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Introduction

Since the first X-ray picture was available in 1895 radiography played a key role in
medical research. The development of new theories and the improved performances of
computers allowed the introduction of techniques that were considered unbelievable just
a few decades ago, like for instance computed tomography and magnetic resonance.

During the last years digital tomosynthesis became popular, a technique that allows
the reconstruction of any section of a 3D object thanks to a certain number of 2D
projections. The strength of this technique is based on the limited number of angles
required in order to obtain the projection; on the contrary computed tomography requires
a 360 degrees rotation. This characteristic makes tomosynthesis suitable for the more
delicate areas of the body, like breast. On the one hand there is a minor quantity of
radiations absorbed, on the other hand the examination can be carried out in more
suitable positions of the patient in order to achieve good quality images.

The mathematical model for tomosynthesis was simplified until 2010. X-ray beam was
considered to be monoenergetic and the object to be made up of one material. Thanks to
these simplifications the issue result in a linear inverse problem. On the contrary in this
work we will consider the polyenergetic and multimaterial model and as a consequence
a non-linear inverse problem of great dimensions will be taken into account.

Like any other inverse problems, the issue related to the tomosynthesis is an ill-posed
problem. These type of problems requires other information on the solution in order to
stabilize the issue. In other words a regularization of the problem is essential, that is
also the purpose of this work.

Two types of regularizations will be tested: the first is based on the L1-Norm of the
solution whereas the second is based on the L1-Norm of the gradient of the solution.
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The last one is usually called Total Variation.
The problem related to the tomosynthesis and in general the ill-posed problems are

introduced in the first chapter of this work. In addition polyenergetic and multimaterial
models, that characterize the problem, are also described in the second part of the
chapter.

In the second chapter the least squares problem is depicted and applied to our case.
Furthermore the concept of regularization is introduced and the problem is written in its
final form, the one that we will solve; in the end the two types of chosen regularizations
are explained.

In the third chapter we introduce the basis of mathematical optimization and the
two strategies of line search and trust region. Moreover two methods used in order to
solve the minimum problems are described: the Gradient method and the Non-Linear
Conjugate Gradient method.

In the fourth chapter numerical results obtained are explained and commented firstly
through the comparison of the two methods of a given regularization and finally through
that of the two regularizations in general. Lastly we draw conclusions and suggest ideas
for future works.



Introduzione

Sin dal 1895, data della prima immagine medica ottenuta mediante raggi X, la radio-
grafia ha svolto un ruolo fondamentale nel campo medico. Lo sviluppo di nuove teorie
e l’aumento delle capacità di calcolo da parte dei computer hanno permesso l’utilizzo di
tecniche, come la tomografia computerizzata o la risonanza magnetica, che risultavano
proibitive fino a qualche decennio fa.

Negl’ultimi anni ha acquisito particolare interesse la tecnica della tomosintesi digitale;
una tecnica in grado di ricostruire un qualsiasi numero di sezioni di un oggetto tridimen-
sionale partendo da un insieme di proiezioni 2D. La forza di questa tecnica risiede nel
fatto che le proiezioni sono prese solo da un numero ridotto di angoli, al contrario della
tomografia computerizzata che richiede un’intera rotazione di 360◦. Questa proprietà
rende la tomosintesi digitale particolarmente adatta per le zone più delicate del corpo,
ad esempio il seno, sia per il minor numero di radiazioni assorbite, sia per la possibili-
tà del paziente di poter effuttuare l’esame in posizioni adatte all’ottenimento di buone
immagini.

Fino al 2010 il modello matematico alla base della tomosintesi veniva semplificato.
Il fascio di raggi X veniva considerato monoenergetico e l’oggetto composto di un solo
materiale. Attraverso queste semplificazioni il problema si poteva ricondurre ad un pro-
blema inverso lineare. In questa tesi, invece, considereremo il modello polienergetico e
multimateriale, affrontando quindi un problema inverso non lineare di grandi dimensioni.

Come tutti i problemi inversi anche quello legato alla tomosintesi è mal posto. Que-
sta tipologia di problemi necessità di ulteriori informazioni sulla soluzione in modo da
stabilizzare il problema, e cioè deve essere regolarizzato.

Lo scopo di questa tesi è proprio quello di regolarizzare questo problema. Verrano
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testati due tipi di regolarizzazioni: una basata sulla norma L1 della soluzione e una
basata sulla norma L1 del gradiente della soluzione, quest’ultima è solitamente chiamata
Variazione Totale.

Nel primo capitolo di questa tesi ci sarà un’introduzione alla tomosintesi, al problema
che ne deriva e più in generale ai problemi mal posti, infine verrà esposto il modello
polienergetico e multimateriale che caratterizza il problema legato alla tomosintesi.

Nel secondo capitolo introduciamo il problema ai minimi quadrati e lo applichiamo al
nostro caso. In seguito introduciamo il concetto di regolarizzazione, scriviamo il problema
nella sua forma finale, quella che poi andremo a risolvere ed infine descriviamo i due tipi
di regolarizzazione scelti.

Nel terzo capitolo introduciamo i fondamenti dell’ottimizzazione numerica e quindi
le due strategie di ricerca in linea e trust region. Subito dopo presentiamo i due metodi
utilizzati per la risoluzione del problema di minimo: il metodo del Gradiente e il metodo
del Gradiente Coniugato non Lineare.

Nel quarto capitolo esponiamo e commentiamo i risultati numerici ottenuti, confron-
tando prima i due metodi per una determinata regolarizzazione e poi, più in generale, le
due regolarizzazioni. Traiamo, infine, le nostre conclusioni proponendo, inoltre, qualche
idea per lavori futuri.
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Capitolo 1

Digital tomosynthesis

1.1 A brief history of the tomosynthesis

Since the first medical x-ray image in 1895, made by Röntgen, projection radiography
played a foundamental role in medical field. However, the conventional x-ray system have
a great limitation: only one two-dimensional projection image of a three-dimensional is
avaiable from each scan. Specifically in breast imaging, a false negative diagnosis may
be caused by breast cancer obscured by overlapping tissue, while superimposed normal
tissues may appear to be a cancerous mass, resulting in a false positive diagnosis.

Tomosynthesis is a technique for inversely constructing slices of a 3D object from
a set of 2D projection images. The idea of tomosynthesis was known since the 1930s,
but, only in the late 1960s and early 1970s the researchers put these ideas into practice,
mainly due to issues of practical implementation, like insufficient imaging detectors and
inadequate computing technology.

Techniques, such us, computed tomography (CT) and magnetic resonance imaging
(MRI), had more success. CT allows the 3D reconstruction of objects by obtaining a
complete 360◦ rotation of projection data around the object. However, CT is particularly
challenging for breast imaging, the patient must be in prone position during the scan
and this positioning makes it difficult to effectively image the chest wall and axilla area.

The idea behind tomosynthesis is that multiple 2D image projections of the object can
provides different information about the 3D object. The projections are taken at varying
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1.1 A brief history of the tomosynthesis 1. Digital tomosynthesis

incident angles and from the limited set of 2D projections, reconstruction algorithms
should be able to reconstruct any number of slice of the 3D object.

Until 2010, to semplify the problem, the x-ray source was assumed monoenergetic,
that is, that all incident photons have the same energy level. This assumption led to a
linear optimization problem, easier to resolve, but also, to the phenomenon called beam
hardening : x-ray photons emitted from an x-ray tube have a continuous distribution
of energies, and as the x-ray beam passes through any attenuating medium there is
a preferential absorption of low-energy photons, resulting in an increase in the mean
energy of the x-ray beam. Ignoring this energy dependence can lead to the so called
beam hardening artifacts in the reconstructed image, such as, "halo" effect around high
density object or "cupping" artifacts.

In this paper we consider the polyenergetic model proposed in 2010 by Chung, Nagy
and Sechopoulos.

Figura 1.1: Sistem of breasts tomosyntesis
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1.2 Ill-posed and inverse problems

The concept of ill-posed goes back to Hadamard at the beginning of the 20th century.
Hadamard defined a problem well-posed if it satisfies:

• Existence: The problem must have a solution.

• Uniqueness: There must be one and only one solution to the problem.

• Stability: The solution must depend continuosly on the data.

If the problem violates one or more of these conditions, it is said to be ill-posed. For
example:

x1 + x2 = 1 (the world’s simpliest ill-posed problem)

has infinitely many solution. If we require the 2-norm of x, given by ||x||2 = (x2
1+x2

2)
1
2 ,

is minimun, then the solution in unique x1 = x2 = 0.5.

Hadamard believed that ill-posed probelms wouldn’t describe physical system. He
was wrong, today ill-posed problems arise in the form of inverse problems. Inverse
problems born naturally if one is interested, for example, in determining the unknown
input that generate a measured output signal.

Figura 1.2: The inverse problem is to compute either the input or the system, given the
other two quantities.



1.3 The Mathematical Model 1. Digital tomosynthesis

In this paper, we focus on digital tomosynthesis, where the "input" is an X-ray source,
the "system" is the object being scanned, and the "output" is the measured damping of
the X-rays. The problem can be formulated in the following general form:

b = K(X)s+ η (1.1)

where:

• b is the measure data’s vector.

• K is a matrix that depend on the unkown X,and K(X) depends on the specific
application.

• η is the noise’s vector.

1.3 The Mathematical Model

The model is based on Beer’s law. Let’s suppose that an X-ray, that cross an object,
has intensity Is. Is decreases because it is partially absorbed by the object. The Beer-
Lambert’s law say that, if Is is the initial intensity and If the outgoing one, these two
measure are bound by the following relation:

If = Is · e(−
∫
u(s)ds).

Now let’s consider the polyenergetic case: let b(θ)
i be the intesity measured at the i-th

pixel of a digital x-ray detector the previously relation became:

b
(θ)
i =

∫
ε

s(ε)e
−

∫
Lθ

µ(~x,ε)d`
dε+ η

(θ)
i i = 1, 2, · · · , Np and θ = 1, 2, · · · , Nθ.

(1.2)
Where:

• Np is the number of pixels (typically a few million) in the digital x-ray detector.

• Nθ is the number of projection images obtained when the x-ray source is moved to
a new position, which is defined by an angle θ. In a typical tomosynthesis system
15 ≤ Nθ ≤ 30.
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• ε represents the spectrum of energies that are emitted by the source x-ray beam,
which can, for example, range from 10keV to 28keV .

• s(ε) is the energy fluence, which is a product of the x-ray energy with the number
of incident photons at that energy.

• Lθ is the line on which the x-ray beam travels through the object.

• µ(~x, ε) is the linear attenuation coefficient, which depends on the energy of the
x-ray beam, and on the material in the object at the position ~x; lower energy will
be attenuated more than higher energy, and denser materials will attenuate more
than soft material.

• η(θ)
i rapresents additional contributions (noise) measured at the detector, which
can include x-ray scatter and electronic noise.

We have to discretize the previous equation, and that lead to the discrete model:

b
(θ)
i =

Nε∑
ε=1

sεexp

(
−

Nv∑
`=1

a
(θ)
i,` µ`,ε

)
+η

(θ)
i , i = 1, 2, · · · , Np and θ = 1, 2, · · · , Nθ.

(1.3)
Where:

• Nv is the number of voxel (typically a few billion) in the discretized 3D object.

• Nε is the number of discrete energy level. Becuase Nv is extremely large, in general
Nε � Nv.

• a(θ)
i,` is the lenght of the x-ray that passes through voxel `, contributing to pixel i.

Now we want to compact the equation 1.3. We define a matrix A(θ) with entries a(θ)
i,`

and a matrixM with entries µ`,ε. Now we can write the equation in matrix-vector form:

b(θ) = exp(−A(θ)M)s + η(θ), θ = 1, 2, · · · , Nθ. (1.4)

Where the exponentiation operation is done element-wise on the matrix −A(θ)M. A
discrete model that comprises all projections can be written as:
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b = exp(−AM)s + η, θ = 1, 2, · · · , Nθ. (1.5)

where

b =


b(1)

b(2)

...
b(Nθ)

 and A =


A(1)

A(2)

...
A(Nθ)


An accurate estimate of the x-ray energy distribution can be obtained using well-

known x-ray spectra models, and calibration measurements can be obtained by taking x-
ray transmission measurements of objects (e.g. high-purity aluminum) that have known
dimension, density and material composition. Information about the additive noise term,
η, can be also estimated through preprocessing or calibration steps. Using this x-ray
spectra modeling, the image reconstruction problem assumes b, A and s are known, and
we have to solve 1.5 forM, or we can solve the general inverse problem 1.1 setting:

K(X) ≡ exp(−AX), with X ≡M

The problem is non linear due to the exponential in the equation. It is not easy to
computationally solve this problem. Tipically are used simplifying assumption to get
an approximate linear model. For example, if we consider a monoenergetic model, i.e,
Nε = 1, M is a vector and s is a scalar. With this the equation 1.5 became a linear
inverse problem:

b̂ = AX + η

and the entries of b̂ are:

b̂i = − log

(
bi
s

)

1.3.1 Multimaterial Model

In this section we introduce the general framework for material decomposition design
by Nagy, Feng and Sechopoulos. Under the assumption that the densities of different
components are similar, the linear attenuation coefficients µ`,ε, of the composite material
making the object (e.g., the breast) can be approximated as a linear combination of



1. Digital tomosynthesis 17

individual materials. Suppose that there are Nm distinct materials making up the object,
we have:

µ`,ε ≈
Nm∑
m=1

w`,mcm,ε, (1.6)

where:

• cm,ε are known linear attenuation coefficients for the m-th material in voxel ` at
x-ray energy ε.

• w`,m are unknown weight fractions (or percentages) of the m-th material in the
`-th voxel of the object.

We also assume:
Nm∑
m=1

w`,m = 1, ` = 1, 2, · · · , Nv

or:

w`,1 = 1−
Nm∑
m=2

w`,m (1.7)

Now replacing 1.5 in 1.3 we obtain:

b
(θ)
i =

Nε∑
ε=1

sεexp

(
−

Nv∑
`=1

a
(θ)
i,`

Nm∑
m=1

w`,mcm,ε

)
+η

(θ)
i i = 1, · · · , Np; θ = 1, · · · , Nθ. (1.8)

η
(θ)
i rapresent noise measured at the detector, which can include x-ray scatter and elec-

tronic noise. Normally it follow a Poisson distribution, but, with opportune hypothesis,
we can replace the Poisson distribution with a Gaussian distribution.

Now setting W = [w`,m] e C = [cε,m] the previous equation become:

b = exp(−AWCT)s + η, (1.9)

where:

• W is a Nv×Nm matrix and his elements w`,m are the unknown weights of the m-th
material in the `-th voxel.

• C is aNε×Nm matrix and his elements are the known linear attenuation coefficients
of the m-th matreial.
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Capitolo 2

The Non Linear Reconstruction Model

2.1 Non Linear Least-Square Problems

In least-squares problems, the objective function φ has the following form:

φ(x) =
1

2

m∑
j=1

r2
j (x), (2.1)

where each rj is a smooth function from Rn to R. We refer to each rj as a residual. If
the residuals rj are affine the problems are linear least-squares problems otherwise are
non linear least-square problems.

Now we assemble the individual components rj into a residual vector r : Rn → Rm,
as follow:

r(x) = (r1(x), r2(x), · · · , rm(x))T .

Using this notation, we can rewrite φ as φ(x) = 1
2
||r(x)||22 = 1

2
r(x)T r(x). In this way the

derivates of φ(x) can be expressed in terms of the Jacobian J(x):

J(x) =

[
∂rj
∂xi

]
j=1,2,...,m; i=1,2,...,n

,

and can be express using the gradients:

∇ri =

[
∂ri
∂x1

,
∂ri
∂x2

, · · · , ∂ri
∂xn

]T
19



2.1 Non Linear Least-Square Problems 2. The Non Linear Reconstruction Model

as:
J(x) = [∇r1(x)T ,∇r2(x)T , · · · ,∇rm(x)T ]T .

Now, getting back to our problem, under a Gaussian noise assumption, the solution
to 1.8 is obtained by solving the non linear least squares problem:

min
W

1

2
||b− exp(−AWCT)s||2 (2.2)

where η was absorbed inside the vector b. By imposing 1.7 on 2.2 we obtain the non
linear least square problem:

min
X

f ∗(X) = min
X

(
1

2
||r(X)||2

)
(2.3)

where the unknown X is defined as:

X = [w2|w3| · · · |wNm ]

and wi is the ith column of W. If xm denotes the mth column of X, then the residual
r(X) has the form:

r(X) = b− exp

(
−A
[
1−

Nm−1∑
m=1

xm

∣∣∣∣X]CT

)
s. (2.4)

If we define the Nε × (Nm − 1) matrix as:

Ĉ = [c2 − c1|c3 − c1| · · · |cNm − c1]

where c` denotes the `th column of C , then equation 2.4 can be written component wise
as:

rθi = bθi −
Nε∑
ε=1

sεexp

(
−

Nv∑
`=1

aθi,`

(
c1,ε +

Nm−1∑
m=1

x`,mĉm,ε

))
.

2.1.1 Computing the Gradient

Due to the high dimensionality of tomosynthesis imaging problems, computing the gra-
dient of f ∗(X) is a crucial issue for the implementation of any numerical method for the
solution of 2.3. The gradient of f ∗(X) is expressed in terms of the Jacobian J(X) of
r(X):

∇f ∗(X) = J(X)Tr(X)
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where J(X) is the NpNθ ×NvNm matrix defined by:

{J(X)}i,θ,j,m =
∂

∂xj,m
rθi

=
∂

∂xj,m

(
bθi −

Nε∑
ε=1

sεexp

(
−

Nv∑
`=1

aθi,`

(
c1,ε +

Nm−1∑
m=1

x`,mĉm,ε

)))

= −
Nε∑
ε=1

sεexp

(
−

Nv∑
`=1

aθi,`

(
c1,ε +

Nm−1∑
m=1

x`,mĉm,ε

))
(−aθi,j ĉm,ε)

= aθi,j

Nε∑
ε=1

exp

(
−

Nv∑
`=1

aθi,`

(
c1,ε +

Nm−1∑
m=1

x`,mĉm,ε

))
sεĉm,ε

= aθi,j

Nε∑
ε=1

{
exp

(
−A
[
1−

Nm−1∑
m=1

xm

∣∣∣∣X]CT

)}
i,θ,ε

(s� ĉm)ε

(2.5)

for i = · · · , Np θ = 1, · · · , Nθ, j = 1, · · · , Nv, m = 1, · · · , Nm and � denotes
component wise multiplication.

Now let’s see how we regularize the least-square problem 2.3.

2.2 Regularization

We already see, in chapter one, that problem 2.3 is an ill-posed problem. The primary
difficulty with ill-posed problems is that they are practically underdetermined due to
the cluster of small singular values of K. Hence, it is necessary to incorporate further
information about the desired solution in order to stabilize the problem and to single
out a useful and stable solution. This is the purpose of regularization.

Recall the problem 2.3:

min
X

f ∗(X) = min
X

1

2
||r(X)||2,

the dominating approach to regularization is using one of the following four schemes.

1. Minimize f ∗(X) subject to the constraint that X belongs to a specified subset.

2. Minimize f ∗(X) subject to the constraint that a measure of ω(X) of the "size" of
X is less than some specified upper bound δ.
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3. Minimize ω(X) subject to the constraint f ∗(X) ≤ α.

4. Minimize a linear combination of f ∗(X) and ω(X):

min{f ∗(X) + λω(X)}, (2.6)

where λ is a specified weighting factor.

Here, α, δ and λ are known as reguarization parameters, and the function ω is
sometimes referred to as the smoothing norm. The underlying idea in all four schemes
is that a regularized solution having a suitably small residual norm and satisfying the
additional constraint will be not too far from the desired unknown solution.

In this paper we’ll use the fourth scheme with:

ω(X) = ||Φ(X)||1,β,

where

||Φ(X)||1,β =
Nv∑
i=1

(|Φ(xi)|2 + β2)
1
2 β > 0, (2.7)

and
Φ(X) = X or Φ(X) = ∇X.

The second choice leads to the Total Variation regularization. We have to use the
approximation || · ||1,β of the 1−norm due to the nondifferentiability of this norm at the
origin.

At last the optimization problem we’ll resolve, will be:

min
X

f(X) = min
X

(
1

2
||r(X)||2 + λ||Φ(X)||1,β

)
. (2.8)

2.2.1 Total Variation Regularization

As we said the choice of Φ(X) = ∇X lead to Total Variation regularization. Now we’ll
study it in more detail.

Let φ be a smooth function on the interval [0, 1], we can define the total variation of
φ as:

TV (φ) =

∫ 1

0

∣∣∣∣dφdx
∣∣∣∣dx.
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A generalization to two and three space dimension is:

TV (φ) =

∫ 1

0

∫ 1

0

||∇φ||2dxdy,

TV (φ) =

∫ 1

0

∫ 1

0

∫ 1

0

||∇φ||2dxdydz.

An extension of this representation, valid even when φ is not smooth, is:

TV (φ) = sup
v∈V

∫ 1

0

∫ 1

0

∫ 1

0

φ(x, y, z) div v dxdydz, (2.9)

where V consist of vector-valued function v = (v1(x, y, z), v2(x, y, z), v3(x, y, z)) whose
Euclidean norm is bounded by 1 and whose components vi are continuously differentiable
and vanish on the boundary of the unit square. div v = ∂v1

∂x
+ ∂v2

∂y
+ ∂v3

∂z
is the divergence

of v. We will take 2.9 as definition of Total Variation. Using the fourth scheme of
regularization (2.6) with the Total Variation functional as ω(·), the optimization problem
can be write as:

Tλ(X) =
1

2
||r(X)||2 + λTV (X).

To overcome the non-differentiability of the norm at the origin, we take the appro-
ximation

√
|x|2 + β2. This yields the following approximation to TV (φ), valid for a

smooth function φ defined on the unit interval in one dimension:

Jβ(φ) =

∫ 1

0

√(
dφ

dx

)2

+β2dx.

In two and three space dimension, becomes:

Jβ(φ) =

∫ 1

0

∫ 1

0

√(
∂φ

∂x

)2

+

(
∂φ

∂y

)2

+β2dxdy.

Jβ(φ) =

∫ 1

0

∫ 1

0

∫ 1

0

√(
∂φ

∂x

)2

+

(
∂φ

∂y

)2

+

(
∂φ

∂z

)2

+β2dxdydz. (2.10)

Then Tλ(X) becomes:

Tλ(X) =
1

2
||r(X)||2 + λJ(X), (2.11)

where J is a discretization of Jβ(X) and it’s often call the penalty functional
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Discretization in One Space Dimension

Suppose φ(x) is a smooth function defined on the unit interval in R and ~φ = (φ0, . . . , φn)

with φi = φ(xi), xi = i∆x, ∆x = 1/n. Next let:

Di
~φ =

φi − φi−1

∆x
, i = 1, . . . , n

be the derivate approximation.

Then the penalty functional J becomes:

J(~φ) =
1

2

n∑
i=1

ψ((Diφ)2)∆x, (2.12)

where ψ is a smooth approximation to twice the square root function with the
property:

ψ′(t) > 0 whenever t > 0.

To simplify notation, we’ll omit the factor ∆x. This factor can be absorbed in the
regularization parameter λ.

In this paper and in the numerical implementation we’ll use:

ψ(t) = 2
√
t+ β2.

Note that with this choice we obtain:

J(X) =
n∑
i=1

√
(DiX)2 + β2 = ||Φ(X)||1,β,

when Φ(X) = ∇X
We need also the gradient of J . For any v ∈ Rn+1,

d

dτ
J(~φ+ τv) =

n∑
i=1

ψ′((Di
~φ)2)(Di

~φ)(Div)

= (Dv)Tdiag(ψ′(~φ))(D~φ)

= 〈DTdiag(ψ′(~φ))D~φ,v〉,

(2.13)
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where diag(ψ′(~φ)) denote the n×n diagonal matrix whose ith diagonal entry is ψ′((Di
~φ)2),

D is the n × (n + 1) matrix whose ith row is Di, and 〈·, ·〉 denotes the Euclidean inner
product on Rn+1. Then the gradient will be:

∇J(~φ) = DTdiag(ψ′(~φ))D~φ = L(~φ)~φ,

where L(~φ) is a positive semidefinite and symmetric (n+ 1)× (n+ 1) matrix.

Discretization in Two Space Dimension

Suppose φ = φij is defined on an equispaced grid in two space dimension, {(xi, yj) |xi =

i∆x, yj = j∆y, i = 0, . . . , nx, j = 0, . . . , ny}. The discrete penalty functional J :

R(nx+1)×(ny+1) → R become:

J(φ) =
1

2

nx∑
i=1

ny∑
j=1

ψ

[
(Dx

ijφ)2 + (Dy
ijφ)2

]
,

where
Dx
ijφ =

φi,j − φi−1,j

∆x
, Dy

ijf =
φi,j − φi,j−1

∆y
.

Gradient computations are similar to those in one dimension:

d

dτ
J(φ+ τv)|τ=0 =

nx∑
i=1

ny∑
j=1

ψ′ij

[
(Dx

ijf)(Dx
ijv) + (Dy

ijφ)(Dy
ijv)

]
where ψ′ij = ψ′

[
(Dx

ijφ)2 + (Dy
ijφ)2

]
.

Now let ~φ = vec(φ) and v = vec(v) corresponding to lexicographical column ordering
of the two-dimensional array components, i.e given an array v ∈ Cnx×ny we can obtain
v ∈ Cnxny in this way:

v = vec(v) = [v1,1, . . . , vnx,1, v1,2, . . . , vnx,2, . . . , v1,ny , . . . , vnx,ny ];

let Dx and Dy denote the resulting nxny × (nx + 1)(ny + 1) matrices corresponding
to the grid operator Dx

ijφ =
φi,j−φi−1,j

∆x
, and Dy

ijφ =
φi,j−φi,j−1

∆y
; let diag(ψ′(~φ)) denote

the nxny×nxny diagonal matrix whose diagonal entries are the ψ′ijs; and let 〈·, ·〉 denote
the Euclidean inner product on R(nx+1)(ny+1). Then:

d

dτ
J(φ+ τv)|τ=0 = 〈diag(ψ′(~φ))Dx

~φ,Dxv〉+ 〈diag(ψ′(~φ))Dy
~φ,Dyv〉.



2.2 Regularization 2. The Non Linear Reconstruction Model

From this we obtain a gradient rapresentation:

∇J(~φ) = L(~φ)~φ,

where:
L(~φ) = DT

x diag(ψ′(~φ))Dx +DT
y diag(ψ′(~φ))Dy

2.2.2 1−Norm Regularization

The second choice we made is Φ(X) = X. Now let X̃ = vec(X) be the lexicographical
column ordering of the three-dimensional array components, the optimization problem
become:

f(X̃) =
1

2
||r(X̃)||2 + λJβ(X̃),

where

Jβ(X̃) = ||X̃||1,β =
Nv∑
i=1

√
(|xi|2 + β2).

We’ll, also, need the gradient ∇Jβ(X̃), and we can obtain it with a direct calculation:

∇Jβ(X̃)i =
∂

∂xi
Jβ(X̃) =

xi√
|xi|2 + β2

; i = 1, . . . , Nv.



Capitolo 3

Optimization Alghoritms

Mathematically speaking, optimization is the minimization or maximization of a function
subject to constraints on its variables. The optimization problem can be written as follow:

min
x∈Rn

φ(x) subject to ci(x) = 0, i ∈ I

in this paper we try to resolve the problem defined in 2.3, or should i say, the regulari-
zation of that problem.

For this purpose, in this chapter, we’ll summarise the basics of numerical optimization
and, furthermore, we’ll study the optimization alghoritms of the Gradient and of the
Conjugate Gradient.

3.1 Basics of Numerical Optimization

All algorithms for unconstrained minimization require the user to supply a starting
point, which we usually denote by x0. Beginning at x0, optimization algorithms generate
a sequence of iterates {xk}∞k=0 that terminate when either no more progress can be
made or when it seems that a solution point has been approximated with sufficient
accuracy. In deciding how to move from one iterate xk to the next, the algorithms
use information about the function φ at xk , and possibly also information from earlier
iterates x0, x1, · · · , xk−1. They use this information to find a new iterate xk+1 with a
lower function value than xk. There are two fundamental strategies for moving from the
current point xk to a new iterate xk+1: line search and trust region methods.
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In the line search strategy, the algorithm chooses a direction pk and searches along
this direction from the current iterate xk for a new iterate with a lower function value.
The distance to move along pk can be found by approximately solving the following
one-dimensional minimization problem to find a step length αk:

min
α>0

φ(xk + αpk). (3.1)

The search direction has often the form:

pk = −B−1
k ∇φk,

where Bk is a symmetric and non singular matrix. In the steepest descent method,
Bk = I where I is the identity matrix, in Newton’s method, Bk is the exact Hessian
and in quasi-Newton method is an approximation to the Hessian. When pk is defined as
above and Bk is positive definite, we have:

pTk∇φk = −∇φTkB−1
k ∇φk < 0,

and therefore pk is a descent direction.
the ideal choice of the step lenght αk would be the global minimizer of 3.1, but in

general, it is too expensive to identify this value. More practical strategies perform
inexact line search to identify a step length that achieves a sufficient reduction in φ.
Typically line search algorithms try out a sequence of possible values of α and accept
the one that satisfied certain conditions.

A simple condition we could impose on αk is to require a reduction in φ , i.e., φ(xk +

αkpk) < φ(xk). This requirement in not enough to produce convergence. A popular
inexact line search condition is the so called Armijo condition:

φ(xk + αpk) ≤ φ(xk) + c1α∇φTk pk, (3.2)

for some constant c1 ∈ (0, 1). This condition assure a sufficient decrease in the objective
function φ.

The Armijo condition is not enough by itself because it is satisfied for all sufficiently
small values of α. To avoid unacceptably short steps we required the curvature condition,
which requires αk to satisfy:

∇φ(xk + αkpk)
Tpk ≤ c2∇φTk pk, (3.3)
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for some constant c2 ∈ (c1, 1).
The Armijo and curvature condition collectively are know as the Wolfe conditions :

φ(xk + αpk) ≤ φ(xk) + c1α∇φTk pk,

∇φ(xk + αkpk)
Tpk ≤ c2∇φTk pk,

(3.4)

with 0 < c1 < c2 < 1.
Thank to Zoutendijk theorem the choice of α that verify the Wolfe condition gua-

rantee the convergence of line search method. The Wolfe condition are expansive to
verify and, usually, the line search algorithms chooses its candidate step lengths using
the backtracking approach:
Armijo with Backtracking Algorithm:

Choose ᾱ > 0, ρ ∈ (0, 1), c ∈ (0, 1); Set α← ᾱ;
repeat until φ(xk + αpk) ≤ φ(xk) + cα∇φTk pk

α← ρα;
end(repeat)

Terminate with αk = α.

In the trust region strategy, we use the information about the objective function φ to
built a model function mk whose beavior, near the current iterate xk, is similar to that
of φ. The model mk may not be a good approximation of φ far from xk, so we restrict
the search of a minimizer to some region around xk. In other word, we search the step
p by approximately solving:

min
p
mk(xk + p), where xk + p lies inside the trust region. (3.5)

If the candidate solution does not produce a significant decrease in φ the trust region is
too large, so we shrink it and re-solve 3.1. Usually, the trust region is a ball defined by
||p||2 ≤ ∆ where ∆ > 0 is called trust region radius and the model mk is defined to be a
quadratic function of the form:

mk(xk + p) = φk + pT∇φk +
1

2
pTBkp,

where φk and ∇φk are the function and the gradient of the function calculated in xk,
while, Bk is the Hessian of φ or some approximation of it.
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The general strategy of trust region method is:
Trust region strategy:

at the iterate k:

• we define the model mk;

• we define the trust region, choosing the trust region radius ∆;

• we find the solution pk of the problem:

min
p
mk(p),

with the constraint ||p|| ≤ ∆;

• if pk produce a significant decrease of φ(xk), we set xk+1 = xk + pk and ∆ could
be increased or kept constant. Otherwise, if pk is unaccettable, we reduce ∆ and
resolve again the previous problem.

3.2 Gradient Method

Due to the possible huge size of the problem, first-order algorithms exploiting only the
gradient of the φ are very appealing approaches. Then, the Steepest Descend or Gradient
method could be a good choice. The search direction for the Gradient method is:

pk = −∇φk

and using an inexact line search strategies a general scheme for the Gradient method
will be:

Algorithm 3.2.1 (Gradient method).
Set x0 ∈ Rn, β, σ ∈ (0, 1) and α.
for k = 0, 1, . . .

dk = −α ∗ ∇φ;
ηk = 1;

WHILE
(
φ(xk + ηkdk) > φ(xk) + σηk∇φ(xk)

TdK
)
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ηk = βηk; (backtracking step)

END

xk+1 = xk + ηkdk;

END

3.3 Coniugate Gradient Methods

We chose the Coniugate Gradient methods for two reason: first, they are among the
most useful techniques for solving large linear systems of equations, and second, they
can be adapted to solve nonlinear optimization problems.

The Linear Conjugate Gradient method was proposed by Hestenes and Stiefel in the
1950s as an iterative method for solving linear systems with positive definite coefficient
matrices.

The first Nonlinear Conjugate Gradient method was introduced by Fletcher and
Reeves in the 1960s. It is one of the earliest known techniques for solving large-scale
nonlinear optimization problems.

3.3.1 The Linear Conjugate Gradient Method

The Conjugate Gradient method is an iterative method for solving a linear system of
equations:

Ax = b,

where A is an n × n symmetric positive definite matrix. The problem can be stated
equivalently as the following minimization problem:

minϕ(x) =
1

2
xTAx− bTx.

Indeed we have:

∇ϕ(x) = Ax− b

This equivalence will allow us to interpret the Conjugate Gradient method either as an
algorithm for solving linear systems or as a technique for minimizing convex quadratic
functions.
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Definition 3.3.1 (A-conjugate Direction). Let A be a n×n symmetric positive definite
matrix. u and v are said to be conjugate with respect to A or A-conjugate if:

uTAv = 0

We consider the following conjugate direction method. Given a startinh point x0 ∈ R
and a set of A-conjugate direction {p0, p1, . . . , pn−1}, let us generate the sequence {xk}:

xk+1 = xk + αkpk,

where:

αk = arg min
α≥0

ϕ(xk + αpk).

Let impose:
d

dα
ϕ(xk + αpk)|α=αk = 0,

and we obtain:

0 = pTk (A(xk + αkpk)− b)

= pTkAxk + αkp
T
kApk − pTk c

= αkp
T
kApk + pTk∇ϕ(xk).

(3.6)

and therefore:

αk = −∇ϕ
T (xk)pk
pTkApk

. (3.7)

With this we have the following result.

Theorem 3.3.1. Let A be a n×n symmetric positive definite matrix, let {p0, p1, . . . , pn−1}
be a system of n directions A-conjugate and let be:

ϕ(x) =
1

2
xTAx− bTx+ e, b ∈ Rn, e ∈ R.

For any starting point x0 ∈ Rn, let define the sequence xk+1 = xk +αkpk with αk defined
by 3.7.

Then exist m ≤ n− 1 such that xm+1 is the minimum of ϕ.
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Without numerical errors, the conjugate direction method ends in at most n step,
but it requires to known n directions mutually conjugate.

The Conjugate Gradient method is a conjugate direction method with a very special
property: In generating its set of conjugate vectors, it can compute a new vector pk+1

by using only the previous vector pk. It does not need to know all the previous elements
p0, p1, . . . , pk−1 of the conjugate set; pk+1 is automatically conjugate to these vectors. This
remarkable property implies that the method requires little storage and computation.

In the conjugate gradient method, each direction pk is chosen to be a linear combi-
nation of the negative residual:

−rk+1 = b− Axk+1 = −∇ϕ(xk+1),

and the previous direction pk:

pk+1 = −rk+1 + βk+1pk, (3.8)

where the scalar βk+1 is to be determined by the requirement that pk and pk+1 must
be conjugate with the respect to A. By premultiplying 3.8 by pTkA and imposing the
condition pTkApk+1 = 0, we find that

βk+1 =
rTk+1Apk

pTkApk
. (3.9)

we can obtain, also, rk+1:

rk+1 = ∇ϕ(xk+1) = Axk+1 − b = A(xk + αkpk)− b = Axk + αkApk − b,

and therefore:
rk+1 = rk + αkApk. (3.10)

Now lets multiply by pk both members of 3.10 and we obtain:

rTk+1pk = rTk pk + αkp
T
kApk = 0,

where the last equality follow from 3.7. Therefore rk+1 and pk are orthogonal.
Now let’s multiply by gk the equality:

pk+1 = −rk+1 + βk+1pk,



3.3 Coniugate Gradient Methods 3. Optimization Alghoritms

and we obtain:
rTk+1pk+1 = −rTk+1rk+1 + βk+1r

T
k+1pk

where βk+1r
T
k+1pk = 0 (rk+1 and pk are orthogonal) and therefore:

rTk+1pk+1 = −||rk+1||2, (3.11)

then rTk pk < 0 i.e. pk is a descent direction.
For the Conjugate Gradient method we have the following convergence theorem.

Theorem 3.3.2. The coniugate gradient method calculate in at most n steps the mini-
mum of:

ϕ(x) =
1

2
xTAx− bTx+ e, A > 0.

In particular exist m ≤ n− 1 such that for i = 1, 2, . . . ,m we have:

rTi rj = 0, pTi Apj = 0, j = 0, 1, . . . , i− 1

and rm+1 = 0.

Remark 3.3.1. Let’s consider:

rTk+1 = rTk+1(rk+1 − rk) = rTk+1rk+1 − rTk+1rk,

from this, for the previous theorem, we obtain:

rTk+1(rk+1 − rk) = ||rk+1||2. (3.12)

Furthermore from 3.10 we obtain:

Apk =
rk+1 − rk

αk
, (3.13)

and therefore from 3.7 and 3.9 and using 3.11, 3.12 and 3.13 we can rewrite αk and βk+1

as:
αk =

||rk||2

pTkApk
, βk+1 =

||rk+1||2

||rk||2
. (3.14)

Now we can outline the Linear Conjugate Gradient method:
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Algorithm 3.3.1 (Linear Conjugate Gradient method).

chosen x0 ∈ Rn and tol ≥ 0,

set r0 = Ax0 − b, p0 = −r0, and k = 0.

WHILE
(
||rk||2 ≥ 0

)
αk =

||rk||2

pTkApk
,

xk+1 = xk + αkpk,

rk+1 = rk + αkApk,

βk+1 =
||rk+1||2

||rk||2
,

pk+1 = −rk+1 + βk+1pk,

k = k + 1.

END

3.3.2 Nonlinear Conjugate Gradient Methods

We have noted that Conjugate Gradient method, can be viewed as a minimization
algorithm for the convex function:

minϕ(x) =
1

2
xTAx− bTx.

Now we show how we can adapt the approach to minimize general nonlinear functions φ

Fletcher and Reeves showed how to extend the Conjugate Gradient method to non-
linear functions by making two simple changes in Algorithm 3.3.1. First, in place of
the formula 3.7 for the step length αk (which minimizes ϕ along the search direction
pk ), we need to perform a line search that identifies an approximate minimum of the
nonlinear function φ along pk. Second, the residual r, which is simply the gradient of
ϕ in Algorithm 3.3.1, must be replaced by the gradient of the nonlinear objective φ .
These changes give rise to the following algorithm for nonlinear optimization.
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Algorithm 3.3.2 (Fletcher-Reeves (FR)).
Given x0;
Evaluate φ0 = φ(x0), ∇φ0 = ∇φ(x0);

Set p0 = −∇φ0, k = 0;

WHILE (∇φk 6= 0)

Compute αk and set xk+1 = xk + αkpk;

Evaluate ∇φk+1;

βFRk+1 =
∇φTk+1∇φk+1

∇φTk∇fk
; (3.15)

pk+1 = −∇φk+1 + βFRk+1pk; (3.16)

k = k + 1; (3.17)

END

If we choose φ to be a strongly convex quadratic function and αk to be the exact
minimizer, this algorithm reduces to the Linear Conjugate Gradient method.

We need to be more precise about the choice of line search parameter αk. Because of
the second term in 3.16 the search direction pk may fail to be a descent direction unless
αk satisfies certain condition.

By taking the inner product of 3.16 with the gradient vector ∇φk, we obtain:

∇φTk pk = −||∇φk||2 + βFRk ∇φTk pk−1. (3.18)

If the line search is exact, so that αk−1 is a local minimizer of φ along the direction
pk−1, we have that ∇φTk pk−1 = 0. In this case we have from 3.18 that ∇φTk pk−1 < 0, then
pk is a descent direction. If the search line is not exact, however, the second term in
3.18 may dominate the first term, and we may have ∇φTk pk−1 > 0, implying tha pk is
actually a direction of ascent. We can avoid this situation by requiring the step length
αk to satisfy the strong Wolfe conditions:

φ(xk + αkpk) ≤ φ(xk) + c1αk∇φTk pk,

|∇φ(xk + αkpk)
Tpk| ≤ −c2∇φTk pk,

(3.19)
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where 0 < c1 < c2 <
1
2
. We can show that conditions 3.19 implies that 3.18 is negative,

therefore, we conclude that any line search procedure that yields an αk satisfying 3.19
will ensure that all direction pk are descent direction for the function φ.

Unlike the Linear Conjugate Gradient method, whose convergence properties are well
understood and which is known to be optimal as described above, Nonlinear Conjugate
Gradient methods possess surprising, sometimes bizarre, convergence properties. We
now present a few of the main results known for the Fletcher-Reeves.

For this purpose we make the following (nonrestrictive) assumptions on the objective
function.

1. The level st L := {x|φ(x) ≤ φ(x0)} is bounded.

2. In some open neighborhood N of L, the objective function φ is Lipschitz continuo-
sly differentiable.

Under this assumption we can build a global convergence result for the FR method:

Theorem 3.3.3 (Al-Baali). Suppose that the previous assumption hold and Algorithm
3.3.2 is implemented with a line search that satisfied the strong Wolfe conditions 3.19,
with 0 < c1 < c2 <

1
2
. Then:

lim inf
k→∞

||∇φk|| = 0. (3.20)

In general Al-Baali show that if exist αk satisfying the strong Wolfe condition, then
for some c > 0 we have:

cos θk ≥ c
||∇φk||
||pk||

, (3.21)

where

cos θk =
−∇φTk pk
||∇φk||||pk||

. (3.22)

Therefore substituting 3.22 in 3.21, we obtain:

∇φTk pk ≤ −c||∇φk||2,

consequently pk is a descent direction for φ in xk.
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Despite the good convergence property Fletcher-Reeves method has a weakness. Sup-
pose that pk is a poor search direction, in the sense that it makes an angle of nearly 90◦

with −∇φk, that is, cos θk ≈ 0. From this we can show that:

||∇φk|| � ||pk||.

Since pk is almost orthogonal to the gradient, it is likely that the step from xk to xk+1 is
tiny, that is, xk+1 ≈ xk. If so, we have ∇φk+1 ≈ ∇φk, and therefore:

βFRk+1 ≈ 1,

by 3.15. Finally using this approximation together with ||∇φk+1|| ≈ ||∇φk|| � ||pk|| in
3.16, we obtain:

pk+1 ≈ pk,

so the new search direction will improve little (if at all) on the previous one. It follows
that if the condition cos θk ≈ 0 holds at some iteration k and if the subsequent step is
small, a long sequence of unproductive iterates will follow.

An important variant, proposed by Polyak, Polak and Ribiere, defines this parameter
as follows:

βPPRk+1 =
∇φTk+1(∇φk+1 −∇φk)

||∇φk||2
(3.23)

The algorithm, therefore, become:

Algorithm 3.3.3 (Polyak-Polak-Ribiere (PPR)).
Given x0;
Evaluate φ0 = φ(x0), ∇φ0 = ∇φ(x0);

Set p0 = −∇φ0, k = 0;

WHILE (∇φk 6= 0)

Compute αk and set xk+1 = xk + αkpk;

Evaluate ∇φk+1;

βPPRk+1 =
∇φTk+1(∇φk+1 −∇φk)

||∇φk||2

pk+1 = −∇φk+1 + βPPRk+1 pk; (3.24)
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k = k + 1;

END

It is identical to Algorithm 3.3.2 when φ is a strongly convex quadratic function and
the line search is exact, since by Theorem 3.3.2 the gradients are mutually orthogonal,
and so βPPRk+1 = βFRk+1.

When applied to general nonlinear functions with inexact line searches, however, the
behavior of the two algorithms differs markedly. Numerical experience indicates that
Algorithm 3.3.3 tends to be the more robust and efficient of the two.

Remark 3.3.2. If the search direction pk satisfies cos θk ≈ 0 for some k, and if the
subsequent step is small, it follow by sobstituting ∇φk ≈ ∇φk+1 into 3.23 that βPPRk+1 ≈ 0.

From the formula 3.24, we find that the new search direction pk+1 will be close to the
steepest descent direction −∇φk+1, and cos θk+1 will be close to 1. Therefore, Algorithm
PPR essentially perform a restart after it encounters a bad direction.

The PPR method contrary to FR method, is very efficient but have some difficullty
of convergence in the general case.

Suppose φ is strict convex, then PPR method with exact line search converge.

Proposition 3.3.1. Let be φ : Rn → R twice differentiable, with continuos derivate,
in an open convex set D containing the compact level set L (i.e. {x|φ(x) ≤ φ(x0)}) .
Suppose, furthermore, that exist 0 < δ1 ≤ δ2 such that:

δ1||h||2 ≤ hT∇2φ(x)h ≤ δ2||h||2, ∀x ∈ L, ∀h ∈ Rn.

let be {xk}k∈N the sequence generated by PPR method with ∇φk 6= 0 and

αk = arg min
α≥0

φ(xk + αpk).

Then the sequence {xk} converge to the minimum of φ in Rn.

In general case Powell, in 1981, showed that the PPR method can cycle infinitely
without approaching a solution point. to guarantee convergence in the general case we
can use inexact line search or modify βk+1.
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The following proposition show some convergence condition that can be see as requi-
rement for the line search.

Proposition 3.3.2. Let be φ : Rn → R Lipschitz continuosly differentiable in an open
convex set D containing the compact level set L. Let be {xk}k∈N the sequence generated
by PPR method with ∇φk 6= 0 and αk that satisfy:

• xk ∈ L;

• limk→∞
|∇φTk pk|
||pk||

= 0;

• limk→∞ ||αkpk|| = 0.

Then exist an accumulation point of {xk} that is a stationary point for φ.

To satisfy the requirement for the previous proposition we can modify the Armijo
algorithm with backtraking:

Algorithm 3.3.4 (Modified Armijo).
Choose 0 < ρ1 < ρ2, γ ∈ (0, 1), δ ∈ [0, 1), θ ∈ (0, 1);

set τk =
|∇φTk pk|
||pk||2

and chose ∆k ∈ [ρ1τk, ρ2τk],

evaluate αk = max{j=0,1,...}{θj∆k} such that:

xk+1 = xk + αkpk

pk+1 = −∇φk+1 + βk+1pk

satisfy

• φ(xk+1) ≤ φ(xk) + γαk∇φTk pk,

• ∇φTk+1pk+1 ≤ −δ||∇φk+1||2.

Now using βPPRk+1 with the choice of αk with the previous alghorithm we assure the
convergence.

Proposition 3.3.3. Let be φ : Rn → R Lipschitz continuosly differentiable in an open
convex set D containing the compact level set L. Let be {xk}k∈N the sequence generated
by PPR method with ∇φk 6= 0 and αk calculated using the Armijo modified Algorithm.
Then exist an accumulation point of {xk} that is a stationary point for φ.
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We show, also, a version of the PPR method that converge thanks to the change of
βPPRk+1 . Powell, demonstrate the following result:

Proposition 3.3.4. Let be φ : Rn → R Lipschitz continuosly differentiable in an open
convex set D containing the compact level set L. Let be {xk}k∈N the sequence generated
by PPR method with β+

k+1 = max{0, βPPRk+1 }, ∇fk 6= 0 and αk satisfy:

• the Zoutendijk condition:

∞∑
k=0

||∇φk||2 cos2 θk <∞;

• the sufficient descent condition

∇φTk pk ≤ −c||∇k||2

for some c > 0.

Then exist an accumulation point of {xk} that is a stationary point for φ.

If for all iteration of PPR method was 0 ≤ ∇φTk+1∇φK ≤ ||∇φk+1||2, then would
be valid the same demonstration made for the convergence of the FR method. This
condition, however, isn’t always satisfyed, but, is equal to 0 ≤ βPPRk+1 ≤ βFRk+1. So we can
consider an Hybrid Conjugate Gradient Method with:

βk+1 =

βPPRk+1 if 0 ≤ βPPRk+1 ≤ βFRk+1

βFRk+1 otherwise.
(3.25)

This method was proposed by Touati-Ahmed and Storey in 1990.

Remark 3.3.3. If the algorithm generate xk ≈ xk+1, then, βPPRk+1 ≈ 0 and βFRk+1 ≈ 1,

therefore βk+1 will be updated with the PPR method and not with the FR one, that would
generate tiny step. In this way we obtain the better from both algorithm:

• convergence from FR method;

• efficiency from PPR method.
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The Hybrid Conjugate Gradient Method has global convergence, indipendently of
the fact that αk would be find with exact or inexact line search. A more efficient method
is given by:

βk+1 = max{0,min{βFRk+1, β
PPR
k+1 }}

that assure βk+1 ≥ 0.
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Numerical Results

In this chapter we are going to present and comment the results of the experiments for
breast imaging reconstruction, that is, the solution of the non-linear least square problem
2.8.

In our test problems for a simulated breast imaging reconstruction we used one simu-
leted three-dimesional phantom object, of size 31× 31× 7 and 65× 65× 7, made of four
ellipses consisting of a tissue mixture with varying precentages of glandur and adipose
tissue, while the background is made of a mixture of 50% adipose and 50% glandular
tissue. We can see an example of the central slice in Figure 4.1.

We, first, used the phantom of size 31 × 31 × 7 to search the optimal regularization
parameter λ. We have tested, for both Total Variation regularization (TV) and 1-Norm
regularization (1N), two different values of the noise: η = 10−3 and η = 5 · 10−4.

For these tests we chose to consider 20 values of λ, from 0 to 0.4 for TV and from 0

to 1 for 1N uniformly, and to use these two stop conditions:

1. Iteration (k) ≤ 2000;

2. ||xk−xk−1||fro
||xk−1||fro

< 10−n;

with n = 5 for TV regularization and n = 4 for 1N regularization.
We, then, chose λ using two criteria. As first criterion, the parameter that minimize

the relative error:
||xex − x||
||xex||

.

43
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Figura 4.1: On the top left: exact adipose tissue; on the top right: exact glandular
tissue; on the bottom left: reconstructed adipose tissue with Gradient method without
regularization; on the bottom right: reconstructed glandular tissue with Hybrid method
without regularization;

We could use this criterion only for TV regularization because we obtain reliable graphics
with a clear minimum, as we can see in Figure 4.2.
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Figura 4.2: On the left: relative error vary depending on λ for Hybrid method with TV and

η = 5 · 10−4; On the right: relative error vary depending on λ for Hybrid method with TV and

η = 1 · 10−3

As second criterion, for the 1N regularization, the parameter that obtain the better
image. Indeed, due to the semiconvergence of the 1N regularization we obtain unreliable
graphics.
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Figura 4.3: On the left: relative error vary depending on λ for Hybrid method with 1N and

η = 5 · 10−4; On the right: relative error vary depending on λ for Hybrid method with 1N and

η = 1 · 10−3

After these tests we found the parameter λ for all, method and noise, and the results
are summarised in the following table:
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Method Regularization Noise η λ

Gradient TV 5 · 10−4 0.1

Gradient TV 1 · 10−3 0.2

Gradient 1N 5 · 10−4 0.4

Gradient 1N 1 · 10−3 0.5

Hybrid Conjugate Gradient TV 5 · 10−4 0.1

Hybrid Conjugate Gradient TV 1 · 10−3 0.2

Hybrid Conjugate Gradient 1N 5 · 10−4 0.4

Hybrid Conjugate Gradient 1N 1 · 10−3 0.5

We can see that, TV regularization requires a lower parameter λ and therefore it
obtains a closer solution to the real solution. Furthermore, as expected, we need a
greater values of λ if we set a greater values for the noise.

Once we’ve set the parameter λ, we started the simulations of the reconstructions,
first with TV regularization and then with 1N regularization, for both Gradient and
Hybrid Conjugate Gradient algorithms, previosly described in Section 3.2 and 3.3.

4.1 Numerical Results for Total Variation Regulariza-

tion

In this section we’ll comment the result obtained using TV regularization. We begin the
analysis considering the problem with a level of noise η = 5 · 10−4

In figure 4.4 we can see that both methods obtain cleaner and more precise images
using the TV regularization than the same methods without regularization. Is it enough
to look at these images to understand the usefulness and superiority of methods that use
TV regularization. Therefore, from here on out, we analyse only the two methods with
the regularization.
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Figura 4.4: On the left: reconstructed image with Gradient method with TV and η = 5 · 10−4;

On the right: reconstructed image with Hybrid method with TV and η = 5 · 10−4
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Figura 4.5: On the left: relative error vary depending on iteration for Hybrid and Gradient

method with TV, η = 5 · 10−4 and dimension 31 × 31 × 7; on the right: relative error vary

depending on iteration for Hybrid and Gradient method with TV, η = 5 · 10−4 and dimension

65× 65× 7.

Looking at the graphics in Figure 4.5 we note that Hybrid method obtains the best
results, regarding the relative error, in the shortest time. Indeed, in the resolution of the
test problem of dimension 31 × 31 × 7, the Hybrid method obtains a relative error of
5.14 ·10−3 doing 151 iteration, against a relative error of 6.53 ·10−3 with 1114 iteration of
the Gradient method. Also in the test problem of greater dimension the Hybrid method
obtains better results than the Gradient one, not only regarding the relative error and
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time but also in the precision of the reconstruction.
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Figura 4.6: On the left: graphics of the weight for adipose tissue reconstructed with Hybrid

method with TV and η = 5·10−4 and dimension 65×65×7; On the right: graphics of the weight

of adipose tissue reconstructed with Gradient method with TV and η = 5 · 10−4 65× 65× 7

Indeed, in Figure 4.6 we can see the graphics of the weights for adipose tissue for both
methods. In black we have the exact weights while, in green the reconstructed weights.
We can note that, the weights reconstructed with Hybrid method are more precise. The
green columns of the Hybrid method are closer to the black line, than the green columns
of the Gradient method. Both methods produce, in the first and last slice, a sort of
shadow of the solutions of the inner slices. The Hybrid method is the best one, also, in
this aspect. The shadow artifacts produced by the Hybrid method are more limited than
those produced by Gradient method. These shadows, anyway, are very limited for both
methods and in real breast imaging reconstruction it is merged with the background.

We resume the main results for Gradient and Hybrid for η = 5 · 10−4 in this table.

Method Dimension Relative Error Time Iteration

Gradient 31× 31× 7 6.53 · 10−3 1.23 · 103 1114

Hybrid 31× 31× 7 5.14 · 10−3 1.63 · 102 151

Gradient 65× 65× 7 1.75 · 10−2 3.33 · 104 851

Hybrid 65× 65× 7 7.85 · 10−3 9.56 · 103 248

Now, we’ll analyse the results obtained with the higher value of the noise η = 10−3.
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Figura 4.7: On the left: reconstructed image with Gradient method with TV and η = 1 · 10−3;

on the right: reconstructed image with Hybrid method with TV and η = 1 · 10−3

Looking at the images in Figure 4.7 we can deduce that, the two methods work in a
linear way regarding the growth of the noise. The Hybrid method produces, again, the
cleanest image and, we’ll see, in the shortest time. The only difference, trivially, is that
the images are noiser than before.
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Figura 4.8: On the left: relative error vary depending on iteration for Hybrid and Gradient

method with TV, η = 1 · 10−3 and dimension 31 × 31 × 7; on the right: relative error vary

depending on iteration for Hybrid and Gradient method with TV, η = 1 · 10−3 and dimension

65× 65× 7.

As expected the graphics of Figure 4.8 do not differ too much from the graphics in
Figure 4.5. More interesting are the graphics of the weight.
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Figura 4.9: On the left: graphics of the weight for adipose tissue reconstructed with Hybrid

method with TV and η = 10−3 and dimension 65× 65× 7; On the right: graphics of the weight

of adipose tissue reconstructed with Gradient method with TV and η = 10−3 and dimension

65× 65× 7

In Figure 4.9 we can note that, the algorithms can’t eliminate as much noise as before.
Indeed, some of the weights seems to be distibuted on the background. This is the effect
of the higher level of noise. Also the shadow artifacts are more intense with higher values
of η.

As before, we resume the main results in the following table:

Method Dimension Relative Error Time Iteration

Gradient 31× 31× 7 1.02 · 10−2 9.06 · 102 821

Hybrid 31× 31× 7 8.93 · 10−3 1.18 · 102 111

Gradient 65× 65× 7 1.87 · 10−2 3.03 · 104 779

Hybrid 65× 65× 7 1.41 · 10−2 8.72 · 103 218

We can conclude that, using TV regularization, we obtain, with both algorithms,
better results, regarding both the clearness of the images and the relative error, than
using the same methods without regularization. Furthermore, the Hybrid method obtains
better results than the Gradient method for both values of noise. The Gradient method,
however, seems to bear the growth of the noise, at least for greater dimension, better
than the Hybrid one. The relative error of the Gradient method, indeed, goes from
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1.75 ·10−2 to 1.87 ·10−2, while, for the Hybrid method goes from 7.85 ·10−3 to 1.41 ·10−2.

4.2 Numerical results for 1-Norm Regularization

We begin to comment, as in the previous section, the results obtained with noise η =

5 · 10−4.

Figura 4.10: On the left: reconstructed image with Gradient method with 1N and η = 5 ·10−4;

On the right: reconstructed image with Hybrid method with 1N and η = 5 · 10−4

Looking at the Figure 4.10 we can note some artifacts all around the ellipses. These
artifacts are typical of this regularization for breast imaging reconstruction problem,
indeed, we’ve found them in all of our test. Furthermore, comparing the colorbar of this
Figure with the Figure 4.4, we note that, the reconstructions with 1N are less precise
than the one with TV. The reconstructions are also less precise than the one obtained
without regularization, but, the images are clearer. This type of regularization has an
effect of deblurring on the reconstructed images.

The Gradient method results slower than the Hybrid one, also for the 1N regulari-
zation. From Figure 4.11 seems that, both methods end much earlier than those using
TV regulariziation. But, we’ve to recall that, for algorithms using this type of regulari-
zation we’ve imposed an higher stopping tollerance due to the semiconvergence of these
methods.
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Figura 4.11: On the left: relative error vary depending on iteration for Hybrid and Gradient

method with 1N, η = 5 · 10−4 and dimension 31 × 31 × 7; on the right: relative error vary

depending on iteration for Hybrid and Gradient method with 1N, η = 5 · 10−4 and dimension

65× 65× 7.
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Figura 4.12: On the left: graphics of the weight for adipose tissue reconstructed with Hybrid

method with 1N and η = 5 · 10−4 and dimension 65 × 65 × 7; On the right: graphics of the

weight of adipose tissue reconstructed with Gradient method with 1N and η = 5 · 10−4 and

dimension 65× 65× 7

Looking at the weights in Figure 4.12 we clearly note that the 1-Norm regularization
doesn’t remove the noise as the TV regularization. Indeed, we can see the noise all along
the slices also for small values of η. Furthermore, the shadow artifacts in the first and last
slices are more intense than those obtained with TV. There aren’t important difference
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between the two algorithms, the two reconstructions are more or less the same.

As for the TV regularization we now summarise the main results in the following
table:

Method Dimension Relative Error Time Iteration

Gradient 31× 31× 7 2.79 · 10−2 1.63 · 102 150

Hybrid 31× 31× 7 2.65 · 10−2 3.41 · 101 32

Gradient 65× 65× 7 4.33 · 10−2 2.73 · 103 70

Hybrid 65× 65× 7 4.34 · 10−2 1.13 · 103 30

This table confirms what we said before: the Gradient method is slower than the
Hybrid one for both dimensions of the test problems; the two recostructions are very
close, in fact the relative errors are similar. For the higher dimension, however, we can
note that, for the first time, Hybrid method obtains a relative error greater than the one
obtained by the Gradient method. This happen due to the semiconvergence typical of
this regularization. The semiconvergence is faster in the Hybrid method and our stop
criteria aren’t always enough to prevent it.

We, now, analyse the results for η = 10−3.

Figura 4.13: On the left: reconstructed image with Gradient method with 1N and η = 1 ·10−3;

on the right: reconstructed image with Hybrid method with 1N and η = 1 · 10−3

The two images in Figure 4.13 are, obviously, noiser and the artifacts around the
ellipses are more intense. The two reconstructions seem to be more or less the same, but
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they hide some important differences that mark the two algorithms. Let’s analyse the
error graphics for more details.
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Figura 4.14: On the left: relative error vary depending on iteration for Hybrid and Gradient

method with 1N, η = 1 · 10−3 and dimension 31 × 31 × 7; on the right: relative error vary

depending on iteration for Hybrid and Gradient method with 1N, η = 1 · 10−3 and dimension

65× 65× 7.

In Figure 4.14 we can see the first reason why Hybrid method obtains the worst
results, regarding relative error, with 1N regularization. After about 20 − 25 iterations
Hybrid algorithm goes against an high effect of semiconvergence, while, the Gradient
one, thanks to its slowness, ends before the semiconvergence. The Hybrid method would
be the better one, if we can stop it before the semiconvergence. Therefore, one of the
future upgrade of this method could be a better stop criterion.

Analysing the graphics in Figure 4.15 painstakingly, we can note that, the reconstruc-
tions with Hybrid method are, generally, less noisy than those obtained with Gradient
method. They are, however, less precise, regarding the recontruction of the ellipses. This
is the second reason why Hybrid method has higher relative error. Indeed, an error in
the reconstruction of the ellipses has a greater impact on the relative error than an error
in the reconstruction of the background.

Lastly, we resume the main results in the usual table.
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Figura 4.15: On the left: graphics of the weight for adipose tissue reconstructed with Hybrid

method with 1N and η = 10−3 and dimension 65× 65× 7; On the right: graphics of the weight

of adipose tissue reconstructed with Gradient method with 1N and η = 10−3 and dimension

65× 65× 7

Method Dimension Relative Error Time Iteration

Gradient 31× 31× 7 3.11 · 10−2 2.10 · 102 193

Hybrid 31× 31× 7 3.33 · 10−2 3.66 · 101 34

Gradient 65× 65× 7 4.44 · 10−2 3.17 · 103 83

Hybrid 65× 65× 7 4.57 · 10−2 9.40 · 102 23

The Hybrid method obtains the worst results, regarding the relative error, for both
dimensions. But, this doesn’t mean that Hybrid method is worse than Gradient method.
We, always, have to remember that, relative error, for these types of problem, is often
not too reliable. Indeed, looking at the reconstructed images in Figure 4.13, one can’t
say that, one image is, clearly, better than the other. The only thing we can say is that,
Hybrid method works better with TV regularization than with the 1N regularization.
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4.3 Conclusions

In this section we’ll resume and compare all the results we have obtained.
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Figura 4.16: On the top left: central row of the central slice of the reconstruction with TV
and η = 5 · 10−4 ; on the top right: central row of the central slice of the reconstruction
with TV and η = 10−3 ; on the bottom left: central row of the central slice of the
reconstruction with 1N and η = 5 · 10−4 ; on the bottom right: central row of the central
slice of the reconstruction with 1N and η = 10−3 ;

In Figure 4.16 we can see the main differences between the two tested algorithms
and the two regularizations. Using TV regularization, Hybrid method obtains the best
reconstruction, especially for lower level of noise. The main property of TV regularization
is its effect of denoise. We can note, indeed, that the graphics have very few fluctuations.
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On the contrary, looking at the graphics for 1N regularization, we have strong fluctuations
and the recontructions are less precise.

Now, we resume all numerical results in the following table and then we’ll try to draw
some conclusions.

Method Regularization Noise Dimension Relative Error Time Iteration

Gradient Total Variation 5 · 10−4 31× 31× 7 6.53 · 10−3 1.23 · 103 1114

Hybrid Total Variation 5 · 10−4 31× 31× 7 5.14 · 10−3 1.63 · 102 151

Gradient Total Variation 5 · 10−4 65× 65× 7 1.75 · 10−2 3.33 · 104 851

Hybrid Total Variation 5 · 10−4 65× 65× 7 7.85 · 10−3 9.56 · 103 248

Gradient Total Variation 10−3 31× 31× 7 1.02 · 10−2 9.06 · 102 821

Hybrid Total Variation 10−3 31× 31× 7 8.93 · 10−3 1.18 · 102 111

Gradient Total Variation 10−3 65× 65× 7 1.87 · 10−2 3.03 · 104 779

Hybrid Total Variation 10−3 65× 65× 7 1.41 · 10−2 8.72 · 103 218

Gradient 1-Norm 5 · 10−4 31× 31× 7 2.79 · 10−2 1.63 · 102 150

Hybrid 1-Norm 5 · 10−4 31× 31× 7 2.65 · 10−2 3.41 · 101 32

Gradient 1-Norm 5 · 10−4 65× 65× 7 4.33 · 10−2 2.73 · 103 70

Hybrid 1-Norm 5 · 10−4 65× 65× 7 4.34 · 10−2 1.13 · 103 30

Gradient 1-Norm 10−3 31× 31× 7 3.11 · 10−2 2.10 · 102 193

Hybrid 1-Norm 10−3 31× 31× 7 3.33 · 10−2 3.66 · 101 34

Gradient 1-Norm 10−3 65× 65× 7 4.44 · 10−2 3.17 · 103 83

Hybrid 1-Norm 10−3 65× 65× 7 4.57 · 10−2 9.40 · 102 23

Comparing the results we convince ourselves that the methods using TV regulari-
zation obtain the most precise recontructions. The algorithms using 1N regularization
seem to be faster, but only due to the semiconvergence effect. 1N seems to lose on every
level against TV, but it has an effect of deblurring on the reconstructions. Therefore
this type of regularization could have interesting applications, but it needs some more
research, first of all a better stop criterion that prevent the semiconvergence effect.

If we focus ourselves on the algorithms, especially regarding those using TV regulari-
zation (the most reliable), we note the superiority of Hybrid method for both speed and
precision, but, looking at the graphics in Figure 4.16, we note that Gradient method for
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higher values of the noise approaches the results obtained by Hybrid method. Therefore,
we can suppose that, it could became the best algorithm, regarding the precision, for
even higher values of η. Furthermore, we can, also, speed up the Gradient method using,
for example, the adaptive rules for the choice of the step-lenght introduced by the work
of Barzilai and Borwein.

Therefore, in view of the results we’ve obtained, we can claim that the best method
is the Hybrid one, but we care to remember the potential of the Gradient method.

In conclusion, we want to give some ideas for the future researchs. We said that,
TV regularization has an effect of denoising while, 1N regularization has an effect of
deblurring. Therefore, why not use a method combining the two regularizations? We
think that the premises are very promising.
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