d 0 24 54 2.9:1 

6c 2a 6d r.t. 24 90 3.0:1 

7 2b 6c 0 24 95 3.1:1 

8 2b 6c -30 140 52 2.8:1 

9d 2a 6c r.t. 24 99 3.2:1 

10e 2a 6c r.t. 24 73 3.0:1 
 a
General method: azlactone 3a 0.05 mmol, alcohol 2 0.1 mmol, 800µL; 

b 
Determined by 

19
F NMR analysis on 

the crude mixture; 
e
 Determined by 

19
F NMR after a short silica plug. 

c
 10 mg of MgSO4. 

d
 0.05 mmol of 

NaHCO3. 
e
 5 mol% of benzoic acid. 

The results are shown in Table 4; employing catalyst 6d (entry 1) the selectivity was a little 

bit higher with slower kinetics, probably due to the lower solubility of 6d. Starting from this 
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point, we lowered the temperature to 0° C (entry 2). As result the kinetic slowed down, as 

expected and the selectivity remained almost the same at r.t. Working on these results we 

increased the temperature until 35° C; although the rate of reaction increased, the selectivity 

worsened (entry 3). In order to improve the selectivity and the rate of reaction, a different 

nucleophile such as benzyl alcohol was tested affording 2.7:1 as diastereoisomeric ratio and 

full conversion in 24 h (entry 4). Speculating on the negative effect of water on the hydrogen 

network we used 10 mg of MgSO4; as result we were able to achieve a faster kinetic (entry 6), 

almost the same when catalyst 6c was employed. Unfortunately, any satisfactory 

enhancement in selectivity were observed. Taking into account the conditions for a faster rate 

of reaction, 6c as catalyst and benzyl alcohol like nucleophile, we thought to work at 0° C in 

order to improve the selectivity (entry 7). Comparing the two reactions at 0° C (entry 5-7), the 

use of the catalyst 6c and benzyl alcohol speed up the reaction rate (X= 95% in 24 h) with a 

slight improvement in selectivity. Because of that, we further reduced the temperature to -30° 

C but the reaction rate was too low and the diastereoselectivity did not improved (entry 8). 

Sometimes, these type of bifunctional catalysts have been used in conjunction with co-

catalyst like NaHCO3 or benzoic acid. These species are employed to facilitate the catalyst 

regeneration and promoting an easier hydrogen transfer (entry 9-10). Employing this type of 

co-catalyst seemed to have a beneficial effect on the kinetics however without any 

improvement in selectivity. 

3.2. Synthesis and screening of azlactones 

After studying the reaction conditions to achieve a better diastereoselectivity, three azlactones 

were prepared with different aryl groups in beta position, in order to consider the electronic 

effects. 

Figure 10: General synthesis for azlactones 
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The azlactones are synthesized in a two step process. In the first step N-benzoylglycine is 

prepared from glycine and 4-(methoxy)benzoyl chloride following a procedure reported by 

Asaf Alimardanof et al.
9
 

The second reaction step involves the condensation of N-benzoylglycines with the appropriate 

2,2,2-trifluoroacetophenone. The reaction was carried out neat with acetic anhydride as 

activator in presence of potassium carbonate as base. The reaction starts with an 

intramolecular cyclization of glycine promoted by acetic anhydride that activate the acid 

moiety (mixed anhydride), thus the nucleophilic addition of the carbonyl oxygen of the amide 

on the anhydride moiety. The cyclized intermediate is then deprotonated by the base 

(potassium carbonate) to give the corresponding enolate. 

Table 5: Screening on the influence of different β-aryl derivate azlactones 

 

ENTRY Substarte t (h) First stepa X' (%)b t (h) second step X'' (%)b anti:sync 

1 1a o.w. > 95 24 > 95 2.9:1 

2 1b o.w. > 95 24 30 2.3:2 

3 1c o.w. > 95 24 45 2.85:1 

a
General method: 1 0.1 mmol, HE 0.15 mmol, catalyst 4 0.02 mmol, CH2Cl2 400 μL, 48h, -30°C,then allylic 

alcohol 0.2 mmol, 6c 0.05 mmol, o.n., RT.;
b
 Conversion determined by 

19
F-NMR analysis on the crude, 

c 

Determined by 
19

F NMR after a short silica plug 

Due the presence of 2,2,2-trifluoroacetophenone an aldol condensation occur leading to the 

final α,β-unsatured carbonyl compound, also known as Erlenmeyer azlactone. Analyzing the 

crude mixture both diastereoisomers are formed (Z and E isomers of newly formed double 

bond) with a prevalence of the Z isomer. It is important to purify the Z isomer from the E, 

since the presence of a minor diastereoisomer would affect the enantiomeric excess of the first 

step and overall the feasibility of the diastereodivergent synthesis. After work up, the reaction 

was quickly purified with column chromatography using CH2Cl2 as eluent to get rid of the 

impurities. The final pure Z-isomer is obtained after recrystallization from n-hexane. 
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The newly synthesized azlactones were then tested in the sequential stereodivergent synthesis, 

in order to understand the electronic effects in β-position. One substrate was prepared with 

electron rich aryl group, 4-CH3OC6H4 (1b), and the second one with electron poor aryl group 

like 4-BrC6H4 (1b). In the reduction step with Hantzsch ester the substrate electronic diversity 

seems not to affect the reaction kinetics and selectivities as it can see in Table 5. In contrast, 

when these substrates are employed in the second reaction step they behave differently, 1c 

showed higher selectivity than 1b. Both electron rich and poor substrates gave the opened 

product in a less selective way compared to phenyl group, and also both substrates suffer from 

slower reaction rates. 

3.3.  Focussed screening of squaramides 

Attempting to increase the selectivity for the anti-isomer, the role of for the squaramide 

substituent was investigated in more detail. The catalysts were synthesized following the 

Rawal procedure
10

 as it shown in Figure 11Errore. L'origine riferimento non è stata 

trovata.. The final product is accessed from dimethyl squarate X via an addition-elimination 

reaction in presence of an amine (XI). In the second step the final coupling is realized among 

the intermediate XII and the alkaloids whit the formation of XIII. Rawal and Rambola 

proposed simple method for the synthesis of a variety of thiosquaramides from a common 

dithionated intermidiate
11

 To understand the effect of this thiocarbonil compound a 

thiosquaramide-based catalyst 7 bearing the same substituents of 6c we prepared. In the first 

two entries in Table 6 are reported the results achieved from catalyst 7. Unfortunately 

thiosquaramide-based catalyst did not performed as expected, rendering a very poor 

selectivity with both alcohols. 

 

Figure 11: Genela synthesis for squaramide-based cinchona alkaloids 

Due the availability in the laboratory of the dihydroquinidine catalyst 8a bearing a chiral 

benzyl amine we tested it in the ring opening reaction, as reported in Table 6. In entries 3 and 

4 is possible to see the results from these catalysts, with allylic and benzyl alcohol 
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respectively. Catalyst 8a shown highest selectivity toward the syn-isomer 5a also with a fast 

kinetics. This remarkable result can be referred to a “match case” where the catalyst and the 

substrate cooperate for the same product. Since quinidine moiety direct the ring-opening 

reaction for the syn product in a high selective fashion with the (S)-benzyl amine derivative, 

we prepared two more catalysts thinking in this way. In catalyst 8b with quinine no 

improvement in selectivity was observed (entry 5). The second catalyst 8c was prepared with 

the (R)-benzylamine and quinine (entry 6), that is the pseudoenantiomer of catalyst 8a. 

Unfortunately, catalyst 8c did not perform as good as expected. 

Table 6

 

ENTRY Alcohol Cat. (5 mol%) t (h) X (%) anti:syn 

1 2a 7 19 63 0.78:1 

2 2b 7 19 88 0.66:1 

3 2a 8a 24 > 99 1:14 

4 2b 8a 24 > 99  1:16 

5 2a 8b 17 93 1.8:1 

6 2a 8c 42 > 95 2.4:1 
a
General method: azlactone 3a 0.05 mmol, alcohol 2 0.1 mmol, 800µL; 

b 
Determined by 

19
F NMR analysis on 

the crude mixture; 
e
 Determined by 

19
F NMR after a short silica plug. 

 

Ever since the first attempts, we learnt the ring opening reaction controlled by these catalysts 

has the tendency for the anti-isomers when a quinine or cinchonidine alkaloid is employed, 

vice versa quinidine and cinchonine favors the syn isomers. So, in order to increase the 

diastereoselectivity for the mismatched case, we investigated on the influence of R
2
 catalyst 

moiety. The results are shown in Table 7 from four newly prepared catalysts whit different 

steric hindrance. In entry 1-2 are reported the standard condition using 3,5-(CF3)2C6H3CH2 

substituent with both alcohols, 2a and 2b. Catlyst 9a bearing a tert-butyl substituent did not 
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performed so well achieving 1.98:1 and 1.8:1 diastereomeric ratio using alcohol 2a and 2b 

respectively (entry 3-4). Instead of using a bulky substituent as tert-butyl, a catalyst with less 

steric hindrance was studied (9b). In entry 5-6 are shown the selectivity values obtained under 

the control of a catalyst with a trifluoroethyl group derivative. In this case, the use of allyl 

alcohol seems to be better, giving almost the same performance as catalyst 6c. In both entries 

5 and 6, the catalyst suffers from slow kinetic (68 and 15 % in 42 h).  

Table 7: Catalysts screening 

 

ENTRYa Cat Alcohol t (h) X (%)e Anti:synd 

1 6c 2a 42 > 90 2.8:1 

2 6c 2b 42 > 90 2.6:1 

3 9a 2a 42 > 90 1.98:1 

4 9a 2b 42 > 90 1.8:1 

5 9b 2a 42 68 2.7:1 

6 9b 2b 42 15 1.1:1 

7 9c 2a 42 80 3.2:1 

8 9c 2b 42 > 90 2.8:1 

9 9d 2a  48 50 5.0:1 

10 9d 2b 48 57 3.7:1 
a
General method: azlactone 3a 0.05 mmol, alcohol 2 0.1 mmol, 800µL; 

b 
Determined by 

19
F NMR analysis on 

the crude mixture; 
e
 Determined by 

19
F NMR after a short silica plug. 

 

Since going from a bulky substituent to a CF3CH2- brought to a slight improvement in 

selectivity, we decided to test the methyl group and un unexpected result comes out. In entry 

7-8 are reported the selectivity values, 3.2:1 when allylic alcohol is used and 2.8:1 for 

benzylic alcohol, one and the other with satisfactory kinetics. Speculating that the 

improvement in selectivity was linked with the lower steric hindrance of the latter catalyst, a 

squaramide-based catalyst with NH2 free moiety was prepared. As it can see from entry 9 and 

10 a remarkable value of selectivity was achieved in the case of allylic alcohol and a good 
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result even with benzyl alcohol. Despite the good value of selectivity the reaction rate is slow 

for both isomers. This problem could be correlated to the low catalyst solubility. 

3.4. One-pot procedure 

A one-pot procedure is an extremely attractive strategy to improve the efficiency of a 

reaction, especially where the isolation of the intermediate is problematic such as the present 

case. Thus, skipping the column chromatography after the first step, which was carried out in 

order to get rid of the first catalyst, pyridine co-product and excess HE, a straightforward 

procedure could be a suitable strategy to increase yield, and moreover, simplify a two step 

synthesis into just one step. 

 

Figure 12: One-pot reaction scheme 

For a successful telescoping it is mandatory that catalyst, non-reacted species and all the co-

products that come from the previous step do not interfere in the following step. For this 

reason, the ring opening reaction was conducted in presence of these species things in order to 

understand the influence of their presence. 

In Table 8 are reported three different reactions carried out in order to understand the effect of 

A, B and C species. The catalyst (A) involved in the first step seems to not interfere in the 

ring opening reaction. On the other hand, the presence of B (HE) affected negatively both 

kinetic and selectivity.  
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Table 8: One-pot feasibility and reaction scheme 

 

ENTRYa Interferent t (h) X (%)b Anti:Sync 

1 Ae 48 > 99 3.0:1 

2 Bd 48 73 2.2:1 

3 Cf 48 > 99 3.0:1 
a
General method: azlactone 1 0,05 mmol, alcohol 2 0,1 mmol, 800µL; 

b
 Determined by 19F NMR analysis on 

the crude mixture; 
c
 Determined by 19F NMR after a short silica plug. 

d
 20 mol% of cat 4, 

e
 0.05 mmol of HE, 

f
 

0.05 mmol. 

 

As it can see from entry 3, it seems that the presence of pyridine does not interfere in the 

second step. So, to overcome this problem the equivalents of HE were lowered from 1.5 to 

1.1 and the enantiomeric excess measured to verify the feasibility. These experiments were 

perfomed with the quindine catalyst 8a which affords the syn-isomer. The preliminary results 

are reported in Table 9. 

Table 9: one-pot feasibility 

ENTRYa Alcohol t (h) X (%)b Syn:antic ee (%)d 

1 AllylOH 24 > 95 14:1 96 

2 BnOH 24 > 95 16:1 / 

3 BnOH 24 > 95 16:1 / 
a
General method: azlactone 1a 0.05 mmol, HE 0.075 mmol, at -30° C for 48 h in 400 µL, then allyl alcohol 0,1 

mmol, catalyst 8a 0.0025mmol in 800µL; 
b 
Determined by 

19
F NMR analysis on the crude mixture; 

c
 Determined 

by 
19

F NMR after a short silica plug. 
d
 Determinated after short filtration on silica gel with HPLC on chiral 

stationary phase AD-H, 254 nm, syn-isomer: tmaj
1
 = 11’; tmin

2
 = 21’; anti-isomer  tanti

1
 = 14 min, tanti

2
 = 24 min. 

 

Diastereodivergent synthesis concluding remarks 

Thanks to results previously achieved in the first step involving azlactone 1a as starting 

material, Jacobsen type thiourea as chiral catalyst and Hantzsch ester as hydride donor in 

dichlomethane as solvent, it was possible to plan and develop the second step to complete the 

stereodivergent synthesis. The ring opening reaction was carried out after short filtration on 

silica gel in order to remove non-reacted species, co-products and catalyst. The intermediate 
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as diastereomeric mixture in then used in dynamic kinetic resolution with allylic or benzyl 

alcohol under the control of chiral squaramide-based monomeric cinchona alkaloids. The syn 

product (R,S) is obtained as major stereoisomer when catalyst 7a is employed in a 14:1 as 

diastereomeric ratio for allylic alcohol and 16:1 ratio for benzyl alcohol and 96% 

enantiomeric excess. The second stereoisomer (anti) was selectively synthesized with catalyst 

4d achieving up to 5.0:1 as diastereisomeric ratio. The one-pot synthesis was initially 

investigated in order to find possible interferences. The reaction was carried out with less 

equivalents of Hantzsch ester (1.1) since it seems to interfere in the ring opening reaction.

The crude reaction mixture is then brought to room temperature, thus alcohol and catalyst are 

added. The use of catalysts 6c and 8a were both tested whit positive result. Catalyst 8a works 

very well also in this condition achieving 14:1 as d.r. and 96% e.e. for the syn product, while 

catalyst 6c works slightly worse (2.6:1 as diastereoisomeric ration) compared to case where it 

is used with the purified intermediate. Catalyst 9d was not tested for the one-pot reaction 

because improvements are needed due to its slow kinetic. 
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4. CONCLUSION AND FUTURE AIMS 

Thanks to the promising results reached in the previous work for the first step, it was possible 

to plan and study the azlactones dynamic kinetic resolution feasibility to achieve the synthesis 

of β,β-disubstituted-α-aminoacids in a sequential stereodivergent fashion. To fully control the 

chirality in the α-carbonil stereocenter different catalyst and reaction conditions were 

screened. Squaramide-based cinchona alkaloids were confirmed to be the best catalyst to 

work with, and then a broad study on the catalyst substituents was done in order to maximize 

the selectivity. For the (R,R)-5a product (syn-diastereoisomer) the squaramide catalyst 

bearing dihydroquinidine and (S)-methylbenzilamine susbstituents achived 14:1 

diastereoisomeric ratio and 96% enantiomeric excess when allyl alcohol was used as 

nucleophile, otherwise employing benzyl alcohol the selectivity rise to 16:1 ratio. Performing 

the ring opening reaction under the same condition with squaramide-based quinine bearing 

NH2 moiety, lead to the (R,R)-5a product with 5.0:1 diastereomeric ratio when allylic alcol is 

used, and 3.7:1 ratio for the benzylic alcohol. A more straightforward simple one-pot 

procedure was initially investigated. The potential interferences that come from the previous 

step was studied. As outcome, the equivalents of Hantzsch ester need to be reduced as 

minimum as possible, since it seems to slow down the reaction also reducing the selectivity. 

In this optimized conditions, catalyst 8a was tested due to its high selectivity and activity 

achieving the same results when a purified oxazolone is employed. For the mismatch case 

was not possible to study the one-pot procedure since the catalyst suffers from low activity. In 

the near future, the one-pot strategy will be in-depth studied and the catalyst activity of 9d 

will be investigated in order to reach higher and consequently tested in one-pot synthesis. 
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5. MATERIAL AND METHODS 

5.1. General methods and materials 

1
H-NMR and 

19
F-NMR spectra were measured by means of Varian AS 300 and 400 

spectrometers. Chemical shifts were reported on ppm scale and calibrated from residual 

signals of deuterates solvents. ( for CDCl3, 
1
H-NMR: 7.26 ppm, 

13
C-NMR: 77.0 ppm; for 

DMSO-d6,
 1

H-NMR: 2,50 ppm). Product enantiomeric excess (ee) were detected by means of 

chiral stationary phase HPLC, using an UV detector operative at 254 nm. Solvents and 

commercially available reagents were used as received, unless otherwise stated. 

Chromatographic purifications were performed by means of 70-230 mesh silica. Racemic 

samples for the final opened product were measured upon the ring opening reaction 

employing 5 mol% of Et3N as an achiral in 800 μL of dicholomethane at room temperature. 

5.2. General procedure for the synthesis of azlactone 1a-c 

A suspension of N-(4-methoxybenzoyl) glycine, acetic anhydride and potassium carbonate 

has been added to a round bottom flask equipped with magnetic stirring bar at room 

temperature. After 30 minutes, 2,2,2-trifluoroacetophenone is added and stirred for 18 h. 

Subsequently, the suspension is poured in another round bottom flask with water and stirred 

for 18 h. The resulting suspension is then filtered and the filtrate washed with cold water. The 

solid is then purified with chromatographic column on silica gel using CH2Cl2 as eluent. The 

fraction containing the Z-E mixture is finally recrystallized from n-hexane achieving the pure 

Z isomer. 

1a) Synthesis of (Z)-2-(4-methoxyphenyl)-4-(2,2,2-trifluoro-1-phenylethylidene)oxazol-

5(4H)-one 

Following the procedure described above the product was obtained 

diastereoisomeric pure after recrystallization in 45% yield as yellow 

needle shape crystals. 
1
H NMR (300 MHz, Chloroform-d) δ 8.22 – 8.06 

(m, 2H), 7.64 – 7.41 (m, 3H), 7.41 – 7.30 (m, 2H), 7.09 – 6.93 (m, 2H), 

3.92 (s, 3H). 
19

F NMR (282 MHz, Chloroform-d) δ -59.38 (s). 
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1b) Synthesis of (Z)-2-(4-methoxyphenyl)-4-(2,2,2-trifluoro-1-(4-

metoxyphenyl)ethylidene)oxazol-5(4H)-one 

Following the above described procedure the product 1b was obtained 

in 27 % yield in orange needle shape crystals as pure diastereoisomer. 

1
H NMR (CDCl3 ,300 MHz ) δ 8,17-8,07 (m , 2H), 7,35-7,28 (m, 2H), 

7,05-6,99 (m, 2H),  6,99-6,93 (m, 2H),  3,91 (s, 3H) , 3,86 (s, 3H). 
19

F 

NMR ( CDCl3 , 300 MHz ) δ -59,25 (s). 

 

 

1c) Synthesis of ((Z)-2-(4-methoxyphenyl)-4-(2,2,2-trifluoro-1-(4-

Bromophenyl)ethylidene)oxazol-5(4H)-one 

 Following the above described procedure the product 1b was obtained 

in 48 % yield in yellow needle shape crystals as pure diastereoisomer. 

1
H NMR (CDCl3,300 MHz) δ 8.18-8.08 (m, 2H), 7.64-7.54 (m ,2H), 

7.64-7.54 (m 2H), 7.22 (d, J=12.2 Hz, 2H), 7.07-6.97 (m, 2H), 3.91 (s, 

3H). 
19

F NMR (CDCl3, 282 MHz) δ = -59.34 (s) 

 

 

5.3. Procedure for the synthesis of Jacobsen type thiourea 

 

tert-butyl (S)-(1-(benzyl(methyl)amino)-3,3-dimethyl-1-oxobutan-2-yl)carbamate 

In a oven dried 100 mL round bottom flask under nitrogen 

atmosphere are added: N-Boc-(S)-tert-leucine (5 mmol, 1156.45 

mg), HBTU (5,5 mmol, 2085.9 mg) CH2Cl2 (56 mL) previously 

treated on aluminum oxide activated basic and N-

Benzylmethylamine (6 mmol, 727.08 mg). The reaction was then stirred for 24 h. The organic 

phase is washed with HCl 1M (2x85 mL), a satured solution of NaHCO3 (2x65 mL) e finally 

with brine (2x65 mL). The resulting organic phase in anhydrified with MgSO4, filtrated and 

the solvent was removed under low pressure. The yellow oil product is finally purified by 

means chromatographic column on silica gel and eluted with CH2Cl2: Et2O = 95:5 affording 
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86 % yield. 
1
H NMR (300 MHz, CDCl3): [From the spectra is possible to see the presence of 

2 rotamers in 7:3 ratio] δ 7.35-7.19 (m, 5H), 5.41-5.31 (m, 1H), 5.00 (d, J=15.9 Hz, 0.28H), 

4.71 (d, J=15.0 Hz, 0.72 H), 4.75-4.66 (m, 0.28H), 4.51 (d, J=14.6, 0.72H), 4.58-4.47 (m, 

0.72H), 4.31 (d, J=16.1 Hz, 0.28H), 3.06 (s, 2.2H), 2.88 (s, 0.9H), 1.44 (s, 9H), 1.01 (s, 9H). 

(S)-2-amino-N-benzyl-N,3,3-trimethylbutanamide 

In a vial with tert-butyl (S)-(1-(benzyl(methyl)amino)-3,3-dimethyl-1-

oxobutan-2-yl)carbamate (4.3 mmol, 1438.8 mg) were added CH2Cl2 

(18 mL), trifluoroacetic acid (43 mmol, 3.3 mL) and stirred for 90 

minutes. After this amount of time the reaction was cooled down to 0° C and a solution of 

NaOH (5.5 M) was added in order to obtain a basic solution (pH= 12). The organic layer was 

the separated from the acqueous one, washed whit brine and finally anhydrified with MgSO4. 

After filtration and solvent evaporation a yellow oil was obtained as product that can be 

directly use in following step without purification (72% yield). 
1
H NMR (300 MHz, CDCl3): 

[From the spectra is possible to see the presence of 2 rotamers in  65:35 ratio] δ 7.40-7.17 (m, 

5H), 4.96 (d, J=16.6 Hz, 0.33H), 4.74 (d, J=14.5 Hz, 0.66H), 4.49 (d, J=14.5 Hz, 0.66H), 4.30 

(d, J=16.6 Hz, 0.33H), 3.55 (s, 0.66H), 3.50 (s, 0.33H), 2.98 (s, 1.98H), 2.95 (s, 0.99H), 1.65 

(s, 2H), 1.00 (s, 9H). 

(S)-N-benzyl-N,3,3-trimethyl-2-(3-(4-(trifluoromethyl)phenyl)thioureido)butanamide 

In a vial with (S)-2-amino-N-benzyl-N,3,3-

trimethylbutanamide (3.13. mmol, 733.6 mg) were 

added CH2Cl2 (6.8 mL) and 1-isothiocyanato-4-

(trifluoromethyl)benzene (3.13 mmol, 635.98 mg) and stirred for 24 h. After this amount of 

time the crude reaction mixture was purified by chromatographic column on silica gel using 

initially only CH2Cl2. The polarity was gradually increased with 10% of Et2O in order to elute 

the product achieving 32 % as overall yield of a white solid (1.59 mmol, 693.8 mg). 
1
H NMR 

(300 MHz, CDCl3): [From the spectra is possible to see the presence of 2 rotamers in 8:2 

ratio] δ 8.68 (s, 1H), 7.61-7.17 (m, 9H), 5.96 (d, J=9.5 Hz, 0.2H), 5.66 (d, J=9.4 Hz, 0.8H), 

5.16 (d, J= 15.0 Hz, 0.2H), 4.82 (d, J=14.7 Hz, 0.8H), 4.40 (d, J=15.1 Hz, 0.2H), 4.33 (d, 

J=14.6 Hz, 0.8H), 3.20 (s, 2.4H), 2.80 (s, 0.6H), 1.80 (s, 1.8H), 1.07 (s, 7.2H). 
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5.4. Synthesis of diisobutyl 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate  

 In a heat gun dried round bottom flask equipped with magnetic 

strirring bar, isybutyl 3-oxobutanone (60 mmol, 9685 mg) 

paraformaldehyde (30 mmol, 900 mg) and AcO
-
NH4

+
 (30 mmol, 

2300 mg) are added sequentially. The reaction is carried out at 70°C under nitrogen 

atmosphere. After 30 minutes the crude is washed with ice cold water and filtered, then is 

recrystallized from MeOH to obtain the title product in 43% yield after hot filtration. 
1
H NMR 

(300 MHz, Chloroform-d) δ 5.17 (s, 1H), 3.88 (d, J = 6.4 Hz, 4H), 3.31 (s, 2H), 2.19 (s, 6H), 

1.96 (dq, J = 13.3, 6.6 Hz, 2H), 0.95 (d, J = 6.7 Hz, 12H). 

5.5. General procedure for catalytic asymmetric reduction of azlactone 1  

 In a tube equipped with magnetic stirring bar, azlactone 1 (0,5 mmol) and 

catalyst 4 (20 mol %) are dissolved in CH2Cl2 (2 mL). The mixture is 

cooled down to -30° C and after five minutes the Hantzsch ester (0,75 

mmol) is added to the tube. The reaction is run for 48 h at -30° C and the 

conversion checked by 
19

F NMR. Once reached full conversion, the 

reaction crude mixture is directly charged on a chromatographic column 

on silica gel e quickly eluted with CH2Cl2 for a fast filtration. The reduced product is obtained 

as yellowish sticky oil (0.32 mmol, 64% yield). 
1
H NMR (300 MHz, Chloroform-d) δ 7.94 – 

7.83 (m, 2H), 7.37 – 7.29 (m, 2H), 7.29 – 7.22 (m, 3H), 6.97 – 6.87 (m, 2H), 5.02 (d, J = 2.9 

Hz, 1H), 4.06 (ddd, J = 20.4, 9.5, 2.7 Hz, 1H), 3.87 (s, 3H). 
19

F NMR (282 MHz, Chloroform-

d) δ -67.02 (d, J = 9.8 Hz). Minor diastereoisomers: 
1
H NMR (300 MHz, Chloroform-d) δ 

8.05 – 7.97 (m, 2H), 7.74 – 7.67 (m, 2H), 7.47 – 7.38 (m, 3H), 7.04 – 6.97 (m, 2H), 4.75 (d, J 

= 2.7 Hz, 1H), 4.06 (ddd, J = 20.4, 9.5, 2.7 Hz, 1H), 3.89 (s, 3H). 
19

F NMR (282 MHz, 

Chloroform-d) δ -65.88 (d, J = 9.1 Hz). 
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General procedure for dynamic kinetic resolution on azlactone 

In a tube equipped with magnetic stirring bar, azlactone 3b (0,05 mmol), catalyst 7a and 

CH2Cl2 (800 μL) are added. Then, the mixture is taken to the reaction temperature and the 

appropriate alcohol (0,1 mmol) is added to the tube. The reaction is run until complete 

conversion as detected by TLC or 
19

F-NMR. After that, a plug on silica is performed on the 

crude, then diastereomeric ratios are determined by means of 
19

F-NMR. 

Synthesis of (R,S)-allyl 4,4,4-trifluoro-2-(4-methoxybenzamido)-3-phenylbutanoate 5b 

In a test tube equipped with magnetic stirring bar, 2-(4-

methoxyphenyl)-4-(2,2,2-trifluoro-1-phenylethyl)oxazol-5(4H)-one 

3b (0,05 mmol) is dissolved in 800 μL of CH2Cl2 . Then catalyst 7a 

(0,005 mmol) and AllOH (0,1 mmol) are added to the solution. The 

reaction is carried out at room temperature for 24 hours. After 

chromatografic column (CH2Cl2: Et2O 40:1) the (R,S) stereoisomer 

of product 5b is obtained with 95% of yield, 6,6:1 diastereomeric ratio and 99% enantiomeric 

excess. 
1
H NMR (400 MHz, Chloroform-d) δ 7.68 – 7.58 (m, 2H), 7.44 – 7.30 (m, 5H), 6.94 – 

6.87 (m, 2H), 6.26 (d, J = 9.3 Hz, 1H), 5.97 – 5.82 (m, 1H), 5.67 (q, J = 9.3 Hz, 1H), 5.37 – 

5.26 (m, 2H), 4.64 (dq, J = 6.1, 1.3 Hz, 2H), 4.19 – 4.09 (m, 1H), 3.84 (s, 3H).
19

F NMR (376 

MHz, Chloroform-d) δ -66.28 (d, J = 9.4 Hz). 
13

C NMR (400 MHz, Chloroform-d) δ 169.6, 

166.2, 162.6, 130.9, 130.4, 129.3, 129.1, 129.0, 128.9, 125.6 (q, J=280 Hz), 66.9, 55.4, 52.9, 

51.5 (m) HPLC: (AD-H, n-hexane/i-PrOH 80:20, 0,75 mL/min, λ = 254 nm)  syn-isomer: tmaj
1
 

= 11’; tmin
2
 = 21’; anti-isomer  tanti

1
 = 14 min, tanti

2
 = 24 min. 

Synthesis of (R,R)-allyl 4,4,4-trifluoro-2-(4-methoxybenzamido)-3-phenylbutanoate 5b 

In a test tube equipped with magnetic stirring bar, 2-(4-

methoxyphenyl)-4-(2,2,2-trifluoro-1-phenylethyl)oxazol-5(4H)-one 

3b (0,05 mmol) is dissolved in 800 μL of CH2Cl2 . Then catalyst 4d 

(0,05 mmol) and AllOH (0,1 mmol) are added to the solution. The 

reaction is carried out at room temperature for 24 hours. After 

chromatografic column (CH2Cl2: Et2O 40:1 ) the (R,R) stereoisomer 

of product 5b is obtained with 95% of yield, 2.5:1 diastereomeric ratio and 93% enantiomeric 

excess. 
1
H NMR (400 MHz, Chloroform-d) δ 7.76 – 7.69 (m, 2H), 7.40 – 7.29 (m, 5H), 6.94 – 

6.89 (m, 2H), 6.82 (d, J = 8.7 Hz, 1H), 5.72 – 5.58 (m, 1H), 5.44 (dd, J = 9.1, 7.3 Hz, 1H), 

5.22 – 5.11 (m, 2H), 4.52 – 4.39 (m, 2H),4.08 – 3.99 (m, 1H) 3.83 (s, 3H). 
19

F NMR (376 
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MHz, Chloroform-d) δ -63.66 (d, J = 9.4 Hz).
 13

C NMR (400 MHz, Chloroform-d) δ 169.7, 

166.5, 162.6, 131.1, 130.8, 129.3, 129.0, 128.9, 128.8, 125,8 (q, J=281 Hz), 66.6, 64.3, 55.4, 

52.9, 51.5 (m). HPLC: (AD-H, n-esano/i-PrOH 80:20, 0,75 mL/min, λ = 254 nm, tsyn
1
 = 11’; 

tsyn
2
 = 21’ tanti

1
 = 14 min, tanti

2
 = 24 min). 

5.6. General procedure for the synthesis squaramide-based catalyst 

In a vial equipped with magnetic stirring bar, to a solution of 3,4-dimethoxy-3-cyclobutene-

1,2-dione (1 mmol, 142 mg) in CH2Cl2 (4 mL) the 3,5-bis(trifluoromethyl)-benzylamine (1.05 

mmol, 255 mg) in CH2Cl2 (1 mL) is added. After 18 h, the reaction mixture was filtered, and 

the filtrate washed with acqueous HCl 1M (1 x 10 mL). The organic layer was dried with 

MgSO4, filtered and concentrated to afford 3-((3,5-bis(trifluoromethyl)benzyl)amino)-4-

methoxycyclobut-3-ene-1,2-dione as a white solid (299 mg, 85% yield). The monosubstituted 

intermediate (127, 0.360 mmol) is dissolved in MeOH (4 mL) and a solution of epi-ammino-

quinine, 0.300 mmol in 1mL of MeOH. After 24 h, the reaction mixture was filtered and the 

precipitate washed with cold MeOH (2 x 0.5 mL) to afford the final squaramide (132 mg, 

72%) as white solid. 

5.7. Procedure for the synthesis of 3,4-bis(cyclopentyloxy)cyclobut-3-ene-

1,2-dithione 

To a solution of Lawesson’s reagent (3.70 g, 9.15 mmol) in dry 

CH2Cl2 (40 mL) was added 3,4-bis(cyclopentyloxy)cyclobut-3-ene-

1,2-dione (2.29 g, 9.15 mmol). The reaction was stirred for 37 h, 

during which time dry CH2Cl2 was added as needed to maintain constant volume. The 

reaction mixture was then gravity filtered, concentrated to roughly half the original volume, 

and immediately loaded onto column. Quickly eluting with 1:1 hexanes: CH2Cl2 afforded the 

product (1,83 g, 6,48 mmol, 71%) as an amorphous orange solid. 
1
H NMR (300 MHz, 

CDCl3): δ = 6.06 (m, 2H), 2.02 (m, 8H), 1.86 (m, 4H), 1.70 (m, 4H). 

3-((3,5-Bis(trifluoromethyl)benzyl)amino)-4-(cyclopentyloxy)cyclobut-3-ene-1,2-dithione 

(5a) 

To a solution of dithione (237 mg, 0.84 mmol, 1.2 equiv) in 

dry CH2Cl2 (2 mL) was added 3,5-(CF3)2-benzylamine (76 

µL, 0.70 mmol, 1.0 equiv) at 0 °C and the resulting solution 

was stirred for 15 min at that temperature, then 15 min at 
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room temperature. The solution was then loaded directly onto column and quickly eluted with 

CH2Cl2 to afford 5a (166 mg, 0.55 mmol, 79%) as an amorphous yellow solid. The compound 

exists as two rotamers in DMSO at room temperature in a ratio of 0.55:0.33. Major rotamer: 

1
H NMR (300 MHz, DMSO-d6): δ = 10.26 (t, J = 6.2 Hz, 1H), 7.35 (m, 5H), 6.37 (m, 1H), 

4.56 (d, J = 6.5 Hz, 2H), 1.81- 2.08 (m, 4H), 1.53-1.81 (m, 4H). Minor rotamer: 
1
H NMR 

(500 MHz, DMSO-d6): δ = 10.15 (t, J = 6.3 Hz, 1H), 7.35 (m, 5H), 6.32 (m, 1H), 5.19 (d, J = 

6.5 Hz, 1H), 1.81-2.08 (m, 4H), 1.53-1.81 (m, S6 4H). 

3-((3,5-bis(trifluoromethyl)benzyl)amino)-4-(((S)-(7-methoxynaphthalen-1-

yl)((1S,2R,4S,5R)-5-vinylquinuclidin-2-yl)methyl)amino)cyclobut-3-ene-1,2-dithione 

To a solution of monosubstituted product (85 mg, 0.20 

mmol, 1.0 equiv) in dry CH2Cl2 (1 mL) was added a 

solution of diamine QA in dry CH2Cl2 (0.5 M, 0.4 mL, 

1.0 equiv) at 0 °C and the resulting solution was stirred 

for 0.5 h at that temperature, then 3 h at room 

temperature. About 4 mL hexanes was then added. The 

suspension was filtered and washed with ice-cold 4:1 hexanes:CH2Cl2 to afford 6g (93 mg, 

0.14 mmol, 70%) as an amorphous yellow solid. NMR characterization for the final product 

was done after the salt formation 2HCl: 
1
H NMR (300 MHz, CD3CN): δ = 12.36 (s, 1H), 

11.72 (s, 1H), 9.82 (s, 1H), 9.03 (s, 1H), 8.61 (s, 1H), 8.55 (d, J = 8.8 Hz, 1H), 8.37 (s, 2H), 

8.06 (s, 1H), 7.71 (m, 2H), 7.53 (s, 1H), 5.85 (m, 1H), 5.18 (d, J = 16.5 Hz, 1H), 5.12 (d, J = 

10.0 Hz, 1H), 4.38 (s, 1H), 4.15 (s, 3H), 4.15 (buried, 1H), 3.70 (m, 1H), 3.34 (s, 2H), 2.81 (s, 

1H), 1.54-2.09 (m, 5H), 1.14 (s, 1H). 
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