Development of a thermochemical/biological process to convert waste biomass into new resources

Pambieri, Giampiero (2018) Development of a thermochemical/biological process to convert waste biomass into new resources. [Laurea magistrale], Università di Bologna, Corso di Studio in Analisi e gestione dell'ambiente [LM-DM270] - Ravenna, Documento ad accesso riservato.
Documenti full-text disponibili:
[img] Documento PDF (Thesis)
Full-text non accessibile fino al 6 Marzo 2023.
Disponibile con Licenza: Creative Commons: Attribuzione - Non commerciale - Non opere derivate 3.0 (CC BY-NC-ND 3.0)

Download (2MB) | Contatta l'autore


The increasing attention to environmental issues of recent times encourages us to find new methods for the production of energy from renewable sources, and to improve existing ones, increasing their energy yield. Most of the waste and agricultural residues, with a high content of lignin and non-hydrolysable polymers, cannot be effectively transformed into biofuels with existing technology. The purpose of the study was to develop a new thermochemical/ biological process (named Py-AD) for the valorization of scarcely biodegradable substances. A complete continuous prototype was design built and run for 1 year. This consists into a slow pyrolysis system coupled with two sequential digesters and showed to produce a clean pyrobiogas (a biogas with significant amount of C2-C3 hydrocarbons and residual CO/H2), biochar and bio-oil. Py-AD yielded 31.7% w/w biochar 32.5% w/w oil and 24.8% w/w pyrobiogas. The oil condensate obtained was fractionated in its aqueous and organic fraction (87% and 13% respectively). Subsequently, the anaerobic digestion of aqueous fraction was tested in a UASB reactor, for 180 days, in increasing organic loading rate (OLR). The maximum convertible concentration without undergoing instability phenomena and with complete degradation of pyrogenic chemicals was 1.25 gCOD L digester-1 d-1. The final yield of biomethane was equal to 40% of the theoretical yield and with a noticeable additional production equal to 20% of volatile fatty acids. The final results confirm that anaerobic digestion can be used as a useful tool for cleaning of slow pyrolysis products (both gas and condensable fraction) and the obtaining of relatively clean pyrobiogas that could be directly used in internal combustion engine.

Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Pambieri, Giampiero
Relatore della tesi
Correlatore della tesi
Corso di studio
Ordinamento Cds
Parole chiave
Pyrolysis, Pyrobiogas, Anaerobic digestion, Biochar, Bio-oil
Data di discussione della Tesi
20 Marzo 2018

Altri metadati

Gestione del documento: Visualizza il documento