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Abstract

L’universalità leptonica è una delle simmetrie del Modello Standard (SM). Essa prevede

che l’accoppiamento tra i bosoni di gauge e i leptoni delle tre famiglie sia uguale. I

recenti risultati sperimentali sulle transizioni b →c`ν`, in particolare gli osservabili RD e

RD∗ mostrano una differenza significativa dai valori previsti dal SM, aprendo le porte

alla ricerca di nuova fisica anche nei decadimenti di mesoni charmed, che a livello di

quark corrispondo alla transizione c→ s`ν`, dove ` può essere un muone o un elettrone.

I test dello SM sono studiati attraverso la misura del rapporto Rµ/e, definito come

Rµ/e ≡ (dΓ(µ)/dq2)/(dΓ(e)/dq2).

In questa tesi è stato realizzato uno studio preliminare che permette la misura di

Rµ/e attraverso la catena di decadimento D∗+ → (D0 → K−`+ν`)π
+, utilizzando i dati

raccolti da LHCb durante il Run-2. Al fine di ottenere le informazioni complete sui

prodotti del decadimento D0→ K`ν`, inclusa la stima del momento del neutrino, è stato

implementato un algoritmo di global fit (GF). Inoltre, è stata studiata la contaminazione

dello spettro di massa invariante del D∗+, dovuta a diversi canali di fondo. Per estrarre il

numero di eventi di segnale, è stato fatto un fit di chi-quadro sulla massa invariante del

D∗+, considerando soltanto il fondo combinatorio su un campione di dati, filtrato con dei

tagli di PID, utili a ridurre altri fondi.
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Introduction

The lepton flavour universality (LFU) is one of the symmetries of the Standard Model

(SM). It predicts equal coupling between gauge bosons and the three lepton families. SM

extensions predict additional interactions, implying the possibility of new couplings. The

recent experimental results on the b →c`ν` transitions, in particular the value of the

observables RD and RD∗ , show a possible difference with respect to the SM predictions,

at the level of about 4.0 standard deviations [1]. These results opened new avenues for

new physics (NP) searches also in the charm semileptonic decays. At the quark level

charm semileptonic decays correspond to the c → s`ν` transitions, where ` is either a

muon or an electron. In particular charm mesons are sensitive to NP. The tests of the

SM is carried on through the study of the ratio Rµ/e, which is defined as

Rµ/e ≡
dΓ(µ)/dq2

dΓ(e)/dq2
. (1)

The aim of this thesis is to realise a preliminary study towards the measurement of

the observable Rµ/e using the D∗+ → (D0 → K−`+ν`)π
+ decay. This study is performed

with the LHCb data, collected during the Run-2 phase in 2015, corresponding to 0.33 fb−1

of integrated luminosity. The study presented in this thesis is also useful to realize the

measurement of Rµ/e as function of q2, which is the transferred 4-momentum 1. The decay

under study has the peculiarity to be a partially reconstructed decay, as the neutrino is

not reconstructed by the LHCb detector.

In order to estimate the momentum of the missing neutrino from the D0→ K`ν`
decay, a global fit (GF) algorithm is implemented. The GF algorithm consists in a

single function which describes the kinematic of the decay, starting from measured

quantities. In the detector, the D∗+ instantly decays into a charged pion and a D0, which

decays after a flight of few centimeters in K−`+ν` final state. Taking into account these

kinematic properties, 5 contraints are applied in this function: the D∗+ decay vertex

must corresponds to the primary vertex, which is also the decay vertex of the bachelor

π; the displaced vertex of the D0 decay must be formed by the ` and K tracks, and the

1The transferred 4-momentum of the i→ f transition is defined as q = pf − pi where pi and pf are

the total 4-momenta of the initial and final state, respectively.
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invariant mass of the D0, computed using also the ν momentum, must be equal to its

known value. The statistical approach used is the least chi-square method and the final

parameters are obtained thanks to a nested minimisation. In particular, these are the

momenta of the D0 decay products ~pν , ~p` and ~pK , the coordinates of the π momentum

~pπ, the position of the secondary decay vertex ~xD0 and finally the third coordinate of the

primary vertex zPV.

In order to extract the signal yields, a chi-square fit of the D∗+ invariant mass (m(D∗))

is done. In the fit only the combinatorial background component is considered, as the

data sample used is filtered with PID requirements useful to reduce other sources of

background. However, possible contamination of other sources of backgrounds can be

present. For this reason, in addition to the development of the GF algorithm, in this

thesis the contamination of the D∗+ invariant mass spectrum by the different background

compontents is evaluated.

This thesis work is organised as follows. In Chapter 1 the theoretical frameworks

and an experimental overview of the LFU studies are reported. The LHCb detector is

illustrated in Chapter 2. The development of the Global Fit is described in Chapter 3

and how the background is evaluated is described in Chapter 4. Finally the perspectives

of this analysis are shown in the Conclusions.



Chapter 1

Theory of leptonic flavour violation

in semileptonic decays

The Standard Model of Particle Physics (SM) is the experimentally established

theoretical model which describes all the known fundamental interactions, electroweak

and strong, with an exception for gravity. The SM describes also the dynamics of

sub-atomic particles. These are divided into two families, fermions and bosons, with

semi-integer and integer spin respectively. In particular, fermions are divided in leptons

(e, µ and τ), which interact only via electroweak force, and quarks (u, d, s, c, b and

t), which interact also via the strong one. On the other hand, bosons comprehend the

mediators of the electroweak (γ, W± and Z) and the strong (eight gluons g) interactions

and the Higgs boson H0, whose role will be described in Sec. 1.1.1.

The SM is described by a Lagrangian density, invariant under non-abelian local gauge

transformations. The local gauge symmetry group for the SM is:

SU(3)× SU(2)× U(1) (1.1)

Electroweak interactions are described by the Glashow-Weinberg-Salam model (GWS) [2–

4], a non-abelian Yang-Mills quantum field theory, based on the SU(2)× U(1) symmetry

group. On the other hand, strong interactions are described by quantum chromodynamics,

whose lagrangian is requested to be invariant under SU(3) transformations. These two

theories are described in Sec. 1.1 and 1.2.

Even though the SM predictions have never been disproved, there are several observed

phenomena not explained. The main ones are the matter-antimatter asymmetry, the

nature of dark matter and dark energy, neutrino masses and how gravity can be included

in the model. Therefore the SM is an incomplete theory, and new physics phenomena

must exist at a certain energy scale. One hypothesis could be considering the SM as the

lower-energy limit of a more general theory or as the renormalisable part of an effective

field theory valid up to some still undetermined cut-off scale Λ.

3



4 Chapter 1. Theory of leptonic flavour violation in semileptonic decays

In this chapter, after introducing the main features of the SM, the theory of semilep-

tonic decays is described in Sec. 1.3. In particular, the theory of charm mesons decays

is described in Sec. 1.4. Finally, in Sec. 1.5 an overview of the latest measurements of

semileptonic decays and flavour universality tests are shown.

1.1 The Glashow-Weinberg-Salam model of electroweak

interactions

The electroweak part of the lagrangian of the SM, LGWS, can be divided in four

different components:

LGWS = LB + Lf + LH + LY (1.2)

LB describes the kinetic term of the four gauge fields Bµ (hypercharge field) and W aµ

(the weak isospin field), with a = 1, 2, 3:

LB = −1

4
W aµνW a

µν −
1

4
BµνBµν , (1.3)

where Bµν and W amunu are the field strength tensors of Bµ and W aµ. Lf describes

the kinetic of the fermions and it has the following form of

Lf = Q̄ji��DLQ
j + ūjRi��DRu

j
R + d̄jRi��DRd

j
R + L̄ji��DLL

j + ējRi��DRe
j
R, (1.4)

where Qj are the left-handed quark doublets, uR and dR are the right-handed quark

singlets, Lj are the left-handed lepton doublets, eR are the electron singlets and a sum

over the j generations is assumed.

Qj =

(
ujL
djL

)
, (1.5)

Lj =

(
νe
j

ejL

)
(1.6)

In Eq. (1.4) the covariant derivatives DLµ and DRµ are defined as

DLµ = ∂µ + igW a
µ

σa

2
+ ig′

Y

2
Bµ (1.7)

DRµ = ∂µ + ig′
Y

2
Bµ (1.8)

where Y is the hypercharge of the field on which the derivative operates, σa are the Pauli

matrices, g and g′ are the coupling constants. The fields that form the SU(2) doublets

have weak isospin T = 1/2, with third component T3 = ±1/2 for up and down-type fields,
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Table 1.1: Value of the quantum numbers for each fermion. The third component of the weak isospin

T3, the hypercharge Y and electromagnetic charge Q are represented.

f T3 Y Q

uL 1/2 1/3 2/3

dL −1/2 1/3 −1/3

uR 0 4/3 2/3

dR 0 −2/3 −1/3

νL 1/2 −1 0

eL −1/2 −1 −1

eR 0 −2 −1

respectively. The right-handed fermion fields, which are SU(2) singlets, have T = 0.

The electromagnetic charge of a field Q can be defined as a function of the hypercharge

Y and the third coordinate of the weak isospin T3:

Q =
Y

2
+ T3 (1.9)

From this definition it is possible to obtain the values of the hypercharges of all fermionic

doublets and singlets according to their electromagnetic charge.

The third term of the electroweak lagrangian is the Higgs term LH . It describes the

Higgs field and its coupling with the bosons.

LH = (Dµφ†)(Dµφ)− V (φ†φ)

= (Dµφ†)(Dµφ)−
(
−µ2φ†φ+

λ2

2
(φ†φ)2

)
,

(1.10)

where λ and µ are positive parameters and φ is the Higgs doublet. φ follows SU(2)

symmetry and it has hypercharge 1

φ =

(
φ+

φ0

)
. (1.11)

φ+ has electromagnetic positive charge and it is a SU(2) doublet with hypercharge 1,

while φ0 is neutral charged. It follows that the covariant derivative operating on φ+ is

the left-handed one

Dµ = ∂µ + igW a
µ

σa

2
+ ig′

Y

2
Bµ. (1.12)

Finally, the last term of the GWS model lagrangian, LY, concerns the Yukawa

interaction between the fermion fields and φ. Assuming a sum over i and j, it has the
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following form

LY = −λijd Q
i
φd

j
R − λiuQ

j
(iσ2φ)ujR − gieL

i
eiR + h.c. , (1.13)

where λijd,u are general complex matrices and gie are coupling constants.

1.1.1 The Brout-Englert-Higgs mechanism

Particle masses are generated through the spontaneous symmetry breaking of the local

gauge symmetry SU(2)L × U(1)Y [5, 6]. In fact, it is possible to reduce the four degrees

of freedom of φ to one, through the SU(2) gauge invariance. The Higgs doublet can be

written in the unitarity gauge and then expanded around its own vacuum expectation

value (VEV). In particular, the Higgs potential V (φ†φ) has a minimum when

φ†φ =
µ2

λ2
≡ v2

2
(1.14)

where v/
√

2 is the VEV of φ and it is about v ' 246 GeV. Then φ becomes

φ(x) =
1√
2

(
0

v +H(x)

)
, (1.15)

where H(x) is the invariant Higgs field, which is scalar and real. At this point, the

lagrangian is no longer gauge invariant.

Due to the SU(2)L × U(1)Y group’s degrees of freedom, after the breaking there will

be one massless and three Goldstone bosons. This is a consequence of the Goldstone

theorem, which states that massless scalars occur whenever a continuous symmetry of a

physical system is spontaneously broken. In particular the gauge fields are redefined as

W±
µ =

W 1
µ ∓ iW 2

µ√
2

, (1.16)

Zµ = W 3
µcos θW −Bµsin θW , (1.17)

Aµ = W 3
µsin θW +Bµcos θW , (1.18)

where θW is the Weinberg angle, with sin2θW ' 0.23. At this point the Higgs term of the

lagrangian (1.10), substituting Equation (1.15) becomes:

LH = −1

8
g2v2(W+µW+

µ +W−µW−
µ )− 1

8
v2(g2 + g′2)ZµZµ −

1

2
λ2v2H2 (1.19)
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It follows that the masses of the gauge bosons are

MH = λv , (1.20)

MW =
1

2
gv , (1.21)

MZ =
1

2
v
√
g2 + g′2 , (1.22)

Mγ = 0 (1.23)

After the SSB the lagrangian defining Yukawa couplings of Equation (1.13) changes to

LY = − v√
2
λijd d

i

Ld
j
R −

v√
2
λiju u

i
Lu

j
R −

v√
2
giee

i
Le

i
R + h.c. (1.24)

As a consequence, the mass of the ei is equal to

Mei =
v√
2
gie. (1.25)

The mass of the lepton (electron, muon or tauon) is proportional to the coupling between

the lepton and the Higgs Boson, while the neutrino, which does not appear, remains

massless.

1.1.2 The Cabibbo-Kobaiashi-Maskawa matrix

Quarks masses are generated differently than leptons. The two eigenstates ui and

di do not correspond to physical particles. In order to obtain the mass values observed

experimentally, mass eigenstates have to be introduced. This is why in Eq. (1.24) the

λu,d matrices have been introduced. The mass term for physical quarks are obtained by

diagonalising λu,d, introducing unitary matrices Uu,d and Wu,d [7, 8]:

λu,dλ
†
u,d = Uu,dD

2
u,dU

†
u,d,

λ†u,dλu,d = Wu,dD
2
u,dW

†
u,d,

(1.26)

where Du,d are diagonal matrices. This leads to

λu,d = Uu,dDu,dW
†
u,d. (1.27)
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At this point, the physical quark fields can be defined as

uiL = U ij
u u

j,phys
L ,

uiR = W ij
u u

j,phys
R ,

diL = U ij
d d

j,phys
L ,

diR = W ij
d d

j,phys
R

(1.28)

Together with Eq. (1.27), it allows to get in the Yukawa lagrangian LY the terms:

− v√
2
Dii
u ū

i,physui,phys − v√
2
Dii
d d̄

i,physdi,phys (1.29)

The quark masses are defined as

mi
u,d =

v√
2
Dii
u (1.30)

Moreover, the replacement of weak eigenstates quark fields with mass eigenstates has

another important effect. It is possible to demonstrate that in the GWS lagrangian the

following terms are present

− g√
2

(J+µW+
µ + J−µW−

µ )− g

cos θW

JNµZµ (1.31)

where J±µ and JNµ are the charged and neutral currents, defined as

J+µ = νaLγ
µeaL + ūaLγ

µdaL, (1.32)

J−µ = h.c.(J+µ), (1.33)

JNµ =
∑
a,f

f̄a
γµ

2

[
T3 − (T3 − 2sin2θWQ)γ5

]
fa, (1.34)

where fa stands for a generic fermion (neutrino, electron or quark) of the a-th generation,

T3 its weak isospin and Q its electromagnetic charge.

Using the mass eigenstates, the terms involving quarks in the charged current of

Eq. (1.32) can be written in this form:

J+µ
quarks = ūi,physL (U †uUd)

ijγµdj,physL (1.35)

The matrix U †uUd ≡ VCKM is the Cabibbo-Kobayashi-Maskawa matrix (CKM). The

charged-current interaction lagrangian for quarks can now be written in this way:

Lcc,quarks = − g√
2

(
ūL c̄L t̄L

)Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 γµ

dLsL
bL

W+
µ + h.c., (1.36)
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where the spinors represent the physical quark fields. As a consequence, the W± bosons

mediate interactions between up-type and down-type quarks also between different

families, so the quark flavour can change in weak interactions. Every element of the

CKM matrix describes the coupling strength between two different quarks. For example

|Vtb| ' 1 and |Vub| ' 0.004, means that the coupling between t and b is very strong

compared to the one between u and b.

The CKM matrix can be parameterized by three mixing angles θij and a CP -violating

phase δ. Defining sij = sin θij and cij = cos θij, the CKM matrix becomes

VCKM =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12s23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

+O(λ4), (1.37)

Experimentally it is known that s13 � s23 � s12 � 1. For this reason, the Wolfenstein

parametrisation, which takes into account the hierarchy of the matrix elements, can be

used. Thus, the CKM matrix becomes

VCKM =

 1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4) (1.38)

where

s12 = λ =
|Vus|√

|Vud|2 + |Vus|2
,

s23 = Aλ2 = λ

∣∣∣∣VcbVus

∣∣∣∣ ,
s13e

iδ = V ∗ub = Aλ3(ρ+ iη).

(1.39)

It is possible to evaluate the CKM matrix elements, through different tree-level processes.

For example Vud is obtained studying beta decays while Vtb is known from the branching

ratio of the t→ Wb transition. According to the latest measurements, the CKM matrix

has the values represented in Table 1.2 [9].

Finally, the CKM matrix shows another important feature of the electroweak theory:

the non existence of Flavour-Changing Neutral Currents (FCNC) at tree-level in the

SM [7,10]. In fact, after substituting the mass eigenstates in Eq. (1.34) it is clear that

a fermion only interact with its antiparticle or an identical fermion in neutral-current

interactions. This is possible thanks to the unitarity of Uu,d and Wu,d.
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VCKM element Value

Vud (0.97431± 0.00015)

Vus (0.22512± 0.00067)

Vub (0.00365± 0.00012)ei(−65.88±1.88)◦

Vcd (−0.22497± 0.00067)ei(0.0352±0.0010)◦

Vcs (0.97344± 0.00015)ei(−0.001877±0.000055)◦

Vcb (0.04255± 0.00069)

Vtd (0.00869± 0.00014)ei(−22.00±0.73)◦

Vts (−0.04156± 0.00056)ei(1.040±0.035)◦

Vtb (0.999097± 0.000024)

Table 1.2: Values of the CKM matrix elements according to the latest measurements [9].

1.2 Quantum chromodynamics

Quantum Chromodynamics (QCD) is the theory which explains the strong interactions

between quarks and gluons. QCD is a Yang-Mills [11] non-abelian quantum field theory

based on the exact and unbroken colour-SU(3) local gauge symmetry. The QCD lagrangian

is:

LQCD =
∑
f

ψf

(
iγµ∂µ − gsγµ

λC

2
ACµ −mf

)
ψf −

1

4
ACµνACµν (1.40)

where ψf is a triplet in the SU(3) space of quark spinors of flavour f and mass mf , gs
is the strong coupling constant, ACµ are the massless gluon fields (C = 1, ..., 8), ACµν

are the gluon field strenght tensors and λC are the eight Gell-Mann matrices, generators

of the SU(3) group. The strong coupling constant has a dependence on the exchanged

momentum q2:

gs =
8π2

(11− 2
3
nf ) log(q/ΛQCD)

, (1.41)

where nf is the number of flavours and ΛQCD is the energy scale of strong interactions,

which is about 200 MeV experimentally. The magnitude of the coupling constant decreases

with increasing q2 or with decreasing distances. As a consequence, quarks and gluons

behave as quasi-free particles at high energies, when q � ΛQCD, and at low energies,

q � ΛQCD, the coupling constant becomes very high. This means that only at high

energies quark-gluon interactions can be treated perturbatively, expanding in series of

αs = gs/4π.
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1.3 Theory of semileptonic decays

The amplitude of the semileptonic decay of a meson MQq into a state contain-

ing a meson Mq′q can be written as a term proportional to the product of a leptonic

current Lµ (1.44) and a hadronic current Hµ (1.45). In particular, if the exchanged

four-momentum q is much smaller than the mass MW of the W± boson, the amplitude

can be written in the following way:

M = −iGF√
2
VQq′L

µHµ (1.42)

where p and p′ are the respective momenta of MQq and Mq′q, q = p− p′ and GF is the

Fermi constant, defined as

GF =
g2
√

2

8M2
W

= 1.16638× 10−5 GeV−2. (1.43)

The leptonic and hadronic currents are respectively given by

Lµ = ¯̀γµ(1− γ5)ν`, (1.44)

Hµ = 〈Mq′q(p
′)|jHµ |MQq(p)〉, (1.45)

where jHµ , a four-current, can be expressed in term of Lorentz-invariant quantities,

combinations of (pµ + p′µ), qµ and q2.

Due to the fact that the two mesons interact also strongly, the hadronic current will

contain some terms that parameterise the non-perturbative behaviour of the QCD. These

terms are called form factors f . The form factors depend on the given initial and final

state and they are measurable experimentally. Several methods exist to calculate these

form factors, one of them is the Heavy Quark Effective Theory [12].

1.3.1 The Heavy Quark Effective Theory

The Heavy Quark Effective Theory (HQET) is an effective theory which aims to

describe the strong interaction between a single heavy quark (b or c) and a light one [13].

The approach is similar to Fermi’s effective theory where the weak interactions were

approximated by point-like couplings, governed by a dimensionful coupling constant GF .

Only at energies much larger than the masses of hadrons the effects of the intermediate

vector bosons, W and Z, can be resolved. A diagram of the semileptonic decay Q→ q′`ν`
studied using HQEFT is represented in Fig. 1.1.

The starting point of the HQET is the approximation of the mass of the heavy quark

mQ as infinite. In this way, the heavy quark acts like a stationary source of colour charge.

The effective lagrangian is constructed by expanding the QCD lagrangian LQCD in a
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Q

ν

`

q′

Figure 1.1: Diagram of a semileptonic decay studied by the effective theory, where Q is the heavy quark,

q′ the lighter one.

power seres of 1/mQ and neglecting higher-order terms, as far as mQ � ΛQCD. HQET

is particularly useful to calculate the form factors of decays involving charm mesons

transitions, in particular c →s one. In fact, the velocity transferred between the two

quarks is small, leaving the colour source stationary to a good approximation.

Another important feature, shared by all effective theories, is the definition of the

Wilson coefficient C, which give information on the coupling constants.

1.4 The c→ s`ν` transitions

The semileptonic decays of charm mesons, which at the quark level correspond to

c→ s`ν` transitions, might offer important test of the SM predictions. In particular, they

can be used as probes of the lepton flavour universality (LFU), since they are |∆F | = 1

processes, where F is the flavour. One of the observable used to test LFU studying heavy

mesons decays is the ratio between the decay rates of two decay channels with different

leptonic daughters. For instance, the decays studied in this thesis are D0 → K`ν` where

the lepton is either a muon or an electron and the ratio of the two decay rates Rµ/e is

defined as

Rµ/e(q
2) ≡ dΓ(µ)/dq2

dΓ(e)/dq2
. (1.46)
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In the past few years, a significant effort has been made in both theoretical and experi-

mental research of these transitions. On the theoretical side, for example, the shapes of

the semileptonic form factors f+,0(q2) for the process D → K`ν over the whole physical

q2 region were recently calculated in the lattice QCD [14].

1.4.1 Theoretical predictions for Rµ/e

Within the SM, the theoretical predictions for c→ s`ν` decays can be compared to

the measured values of the total or differential branching fractions in order to extract the

|Vcs| element of CKM matrix. The constrains on the effects of the new physics (NP) in

a given process can be derived after fixing the value of the CKM matrix element from

some independent source.

Following [15], for the c→ s`ν` transitions, the effective Lagrangian can be written

as

Leff = −4GF√
2
Vcs

∑
`=e,µ,τ

∑
i

C(`)
i O(`)

i + h.c.. (1.47)

where Ci are the Wilson coefficient, which are defined as Ci(Λ) = (FiLi)/Λ
2, with Fi

functions of the NP flavour couplings, Li the loop factors present in models without tree-

level FCNC and Λ the NP energy scale. When the coefficient C(`)
SM = 1, the four-fermion

operator O(`) is in the form

O(`)
SM =

(
s̄γµPLc

)(
ν̄`γ

µPL`
)

(1.48)

where PL,R = (1∓γ5)
2

.The interesting non-standard effective operators, which involve

(pseudo)scalar quark and lepton densities and keep only the left-handed neutrinos, have

the form

O(`)
L(R) =

(
s̄PL(R)c

)(
ν̄`PR`

)
. (1.49)

By integrating out the beyond SM scalar boson at the tree level these operators may

be induced. The extension of the SM called two-Higgs doublet model (THDM) is one

of the theories which can provide such scalar boson. The type-II THDM is one of the

most studied models. In this C(`)
R(L) can be expressed as the combination of two real

parameters, the mass of the charged scalar H+ and tan β, i.e. the ratio of the vacuum

expectation values of the doublets. In general, C(`)
R(L) can be considered complex and they

depend of the flavour of the charged lepton. The combination of the Wilson coefficients

C(`)
S = C(`)

R + C(`)
L affects the semileptonic D → K`ν decay rate.

The hadronic matrix element of the vector current for the D(k)→ K(k′)`ν` decay is
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parametrized by form factors f+,0(q2) as

〈K(k′)|s̄γµc|D(k)〉 = f+(q2)

(
(k + k′)µ −

m2
D −m2

K

q2
qµ

)
+ f0(q2)

m2
D −m2

K

q2
qµ , (1.50)

with the usual kinematic constraint f+(0) = f0(0). The matrix element of the scalar

density is related to the form factor f0(q2) through the partially conserved vector current

identity, ∂µ(s̄γµc) = i (ms −mc)(s̄c), and it becomes

〈K|s̄c|D〉 =
m2
D −m2

K

ms −mc

f0(q2). (1.51)

The differential decay rate of the process D → K`ν` is given by the formula

dΓ(`)

dq2
=
G2
F |Vcs|2|q|q2

96π3m2
D

(
1− m2

`

q2

)2[
|h0(q2)|2

(
1 +

m2
`

2q2

)
+

3m2
`

2q2
|ht(q2)|2

]
, (1.52)

where |q| is the magnitude of the transferred three-momentum in the rest frame of the D

meson, defined as

|q| =
√
λ(m2

D,m
2
K , q

2)/2mD

λ(x, y, z) = x2 + y2 + z2 − 2(xy + xz + yz)
(1.53)

and h0,t are the non-vanishing hadronic helicity amplitudes for the transition D → K`ν.

They are defined as ε̃µ∗0,t〈K|Jµ|D〉 and are given explicitly by:

h0(q2) =

√
λ(m2

D,m
2
K , q

2)√
q2

f+(q2),

ht(q
2) =

(
1 + g

(`)
S

q2

m`(ms −mc)

)
m2
D −m2

K√
q2

f0(q2)

(1.54)

The functional dependence on the q2 of the form factors f+,0 was recently calculated

in lattice QCD by the HPQCD collaboration in Ref. [14]. Using their results and the

measured branching fractions the constraint on the Wilson coefficients C(µ)
S ≡ C

(µ)
R + C(µ)

L

are derived. In the case of electron, the 95% C.L. interval reads: |C(e)
S | < 0.2. The CLEO

collaboration measured [16] the differential decay rate for the process with electrons in

the final state. The corresponding constraint is not significantly more stringent than the

one obtained from the full branching ratio. In Fig. 1.2 the allowed range for the ratio

Rµ/e(q
2) assuming C(e)

S = 0, derived by [15] is represented.
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Figure 1.2: The ratio Rµ/e(q
2) ≡ dΓ(µ)

dq2 /
dΓ(e)

dq2 in function of the q2, assuming C(e)
S = 0, is represented.

In grey the SM predictions and in red the allowed deviations are shown [15].

1.5 Experimental overview of LFU in semileptonic

decays

In the past few years many measurements of LFU in semileptonic have been performed.

In particular some tension from the SM have been observed in b →s`−`+ and b →c`ν`
transitions. In this section, an overview of these important results and the current

experimental status are given.

1.5.1 LFU probes studying RK

RK is the measurement of the ratio of the differential branching fractions of B+

→K+`+`− decays in a given range of q2:

RK =

∫ q2max

q2min

dΓ(B+→K+µ+µ−)
dq2

dq2∫ q2max

q2min

dΓ(B+→K+e+e−)
dq2

dq2
(1.55)

The Standard Model prediction of RK is 1.00030 with an uncertainty of ∆RK = +3%

arising from QED corrections [17]. In order to minimise uncertainties, the LHCb Collab-

oration has measured RK [18] in the theoretically preferred range 1 < q2 < 6 GeV/c2 as

a double ratio with respect to the normalisation channel B+ →K+J/ψ , where the J/ψ

decays either to a di-muon or di-electron final state.

RK =
NK+µ+µ−NJ/ψ (e+e−)K+

NK+e+e−NJ/ψ (µ+µ−)K+

εK+e+e−

εK+µ+µ−

εJ/ψ (e+e−)K+

εJ/ψ (µ+µ−)K+

(1.56)
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The efficiencies comprise effects from each step of the analysis. Overall, the efficiency to

reconstruct, select and identify a muon is two times higher than for an electron. The RK

measurement is performed on the 3 fb−1 dataset recorded in 2011 (2012) at centre-of-mass

energies of
√
s = 7(8) TeV. The results yield RK = 0.745+0.090

−0.074± 0.036, which corresponds

to a 2.6σ deviation from the Standard Model prediction.

The Belle Collaboration has published a measurement of RK in the full q2 range,

RBelle
K = 1.03 ± 0.19 ± 0.06 [19], whereas the BaBar Collaboration has studied the low

and high q2 regions, measuring RK = 0.74+0.40
−0.31 ± 0.06 and RK = 1.43+0.65

−0.44 ± 0.12 [20],

respectively. The measurements from the B-factories are compatible with the Standard

Model prediction within less than one standard deviation.

1.5.2 Test of LFU studying RD and RD∗

Beyond the Standard Model physics could appear not only in loops to which RK is

sensitive but also at tree level. The latter has been studied at LHCb with B0 →D∗+τ−ντ
transitions [21] through the branching fraction

RD∗ =
B(B0 → D∗+τ−ντ )

B(B0 → D∗+µ−νµ)
(1.57)

The BaBar Collaboration had previously observed deviations from the Standard Model

prediction [22] in RD∗ and the analogously defined RD corresponding to a combined

significance of 3.4σ [23], where neutral as well as charged B meson decays were studied.

In addition to muons, the BaBar measurement includes electrons in the final state of the

signal and normalisation channels.

The LHCb analysis on the dataset of 3 fb−1 of 2011 and 2012, reconstruct the

B0 → D∗+τ−ντ decay with τ− → µ−νµντ . The LHCb result is RD∗ = 0.336±0.027±0.030,

and it corresponds to a 2.1σ deviation from the Standard Model prediction. The result of

the combination of various RD and RD∗ exhibits a tension of 3.9σ between the combined

average and the Standard Model prediction.

The latest LHCb analysis [24,25] measure RD∗ using three-prong tauon decays, B0 →
D∗−π+π−π+, as a renormalisation channel in order to reduce experimental systematic

uncertainties, due to the two neutrinos in the final state of the τ− →µ−νµντ decay. In [25]

a value of RD∗ = 0.286± 0.019± 0.025± 0.021 is obtained.

The current global average is RD∗ = 0.304± 0.013± 0.007 [1] and the combination of

the measurements of RD vs RD∗ is represented in Fig. 1.3.

1.5.3 Rµ/e from c→ d`ν` transitions

The BESIII collaboration at the e+e− collider BEPCII published its latest results

on LFU in [26] early this year. In particular D0(+) → π−(0)`+ν` transitions have been
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Figure 1.3: Combination of the measurements of RD and RD∗ [1].

studied, and the ratio is calculated as

R0
µ/e =

B(D0 → π−µ+νµ)

B(D0 → π−e+νe)
, (1.58)

R+
µ/e =

B(D+ → π0µ+νµ)

B(D+ → π0e+νe)
. (1.59)

The branching fractions for D0(+) → π−(0)µ+νµ have been calculated using a data sample

corresponding to an integrated luminosity of 2.93 fb−1, taken at centre-of-mass energy of

3.773 GeV. The obtained values of the branching ratios B are B(D0 → π−µ+νµ) = (0.267±
0.007 (stat) ± 0.007 (syst))% and B(D+ → π0µ+νµ) = (0.342 ± 0.011 (stat) ± 0.010 (syst))%.

The two ratios have been calculated using previous BESIII measurements, obtaining the

values

R0
µ/e = 0.905± 0.027 (stat) ± 0.023 (syst), (1.60)

R+
µ/e = 0.942± 0.037 (stat) ± 0.027 (syst), (1.61)

which are compatible with the theoretical prediction of lepton universality within 1.9σ

and 0.6σ, respectively.

1.5.4 Test of LFU in W →`ν` decays

A further test of lepton flavour universality on tree level processes is performed with

W →`ν` decays utilised for a measurement of the forward production cross-section on the

2 fb−1 dataset recorded in 2012 at
√
s = 8 TeV. The combination of the two separate

analyses of W →eνe [27] and W →µνµ [28] allow to extract the ratio of branching fractions
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B(W → `ν`)/B(W → µνµ) for both lepton charges and to compute the average. The

analysis strategy in both final states in similar: the cross-section is measured in eight

bins of pseudo-rapidity per lepton charge from a binned maximum likelihood template

fit to the transverse momentum of the lepton. Once the production cross-sections are

known, the ratio of branching fractions B(W → eνe)/B(W → µνµ) is computed. As the

upper kinematic bounds in pseudorapidity η differ for W → µνµ and W → eνe, the test

of lepton flavour universality is restricted to 2.00 < η < 3.50 and the ratios are found to

be

B(W+ → e+νe)

B(W+ → µ+νµ)
= 1.024± 0.003± 0.019, (1.62)

B(W− → e−νe)

B(W− → µ−νµ)
= 1.014± 0.004± 0.022, (1.63)

B(W → eνe)

B(W → µνµ)
= 1.020± 0.002± 0.019, (1.64)

where the first uncertainty is statistical and the second is systematic. The ATLAS

Collaboration recently published a measurement finding B(W → eνe)/B(W → µνµ) =

0.9967 ± 0.0004 ± 0.0101 [29], which exceeds the previous ATLAS measurements in

precision. All measurements are in good agreement and no evidence of lepton flavour

universality violation is observed.
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LHC and the LHCb detector

LHCb is one of the four major experiments at the Large Hadron Collider (LHC) [30].

The LHC is an accelerator and a circular collider, situated near Geneva, across the

French-Swiss border, as shown in Fig. 2.1. After a brief introduction about the LHC in

Sec. 2.1, a detailed description of the LHCb detector is given in Sec. 2.2. In particular,

the LHCb tracking and the particle identification (PID) systems are described in Sec. 2.3

and Sec 2.4 respectively. Finally, the LHCb trigger system is introduced in Sec. 2.5 and

the LHCb experiment computing model and data management is described in Sec. 2.6.

2.1 The Large Hadron Collider

The Large Hadron Collider is a two ring hadron accelerator, installed in a 27-kilometre

long tunnel, the one where the LEP collider was situated. The LHC is designed to collide

protons up to a centre-of-mass energy of 14 TeV, with an instantaneous luminosity of

1034 cm2 s−1, while heavy-ion collisions, such as Pb-Pb, happen at a centre-of-mass of 2.8

TeV per nucleon with a peak luminosity of 1027 cm2 s−1. Until now, the LHC has collided

protons at
√
s = 7 TeV in 2010-2011,

√
s = 8 TeV in 2012 and

√
s = 13 TeV since 2015.

The protons used in collisions are obtained from ionized hydrogen atoms. Then, since

it is not possible to accelerate the protons from quasi-rest condition up to the required

energy, they are accelerated in consecutive steps. A complex system of machines is used

in the acceleration process, as shown in Fig. 2.2. In the first step the protons are injected

in the Linac2, a linear accelerator which provides the Proton Synchrotron Booster (PSB)

with 50 MeV proton bunches. The PSB can accelerate protons at energies up to 1 GeV.

After this, the protons are injected in the Proton Synchrotron (PS), reaching an energy

of 26 GeV. Then, they are passed to the Super Proton Synchrotron (SPS) where they

are accelerated up to an energy of 450 GeV, before being finally injected to the LHC

via two tunnels: TI2 and TI8. The two beams are manteined in their respective orbits

thanks to a magnetic field of 8.34 T, generated by superconductive magnetic dipoles kept

19
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Figure 2.1: View of the LHC and the four major experiments: ALICE, ATLAS, CMS, LHCb.

at a temperature of 1.9 K (−271.3 ◦C). At the nominal operation regime, the LHC rings

store 2808 proton bunches per ring, each one containing about 1.111 protons, colliding at

a 40 MHz frequency (i.e. a collision every 25 ns).

The LHC has performed very well in these years of data-taking, allowing the LHCb

experiment to collect more than 3 fb−1 of data both in Run-1 and Run-2 [31]. Furthermore,

due to the large bb production cross-section, about 500 µb at 14 TeV [32], LHC is the

most coupious source of B mesons in the world. This allows the LHCb experiment to

perform high precision measurements, improving the previous results coming from the

BaBar, Belle and CDF collaborations and hopefully discovering new physics effects in

the charm and beauty sectors.

2.2 The LHCb detector

The LHCb experiment [33] is dedicated to heavy flavour physics measurements. Its

primary goal is to look for indirect evidence of new physics in CP -violating processes and

rare decays of beauty and charm hadrons. Due to the average imbalance in momentum

of the two partons, the outcoming b quarks are strongly boosted along the beam-line. As

a consequence, the B hadrons at the LHC are produced in the same forward or backward

emisphere and with a small angle with respect to the beam direction. In order to exploit

this feature, the LHCb detector has the structure of a forward spectrometer, in contrast

to other LHC experiments. Its geometrical acceptance lies between 10 and 300 mrad

in the horizontal plane (x-z) and between 10 and 250 mrad in the vertical plane. The

difference between horizontal and vertical acceptances is justified by the fact that the

horizontal plane is also the bending plane for charged particles deflected by the dipole
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Figure 2.2: Scheme representing the various machines employed to pre-accelerate the protons that will

be injected in the LHC. From the bottom, in order: proton injector, LINAC2, PSB, PS, SPS.

magnetic field of the LHCb detector. The pseudorapidity1 (η) range for tracks inside the

LHCb geometrical acceptance is between about 1.8 and 4.9.

To fulfill the LHCb physics program, the detector must have the following character-

istics:

• a great precision in the reconstruction of the interaction vertices and of the B

and D hadrons decay vertices. For example, an excellent proper-time resolution is

fundamental to measure the neutral B mesons oscillations;

• an excellent PID system. In order to identify hadronic B and D decays, an excellent

discrimination between charged pions, kaons and protons with momentum between

few GeV/c up to 150 GeV/c is required;

• the invariant-mass resolution must be as small as possible in order to discriminate

the signals from the combinatorial background and to distinguish between B0 and

B0
s signal peaks. For these reasons, the momentum of charged tracks must be

measured with a relative precision of about 10−3;

• the trigger system must be able to reject a very large part of the background, in

order to have manageable data-sample. Since the production cross-sections of c

1The pseudorapidity is defined as η = − ln tan
(
θ
2

)
= 1

2 ln |~p|+pL|~p|−pL , where θ is the angle between the

particle and the beam axis and pL the longitudinal momentum.
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and b quarks together account for nearly 10% of the total pp inelastic cross-section

(i.e. one collision out of ten produces D or B hadrons), the trigger system needs to

be flexible and efficient. To achieve this, the LHCb trigger is organized in multiple

levels, each of them more specialized (but slower) than the previous;

• efficient and reliable computing resources, needed for both the processing and the

storage of data.

In Fig. 2.3 a schematic view of the LHCb detector is represented. The various sub-

detectors are visible. They can be divided in two categories: the tracking and the PID

systems.

Tracking systems: VELO (VErtex LOcator), Trigger Tracker (TT) and T1-T3 stations.

The VELO is a system which identifies the primary and secondary interaction

vertices and it is situated around the beam interaction point. The Trigger Tracker

(TT) is placed behind the first RICH. Each of the three stations, placed after the

magnet, is divided in two parts, the Inner Tracker (IT), which together with the

TT forms the Silicon Tracker (ST), and the Outer Tracker (OT). The ST and OT

tasks are the reconstruction of the tracks and the measurement of the particle’s

momentum.

PID systems: two Ring Imaging Cherenkov detectors (RICH1 and RICH2), two calorime-

ters (ECAL and HCAL) and five muon stations (M1–M5). RICH1, the first

Cherenkov detector, is placed immediately after the VELO, while the second,

RICH2, is placed after the Tracking Stations. The main task of the two RICH

detectors is the discrimination of pions, kaons, and protons with momenta up to 150

GeV/c. The calorimeters system is divided in four sub-detectors: Scintillator Pad

Detector (SPD), Pre-Shower (PS) and Electromagnetic and Hadronic calorimeters

(named ECAL and HCAL, respectively). The system measures the energy of the

particles that hit the sub-detectors. While the ECAL measures e+, e− and γ ener-

gies, the HCAL measures the hadrons energies. At the end of the LHCb detector,

five MultiWire Proportional Chambers (MWPCs), spaced with iron filters, are used

to identify muons.

A detailed description of the tracking and PID systems is given in Secs. 2.3 and 2.4,

respectively.

2.3 The LHCb tracking system

The tracking system is dedicated to identify the primary and secondary interaction

vertices, to reconstruct the trajectories of charged particles and to measure their momen-

tum exploiting a magnetic bending field generated by a warm magnetic dipole. The first
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Figure 2.4: Top view of the VELO sub-detector. Frontal view of the modules in the closed (bottom

left) and open positions (bottom right).

task is performed by the VELO, which, together with the rest of the tracking system, is

also used for the track reconstruction.

2.3.1 The Vertex Locator

A vertex detector with a micrometric precision is fundamental for the reconstruction of

the primary and secondary interaction vertices. Indeed, the main signature of B-hadrons

decays at LHCb is the large mean distance of flight, tipically about 1 cm. For this reason,

measuring with high precision the position of a secondary vertex well displaced from the

pp primary vertex is very important, since it allows to select signal events and reject most

of the background in a high multiplicity environment.

The VELO [34,35] is composed of 21 circular silicon modules, installed perpendicularly

along the beam line, as shown in Fig. 2.4. Each silicon module is divided in two halves in

order to allow the positioning of the VELO during different phases of the experiment. As

can be seen in the bottom part of Fig. 2.4, during the data-taking phase the VELO is

closed, while during the beam-stabilisation one it is open. For this reason, the modules

are installed on a movable device placed inside a vacuum vessel. In order to achieve

a better geometrical coverage, the two halves of a module partly overlap in the closed

VELO configuration, as shown in Fig. 2.4. The modules are composed by two planes of

220µm thick silicon micro-strip sensors, able to measure the radial distance from the

beam (R) and the polar angle (φ) of hits generated by the ionizing particles that cross
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the VELO. The coordinate z is simply measured knowing what module gives a signal for

a particular hit.

The R sensors are divided into four parts per half, each one covering about 45◦.

The micro-strips composing these are modeled in a semi-circular shape and their width

increases as the distance from the center becomes greater, because the majority of the

particles is expected to be near the beam axis (i.e. in high η regions). The micro-strips

width ranges from 40µm near the center to 92µm far from the beam.

The φ sensors are divided in an inner and in an outer region. The latter starts at a

radius of 17.25 mm and its pitch is set to be roughly half (39.3µm) than that of the

inner region, which is 78.3µm and ends at the same radius. In order to improve pattern

recognition, the two regions have different skew to the radial direction: the inner one is

tilted by 20◦ and the other by 10◦. Furthermore, to improve the track reconstruction, the

longitudinally adjacent φ sensors have opposite skew to each other.

The performances of the VELO detector have been analyzed using the the data

collected in 2010 and 2011. The resolution on the x and y coordinates ranges from 40µm

to 10µm depending on the number of tracks used to form a vertex, while the resolution

on the z coordinate ranges from 250µm to 50µm, for the same reason.

2.3.2 Silicon Tracker (ST)

The Silicon Tracker (ST) is composed by two different detectors that use silicon

micro-strip sensors: the Trigger Tracker (TT) and the Inner Tracker (IT) [36].

The Trigger Tracker (TT) is situated after the first Ring Imaging Cherenkov detector

and before the magnet. The TT’s goal is to provide reference segments used to combine

the track reconstructed in the tracking stations with those reconstructed in the VELO, in

order to improve the momentum and coordinate resolution. Since an integrated magnetic

field of 0.15 Tm is present in the space between the VELO and the TT station, the

track transverse momentum can be estimated with a resolution of δpT/pT = 25% at

pT = 1 GeV/c. The system is composed by four stations, divided in two groups called

respectively TTa and TTb, at a distance of about 30 cm one from the other and placed

approximately 2.4 m after the beam interaction region. A detailed scheme of this part of

the LHCb detector is shown in Fig. 2.5. Each of the four stations covers a rectangular

region of about 120 cm in height and about 150 cm in width. In the first and fourth

stations the strips are parallel to the vertical plane, while in the second and third stations

they are tilted by +5◦ (u-layer) and −5◦ (v-layer) respectively, in order to improve the

precision of the track reconstruction.

The Inner Tracker is composed by the three inner parts of the stations T1, T2 and T3.

Each IT station is arranged around the beam pipe and consists of four individual detector

boxes, each one containing four detection layers. Each detection layer is composed by

seven detector modules and each module is formed by one or two silicon sensors and a
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Figure 2.5: View of the Trigger Tracker detector. The first and fourth stations have sensors parallel to

the vertical plane, while the second and third stations (called u-plane and v-plane) have sensors tilted

respectively by +5◦ and −5◦.

readout hybrid. The detection layers are positioned in the same way as the TT. On the

other hand, the side boxes have to two ladders of micro-strips, with those of the lower

sensor connected in series with those of the upper sensor to a single readout channel,

while the top and bottom boxes have only one micro-strips ladder. The total IT size is

about 1.2 m in the bending plane and about 40 cm in the vertical plane.

2.3.3 The Outer Tracker (OT)

The Outer Tracker [37] is a gas-filled straw tube detector, covering about 99% of the

summed surface of the T1-T3 tracker stations. For each tracking station there are four

planes of straw tubes arranged in the same way as the TT and IT silicon micro-strip

sensors: the first and the fourth with tubes parallel to the vertical plane, while the second

and the third with tubes tilted by ±5◦ (u-layer and v-layer). Each plane is composed

of two rows of tubes, arranged in a honeycomb structure. These tubes have a radius of

5 mm and are filled with a mixture of Ar/CF4/CO2. The anode wire is supported and

centred with a precision better than 100µm by locator pieces at the tube ends. Unlike

other tracking detectors here described, the OT measures drift times rather than pulse

heights. Due to the limited drift speed of the gas mixture, the readout time window

exceeds a single LHC bunch crossing interval. The OT spacial resolution is better than

200µm.



2.3. The LHCb tracking system 27

2.3.4 The LHCb dipole magnet

In every modern high-energy experiment, momenta are measured through the particles

curvature in a given magnetic field. In particular, the LHCb detector is provided with a

warm2 magnet dipole [38] placed between the TT and the first tracking station T1, as

can be seen in Fig. 2.3. The magnet geometry has been chosen considering the detector

acceptance. The magnet is formed by two coils shaped in order to become wider as the z

coordinate increases, as can be seen in the top part of Fig. 2.6. The magnetic field is

oriented along the y coordinate, perpendicular to the x-z plane, referred to as the bending

plane. The maximum intensity of the magnetic field is about 1 T, and the magnetic

field integral is 4 Tm. In order to allow the evaluation of any left-right asymmetry in

the detector, the polarity of the magnetic field has been flipped several times during the

data-taking.

2.3.5 Tracking algorithm and performances

In the development of the kinematic fit the tracking performance is of great importance.

The trajectories of the charged particles traversing the tracking system are reconstructed

from hits in the VELO, TT, IT and OT detectors. As illustrated in Fig. 2.6, the tracks

are divided in five categories:

Long tracks: particles generating hits in all tracking sub-detectors.

VELO tracks: particles generating hits only inside the VELO. Since these tracks have

a wide angle with respect to the beam pipe, they exit from the detector geometrical

acceptance just after the VELO.

Upstream tracks: tracks generated by particles with a low momentum. These produce

hits in the VELO and in the TT, but they are kicked off the geometrical acceptance

of the detector by the magnetic field generated by the warm magnetic dipole. It is

possible to measure their momentum thanks to the residual magnetic field present

in the VELO, even if the measurement is affected by a 20% relative uncertainty.

Downstream tracks: Long lived neutral particles can decay between the VELO and

the TT, producing charged particles that generate hits in the TT and in the three

tracking stations.

T tracks: tracks which have hits only in the tracking stations are classified as T tracks.

Track finding and reconstruction are organized in different steps. The first one starts with

the definition of segments in the various sub-detectors. Inside the VELO, segments are

2A warm dipole is made of non superconducting material, so it does not requires very low temperatures

to work.
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Figure 2.6: A schematic illustration of the various track types [33]: long, upstream, downstream, VELO

and T tracks. The main magnetic field component (By) is plotted above as a function of the z coordinate,

for reference.

Figure 2.7: Display of the reconstructed tracks (red) and assigned hits (blue) in an event in the x− z
plane [33]. The insert shows a zoom into the VELO region in the x− y plane.
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created matching all hits lying on a straight line. In the tracking stations, a segment is

created matching the hits contained in a section of T1 and T3 (e.g. in the left corner on

these two stations), using the information given only by one plane of vertically oriented

micro-strip sensors. Then, under the hypothesis of a parabolic trajectory, the algorithm

calculates the position of the hit in the middle stations and searches for compatible hits.

If a signal is found, it is added to the segment and it is used to better determine the

parameters of the trajectory. Finally, in order to have a 3-dimensional segment, the

compatible hits coming from the u-plane and the v-plane are also added.

On the other hand, the reconstruction process is organized in a hierarchical way. First

of all, the algorithm tries to reconstruct long tracks and then it picks up unused segments

to reconstruct downstream and upstream tracks, as follows.

• Long tracks are reconstructed with two algorithms. The first one extrapolates

VELO segments to the tracking stations, adding to the track the compatible hits in

the TT. The second matches VELO and tracking stations segments one to each

other, extrapolating VELO segments in the forward direction and tracking stations

segments in the backward direction.

• Downstream tracks are reconstructed starting from T stations segments and then

adding the compatible hits in the TT to those segments.

• Upstream tracks are obtained extrapolating VELO segments to the Trigger Tracker,

adding compatible hits and requiring a non compatibility with any of the tracking

station segments.

In a final step, the tracks are fitted using a Kalman filter. The fit takes into account

multiple scattering and corrects for energy loss due to ionisation. The χ2 per degree of

freedom of the fit is used to determine the quality of the reconstructed track. After the

fit, the reconstructed track is represented by state vectors, specified at given z-positions

in the experiment,

~α =

(
x, y,

dx

dz
,
dy

dz
,
q

|~p|

)
z

(2.1)

where q is the particle charge and x, y, z are the spacial coordinates. Moreover, if two or

more tracks have many hits in common, only the one with most hits is kept. In Fig. 2.7

the tracks reconstructed in a typical event (red) and the hits in the detector (blue) are

shown in the bending plane (x− z) and in the x− y plane.

Mis-reconstructed (fake or ghost) tracks are those that do not correspond to the

trajectory of a real charged particle. Because of the large extrapolation distance in

traversing the magnet, most of these fake tracks originate from wrong associations between

VELO tracks and tracks in the T stations. The fraction of fake tracks in minimum bias

events is typically around 6.5%, increasing to about 20% for large multiplicity events [40].
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Figure 2.8: Tracking efficiency as function of the (top left) momentum, (top right) the pseudorapidity,

(bottom left) the total number of tracks in the event (Ntrack) and (bottom right) the number of

reconstructed primary vertices (NPV) [39]. The error bars indicate the statistical uncertainty.
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To reduce this fake rate, a neural network classifier is used, at the cost of a small drop

in efficiency. This uses as input the result of the track fit, the track kinematics and the

number of measured hits in the tracking stations versus the number of expected hits.

The tracking efficiency is defined as the probability that the trajectory of a charged

particle that has passed through the full tracking system is reconstructed. In particular,

this efficiency does not account for interactions with the material, decays in flight and

particles that fly outside of the detector acceptance. The efficiency is measured using a

tag-and-probe technique with J/ψ →µ+µ− decays. In this method one of the daughter

particles, the “tag” leg, is fully reconstructed, while the other one, the “probe” leg, is

only partially reconstructed.

The overall efficiency depends on the momentum spectrum of the tracks and the

track multiplicity of the event. The tracking efficiency, measured in 2011 and 2012 is

shown in Fig. 2.8 (in black and red, respectively) as a function of various quantities. The

performance in 2012 is slightly worse, which is partially due to the higher hit multiplicity

at the higher centre-of-mass energy. As can be seen, the average efficiency is above 96%

in the momentum range 5 GeV/c < p < 200 GeV/c and in the pseudorapidity range

2 < η < 5, which covers the phase space of LHCb. Only in high multiplicity events

(Ntrack > 200) the efficiency is slightly less than 96%. The track reconstruction efficiency

has been shown to be well reproduced in simulated events [39].

2.4 The LHCb particle identification system

In this section all the sub-detectors installed in the LHCb detector used for the particle

identification are described. The LHCb PID system includes two Ring Imaging Cherenkov

detectors (RICH1 and RICH2), the electromagnetic calorimeter (ECAL), the hadronic

calorimeter (HCAL) and finally the muon detector.

2.4.1 The RICH detectors

For the discrimination of charged pions, kaons and protons in a momentum range

between few GeV/c up to about 150 GeV/c, two Ring Imaging Cherenkov detectors are

used: RICH1, installed immediately after the VELO, and RICH2, positioned after the

tracking stations [41].

Cherenkov light detectors exploit the light emitted by particles that travel in a medium

faster than the light in the same medium. The relation between the Cherenkov photon

emission angle θC and the refraction index n of the radiator is:

cos(θC) =
1

βn
(2.2)
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where β = v/c is the particle velocity with respect to the speed of light in vacuum.

From this relation, it is possible to notice that Cherenkov light is emitted only by those

particles with c/n < v < c. For instance, if v = c/n then cos(θC) = 1 and so θC = 0,

while if v = c then cos(θC) = 1/n and so θC = arccos(1/n). Thus, it is evident that for

particles approaching the speed of light the Cherenkov angle will saturate at the value

θC = arccos(1/n). For these reasons, it is necessary to have different radiators in order

to discriminate particles in a wide range of momenta.

RICH1 is optimized to identify tracks with a medium-low momentum, between 1

GeV/c and about 50 GeV/c. The structure of the apparatus is reported in the left

part of Fig. 2.9. The RICH1 is placed immediately after the VELO and its geometrical

acceptance (between 25 mrad to 330 mrad) is enough to cover practically the whole LHCb

detector acceptance. There are two different types of radiators inside RICH1: the first

is a 5 cm thick Aerogel layer, with n = 1.03, suitable for low momentum particles, the

second radiator is gaseous C4F10 (n = 1.0015) filling the remaining part of the detector

and is employed to detect particles with higher momenta (up to 50 GeV/c).

RICH2, instead, is placed behind the last tracking station. Its geometrical acceptance,

120 mrad in the vertical plane and 100 mrad in the horizontal plane, covers the region

of the detector where most of high momentum particles are found. The radiator chosen

is gaseous CF4, with a refraction index n = 1.00046, optimal for the higher momentum

region, up to about 150 GeV/c. A schematic view of the two sub-detectors is visible in

Fig. 2.9.

Thanks to a system composed of spherical and plane mirrors, the Cherenkov photons

emitted in both detectors are conveyed onto a lattice of photo detectors, the Hybrid

Photon Detectors (HPDs). The HPDs are placed in both the sub-detectors outside the

LHCb detector acceptance and they are shielded against the residual magnetic field. This

feature is particularly important for RICH1, since in this region of the LHCb detector the

residual magnetic field is not negligible. The shielding is necessary in order to allow the

HPDs to operate properly, since the photo-electrons created in the photomultipliers could

be bent by the residual magnetic field and this would reduce the HPDs performances.

This configuration allows to have optimal results with signal’s rise and fall times of about

1 ns.

2.4.2 Particle identification method

RICH detectors are able to discriminate between the various mass hypotheses for a

given particle, since the photon emission angle is related to the particle mass and to its

momentum. As the emission covers the full solid angle, rings on the HPD plane, with

radius proportional to θC , are expected. The hits on the HPD plane will be distributed

around a particular radius value, corresponding to the Cherenkov emission angle. Due to

resolution effects, the distribution will be smeared around the central value. By measuring
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Figure 2.9: Overview of the two RICH sub-detectors. On the left the RICH1 is represented. It is

relevant to note the different Cherenkov photon emission angles of the Aerogel (yellow) and C4F10 (light

blue) radiators. On the right the RICH2, filled with CF4 gas, is represented.

the photons hit positions, it is possibile to obtain a value of θC for each particle, allowing

the discrimination between the various mass hypotheses.

Because of an irreducible background given by photons coming from other particles

and the complexity of the problem, the following approach has been chosen to achieve

the best particle discrimination performances. For a given set of mass hypotheses, the

probability for a single photon to be detected on a single HPD pixel is computed. After

that, the expected contribution from all sources is compared with the observed number

of photons and a likelihood is calculated, whose change in value depends only on the

mass hypotheses assigned to the tracks. Only five mass hypotheses are considered for the

tracks detected: electron, muon, pion, kaon and proton.

The pion mass-hypothesis is used for all the tracks detected and a first global likelihood

is computed. Then, the hypothesis is changed to e, µ, K and p for one particle at a time

and the change in the global likelihood is computed. The chosen mass hypotheses is the

one that returns the maximum improvement in the global likelihood. This process is

repeated for all tracks, until no improvement is observed in the likelihood value.

The discriminating variable is the difference between the logarithm of the likelihood

for the particle P under two particle hypotheses, ∆ logL(P ). For example, ∆ logLK−π(P )

is the difference between the logarithm of the likelihood under the K and π hypothesis
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Figure 2.10: Kaon ID performance for 2015 dataset. The efficiency for the identification of kaon K → K

(red) and the mis-ID of pions as kaons π → K (black) as a function of the momentum are represented,

for different requirements in the likelihood difference [42].

for the particle P

∆ logLK−π(P ) = logLK(P )− logLπ(P ). (2.3)

A large positive value of ∆ logLK−π(P ) corresponds to a high probability that the

particle P is a kaon, while a large negative value of ∆ logLK−π(P ) corresponds to a high

probability that the particle P is a pion.

Another useful discriminating variable is the so-called ProbNNpi(K,...). This quan-

tity represents the probability, computed through a MC-trained neural network, for a

detected particle to be a pion (kaon,...). This variable will be used in the process of the

background evaluation in Chapter 4.

The efficiency of these discrimination methods has been widely studied using cal-

ibration data samples with high purity final states selectable only using kinematical

requirements, without using the RICH sub-detectors information. Due to their particular

kinematic characteristics K0
S → π+π−, D∗+ → D0(K−π+)π+ and Λ →pπ− are used as

calibration samples. In Fig. 2.10, the kaon ID and the pion mis-ID efficiencies are reported.

Since θC depends on the particle momentum, the efficiency and the mis-identification

are plotted as a function of the momentum. In particular, the efficiency for correctly

identified particles, such as kaons, is represented in red, while the pion mis-identification

rate is shown in black.
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Figure 2.11: Schematic representation of the signal deposited on the different parts of the calorimeter

by an electron, an hadron and a photon.

2.4.3 The calorimeters system

The calorimeters system is used to measure hadrons, electron and photon energies.

As a consequence, it gives information for their identification and it provides important

information for the Level-0 (L0) trigger, evaluating hadron, electron and photon transverse

energy ET. The calorimeter system is divided into four subdetectors [43]

• Scintillator Pad Detector (SPD);

• Pre-Shower (PS);

• Electromagnetic Calorimeter (ECAL);

• Hadronic Calorimeter (HCAL).

The calorimeters system and its interactions with particles is schematically represented

in Fig. 2.11. Each sub-detector is divided into regions with different dimensions and

sensors sizes. In order to reach a compromise between occupancy and the number of

read-out channels, the sensor size increases with the distance from the beam pipe. In

particular, SPD, PS and ECAL are divided in inner, middle and outer regions, while

HCAL is divided in two parts (inner and outer). The SPD and the PS are auxiliary

sub-detectors of the electromagnetic calorimeter and they are placed in front of it.

In particular, the SPD is used to discriminate between charged and neutral particles,

since the former emit light when crossing a scintillator material while the latter do not.

On the other hand, the PS is used to obtain a better discrimination between electrons and

pions. Both the SPD and the PS consist of about 6000 scintillating pads with a thickness

of 15 mm, interspaced with a 2.5 radiation lengths3 lead converter. The light produced

by the scintillator material is collected using wavelength-shifting fibers (WLS). These

3 The radiation length is defined as

X0 =
A · 716.4g/cm

2

Z(Z + 1) ln(287
√
Z)

(2.4)
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Figure 2.12: Scheme of the ECAL. On the left, an ECAL module during the assembly phase is

represented: the lead/scintillator layers are clearly visible. On the right there is a representation of an

assembled ECAL module is shown. The green lines connected to an end of the module are the WLS

fibers connecting the calorimeter to the photomultipliers.

WLS fibers are used to transmit the light to multi-anode photomultipliers (MAPMTs)

located outside the detector.

The ECAL is a sampling calorimeter realized using Shashlik technology and separated

in independent modules. The Shashlik calorimeters are sampling calorimeters in which

the scintillation light is carried out via WLS fibers running perpendicularly to the

converter/absorber plates [45,46]: this technique offers the advantages of an easy assembly,

good hermiticity and fast time response. An overview of ECAL is given in Fig. 2.12. Each

ECAL module is composed of 66 lead converter layers (2 mm thick), each one installed

between two plastic scintillator layers 4 mm thick. In total, all the layers installed in

the ECAL correspond to about 25 radiation lengths and 1.1 nuclear interaction lengths.

The WLS fibers bring the light produced by the scintillator material to the read-out

photo-multipliers in the back part of the module. As said above, the module size and the

number of read-out channels differ depending on the region where the module is installed.

In the inner region each module has a section of 4× 4 cm2, with 9 read-out channels per

module; the middle region contains modules with a section of 6× 6 cm2 and 4 read-out

channels. Finally, the outer region is composed of 12× 12 cm2 modules with one channel

each.

where A is the mass number and Z is the atomic number of the material considered. The radiation

length corresponds to the distance over which the energy of an electron is reduced by a factor 1/e only

due radiation loss. For a discussion see Ref. [44].
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The HCAL main task it to measure the energies of hadronic showers, thus providing

fundamental information for the Level-0 trigger. The HCAL structure is very similar to

that of the ECAL, with the only difference that each module is composed of scintillator

layers 4 mm thick, interleaved with steel layers 16 mm thick. This corresponds to roughly

5.6 nuclear interaction lengths in total. In the inner region, the modules have a section of

13× 13 cm2, while in the outer region they have a section of 26× 26 cm2.

2.4.4 Calorimeters system resolution

The calorimeter system performances have been evaluated from many test beams

made before the start of the data-taking [47, 48]. Energy resolutions are given by

σ(E)/E = (8.5 − 9.5)%/
√
E ± 0.8 for ECAL and σ(E)/E = (69 ± 5)%/E ± (9 ± 2)%

for HCAL. The ECAL calibration is achieved by reconstructing resonances decaying to

two photons like π0 → γγ and η → γγ. Calibration of the HCAL can be realized by

measuring the ratio E/p between the energy E as measured in the calorimeter for a

hadron with momentum p, as measured by the tracking system.

2.4.5 Muon detectors

The final part of the LHCb detector consists of five muon stations, which, altogether,

form the muon sub-detector [49]. Muons with high pT are fundamental particles since

they are used by the tagging algorithm to identify the flavor of the spectator B-hadron

produced associated to the signal B-hadron. Moreover, they are present in several final

products of B-hadron decays as the “golden channels” B0
s → J/ψ(µ+µ−)φ, B0 → K∗0µ

+µ−,

or the rare decay B0
s →µ+µ−. To discriminate muons against the abundant hadronic

background, muon candidates are formed from aligned hits in each of the five stations of

the sub-detector, shown in Fig. 2.13. These stations (M1-M5) cover an angular acceptance

of 300 mrad in the horizontal plane and 200 mrad in the vertical plane. The geometrical

efficiency for the detection of muons coming from B-hadron decays is nearly 46%. In

order to avoid possible muon multiple scattering effects, which could modify the particle

trajectory, the first muon station M1 is placed before the calorimeters. The remaining

four muon station (M2-M5) are placed after the calorimeter system, at the end of the

LHCb detector.

Each muon station is divided into four regions R1-R4, where R1 is the closest to the

beam pipe, as it is represented in the bottom part of Fig. 2.13. The dimension of the

chambers and the segmentation of each region increase as the distance from the beam

pipe becomes greater. In particular, the segmentation increases in a ratio 1 : 2 : 4 : 8, as

shown in Fig. 2.14. As a consequence, the charged particle occupancy is expected to be

about the same in each region.

All the chambers are Multi-Wire Proportional Chambers (MWPC), except for the
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Figure 2.13: Overview of the muon sub-detector in the y-z plane. The five stations sketched are visible.

The division in R1-R4 regions is also sketched.

Figure 2.14: On the left, frontal view of a muon station section: each rectangle represents a chamber.

Note that they become larger as the distance from the beam pipe increases. Right: different segmentation

types of the four chambers. The inner chambers are more segmented than the outer ones.
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inner region of the M1 station, where triple-Gas Electron Multiplier (GEM) detectors are

employed. MWPCs have four overlapped gaps, each one 5 mm thick and with a distance

between wires of about 2 mm. In total, the muon detector contains 1380 MWPCs. The

triple-GEM detector consists of three GEM foils sandwiched between anode and cathode

planes.

2.4.6 Muon-ID algorithm performances

The muon-ID algorithm in the hardware trigger takes hits in the M3 station as

input. For each hit, a straight line is extrapolated to the interaction region defining a

“field of interest”, taking into account the magnetic field kick around such a trajectory.

Hits coming from long and downstream tracks that are found around the extrapolated

trajectory are fitted together to form a muon track. The muon identification requires

different combinations of hits as a function of the momentum.

• If 3 < p < 3.5 GeV/c, then hits in M1-M3 are required.

• If 3.5 < p < 4.5 GeV/c, then hits in M1-M4 are required.

• If p > 4.5 GeV/c, then hits in all the five stations are required.

After this, complex algorithms compute the muon likelihood for each muon track, used

as a particle-identification discriminator.

2.5 The LHCb trigger system

The production cross-sections of bb and cc pairs are quite large and this means that a

very good trigger system is required, in order to accept only the interesting events while

rejecting most of the background events at the same time. The LHCb trigger has been

developed to work at the bunch crossing frequency of the LHC, in order to process the

largest number of events possible [50].

The only way to reach the desired performances is to divide the trigger into different

levels, each processing the output of the previous. In particular, the LHCb trigger system

is divided into three levels:

Level-0 (L0): this is the first trigger level and it is based on custom electronics. It is

designed to perform a first filtering of the events, reducing the input rate of about

40 MHz to an output rate of only 1 MHz.

High Level Trigger 1 (HLT1): this is the second trigger level and it is software based.

HLT1’s tasks are to filter events in an inclusive way and to reduce the rate of

accepted events to 50 kHz, starting from an input rate of about 1 MHz, given by

the L0.
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Figure 2.15: The LHCb trigger scheme for Run-1 (left) and Run-2 (right).

High Level Trigger 2 (HLT2): this is the last trigger level and, as the previous one, it

is completely software based. The HLT2 takes the input from the HLT1 and reduces

it to an output rate of about 12 kHz in Run-2, applying an exclusive selection of

beauty and charm decays. The output of HLT2 is finally sent to mass storage.

A summary of the trigger strategies used is reported in Fig. 2.15, where Run-1 strategy is

on the left and the Run-2 on the right. Now a detailed description of the various trigger

levels is given.

2.5.1 Level-0 Trigger

The L0 trigger uses information coming mainly from the tracking system and from

the calorimeters system. In fact, at this level, the trigger decides to keep or discard events

based on measurements of pT and ET of the particles composing the event. The system

uses three independent systems running in parallel:

• The electron/photon trigger which uses the information given by the SPD/PS

and ECAL detectors. Custom boards are programmed to measure the energy of

electromagnetic showers. The event is accepted if there is at least one cluster with

ET exceeding a given threshold.

• The hadronic trigger, as the name suggests, utilises the information given by the

HCAL detector. It works in the same way as the electron/photon trigger: the event

is accepted if there is at least one cluster with enough transverse energy.
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• The muon trigger uses the information given by the five muon stations. Tracks are

reconstructed defining fields of interest around particles hits and then connecting

hits in the same field of interest. Events are accepted if at least one muon candidate

has a transverse momentum greater than a threshold. Moreover, the trigger contains

a line to select muon pairs, asking that the sum of their transverse momenta exceed

a given threshold.

Furthermore, since in 2010 and 2011 the detector worked at an input rate four times

larger than what planned, a system to reject high-occupancy events was developed and

implemented in the L0 trigger. Thanks to its fast response, the SPD can be used to

roughly estimate the number of charged particles per event. It has been decided to accept

events only if the number of hits in the SPD was less than 600.

2.5.2 The High Level Trigger 1

The HLT1 is devoted to the reduction of the input rate from the L0 trigger to a more

manageable level. This is done rejecting events with an OT occupancy larger than 20%,

because they would take more than the 25 ms allowed to the HLT1 to take a decision.

After this first rough selection, the remaining events are reconstructed, considering that:

• High-mass B hadrons and their production mechanism imply that the particles pro-

duced in their decays have larger momentum and transverse momentum compared

to other hadrons composed by light quarks.

• The average decay length of B hadrons produced at the LHC is about 1 cm. As a

consequence, their decay products will have a large impact parameter (IP) with

respect to their primary vertex (PV).

• Each B hadron decay has at least one final state particle with large p, pT and IP.

• VELO reconstruction time is fast enough to allow the full information on the

primary vertex to be used by the HLT1.

• The full reconstruction can be performed only for a limited number of tracks,

because of the limited time available.

The last two points are the reason why the reconstruction is divided in two steps. In

the first step VELO tracks and PV are reconstructed. The tracks are selected requiring

large impact parameters with respect to the closest PV and a minimum number of hits

in the VELO. If the difference between the expected number of hits and the observed

number of hits in the VELO is greater than a certain threshold, the track is rejected. For

example, a typical choice of the requirements values used is: IP > 125µm, Nhits
obs > 9 and

Nhits
exp −Nhits

obs < 3. After this, forward reconstructed tracks are further selected, requiring
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minimal p and pT thresholds. Finally, remaining tracks are fitted using a bi-directional

Kalman filter with outlier removal. This fit is done in order to obtain an offline-quality

value for the track χ2 and an offline-quality covariance matrix at the first state of the

track, allowing a cut on the IP significance squared (χ2(IP)). The requirement on χ2(IP)

is very efficient in rejecting background, while the track χ2 is suitable in rejecting ghost

tracks.

2.5.3 The High Level Trigger 2

HLT2 filtering is mainly based on three inclusive selections, the so-called topological

lines. In addition, a few dedicated lines for the LHCb core analyses are used. The main

strategy of topological lines is to build multibody candidates in the following way:

• two particles are combined to form a two-body object;

• another input particle is added to the two-body object to form a three-body object

and so on;

• the pion mass hypothesis is adopted for all tracks.

In this way, n-body objects are built combining the (n− 1)-body candidate with another

particle (saving CPU time with respect to combining n particles directly). Particles are

added to an object only if they respect a cut on the distance of closest approach (DOCA).

For example, the two particles forming a two-body object need to have DOCA < 0.15 mm.

When a 3-body object is built combining a 2-body object with another particle, another

DOCA < 0.15 mm cut is imposed and so on for the construction of further objects. In

addition, the HLT2 contains lines which exploit tracks identified as muons. Di-muon

candidates are formed and, depending on their mass, selection requirements are applied

on the flight distance and pT of the candidate. Single muon candidates are accepted

requiring a large pT or a combination of χ2(IP) and pT requirements.

2.6 Data management and computing

The LHCb computing model is based on a series of distributed multi-tier regional

centers of different dimensions. In order to store and process the data coming from the

detector and to perform the first selections, the LHCb experiment (as well as the other

three major experiments at the LHC) requires large amounts of disk space and CPU

power. It is important to note that it would be unfeasible to concentrate the resources

needed to perform these tasks in one single place, so the computing system is divided

in different tiers dedicated to specific duties. The Tier0, located at CERN, provides to

LHCb about 20% of the total resources required by the experiment and it is connected
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Figure 2.16: The LHCb data flow and the softwares used at each different step.

to the Tier1 centers via 10 Gbit/s optical-fibre links. Moreover, Tier0 stores all the Raw

data, also providing a copy distributed among the Tier1 centers. There are 6 LHCb

Tier1 centers worldwide that are responsible for storing a proportional share of raw

and reconstructed data, as well as performing large-scale reprocessing and storing the

corresponding output. Furthermore, the Tier1 centers have to distribute the data to the

Tier2 centers and to store a part of the simulated data coming from them. Each Tier1 is

connected to a number of Tier2 centres, usually in the same geographical location. Finally,

Tier3 resources consist of local clusters in university departments and are dedicated to

specific jobs needed by the research team who owns them. This system is collectively

referred to as the World LHC Computing Grid (WLCG).

2.6.1 Data processing

The data processing follow a specific flow, designed to maximise the data-taking

efficiency and data quality. This consists of several steps, each one being controlled by an

‘application’ which processes the data event-by-event, using the data from the previous

step and creating the results ready for the next. In Fig. 2.16 a schematic overview of

these different steps is represented.

The Raw data come from the detector and they are reconstructed via the online Event

Filter farm. Then the Raw data are processed using optimized and highly specialized

algorithms implemented in the HLTs. The Moore software applies the necessary

calibration corrections during the reconstruction of the properties of the particles and

imposes cuts based on physics criteria. After the triggering, raw data are reconstructed

by the Brunel application in order to transform the detector hits into objects such as

tracks and clusters. These objects are stored into an output file in a data summary tape

(DST) format, which contains the full event information (reconstructed objects and raw

data).

Data are filtered further through a set of selections implemented in the so called

stripping lines, and applied by the DaVinci software, which writes out data either in
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the DST or micro-DST (µDST) format. In order to save disk space and speed up the

access, the output files are grouped into streams which contain similar selections.

For what concerns the simulated data, the events are generated by a MonteCarlo (MC)

model considering the pp collisions, the various decays and the LHCb detector response.

In particular, the simulated samples are generated using the Pythia software [51] to

simulate the collision and the hadronization process. Then, the output of the generation

phase is processed by the EvtGen software [52] emulates particle decays. Finally, the

propagation of these events in the detector and their interaction with it are simulated by

the Geant4 [53, 54] software.

After the generation and simulation of the detector response, these events are treated

in the same way of Raw data, and at the end of the process a DST or a µDST file are

written. In addition to the the simulated hits and other interesting quantities, this type

of data contain extra “truth” information. The truth information is needed to keep track

of physics history of the event and it is carried through all the subsequent processing

steps in order to be used during the analysis.
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The Global Fit algorithm

The main goal of this analysis is to realise a preliminary study in order to measure

Rµ/e =
B(D0→ K−µ+νµ)

B(D0→ K−e+νe)
(3.1)

using the D∗+ →D0 (→K−`+ν`)π
+ decay, where ` is either a muon or an electron. Due to

the kinematic of the decay and the design of the LHCb detector, the implementation of a

global fit (GF) with kinematical constraints has been choosen as a method to reconstruct

the neutrino momentum, fundamental for the next steps of the whole analysis. The data

samples used in this analysis are the 2015 Run-2 data, corresponding to an integrated

luminosity of 0.33 fb−1. The MonteCarlo (MC) samples, produced with the 2015 data

taking conditions.

In this Chapter, after the description of the kinematic of the decay (Sec. 3.1) and

the analitical reconstruction of the neutrino’s momentum (Sec. 3.2), the GF algorithm

is described: in Sec. 3.3 the motivations which brought us to this choice, instead of

analitically reconstructing ~pν , are explained; in Sec. 3.3.1 the statistical method used is

described. After this general introduction, the algorithm is described in detail in Sec. 3.4.

Finally, some interesting distributions obtained using the outputs of the GF are shown in

Sec. 3.6.

3.1 Kinematic of the decay D∗ → D0(→ K`ν`)π

In the LHCb detector the D∗+ →D0 (→K−`+ν`)π
+ decay has the topology shown in

Fig. 3.1. The D∗+ meson is produced in the primary pp vertex and it instantaneously

decays, through strong interaction, in a D0 meson and a charged pion. The π flies through

the detector, producing a track with a typical momentum of about 5 GeV/c. The D0

weakly decays after a flight of some centimeters, since it has a mean lifetime τD0 ∼ 0.41 ps

and a tipical momentum of about 50 GeV/c.

45
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Figure 3.1: Topology of the D∗+ →D0 (→K−`+ν`)π+ decay chain, when ` =µ. The scale is arbitrary

and not realistic.

This secondary vertex, displaced from the pp one, is a typical feature of heavy mesons

decays in LHCb and it is necessary to resolve its position with high precision. Another

variable useful to discriminate weak decays is the impact parameter (IP), which is the

minimum distance between a track and a primary vertex. For example, the pion from the

D∗+ decay, as it comes from the primary vertex, has small IP, while the charged kaon

and ` are more likely to have large IP values, since they come from a displaced vertex..

Because of its weak interaction with the materials and its neutral electromagnetic

charge, the neutrino is not detected in the LHCb. Usually, in detectors with an acceptance

region corresponding to the full solid angle and with very precise calorimeters, it is possible

to measure the kinematical information of the neutrinos from the total measured energy.

Eve if in the LHCb the information regarding the kinematic of the D0 decay is only

partially known, it is still possible to extract some information about the kinematic of

the neutrino. In order to study the decay, in addition to the invariant masses of the D∗+

and the D0, it is useful to define other quantities. These are the visible D0 mass, the

corrected D0 mass and the mass of the D0π+ pair:

• the visible D0 mass is the invariant mass of the K` pair:

mvis(D
0) = m(K`) =

√
(EK + E`)

2 − (~pK + ~p`)
2. (3.2)

where m2
K,` = E2

K,` − p2
K,` with mK and m` the known masses of the kaon and

either the electron or the muon, mµ = 105.658 MeV/c and me = 510.999 eV/c2

respectively [32];

• the correccted mass mcorr is calculated using invariant mass of the (D0π+) pair,
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calculated without any mass hypotheses on the final state particles:

mcorr(D
0) =

√
m(K`)2 + p2

⊥(K`) + p⊥K`), (3.3)

it is used to partially account the presence of the neutrino;

• m(D0π) is calculated as:

m(D0π) =
√
E2(K`π)− p2(K`π), (3.4)

where

E(K`π) =
√
m2
D0 + p2(K`) +

√
m2
π+ + p2(π), (3.5)

~p(K`π) = ~p(K`) + ~p(π), (3.6)

~p(K`) = ~pvis = ~p(K) + ~p(`), (3.7)

and mD0 = 1864.84 MeV/c2 is the known D0 mass [32]. This variable is similar to

∆m = m(K`π)−m(K`), i.e. the difference between the visible masses of D∗+ and

D0 respectively. This variable would have a peaking structure around the known

value of D∗+ mass, mD∗+ = 2010 MeV/c2, providing discrimination with respect to

the background [55].

Knowing this quantities and the energies and momenta of the charged tracks, it is possible

to reconstruct the neutrino momentum. Even if the momentum resolution of the missing

neutrino is not comparable with the usual one of a visible track, it is still useful to have

such information in order to identify signal events. In the following Section the procedure

adopted to estimate the momentum of the missing neutrino will be discussed.

3.2 Analitic reconstruction of the neutrino momen-

tum

A possible way to obtain information on the neutrino is to extract it analitically. The

starting point is to compute the invariant mass of the D0, which is defined as

m2
D0 = (Evis + Eν)

2 − (~pvis + ~pν)
2, (3.8)
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where, consistently with the definition of mvis given above in Eq. (3.2)

~pvis = ~pK + ~p`, (3.9)

Evis = EK + E`. (3.10)

Other fundamental variables are the slopes A and B of the conjugation line between the

two decay vertices. They are defined as:

A ≡ xD0 − xD∗
zD0 − zD∗

=
pxK + px` + pxν
pzK + pz` + pzν

, (3.11)

B ≡ yD0 − yD∗
zD0 − zD∗

=
pyK + py` + pyν
pzK + pz` + pzν

. (3.12)

Substituting the values of Eqs. (3.11) and (3.10), the two slopes become:

A =
pxvis + pxν
pzvis + pzν

, (3.13)

B =
pyvis + pyν
pzvis + pzν

. (3.14)

At this point, to compute the neutrino momentum, the system written in Eq. (3.15) must

be solved: 
pxν = A(pzvis + pzν)− pxvis

pyν = B(pzvis + pzν)− pyvis

m2
D0 = (Evis + |~pν |)2 − (~pvis + ~pν)

2

(3.15)

where the neutrino mass is neglected, so as to E2
ν = p2. Introducing the variable t equal

to t = pzvis + pzν and substituting the first two lines in the third one obtains Eq. (3.16)

E2
vis + p2

vis − 2t(Apxvis +Bpyvis + pzvis) + 2Evispν = m2
D0 . (3.16)

In order to simplify the computing, after isolating pν ,it is defined the quantity s =

Apxvis +Bpyvis + pzvis. Then elevating in quadrature both members, one gets

4E2
vis[(A

2 +B2 + 1)t2 − 2ts+ p2
vis] = (m2

D0 − E2
vis − p2

vis + 2ts). (3.17)

In this way, only the variable t depends on pzν . In order to obtain an equation at second

order in t, another ausiliary variable Z is introduced, equal to Z2 = m2
D0 + E2

vis − p2
vis

and substituting it in the (3.17), we obtain

4
[
E2

vis(A
2 +B2 + 1)− s2

]
t2−2

[
2sZ2

]
t+
[
4E2

visp
2
vis − Z4 − 4E4

vis + 4Z2E2
vis

]
= 0 (3.18)
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Finally the two solutions for the z-coordinate of the neutrino momentum are obtained:

pzν =
sZ2 ±

√
(A2 +B2 + 1)(Z4 − 4m2

D0E2
vis) + 4m2

D0s2

2(E2
vis(A

2 +B2 + 1)− s2)
− pzvis. (3.19)

Once we have the solution of pzν it is possible to compute all the other coordinates, so as

to compute the invariant mass of the D∗+:

mD∗+ =
√

(Evis + Eν)2 + (pvis + pν)
2 . (3.20)

3.3 Motivations to choose a Global Fit algorithm

In order to compute Rµ/e it is necessary to separate the signal from the background,

i.e. to have a high precision measurements of the invariant mass of the D∗+. Without

any information on the neutrino, the invariant mass of the D∗+ appears in the left side

of Fig. 3.2. The invariant mass shown in the figure has been calculated using only the

information of the charged tracks

m2
vis(D

∗) = m2
vis +m2

π + 2
√
m2

vis + p2
vis

√
m2
π + p2

π − 2~pvis~pπ, (3.21)

where mπ = 139.57 MeV/c2, pvis is the total visible D0 momentum, as defined in Eq. (3.9)

and mvis = mvis(D
0) is the visible mass of the D0. Even if a small peak centered around

2.01 GeV/c2 is visible, the distribution broadens through the whole invariant mass interval

shown. Also on the right side of Fig. 3.2, the D∗+ invariant mass is represented, in this

case it is calculated using the true momentum of the neutrino (see Sec. 2.6) and a narrow

peak, in correspondance of 2.01 GeV/c2, is visible. In Fig. 3.2 the distribution shown are

obtained with simulated events. As a result, in order to obtain the highest precision

measurements, it is necessary to find a suitable way to evaluate the neutrino momentum.

Using the analitical resolution to calculate neutrino momentum shows the problem

that sometimes there are no real solutions, since the parameters may bring to a negative

discriminant in the Eq. (3.19), due to the momentum resolution of the visible tracks.

The implementation of a GF algorithm, would address these issue. The key point of

the GF algorithm is to write a single function of a set of parameters which describes the

whole decay chain and gets minimised in order to obtain the values of the parameters

which better fit to the measured data. The chosen statistical approach is the least squares

method. The output of the GF comprehends all the parameters describing the decay,

including the neutrino’s momentum vector. Thanks to the GF, it is possible to compute

the D∗+ invariant mass and to evaluate the q2, fundamental for the analysis of Rµ/e(q
2).
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Figure 3.2: Left: the visible mass of the D∗, which is mD∗ calculated without any information on the

neutrino, as if the decay was D∗+ → D0(→ K−`+)π+. Right: Invariant mass of the D∗+ computed

using the MC truth.

3.3.1 The least squares method

In many situations, as in high energy physics, a measured value y can be considered as

a Gaussian random variable centered on the quantity’s true value φ. Following the central

limit theorem, this is valid as long as the total error is the sum of small contributions.

Let’s consider an set of N variables yi, Gaussian-distributed with a known covariance

matrix V , but unknown mean values, and related to xi, which is assumed to be known

with precision. Supposing that the true value is given as a function of x, φ(~x; ~θ), where
~θ = (θ1, ... , θm) are unknown parameters, the method of the least square (LS) aims

to estimate these parameters, given the data x1, ... , xn. It also gives the possibility to

evaluate the goodness-of-fit of the hypothesised function φ(z; ~θ).

The core idea of the LS method is finding the values of ~θ which minimise the quantity:

χ2(~θ) =
N∑
i=1

(
yi − φ(xi; ~θ)

)
(V −1)ij

(
yj − φ(xj; ~θ)

)
. (3.22)

If φ(~x; ~θ) is a linear function of the parameters, as

φ(~x; ~θ) =
m∑
j=1

aj(~x)θj =
m∑
j=1

Aijθj, (3.23)

where Aij = aj(~x), Eq. (3.22) becomes

χ2 = (~y − ~φ)TV −1(~y − ~φ) (3.24)

= (~y − A~θ)TV −1(~y − A~θ), (3.25)

where ~y = (y1, ... , yN ) is the vector of the measured values and ~φ = (φ1, ... , φN ) contains
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the predicted values φi = φ(xi; ~θ). In order to find the minimum χ2, the first derivative

of θi must be set to zero

∇χ2 = −2(ATV −1~y − ATV −1A~θ) = 0. (3.26)

This can be solved for estimators ~̂θ, providing that ATV −1A is not singular

~̂θ = (ATV −1A)−1ATV −1~y ≡ B~y. (3.27)

As a consequence, the parameters ~θ are a linear function of the original measurements. In

order to find the covariance matrix for the estimators Uij = cov[θi, θj], error propagation

is used and it gives

C =BV BT = (ATV −1A)−1. (3.28)

Considering this, it is possible to write the χ2 as

χ2 = (~y − ~̂θ)C−1(~y − ~̂θ)T , (3.29)

where θ is the physical quantity, ~θ = ~̂θC is the measured one and C−1 is the covariance

matrix of the two quantities. Since the kinematic of the decay comprehends a large

number of constraints, a χ2 must be computed for each of them. Thanks to the linearity

of the χ2, the final χ2 is a sum all of these.

3.4 Global Fit strategy

In Sec. 2.3.5 the parametrisation of the charged tracks after the reconstruction has

been shown. For every z = zRef π, K and ` tracks are parametrised as

~α =

(
x, y, tx, ty,

q

|~p|

)
zRef

(3.30)

where q is the charge of the particle, |~p| is the total particle momentum and tx and ty are

the two slopes:

tx =
dx

dz
=
px
pz
, (3.31)

ty =
dy

dz
=
py
pz
, (3.32)

where pi is the i-th coordinate of the momentum. The measured quantities are the tracks

of the charged particles, π, K and ` (µ or e), the position of the D0 decay vertex and the
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coordinates of the primary vertex. For each track the χ2 is calculated as follows

χ2
K = (~αK − ~̂αK)C−1

K (~αK − ~̂αK)T , (3.33)

χ2
` = (~α` − ~̂α`)C−1

` (~α` − ~̂α`)T , (3.34)

χ2
π = (~απ − ~̂απ)C−1

π (~απ − ~̂απ)T , (3.35)

χ2
PV = (~αPV − ~̂αPV)C−1

PV (~αPV − ~̂αPV)T , (3.36)

where αi is the physical quantity, ~αi = ~̂αiC is the measured one and C−1 is the covariance

matrix of the two quantities. Due to the logarithmic nature of the χ2, the final function

to be minimised will be the sum of all these chi-square functions and the one related to

the constraint of the invariant mass, which are explained in detail in the next section.

The function is

f(~θ, ~̂θ) = χ2
PV + χ2

π + χ2
` + χ2

K + χ2
D0 , (3.37)

where ~̂θ is the vector of the parameters to be estimated from the minimisation.

3.4.1 Implementation of the constraints

In order to compute the GF it is necessary to keep in mind the kinematic of the

D∗+ →D0 (→K−`+ν`)π
+ decay, represented in Fig. 3.1. As above said, the D∗+ in-

stantaneously decays in D∗+ → D0π+, so the first decay vertex corresponds to the pp

interaction vertex (primary vertex, PV). As a consequence, the π track must point to

the PV. On the other hand, the secondary vertex of the D0 decay is displaced from

the PV, it is identified as the interaction point of the two charged daughter tracks (K−

and `+). Moreover, the invariant mass of the D0, must be equal to the known value of

mD0 = 1864.83 MeV/c2 [32]. All things considered, five constraints must be computed as

follows:

Invariant mass of the D0 The first kinematical constraint is the invariant mass of

the D0. Starting from (3.8), and developing it, mD0 is obtained by

m2
D0 = m2

K +m2
` + 2

√
m2
K + p2

K

√
m2
` + p2

` + 2pν

√
m2
` + p2

` + 2pν

√
m2
K + p2

K+

− 2~pK~pν − 2~p`~pν − 2~p`~pK (3.38)

where all the masses values (m`, mK) are taken from the Particle Data Group’s

latest review [32]. The computed invariant mass is gaussian constrained to the

value from the PDG, so the following χ2 is written:

χ2
D0 =

(mD0 − m̂D0)2

2σ2
mD0

(3.39)
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where σ2
mD0

= 0.001 GeV/c2, greater than the PDG value, which is 5× 10−5 GeV/c2,

but small enough to constraint at the level of few MeV/c2 the D0 invariant mass;

D0 secondary vertex The two tracks of the charged daughters (` and K) of the D0

have to come from the same vertex. In order to get a constraint from this, the first

two coordinates of the track (x and y) must be reparametrised using the vertex

coordinates as follows {
x̂K/` = xD0 + (zRef − zD0)t̂

K/`
x

ŷK/` = yD0 + (zRef − zD0)t̂
K/`
y

(3.40)

where t̂
K/`
i , for i = x, y, is the ratio between the i-th coordinate of the K or

` momentum and the z one. The chi-square is then calculated as in Eq. (3.33)

and (3.34);

D∗+ corresponds to the primary vertex In order to exploit the fact that the D0

comes from the primary vertex, a similar reparametrisation as previously described

has been adopted {
x̂PV = xD0 + (zPV − zD0)t̂D

0

x

ŷPV = yD0 + (zPV − zD0)t̂D
0

y

(3.41)

where, the momentum of the D0 is calculated as ~pK + ~pl, and t̂D
0

x and t̂D
0

y are

t̂D
0

x =
p̂Kx + p̂`x + p̂νx
p̂Kz + p̂`z + p̂νz

, (3.42)

t̂D
0

y =
p̂Ky + p̂`y + p̂νy
p̂Kz + p̂`z + p̂νz

. (3.43)

The relative chi-square is in Eq. (3.36).

Pion coming from the primary vertex It is related to the D∗ →D0π+ decay. Simi-

larly to the charged tracks of the kaon and the lepton, it is parametrised as follows

{
x̂π = xPV + (zRef − zPV)t̂x

ŷπ = yPV + (zRef − zPV)t̂y
. (3.44)

Its χ2 is expressed in Eq. (3.35).
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3.4.2 Minimisation

Finally, the function to minimise is the sum of all the single contributions:

f(~θ, ~̂θ) = χ2
PV + χ2

π + χ2
` + χ2

K + χ2
D0 , (3.45)

where ~̂θ is the vector of the parameters which will be estimated and it includes:

• ~pν , the coordinates of the neutrino momentum;

• ~p`, the coordinates of the momentum of the lepton (electron or muon);

• ~pK , the coordinates of the kaon momentum;

• ~pπ, the coordinates of the momentum of the soft pion;

• ~xD0 , the position of the D0,

• the third coordinate of the primary vertex zPV.

In summary, in the minimisation of Eq. 3.45 there are 16 free parameters, starting from

18 measured quantities, i.e. tracks’ measurements and the mass values.

3.5 Implementation of the algorithm

The GF algorithm is implemented using members of the TMinuit class of the Root

Data Analysis Framework. In order to use Minuit directly, it is necessary to wrap

the final chi-square of Eq. 3.45, in a way it can be processed. In fact, Minuit call a

void function with specific arguments: (int& nDim, double* gout, double& result,

double par[], int flag), where par[] is the array of the parameters and the variable

result must be equal to the value of the function which has to be minimised. The

Migrad algorithm has the task to compute the first derivative, so after setting the

parameters value, it is called. Each time, the information on the value of the function, the

precision of the fit, name EDM, and the status (converged or not) is saved. If Migrad

does not fulfil the requirements, such as converged status and EDM below 10−3 (actually

this value can be opportunely tuned), it is called again, until the fit converges with the

desired EDM.

Due to the instantaneous luminosity in the LHCb interaction point, an average of

about 2 pp collisions can occur per bunch crossing. A strategy to choose a primary vertex

is implemented. Moreover, the value of ~pν is unknown. Also in this case a method to set

the initial value of is foreseen through a nested algorithm: the values of pxν and pyν are set to

0 GeV/c (in general in LHCb the px and py value of a track is small), while the value of, pzν
is chosen between ten different values, such as (0, 5, 10, 15, 20, 35, 40, 60, 80, 100) GeV/c,
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Figure 3.3: D∗+ invariant mass computed using the Global Fit output on the MC sample. The events

correspond to D∗+ →D0 (K−µ+νµ)π+ decay.

corresponding to different starting point of several minimisations of the χ2 function. The

value of the initial pz corresponding to the best χ2 is choosen as the default starting point

for each event. This procedure is adopted to avoid the convergence of the function to

local minima. The function is then minimised for each measured primary vertex (xPV,

yPV, zPV) and the value of the parameters corresponding to the best χ2 is chosen as final

result.

3.6 Global Fit performances

Before applying this procedure to the data, the GF algorithm has been tested on

the D∗+ →D0 (K−µ+νµ)π+ MC data sample. In Figs. 3.3 and 3.4 the invariant mass

of the D∗+ and the visible mass of the D0 are represented respectively. They have been

computed using the global fit, applied on a sample with about 50000 MC events (see

Ch. 4). In Fig. 3.3, the invariant mass distribution shows a clear peak in correspondance

of the value of the D∗, 2.010 GeV/c2, as expected, with a small tail. Comparing this

distribution with the one shown in Fig. 3.2, it is evident how the GF performs, even if the

invariant mass resolution on the D∗+ is larger than a typical one of a fully reconstructed

decay.

The invariant mass distribution for the same variables for both electron and muon

channels of m(D∗) and mvis(D0) computed using the GF on the data set collected by LHCb

during the 2015 data taking campaign are shown in Figs. 3.5 and 3.6 respectively. Both

D∗+ invariant mass plots show a recognisable peak at about 2.01 GeV/c2, as expected.
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Figure 3.4: D0 visible mass computed using the Global Fit output on the MC sample. The events

correspond to D∗+ →D0 (K−µ+νµ)π+ decay.

The tail of the plot is mainly due to the combinatorial background, even if a log signal

tail is present.

The D0 visible mass invariant mass distribution ashow different shape and peaks

between the two different decay modes. In the case of electron final state (e-channel) is

evident the precence of different sources of background (see Sec. 4.2). The highest peak of

the e-channel distribution, also present in the µ-channel, at a mvis(D
0) of about 1.8 GeV/c2

corresponds to the D0 decay D0 → K−π+, where a charged pion is mis-identified as either

a muon or an electron. The different height in the two spectra are due to the different

efficiency in the mis-identification of the two leptons. Fig. 3.5 also show a different signal

yields as well as a different invariant mass resolution. The muons generate hits in almost

all subdetectors (long and downstream tracks), while the electrons generate hits in fewer

parts of the detector: the VELO, the tracking stations and the ECAL. Moreover, due to

its interaction with the materials, i.e. generation of electromagnetic showers, the electron

tracks is more difficult to reconstruct. The reconstruction efficiency of the electron, in

fact, is one of the many challenges of this analysis. In addition, due to bremsstrahlung

radiation dominant in the e-channel, the momentum of the electron is measured with less

precision than the muon one, with the consequence of a worse invariant mass resolution.
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Figure 3.5: D∗+ invariant mass computed using the Global Fit on the 2015 data-set for both lepton

flavours e and µ.
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Figure 3.6: D0 visible mass ccomputed using the Global Fit on the 2015 data-set for both lepton

flavours e and µ.



Chapter 4

Signal Yields

In order to extract the signal yields from data it is necessary to know how the

background is composed and how much it interferes with the real signal. In Sec. 4.1 the

combinatorial background and its modeling in the fit model is discussed. In Sec. 4.2,

partially reconstructed background, with a decay topology similar to the signal are studied.

A study of the momentum imbalance between the decay products is performed in order

to identify possible sources of such backgrounds and apply proper PID requirements.

4.1 Combinatorial background hypothesis

The combinatorial background consists in one or more particles (especially pions)

coming from other processes are wrongly associated with the reconstructed D0 decay.

The effect of this background is the introduction of a long tail in the m(D∗) distribution.

In order to extract the signal yield, an extended chi-square fit of the D∗+ mass,

computed after the global fit, is used. The signal is modelised as a sum of three

probability density functions (PDF):

f(m) = α2 (α1G1(m;µ1, σ1) + α2G2(m;µ2, σ2)) + α2J(m;µj, σj, δj, γj) (4.1)

where α1 and α2 are free parameters with a value between 0 and 1, G1(m;µ1, σ1) and

G2(m;µ2, σ2) are two gaussian PDF and J(m;µj, σj, δj, γj) is a Johnson function [56].

The background is described by the following PDF

f(m;µ, β, ξ) = (m−mmin)βe−ξ(m−mmin), (4.2)

where m is the D∗+ mass, mmin is the minimum value of the variable m, and β and ξ are

free parameters.

The D∗+ invariant mass distribution with the result of the fit overlaid is shown in

Fig. 4.1 and 4.2 for both muon and electron decay modes. The data are represented by

58



4.2. Background evaluation 59

Table 4.1: Results of the fit. The number of signal events is not reported because the analysis is still

ongoing (blind).

Quantity K−e+νe mode K−µ+νµ mode

NBKG (1571926± 27143) (3478388± 15211)

µ1( GeV/c2) (2.004± 0.016) (2.014700± 0.000058)

µ2( GeV/c2) (2.004000± 0.000004) (2.010400± 0.000010)

µj( GeV/c2) (2.0102973± 0.0000043) (2.0102000± 0.0000034)

σ1( GeV/c2) (1.00± 0.98) (4.30± 0.04)× 10−3

σ2( GeV/c2) (0.603± 0.012)× 10−3 (2.27± 0.01)× 10−3

σj( GeV/c2) (1.580± 0.005) (0.884± 0.008)× 10−3

Figure 4.1: Distribution of the D∗+ invariant mass with the result of the fit overlaid for the electron

decay mode. The data are processed with the GF algorithm.

black points with the error bars, while the signal component is in blue and the background

in red. In Table 4.1 the quantities calculated by the fit are represented. In this fit, the

physical background is not yet considered. In the following section a preliminary study is

performed in order to quantify how many events for each potential background can be

present in the invariant mass spectrum, in particular under the D∗ peak.

4.2 Background evaluation

The main physical backgrounds of the D0→ K`ν` decay are due to misreconstructed

D0 decays, like D0 →π−µ+νµ and D0 →π−e+νe, where a pion is misidentified as a kaon

or a lepton, and partially reconstructed D0 decays, like D0 →K−µ+νµπ
0 (resonant and

non-resonant).

In order to evaluate the potential dangerousness of these shapes of the backgrounds,
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Figure 4.2: Distribution of the D∗+ invariant mass with the result of the fit overlaid for the muon decay

mode. The data are processed with the GF algorithm.

the invariant mass spectra of three different background decay channels were analysed

using MC. In Fig. 4.3 the variables m(D∗) and mvis(D
0) computed with the output of

the GF, each background hypotheses and for the signal decay with a muon in the final

state, are represented.

It is possible to recognise different main background final states for each decay mode:

• The background final states of the muon mode comprehend:

– the K−e+νe final state where an electron is mis-identified as a muon,

– the π−µ+νµ final state, where a pion is mis-identified as a kaon,

– the partially reconstructed D0 decays, with the resonant K∗ −µ+νµ final state

and the not resonant one, K−µ+νµπ
0;

• In analogy with the muon mode, the background of the electron decay mode are:

– the K−µ+νµ final state where an electron is mis-identified as a muon,

– the π−e+νe final state, where a pion is mis-identified as a kaon,

– the partially reconstructed D0 decays: the resonant K∗ −e+νe final state and

the not resonant K−e+νeπ
0;

• The background final states shared by the two decay modes comprehends the final

states where the pion is mis-identified as either a muon or a lepton, such as the

K−π+π0 final state and the π+π−π0 final states, where another π is mis-identified

as a K. In particular, it is possible to note that in Fig. 4.3 the D0 invariant mass

distribution for the K−π+π0 final state has a shape similar to the distribution for

the K−µ+νµ final state.
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Figure 4.3: D∗+ invariant mass and D0 visible mass distribution, with different final states for the

muon decay mode: K−µ+νµ (black), K− 3π (green), K−π+π0 (magenta) and K−π0µ+νµ (light violet).

The MC data are processed with the GF algorithm.

The decay channels with a netrual pion in the final state can be avoided with efficienct

reconstruction and particle ID of the final state, in addition to constrain the invari-

ant mass of the D0 (3.8). In fact, the neutrino mass is approximated to zero, while

mπ0 = 134.977 MeV/c2 [32]. These decay channels and their branching fractions (B) are

summarized in Table 4.2.
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Table 4.2: Signal and major backgrounds of the D0→ K`ν` analysis and respective branching fractions.

D0 → Branching fraction [32]

K−µ+νµ (3.33± 0.13)%

K−e+νe (3.538± 0.033)%

π+π−π0 (1.47± 0.09)%

K∗ −e+νe (2.16± 0.16)%

K∗ −µ+νµ (1.92± 0.25)%

K−π0e+νe (1.6 +1.3
−0.5)%

K−π0µ+νµ < 0.14%

π−e+νe (0.291± 0.004)%

π−µ+νµ (0.238± 0.024)%

K−π+π0 (1.14 +0.50
−0.21)%

4.2.1 Momenta asymmetry

A method to visualise the various physical background is to study the m(D∗) and

mvis(D
0) distributions as a function of the asymmetry of the momentum of the final

states, defined as

Ap =
p` − pK
p` + pK

, (4.3)

the signal is visible as vertical regions, while background decay channels have a curved

region. For further comprehension, it is useful to compare these plots to their projection

on the x-axis, as shown as swhon in the bottom part of the plots.

In Figs. 4.5 and 4.7 are reported the distribution of m(D∗) and mvis(D
0) as a function

of Ap, where it is evident, comparing these distributions with the one on Figs. 4.4 and 4.6

that the physical background is highly reduced.

The most visible structure is the peak in the invariant mass distribution of mvis(D
0),

placed at about 1.8 GeV/c2 in Fig. 4.4 for −0.8 < Ap < 0.8. The same peak is also visible

in the in the bottom left part of the Figure and it can be attributed to D0 →K−K+

decay. The other visible peaks are one at about mvis(D
0) = 1.6 GeV/c2, and the other

at abot 0.9 GeV/c2. These can be attributed to the D0 →K−π+π and the D0 →π−π+

decays, respectively.

In order to reduce the physical background components PID requirement are applied.

In particular, the PID requirements for the two decays respectively are:

• PID for the kaon: ProbNNk> 0.9,

• PID for the electron: ProbNNe> 0.6 && ProbNNk< 0.1,

• PID for the muon: ProbNNmu> 0.6 && l ProbNNk< 0.1.
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Figure 4.4: D0 and D∗+ Mass vs asymmetry of momenta, before PID cuts.
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Figure 4.5: D0 and D∗+ Mass vs asymmetry of momenta, after PID cuts.

After the PID cuts, in Fig. 4.5, the effectiveness of the PID requirements is evident.

The the D0 visibile mass has a shape similar to the one computed using the MC data

(Fig. 4.3(b)).
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Figure 4.6: D0 and D∗+ Mass vs asymmetry of momenta, before PID cuts.
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Figure 4.7: D0 and D∗+ Mass vs asymmetry of momenta, after PID cuts.
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Table 4.3: List of the different decay channels after the stripping and the branching fractions used in

the analysis.

.

Name EvtType B[%]

D0 →Kµνµ 27173001 3.31

D0 →Keνe 27583002 3.55

D0 →KK 27163002 0.396

D0 →πππ0 27163403 1.43

D0 →Kππ0 27263400 14.3

D0 →K 3π 27265000 8.08

D0 →K∗µνµ 27572001 1.91

D0 →πµνµ 27573001 0.289

D0 →µνµπ0 27573400 1.91

D0 →K∗eνe 27582401 2.16

D0 →πeνe 27583000 0.237

D0 →eνµπ0 27583400 1.6

4.2.2 Evaluation of the background from the number of events

The numbers of physical background events that passed the full selection, including

the PID requirements, are evaluated using MC events and calculated using the expression

(
NBKG

NSIG

)
i

=
(Bi · εGEN · εsel)i

(BSIG · εGEN,SIG · εsel)SIG
, (4.4)

where εGEN is the efficiency of the generator level requirements used in the simulation

to minimise the computation time, Bi is the branching ratio of the i-th background

component and εsel is the offline selection efficiency, including the PID requirements.

The various sources of background analysed are reported In Table 4.3, together with

the branching fraction and the EvtGen code, which identified unequivocally the decay

in the simulation software, are shown. The values of NBKG

NSIG
together with the various

efficiencies are reported in Tables 4.4 and 4.5.
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Table 4.4: Values of the different efficiencies for each decay channel for the signal decay with the e in

the final state.

Final state Bi (%) εGEN (%) εsel (%) NBKG

NSIG
(%)

Keνe 3.55 21.91 0.26 100

KK 0.40 22.88 2.83× 10−5 1.2× 10−3

Kπππ0 1.43 20.00 0 0

Kµνµ 3.31 22.44 8.55× 10−5 0.03

Kππ0 14.3 19.27 7.70× 10−4 1.07

K3π 8.08 20.00 1.43× 10−4 0.12

K∗µνµ 1.86 19.68 0 0

πµνµ 0.29 21.30 0 0

Kµνµπ
0 1.38 19.41 2.84× 10−5 3.84× 10−3

K∗eνe 2.15 19.13 0.17 35.07

πeνµ 0.237 20.83 3.99× 10−4 9.90× 10−3

Keνeπ
0 1.6 18.79 0.19 28.42

Table 4.5: Values of the different efficiencies for each decay channel for the signal decay with the µ in

the final state.

Final state Bi (%) εGEN (%) εsel (%) NBKG

NSIG
(%)

Kµνµ 3.31 22.44 0.52 100

KK 0.40 22.88 1.02× 10−3 0.02

Kπππ0 1.43 20 0 0

Kππ0 14.3 19.27 1.77× 10−3 1.26

K3π 8.08 20.00 4.85× 10−4 0.20

K∗µνe 1.86 19.69 0.10 9.69

πµνµ 0.29 21.29 1.16× 10−3 0.02

Kµνµπ
0 1.38 19.42 0.36 24.87

K∗eνe 2.15 19.13 1.14× 10−4 0.01

πeνµ 0.24 20.83 0 0

Keνe 3.55 21.91 2.20× 10−4 0.04

Keνeπ
0 1.6 18.79 1.14× 10−4 8.86× 10−3



Chapter 5

Conclusions and perspectives

The work presented in this thesis represents a preliminary study for the measurement

of the ratio Rµ/e = B(D0→ K−µ+νµ)/B(D0→ K−e+νe), using the D∗+ → D0π+ decay

chain. The D∗+ instantly decays into a D0 and a charged pion. After a flight of few

centimeters, the D0 weakly decays into a kaon, a muon or an electron and the related

neutrino, not reconstructible with the LHCb detector. In order to study the value of

Rµ/e in all the q2 region and to calculate the D∗+ mass using the kinematical information

of the daughters of the D0, a global fit algorithm was implemented in order to estimate

the neutrino momentum.

The strategy of the GF algorithm is to write a single function which describes the

decay starting from measured quantities, such as the charged particle tracks (K, `, π)

and the position of the vertices. In particular, these are the D0 daughters’ momenta ~pν ,

~p` and ~pK , the coordinates of the pion momentum ~pπ, the position of the D0 decay vertex

~xD0 and the third coordinate of the primary vertex zPV. This function includes 5 different

kinematical constraints: the D∗+ decay vertex must corresponds to the primary vertex,

which is also the decay vertex of the bachelor π; the displaced vertex of the D0 decay

must be formed by the ` and K tracks, and the invariant mass of the D0, computed

using also the ν momentum, must be equal to its known value 1864.83 MeV/c2 [32]. The

statistical approach used is the least chi-square method, and the final parameters are

obtained thanks to a nested minimisation.

In this thesis, 2015 Run-2 data and MC samples were used. First the GF was tested

on the MC using the MC-“truth” and then on data. For both decay modes (e and µ),

the distributions of the invariant mass of the D∗+ calculated using the output parameters

of the GF are compatible with the MC shapes. A study on the different shapes of the D0

visible mass is obtained for the two deacy modes. The distributions reflect the different

reconstruction and identification efficiencies for the e and µ.

In order to reduce the presence of the physical background, due to misidentified final

states, a series of PID requirements has been applied and an extended χ2 fit is performed

67
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on data to extract the signal yields. Only combinatorial background is considered at

this stage. However an evaluation of the contamination in the final data sample of the

PID-survived decay modes has been carried on, using a dedicated MC data sample.

The work presented in this thesis represents an important contribution of the LHCb-

Bologna group to the LHCb working group that carry on the analysis with the aim of

performing the final measurement of Rµ/e. The higher statistics of the full RUN-2 data

sample than the one used in this analysis will permit to extract the signal yields with

higher precision. Thanks to the GF algorithm, not only it is possible to extract the signal

yields, but also to calculate q2 and performing a measurement of Rµ/e as function of q2.

This measurement is more sensible to effect of New Physics than the simple measurement

of the ratio of the branching frations.
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a vita di “cioppi”, Giulia. Grazie anche alle amiche di sempre, lontane fisicamente ma

vicine: Giorgia, Valentina, Elena, Melissa e soprattutto la Delby. Ringrazio anche tutta la

Big Family del Circolo, in particolare le RENGE Silvia e Ghita e il RENGO ad honorem,

Mattia.

Infine vorrei ringraziare le persone che mi sono sempre vicine. In primis, vorrei

ringraziare i miei parenti, soprattutto i nonni, anche quelli che non ci sono più, che
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