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When I was your age, I always did it for half-an-hour a day.
Why, sometimes I believed as many as six impossible things

before breakfast.
Quando ero giovane, mi esercitavo sempre mezz’ora al giorno.

A volte, riuscivo a credere a sei cose impossibili
prima di colazione.

Lewis Carroll

...allo spazio perché dalle nubi di gas stellari il Sole si condensasse e bruciasse;
alle quantità di stelle e galassie e ammassi galattici in fuga nello spazio

che ci sarebbero volute per tener sospesa ogni galassia ogni nebula
ogni sole ogni pianeta, e nello stesso tempo del pensarlo

questo spazio inarrestabilmente si formava...
Italo Calvino
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Abstract

This thesis work is aimed at the investigation of the dark matter (DM) amount and
distribution in early-type galaxies (ETGs), in relation with the stellar properties, con-
strained by observations of the kinematic fields of galaxies. In particular, we focus on
observations of the projected stellar velocity dispersion in the central region of ETGs.
A robust determination of the DM amount and distribution is an open issue, which we
explore from two complementary points of view. A top-down approach, with priority
given to cosmology, based on the predictions of numerical cosmological simulations, and
a bottom-up approach, with priority given to the galactic astrophysics. This is accom-
plished by using the original numerical code JASMINE (Jeans AxiSymmetric Models of
galaxies IN Equilibrium), first developed by Posacki et al. (2013), to build dynamical
models of ETGs, based on the solution of the Jeans equations. Our Jeans modelling
produces axisymmetric (oblate) spheroids with anisotropic stellar orbits. In this thesis
work, we focus on spherical isotropic galaxy models, composed of stars, DM and a central
supermassive black hole (BH). The stellar component is modelled by a deprojected de
Vaucouleurs or Jaffe density profile and satisfies the Faber-Jackson and size-luminosity
Scaling Laws. The BH mass, MBH , is related to the total stellar mass, M∗, by the
Magorrian relation. The DM component is modelled by the NFW density profile. We
explore the effect on the dynamics of stars, due to the stellar and DM properties, such as
the assumption of a fixed stellar mass-to-light ratio, Υ∗ dyn, and fixed halo parameters β
and c (halo-to-stellar scale radius ratio and halo concentration, respectively). We intend
to investigate how much the DM amount and distribution can vary, while reproducing a
given value for the projected central velocity dispersion of stars, σe8 (luminosity-weighted
within Re/8). Our study suggests that σe8 is not a good diagnostic of the DM proper-
ties in ETGs, especially it is not able to constrain the DM amount and distribution at
large radii. This is a preliminary work which we will extend through the exploration of
different properties of ETGs and through observations of their kinematic fields at larger
radii (e.g. Re/2, Re), aiming to better understand their dark and luminous contents.
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Sommario

Questo lavoro di tesi è finalizzato all’investigazione della quantità e distribuzione di mate-
ria oscura (dall’inglese, DM) nelle galassie early-type (ETGs), in relazione alle proprietà
stellari, vincolate da osservazioni del campo cinematico delle galassie. In particolare, ci
focalizziamo su osservazioni della dispersione di velocità delle stelle nella regione cen-
trale delle ETGs, proiettata lungo la linea di vista. Una robusta determinazione della
quantità e distribuzione di DM è un campo di ricerca aperto, che esploriamo da due
punti di vista complementari. Un approccio dall’alto, che da priorità alla cosmologia,
basandosi sulle previsioni delle simulazioni numeriche cosmologiche, e un approccio dal
basso, cha da priorità all’astrofisica galattica. Questo obiettivo è conseguito utilizzando
il codice numerico originale JASMINE (Jeans AxiSymmetric Models of galaxies IN Equi-
librium), sviluppato da Posacki et al. (2013), che costruisce modelli dinamici di ETGs,
sulla base della risoluzione delle equazioni di Jeans. La nostra modellizzazione di Jeans
produce sferoidi assisimmetrici (oblati) con orbite stellari anisotrope. In questo lavoro
di tesi, ci siamo concentrati su modelli di galassie sferici e isotropi, costituiti da stelle,
materia oscura e un buco nero (BH) centrale supermassiccio. La componente stellare è
modellata con un profilo di densità di de Vaucouleurs proiettato o di Jaffe e soddisfa le
leggi di scala Faber-Jackson e size-luminosity. La massa del BH, MBH , è in relazione
alla massa stellare totale, M∗, attraverso la relazione di Magorrian. La componente di
DM è modellata con un profilo di NFW. Esploriamo gli effetti sulla dinamica delle stelle,
dovuti a proprietà stellari e di alone, come l’assunzione di un mass-to-light ratio fissato,
Υ∗ dyn, e di fissati parametri di alone β e c (rapporto tra i raggi scala di alone e stellare e
parametro di concentrazione dell’alone, rispettivamente). Intendiamo investigare quanto
possano variare la quantità e la distribuzione di DM, riproducendo un dato valore della
dispersione di velocità centrale proiettata delle stelle, σe8 (pesata sulla luminosità entro
Re/8). Il nostro studio suggerisce che σe8 non sia un buon indicatore delle proprietà della
DM nelle ETGs, in particolare non è adatta a vincolare la quantità e la distribuzione di
DM a grandi raggi. Si tratta di un lavoro preliminare che estenderemo e approfondiremo
attraverso l’esplorazione di diverse proprietà delle ETGs e attraverso osservazioni dei loro
campi cinematici a raggi maggiori (e.g. Re/2, Re), con lo scopo di comprendere più a
fondo il loro contenuti oscuro e luminoso.
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Chapter 1
Introduction

1.1 ETGs and Scaling Laws

The first morphological classification of galaxies is due to E. P. Hubble, who mainly
distinguished between elliptical (E) and spiral (S), or disc, galaxies in its empirical tuning-
fork diagram (Hubble, 1936), shown in figure 1.1. On the left-hand side there are the Es
and on the right-hand side the Ss (with or without bar); between them, lenticular galaxies
(S0) represent disc without spiral arms; at the end of the diagram, there are the irregular
galaxies. Today, it is preferred to distinguish galaxies in the Local Universe (redshift

Figure 1.1: Hubble morphological classification.

z ' 0) between early-type (ETGs) and late-type galaxies, because a strong bimodality is
observed in many of their properties: colour, age of the stellar populations, star formation
rate (SFR), metallicity, interstellar medium (ISM), hosting environment density and of
course morphology. ETGs, which include Es and S0s and represent the subject of our

1



2 Introduction

study, are typically redder, populated by older stars, passive (absent or almost absent
star formation events), more metal-rich, rich of hot gas but poor of cold/warm gas and,
finally, they mainly populate denser environments (galaxy groups and clusters).

These galaxies show a surface brightness profile well described by the Sérsic (1963)
law:

I(R) = Ie e
−bn
[(

R
Re

)1/n
−1
]
, (1.1)

where bn = 2n − 0.324; often, bn = 4 is adopted, providing the de Vaucouleurs (1948)
profile, but actually it is found that the so-called Sersic index n increases by increasing
the total galaxy luminosity L and so it is non-universal for all ETGs. This correla-
tion between n and L is only one of the relations between structural, dynamical and
chemical properties of ETGs, called Scaling Laws (SLs). Faber and Jackson (1976) first
found a relation between luminosity (total or in a given band) and stellar velocity disper-
sion, measured within a certain aperture radius (e.g. Re), called Faber-Jackson relation:
L ∝ σ∼4e . The second relation to be discovered was between surface brightness and
size: the surface brightness was measured within the effective radius, so Ie = L/(2πR2

e),
and Re usually is taken as reference for the galaxy size; this relation, due to Kormendy
(1977), is often expressed as a size-luminosity relation. These two SLs represent the pro-
jections, respectively on the plane L−σe and Re−L, of the so-called Fundamental Plane
(Dressler et al., 1987; Djorgovski and Davis, 1987). All ETGs lie, with a small scatter,
on a plane on the space coordinates (logL, log σe, logRe), which is the most important
observed feature of ETGs, because it suggests a quasi homology in their structure. Ob-
servations of the ATLAS 3D survey, through IFS (Integral-Field Spectroscopy), provided
the following proportionality, shown in figure 1.2:

L ∝ σ1.25e R0.96
e . (1.2)

Other SLs can be mentioned, for example, the mass-metallicity and mass-colour ones.

Figure 1.2: Fundamental Plane. Edge-on view of the Fundamental Plane observed for a sample of
ETGs of the ATLAS 3D survey. Here, L is in units of L�,r, σe in units of 130 km s−1 and Re in units of
2 kpc. The figure is taken from Cappellari, Scott et al. (2013).
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Overall, from these empirical relations, we note that ETGs more massive are in general
brighter, larger, more metal-rich, redder, than less massive ones.
Most of ETGs host a supermassive black hole (hereafter BH) located in the galactic
centre, of which only about 1% is active, i.e. only about 1% of galaxies host an AGN
(Active Galactic Nucleus). Despite this is an open research field, it is widely confirmed
that there is an important co-evolution of the BH and the host galaxy. Some SLs have
been found, in fact, relating galaxy properties with the central BH mass. First of all,
a very tight relation exists between the BH mass and the stellar velocity dispersion:
MBH ∝ σ4e . Note that also the galaxy luminosity is proportional to the fourth power of
σe (Faber-Jackson relation), thus, assuming a constant stellar mass-to-light ratio, a linear
relation between the BH mass and the stellar galaxy mass is derived from Magorrian et al.
(1998) and it is called Magorrian relation: MBH ' 10−3M∗.

1.2 Morphology and kinematics

ETG morphology can be approximately described by a sphere, an axisymmetric (oblate
or prolate) ellipsoid or a triaxial ellipsoid. When projected on the sky, they appear as
ellipticals (or circles), so the observed ellipticity is given by the ratio between minor
and major axes, ε = 1 − b/a. This value usually varies from 0 (E0) up to 0.7 (E7),
that represents the maximum flattening of observed elliptical galaxies. In our study, we
consider galaxies as stellar systems in equilibrium, where the shape is mainly due to
the stellar rotation velocity (ordered motion) or to the anisotropy of the stellar velocity
dispersion tensor (random motion). In general, the support is due to a combination of
these effects, producing anisotropic rotators, while the limit cases are represented by the
isotropic rotator (rotationally supported system) and by the non-rotating system, fully
supported by the anisotropy. Binney (1978) first proposed the so-called (v/σ, ε) diagram,
as a theoretical plane, derived from the tensor Virial Theorem, showing the relation be-
tween dynamical and morphological properties of elliptical galaxies, as a function of their
anisotropy. In particular, it represents the dependence of the ratio between the rotation
velocity and the velocity dispersion on the ellipticity, for different degrees of anisotropy.
The anisotropy is given by the non-negative parameter δ = 1 − Πzz/Πxx, where Πzz

is the component along the z-axis of the random kinetic energy tensor, while Πxx is in
a direction orthogonal to it. In figure 1.3, the (v/σ, ε) diagram is shown, comparing
observations of Davies et al. (1983) with recent observations, made possible since the
advent of the IFS (Emsellem et al., 2011; Cappellari, 2016). In both versions, the line
representing isotropic rotators (δ = 0) is shown, under the assumption of axisymmetric
oblate spheroids, with ordered rotation only around the z-axis. For galaxies lying on
this line (the upper one in Cappellari diagram), the ratio v/σ is unambiguously deter-
mined by the ellipticity. While, in the opposite case of non-rotating system (v = 0), the
anisotropy is unambiguously determined by the ellipticity. Instead, in the general case of
anisotropic rotator (δ > 0, v > 0), there is a degeneracy on the (v/σ, ε) plane: a certain
degree of flattening can be obtained by different contributions of the rotation velocity
and the anisotropy. Note that the limit case of spherical galaxy is consistent only with



4 Introduction

Figure 1.3: (v/σ, ε) diagram. The figure on the left is taken from Davies et al. (1983), while that
on the right shows observations of the ATLAS 3D survey of Emsellem et al. (2011), as reported in the
review of Cappellari (2016). See the text for details about all features shown.

the isotropic non-rotating system, located in the origin of the plane. In Cappellari dia-
gram, grey lines correspond to increasing anisotropy, separated by ∆δ = 0.1. Note that,
since ε is the observed ellipticity, the intrinsic one, εintr, is equal to ε in case of galaxy
seen edge-on, but decreases with respect to ε, by decreasing the inclination, following
the grey dashed lines. The magenta and the green dotted lines represent specific values
of δ, which distinguish the behaviour of different kinematic types of ETGs, plotted with
different symbols (see Cappellari, 2016, for more details). Few words have to be spent
about the plotted ratio v/σ. In the original theoretical plane proposed by Binney (1978),
v and σ derive from the integration from 0 up to∞ of the ordered and random kinetic en-
ergy tensor, respectively; when galaxies are observed, instead, measures are taken within
a limited radius. Davies et al. plotted the maximum rotation velocity of each galaxy,
vm, on the average velocity dispersion measured within Re/2, called σ̄; while Cappellari
plotted the luminosity-weighted ratio within Re. In both cases, however, the measured
ratio is very close to the theoretical one, extended to infinite radii.

1.3 Dark matter and stellar populations: dynamical and
population synthesis models

ETGs are multi-component systems, composed by stars, interstellar medium (ISM), a
supermassive black hole and dark matter (DM). The stellar component, of which we have
already introduced some properties and which dominates the total galaxy luminosity, can
vary in mass from about 109 − 1010M� up to 1012M� for Es and S0s and from about
107M� up to 109 − 1010M� for dwarf spheroids, that are usually included in ETGs. In
figure 1.4, the mass-size distribution of a large sample of galaxies is shown: this is not
representative of all observable galaxies, but it is quite illustrative of their stellar mass
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Figure 1.4: Mass-size distribution. The figure is taken from Cappellari, McDermid et al. (2013),
to which the reader is referred for details about all features shown.

and size ranges. In most of ETGs, a central supermassive BH is also present, with mass
three orders of magnitude less than the stellar one (Magorrian et al., 1998), as introduced
in section 1.1. The ISM, mainly including gas and dust, can reach a mass of about two
orders of magnitude less than the stellar mass; since its gravitational contribution is
negligible for the global stellar dynamics, so it is not considered in dynamical galaxy
models, we do not discuss it any further. A relevant matter component is, instead, the
dark matter: we do not know much about its nature and distribution, but over the
past few decades many evidences have been reported about its existence in galaxies.
Cosmological numerical simulations suggest that it is isotropically distributed in a halo,
more extended than the stellar galaxy, and it can reach a mass up to about two orders
of magnitude greater than the stellar mass.

Building dynamical galaxy models allows to give an interpretation of the observed
structure and kinematics and to quantify non-observable features, like the dark matter
amount and stellar population properties, which represent the subject of our study. A
general assumption of dynamical models is that galaxies are systems in equilibrium, with
a simple spherical, axisymmetric or triaxial shape. A method of dynamical modelling,
but not the only one, is that based on the solution of the Jeans equations, so-called be-
cause they have been applied to the stellar dynamics for the first time by Jeans (1922).
Numerical codes based on this method are, for example, JAM (Jeans Anisotropic Mod-
elling), developed by Cappellari (2008), and JASMINE (Jeans AxiSymmetric Models
of galaxies IN Equilibrium), developed by Posacki et al. (2013), on which we based our
study. Different works, based on Jeans models of large samples of ETGs (e.g. Cappellari,
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Scott et al. (2013); Posacki et al. (2015); Poci et al. (2017)), where the DM component is
modelled by cosmologically-motivated halos, found a median DM fraction less than about
20%. This quantity represents the ratio between the DM mass and the total mass within
a sphere of radius Re, thus this small value means that the amount of DM in the inner
region of galaxies is considerably lower than the total matter. For each galaxy model,
the stellar mass-to-light ratio, assumed to be constant with radius, can be computed and
used for a comparison with values inferred from evolutionary population synthesis (EPS)
models: usually they are called (M∗/L)dyn and (M∗/L)pop, respectively. The EPS is the
technique of modelling the spectrophotometric properties of stellar populations, based
on the knowledge of the evolution of stars and on the assumption of a constant stellar
initial mass function (IMF), which describes the distribution of the stellar masses when
the population formed (e.g. Maraston, 2005, for reference). Nevertheless, a discrepancy
between these mass-to-light ratios is discovered, when (M∗/L)pop are derived by assum-
ing the original Salpeter (1955) IMF, as can be seen e.g. in figure 1.5, as a function of the
stellar velocity dispersion observed within Re, for dynamical models of the ATLAS 3D

and SLACS galaxies. In particular, (M∗/L)dyn is lower than (M∗/L)Salppop for galaxies with

Figure 1.5: IMF-σ relation. The ratio between the stellar mass-to-light ratios inferred from dynamical
models and from stellar population models, assuming a Salpeter IMF (1955), is shown as a function of
the stellar velocity dispersion observed within Re, for galaxies from the ATLAS 3D and SLACS surveys,
in logarithmic scale. When the y-value is zero, (M∗/L)dyn = (M∗/L)Salppop . The figure is taken from
Cappellari (2016), to which the reader is referred for details about all features shown.

low σe and the discrepancy decreases with visible regularity by increasing the velocity
dispersion. This suggested that a systematic variation of the DM fraction or IMF, as a
function of the velocity dispersion, is required. In other words, the DM fraction and the
stellar IMF cannot be both universal in ETGs. Actually, dynamical models of ETGs of
the ATLAS 3D sample showed that the discrepancy cannot be explained by a variation of
the DM fraction, obtained by varying the DM profile with respect to the original NFW
one (Navarro et al., 1996). Therefore, a systematic variation of the IMF seems to be
necessary, as summarised in Cappellari et al. (2012), suggesting the non-universality of
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the IMF in ETGs. Overall, the systematic trend in the discrepancy between (M∗/L)dyn
and (M∗/L)Salppop is solved by assuming an IMF with a “lighter” slope at low stellar masses
with respect to the original Salpeter IMF, for example the Kroupa (2001) IMF; while, as
the galaxy mass increases, the Salpeter IMF describes increasingly well the distribution
of the stellar masses when the population formed in ETGs. A large number of stars with
low mass, in fact, produces a large mass-to-light ratio, since they count on the total mass
but very little on the total luminosity.

1.4 Overview of this thesis

In this thesis work, we intend to study ETGs from a dynamical point of view, in order
to investigate the DM amount and distribution, in relation to the stellar properties,
constrained by observations of the kinematic field of galaxies. This is accomplished by
using the original numerical code JASMINE, developed to build dynamical models of
ETGs, based on the solution of the Jeans equations. The code is developed and tested
to produce axisymmetric (oblate) galaxy models, rotating around the axis of symmetry
and with anisotropic stellar orbits.

In chapter 2, we give a description of our Jeans models, composed of three components
of matter (stars, BH and DM). In chapter 3, we show the results of the code, from the
density and mass profiles of both stellar and DM distributions, to the stellar velocity
dispersion profiles due to the gravitational contribution of each component of matter,
focusing on the effects of the stellar and DM structural parameters. We also report a
robustness test of the code, accomplished by making a comparison between numerical
and analytical solutions of the Jeans equations, for specific models. Then, we report a
test of our models, by making a comparison between the DM fractions, inferred from
the JASMINE models and from dynamical models of a large sample of observed ETGs.
Chapter 4 is focused on the main results achieved from this thesis work. First, we
investigate how much “freedom” observations in the central region of ETGs allow about
the DM structure. For this purpose, we model the DM component by the well known
NFW profile and we adopt, for the stellar component, values of the mass-to-light ratio
derived from EPS models. Then, we explore the effect of a different DM distribution,
with a “torus-like” shape, located in the outer region of galaxies, on the projected central
velocity dispersion of stars. Finally, in chapter 5, we conclude this thesis work with the
discussion of the results and a look at the future prospects. Appendix A and B are
focused on a brief technical description of the Jeans equations and the JASMINE code,
respectively.

Enjoy the reading!
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Chapter 2
Models

In this chapter, we describe the galaxy modelling employed in our study, from a theo-
retical point of view. We build three-component ETG models composed of stars, dark
matter (DM) and a central supermassive black hole (BH). This latter is the most simple
gravitational contribution ans it is described first; while the next two sections, 2.1 and
2.2, are dedicated to the stellar and DM distributions, respectively. Although, in this
thesis work, we focus on spherically symmetric galaxy models, we prepare the code to
build models with a more general axisymmetric stellar distribution: in particular, it is
an oblate spheroid with minor axis aligned with z-axis, thus it is convenient to employ
cylindrical coordinates (R,ϕ, z). The DM component is instead modelled by a spherical
halo, more extended than the stellar galaxy. In section 2.3, we explain how we derive
the stellar and halo parameters, starting from the Scaling Laws. Finally, in section 2.4,
we briefly discuss about flattening spherical galaxy models.

The BH mass MBH derives from the Magorrian et al. (1998) relation (MBH =
10−3M∗) and it is treated as a point mass at the centre of the galaxy, producing the
isotropic gravitational potential

φBH(r) = −GMBH

r
, (2.1)

where r =
√
R2 + z2 is the spherical radius. The radial and vertical gravitational ac-

celerations, i.e. the opposites of the gradients of the potential along the R and z axis
respectively, are given by:

fR,BH(R, z) = −∂φBH
∂R

= −GMBH

r3
R, (2.2)

fz,BH(R, z) = −∂φBH
∂z

= −GMBH

r3
z.

Hereafter the accelerations will often be called forces, implying that they are forces per
unit mass.

9



10 Models

2.1 Stellar distribution

The axisymmetric stellar distribution is characterised by a certain degree of flattening,
specified by the choice of the ratio q = b/a between the minor and major axis of the
spheroid. The reader is referred to section 2.4 for a detailed treatment of the flattening
technique employed. The calculation of the total stellar mass M∗ is described in sec-
tion 2.3. We consider two different axisymmetric density profiles: the deprojected de
Vaucouleurs and the Jaffe ones.
For the de Vaucouleurs (1948) surface brightness profile (“R1/4 ”)

I(R) = Ie e
−7.67

[(
R
Re

)1/4
−1
]
, (2.3)

the corresponding density profile ρ∗(R, z) is obtained from the deprojection of Mellier and
Mathez (1987), that is a useful analytical approximation of the Abel inversion formula:

ρ∗(R, z) = ρ0ξ
−0.855e−ξ

1/4
, (2.4)

where

ρ0 =
M∗b

12
n

16πqR3
e0Γ(8.58)

, ξ =
b4n
Re0

√
R2 +

z2

q2
. (2.5)

Here bn = 2n−0.324 ' 7.67, as for the Sersic law with index n = 4 (the Sérsic (1963) law
of is in fact a generalization of the de Vaucouleurs law). Re0 is the circularized effective
radius, i.e. the effective radius when the galaxy is seen face-on (FO). The effective radius
is indeed a projected quantity, which represents the geometric mean of the major and
minor axis of the elliptical isophote containing half of the total luminosity of the galaxy,
called ellipse of half-light (or simply the radius of the circular isophote of half-light). The
projected effective radius when the galaxy is seen edge-on (EO) is Re = Re0

√
q; obviously

it is equal to Re0 in case of FO view of a flat galaxy or in case of any view of a spherical
galaxy.
The Jaffe (1983) profile of an ellipsoidal density distribution is

ρ∗(R, z) =
M∗

4πr3∗m
2(1 +m)2

, (2.6)

where

m2 =
R2

r2∗
+

z2

q2r2∗
(2.7)

and
r∗ '

4

3
Re, (2.8)

which is an approximate relation between the Jaffe scale radius r∗ and the effective radius
Re; it was found by Jaffe in his original work and recently by Ciotti and Ziaee Lorzad
(2018), with a negligible difference.
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2.2 Dark matter distribution

We model the DM distribution with an isotropic NFW profile (Navarro et al., 1996),
truncated at a radius rt, as follows:

ρh(r) =
Mh

4πr(r + rh)2f(c)
. (2.9)

Here Mh is the halo mass within rt; rh is the scale radius of the NFW profile, which
we relate to the effective radius of the stellar component by introducing the parameter
β ≡ rh/Re; c = rt/rh is the concentration parameter, which enters in the NFW profile
through the function f(c) = ln(1 + c)− c

1+c .
1 The gravitational potential and the radial

and vertical forces due to this component are

φh(r) = −GMh

f(c)

ln
(

1 + r
rh

)
r

, (2.10)

fR,h(R, z) =
GMh

f(c)

[
− ln

(
1 +

r

rh

)
+

r

r + rh

]
R

r3
, (2.11)

fz,h(R, z) =
GMh

f(c)

[
− ln

(
1 +

r

rh

)
+

r

r + rh

]
z

r3
.

By definition, the DM halo is extended up to rt, therefore beyond this radius the DM
density is zero and the potential and the forces become:

φh(r) = −GMh

r
, (2.12)

fR,h(R, z) = −GMh

r3
R, fz,h(R, z) = −GMh

r3
z. (2.13)

For some tests, we also consider an additional component of DM, that we call external
DM distribution: it is described by a simple gaussian function, centred at a given radius
r0, chosen in the region where the NFW profile decreases as r−3, which means between
rh and rt. The radial density profile of this isotropic distribution is

ρext(r) = a e−
(r−r0)

2

2b2 , (2.14)

where we take for the position of the peak r0 = rt/2 and for the standard deviation
b = rh, reminding that rh = β Re = rt/c. The normalisation constant a is fixed through

1Since Navarro, Frenk and White (Navarro et al., 1996) obtained this density profile for the DM halo
from cosmological N -body simulations, we briefly give their definitions of the parameters, based on the
formation theory of CDM halos through the growth of density perturbations in an expanding Universe.
The truncation radius represents the virial radius r200, within which the mean density of the halo is
about 200ρcrit, where ρcrit = 3H2

8πG
is the critical density of the Universe at the redshift of formation.

The total mass of the halo is defined as the mass enclosed within r200, so M200 = 4π
3
r3200 200ρcrit.
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the choice of a value for the total mass of this distribution, Mext, by requiring that
4π
∫∞
0 ρext(r)r

2dr = Mext, so

Mext = 4πa

∫ ∞
0

e−
(r−r0)

2

2b2 r2dr =

= 2πab

{
√

2π(b2 + r20)

[
1 + erf

(
r0√
2b

)]
+ 2br0e

− r20
2b2

} (2.15)

and then
a =

Mext

2πb

{
√

2π(b2 + r20)
[
1 + erf

(
r0√
2b

)]
+ 2br0e

−
r20
2b2

} . (2.16)

The gravitational accelerations due to this distribution are

fR,ext(R, z) = −GMext(r)

r3
R, fz,ext(R, z) = −GMext(r)

r3
z, (2.17)

with Mext(r) calculated from the analytical integration of the density between 0 and r,
once a is fixed:

Mext(r) =

∫ r

0
ρext(r

′)r′2dr′ =

= 2πab

{
√

2π(b2 + r20)

[
erf

(
r − r0√

2b

)
+ erf

(
r0√
2b

)]

− 2b

[
(r + r0)e

− (r−r0)
2

2b2 − r0e−
r20
2b2

]}
.

(2.18)

2.3 Realistic models

Real ETGs satisfy some Scaling Laws (SLs), thus our models have to reproduce these
empirical relations to be realistic. We consider the two most important of these SLs:
the Faber-Jackson and the size-luminosity relations, between σe8 − Lr and Lr − Re
respectively, as derived for a sample of about 80 000 ETGs from Data Release 4 of the
SDSS (Desroches et al., 2007):

log σe8 = −1.79 + 0.674 logLr − 0.0234 log2 Lr, (2.19)

logRe = 1.50− 0.802 logLr + 0.0805 log2 Lr. (2.20)

Here σe8 is the central luminosity-weighted velocity dispersion of the stars (within the
projected radius Re/8, which represents a very central region) in units of km s−1; Lr is
the total luminosity in the r band, calibrated to the AB system; Re is the effective radius
in units of kpc.
We first build spherical models with different values of σe8, called progenitors, which
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satisfy these relations, and then we flatten them: from each progenitor, we obtain a family
of galaxies with different degrees of flattening, as described in section 2.4 below. After
calculating Lr for a given σe8 using eq. (2.19), we convert it to the V band luminosity
LV , with the appropriate transformation equation (Jester et al., 2005) between SDSS
magnitudes and other systems [MV = Mr − 0.11 + 0.42(B− V )], assuming B− V = 0.9;
then Re is calculated from eq. (2.20). The halo scale radius is consequently derived, by
fixing a value for β, so rh = β Re; thus, the truncation radius is computed, by fixing a
value for c, so rt = c rh. Note that when the Jeans equations are solved (see appendix A
and B), the resulting stellar velocity dispersion is given by the sum of the gravitational
contributions of the stars themselves, BH and DM, for certain values of stellar mass and
halo mass; in order for the model to be consistent with the SLs, its computed projected
central velocity dispersion has to reproduce the chosen value for σe8 satisfying the SLs.
We can therefore obtain the stellar mass in two ways, physically different: fixing the
mass-to-light ratio or reproducing the given σe8. In any case the stellar mass-to-light
ratio in the V band (Υ∗ dyn ≡ M∗/LV ) 2 is assumed to be constant with radius. In the
first case, we choose an a priori value appropriate for a 12 Gyr old stellar population,
with solar metallicity and a Kroupa IMF (see Maraston, 2005, for reference); then M∗
is derived, as shown schematically in figure 2.1. That means the stellar component is
fixed, while Mh is calculated to reproduce σe8. In the second and more flexible case,
both M∗ and Mh are calculated a posteriori, by varying their contributions in order to
reproduce σe8. This latter and more complicated case is fully analysed in section 4.1
and schematically illustrated in figure 4.1; in section 3.4, it is also explained why we can
avoid to fix the concentration parameter c of the NFW DM halo and keep it as a free
parameter, together with Mh.

Figure 2.1: Diagram with fixed mass-to-light ratio. How stellar properties are derived from the
input σe8, by fixing Υ∗ dyn ≡ M∗

LV
.

2.4 Flattening spherical models

For details about the technique employed to flat spherical galaxy models and the effect
of flattening on their structural and dynamical properties, see Posacki et al. (2013) or

2In agreement with other works (e.g. Cappellari et al., 2012; Cappellari, 2016) we call Υ∗ dyn the
mass-to-light ratio inferred from dynamical models, to distinguish it from the mass-to-light ratio derived
from Simple Stellar Population synthesis models, which we call Υ∗ pop.
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Posacki (2014); here we avoid to go deeply into these points, because it is over the matter
of this thesis work, since we are not studying flat models. Nevertheless, since the code
is ready to build also flat galaxy models and this is in our plan for the future, we give a
brief explanation of the technique of flattening and on its effect.
For simplicity, we consider only two possible inclinations of the z-axis with respect to
the line of sight (l.o.s.) direction: 0◦ and 90◦, that correspond to the FO-view and the
EO-view respectively. Thus the spherical progenitor (q = 1) can be flattened in two
different ways, always keeping Re constant, and it produces two sub-families of models
called “FO-built” ones and “EO-built” ones, each model characterised by a different
degree of flattening (0.3 ≤ q < 1). In the first case, the progenitor is compressed along
the z-axis and the flat model keeps the original Re when it is seen FO; in the other
case, the oblate spheroid is obtained expanding the progenitor on the galactic plane, so
Re does not change in case of EO-view. The SLs are resolved with a certain value of
σe8, thus all models of the same family have the same L in each band, in addition to
the same observed Re. The DM distribution is totally unchanged with the flattening,
since we assume a spherical DM halo also in case of a flat stellar component. After the
resolution of the Jeans equations for a flat model, the computed σe8 is less than that of
the progenitor, i.e. the one satisfying the SLs, because of the effect of flattening on the
galaxy model.



Chapter 3
Code tests

In this chapter, we illustrate some of the tests we have done, by exploiting the original
numerical code JASMINE, described in appendix B. It has already been widely tested
over the past few years: e.g. by comparing the numerical solutions with the analytical
solutions of the Jeans equations (JEs) known for two-component axisymmetric galaxy
models, made of a Miyamoto-Nagai disc embedded in a Binney logarithmic potential
(Posacki, 2014); it has also been tested against another Jeans solver code, JAM (Jeans
Anisotropic Modelling), developed by Cappellari (2008), which builds dynamical axisym-
metric models for the SLACS sample of ETGs (Posacki, 2014; Posacki et al., 2015).
In section 3.1, we illustrate the stellar models produced by the code. Although, as shown
in the previous chapter, the code is developed to build more general axisymmetric (oblate)
anisotropic galaxy models, in this thesis work we study spherical isotropic ones, with two
possible stellar profiles (deprojected de Vaucouleurs or Jaffe) and a central supermassive
black hole (BH), with mass related to the total stellar mass by the Magorrian et al.
(1998) relation. In section 3.2, we illustrate, instead, the modelling of the dark matter
(DM) component, described by a spherical NFW profile and we give a robustness test
of the code against analytical models. In section 3.3, we analyse the dependence of the
halo mass, enclosed in the total galaxy and within the effective radius, on the stellar and
halo parameters; in particular, we analyse the dark matter fractions inferred from our
dynamical models and we compare them with those from other dynamical models based
on the observations of large samples of ETGs. Finally, in section 3.4, we show that the
position of the truncation radius of the NFW halo does not affect the dynamics of stars
in a region central enough, allowing the more flexible modelling presented in the next
chapter.

3.1 Stellar distribution

In this section, we analyse the stellar component modelling of spherical galaxies, with
isotropic stellar orbits, taking as examples models with projected central velocity disper-

15
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q k σe8 Υ∗ dyn ≡ M∗
LV

Re LV 10 ≡ LV
1010 L�

M∗10 ≡ M∗
1010M�

(km s−1) (kpc)

1 1 180 3.62 3.26 2.23 8.10

Table 3.1: Stellar properties of the deprojected de Vaucouleurs and Jaffe models. Both
models are spherical (q = 1) and with isotropic stellar orbits (k = 1 from the Satoh (1980) decomposition,
appendix B), with the same projected central velocity dispersion σe8, mass-to-light ratio Υ∗ dyn, effective
radius Re, luminosity LV 10 and stellar mass M∗10 (from left to right).

sion σe8 = 180 km s−1. As introduced in section 2.3 and defined in appendix B (eq. B.18),
σe8 is the luminosity-weighted velocity dispersion of stars, within an aperture radius of
Re/8, taken as central radius. In this thesis work, we consider two density profiles for
modelling the stellar distribution: the deprojected de Vaucouleurs and the Jaffe ones.
Their density profiles are given in section 2.1 (eqs. 2.4 and 2.6, respectively), in the
axisymmetric form, so that the code is ready to build also axisymmetric (oblate) ellip-
soid; while the mass profile is numerically computed and the velocity dispersion one is
obtained from the solution of the vertical JE. We assume spherical symmetry and fully
isotropic velocity dispersion tensor, so we show the radial profiles for a de Vaucouleurs
and a Jaffe stellar distribution, in order to illustrate what the code produces; we also
compare them to show their similarities and differences. The two models compared have
the same projected central velocity dispersion σe8 = 180 km s−1, so the effective radius
and luminosity derived trough the SLs (section 2.3) are equal too. The mass-to-light
ratio M∗/LV ≡ Υ∗ dyn = 3.62 is fixed according to Maraston (2005), as illustrate in
section 2.3 and in figure 4.1; the total stellar mass is finally computed. These values are
summarised in table 3.1.

In fig. 3.1, the density profiles of both distributions are shown: although the Jaffe
one is higher in the inner and outer regions, while the de Vaucouleurs one is only weakly
higher in the medium region, the total stellar masses contained in these galaxies are
equal. In fact, the inner region, though very dense, represents a very small volume and
the outer region, even if very large, contains very low mass; overall, the mass contained
in the de Vaucouleurs profile equals that of the Jaffe one. In fact, as visible in fig. 3.2,
the cumulative mass of the de Vaucouleurs model is lower at inner radius and then it
reaches the Jaffe one. The relative positions of the effective radius reflect this difference:
the half-light radius of the Jaffe profile is less than the de Vaucouleurs one.
The figure 3.3 shows the stellar velocity dispersion profiles of both models, as the sum
of the stellar and BH gravitational contributions. In order to see better the role of the
central supermassive BH, in this case, the scale is extended down to r = 10 pc. In fact,
the BH increases significantly the total velocity dispersion only in a very inner region,
while above 100 pc its contribution is almost negligible. It is relevant to note that the
Jaffe profile, for the same Υ∗ dyn, produces a greater velocity dispersion at Re/8 (and so
a greater projected central velocity dispersion σe8). It means that, in general, a model
with Jaffe stellar distribution requires less DM to reproduce σe8. We will explore further
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Figure 3.1: Density profiles. Deprojected de Vaucouleurs (blue) and Jaffe (green) models, with
stellar properties given in table 3.1. The vertical lines represent the effective radius Re and the central
radius Re/8 for each profile.
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Figure 3.2: Mass profiles. Deprojected de Vaucouleurs (blue) and Jaffe (green) models of fig. 3.1,
with stellar properties given in table 3.1.
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Figure 3.3: Velocity dispersion profiles. Deprojected de Vaucouleurs (blue) and Jaffe (green)
models of fig. 3.1, with stellar properties given in table 3.1. They are the sum of the stellar and BH
contributions (σ∗∗ and σ∗BH , respectively), between 10 pc and 400 kpc, to show better the role of the
central BH.

this point in the next sections.
Overall, the de Vaucouleurs and Jaffe models are quite similar and we will use both in
our study. Since the Jaffe one is analytically simpler and better studied, we will often
prefer to employ it, e.g. in section 4.1; while in section 4.2, the de Vaucouleurs one is
used. In the next section, we discuss the inclusion of the DM component in our galaxy
models.

3.2 Dark matter distribution

A galaxy model with the deprojected de Vaucouleurs stellar density profile and fixed
mass-to-light ratio, as reported in table 3.1, requires a certain amount of dark matter
(DM) to reproduce the chosen value for the projected central velocity dispersion σe8. This
means that stars and central BH alone produce a projected stellar velocity dispersion
within Re/8 not high enough to equal the chosen σe8. We describe this DM distribution
as a truncated NFW profile (detailed in section 2.2), by fixing the halo-to-stellar scale
radius ratio β ≡ rh/Re and the concentration parameter (truncation-to-scale radius ratio)
c ≡ rt/rh. The concentration enters in the NFW profile through the function

f(c) = ln(1 + c)− c

1 + c
, (3.1)

shown in figure 3.4, that increases slowly with c. In analogy with the previous section,
we also show the density and mass profiles (figs. 3.6 and 3.5, respectively) and the
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Figure 3.4: Dependence of f(c) on c. The function is shown for a large range of c, corresponding
to the c values we will use in the following tests.

stellar velocity dispersion profile (fig. 3.7), due to the gravitational contribution of each
component (stars, BH, DM). The galaxy model has the same stellar component of the de
Vaucouleurs model of the previous section, shown in figures 3.1, 3.2, 3.3 and with stellar
properties given in table 3.1. Now, we fix β = 7 and c = 10, only to show the role of the
DM halo in the galaxy model; to reproduce the given σe8, this model requires a NFW
halo with mass Mh = 1.04 · 1013M�.

In figures 3.5 and 3.6, the density and cumulative mass profiles are respectively shown.
In the first one, we indicate the influence of β and c on modifying the positions of rh
and rt; this latter, as well visible in the second figure, is the radius containing the total
halo mass. The code, for a stellar effective radius Re derived from the SLs, calculates
the halo scale radius, as rh = β Re, and then the truncation radius, as rt = c rh. Thus,
for fixed Re, as β increases, rh moves towards larger radii, extending the region where
the density ρh ∝ r−1. Once rh is fixed, as c increases, also rt increases, producing halos
more extended. It is natural that, if one did not fix a value for β and, instead, fixed rt,
by increasing c, more concentrated halos would be produced, moving rh towards inner
radii. In the next section (3.3), we will discuss the effect of β and c on the DM amount
required and its fraction with respect to the stellar or total mass.
In figure 3.7, we show the total velocity dispersion profile and the contributions of

the stellar component, BH and DM halo. As seen in the previous section (fig. 3.3), in
the very central region, within about 10 pc from the centre, it is the BH that mainly
determines the dynamics of stars; between about 10 pc and 1 kpc, the self-gravity of stars
dominates; in the outer region, above about 1 kpc, the stellar contribution decreases and
the halo contribution becomes dominant. The latter is, in fact, responsible for the stellar
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Figure 3.5: Density profile of the DM NFW halo. The scale radius rh and the truncation radius
rt are obtained by fixing β and c, in addition to the stellar model. For this model, β = 7, c = 10 and
the total halo mass is Mh = 1.04 · 1013M�. For details about the stellar component of this model, see
section 3.1.
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Figure 3.6: Mass profile of the DM NFW halo. The cumulative mass profile is obtained by
integrating the mass density of the NFW halo. The total halo mass, Mh = 1.04 · 1013M�, is contained
within rt; for details about the halo parameters and features shown, see figure 3.5. For details about the
stellar component of this model, see section 3.1.
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Figure 3.7: Velocity dispersion profile of the deprojected de Vaucouleurs + NFW model.
The halo is added to the de Vaucouleurs profile of figure 3.3: the total profile (black line) is the sum of
the contributions of the stellar component, BH and DM halo (blue lines). For details about the stellar
component, see section 3.1, while for the halo parameters see the text in this section.

dynamics at large radius, in particular, above about 10 kpc, the velocity dispersion
profile matches that of the halo component. This produces a variation of the profile
trend, which experiments a rise, and it decreases again at about 100 kpc; although in
this very outer region, as can be seen in figure 3.1, the stellar density is very low. At
Re/8, the total radial profile of fig. 3.7 is higher than that of fig. 3.3; in fact, with the
addition of the halo component, the projected central velocity dispersion increases and
reaches the chosen value.
In the next section, we are going to show a robustness test of the code.

3.2.1 Code testing against JJ models

We test our JASMINE code against the analytical formula presented in the recent work of
Ciotti and Ziaee Lorzad (2018), that give a relation between the NFW halo and the halo
obtained from the so-called JJ models. They are spherically symmetric galaxy models
in which both the stellar and total mass density distributions are described by the Jaffe
(1983) profile (see eq. 2.6, in section 2.1), with clearly different scale radius and masses;
the difference of mass is attributed to the DM, so a DM halo density profile is derived.
The NFW profile formula, given in eq. 2.9 (section 2.2), can be written, by employing
the quantities introduced by Ciotti & Ziaee Lorzad (2018), as

ρh(r) =
(R− 1)ρn

s(ξh + s)2f(c)
; (3.2)
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where R ≡ Mtot/M∗, so R− 1 = Mh/M∗, ρn ≡ M∗/(4πr
3
∗), s ≡ r/r∗, ξh ≡ rh/r∗. r∗ is

the scale radius of the Jaffe profile, approximately related to the effective radius Re as
r∗ ' 4Re/3 (eq. 2.8); thus, we can write

ξh =
rh
4
3Re

=
3

4
β. (3.3)

This is a useful substitution, because Ciotti & Ziaee Lorzad proved that the following
relation between ξh and ξ ≡ rtot/r∗ holds:

ξh =

√
ξ

2 f(c)
, (3.4)

so that
ξ =

9

8
β2f(c); (3.5)

this relation links the NFW halo with the halo analytically obtained from the JJ models.
In the same paper, it was also proved an analytical expression for the stellar projected
central velocity dispersion (within Re/8) due to the DM halo:

σ2∗h =
GM∗
r∗

R
ξ
, (3.6)

that, now, we can write

σ2∗h =
GM∗
r∗

8R
9β2f(c)

. (3.7)

It means that, fixed the stellar component and the halo mass, by varying only the halo
parameters, we expect that also in our numerical models σ2∗h ∝ β−2f(c)−1. By fixing
β and building models with only different c and then, on the contrary, by fixing c and
building models with different β, we confirm that dependence of σ∗h. This test is a proof
that the NFW halo is well numerically implemented in the JASMINE code, because it
produces the results analytically derived. In the next section, a test on the models is
reported.

3.3 Model testing through the dark matter fraction

In this section, we first intend to investigate the dependence of the total halo mass and
its amount within the effective radius, as a function of the stellar and halo parameters.
In particular, we calculate the so-called DM fraction (fDM ≡ Mh(Re)/Mtot(Re)) and
the DM-to-stellar mass ratio Mh(Re)/M∗(Re), where, with these masses, we refer to the
masses contained in a sphere of radius Re (and not to the projected masses within Re).
Then, we compare our DM fractions with those inferred by dynamical models based on
the observations of large samples of ETGs (from the ATLAS 3D and SLACS surveys), in
order to identify the stellar and halo parameters which produce models with reasonable
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β c Mh
1012M�

Mh
M∗

fDM ≡ Mh(Re)
Mtot(Re)

Mh(Re)
M∗(Re)

7
10 10.4 127.88 0.65 1.90
20 14.6 179.72 0.65 1.90
30 17.1 212.02 0.65 1.90

2
10 1.02 12.62 0.61 1.56
20 1.44 17.75 0.61 1.56
30 1.70 20.92 0.61 1.56

Table 3.2: Deprojected de Vaucouleurs + NFW galaxy models. The stellar component is
identical and given in table 3.1. The halo component varies by varying β = 2, 7 (given in order of
decreasing fDM ) and c = 10, 20, 30. For each model, the total halo mass, halo-to-stellar mass ratio, DM
fraction and total halo-to-stellar mass ratio at the effective radius are given (from left to right).

dark matter fractions.
We first consider spherically symmetric galaxy models, made of a deprojected de Vau-
couleurs stellar distribution embedded in a NFW halo, in order to study the role of the
halo parameters β and c on the DM amount and to test their fDM . Then, we consider
models with a Jaffe stellar distribution and we study also the effect of a variation in the
mass-to-light ratio Υ∗ dyn. In the previous section (3.2), instead, we commented on the
impact of the halo parameters on the positions of rh and rt, i.e. on the shape of the
NFW halo.

We build galaxy models with the same de Vaucouleurs stellar distribution and differ-
ent values of β and c. The stellar component is that described in section 3.1 and shown
in figures 3.1, 3.2, 3.3; its properties are reported in table 3.1. These models require a
certain amount of DM to reproduce the chosen value for σe8 (= 180 km s−1). Here we
explore models with β = 2, 7 and c = 10, 20, 30. These values of the concentration
parameters are quite high, with respect to the cosmological predictions (e.g. Dutton and
Macciò, 2014), as we will see in section 4.1.4, but our aim here is only to investigate
the dependence of the DM amount and DM fraction on c, so they are illustrative of the
role of c. In table 3.2, the total halo mass Mh, total halo-to-stellar mass ratio Mh/M∗,
DM fraction and halo-to-stellar mass ratio at Re are given, for six galaxy models with
different β and c. First of all, we note that, by increasing β or c, Mh increases. In fact,
as β or c increase, rh and rt move towards larger radii (as can be seen in fig. 3.5) and
the influence of the halo on the inner region decreases, thus a larger Mh is required to
reproduce the given σe8. Naturally, since the stellar component is fixed, the total halo-
to-stellar mass ratio also increases. Nevertheless, at the effective radius, we do not see
the same trend: the DM fraction and the halo-to-stellar mass ratio increase by increasing
β, even if slowly, and they are constant with c. In fact, even on the total galaxy, Mh

increases very slowly with c and, since this increasing halo mass is concentrated more in
the outer region, because of the increasing truncation radius, it is not surprising that in
the inner region the variation is not significant. Since we are interested on studying the
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Figure 3.8: Dark matter fraction. DM fractions within Re obtained from large galaxy samples,
with different dynamical models, published in different works. In the first and second panels, the results
obtained by Model I and Model II of Poci et al. (2017) for the ATLAS 3D sample of 258 ETGs and, with
green stars, the results of Posacki et al. (2015) for the SLACS sample of 55 ETGs. In the right-hand
panel, the results published by Cappellari, Scott et al. (2013) from the ATLAS 3D sample. In all figures,
the blue circles represent the data with the best quality and the red crosses the data with low quality of
the ATLAS 3D sample; for details see Poci et al. (2017) and Cappellari, Scott et al. (2013), from where
these figures are taken. In table 3.3, the average DM fractions are given, for each modelling.

fDM (best data) fDM (full sample) Reference

0.17 0.19 Model I, Poci et al. (2017)
0.09 0.13 Model II, Poci et al. (2017)
0.09 0.13 Cappellari, Scott et al. (2013)
- 0.14 Posacki et al. (2015)

Table 3.3: Dark matter fraction. Average DM fractions within Re, from the samples shown in
figures 3.8.

stellar dynamics in the central region of galaxies, this suggest that it is independent of
the halo concentration; we will deepen this point in the next section (3.4).
Although the trend of the total DM mass, as a function of the halo parameters, respects
our predictions, we find values for the DM fraction quite high, with respect to those found
by dynamically modelling large samples of ETGs. We refer to the results published by
Cappellari, Scott et al. (2013), Posacki et al. (2015) and Poci et al. (2017), shown in
figures 3.8. Cappellari et al. and Poci et al. studied a sample of 258 ETGs from the
ATLAS 3D survey, while Posacki et al. studied a sample of 55 ETGs from the SLACS
survey. As summarised in Poci et al. (2017) and reported in table 3.3, the average DM
fractions computed in these works are considerably lower than the values inferred from
our models. From their models, in fact, only few galaxies have a fDM ' 0.61− 0.65 and
the average values are always less than 0.20, i.e. only the 20% of the matter enclosed in
the sphere of radius Re is made of dark matter, while the 80% is made of stars (and BH,
remembering that the BH mass is the 0.1% of the total stellar mass). Taking into con-
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Υ∗ dyn
M∗

1010M�
c Mh

1011M�
Mh
M∗

fDM ≡ Mh(Re)
Mtot(Re)

Mh(Re)
M∗(Re)

3.2 7.16
10 33.8 47.31 0.38 1.62
20 47.4 66.49 0.38 1.62
30 56.0 78.46 0.38 1.62

3.4 7.61
10 6.22 8.20 0.10 1.11
20 8.74 11.53 0.10 1.11
30 10.3 13.61 0.10 1.11

Table 3.4: Jaffe + NFW galaxy models. The stellar and halo components vary by varying the
mass-to-light ratio Υ∗ dyn = 3.2, 3.4 and c = 10, 20, 30, while β = 7 is fixed; for details about the
stellar component, see section 3.1. Here we report, for each model, the stellar mass, total halo mass,
halo-to-stellar mass ratio, DM fraction and halo-to-stellar mass ratio at the effective radius (from left to
right).

sideration higher values of β would make this discrepancy worse, while we avoid values
of β < 2 to keep a significant difference between the stellar and the DM distributions.

Therefore, we explore models made of a Jaffe stellar distribution embedded in a NFW
DM halo. In fact, since σe8 for the Jaffe profile is higher than that for the de Vaucouleurs
one, the DM amount required to reproduce σe8 will be lower, as mentioned in section 3.1.
Thus, we expect that these models produce lower DM fractions, i.e. more in agreement
with values known from the literature. Moreover, while a model with de Vaucouleurs
stellar profile, σe8 = 180 km s−1 and Υ∗ dyn = 3.62, requires a certain DM component
to reproduce σe8, an equivalent model with Jaffe stellar profile will overestimate σe8.
This means that, fixed σe8, a model with Jaffe stellar profile requires a certain DM
component only with a lower Υ∗ dyn, i.e. a lower M∗. We will discuss about it in
section 4.1; for now, we consider two different values of Υ∗ dyn, both in agreement with
values obtained in section 4.1, meaning both requiring a certain DM component, in order
to see the dependence of fDM on the mass-to-light ratio and to find reasonable fDM
values. These mass-to-light ratios are Υ∗ dyn = 3.2, 3.4. We fixed σe8 = 180 km s−1

as example; of course, models characterised by a higher σe8 would require more Mh.
Since the dependence of fDM on β is not strong, we fix β = 7 for these models, while
c = 10, 20, 30, as before. In table 3.4, in analogy with table 3.2 for the de Vaucouleurs
+ NFW galaxy models, we give the total halo mass, total halo-to-stellar mass ratio,
DM fraction and halo-to-stellar mass ratio at the effective radius, for six Jaffe + NFW
galaxy models, with different Υ∗ dyn and c. As observed for the de Vaucouleurs + NFW
models, by increasing c, the total halo mass (and also the total halo-to-stellar mass ratio)
required to reproduce the given σe8 increases, while the DM fraction and the halo-to-
stellar mass ratio at the effective radius remain constant. Moreover, as expected, by
increasing the mass-to-light ratio, the halo mass decreases and also the fractions at the
effective radius decrease. Contrary to the dependence on β previously discussed, fDM
varies significantly by varying Υ∗ dyn. In fact, we see that for Υ∗ dyn ' 3.4, our galaxy
models produce fDM values in agreement with those found by Cappellari, Scott et al.
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(2013), Posacki et al. (2015) and Poci et al. (2017). While for much higher Υ∗ dyn, no DM
fraction would be necessary, and for much lower Υ∗ dyn, a DM fraction too high would
be required. It means that we can build Jaffe + NFW galaxy models with a dark matter
fraction consistent with those derived from dynamical models based on large samples of
observed ETGs, by assuming an appropriate value for Υ∗ dyn. Furthermore, also with de
Vaucouleurs + NFW models, we can obtain reasonable values for fDM , on the condition
of assuming higher Υ∗ dyn, but not so high that the DM is no longer required. Therefore,
for both de Vaucouleurs and Jaffe + NFW models, we could calculate a range for the
mass-to-light ratio, from a minimum value, corresponding to a maximum fDM that we
decide to accept, according to the other dynamical models seen, up to a maximum value,
corresponding to the limit model in which stars and BH alone reproduce the given σe8,
without the addition of any DM. In the next chapter 4, section 4.1, instead, we are going
to calculate a range for the mass-to-light ratio in order to be in accordance with values
derived from Simple Stellar Population (SSP) synthesis models. In future, we could
consider both other dynamical models and SSP synthesis models, in order to find more
tighter and robust constraints on the mass-to-light ratio.

3.4 Effect of the truncation radius on the velocity dispersion

In the previous section, we noted that the halo-to-total and halo-to-stellar mass ratios
at the effective radius (fDM ≡Mh(Re)/Mtot(Re) and Mh(Re)/M∗(Re) respectively) are
constant with c, that means they are not affected by a variation of the truncation radius
rt of the NFW DM halo. This suggest that, at radius small enough, also the stellar
dynamics could be not affected by a variation of rt. Since we are interested, in particular,
to the projected velocity dispersion at Re/8, we verify that, fixed the stellar component,
β and Mh, it does not change by varying the halo concentration, i.e. the solution of the
vertical JE (see appendix A and B), in a region central enough, is independent on the
halo concentration.
This is not surprising, for two main reasons. First, the contribution to the velocity
dispersion due to the DM component is

ρ∗σ
2
∗h =

∫ ∞
z

ρ∗
∂φh
∂z′

dz′, (3.8)

where
∂φh(r)

∂z
=
GMh(r)

r3
z. (3.9)

If the halo is truncated at a certain radius rt, then Mh(r ≥ rt) = Mh = const, so

∂φh(r)

∂z

∣∣∣∣
r≥rt
∝ z

r3
; (3.10)

if, instead, the halo is not truncated, Mh(r ≥ rt) ∝ ln r, so it increases slowly with r and

∂φh(r)

∂z

∣∣∣∣
r≥rt
∝ z ln r

r3
. (3.11)
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Therefore, if the halo is or is not truncated, the force (per unit mass) that it produces
along the z-axis have only a slight difference at the boundary conditions and it does not
affect significantly the central velocity dispersion. Furthermore, and this is the second
reason, at such a large radius, the stellar density entering in the integral of eq.3.8 is very
low, thus the contribution to the total velocity dispersion, due to the DM distributed
above rt, is very low.

This allows us to fix an arbitrary value of rt, e.g. rt = 10 rh, or even not to truncate
the NFW halo, and solve the JEs without fixing a value for c. Until now, by solving
the vertical JE equation, fixed the stellar properties and the halo parameters β and c,
we have found the halo mass Mh required to reproduce the given σe8. Now, instead,
we can multiply the NFW density, potential and forces (see section 2.2) by the function
f(c) and find the required value for Mh/f(c), in a way detailed in section 4.1.1. This
allows, for chosen values of σe8, Υ∗ dyn and β, to identify not only one model with the
necessary Mh, but a family of models characterised by the same ratio Mh/f(c) and
different values of Mh and c. In the next section, we show a tool to vary both the stellar
and dark distribution, building more realistic models, in order to explore how much the
total mass of the dark matter halo can vary, while reproducing the projected central
velocity dispersion of stars.



28 Code tests



Chapter 4
Main results

In this chapter, we investigate the influence of the dark matter distribution on the pro-
jected velocity dispersion profile of stars. In particular, we attempt to understand how
much observations of the velocity dispersion in the central region of ETGs are able to
give constraints on the DM amount and distribution. In the first section (4.1), we explore
the mass and concentration that a NFW halo profile can have, reproducing the observed
central kinematic features of galaxies. In the second section (4.2), we investigate the
possibility of a different DM distribution and the total mass which can be distributed in
the outer region of galaxies, still reproducing the kinematic field observed in their inner
region.

4.1 Constraints on the halo mass from observations within
Re/8 and SSP synthesis models

The first question is how much the structure of the dark matter halo can vary, reproducing
the projected velocity dispersion profile of stars. In particular, we fix a NFW DM profile,
with scale radius given by rh = β Re, where β = 7, and truncation radius rt = 10 rh. We
showed, in fact, in section 3.4, that the stellar projected velocity dispersion in the inner
region of galaxies is not affected by a variation of the truncation radius position, located
in the outer region; thus, we fix now an arbitrary value for rt and we do not fix the
concentration c in the NFW profile formula (section 2.2). In this way, we shall be able to
find a variety of value pairs (c,Mh) permitted by the observation of the projected velocity
dispersion, measured within a certain radius, as schematically illustrated in diagram of
fig. 4.1.
In the present thesis work, we confine our study to spherical and isotropic galaxy models
and to observations within Re/8. So the flattening parameter is q = 1, there is no
rotation (vR = vz = vϕ = 0) and σR = σz = σϕ ≡ σ; the anisotropy parameter of Satoh
is fixed k = 1 (see appendix B). We reserve for the future the extension of this study to
the more general case of axisymmetric (oblate) models, with a given degree of flattening

29
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(0.3 ≤ q < 1) and a given anisotropy of the velocity dispersion tensor (0 ≤ k < 1),
so σ ≡ σR = σz 6= σϕ. We therefore identify a region in the c −Mh plane where halos
reproduce σe8, that means observations of the stellar velocity dispersion within the radius
Re/8 are consistent with a range of halo masses, associated to a range of concentrations.

4.1.1 Dependence on the mass-to-light ratio

From the vertical Jeans equation, the velocity dispersion σ2 is calculated and can be
written as the sum of the contributions of all the matter components of the galaxy
(stars, BH, DM), thanks to the linearity of the JEs. This is obviously true at any radius,
thus:

σ2e8 = σ2∗∗ + σ2∗BH + σ2∗h, (4.1)

where σ2∗∗, σ2∗BH , σ
2
∗h are the components of the squared central velocity dispersion

due to the contributions of the gravitational potentials of the stars themselves, BH and
halo, respectively. Hereafter, we imply these velocity dispersions are values calculated
as luminosity-weighted within a radius of Re/8, albeit we omit it in formula. Since any
potential is linearly proportional to the total mass of the associated distribution, and
moreover MBH = 10−3M∗ (see chapter 2), then also σ2∗BH depends on the stellar mass,
we can define the following helpful quantities:

σ̃2∗ ≡ σ̃2∗∗ + σ̃2∗BH ≡
σ2∗∗ + σ2∗BH

M∗10
(km2 s−2) (4.2)

and
σ̃2∗h ≡ σ2∗h

f(c)

Mh10
(km2 s−2), (4.3)

where
M∗10 ≡

M∗
10M�

, Mh10 ≡
Mh

1010M�
(4.4)

and f(c) is the function of the concentration entering the NFW formula, as defined in
section 2.2 and shown in section 3.2. σ̃2∗ and σ̃2∗h are thus constant for all models with
the same σe8 and β, i.e. for each family of models. Thus eq. 4.1 can be written in the
equivalent form

σ2e8 = M∗10 σ̃
2
∗ +

Mh10

f(c)
σ̃2∗h, (4.5)

where we introduce α ≡Mh10/f(c).
In this way, the only quantities depending on the model areM∗, Mh and c. The normali-
sations of the two contributions are both in units of 1010M� and can be easily compared;
furthermore, we divide the halo mass by the function of c, in order to obtain value pairs
(c,Mh). We can now obtain a family of models reproducing a given σe8, by increasing
the stellar mass and coherently decreasing the halo mass or viceversa. The diagram of
figure 4.1 summarises the logical tool.

We can identify two limit cases: (1) a model without DM (Mh10 = 0), with the
maximum stellar mass, which we define M0

∗10; (2) a model with the maximum amount of
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Figure 4.1: Diagram without fixing the mass-to-light ratio. The projected central velocity
dispersion σe8 and the halo-to-stellar scale radius β are fixed, determining a family of models, and the
stellar mass and halo mass are fixed to 1010M�. Then, σe8 provides the effective radius Re and the
luminosity LV , through the SLs. The halo scale radius rh and the density, gravitational potential and
velocity dispersion due to each component (stars, BH, DM) are consequently calculated. Finally the
total projected velocity dispersion computed within Re/8 is compared to the given σe8 and value pairs
M∗ −Mh/f(c) are calculated to reproduce it. The BH mass, MBH , only depends on the stellar mass.
The mass-to-light ratio is the ratio between the computed stellar mass and the luminosity derived from
the SLs, that we call in the text Υ∗ dyn.

DM (Mmax
h10 ) and the minimum stellar mass, Mmin

∗10 . The first model is simply obtained
by fixing Mh10 = 0 in eq. 4.5. For the second model, we have to establish a criterion
to define the minimum value for the stellar mass. For this purpose, we consider that all
models with the same σe8 (i.e. of the same family) have the same luminosity in each
band (e.g. LV ), so a variation in the stellar mass corresponds to a variation in the stellar
mass-to-light ratio, for example, in the V band, that we define Υ∗ dyn ≡ M∗/LV . Thus,
we choose for reference the mass-to-light ratios obtained by Evolutionary Population
Synthesis models (EPS). For simplicity, we consider that stars formed in a single burst,
so there is a single population, characterised by the same age and metallicity. This
analysis requires Simple Stellar Population synthesis models (SSP), for which we refer
to Maraston (2005), by considering mass-to-light ratios associated to age and metallicity
appropriate for our models, as described in the next section 4.1.2.

The relation 4.5 can be easily expressed as a function of Υ∗ dyn, instead of M∗10. We
first note that, in case of no DM, 4.5 gives a trivial expression for σe8:

σ2e8 = M0
∗10 σ̃

2
∗, (4.6)

thus we can write
M0
∗10 σ̃

2
∗ = M∗10 σ̃

2
∗ +

Mh10

f(c)
σ̃2∗h. (4.7)

By dividing both sides of this equation by σ̃2∗ LV 10−10, it becomes

M0
∗

LV
=
M∗
LV

(
1 +

Mh

M∗f(c)

σ̃2∗h
σ̃2∗

)
, (4.8)
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so

Υ0
∗ dyn = Υ∗ dyn

(
1 +

Mh

M∗f(c)

σ̃2∗h
σ̃2∗

)
Υ0
∗ dyn

Υ∗ dyn
= 1 +

Mh

M∗f(c)

σ̃2∗h
σ̃2∗

, (4.9)

where Υ0
∗ dyn is defined as the mass-to-light ratio required to reproduce a given σe8 in

absence of DM.
It is clear now that, for each family, the coherent variation of M∗, Mh and c is only
given by the variation between Υ∗ dyn and Υ0

∗ dyn, that represents how much the mass-
to-light ratio can decrease from the maximum value. In practice, we are interested in
finding a range of possible α values corresponding to a range of Υ∗ dyn values, where we
defined α ≡ Mh10/f(c). Since mass-to-light ratio values deriving from synthesis models
are error-free, we consider for Υ∗ dyn the possibility to vary due to uncertainties on age
and metallicity, as shown by observations from the ATLAS 3D survey (McDermid et al.,
2015), as explained in section 4.1.2. Then the minimum value (Υmin

∗ pop) corresponds to
the minimum age and metallicity estimated for galaxies within a certain σe8, while the
maximum value (Υmax

∗ pop) corresponds to the maximum estimated age and metallicity.
This defines a range [Υmin

∗ pop, Υmax
∗ pop] in which Υ∗ dyn can vary. For each family of models,

we can find values of Υ0
∗ dyn below, inside or above that range, identifying three different

situations.
(1) If Υmin

∗ pop < Υ0
∗ dyn < Υmax

∗ pop, it is possible to add a DM halo and decrease Υ∗ dyn down
to the lower limit; that limit corresponds to the maximum DM amount which can be
present in such a model, reproducing the projected central velocity dispersion and with
a stellar mass-to-light ratio in agreement with results of SSP synthesis models. On the
other hand, obviously, it is never possible to increase Υ∗ dyn above Υ0

∗ dyn, because the
latter is the mass-to-light ratio in absence of DM, so a larger value, i.e. a larger stellar
mass, would not reproduce σe8. It means that, for models characterised by this σe8 value,
stars and BH can reproduce the central stellar velocity dispersion, without the addition
of any DM fraction and in agreement with results of SSP synthesis models. The range
for Υ∗ dyn in this case become

Υmin
∗ pop < Υ∗ dyn < Υ0

∗ dyn , (4.10)

which provides the following range for α ≡Mh10/f(c):

0 < α < αmax , (4.11)

where the maximum halo is associated to the minimum stellar component; while, the
maximum stellar component corresponds to M0

∗10 (i.e. α = 0), so Mmax
∗10 = M0

∗10. Thus,
in the c−Mh plane it is defined an half-plane, limited by

αmax =
Mh10

f(c)

∣∣∣∣
max

=
Mmax
h10

f(c)
. (4.12)
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Figure 4.2: Mass-to-light ratio. Dependence
of the mass-to-light ratio in the V band (in so-
lar units), on age (yr) and metallicity (Z�), from
SSP synthesis models of Maraston (2005), adopt-
ing a Kroupa IMF. The figure is taken fromMaras-
ton (2005). In our thesis work, in agreement with
other works (e.g. Cappellari et al., 2012; Cappel-
lari, 2016), we call the mass-to-light ratio deriving
from SSP synthesis models Υ∗ pop.

(2) If Υ0
∗ dyn > Υmax

∗ pop, the models necessarily requires a DM fraction, in order to have
Υ∗ dyn inside the range expected for the stellar population, thus:

Υmin
∗ pop < Υ∗ dyn < Υmax

∗ pop (4.13)

and
αmin < α < αmax , (4.14)

where the maximum stellar component corresponds to the minimum halo. Now, in the
c−Mh plane a band is defined, limited by αmin and αmax.
(3) Finally, if Υ0

∗ dyn < Υmin
∗ dyn, it means that even stars and BH alone produce a projected

central velocity dispersion grater than given σe8 value. Thus, it is not possible to build
models, through this tool, with this σe8 value: these models have to be rejected.
In the next section, we are going to illustrate the technique with which the ranges of mass-
to-light ratios are derived, for three families of models with σe8 = 180, 210, 250 km s−1,
taken as example.

4.1.2 Range for the mass-to-light ratio

As explained in the previous section, for a given σe8, we intend to find a range for the
mass-to-light ratio Υ∗ dyn, in order to define a range of α ≡ Mh10/f(c) values, which
include all halos reproducing the projected central velocity dispersion σe8. We derive the
mass-to-light ratio (Υ∗ pop) as a function of the age and metallicity of the population,
with reference to the SSP synthesis models of Maraston (2005) (figure 4.2). These mass-
to-light ratios are computed with an algorithm based on the fuel consumption theorem,
by taking the stellar mass losses into account and with the relation between living stars
and remnants (white dwarfs, neutron stars, black holes) as given in Renzini and Ciotti
(1993). Moreover, we refer to models in which a Kroupa IMF (Kroupa, 2001) is adopted,
instead of the original Salpeter IMF (Salpeter, 1955), because a “lighter” slope at the
lower masses seems to describe better the population formation in ETGs.
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Since Υ∗ pop is error-free, the range of mass-to-light ratios is obtained by considering the
uncertainties on the measures of age and metallicity within radius Re/8, as reported in
McDermid et al. (2015). This paper is part of The ATLAS 3D Project, which analyses 258
ETGs from the ATLAS 3D survey. They report the age tGyr and metallicity [Z/H] as a
function of log(σe), for the aperture radius Re/8 (and also Re/2, Re); they fit data with a
linear fit, providing the standard deviation σ (figure 4.3). We show also their results from
observations at aperture radius Re/2, Re, even if we do not use them now, but which
would allow to extend the present work to larger apertures. The standard deviation on

Figure 4.3: Age and metallicity. As a function of log(σe), for the aperture radius Re/8, Re/2, Re,
from the ATLAS 3D survey. The figure is taken from McDermid et al. (2015). In the text, we call the
age tGyr and the metallicity [Z/H].

the measures at Re/8 are σ = 0.22 on log(tGyr) and σ = 0.10 on [Z/H]. From data
shown in figure 4.3, we identify a range in age and metallicity for a certain projected
velocity dispersion within the effective radius (σe). Then, for those ranges, using the SSP
synthesis models of Maraston (2005), we derive the range of mass-to-light ratio in the V
band; we refer, in particular, to her work of 2005 (see figure 4.2) and to the more complete
tabulated values (http://www.icg.port.ac.uk/ maraston/SSPn/ml/ml_SSP.tab).

For all studied model families (σe8 = 180, 210, 250 km s−1), we find that stars and
BH can reproduce the projected central velocity dispersion even without the addition of
a DM component, i.e. we find the case Υmin

∗ pop < Υ0
∗ dyn < Υmax

∗ pop, so the mass-to-light
ratio range for these models is Υmin

∗ pop < Υ∗ dyn < Υ0
∗ dyn, as in case (1) illustrated in

the previous section. Then, we only need to calculate Υmin
∗ pop, corresponding to the lower

limits on age and metallicity. These results are shown in table 4.1. As known from
the study of galaxies (and as fig. 4.3 shows), more massive galaxies are in general older
and more metal-rich than less massive ones. In fact, also the minimum values of age
and metallicity increase by increasing σe8, so the range of Υ∗ dyn moves towards higher
values. For all our models, the metallicity is near to the solar metallicity ([Z/H] = 0).
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σe8 Re LV tmin [Z/H]min [Υmin
∗ pop,Υ

0
∗ dyn]

(km s−1) (kpc) (1010 L�) (Gyr) (M� L−1� )

180 3.26 2.23 4.5 -0.07 [1.63,3.45]
210 4.57 3.97 5.0 -0.05 [1.86,3.70]
250 7.04 7.83 6.0 -0.02 [1.93,4.10]

Table 4.1: Range for the mass-to-light ratio. For each studied family of models (σe8 =
180, 210, 250 km s−1), the effective radius Re and the V band-luminosity are computed from the SLs.
tmin and [Z/H]min are the minimum value of age and metallicity, respectively, derived from observa-
tions of McDermid et al. (2015). Υmin

∗ is the associated mass-to-light ratio in the V band, derived from
SSP synthesis models of Maraston (2005); Υ0

∗ dyn is instead the mass-to-light ratio derived for a model
without DM.

We preliminarily conclude that observations of the stellar velocity dispersion within a
radius of Re/8 can not determine whether DM is present or not and, if present, its total
amount. We do not claim to prove that ETGs could not contain any DM fraction, because
in last years different fields of Astrophysics have provided evidences of the existence of
DM halos surrounding galaxies. To name a few of the studies which permit to measure
the total mass of galaxies: the spiral galaxy rotation curve, the gravitational lensing, the
temperature of hot X-gas corona (in hydrostatic equilibrium), the velocity dispersion of
stars in galaxies and that of galaxies in clusters (satisfying the Virial Theorem). Our aim
is instead to investigate how much the DM halo mass can vary, with a coherent variation
of the stellar mass, still reproducing kinematic observations in their central region. In
the next sections, we are going to present our results.

4.1.3 Results on the stellar and halo masses and c−Mh plane

After the discussion of the previous sections, we are now able to calculate a stellar mass
M∗ and a halo mass Mh for each Υ∗ dyn value inside the range calculated, so we can see
how much models with the same σe8 and β can contain different contributions of stars
(and BH) and DM. The minimum stellar mass is simply obtained from the definition of
the mass-to-light ratio (see eq. 4.8):

Mmin
∗ 10 = Υmin

∗ pop LV 10−10, (4.15)

while, for the associated maximum halo mass, we calculate αmax from eq. 4.7:

αmax ≡
Mmax
h10

f(c)
=
(
Mmax
∗ 10 −Mmin

∗ 10

) σ̃2∗
σ̃2∗h

=

=
(

Υ0
∗ dyn −Υmin

∗ pop

)
LV 10−10

σ̃2∗
σ̃2∗h

,

(4.16)

where σ̃2∗ and σ̃2∗h are computed from the definitions in equations 4.2 and 4.3, respectively.
As previously discussed, the opposite limit case is given byMmax

∗ 10 and α = 0 (i.e. Mh10 =
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σe8 σ̃∗ ≡ σ∗/
√
M∗10 σ̃∗h ≡ σ∗h/

√
Mh10/f(c) [Mmin

∗10 ,M
max
∗10 ] αmax ≡Mmax

h10 /f(c)
(km s−1) (km s−1) (km s−1)

180 64.83 3.19 [3.65,7.70] 1672.73
210 54.75 2.69 [7.38,14.69] 3028.18
250 44.12 2.17 [15.11,32.10] 7023.36

Table 4.2: Stellar and halo masses. For each family of models, characterised by a given σe8,
related values of σ̃2

∗ and σ̃2
∗h are computed; [Mmin

∗10 ,M
max
∗10 ] is the range of values for the stellar mass,

in agreement with the range of mass-to-light ratios, derived from SSP synthesis models and reported in
table 4.1; [0, αmax] is the range of values for the halo mass. Mmax

∗10 is associated to α = 0 and Mmin
∗10 is

associated to αmax.

0). In table 4.2, these values are reported for any model family. Figure 4.4 shows the
linear relation

α =
(

Υ0
∗ dyn −Υ∗ dyn

)
LV 10−10

σ̃2∗
σ̃2∗h

, (4.17)

equivalent to eq. 4.7, between α and Υ∗ dyn in all the range of Υ∗ dyn, for σe8 = 180, 210,
250 km s−1. The minimum and maximum values of Υ∗ dyn depend on the uncertainties on
age and metallicity considered for each σe8; the range of Υ∗ dyn is then somewhat depen-
dent on the observations considered; furthermore, we do not consider any uncertainty on
the measure of the velocity dispersion. In order to deepen our study, we could evaluate
the opportunity of a different computation of the range for the mass-to-light ratio; in
this way we could also determine how much it would affect our present results.

We can conclude that, through the investigation we presented, observations of the
projected velocity dispersion within Re/8, by considering uncertainties on the age and
metallicity measures at Re/8, allow a wide possibility in the halo structure. In fact, we
find that the stellar mass-to-light ratio, and so the stellar mass, varies of about a factor
of 2. While α varies from 0 up to about 1013 − 1014M�, i.e. up to about values two
orders of magnitude larger than the associated stellar mass.
We remember that α represents the halo mass divided by a function of the concentration
parameter c, therefore after calculating αmax, we are now able to identify a region in the
c−Mh plane, populated by all halos permitted by the observation of a certain projected
central velocity dispersion. It means that, for each σe8, all halos with value pairs (c,Mh)
below the curve given by αmax = Mmax

h10 /f(c) reproduce the given σe8; indeed, αmax

represents the maximum halo mass available by varying the halo concentration. On the
other side, the region above this curve is populated by halos which produce a projected
central velocity dispersion of stars too high, no more reproducing the given σe8. We
show this situation on the c −Mh plane, for our model families, in fig. 4.5. Therefore,
observations of the velocity dispersion in such a central region (Re/8) allow a wide variety
of halos with different values of mass and concentration. Note that α depends on c
through the function

f(c) = ln(1 + c)− c

1 + c
, (4.18)
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Figure 4.4: Dependence of α on the mass-to-light ratio. Relation 4.17 for models with σe8 =
180, 210, 250 km s−1, shown in the range [Υmin

∗ pop, Υ0
∗ dyn] related to each σe8. The maximum value of α

for each σe8 (αmax) is provided in table 4.2.
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Figure 4.5: c−Mh plane. The curves represent αmax = Mmax
h10 /f(c), for each model family charac-

terised by a given σe8 = 180, 210, 250 km s−1. All the DM halos below this curve are permitted by the
corresponding value of the projected central velocity dispersion of stars σe8.
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Figure 4.6: c−Mh relation. Comparison between our results shown in fig. 4.5 with the concentration-
mass relation taken from Dutton and Macciò (2014), derived for NFW DM halos, in the Cosmology from
the Planck satellite.

shown in figure 3.4 (section 3.2), which increases slowly by increasing c: for c in the range
[5, 15], its value varies from about 1 up to about 2, in fact, Mh increases slowly with c,
fixed α. This also suggest that we do not go far wrong on the computation of the halo
mass if we fix the concentration to an arbitrary value, as we do in tests of chapter 3 and
in the next section 4.2.

4.1.4 Comparison with cosmological simulations

Until now, we have not imposed any constraints on the value of c. Nevertheless, we
know that cosmological N -body numerical simulations predict a relation between the
halo mass and its concentration (c ∝ M∼−0.1h ). Our aim is not to discuss here about
these predictions; we decided to ignore this relation, because we want to explore the
possibility to vary the DM halo, only by reproducing observable properties of ETGs.
In this section, we only show the opportunity to compare our results with cosmological
predictions. We refer to the concentration-mass relation found by Dutton and Macciò
(2014), derived for NFW DM halos, in the Cosmology from the Planck satellite:

log c = 0.905− 0.101 log

(
Mh

1012 h−1M�

)
. (4.19)

We report our fig. 4.5, with the addition of this relation in fig. 4.6. Therefore, for each
σe8, we can identify, from the wide variety of value pairs (c −Mh) that we have found
(see the previous section), those in agreement with cosmological predictions. In other
words, value pairs below the curve of αmax and lying on the dotted curve represent halos
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reproducing the projected central velocity dispersion and also satisfying cosmological
predictions.

4.2 Addition of an external dark matter distribution

In the previous section, we explored the impact of a NFW dark matter halo on the
projected central velocity dispersion of stars; now, instead, we investigate the impact
of a different DM distribution. The NFW profile was found by Navarro, Frenk and
White (Navarro et al., 1996) from cosmological N -body simulations, while we intend to
investigate how much a different distribution would affect observable kinematic properties
of galaxies, in particular we refer to the velocity dispersion profile of stars. We do not
attempt to find a better density profile for the dark matter component, but to show that
other possibilities could be still consistent with observations, at least if the distribution
diverges from the NFW one only at radius outer enough from the aperture radius taken
into consideration. In other words, we ask if a different density profile would produce a
remarkably different velocity dispersion profile and how much mass should be contained
to produce observable variations. We consider a quite simple additional distribution,
modelled by a thin gaussian function with the centre at a radius r0, chosen in the region
where the NFW profile decreases as r−3, which means between rh and rt. This external
(ext) isotropic distribution is described in section 2.2.
We explore the impact of this additional gravitational contribution on a model with a
given σe8, by fixing the stellar and halo components, in a way that σe8 is reproduced. In
practice, we fix σe8 = 180 km s−1 and the mass-to-light ratio Υ∗ dyn ≡M∗/LV is given to
be consistent with values from Maraston (2005) for this σe8 (as described in section 2.3
and shown in fig. 4.1). The V -band luminosity and the effective radius are derived from
the SLs and the total stellar mass is consequently computed, modelled by a deprojected
de Vaucouleurs density profile. The NFW halo mass is, instead, computed to reproduce
σe8, by fixing β = 7 and c = 10. The position of the peak and the extension of the
external DM profile are fixed as a function of the halo parameters: r0 = rt/2, where
rt = 10 rh; while, the extension is represented by the standard deviation of the gaussian
distribution and it is fixed as b = rh. The total DM density profile is the sum of the
NFW and external ones.

In table 4.3 we report the main properties of models studied in this section. They are
built with the same stellar and halo components and the same parameters r0 and b of
the external distribution, which define its shape. While the external mass Mext, i.e. the
normalisation of the profile, varies from 0 (DM component only due to the NFW one) to
values which are comparable to Mh, and so comparable to the total mass of each model.
In figures 4.7 and 4.8, the density profiles of these models are compared. As can be
seen, for each model, the external density profile is negligible with respect to the NFW
one, up to a radius near to r0, where they become more or less comparable, according
to the Mext value. In fact, for Mext up to two orders of magnitude lower than Mh, the
total density profile is not affected by the additional component, at radius where the
halo is present; for Mext & Mh, instead, the total density increases remarkably at large
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σe8 Υ∗ dyn Re LV 10 M∗10 β c Mh10 Mext10

(km s−1) (kpc)

180 3.62 3.26 2.23 8.10 7 10 1.04 · 103

0
10
102

103

105

Table 4.3: Models with external DM distribution. Five dynamical models, with the same stellar
and halo components, and different contributions of the external DM component. The first model has
no external component, to show the impact, on the projected velocity dispersion profile, of the addition
of more and more dark matter. Here LV 10 ≡ LV /(1010 L�) and Mext10 ≡ Mext/(1010M�), while other
quantities have been previously defined.
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Figure 4.7: DM density profiles compared. Four external density profiles, with different mass,
compared to the original NFW one. The NFW halo mass (Mh10 ≡ Mh/(1010M�)) is calculated to
reproduce σe8, while the external masses (Mext10 ≡Mext/(1010M�)) are arbitrarily fixed; rh and rt are,
respectively, the scale and truncation radius of the NFW profile; r0 is the centre of the external density
profile, i.e. the peak of the external matter distribution. The main properties of these five models are
given in table 4.3.
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Figure 4.8: Total DM density profiles. Four external density profiles, with different mass, added
to the original NFW one. The total density is the sum of the halo and external contributions: ρDM =
ρh + ρext. The first label refers to the model without external mass, i.e. DM density only due to the
NFW one. The other models have the same NFW halo. For details about all features shown, see fig. 4.7
and table 4.3.

radius (r ' r0). Since the halo is truncated and the external distribution is not, at radius
larger than rt, the latter dominates, but its density is essentially negligible with respect
to values below rt.

The code solves the JEs four times, now, computing the gravitational contribution
to the stellar dynamics due to the central BH, stars, halo and finally to the external DM
distribution. Thus, the expression 4.1 (section 4.1.1) becomes:

σ2e8 = σ2∗∗ + σ2∗BH + σ2∗h + σ2∗ext; (4.20)

here the contribution to the squared projected central velocity dispersion, due to the
total DM component, is σ2∗DM = σ2∗h + σ2∗ext, where σ∗h and σ∗ext are obviously the
velocity dispersion contributions due to the NFW halo and the external distribution,
respectively. As previously seen, σe8 can also be written by making explicit the mass of
each component (stars and black hole together), so:

σ2e8 = M∗10 σ̃
2
∗ +

Mh10

f(c)
σ̃2∗h +Mext10 σ̃

2
∗h =

= M∗10 σ̃
2
∗ + α σ̃2∗h + αext σ̃

2
∗h,

(4.21)

in analogy with eq. 4.5, thus αext ≡Mext10.
One could think that such a matter distribution does not influence the velocity dispersion
profile in a region inner enough with respect to r0, because here its density is negligible
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Figure 4.9: Shell scheme. Thought experi-
ment of thin spherical shell representing the ex-
ternal DM distribution, in a system composed
by a central BH, a smooth stellar distribution
and a NFW DM halo. Proportions between r0,
rh, rt are kept.

and the distribution behaves as an external spherical shell, so the gravitational potential
inside the shell is null, as stated from the II shell theorem of Isaac Newton. We are
going to demonstrate, with a clear thought experiment, that this is not true, in principle.
Although, in this way, we also show that the central velocity dispersion, in practice, is
affected by this external distribution only if the latter is extremely massive.
We are going to consider, for simplicity, a spherical shell infinitely thin, containing a mass
Mext and located at r0. The system composed by central BH, smooth stellar distribution,
halo and shell is schematically illustrated in fig. 4.9. Since, in this thesis work, we are
studying galaxies with spherical symmetry and an isotropic velocity dispersion tensor,
we adopt the spherical coordinates. So the JE is simply

d(ρ∗σ
2)

dr
= −ρ∗

dΦ

dr
, (4.22)

thus
ρ∗σ

2 =

∫ ∞
r

ρ∗
dΦ

dr′
dr′. (4.23)

The contribution due to the external shell is

ρ∗σ
2
∗ext =

∫ ∞
r

ρ∗
dφext
dr′

dr′, (4.24)

where the integral can be split in two parts, below and above r0:

ρ∗σ
2
∗ext =

∫ r0

r
ρ∗
dφext
dr′

dr′ +

∫ ∞
r0

ρ∗
dφext
dr′

dr′ =

= −G
∫ r0

r
ρ∗
Mext

r′2
dr′ −G

∫ ∞
r0

ρ∗
Mext

r′2
dr′.

(4.25)

For the II shell theorem, the gravitational potential produced by the shell in the region
below r0 is null, so the first term is zero. Nevertheless, the second term is not zero and
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it plays a role on the velocity dispersion profile; for the I shell theorem, the potential due
to the shell above r0 is that of a point mass Mext concentrated in the galactic centre.
Then eq. 4.25 becomes

ρ∗(r)σ
2
∗ext(r) = −GMext

∫ ∞
r0

ρ∗(r
′)

r′2
dr′. (4.26)

This integral from r0 to ∞ is obviously constant for r < r0; moreover, ρ∗ (modelled with
a deprojected de Vaucouleurs profile, see fig. 3.1) is very low at radius r > r0, so we can
approximately consider that ρ∗(r ≥ r0) ' ρ∗(r0). The integral becomes∫ ∞

r0

ρ∗(r)

r2
dr ' ρ∗(r0)

r
, (4.27)

thus:
σ2∗ext(r) '

GMext

r

ρ∗(r0)

ρ∗(r)
. (4.28)

We analyse now two limit situations:r � r0 ⇒ ρ∗(r)� ρ∗(r0)⇒ σ2∗ext(r) ' 0

r ' r0 ⇒ ρ∗(r) ' ρ∗(r0) ⇒ σ2∗ext(r) '
GMext

r
.

(4.29)

We conclude that, in principle, the external DM distribution affects the central velocity
dispersion of stars, but in practice its influence is negligible. This is true not only at
Re/8, but also at larger radii, e.g. Re/2, Re, 2Re. On the other side, its influence on the
velocity dispersion profile is not negligible in a region near to the peak of the distribution.

In fig. 4.10, we show the velocity dispersion radial profile for the five study models,
due to all the matter components (BH, stars, DM halo, external DM). It is well visible
that the central velocity dispersion is not influenced by the addition of matter in the
outer region of the galaxy, at least with a mass up to few orders of magnitude larger
than the total mass of the galaxy. The contribution to the velocity dispersion, in fact, is
not negligible at radius near to the peak of the external distribution, when its mass is at
least comparable with the total mass; its impact becomes significant at inner radius, near
to the halo scale radius, when the mass is at least two orders of magnitude larger than
the total mass. Note that we are discussing here about the intrinsic velocity dispersion
profile and not about the projected one, but obviously, since there are no variations in
the intrinsic profile, there are no variations in the projected one too.
Therefore, these results suggest that producing observable variations of the velocity dis-
persion, i.e. variations in a region quite central to make observations possible, requires
an amount of external mass many orders of magnitude larger than the total mass of
the galaxy. It means that observations of the stellar velocity dispersion in the central
region of galaxies (e.g. Re/8, Re/2, Re, 2Re) are not able to reject the possibility of the
presence of a dark matter distribution, even very massive, different from the well known
NFW one, located in the outer region. We do not claim to propose the best description
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Figure 4.10: Velocity dispersion profile. Impact of the external DM distribution on the total
velocity dispersion profile of stars, for four models with different external DM mass Mext. The first label
refers to the model without external mass; the other models have the same NFW halo. For details about
all features shown, see fig. 4.7 and table 4.3.

for the DM density profile. We only note that a distribution rather different from the
original NFW one is still consistent with observations of the kinematic field, taken in the
central region; furthermore a large amount of DM could be contained in this component,
without producing observables features in the central kinematic field.



Chapter 5
Discussions and conclusions

The aim of this thesis work was to investigate the amount and distribution of dark matter
in early-type galaxies (ETGs), in relation with the properties of the stellar component
and constrained by the projected velocity dispersion profile of stars. The motivation of
this study, in addition to the obvious and practical interest in modelling ETGs, is due
to the fact that cosmological predictions about the structure of DM halos (as obtained
from N -body numerical simulations) are more focused on the general properties of halos
than on a detailed description of well defined, specific objects. On average, cosmological
simulations predict, in fact, a DM distribution following the celebrated NFW density
profile, with a relation between the halo concentration and the total halo mass (given by
c ≈M−0.1h ).

With this thesis work, we attempted to look at the problem of a robust determi-
nation of the DM amount and distribution in galaxies, exploring the issue from two
complementary points of view. A top-down approach, with priority given to cosmology,
and a bottom-up approach, with priority given to the galactic astrophysics. The first
one is based on theories of formation and evolution of structures in the Universe, while
the second one is based on observations and dynamical modelling of galaxies and stellar
populations. In practice, the adopted framework does not aim at confirm or disprove the
predictions of cosmological simulations, but, on the contrary, to understand how much
“freedom ” observations allow about the structure of DM halos. In other words, we
investigated how much the DM halo can vary while reproducing some observable kine-
matic properties, i.e. without producing unobserved features in the kinematic fields. In
addition, we asked how much these results are affected by different factors, such as (1)
structural properties of the stellar model: profile (e.g. de Vaucouleurs, Jaffe, Hernquist),
shape (e.g. spherical symmetry, axisymmetry), degree of flattening, inclination angle
with respect to the line of sight direction; (2) dynamical properties, like the anisotropy
of the velocity dispersion tensor; (3) the aperture radius used to calculate the stellar
velocity dispersion (e.g. Re/8, Re/2, Re); (4) the stellar mass-to-light ratio; (5) the
halo-to-stellar scale radius ratio.

We have already illustrated an overview of the issue of our interest, although, at the
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present stage, we could not fully explore it in this thesis work, because of its complexity
and the limited time available. However, we built accurate dynamical galaxy models as
rigorous and at once flexible as possible, in order to be confident of our results and also
to have the possibility to deepen our study in the future. This is accomplished by using
the original numerical code JASMINE (first developed by Posacki et al., 2013), built to
solve the Jeans equations, starting from a given stellar density profile and the gravita-
tional potentials of the three components: stars, dark matter and central black hole. In
our study, the stellar component is modelled by a spherical deprojected de Vaucouleurs
density profile or an spherical Jaffe density profile, where the effective radius Re and the
luminosity in each band (e.g. LV ) are derived through the Scaling Laws (Faber-Jackson
and Size-Luminosity), for a given value of the central velocity dispersion σe8. The DM
component is modelled by a spherical NFW profile, whose β parameter (halo-to-stellar
scale radius ratio) is fixed, while the concentration c is a free parameter. The stellar
and dark masses are fixed to reproduce the central velocity dispersion characterising the
model. Moreover, the mass of the supermassive black hole in the galactic centre is fixed
to be three orders of magnitude less than the stellar mass. For a given σe8, and fixed the
stellar component and the parameter β, we are able to obtain a family of halos charac-
terised by the same ratio between the halo mass and a function of the concentration, but
with different values of the halo mass and concentration.

The JASMINE code solves the Jeans equations in cylindrical coordinates for an ax-
isymmetric and anisotropic system, described by a two-integral distribution function:
thus, it calculates the velocity dispersion and the streaming velocity (non-zero only
around the z-axis). These quantities are then projected along two lines of sight: face-on
and edge-on. The code has been widely tested for several galaxy models, by modifying
both structural properties (like the stellar distribution, the galaxy size, the halo param-
eters β and c) and technical properties, like the resolution of the grid. In this work, we
have limited the variety of models to spherical and isotropic ones, with fixed β, and the
aperture radius to Re/8 only. Now we are going to summarise the main results achieved
with this thesis work.

From a technical point of view, thanks to the linearity of the JEs, we derived a
relation which allows us to vary both the total stellar mass and the total dark mass,
reproducing a given σe8. We wrote this relation as a function of the stellar mass-to-light
ratio (Υ∗ dyn), in order to compare Υ∗ dyn inferred from our dynamical models with the
known values obtained by Simple Stellar Population (SSP) synthesis models (Υ∗ pop).
We chose a Kroupa IMF, because it is believed to describe the population formation in
ETGs better than an IMF with a steeper slope at low masses (like the original Salpeter
IMF). For a given σe8, we were able to find a range of halo masses consistent with Υ∗ pop
values, by considering the uncertainties on the estimated age and metallicity of the stellar
population, derived from observations within a radius of Re/8. In practice, we find a
range for the dynamical Υ∗ dyn: from a minimum value (minimum age and metallicity),
corresponding to the model with minimum stellar component and maximum DM halo,
up to a maximum value (maximum age and metallicity), corresponding instead to the
opposite limit case with maximum stellar component and minimum DM halo. We note
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that, in any model family we studied (characterised by σe8 = 180, 210, 250 km s−1), stars
and BH can reproduce the observed central velocity dispersion, without the addition of
a DM component, with a value of Υ∗ dyn within the acceptable range for Υ∗ pop. In this
case, this value of Υ∗ dyn becomes the maximum stellar mass-to-light ratio possible for
models defined by that σe8, because a larger value would not reproduce their central
velocity dispersion. This also means that it is possible to build galaxy models, which are
consistent with population synthesis results and uncertainties on measures within Re/8
and do not require any DM fraction, at least for σe8 between 180 km s−1 and 250 km s−1.
The opposite limit model requires instead the maximum DM contribution, as written
before, and provides Mh about two orders of magnitude larger than M∗. In conclusion,
observations at Re/8 allow stellar mass variations of about a factor of 2 and halo mass
variations from 0 up to about 1013 − 1014M�. In this way, we identify a region on the
c−Mh plane, populated by all halos reproducing the observations in the central region;
while halos with mass and concentration values out of this region would require too low
Υ∗ dyn, i.e. too low M∗.

For illustrative purposes, we also considered a DM distribution different from the
widely accepted NFW profile, to show there could exist alternative distributions which
would be still consistent with observations of the central region of galaxies. As well
known, the DM dominates with respect to the stellar component in the outer region of
galaxies, where the stellar density tends to zero, while in the inner region the dominant
component is the stellar one. Thus, the DM located at large radius has only a weak effect
on the dynamics of stars at small radius. It is not surprising that the DM at radius large
enough could not effect at all the central stellar dynamics. We questioned how much DM
could be distributed in a region far enough from Re/8, without conditioning the central
velocity dispersion. For this purpose, we added to the NFW profile a DM component
with a density profile as a gaussian distribution (isotropic), centred in the region where
the NFW profile decreases as r−3. We do not claim that this is the real DM distribution
in ETGs, neither in spheroids in particular: it is a simple model showing some interesting
points. First of all, σe8 is not affected by this additional external dark mass, at least
if this latter is up to some orders of magnitude larger than the NFW halo mass. That
means it could exist a DM distribution, even very massive, in a region outer enough,
unless the central stellar velocity dispersion would detect it. Furthermore, we note that
a total DM profile different from the NFW one could not vary the trend of the velocity
dispersion profile in the central region. Therefore, observations of σe8 are not able to rule
out the possibility of an alternative distribution, with respect to the generally accepted
NFW one, and so, at the same time, they cannot be used to confirm that the DM halos
are indeed well described by the NFW profile.

All the presented results suggest that the central stellar velocity dispersion is not
a good diagnostic of the dark matter: it allows indeed a wide degeneracy between the
parameters Mh and c and it does not constrain the amount and distribution of dark
matter at large radius. In the next section, we are going to illustrate, in few points, the
future plan for deepening and extending this preliminary study.
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5.1 Future prospects

Our plan for future investigations is the exploration of different properties of ETGs, with
the task of understanding how much the amount and distribution of dark matter are
actually constrained by observations.

• First of all, we expect that observations within larger aperture radii (e.g. Re/2,
Re) would provide more strict constraints on the dark matter, limiting the region
in the c−Mh plane populated by halos permitted by observations of the projected
velocity dispersion.

• We will extend the present study to flat galaxies and investigate the effect of the
degree of flattening.

• We will introduce the anisotropy of the velocity dispersion tensor and explore the
effect of different degrees of anisotropy: first producing axisymmetric tensors and
then studying triaxial tensors too.

• We will vary the halo-to-stellar scale radius ratio β, which determines the DM
density profile: we expect that, as β increases, i.e. as the halo scale radius moves
towards outer regions, the DM affects more and more the stellar dynamics; this
would allow to constrain the dark matter content of galaxies in a more strict way.

• We will ask how much the influence of the DM on the stellar dynamics depends on
their density profile (e.g. de Vaucouleurs, Jaffe, Hernquist) and on the inclination
angle (FO, EO or other inclinations).

We conclude by remarking that, in our opinion, this work opens the door to a comple-
mentary study of ETGs, useful to better understand their dark and luminous contents.



Appendix A
Jeans equations

In this chapter we briefly show some considerations about stellar dynamics, especially
in axisymmetric ETGs, to finally obtain the JEs in this particular case. For a deeper
discussion, the reader is addressed, e.g., to Binney and Tremaine (2008), Ciotti (2000).
Orbits of stars in galaxies, and stellar systems in general, are determined by the grav-
itational interactions with the stars themselves, the DM particles and the central BH,
if present; while the gravitational effect of the gaseous component on stellar orbits can
be neglected. For an exact investigation of the stellar dynamics, these systems should
be treated as N-body problems, in which each encounter with a nearby star, DM particle
or black hole, changes the position and the velocity of each star, i.e. its position in the
phase-space γ = (x,v). Nevertheless, the time scale employed by a system to experience
significant variations in its dynamics, through the sum of individual encounters, can be
longer than its life time. This time is the so-called 2-body relaxation time (t2b) and it
depends on the crossing time (tcross) and total number of particles N of the system:

t2b ∼
N tcross
8 lnN

, (A.1)

where tcross ' R/σ represents the characteristic time needed to cross a system of size
R, moving at a speed σ. If t2b is remarkably longer than its life time, 2-body collisions
can be neglected and the system considered collisionless; otherwise the system has to
be considered collisional. Note that the 2-body relaxation time increases with increasing
tcross and also with increasingN . The characteristic t2b of a typical galaxy, withN ' 1011

and tcross ' 108 yr, is of the order of 107 Gyr, even greater than the age of the Universe;
therefore, it is possible to obtain useful results about galactic dynamics even in the
approximation of non-collisionality. After this assumption, we can indeed replace the
discrete distribution of N stars with a continuous distribution ρ(x; t); the gravitational
potential associated to this distribution derives from the Poisson equation ∇2φ = 4πGρ:

φ(x, t) = −G
∫
<3

ρ(ξ; t)d3ξ

||x− ξ||
. (A.2)
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The distribution of stars in the phase-space, at any time, is described by the so-called
distribution function (DF) f(x,v; t): a nowhere negative function, which represents the
stellar mass density in a volume element of the phase-space d3xd3v, at a given time t.
Just to clarify between different definitions in literature, we are adopting the definition
of Ciotti (2000), while in Binney & Tremaine (1987) it is defined as a numerical density
and in Binney & Tremaine (2008) as a probability density. So the stellar mass density
distribution of the system, at any time, is given by

ρ(x; t) =

∫
<3

f(x,v; t)d3v (A.3)

and the total stellar mass is

M =

∫
γ
f(x,v; t)d3xd3v. (A.4)

Although stellar systems are never exactly collisionless, we have seen that galaxies es-
sentially are, so we describe the time evolution of the DF in the assumption of perfectly
collisional regime. Therefore the DF satisfy the so-called collisionless Boltzmann equation
(CBE):

Df

Dt
=
∂f

∂t
+

6∑
i=1

∂(fẇi)

∂wi
= 0, (A.5)

where wi is the i-th coordinate of the phase space, i.e. w = (x1, x2, x3, v1, v2, v3), and
ẇi ≡ ∂wi

∂t , so ẋi = vi

v̇i = − ∂Φ

∂xi
.

(A.6)

The motion of each star is determined by the total gravitational potential Φ; in galaxies,
considering the sum of the gravitational effects of stars themselves, DM and BH, it results
Φ = φ∗ + φBH + φh. The CBE can also be written as:

∂f

∂t
+ vi

∂f

∂xi
− ∂Φ

∂xi

∂f

∂vi
= 0, (A.7)

where the Einstein summation convention (sum over repeated indices) is used.
Simpler differential equations are obtained through the method of moments: first of all,
some functions are defined as velocity moments of the DF over the velocity space; then
these quantities are used to find new equations (the Jeans equations) through the velocity
moments of the CBE over the velocity space. We have already introduced the zero-order
velocity moment at eq. (A.3): the stellar mass density ρ(x; t). The first-order moment is

vi(x; t) :=
1

ρ

∫
<3

vifd
3v (A.8)

and the second-order moments are

vivj(x; t) :=
1

ρ

∫
<3

vivjfd
3v, (A.9)
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σ2ij(x; t) :=
1

ρ

∫
<3

(vi − vi)(vj − vj)fd3v =

= (vi − vi)(vj − vj) =

= vivj − vi vj ,

(A.10)

for all i, j = 1, 2, 3. vi is the i-th component of the streaming velocity, while σ2ij is the
velocity dispersion tensor, which represents the mean dispersion from the mean (stream-
ing) velocity of stars. It is a symmetric tensor, so in a reference system in which it can
be written in the diagonal form (e.g. the cylindrical coordinates system, as we will see
later), the only non-zero components are σ2ii = v2i −vi2. The geometrical interpretation as
velocity dispersion ellipsoid is useful when the anisotropy of the velocity dispersion tensor
plays an important role in determining the galaxy morphology, as generally happens in
ETGs: in each point of the galaxy, and at any time, it is possible to define an ellip-
soid, whose three semi-axis coincide with the three components of the diagonal tensor.
If σij(x; t)2 = σ2(x; t)δij ∀x, the velocity dispersion tensor is called isotropic and the
velocity dispersion ellipsoid is everywhere a sphere; otherwise σ2ij is called anisotropic.
For an investigation of the roles played in flattening the galaxy by the streaming velocity
and the anisotropy of the velocity dispersion tensor, [–see intro–].
From the zero-order and first-order moments of the CBE (eq. (A.7)),∫

<3

[
∂f

∂t
+ vi

∂f

∂xi
− ∂Φ

∂xi

∂f

∂vi

]
d3v = 0 (A.11)

and ∫
<3

vj

[
∂f

∂t
+ vi

∂f

∂xi
− ∂Φ

∂xi

∂f

∂vi

]
d3v = 0, (A.12)

the first and second Jeans equations (JEs) are respectively derived:

∂ρ

∂t
+
∂(ρvi)

∂xi
= 0, (A.13)

∂(ρvj)

∂t
+
∂(ρvivj)

∂xi
+ ρ

∂Φ

∂xj
= 0. (A.14)

The latter can also be written in the following form:

ρ
∂vj
∂t

+
∂(ρσ2ij)

∂xi
+ ρvi

∂vj
∂xi

+ ρ
∂Φ

∂xj
= 0. (A.15)

The reader can easily note the similarity between the two JEs for the stellar dynamics and
the hydrodynamical equations of the mass conservation and the momentum conservation,
respectively.
We consider now axisymmetric galaxies, in cylindrical coordinates (R,ϕ, z), and find the
associated JEs. First of all, the velocity dispersion tensor is diagonal and aligned with the
coordinate system. Then in a stationary and axisymmetric potential Φ(x), all derivatives
with respect to t and ϕ vanish; the only non-zero streaming motion is in the azimuthal
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direction (vR = vz = 0), there is no rotation in the radial and vertical directions, and so
the only non-zero component of the angular momentum is Lz = Rvϕ; axisymmetry also
impose v2R = v2z = σ2R = σ2z ≡ σ2. A stationary and axisymmetric system is therefore
described by a two-integral DF f(H,Lz), which depends on the phase-space coordinates
only through two integrals of motion (satisfying the Jeans theorem): the Hamiltonian
H = 1

2(v2R + v2ϕ + v2z) + Φ and the vertical component of the angular momentum Lz.
The JEs in this case become:

∂(ρ∗σ
2)

∂z
= −ρ∗

∂Φ

∂z
∂(ρ∗σ

2)

∂R
= ρ∗

v2ϕ − σ2

R
− ρ∗

∂Φ

∂R
.

(A.16)

Known the stellar mass density ρ∗(x) and the total gravitational potential Φ(x), we have
now two equations with two unknowns: σ2 and v2ϕ. In the next chapter (appendix B) we
show how the resolution of these equations has been implemented in our numerical code
JASMINE.



Appendix B
JASMINE code

Just to introduce to JASMINE (Jeans AxiSymmetric Models of galaxies IN Equilibrium),
it is a numerical code initially developed by Silvia Posacki (Posacki et al., 2013; Posacki,
2014), then maintained by Andrea Negri and which I partially modified for this thesis
work. It produces models of axisymmetric galaxies, solving the Jeans equations (JEs)
in cylindrical coordinates (R,ϕ, z) for a distribution function (DF) depending on two
integrals of motion, described in the previous appendix A. It is developed in Fortran
90 and it can run in serial or parallel, using three processors. It works with three
semi-logarithmic grids: a principal grid on which all quantities are computed and two
secondary grids, staggered in R and z respectively, that serve to compute the derivatives
with the centred finite-differences method of approximation. The extension and the pre-
cision (number of grid points) of the grids are established in order to include all the DM
halo (Rmax = zmax > rt) and to resolve the central region accurately enough. Integrals
are calculated with the standard trapezoidal rule.

The code receives as input the central luminosity-weighted velocity dispersion σe8,
used to calculate the effective radius Re; the degree of flattening q of the spheroid; the
stellar and DM density profiles; the halo-to-stellar scale radius ratio β; the halo truncation
radius rt. The M∗, MBH and Mh are fixed too. The code calculates the gravitational
potential and the radial and vertical forces (per unit mass) associated to each component
on the whole grid: through numerical integrations for the stellar component and through
the analytical formula of chapter 2 for the BH and DM components. Now the Jeans
equations are solved: 

∂(ρ∗σ
2)

∂z
= −ρ∗

∂Φ

∂z
∂(ρ∗σ

2)

∂R
= ρ∗

v2ϕ − σ2

R
− ρ∗

∂Φ

∂R
.

(B.1)

From the first JE, the stellar velocity dispersion σ2 is computed:

ρ∗σ
2 =

∫ ∞
z

ρ∗
∂Φ

∂z′
dz′. (B.2)
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The natural boundary condition would be ρ∗σ2 → 0 for r →∞, thus the code calculates
the solution of the vertical equation by solving the integral from zmax to each z, imposing
ρ∗σ

2 = 0 at z = zmax. Then the second JE provides the total azimuthal velocity v2ϕ.
To calculate the ordered component vϕ2, representing the streaming motion, i.e. the
rotation around the z-axis, we adopt the k-decomposition introduced by Satoh (1980):

vϕ
2 = k2(v2ϕ − σ2); (B.3)

finally we calculate the azimuthal velocity dispersion from its definition:

σ2ϕ ≡ v2ϕ − vϕ2 = σ2 + (1− k2)(v2ϕ − σ2). (B.4)

The parameter k represents the amount of rotational support and it can be 0 ≤ k ≤ 1:
if k = 1 the galaxy is an isotropic rotator, so σϕ = σR = σz and it is totally rotationally
supported; if k = 0 there is no net rotation (vϕ2 = vR

2 = vz
2 = 0), so the galaxy is

supported only by the anisotropy of the velocity dispersion tensor; certainly, if 0 < k < 1,
the support is due to the sum of the contributions of rotation and anisotropy. We assume
a constant value for k, although more realistic and complicated models would require that
it is a function of (R, z), as considered by Ciotti and Pellegrini (1996) and by Negri et al.
(2013).
The JEs are solved splitting the total gravitational potential in the different contributions
of the three components,

Φ = φ∗ + φBH + φh; (B.5)

so they are solved three times, providing not only the total velocities, but also each
contribution, which allows us to study individually the effect and the importance of each
component on the stellar dynamics. In this way, for example, we obtain not only σ2, but
also σ2∗∗, σ2∗BH and σ2∗h.
Except those structural and dynamical properties of observed galaxies deducible from
known empirical or theoretical relations, to compare properties of modelled galaxies with
those of observed galaxies, we need to project them. The projections along a general l.o.s.
of the stellar density ρ∗, the streaming velocity v and the velocity dispersion tensor σ2

are

Σ∗ =

∫ +∞

−∞
ρ∗dl, (B.6)

Σ∗vlos =

∫ +∞

−∞
ρ∗ 〈v,n〉 dl, (B.7)

Σ∗σ
2
P =

∫ +∞

−∞
ρ∗
〈
σ2n,n

〉
dl, (B.8)

respectively. Where the brackets 〈 , 〉 indicate the scalar product, n is the l.o.s. direction,
l is the integration path along n. In general, σ2P is different from the l.o.s. velocity
dispersion σ2los, which is instead defined as:

Σ∗σ
2
los =

∫ +∞

−∞
ρ∗(〈v,n〉 − vlos)2dl = Σ∗(v

2
P − v2los) = Σ∗(σ

2
P + V 2

P − v2los), (B.9)
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where
v2P = σ2P + V 2

P = σ2los + v2los, (B.10)

as described in Ciotti & Pellegrini (1996). However in the particular cases of FO and EO
views, or in case of absent streaming motion, it results σ2P = σ2los. The FO projections
are:

Σ∗ = 2

∫ ∞
0

ρ∗dz, (B.11)

Σ∗σ
2
P = Σ∗σ

2
los = 2

∫ ∞
0

ρ∗σ
2dz. (B.12)

The EO projections are instead:

Σ∗ = 2

∫ ∞
R

ρ∗R
′dR′√

R′2 −R2
, (B.13)

Σ∗σ
2
P = Σ∗σ

2
los = 2

∫ ∞
R

[(
R′2 −R2

)
σ2 +R2σ2ϕ

] ρ∗dR
′

R′
√
R′2 −R2

, (B.14)

Σ∗vlos = 2R

∫ ∞
R

ρ∗vϕdR
′

√
R′2 −R2

, (B.15)

Σ∗V
2
P = 2R2

∫ ∞
R

ρ∗vϕ
2dR′

R′
√
R′2 −R2

. (B.16)

After the density projections, the FO and EO projected stellar masses are computed,
integrating the surface densities. The FO and EO projected effective radius Re are
calculated as the radius containing half of the total projected stellar masses; the code
also calculates Re/8, used as the central radius. Finally, the corresponding luminosity-
averaged aperture velocity-dispersions are calculated, for both the l.o.s., as follows:

σ2e ≡
∫ Re
0 Σ∗σ

2
losRdR∫ Re

0 Σ∗RdR
, (B.17)

σ2e8 ≡
∫ Re/8
0 Σ∗σ

2
losRdR∫ Re/8

0 Σ∗RdR
. (B.18)

Our request is that the latter reproduce the input σe8.
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