
Alma Mater Studiorum · Università di Bologna

Scuola di Ingegneria e Architettura
Sede Di Cesena

Corso di Laurea Magistrale in Ingegneria e Scienze Informatiche

GAME ENGINES AND MAS:
TUPLESPACE-BASED INTERACTION

IN UNITY3D

Tesi di Laurea in

Sistemi Autonomi

Relatore:
Chiar.mo Prof.
Andrea Omicini

Correlatore:
Ing. Stefano Mariani

Esaminatore:
Prof. Mario Bravetti

Presentata da:
Mattia Cerbara

III Sessione
Anno Accademico 2016/2017

.

.

To my parents,

to my family

to everyone who believes in me

Contents

Sommario ii

Abstract iv

1 Introduction 1

2 Background 5

2.1 Motivation . 5

2.2 Goal . 6

2.3 Game Engines . 7

2.3.1 Unity3D: Features . 9

2.4 MAS theory . 12

2.4.1 Agents . 13

2.4.2 Society . 14

2.4.3 Environment . 14

2.5 Logic Programming and Prolog 15

2.5.1 Logic Programming: overview 15

2.5.2 Prolog: overview . 15

2.6 Coordination and Interaction models: overview 16

2.6.1 Major classes and models 17

2.6.2 LINDA and tuplespace based model 19

3 Prolog integration: feasibility study 23

3.1 Prolog integration in Unity3D 23

3.1.1 tuProlog attempt . 25

3.1.1.1 Why it is a failure (for now) 25

3.1.2 UnityProlog attempt 27

7

8 Contents

3.1.2.1 Features and limitations 27

3.2 Coordination and interaction in Unity3D 29

3.2.1 Prolog support in Unity3D 29

3.2.1.1 UnityProlog’s KnowledgeBase (KB) 29

3.2.1.2 UnityProlog’s constructs: Structures, Logic-

Variables, ISOPrologReader 33

3.2.1.3 Unity-Prolog interactions 35

3.2.1.4 Prolog-Unity interactions 36

4 MAS and Unity3D 39

4.1 Tuplespaces and LINDA in Unity3D: main idea 40

4.1.1 System design . 41

4.2 Prolog side background support: tuples, tuplespaces and Linda

primitives . 44

4.2.1 Suspensive semantic - Prolog support 46

4.3 Unity3D side: the LindaLibrary and LindaCoordinationUtili-

ties API . 49

4.3.1 LindaLibrary API: Linda primitives and suspensive se-

mantic support . 50

4.3.1.1 Suspensive semantic: Unity3D mechanisms . . 51

4.3.1.2 Creating unpredictability: (random) primitives 55

4.3.2 High-level communication library: LindaCoordinationU-

tilities API . 56

4.3.2.1 LindaCoordinationUtilities API: analysis . . . 57

4.3.2.2 LindaCoordinationUtilities API: implementa-

tion . 58

4.3.2.3 LindaCoordinationUtilities API: towards ex-

ploiting Unity3D constructs 60

5 API extension: Spatial Tuplespaces, Regions and BagOfTu-

ples 67

5.1 Spatial Tuplespaces and Regions: architecture and main concepts 68

5.2 BagOfTuples: idea and design 73

8

Contents 9

6 Case Studies 77

6.1 Experiment n◦1: Dining Philosophers 78

6.1.1 Situated version . 80

6.1.2 Spatial version . 84

6.2 Experiment n◦2: Breadcrumbs 89

6.2.1 Second version: Regions and suspension using trigger

Colliders . 92

6.2.1.1 Further experiment: BagOfTuples interaction

and cloning 95

6.3 Results . 96

7 Conclusions and Future Work 99

Bibliography 103

9

10 Contents

10

Sommario

I Game Engines stanno acquisendo sempre più importanza sia in ambito in-

dustriale, dove permettono lo sviluppo di applicazioni moderne e videogiochi

con relativa facilità, sia in ambito di ricerca, in particolare nel contesto dei

sistemi multi-agente (MAS).

La loro capacità espressiva, unita al supporto di tecnologie innovative e

funzionalità avanzate, permette la creazione di sistemi moderni e comp-

lessi in maniera più efficiente: il loro continuo avanzamento tecnologico e

la ricerca di performance e stabilità, li ha portati ad essere una realtà su cui

fare affidamento nella produzione di vari applicativi diversi, come ad esem-

pio applicazioni di realtà aumentata/virtuale/mista, simulazioni immersive,

costruzione di mondi virtuali e infrastrutture 3D, ecc.

Ciononostante, soffrono la mancanza di proprie astrazioni e meccanismi che

possano essere affidabili e utilizzati per aggredire la complessità durante il

design di sistemi complessi.

Il tentativo di sfruttare le caratteristiche della teoria dei MAS all’interno degli

ambienti di sviluppo dei Game Engines procede secondo questa direzione: in-

tegrando le astrazioni costituenti i MAS all’interno dei Game Engines, con

particolare riferimento alla teoria degli agenti e ai modelli di coordinazione,

può portare a nuove soluzioni e possibilità di creazione di sistemi e appli-

cazioni, riuscendo a risolvere problemi tecnologici grazie all’aiuto degli engine

grafici.

Questa tesi offre il suo contributo analizzando il Game Engine Unity3D e pro-

ponendo due librerie C#, le quali sfruttano una precedente integrazione dello

stesso framework con il Prolog per l’abilitazione di un modello di interazione e

coordinazione basato su spazi di tuple, utilizzabile tramite l’implementazione

di primitive LINDA. Le librerie offrono interfacce di programmazione (API)

i

ii SOMMARIO

sfruttabili dai programmatori C# Unity3D per integrare nelle loro creazioni

il supporto a tale modello, il quale costituisce una nuova modalità per la

gestione della coordinazione tra oggetti in Unity3D e fornisce importanti

proprietà, essendo fondamentale nel contesto dei MAS dal punto di vista

dell’ingegnerizzazione di sistemi complessi e della gestione delle interazioni

tra agenti.

ii

Abstract

Game Engines are gaining more and more importance in both industrial field

- enabling an easy development of modern applications and videogames - and

in the research field, with a particular regard to multi-agent systems (MAS).

Their expressive power, along with modern technologies support and ad-

vanced functionalities, allow the design and creation of complex systems ef-

ficiently. While becoming more stable and supporting new functionalities,

Game Engines are nowadays a well-suited reality, therefore reliable in order

to create modern, advanced systems and applications (e.g. augmented/virtu-

al/mixed reality, immersive simulations, modern videogames, 3D world de-

sign).

Nevertheless, they still lack of proper general abstractions, which could be

suitable to be used for tackle complexity when designing and implementing

complex systems.

For this purpose, the attempt to exploit Game Engines as integrated de-

velopment environments where MAS abstractions are well-suited to tackle

complexity is worth to be done, in order to bring agent-oriented software

engineering and coordination models as main providers of new solutions and

solving technology problems with the aid of Game Engines.

In this dissertation, we analyse the Unity3D Game Engine and present two

prototype API, meant to exploit a previous integration of Prolog within the

same framework to provide Unity3D of a new abstraction level, enabling a

tuplespace based interaction and coordination model to be used by program-

mers via LINDA primitives.

Those libraries are organized around Unity3D features, providing an easy-

to-use and accessible way to approach coordination and interactions among

objects when building complex systems with Unity3D, bringing all those

iii

iv ABSTRACT

properties and advantages that are well-established in MAS context, both

from the complex systems engineering point of view and management of so-

cial interactions side.

All new functionalities are tested using proper case studies, which illustrate

their expressiveness, correctness and efficacy.

iv

Chapter 1

Introduction

Multi-agent systems (MAS) are nowadays becoming important as a paradigm

for designing and implementing complex software systems and applications.

In the computer science context, complexity claimed its own critical impor-

tance, considering that today systems and applications address many dif-

ferent issues, which need to be faced and solved by adopting some sort of

conceptual abstraction and model.

Agent-oriented computing [27] is, indeed, well-suited to provide appropri-

ate concepts in order to design, realize and model complex artificial systems,

helping designers and software engineers to better conceive and manage their

creations.

Nevertheless, what characterizes the agent notion are autonomy, interaction

and task concepts [6]: the agent is able to proactively take decisions, as an

autonomous entity able to interact with other agents and the environment

to achieve its tasks.

On top of that, the role of coordination is to globally ensure system func-

tionalities by correctly handling the local agents activities and interactions,

meant to make mobile entities work together, in order to achieve the goal(s)

sought for also addressing society as critical concept.

Merging all together, it is clear how the multiplicity of entities and tasks

which dominate MAS scenarios contribute to the growth of complexity when

designing and handling multiagent systems and applications. With the elec-

tion of interaction as one of the key roles when designing MAS, it is possible

to take advantage of its features, because coordination models and languages

1

2 Introduction

allow technologies and abstractions to be used while engineer complex com-

putational systems.

Against this conceptual background, Game Engines are becoming popular

and used for many purposes, permeating various computational research ar-

eas due to their features able to allow for the creation of complex scenarios

in an easy and fast way.

In particular, Game Engines provide functionalities in order to build mod-

ern applications: although they are successfully used in the videogame in-

dustry, allowing game development to be opened to everyone (due to their

user-friendliness), they are also present in the MAS context [21], providing

functionalities to enhance world creation with augmented reality possibili-

ties, immersive simulations, and so on.

In this way, Game Engines and MAS come together, merging into a set of

possibilities able to exploit strength of both worlds, in particular game en-

gines exploitation within the agent-oriented infrastructure, providing world

creation and modern technologies to be tackled using MAS theory, patterns

and abstractions.

Focussing on the key role of interaction and coordination models, this disser-

tation contributes to this purpose by taking a Game Engine and extending

its functionalities with a new abstraction level: MAS theory integration may

provide novel solutions and new ways to address complex system design and

engineering, where Game Engines play the role of high-quality and modern

technologies enablers.

On top of that, this dissertation presents a new abstraction level developed

both using Prolog and C# languages, in order to allow Unity3D designers

and programmers to use a new interaction and coordination model via C#

libraries, exploiting tuplespace based coordination implemented in Prolog.

In particular, basic semantics of tuplespace based model have been devel-

oped using Prolog (previously needed to be integrated in Unity3D) in the

form of LINDA primitives [12], while a higher-level communication layer has

been implemented using C# language with the creation of libraries, named

LindaLibrary and LindaCoordinationUtilities, which wrap LINDA prim-

2

3

itives allowing their exploitation during Unity3D development.

These libraries capture and organize the tuplespace based coordination model

and LINDA coordination language, allowing their use under Unity3D system

design and development, including mechanisms to create spatial tuplespaces

and region around the SpaT extension from [30].

The reminder of the thesis is organised as follows: Chapter 2 analyses the

background of this dissertation and the motivation, discussing MAS theory,

Game Engines state of the art, and then provides an overview of principal

coordination models, focussing on tuplespace based ones.

Chapter 3 is an overview of the Prolog integration in Unity3D, chosen as the

enabler technology in order to correctly develop LINDA primitives and ba-

sic semantic of tuplespace based interaction model. Chapter 4 describes how

Unity3D libraries and Prolog base predicates are engineered and developed,

how they are intended to be used and what kind of new abstraction level

they provide to the base Unity3D IDE.

Chapter 5 presents a first extension of the C# libraries introducing spatial

tuplespaces and regions as augmentations of standard ones, following the

SpaT model.

Chapter 6 shows the test phase, analysing and discussing the efficacy of these

libraries through different case studies.

3

Chapter 2

Background

This chapter introduces and reviews the basis of the main work, summa-

rizing the fundamentals about Game Engines (GE) and explaining why they

are so important in current industry, with a particular mention to Unity3D

(the one taken as reference for this thesis), architecture and abstractions of

Multi-Agent Systems (MAS). The aim is discussing and highlighting their

relevance in different research fields, while focusing on interaction/coordina-

tion models, their importance in MAS theory and their exploitation in the

design of complex multi-agent systems (with a particular reference to LINDA-

based coordination models).

Despite their current wide adoption in modern industry, GE are well suited

for developing videogames and realtime simulations, providing a wide range of

functionalities and helping developers to build different kind of applications,

but they still lack of general-purpose abstractions for developing complex

multi-agent applications.

On the other hand, MAS theory represents the richest and most used ab-

straction source for complex systems design and engineering, along with

the adopted interaction and coordination model, both important in order

to tackle the system complexity and govern agent interactions.

2.1 Motivation

MAS and GE both provides functionalities and useful abstractions exploitable

to build complex systems and applications, but they are still quite unable

5

6 Background

to properly mix their respective features, so further investigations must be

made [21].

MAS theory and abstractions provide a well-suited and rich conceptual model

when designing multi-agent systems: agent-oriented software engineering,

along with interaction and coordination models, are technologies which en-

able completeness and generality in software systems development, exhibiting

a well-established technological framework where advanced conceptual tools

could be used as fundamentals when computer scientists and engineers ap-

proach to systems engineering.

At the same time, Game Engines are well-settled in modern industry and

they have gained a crucial importance in games and application develop-

ment: nowadays, the gaming scene can count on rich qualified investors and

on a billionaire industry, along with a wide variety of developers and gamers.

Game Engines are thus a well-funded, modern reality exploitable to design

new-fashioned, up-to-date applications using latest technologies (immersive

simulation scenarios, augmented/virtual/mixed reality, and so on), provid-

ing a stable, performing and well-usable framework for building high-quality

software systems.

Both worlds are enablers of features which are complementary, so their

strengths can be properly mixed in order to provide novel solutions along

with MAS design and developing modern applications using Game Engines

functionalities.

Although GE are gaining more and more importance in the academic commu-

nity and computational research areas, they still are focussed on technology-

level purposes, searching for stability and frame performance while increasing

their rendering possibilities and, in this development environment, a proper

integration with MAS abstractions (in particular, focusing on interaction

and coordination models) can certainly bring to new features, solutions and

opportunities.

2.2 Goal

Among all typical MAS abstractions (that are, agent, society and environ-

ment, introduced later) what is still not properly available in the game de-

6

2.3 Game Engines 7

velopment scene are MAS counterparts and support for agent and society

models [21]: with no first-class abstractions provided, their MAS bindings

are quite distant, since the abstraction gap is still demanding of proper inte-

grations, generally missing.

So, although the environmental support can be conceived as well-present in

GE’s internal features and basic structure, such as built-in functionalities

supporting high-level rendering, world creation, its control and modelling,

collision detection and automatic pathfinding, this is the only part with a

greater support than the average MAS technologies.

In this direction, this dissertation aims to provide a first integration step

between MAS and GE, in particular focusing on Unity3D and the societal

abstraction, with the creation of something concrete and useful to Unity3D’s

designers and programmers, exploiting game engine’s features and possibili-

ties to fill the gap with interaction and coordination models. Moreover, other

important achievements are providing functionalities as societal abstractions

to tackle complexity, allowing communication between agents and objects

and, possibly closing conceptual and technical gaps between MAS and GE

under the interaction and coordination point of view.

2.3 Game Engines

Many different areas of computer science and engineering are discovering an

increased popularity of Game Engines, where they are exploitable for building

realistic, virtual systems tackling process complexity, with strong economic

(enabling modern application development) and time efforts (an user-friendly

framework allows to save time, with fast prototyping) [33]. Indeed, building

scenarios with complex 3D objects, supporting user interaction and required

object/environmental behaviours (collision detection, pathfinding, audio, ob-

stacle avoidance, . . .), are built-in, easily exploitable from the engine itself,

which provides development toolkits and user friendly features in order to

fast prototype and design a complete, complex system.

The current generation of game engines has become crucial in game de-

7

8 Background

velopment, making the realization of virtual environments and complex sys-

tems easier using Game Engines’ functionalities, which are robust and widely

tested (most of the time for performance purposes). In particular, GE ad-

dress the extensive reuse of the underlying technologies, like 2D/3D render-

ing and world creation/handling (audio, physics, dynamics, . . .), basic AI

support for simple agent development and movement system (pathfinding,

obstacle avoidance, . . .), with a profound customization and inexpensive,

time-friendly development of a variety of systems and applications.

Moreover, game engines are used for research purposes in order to make im-

mersive simulations and test AI algorithms, building scenarios for advanced

solutions (AI, robotics, swarm, . . .), so not only videogames but also simu-

lations and modern applications (e.g. simulated surgical training [22]).

Among these functionalities, game engines are suitable for designing complex

world faster and simulation prototyping, while having a modular composition

[17], so GE can add values to the developed application (providing 3D cus-

tomization and creation, hardware graphic acceleration, support for modern

drivers and technologies) and can be properly reshaped for research purpose.

Examples in this direction are GameBots [15], CIGA [34], QuizMASter [2],

and so on, all with repurposed capabilities in order to tackle some of the MAS

abstractions for different goals (from education, providing immersive learning

environment, to distributed military simulations), but still without properly

proposing models or patterns close to MAS ones and with the proper level

of abstraction.

In addition to that, game engines as frameworks and integrated development

environments (IDE) play a key role during design and development, providing

libraries and functionalities where most of complex computations and con-

trol flow is delegated to the engine itself. In fact, the application structure is

defined and immutable, same for how the execution has to be handled, while

designers and programmers are provided with all necessary building blocks

to properly manage and model the central architecture.

This indeed enables consciousness in developers when using a specific func-

tionality, knowing that every block composing the application/system is han-

dled, managed, organized and shaped by the game engine isolating it from

the hardware in a middleware style.

8

2.3 Game Engines 9

Among the wide variety of game engines available to be used (Unreal En-

gine1, CRYENGINE2, Source Engine3, id Tech 4/5/6 (different versions4), and

so on), the chosen one for this thesis is Unity3D: motivations, along with its

description, features and abstractions, are in the next subsection.

2.3.1 Unity3D: Features

Unity3D5 is a cross-platform game engine developed by Unity Technologies,

used for creation of videogames (both 2D and 3D) and simulations, support-

ing distribution to a variety of platforms (PC, console, mobile devices, and

so on).

It features interesting abstractions which contribute to extend its usage to a

variety of developers and programmers, allowing it to become one of the most

used game engine and to be used by a wide variety of developers to quickly

produce applications and games. This vision generated a democratization in

the game development industry, with the goal of making it universally acces-

sible and opening it to everyone due to its simplicity.

Moreover, this GE supports a number of features that are simple to use and

exploitable for creating realistic videogame and immersive simulations, such

as an intuitive, real-time editor, integrated physics system, dynamic lights,

2D/3D objects development and import, shaders, basic AI support (built-in

pathfinding, obstacle avoidance, . . .), and so on.

Unity3D is a multi-purpose game engine, it supports target graphic API of a

wide range (like OpenGL, Direct3D, WebGL, Vulkan and so on) in order to

create applications and systems for a variety of technologies (mobile, console,

etc...), while supporting advanced 2D world renderer, texture compression,

and other services in order to build complex worlds relying on both internal

creation engine and professional external development software (like Maya,

Blender, ...).

In addition to that, it enables quick prototyping providing a simple, modular

1https://www.unrealengine.com/en-US/blog
2https://www.cryengine.com/
3https://developer.valvesoftware.com/wiki/Source Engine Features
4https://www.idsoftware.com/en-gb/
5https://unity3d.com/

9

10 Background

internal architecture, exploitable by designers to create, design and model

their creation, properly using Unity3D abstractions to tackle complexity. it

is possible to create scenes, each one with its own purpose and construction,

where GameObjects are the most important concept present in the Unity

Editor conceptualizing every object placed in the scene (from lights to com-

plex 3D building, from particle effects to an autonomous robot), which can

be composed of many build blocks, called Components, each of them adding

proprieties, features and functionalities to the GameObject itself.

In this manner, different combinations of Components are able to shape and

model the kind of GameObject the developer is going to create. In addition to

that, Unity3D provides developer with an Editor Mode, with different editor

windows allowing full customization of the application and making possible

to directly create, position and interact with world creation, GameObject

customization, enter Play Mode and test on-the-fly the currently developed

application, use of Profiler to investigate performances, and so on.

Unity3D has been used not only for game development (obviously, its main

computational and lucrative field) but its policy is to make it a standard for

also simulations and modern applications development, providing support

to a huge variety of different platforms covering the most interesting and

novel technologies. Further examples are from the area of geographic infor-

mation system [38] to the mobile AR development of a reality game which

could tackle worldwide childhood obesity [16] and in exploiting Unity3D user

experience tools to experiment urban design projects for visualization and in-

teractivity purposes [14].

Summing up, motivations for Unity3D adoption are the following:

• simple to use, exploiting the Editor Mode it is possible to quickly and

intuitively create complex worlds, along with its customization and on-

the-fly testing phase (Play-Mode Window)

• simple and completely customizable GameObjects’ creation and ma-

nipulation using Components as building blocks, for example Rigidbody

(allowing the object to be subject to forces and Physics in general), a

Collider (providing the GameObject of an editable surface, different

from the Rigidbody, which is responsible for collisions with other ob-

jects and agents), an Animator (enabling animations on the specified

10

2.3 Game Engines 11

Figure 2.1: Sample of Unity3D’s MonoBehaviour flowchart, from [1]

GameObject) and a C# Script (the behavioural module of an objec-

t/agent). Moreover, the control flow is executed by the unique game

loop as depicted in Figure 2.1, a single thread which sequentially calls

every MonoBehaviour Script enabled in the Unity3D scene every frame,

trying to maximize performances, along with the very base one called

Transform (presents in every GameObject, it allows the object to have

a position,a scale, a rotation and other fundamental proprieties)

• lower abstraction gap with Unity3D game engine rather than with other

GE, because of its pervasive usage and exploitation for developing aca-

demic courses’ final projects and for the object-oriented paradigm for

programming Scripting Components, coded using C# language in a

more intuitive way

11

12 Background

2.4 MAS theory

The increasing complexity of software systems engineering has led to the ne-

cessity of models and source of abstractions which could make easier their

design, development and maintenance. In this direction, agent-oriented com-

puting comes to help engineers and computer scientists to build complex,

virtual or artificial systems enabling their easy and correct management [27].

In particular, MAS research and technologies brought new abstractions in

order to tackle complexity while designing systems or applications composed

of individuals no more acting alone but within a society. Agent oriented

technologies and models have currently become a powerful technology to

deal with many issues to address while designing computer-based systems in

terms of entities sharing an amount of features like autonomy, intelligence,

distribution, interaction, coordination, and so on.

MAS engineering is indeed about building complex systems where multiple

autonomous entities called agents proactively achieve their goals exploiting

interactions as society with each other and with the surrounding environment

(Figure 2.2). This model can be seen like a general-purpose paradigm, so well

suited also for applications in software, agent-oriented engineering practices

in different scenarios [42].

Agent models ground their practical definition on the concept of autonomy

as their fundamental feature and they define MAS, conceived as an aggre-

gation of interacting agents. An agent encapsulates complexity in terms of

information (what it needs to know in order to do something), actions (the

process to achieve some goal), intelligence, mobility, situatedness, interactiv-

ity. In this way, the communication with other agents and interaction with

the environment itself become a fundamental abstraction of the system en-

gineering, as well as being potential enablers of behavioural novelties and

actions [40]).

So, the key role played by coordination and interaction models is seen not

only as an adequate supporting abstraction needed by the agent autonomous

behaviour, effectively solving coordination problems and enabling interac-

tions among agent society exchanging information and knowledge, but also

as a suitable approach directly helping the design phase of MAS [6].

12

2.4 MAS theory 13

Figure 2.2: Multi-Agent System original architecture, from [42]

Here follows a description of the three basic MAS abstractions, highlighting

how much autonomy is pervasive and acts like a key concept when conceiv-

ing MAS as aggregation of multiple agents able to interact with each other

exchanging information.

2.4.1 Agents

Agents are the fundamental abstraction in MAS definition: proactive entities

which encapsulate control, governing it through actions which allow the agent

itself to pursue its goals (what they want to achieve) eventually using and

changing something in the world they are immersed into (percepting the state

of the environment and adapting its actions model and behaviour to it), as

depicted in Figure 2.3. In this sense, agents are situated, so strictly coupled

with context and surrounding environment, and most importantly they are

social, so expressing autonomy with interactions among agents as living in a

MAS society

13

14 Background

Figure 2.3: Agent perception and action cycle, from [42]

2.4.2 Society

Agents’ social ability is the capability of interacting with other agents in or-

der to obtain coordinated collective behaviours, since some goals can only be

reached with collaboration and interaction with other agents. In this sense,

MAS complexity can be tackled using interaction and coordination models,

which are conceived to be the key issue when designing MAS and dealing

with complexity of interactions.

The space of interactions, here present as a fundamental requirement for the

society abstraction, is one of the main sources of complexity when dealing

with MAS design and implementation. Different models have been intro-

duced, surveyed and nowadays are well-suited to bring important features in

order to harness the interaction space, some of the most relevant ones will

be discussed in section 2.6 as the core topic of this dissertation.

2.4.3 Environment

Another key abstraction when dealing with MAS development is the envi-

ronment, which can be changed by agent’s actions [29], providing media-

tion to component interactions enabling indirect communication/coordina-

tion among external resources and agents and making environment feature

important properties like activity, object’s situatedness, autonomous dynam-

ics influencing interactions and coordinations among components.

MAS modelling and engineering complexity lies also in the environmental

14

2.5 Logic Programming and Prolog 15

concept [40] which, along with well-estabilished and suitable abstractions

provided by a proper interaction and coordination model, makes possible to

exhibit and govern mechanics and actions which are strictly coupled with

environment properties, in the form of situated actions and sensitivity to

environmental changes.

2.5 Logic Programming and Prolog

This section provides a brief introduction to logic programming and lan-

guages, focusing on the role of Prolog when dealing with interaction and

coordination models.

2.5.1 Logic Programming: overview

The main topic in logic programming is using logic both as declarative rep-

resentation language and theorem-prover. With the growth of complexity in

MAS, where agents encapsulate intelligence and undertake interaction with

each other in order to achieve their goals, abstractions and services able to

simplify designers and developers tasks are needed, along with easily deploy-

able infrastructures but still providers of important features, such as easy

configuration, intelligence encapsulation, interaction rules, and so on.

Logic programming and languages are handy when dealing with intelligence,

so in AI and similar areas, but they could play a key role even in design and

implementation of coordination and interaction models, providing flexible,

non-trivial solutions and architectures enabling logic as coordination media.

In particular, dealing with general scenarios of concurrent/parallel compu-

tation, logic programming and languages have been proved to be effectively

used as enablers of effective coordination solutions, as had happened with

Prolog.

2.5.2 Prolog: overview

Prolog is the reference for logic programming and it is present in differ-

ent areas and infrastructures, for example supporting DSLs implementation,

reasoning-like computation, theorem-prover, AI applications, and so on.

15

16 Background

Focusing on the coordination and interaction point of view, Prolog support

enables the creation of basic coordination capabilities by exploiting its fea-

tures (like declarative syntax, backtracking, template matching and unifica-

tion, ...) to create tuplebased coordination models, also with the adoption of

Prolog based interaction metaphors. Moreover, both TuCSoN [26] and LuCe

[7] coordination infrastructures are provided with Prolog engine as their core

component (named tuProlog [8]), which acts as the enabler of a LINDA-like

tuplebased interaction model and provider of all necessary properties.

2.6 Coordination and Interaction models: overview

”A coordination model

is the glue that binds separate activities

into an ensemble [13]

When modelling and implementing MAS, a key role is played by coordination

which consists in an important aspect needed to be properly analysed and

tackled. The growth of complexity in software applications and MAS brings

the necessity of new and suitable models, able to bring specific properties

to the system (flexibility, control, openness, distribution, ...). Moreover, this

class of functionalities needs to be provided with appropriate concepts and

abstractions in order to ensure proper functionalities both with a global vi-

sion and looking to local interactions among agents, needed to be properly

coordinated.

Coordination and interaction are thus providers of mechanisms and abstrac-

tions able to tackle complexity of such dynamic, heterogeneous ensemble

of agents, not delegating to them coordination responsibilities (constraining

interaction protocols directly within agents themselves) but considering an

higher-level design focusing on the agent interaction space, approaching to it

as a design building block [6]. Embedding social rules and policies, building

abstractions able to manage and govern the interactions among agents [39],

16

2.6 Coordination and Interaction models: overview 17

Figure 2.4: Coordination medium and coordinables explained

are the key roles of coordination and thus they are provided by interaction

and coordination models.

2.6.1 Major classes and models

According to [4], coordination and interaction models can be conceived as 3

components: (i) coordination entities, so the type of entities (coordinables,

agents in MAS) whose interactions are governed by the model, (ii) coordi-

nation media, the abstractions allowing agent interactions and organization

among coordinated components, (iii) coordination laws, which express the

behavioural part of the model, how coordination media and coordinables are

meant to be ruled w.r.t. behaviour and interactions expressed in terms of

communication and coordination languages (providing syntax and admissi-

ble primitives to be used).

Coordination models can be divided into two classes [28]:

• control-driven, where communication among components (agents) is

governed by channels/ports, whose observation of involved coordination

patterns defines the state of the computation, with no focus on data

types and information involved during the interaction (Figure 2.5(a)).

Input/output interfaces are clearly defined and the coordinator com-

ponent is clearly separated from coordinables, managing event/signals

among them and determining/changing the topology of communication

space

• data-driven, where coordinables interact using channels like shared spaces

17

18 Background

(a) Control-driven coordination model (b) Data-driven coordination model

Figure 2.5: Classes for coordination models

or memory abstractions, coordinating by exchanging data structures

and information chunks through the coordination media, so the state

of the computation is defined by both data structures involved and

configuration of coordinated entities (Figure 2.5(b)). So, rather than

control-driven models, the coordination medium does not control the

topology of communication space, but the act of governing interactions

means determining data structures representation, their usage, access,

manipulation and synchronization exploiting coordination primitives

provided by the model itself.

Many models have been proposed and used in literature and different trends

are currently shaping research domains, all of them showing that interaction

and coordination are a key issue when developing complex MAS. For exam-

ple, nature-inspired coordination models for MAS engineering [24] provide

abstractions to deal with complexity while building artificial systems, bring-

ing to them those properties (self-regulation, autonomy, adaptation, fault-

tolerance, ...) and patterns which feature natural systems (such as chemical,

biochemical, physical, biological, ...) making them sources of inspiration for

strategies and for tackling and governing complexity.

In this direction different areas have been explored, for example studies on

social insects behaviour and stigmergic coordination in ant colonies with en-

vironmental mediation [23] [32], field-based models inspired by mass and

particles movements [19], ...). Moreover, [18] shows how a proper coordina-

18

2.6 Coordination and Interaction models: overview 19

tion language, which extends a chemical inspired abstract model, can be used

with multiple agents to realize an interactive computational model useful in

MAS development.

A different approach to coordination is described in [35], where it has been

developed a declarative approach to model coordination of agents using co-

ordination spaces, in order to relieve programmers from implementing inter-

actions manually.

Among them, one of the first (and most used) interaction and coordination

model is the tuplespace based one, from LINDA, and it is the chosen one

for this thesis: next section describes and explains motivations, strength and

properties.

2.6.2 LINDA and tuplespace based model

The ancestor of every tuple based coordination model is LINDA as the very

first coordination model and language embracing dataspaces, mechanisms

and abstractions for concurrent agent programming and generative commu-

nication. Initially exploited and used in the field of parallel programming

[13], tuple-based coordination models feature important properties which

make them well-suited for the coordination of heterogeneous and distributed

systems, tackling complexity with simple yet well-established concepts and

abstractions letting them play a key role when designing and building com-

plex MAS.

In tuple-based models, coordinables interact with each other exchanging tu-

ples as information chunks on which coordinated entities are able to synchro-

nize by associatively accessing, consuming and producing using tuplespaces

as coordination media.

More in details, LINDA captures and formalises generative communication to

be used as a coordination and communication language, by providing con-

cepts and simple, yet expressive primitives.

A program in LINDA is a collection of ordered and possible heterogeneous

tuples, which incorporate the information meant to be exchanged among

agents and are available in the tuple spaces, working as the abstraction of

the coordination media and containers of tuples. Moreover, in order to browse

and retrieve specified tuples, LINDA allows the use of an associative access

19

20 Background

abstraction, making possible to manipulate the shared tuple space by spec-

ifying templates as set/classes of tuples, or via tuple-matching mechanisms,

such as pattern matching, unification, and so on.

The LINDA coordination language provides 3 basic primitives, able to handle

tuples’ manipulation and the tuple space itself with simplicity and expres-

siveness:

• out(T): inserts the tuple T into the tuple space

• in(T): retrieves the tuple T from the tuple space, with different prop-

erties:

1. destructive semantic: the retrieved tuple is destroyed from the

tuple space
2. suspensive semantic: if no matching tuple is found, the opera-

tion is blocked and the execution suspended, until a valid tuple T

is found
3. non-determinism: if multiple matching tuples are found, LINDA

chooses one of them non-deterministically

• rd(T): retrieves the tuple T from the tuple space, with different prop-

erties:

1. non-destructive semantic: the retrieved tuple is not destroyed

from the tuple space
2. suspensive semantic: if no matching tuple is found, the opera-

tion is blocked and the execution suspended, until a valid tuple T

is found
3. non-determinism: if multiple matching tuples are found, LINDA

chooses one of them non-deterministically

LINDA also provides predicative, non-blocking operations, inp(T) and rdp(T):

although they maintain basic properties of non-determinism, destructive/non-

destructive reading and syntax structure, they introduce failure semantic,

which means that if no matching tuple is found, a failure is reported, other-

wise they return successfully.

LINDA operations define a coordination language, suitable for dealing with

MAS complexity and providing attractive properties [31], such as:

• extensibility, originally conceived for closed, parallel systems, it has

been extended with new powerful mechanisms preserving its simplic-

ity, as the result of a continuous development process resulting in new

20

2.6 Coordination and Interaction models: overview 21

models and implementations (for example, nature-inspired coordina-

tion models)

• expressiveness, solving typical coordination problems and tackling dis-

tributed systems and MAS design complexity with few, well-suited and

easy-to-use primitives

• suspensive semantic, both basic rd and in primitive calls could led to

suspend the execution when no matching tuple is found within the tar-

geted tuple space: depending on the unavailability of searching tuples,

the blocking semantic occurs both in the coordination medium (via the

operation suspension, then its resuming) and in the coordinable entity

(internal wait-state until the performed operation returns successfully)

• associative addressing, with the possibility of retrieving different kind of

tuples via pattern matching or unification mechanisms, with a content-

based coordination which accesses information in an abstracted way,

based on data availability

• generative communication, where tuples generated by coordinable en-

tities are independent from each other while living within the tuple

space: tuples are intended to be means of coordination and objects of

communication, providing communication orthogonality (space, time

and name uncoupling) with no bounds to the generating entity.

• uncoupling, abstracting coordinables and tuples from time, reference

and space issues: agents do not have to be in the same place to interact

(the tuple space resolves locality issues), as well as no names, references

or simultaneity are needed (tuples are unbounded, they have their own

existence)

• separation of concerns (focus only on coordination issues), asynchrony

and concurrency.

As a further evidence of extensibility and expressiveness, from LINDA and

tuple-based models stem dozens of different and widespread implementa-

tions of coordination and interaction models, all featuring the same, simple

abstractions and mechanism of the base one but with different shapes and

variations (in order to deal with different areas and requirements), suitable

both for research purposes and industrial.

21

22 Background

Examples are the following: from T Spaces [41] and JavaSpaces [11] to TuC-

SoN [26], passing through (bio)chemical-inspired models [36] and space-time

tuplespaces [37], also shifting from tuplespaces to tuple centres models, defin-

ing behavioural modules within them [25], and so on.

22

Chapter 3

Prolog integration: feasibility

study

This section describes the Prolog engine, chosen as the technology enabler of

coordination and interaction models as the main supporter of coordination

infrastructures (like TuCSoN and LuCe, as explained before), discussing two

different projects, tuProlog and UnityProlog as candidates for Unity3D in-

tegration.

In particular, the aim of this chapter is to explain their strengths and weak-

nesses and discuss why to chose Prolog as the enabling technology for this

project, acting as a necessary precondition for starting the integration pro-

cess of coordination models, along with how the integration with Unity3D

was tackled and motivating all project choices (why take UnityProlog as the

official Prolog engine for this project).

3.1 Prolog integration in Unity3D

One of the main unexplored field when using a game engine like Unity3D is

the interaction and communication among objects in the scene during Play-

Mode and their behavioural design (the so called social abstraction in MAS).

In particular, while Unity3D provides the support to easily create 3D com-

plex worlds, non trivial architectures, physics responsive objects and other

features, the communication part is still relying on the procedure call mech-

23

24 Prolog integration: feasibility study

anism1.

However, despite it is well suited for game engines and performance (most of

the computation must be finished within the single frame), it is not expres-

sive enough to provide a general communication and interaction mechanism,

which could be useful in order to design and implement collaborative and

situated systems where multiple objects and agents could generally interact

with each other within the same physical environment.

In this thesis, the main purpose is to provide the game engine of a better

interaction and communication support between agents and, more generally,

among GameObjects within the same scene.

This expressive coordination power is based on tuplespaces, where chunks of

information are used to provide information-based coordination support and

with LINDA primitives as the main manipulative actions in order to interact

with tuplespaces by adding, removing and retrieving tuples. Moreover, LINDA

primitives, tuples and tuplespaces concepts have been used in TuCSoN [26] and

LuCe [7] projects where these concepts were specified with a logic-based com-

munication model using a first-order logic notation, so exploiting the Prolog

engine features like partial template specification using logic variables, back-

tracking, declarative syntax and unification as the matching mechanism.

With this strong background it was chosen to add the Prolog engine support

to Unity3D, allowing logic programming and coordination mechanisms to be

exploited during system development, providing tuples and tuplespaces as

first-order logic terms to be used along LINDA primitives and other high-level

communication utilities as well.

So, as an engineering process, steps are required in order to properly divide

the workflow:

• basic integration of a Prolog engine within Unity3D environment

• design and development of a LINDA-like library in Prolog, fully accessi-

ble from Unity3D’s C# Scripting mechanism

• provide general but still simple high-level interaction and coordination

mechanisms to be exploitable during agent behavioural development

1Interacting with some GameObject means calling a specific procedure within its C# script, via the

Unity3D’s SendMessage utility

24

3.1 Prolog integration in Unity3D 25

In the next sections is described which Prolog engine was chosen to be inte-

grated in Unity3D, in particular is explained why the first choice (tuProlog)

has been rejected in order to proceed with UnityProlog, analysing strengths

and weaknesses of both proposals.

3.1.1 tuProlog attempt

tuProlog [8] is a Java-based Prolog designed to be exploited for distributed

applications and Internet-based devices, providing a Prolog inference engine

as a Java class in order to be executed by many different applications or

processes at the same time, while the configuration of each node is done

independently according to differences, needs and prerogatives of the system

components. The support of tuProlog could be interesting also because of its

integration with basic coordination capabilities (like tuple spaces), in fact it

is the core of both TuCSoN and LuCe infrastructures as coordination feature

of Internet-based MAS.

Moreover, it provides a minimal, yet efficient, ISO-compliant Prolog VM,

with a simple interface and a light-weight engine containing only the minimal

and essential properties of a Prolog engine, an important characteristic if the

system development is strongly influenced by performance frame by frame

as Unity3D and all other game engines do.

3.1.1.1 Why it is a failure (for now)

The main problem with integrating tuProlog middleware with Unity3D re-

sides within its intrinsic implementation: the Prolog VM is natively written

in Java, while Unity3D provides a scripting environment available in C# and

a core written in C++, so a standard integration using tuProlog JAR was

not possible.

tuProlog also comes with a native support for multi paradigm languages,

in fact the same library was ported with IKVM2 in order to be available on

.NET platforms: this version, called tuProlog.NET, provides a clean and pos-

sibly seamless integration with systems based on .NET framework, libraries

and object-oriented programming languages (such as C#), so it could possi-

2https://www.ikvm.net/

25

26 Prolog integration: feasibility study

bly be integrated with no big effort in Unity3D.

Actually, Unity3D runs on a different version of .NET (in particular, Unity3D

is a native application built in C++, but uses Mono as scripting framework

on quite old C# versions, like 3.5), so one of the big problem of Unity3D

is that it is stuck on old .NET versions, not supporting all new features of

recent framework, and only recently has provided an experimental version of

its framework, supporting .NET 4.5 and newer versions of C#, as follows:

• Unity ”STABLE” Version:

Scripting Runtime Version: Stable (.NET 3.5 Equivalent)

Scripting Backend: Mono

API Compatibility Level: .NET 2.0 Subset

• Unity ”EXPERIMENTAL” Version:

Scripting Runtime Version: Experimental (.NET 4.6 Equivalent)

Scripting Backend: Mono

API Compatibility Level: .NET 4.6

The tuProlog.NET release version is 4.X, while Unity3D provides a stable

version using .NET 3.5, so the only way is trying to integrate tuProlog via

Unity3D’s experimental version: here, encountered problems are different, as

follows:

• Unity3D stable version uses a very old .NET framework, which is

not supported by the current tuProlog.NET release (it requires .NET

Framework 4.X)

• Unity3D experimental version could be the supported one, but it is not

yet stable and the integration process was impossible due to internal

problems end errors

• tuProlog.NET was generated using IKVM, both for the cross-platform

support and the automatic translation of Java bytecode into dll li-

braries, which could be used within .NET frameworks, but Unity3D

ran into several problems probably caused by .NET 3.5 clashing with

the experimental version and runtime resources problem

Due to all these problems, the tuProlog-Unity3D integration was set aside,

26

3.1 Prolog integration in Unity3D 27

but future investigations could be useful when the experimental version will

be more stable3.

3.1.2 UnityProlog attempt

UnityProlog4 is a mostly ISO-compliant Prolog interpreter for Unity3D de-

veloped by Ian Horswill, from EECS Department, Northwestern University:

this project is a simple Prolog interpreter developed on purpose for Unity3D,

so fully compatible with the game engine, providing Prolog theory, rules and

code to be properly mixed with the standard Unity supported languages.

The following section will explain why UnityProlog was the chosen one, its

features and limitations.

3.1.2.1 Features and limitations

UnityProlog comes with a list of features useful to bring the Prolog inference

engine within Unity3D, here are described the main features of the inter-

preter:

• ISO-compliant, so compatible with the majority of ISO standards, sup-

porting a variety of the built-in Prolog predicates and utilities

• direct access to Unity objects, methods and functionalities from within

Prolog code and vice versa

• Unity GameObjects are supported to be each one with a different (and

personal) knowledge base (KB). that is the place where Prolog theory

and code will be executed and stored, with the possibility of interacting

with a global KB

• Indexical name support (global values with dynamic binding), a way

to easily obtain references to the GameObject currently running the

Prolog theory, the current time, and so on

• Thread-safety of the interpreter, so the Prolog engine could be exe-

cuted on multiple threads but all assertions/modification of the Prolog

database must be done safely

3Actually, it is a bug of the current release of Unity3D, so needed to be re-investigated once fixed
4https://github.com/ianhorswill/UnityProlog

27

28 Prolog integration: feasibility study

• Basic tool for debugging and logging within Unity3D (using built-in

console)

Besides all these features, the project itself has some issues and limitations:

• It is an interpreter rather than a compiler, so the usual Prolog engines

are faster than this version

• It uses the C# stack as its execution stack, so tail call optimization is

not yet supported

• Doesn’t support rules with more than 10 sub-goals

• Doesn’t support the existential quantification construct ’ˆ’ and the full

version of setof/3

• Some changes in data type for a better integration with CLR languages

(like C#), as follows:

1. strings in Prolog are real CLR strings, not lists of numbers

2. true and false in Prolog are real true and false boolean values

3. the special character $ is used as a prefix value for special values

referral, so it is not possible to use $ as prefix operator for legacy

and custom code.

• Poor documentation support, this thesis will also provide with the ex-

planation of the core UnityProlog concepts and how to use them within

Unity3D

• Because Prolog uses the C# stack, debugging traces generated after

unhandled exceptions show the correct series of predicates called, but

show variables as being unbound (because they were unbound during

the process of exception handling), this is actual a bug reported in the

documentation.

Among all features provided by UnityProlog, there are indeed a couple of

extreme interest regarding tuplebased interaction models integration: inter-

operability between Prolog and Unity’s scripting environment and CLR code

in a quick and simple way, described in details in next sections. Furthermore,

the ability to enable different KBs for each different Unity object is extremely

interesting, along with the fact that we could potentially enable the inference

engine all over the scene, making each GameObject as a tuplespace carrier.

28

3.2 Coordination and interaction in Unity3D 29

Although all these features are listed and described, the project documenta-

tion doesn’t cover properly how to use it in order to enable Prolog in Unity3D

(the code explaining is not correct most of the time), so in the next sections

it is described in details how UnityProlog can be used in Unity3D, which are

the fundamental components and structures to use, how to enable KBs in

every object and how the interaction Unity/Prolog works.

3.2 Coordination and interaction in Unity3D

Besides enabling the expressive power of the Prolog engine within Unity3D

as a new paradigm to be exploited when developing complex systems and

videogames, this integration makes possible to achieve and realize the coor-

dination dimension under different points of view.

So, the objective of this section is to introduce and explain how the Unity-

Prolog integration process has been tackled and developed.

3.2.1 Prolog support in Unity3D

This section describes how UnityProlog constructs and functionalities can be

used to provide Unity3D with the Prolog support, in particular it is explained

how to set up a simple scene with objects supporting local Prolog theories

(embedded in the GameObject itself), the concept of Knowledge Base (KB)

and GlobalKB as a global GameObject with general theory loaded, how to

call Prolog predicates and how the interoperability Unity3D-Prolog works.

Plus, it is presented the fundamental script in order to enable a Prolog engine

within every object.

3.2.1.1 UnityProlog’s KnowledgeBase (KB)

The KnowledgeBase is the fundamental construct of UnityProlog, which en-

ables the usage of the Prolog engine within every GameObject with a script

implementing it.

In details, it is available as a C# object, making the expressive power of a

declarative language like Prolog to be available and utilized within Unity3D

scripts, scenes and applications (videogames and simulations).

29

30 Prolog integration: feasibility study

The KB can be created within every scripts as a usual C# object, in order

to use the Prolog engine for its computing purpose, and it can be accessed in

a straightforward way simply using methods and functionalities provided by

UnityProlog library, which will be properly explained in next sections. The

same KB concept is available to be used in 2 ways:

• local KBs, which could be private to every GameObject (KBs could

be used by external agents or not, like normal objects, by reference),

provide a Prolog engine to be loaded and executed locally, so no other

object are able to interact with it

• global KB, that is a global object called ”GlobalKB”, available for

every object willing to use a general Prolog engine with a general theory

loaded

it is possible to provide each GameObject of a local, specific KB, in order to

enable the Prolog engine to be exploited within the same object: in order to

do this, UnityProlog system requires adding a KB Component to the target

GameObject directly from Editor Mode (like any other GameObject’s Com-

ponent, e.g. Rigidbody or Collider, not by code).

However, this default mechanism allows only the creation of a KB that in-

herits from the global one, not providing the closed-world assumption needed

for future developments, resulting in the GlobalKB’s Prolog theory to be au-

tomatically inherited by every local KBs.

To solve this problem, while still allowing objects to interact with the Glob-

alKB for general info spreading, it is necessary to force each local KB to be

created from scratch, not inheriting from the global one.

In this way, what is written in GlobalKB will not be visible also in all KBs

and vice versa (this has been done providing programmers with a base script

called AbstractLinda, explained below). When we want to include in our KBs

some prewritten Prolog code (a standard Prolog theory), we can do it with

code calling the Consult method on KB’s objects (specifying the path of the

Prolog file) and also in 2 ways, requiring no code to be written:

• regarding the GlobalKB, which is a Unity component that wraps the in-

ternal KnowledgeBase object representing Prolog equivalent of a names-

pace, all we have to do is to specify the theory path to the Source Files

30

3.2 Coordination and interaction in Unity3D 31

Figure 3.1: AbstractLinda script structure, which inherits from MonoBehaviour C# class (the base class

from which every Unity script derives)

property of the KB Component in the Unity Editor (all files must be

inside Assets folder of Unity3D project, be with extension .prolog, and

the path must be complete, with root in Assets folder).

• regarding all local KBs it was implemented a base script, called Ab-

stractLinda, which contains useful constructs to programmers meant

to be easily used for all GameObjects with the need of Prolog engine

enabled, which are a local KB object (generally available via API to ex-

ternal GameObjects) and methods useful for suspensive semantic and

other stuff, explained in details in the next sections.

For now, let’s say that the AbstractLinda script is a MonoBehaviour C#

Script which enriches a base Unity one with Prolog support and other fun-

damental features, described later.

When a programmer wants to provide a GameObject support of local exe-

cution of Prolog code in a local KB, it must create a script which inherits

from the AbstractLinda one (Figure 3.1).

In Listing 3.1 is provided the AbstractLinda C# script (full supporting sus-

pension and trigger collider handling, explained during next sections and

with domain specific examples).

31

32 Prolog integration: feasibility study

public class AbstractLinda : MonoBehaviour {

// Path to KB, useful only for SituatedKB scripts.

public string path = "blabla.prolog";

// Bool value representing whether the gameobject is suspended in some suspensive Linda

call or not.

bool suspended = false;

// The local KB, can be exchanged among GOs.

private KnowledgeBase localKB = new KnowledgeBase("",null,null);

// Gets or sets the local KB.

public KnowledgeBase LocalKB {

get {

return localKB;

}

set {

localKB = value;

}

}

// Gets or sets a value indicating whether this <see cref="AbstractLinda"/> is suspended.

public bool Suspended {

get {

return suspended;

}

set {

suspended = value;

}

}

//protection against external and wrong awakening calls or unhandled trigger events

protected bool enabledOrSuspensionCheck(Collider coll){

if (!enabled || suspended) {

return true;

}

return false;

}

// Awakes the agent suspended on some tuple.

public void awakeAgent(){

if(suspended){

LindaLibrary.AwakeAgent (this);

}

}

}

Listing 3.1: AbstractLinda C# Script, the base one supporting local execution of Prolog engine and

awakening from Linda suspensive calls: every Script which needs to exploit these funcionalities must

inherit from the AbstractLinda one.

32

3.2 Coordination and interaction in Unity3D 33

3.2.1.2 UnityProlog’s constructs: Structures, LogicVariables, ISO-

PrologReader

Unity3D’s main workflow (as any other game engine and videogame product)

consists of calling a specific set of methods in every active script present in

the current scene, which means only those attached to an active GameOb-

ject.

In fact, it follows an update loop structure, in which there exists some prede-

fined callback methods (like Update(), FixedUpdate(), LateUpdate(), and so

on) which are (if implemented) sequentially called every frame, so we won’t

be able to let the Prolog engine to run indefinitely because it will block the

main loop bringing low performances.

The UnityProlog internal structure makes possible to periodically call Prolog

code within these base methods as a usual object method call, allowing the

Prolog engine to only run when needed.

Generally speaking, each Prolog concept is directly mapped into CLR lan-

guage, but since strings and bools are the actual CLR types, the other types

(integer, float, char, etc...) must be properly casted when used.

The Unity-Prolog interoperation for both C# concepts/Prolog entities and

methods allow computation to be carried out in a twofold way, choosing the

most suitable level of abstraction while designing and programming the sys-

tem and switching between object-oriented style and declarative style.

For the interaction model integration, it was adopted the C# API Library

in order to give programmers the right means at the right abstraction level

while delegating to the Prolog engine the interaction and coordination core.

So, when integrating Unity3D and Prolog comes the necessity to have a C#

representation of the relevant Prolog entities, including methods and stan-

dard data objects in order to make possible the exploitation of UnityProlog

resources.

All possible data objects could be obtained using C# Structure objects:

they are a representation of a term to be inserted into queries as parame-

ters or return types, so they are a fundamental brick of the Unity-Prolog

communication pattern. For example, Structures could be used in a query to

33

34 Prolog integration: feasibility study

represent the fact to be unified, a functor with some arguments, and so on,

as shown in Listing 3.2. It is possible to pass any CLR objects as arguments

to Prolog code. A Structure could have another Structure as argument, en-

abling Compound terms to be passed in the query.

//the Tuplespace with Linda support

KnowledgeBase kb = new KnowledgeBase("linda",gameObject,null);

//struct0 is the tuple ‘‘pippo’’

Structure struct0 = new Structure ("pippo");

//struct1 is the tuple ‘‘test(pippo)’’

Structure struct1 = new Structure ("test","pippo");

//struct2 is the tuple ‘‘test(2)’’

Structure struct2 = new Structure ("test",2);

//struct3 is the tuple ‘‘test(hello(3),seven)’’

Structure struct3 = new Structure ("test",new Structure (’’hello’’,3),’’seven’’);

Listing 3.2: KnowledgeBase usage with Structures, enabling Prolog predicates to be called

Prolog variables are mapped into C# LogicVariables objects, each identi-

fied with a string: variables must be at least with the first char in upper-case,

as the standard Prolog variable requires. LogicVariables are meant to be used

with Structures in unification queries, in which the variable will be bounded

with the actual term unified by the Prolog engine (Listing 3.3).

//the Tuplespace with Linda support

KnowledgeBase kb = new KnowledgeBase("linda",gameObject,null);

//struct1 is the tuple ‘‘pippo(X)’’ to be unified

LogicVariable x = new LogicVariable ("X");

Structure struct1 = new Structure ("pippo", x);

//struct2 is the tuple ‘‘test(follow,Y)’’ to be unified

LogicVariable y = new LogicVariable ("Y");

Structure struct2 = new Structure ("test", Symbol.Intern ("follow"), y);

Listing 3.3: KnowledgeBase usage with Structures and LogicalVariables, in order to use Prolog engine

for template matching and unification

34

3.2 Coordination and interaction in Unity3D 35

3.2.1.3 Unity-Prolog interactions

Interacting with Prolog from script files using C# code means calling speci-

fied methods on the KB object, so it is an object-oriented method call. There

are several ways to ask something to Prolog engine, here follows the main

used in this thesis:

• bool IsTrue(object goal, object thisValue=null): returns true

if goal is provable within the targeted KnowledgeBase, in this case goal

is meant to be a Structure object which builds the query to be executed

• object SolveFor(LogicVariable result, object goal, object

thisValue, bool throwOnFailure=true): used for unification requests,

in particular goal is meant to be a Structure object containing the Log-

icVariable result, so the unified result will be bounded to the passed

LogicVariable. The function itself returns a boolean, meaning success

or failure

Note that when predicates with compound terms as argument are intended

to be called, it is necessary to manually build all Structures with a big effort.

UnityProlog provides the class ISOPrologReader which allows the creation of

a query in a seamless way, writing it as a normal string following the Prolog

specified syntax, so that same queries can now be written in a simpler way

(Listing 3.4).

//the Tuplespace with Linda support

KnowledgeBase kb = new KnowledgeBase("linda",gameObject,null);

//true if the KnowledgeBase has the fact agentX(follow,agentY)

var str = ISOPrologReader.Read ("agentX(follow,agentY)).") as Structure;

kb.IsTrue (str);

//the bounded variable X will be available within its struct

var str2 = ISOPrologReader.Read ("X:agentX(follow,X).") as Structure;

kb.SolveFor (str2.Argument (0) as LogicVariable, str2.Argument (1), this);

var result = str2.Argument (0);

Listing 3.4: KnowledgeBase usage with ISOPrologReader object, avoiding Structure compositions and

simplifying query creation

35

36 Prolog integration: feasibility study

3.2.1.4 Prolog-Unity interactions

This version of Prolog includes some extensions to enable the interoperation

with CLR code making it relatively transparent. If you want to call into Unity

or your scripts you can do it directly from Prolog, without the necessity to

write glue code or complex sentences.

Referring to Unity GameObjects and CLR types is simple: with the notation

$name it is possible to obtain the reference of a GameObject with the name

property.

For example, $light refers to the GameObject with name “light”, while ev-

ery object’s name which starts with a capital letter or contains special chars

like spaces, underscores, and so on, it should be enclosed in single quotes in

order to don’t cause problems within the Prolog engine.

Also, CLR types, classes, non-class types (value types, delegates) can also be

named as stated before: $String stands for class System.String, $’Cam-

era’ means the Unity Camera class, $’Vector3’ means Unity’s Vector3

type.

It is also allowed to use full names like $’System.Object’.

Most importantly, it is possible to access the object that currently is running

the Prolog code but does not know its name: here UnityProlog provides the

indexical feature, meaning that writing $this will refer to the component

that called Prolog, and $me will be the reference to the GameObject that

called it. This feature is useful in order to keep track of which GameObject

has currently called a Prolog predicate, and it will be extremely useful for

the suspensive semantic of LINDA primitives implementation, as explained in

the next sections. Some caveats:

• the $name bindings are resolved during the game startup time, while

code loads, which means that objects which are created at runtime will

not be found if no GameObjects with that name has been created yet,

but it is possible to call GameObject.Find() Unity built-in function

within Prolog code in order to find a GameObject with a specific name:

Z is $gameobject.find(|object name|).

• $me and $this indexicals are bounded during load time and are index-

ical objects, not values

36

3.2 Coordination and interaction in Unity3D 37

• objects with the same name will not be guaranteed to be correctly

called

• case-insensitivity: Prolog does case-insensitive searching of object mem-

bers, so two members whose names vary only by case will get Prolog

confused

Accessing object properties and methods is as simple as referring to object’s

names: it is possible to use Prolog functional expressions like ’is/2’ to bind

Prolog variables into values returned by some function calls:

• X is $me.name binds X to the GameObject’s string name

• Y is $me.getcomponent($’MyScript’) gets a particular component

from the GameObject running at that time a Prolog query

Here are listed some of the useful standalone predicates to be used within

Prolog theory and code (in order to enhance functional expressions with

method calls and return values handling), they are only a subset, for other

predicates please refer to the UnityProlog documentation:

• property(∗object,∗property name,>value)., which unifies value with

the value of object’s property named property name, succeeding exactly

once or throwing an exception

• call method(∗object,∗method and args,>result). , which calls the

specified method on object with the specified arguments and unifies the

return value with result, here an example of how to use it:

call method($this, ’TestM’, A), log(A)).

will call TestM function with no arguments on object bounded with

$this, unifying A with the result and printing it on the Unity Console

with command log(A), while:

call method($this, ’TestMWithArgs’(2), A), log(A)).

will call TestMWithArgs method with argument 2 (int) of the object

bounded with $this, finally printing the result

• is class(?object,?class), True if object is of the specified class.

If class is a subclass of Unity.Object, and object is uninstantiated, then

it will enumerate objects of the specified type.

37

Chapter 4

MAS and Unity3D

This chapter is the core of the thesis, providing the necessary abstraction and

interaction concepts design and formalization, based on fundamentals about

MAS, Prolog and Unity3D introduced in Chapter 2 and 3.

Here, the main focus is on how to extend Unity3D with a new level of ab-

straction, providing logic programming support and trying to bridge the gap

between MAS systems and Unity3D along with providing a tuplespace based

interaction and communication model.

The organization of the chapter is as follows: Section 4.1 is the most impor-

tant one, explaining idea and logic architecture behind the development of

tuplespace based coordination and interaction in Unity3D based on Prolog

theories.

Section 4.2 shows how the Prolog engine has been used for design and im-

plementation of basic Linda primitives (as a background support, not visible

to Unity3D designer and programmers) along with tuples and tuplespaces

support.

Section 4.3 introduces Unity3D side of the development, presenting LindaL-

ibrary API as low-level C# functionalities capable of directly exploiting

Prolog background side of Linda implementation (realizing Unity3D-Prolog

interoperation) and LindaCoordinationUtilities API as high-level func-

tionalities exploiting LindaLibrary API to provide general communication

primitives and more high-level interaction module.

39

40 MAS and Unity3D

4.1 Tuplespaces and LINDA in Unity3D: main

idea

After enabling Unity3D with the possibility of using a Prolog engine aside

its script control mechanism, the next step is to provide a coordination and

interaction media in order to coordinate different entities.

This is a necessary step, especially when designing and developing collabo-

rative applications and games, where a multiplicity of agents must interact

with each other in order to achieve some goals inside the same physical

environment, properly controlled by Unity game engine. For this purpose,

coordination strategies and patterns could be as well designed, in order to

provide different kinds of coordination models and technologies, since many

of them have been proposed by literature and efficiently used in many re-

search fields.

Indeed, a coordination model is required to handle the interaction space

among components in multicomponent systems and, in the MAS context, they

provide for the right metaphor and abstraction in order to properly build

agent societies, where they play a key role.

For these reasons, the tuple-based coordination model originated from LINDA

was the chosen one: a basic interaction protocol which provides features mak-

ing its usage and implementation simple yet well-suited and powerful enough

for our purpose, that is enabling a coordination model which could prop-

erly model the space of interaction among components, agents and Unity

GameObjects.

In tuplebased models, agents interact with each other by exchanging tuples,

which are collections of information items, chunks of info. Agents, objects

and every GameObject should be able to communicate, synchronize and co-

operate through tuplespaces by reading, storing, consuming tuples while as-

sociatively interacting with tuplespaces.

Benefits are:

• separation between computation and coordination, important for agent

architecture design and keep computation and coordination in a distinct

way [13]

• generative communication [12] and associative access to the interaction

40

4.1 Tuplespaces and LINDA in Unity3D: main idea 41

space [5], decoupling agents both spatially and temporally, which is im-

portant regarding the possible unpredictable environment which could

be designed thanks to Unity3D engine, while dealing with heteroge-

neous and dynamic information-based systems like the ones we want

to develop

The design of the tuplebased interaction and coordination model follows 2

interoperating sides: (i) the Prolog one, in which tuples, tuplespaces and

LINDA primitives are designed and implemented with respect to declarative

syntax, using unification and backtracking, (ii) the Unity one.

So, in order to provide to C# and Unity developers of a simple yet powerful

communication library it was implemented the LindaLibrary API, enabling

the usage of the Prolog tuplespace communication model within Unity3D

scripts and game logic.

4.1.1 System design

In order to design and implement a prototype library which could bridge the

gap between Unity3D internal structure and Linda-based interaction and

communication model, a proper system design must be clear to be the de-

velopment base of new functionalities.

Basically, Unity3D is characterized to be an integrated development environ-

ment with a proper design model, which provides mechanisms and facilities

to programmers and developers.

One of the most exploited yet powerful feature is the hierarchic GameOb-

ject composition, in which the most important concept in Unity3D Editor

(GameObject) can be provided of properties (called Components) which con-

tributes to the object complexity growth, like an empty container filled by

ingredients. In particular, the GameObject-Component relationship is deep

and important: every GameObject could have attached one or more Compo-

nents, while each Component is able to provide and enable different kind of

properties.

For example, the Transform Component defines the GameObject position,

scale and rotation in the developed game world and it is critical to all

GameObjects, the Rigidbody one enables the object to be subject to Physics

41

42 MAS and Unity3D

Figure 4.1: GameObject and Components hierarchy in Unity3D

forces, moving it in realistic ways, the Collider Component is responsible for

enabling collision between GameObjects, the Script Component adds code

and behavioural support, and so on, with a consequent increase and modifi-

cation of objects complexity.

Unity3D acts as a middleware support, providing these features to be seen

as simple and customizable building blocks: since everything inside Unity3D

is a GameObject, from now on we will call “agent” only those provided with

a C# Script Component (so with behavioural semantic and coding support,

defining how they have to move, to react to events, and so on) and making

a distinction between proactive and potentially movable entities and passive

ones.

MAS vision of proactive agents living in a complex environment and interact-

ing with each other is becoming a pervasive paradigm in design and imple-

mentation of complex software systems and applications. Interactions and

communication models play a key role, managing the coordination among

42

4.1 Tuplespaces and LINDA in Unity3D: main idea 43

Figure 4.2: AbstractLinda Component in details: it inherits from MonoBehaviour class (the base one for

all C# Script Components) and provides a local KB with Prolog support and basic functionalities. The

Script section provides the usual functions of a standard C# Script.

components defining coordination media, coordinables and all the necessary

abstractions at the right level of abstraction required to build agent societies.

In particular, tuple-based coordination models are well-suited to be applied

in heterogeneous and open systems, providing an associative mechanism to

deal with dynamic, information-based applications.

In details, considering all previously stated system features and attributes,

the system design idea is as follows (also depicted in Figure 4.3).

Since in Unity3D everything is a GameObject and every object could have

a C# Script component defining its behavioural module, we say that if the

C# Script Component inherits from a specified one (which enables Prolog

support via UnityProlog concepts) is said to be a tuplespace itself, because

the Prolog support brings the possibility to use Linda communication model.

For this reason, the base C# Script is called AbstractLinda (Figure 4.2),

and it is the one which enables Prolog support within a single GameObject,

making the same object able to use the tuplespace based interaction model.

Moreover, since every GameObject with Prolog support is a tuplespace, the

Linda communication model is empowered with all features provided by

Unity3D, such as using Colliders to enable communication based on colli-

43

44 MAS and Unity3D

Figure 4.3: System design: every GameObject composed of a C# Script Component (and potentially

with any other kind of Component) which inherits from the AbstractLinda C# class is a tuplespace itself

(TS tag). A GlobalKB object is the global tuplespace which could be enabled or not, visible to every

GameObject.

sion detection, with suspensive semantic.

With this concept, MAS and Unity3D are ready to be mapped, adopting the

constructive coordination meta-model as explained in [4], as follows:

• coordination media resides in tuple spaces, which means that every

GameObject could potentially be a tuplespace, with all features and

functionalities of a regular, living, Unity3D GameObject

• communication language is the ordinary tuple, meant to be a collection

of (possibly) heterogeneous information chunks, ready to be exploited

within Unity3D using UnityProlog and a Prolog engine

• coordination language, meant to be a set of operations for insert, re-

trieve and read tuples from the space, available in Unity3D using Prolog

via UnityProlog and, for Unity3D programmers and system developers,

via developed communication libraries (LindaLibrary and LindaCo-

ordinationUtilities API)

4.2 Prolog side background support: tuples,

tuplespaces and Linda primitives

Although all new functionalities are important to be provided to program-

mers, it must be present a separation between Prolog background support

44

4.2 Prolog side background support: tuples, tuplespaces and
Linda primitives 45

and C# static library and API.

This section explains how the LINDA primitives background support has been

designed and developed, in order to provide LINDA functionalities to be ex-

ploited by C# libraries and API.

The Prolog side is not intended to be directly exploitable by Unity3D’s pro-

grammers, but it will be used by C# API and wrapped into C# functions in

a library in order to be used in a simpler way while programming C# Scripts

(Section 4.3 describes the Unity3D side of the development).

For this thesis it was developed a LINDA-like tuplespace based coordination

model using the previous integrated and analyzed Prolog engine as basic

support: tuples are meant to be Prolog facts, exploiting the UnityProlog fea-

ture of interoperability with Unity3D C# space, while LINDA primitives are

predicates with a specified arity and all Prolog queries are performed on a

specified KB, described as follows:

• out(T) : inserts the tuple T into the targeted TS, it doesn’t allow du-

plicates due to design motivations (Subsection 4.3.1.2 introduces the

out d(T) version, which allows duplicates)

• in(T) : retrieves the tuple T from the targeted TS, destroying it

• rd(T) : reads the tuple T from the targeted TS, not destructive

The implementation follows a standard declarative style, where each predi-

cate is created with a specific purpose, enhanced by Prolog engine features

like unification, backtracking, inference.

Prolog theories are meant to be both global shared tuplespaces, in order

to globally coordinate agent activities (with the actual representation in

the GlobalKB GameObject), and local yet shared memories used for data

exchange in terms of tuples among agents and objects, enabling their syn-

chronization and interaction control (actual representation: AbstractLinda

script with the localKB knowledge base in the hosting GameObject).

Each tuple, as stated before, is saved as a Prolog ground fact, meaning that it

could contains different data types while allowing Unity to correctly handle

their diversity.

45

46 MAS and Unity3D

4.2.1 Suspensive semantic - Prolog support

Besides this very simple implementation comes the necessity to deal with

suspensive semantic, as follows: if no tuples are found after rd or in calls, an

agent may suspend its execution until some matching tuple is inserted into

the target KB.

Since this semantic is not provided directly by the UnityProlog environment,

it was decided to tackle some valuable features from both worlds (Unity and

UnityProlog), in particular:

• from UnityProlog it is useful to exploit indexical variables, interoper-

ability of methods/predicates for direct communication with Unity and

the unification/inference power of the Prolog engine: for this purpose

previous LINDA rd and in primitives are extended with the suspensive

counterpart as follows:

1. in susp(T)

2. rd susp(T)

• from Unity it is exploited the async/await and coroutine mechanism in

order to ”simulate” a suspensive semantic (in particular, async/await

construct is only available under the experimental version of the engine,

so it is still unstable)

Prolog side, the idea is: in order to keep the engine aware of which agent is

currently suspended on which LINDA primitive suspensive call, it is introduced

a special tuple, with a specific syntax:

tuple s(M,T,X)

The semantic of these 2 new predicates, enriched with the tuple s(T) new

ground fact, is as follows:

• if an agent calling in susp/rd susp founds the searched tuple, Prolog

returns it after the unification process

• if an agent calling in susp/rd susp is looking for a tuple not yet avail-

able within the targeted KB, the Prolog engine saves a special tuple

with a specific syntax:

tuple s(Primitive,Tuple,$this),

46

4.2 Prolog side background support: tuples, tuplespaces and
Linda primitives 47

where:

– Primitive is the suspended method (in/rd)
– Tuple is the searched tuple not yet available
– $this is the GameObject callee reference.

Then, the agent is suspended (the ”suspended” meaning is explained

in details in the next section) until an out(Tuple) call occurs, which

means that the Prolog engine is able to retrieve which GameObject is

currently awaiting for that specific tuple, eventually awakening it

This behaviour is made possible modifying the out(T) semantic and imple-

menting new predicates, as follows:

• after an out(T) it could happen that some agent is waiting for that

particular tuple, so the Prolog engine must search within the targeted

KB if one or more tuple s(,T,) are present, meaning that there

exists suspended agent which must be awakened: this search is made

by predicate serveWaitQueue(T)

• serveWaitQueue is responsible for tuple s(...) search in the Prolog

theory in order to retrieve all agents suspended on the tuple inserted

just now, then it is time to awake them eventually destroying the tuple

This new mechanism brings several issues:

• fairness of serveWaitQueue predicate, meaning that if more than one

agent is suspended on the same tuple, it must be awaken following the

temporal property, like FIFO queues

• distinguish whether an agent is suspended after a rd or in call, because

of possibly destructive semantic: the solution is to add the Primitive

parameter to tuple s fact in order to tag the special tuple with the

current suspended method (along with the GameObject reference)

• wait queue handling, so implement serveWaitQueue knowing how to

respond to different situations:

– agents suspended on rd call, they must all be awakened after the

right single out(T)

– agents suspended on in call, only the first must be awakened (so

the one which is waiting for a longer time, first come first served)

47

48 MAS and Unity3D

– agents suspended on rd and in on the same tuple, which means

that after an out(T) agents must be awakened following the tem-

poral property until a tuple s(in,T,) is found: all agent sus-

pended on rd calls must be awakened until the first agent sus-

pended on in call occurred, while if other agents are suspended on

the same tuple after reached the tuple s(in,T,), they are not

awaken until a new out(T) occurs (due to the temporal property)

• every awakening must be followed by the correspondent tuple s(M,T,R)

removal

To overcome these problems, the serveWaitQueue predicate were developed

as follows: the idea is to handle tuple s special Prolog facts as a FIFO queue

of waiting agents, awakening the ones blocked in rd until the Prolog engine

founds the first one waiting in in, ensuring fairness.

Listing 4.1 shows LINDA primitives implementation using Prolog: it is not

intended to be directly modified by programmers, since it is exploited by

LindaLibrary API, but it can potentially be extended and improved.

:- set_prolog_flag(unknown,fail). %closed world assumption

%example of ordinary tuples as ground facts

chop(0).

chop(1).

chop(2).

%example of special tuples, with different syntax than before

tuple_s(rd,test(2),$ref). %the agent with reference $ref is suspended on rd call searching

test(2)

%adds tuples only if they are not already present and control the waitQueue with priorities

out(T) :- \+ T, assert(T), serveWaitQueue(T).

rd(T) :- T.

rd(T) :- \+ T, fail.

rd_susp(T) :- T.

rd_susp(T) :- \+ T, log(T), assert(tuple_s(rd,T,$this)), fail. % $me stands for the

GameObject that called this method

in(T) :- T, retract(T). %retrieves the tuple T, destructive

in_susp(T) :- T, retract(T). %retrieves the tuple T, destructive

in_susp(T) :- assert(tuple_s(in,T,$this)), fail.

48

4.3 Unity3D side: the LindaLibrary and
LindaCoordinationUtilities API 49

%handle the FIFO wait queue of suspended agents

serveWaitQueue(T) :- loopUntilIN(T,[],L), log(L), serveAgents(L).

%process special tuples with temporal property until tuple_s(in,_,_) is founded

loopUntilIN(T,Acc,L) :- \+ member(tuple_s(in,T,_),Acc), tuple_s(M,T,V),

retract(tuple_s(M,T,V)), append(Acc,[tuple_s(M,T,V)],Y), loopUntilIN(T,Y,L).

loopUntilIN(_,L,L).

%serve suspended agents, awakening them

serveAgents([]).

serveAgents([H|T]) :- processAgent(H), serveAgents(T).

%awakening of the agents calling the ‘‘awakeAgent’’ method of AbstractLinda script

processAgent(tuple_s(rd,_,A)) :- call_method(A, ’awakeAgent’, _).

processAgent(tuple_s(in,T,A)) :- retract(T), call_method(A, ’awakeAgent’, _).

Listing 4.1: Linda primitives implementation, Prolog side (exploitable by Unity programmers using

LindaLibrary and LindaCoordinationUtilities API)

4.3 Unity3D side: the LindaLibrary and Lin-

daCoordinationUtilities API

What really is in the hands of Unity3D programmers and developers are C#

libraries and API supporting the new coordination and interaction model:

following this direction, this section engineers LindaLibrary and Linda-

CoordinationUtilities API on the basis of the previously described and

implemented LINDA primitives using Prolog engine as basic support.

Each subsection is a logical step followed during API design. Subsection 4.3.1

describes the LindaLibrary API and how it provides all basic and low-level

Linda primitives support using the Prolog side developed functionalities.

Subsection 4.3.2 is about the making of LindaCoordinationUtilities API

as a new abstraction level from LindaLibrary, providing generic and high-

level interaction and coordination functionalities.

49

50 MAS and Unity3D

4.3.1 LindaLibrary API: Linda primitives and suspen-

sive semantic support

LindaLibrary provides all low-level functionalities interacting with the Pro-

log engine and previously written LINDA primitives: these C# functions are

directly exploitable by Unity3D programmers while developing games or

MAS-like systems.

Enabling the tuplebased interaction and communication model to be used

for design and programming purpose within Unity3D means that it must be

available to be exploited in C# scripts, so in those Components where all

logic is written.

With this purpose it is implemented the LindaLibrary API, a static class

full of utilities aiming to help the programmer to interact with the Prolog

engine via LINDA primitives in a easy and straightforward way (Figure 4.4).

The library provides many features:

• it enables LINDA in, rd and out primitives to be used like C# methods,

with parameter and return values, even with parametric variables to

be unified by the Prolog engine, both on GlobalKB and localKBs

• provides the support to obtain the local KB of some targeted GameOb-

ject even only knowing its name, meaning that every GameObject with

an AbstractLinda script as component is able to interact with each

other via LINDA primitives and Prolog queries

• it is possible to properly set both GlobalKB and some targeted localKB

with a Prolog theory, loading and unloading it both using the Editor

and during runtime using the API (Prolog theories must be inside As-

sets/KB folder in order to be correctly loaded)

• it provides methods and utilities to implement a suspensive semantic

when requested, both exploiting new async/await construct and using

old but widely used coroutine mechanism

• thanks to UnityProlog features, it is possible to write searched tuples

directly in a single string, without the need of composting Structures,

LogicVariables and data types

50

4.3 Unity3D side: the LindaLibrary and
LindaCoordinationUtilities API 51

Figure 4.4: Straightforward agent interaction using LindaLibrary, as normal C# method calls used within

Script Components

The main focus here is the implementation of a suspensive-like semantic in

order to support the LINDA communication protocol: for this purpose it is

exploited the Task-based Asynchronous Pattern (TAP), introduced with the

experimental version of Unity3D but still quite unstable, and the coroutine

built-in mechanism which enables heavy functions to be gradually executed

with frame-by-frame basis, with no need to be finished within a single frame.

So, the API enables LINDA primitives to be used like C# methods in a easy

and quick way, simply interacting with KBs as standard objects: in this way,

a GameObject can become a tuplespace carrier, each one with a possible

different Prolog theory.

This means that everything we create and model inside a Unity scene (agents,

normal objects, invisible objects, areas, and so on) could be a tuplespace with

personal KB, tuples and logic, able to interact and coordinate with other

GameObjects and KBs.

4.3.1.1 Suspensive semantic: Unity3D mechanisms

The core of the suspensive semantic implementation resides on Unity3D C#

constructs and features, in particular using the Task-based Asynchronous

Pattern (TAP) and the coroutines functionality, both chosen for their asyn-

chronous nature to be exploited in a synchronous way, in particular:

• the TAP pattern is currently supported by the experimental version of

Unity3D, so not particularly stable, but the support of .NET Frame-

work 4.6 brings new features, such as Tasks, to be utilized within the

51

52 MAS and Unity3D

game engine, enabling new and interesting ways to tackle game design

complexity by opening new implementation and project roads1

• the coroutines functionality, a built-in mechanism used to distribute

heavy and complex computations along multiple frames, delaying them

to the future

The API provides LINDA rd and in implemented both using TAP and corou-

tines (Listing 4.3), while Prolog side the tuple s construct allows to keep

track of agent suspended, method suspended and tuple requested. This de-

cision was made with respect to the old but officially supported coroutine

mechanism while looking to the future, to new features and allow using

Tasks (which are still subjected to instability and runtime problems within

Unity3D).

It is important to state here that the TAP adoption has been made in order

to exploit some Task functionalities, but not Tasks themselves.

While executing an async method, the control flow is still on the Unity3D

main-thread, meaning that although multi-threaded programming is poten-

tially available to be used (thanks to .NET 4.6 support), it has not been

exploited in this thesis, since it is still pretty unstable2.

Here follow examples and semantic of TAP implementation and idea (de-

picted in Figure 4.5):

• the LINDA primitive call (either rd or in) starts as a normal one, asking

to the Prolog engine to find a specific tuple T

• if T is found, the method returns positively, otherwise the agent must

suspend its execution until someone makes a out(T) on the same KB

of the awaited tuple

• the suspension occurs on a particular variable of class TaskComple-

tionSource<T>, which is an initially unbound variable that will be set

to a value by the Prolog engine when the tuple becomes available.

1while in play mode, choosing to stop the simulation will not cancel previously launched async/await

functions, resulting in background async calls still running even when the simulation has stopped, eventu-

ally terminating when trying to access to GameObjects not existing any more, but it surely is a problem

due to the experimental version
2MissingReference errors when closing the game, which means that Unity is unable to terminate async

methods running when shutting down the simulation

52

4.3 Unity3D side: the LindaLibrary and
LindaCoordinationUtilities API 53

Figure 4.5: Suspensive semantic: agent performing a “wait” call (so, LINDA in and rd suspensive func-

tions) on a specific tuplespace (the KB one) waiting for the tuple T; once arrived (a third agent performing

a LINDA out of tuple T), both suspended agents are awakened via Prolog-LindaLibrary calls.

The LINDA primitive suspends the execution of the agent on this spe-

cific variable, until someone performs the awaited out(T), which means

that the Prolog engine will call the awakeAgent method of the base

agent’s script (one of the fundamental methods available from the Ab-

stractLinda script), so the TaskCompletionSource variable will be

set to a real value and the agent will resume its computation.

• in order to properly use the LINDA suspensive primitives, the program-

mer must follow some advise: calling a method using the TAP pattern

means that the API must be executed with the keyword ”await” be-

fore it, within a method tagged with the keyword ”async”. Otherwise,

a Unity warning will occur saying that an asynchronous method is not

currently awaited, so it is effectively executed in an asynchronous way,

resulting in a constraint for the programmer

As far as coroutine method is concerned, its implementation is not much dif-

ferent from the TAP based one, only the async/await constructs are replaced

by a StartCoroutine(...) and “yield return null”, meaning that until the

searched tuple is not available, the coroutine must suspend its execution re-

peating a statement the next frame until it finishes correctly. In the current

version of the API, each agent can suspend its execution on 1 tuple and 1

method at a time: this constraint was necessary in order to awake agents re-

53

54 MAS and Unity3D

specting the temporal property, both saving agents timing on Prolog theory

(with tuple s special tuple) and on LindaLibrary static class (creating a

Dictionary where each agent can be present only once), avoiding suspended

agents to overwrite each other on the same TaskCompletionSource.

To overcome this limitation is required a more complex structure, in order

to save agents multiple times and retrieving them in according to some tem-

poral property saved (along with method name).

//Linda primitive examples

KnowledgeBase k = new Knowledgebase (‘‘linda’’,gameObject,null);

LindaLibrary.Linda_OUT ("agentX(knows,kungfu)",k);

...

LindaLibrary.Linda_RD ("agentX(knows,kungfu)",k)); //returns true

LindaLibrary.Linda_IN (‘‘X’’,"agentX(knows,X)",k)).toString(); //returns kungfu

LindaLibrary.Linda_RD ("agentX(knows,kungfu)",k)); //returns false

Listing 4.2: Example of a simple LindaLibrary functionalities usage

/*

suspensive semantic example

*/

//TAP asynchronous version (async/await)

void Start(){

AwaitSomething();

}

async Task AwaitSomething(){

//will find a GameObject with name ‘‘Test’’ and retrieve its KB

KnowledgeBase k = LindaLibrary.GetGameobjectLocalKB (GameObject.Find ("Test"));

//execution suspended until someone inserts the tuple in the same targeted KB

await LindaLibrary.Linda_RD_SUSP ("test(susp)",k2,this));

...

//some agent performs: LindaLibrary.Linda_OUT ("test(susp)",k);

...

//the agent awakes here, continuing the control flow

}

//coroutine version

void Start(){

StartCoroutine(AwaitSomething());

}

IEnumerator AwaitSomething(){

//will find a GameObject with name ‘‘Test’’ and retrieve its KB

KnowledgeBase k = LindaLibrary.GetGameobjectLocalKB (GameObject.Find ("Test"));

54

4.3 Unity3D side: the LindaLibrary and
LindaCoordinationUtilities API 55

//execution suspended until someone inserts the tuple in the same targeted KB

yield return LindaLibrary.Linda_RD_SUSP_COROUTINE ("test(susp)",k2,this));

...

//some agent performs: LindaLibrary.Linda_OUT ("test(susp)",k);

...

//the agent awakes here, continuing the control flow

}

Listing 4.3: Example of a simple LindaLibrary suspensive semantic usage within a target C# Script,

both using TAP Asynchronous pattern and coroutines mechanism

4.3.1.2 Creating unpredictability: (random) primitives

A way to create non-deterministic behaviours is to give agents a choosing

capability or allowing non-determinism when retrieving some information:

this feature was captured and implemented in uniform-like LINDA primitives

[20], u rd(T), u in(T). Randomization is important in game AI, but more

generally in game design, MAS and simulations: although UnityProlog pro-

vides the ability to selectively declare randomizable predicates, which are

then executed and solved in a non-deterministic mode, the Prolog engine

tries to solve sub-goals in a random shuffled order, resulting in unpredictable

behaviours. However, this is not what we want to achieve: from the interac-

tion and coordination point of view, the idea is to let matched tuple to be

retrieved in according to a uniform probability distribution when more than

one match is found.

With this purpose, u rd(R,T) and u rd(R,T) predicates exploit the Uni-

tyProlog functionality of allowing multiple tuples to be present at the same

time on the same KB, while providing meta-predicates capable of doing a

random choice.

In more details, new predicates work as follows (Listing 4.4): they gather

all matching tuples in a list, then using the Prolog meta-predicate random -

member an element of the list is chosen non-deterministically.

This feature allows multiple scenarios, adding non-determinism could lead

Prolog inference engine to take new logic or behavioural routes.

For example if multiple agents are waiting for the same tuple on the same

method, one of them could be awaken non-deterministically and not follow-

ing the standard temporal property, carrying new situations to happen in

the Unity3D scene.

55

56 MAS and Unity3D

Besides these new functionalities, it is necessary to provide out(T) of a new

semantic: as explained before, the base predicate does not allow tuple dupli-

cates, which means that each tuple has the same probability to be chosen

(due to implementation decisions, with the idea of make both semantics avail-

able).

For this reason it was introduced a new version of out(T) called out d(T),

in which duplicates are allowed. However, this semantic could lead to un-

predictable and wrong scenarios, for example agents not correctly awakened,

but could also bring new features, which must be analyzed and evaluated

regarding the communication model and what we want to achieve. This new

feature is not officially supported (meaning that it has not been tested yet)

but it is implemented and ready to be carefully used.

out_d(T) :- assert(T), serveWaitQueue(T). %creates a tuple even if already present

%uniform rd and in implementation: list of matching tuples, then random selection of one

of them

u_rd(R,T) :- atomic(T), atom_string(X,T), findall(F,call(X,F), L), random_member(R,L).

u_rd(R,T) :- findall(R, T, L), random_member(R,L).

u_in(R,T) :- atomic(T), atom_string(X,T), findall(F,call(X,F), L), log(L), retract(T),

random_member(R,L).

u_in(R,T) :- log(T), findall(R, T, L), retract(T), random_member(R,L).

Listing 4.4: Uniform-like Linda primitive implementation

4.3.2 High-level communication library: LindaCoordi-

nationUtilities API

This section provides an informal introduction to the main elements of the

LindaCoordinationUtilities API by showing how it enhances the basic

LINDA model previously developed.

This new step is required in order to provide designers and programmers with

a more abstract and high-level interaction and coordination utilities, with no

need of knowing the specific LINDA syntax or primitives semantic. Here, this

new abstraction level wraps the LindaLibrary one, enabling the possibility

of general agent communication, providing new functionalities with a partic-

ular regard to the SpaT coordination model proposed in [30] (explained in

56

4.3 Unity3D side: the LindaLibrary and
LindaCoordinationUtilities API 57

the next Chapter).

In particular, it is possible to create spatial tuples, tuplespaces living in

the physical Unity3D environment, creating locations and regions exploiting

some of the Unity3D features and using spatial primitives, looking forward

to modern technologies such as augmented reality, directly supported by

Unity3D game engine.

4.3.2.1 LindaCoordinationUtilities API: analysis

In order to build the API as a tool which could be more systematically used

in potentially all projects developed using the Unity3D game engine with the

need of interaction and coordination among GameObjects, we drew upon the

enabling technologies and mechanism useful for this purpose.

At the core of LindaCoordinationUtilities library is the system of LINDA

primitives introduced and explained in previous sections, which provide a

suitable coordination environment, so importing and adapting the logic and

mechanisms and properly mapped onto Unity3D constructs and patterns.

Moreover, a Unity3D programmer must be provided with API at the right

abstraction level which could led to an easy system development, based on

an utility API capable of sending messages of any type to any GameObject

present in the scene, enabling interactions and information exchange.

The analysis of interaction and coordination models, along with Unity3D

constructs, suggests the design and implementation of a wide range of C#

functionalities properly tested within the game engine, exploitable in scripts

Components which are the behavioural module of a GameObject.

Indeed, features provided by the LindaCoordinationUtilities library can

potentially address applications targeting a wide range of scenarios (games,

MAS simulations, augmented/mixed reality applications) with Unity3D fun-

damental support, which tackle the complexity of agent modelling and inter-

action models with many communication types (point-to-point, broadcast,

multicast, collecting, and so on).

57

58 MAS and Unity3D

4.3.2.2 LindaCoordinationUtilities API: implementation

The API implementation followed a layered-like approach, in which single

LINDA primitives are wrapped and composed into more general static func-

tions, each of which implements functionality independent from the others

and organized with general syntax.

Moreover, regarding to MAS and agent-based communication, it is important

to state that LindaCoordinationUtilities provides and enhance agent in-

teractions with a Jason-like syntax and semantic inspired by the KQML agent

communication language [10]. Here, it has been adopted a specific syntax

such as ask, retrieve, tell, to indicate more readable and self-explanatory

communicative semantics, well suited to be used to coordinate agents and

inspired by AgentSpeak [3].

The LindaCoordinationUtilities static library is divided into regions (ex-

ploiting the C# region tag), each one providing a specific functionality de-

scribed as follows.

Ask

The Ask region (Listing 4.5) provides an high-level set of functionalities in

order to read some tuple from a target KB: many different implementations

have been made, targeting different KBs, such as the global one or a partic-

ular GameObject’s one (if present, only knowing its name or its reference,

feature directly supported by Unity3D).

Moreover, it is possible to ask for the same tuple on many KBs all over the

scene or located in a particular area, ask for a particular tuple with a param-

eter to be unified, ask with suspensive semantic, and so on.

All ask implementations are based on LINDA rd primitive, interacting with

GameObject’s KBs but following a specific behaviour defined by C# script

Component.

#region Ask

static bool Ask (string message) {...}

static bool Ask (string message, string name) {...}

static bool Ask (string message, GameObject target) {...}

static object AskParam (string var, string message) {...}

static object AskParam (string var, string message, string name) {...}

58

4.3 Unity3D side: the LindaLibrary and
LindaCoordinationUtilities API 59

static object AskParam (string var, string message, GameObject name) {...}

async static Task<bool> AskSuspend (string message, string name, Component me) {...}

async static Task<bool> AskSuspend (string message, GameObject name, Component me) {...}

static IEnumerator AskSuspend_Coroutine (string message, string target, Component me) {...}

static IEnumerator AskSuspend_Coroutine (string message, GameObject target, Component me)

{...}

static bool AskAll (string message, string tag) {...}

#endregion

Listing 4.5: LindaCoordinationUtilities Ask region

Tell

The Tell region (Listing 4.6) offers functionalities to write some tuple mes-

sage into KBs: it could be inserted in the GlobalKB or on GameObject’s

KBs as well, targeting the GameObject reference or searching for a specific

object by name (feature provided by Unity3D).

Tell functionality is critical when dealing with suspensive semantic: it is re-

sponsible of awakening agents if the right tuple is going to be inserted in

some specific KBs: it is a function which diffuses information away from a

source object while populating other KBs of knowledge.

#region Tell

static bool Tell (string message) {...}

static bool Tell (string message, string name) {...}

static bool Tell (string message, GameObject name) {...}

#endregion

Listing 4.6: LindaCoordinationUtilities Tell region

Retrieve

The Retrieve region (Listing 4.7) is composed of many different high-level

functionalities similar to the ask region ones, but with the significant seman-

tic difference that all searched (and found) tuples are destroyed from the

source KBs when correctly retrieved.

Both ask and retrieve have to specify a template (a term with variables and

literals starting with uppper-case letter) intended to be syntactically matched

with the tuple being searched for: moreover, retrieve functions cover the same

59

60 MAS and Unity3D

functionality as the ask ones, so they provide suspensive semantic, target KBs

from GameObject’s reference or searching by GameObject’s name, and so on.

#region Retrieve

static bool Retrieve (string message) {...}

static bool Retrieve (string message, string name) {...}

static bool Retrieve (string message, GameObject name) {...}

static object RetrieveParam (string var, string message) {...}

static object RetrieveParam (string var, string message, string name) {...}

static object RetrieveParam (string var, string message, GameObject name) {...}

async static Task<bool> RetrieveSuspend (string message, string name, Component me) {...}

async static Task<bool> RetrieveSuspend (string message, GameObject name, Component me)

{...}

static IEnumerator RetrieveSuspend_Coroutine (string message, string name, Component me)

{...}

static IEnumerator RetrieveSuspend_Coroutine (string message, GameObject name, Component

me) {...}

static bool RetrieveAll (string message, string tag) {...}

#endregion

Listing 4.7: LindaCoordinationUtilities Retrieve region

4.3.2.3 LindaCoordinationUtilities API: towards exploiting Unity3D

constructs

The main feature of working with a game engine like Unity3D is that it offers

many and well supported functionalities, allowing the designer and program-

mer to build in a simplified and fast manner complex systems, applications

and MAS-like simulations.

As an integrated development environment, Unity3D supports features like a

visual editor (useful to build scenes), hierarchal object partitioning, gameplay

preview, but what it still remains more exploitable for programmers, design-

ers and engineers are base constructs (GameObjects, Components, Rigid-

body, Collider, and so on) which are completely visible in details during

project time (named Editor time).

Exploiting the Unity3D’s GameObject composition features (everything within

Unity3D scene is a GameObject, every object could be composed of many

Component blocks) as stated in the previous chapter, the LindaCoordina-

tionUtilities API follows this direction.

60

4.3 Unity3D side: the LindaLibrary and
LindaCoordinationUtilities API 61

Interactions may occur with different means and flavours, for example send-

ing a message to a remote object or communicating with some agent only

when colliding with it, so the developed library is provided with the purpose

of covering different types of interaction models exploiting Unity3D built-in

features and constructs in an easy way.

Listing 4.8 shows a brief description of LindaCoordinationUtilities API

signatures and functionalities:

static GameObject[] GetSituatedObjectsFromArea (Vector3 location, float radius, int

maxNumColliders) {...}

static void BroadcastMessage (string message) {...}

static void BroadcastMessage (string message, string tag) {...}

static ReturnTypeKB AskMessageFromSituatedObjectTriggered (string message, Collider coll)

{...}

static ReturnTypeKB RetrieveMessageFromSituatedObjectTriggered (string message, Collider

coll) {...}

async static Task<ReturnTypeKB> AskMessageSuspendedFromSituatedObjectTriggered (string

message, Collider coll, Component me, bool disableCollider = true) {...}

async static Task<ReturnTypeKB> RetrieveMessageSuspendedFromSituatedObjectTriggered

(string message, Collider coll, Component me, bool disableCollider = true) {...}

static IEnumerator AskMessageSuspendedFromSituatedObjectTriggeredCoroutine (string

message, Collider coll, Component me, bool disableCollider = true) {...}

static IEnumerator RetrieveMessageSuspendedFromSituatedObjectTriggeredCoroutine (string

message, Collider coll, Component me, bool disableCollider = true) {...}

static bool MakeObjectSituated(GameObject go) {...}

static bool RemoveSituatednessFromObject(GameObject go) {...}

static GameObject IsObjectSituated(string name) {...}

static bool IsObjectSituated(GameObject target) {...}

Listing 4.8: LindaCoordinationUtilities functionalities able to exploit Unity3D’s basic concepts and

Components

This part of the library has been developed with the idea of exploiting base

Unity3D constructs in order to make possible the usage of LINDA primitives

and the interaction model dealing with simple yet meaningful situations, like

the following:

• it is possible to provide GameObjects of multiple Collider components,

defining an invisible shape, external from the body and not necessary

with the exactly same shape and mesh, which enables physical colli-

sions: if the object can be moved during gameplay, it is required to also

attach a Rigidbody component, which enables Physics, forces applica-

tions and physical interactions with other GameObjects

61

62 MAS and Unity3D

• GameObjects with Colliders may exploit special functionalities within

C# Scripts: the scripting system is able to detect when a collision

occurs, in particular with the Trigger system (using isTrigger property

of every Collider) the collider’s behaviour is not like a solid object,

meaning that during a collision the other Collider is allowed to pass

through

• So, when a collider A enters the space of a second collider B, this

one with isTrigger property enabled, the trigger will call the OnTrig-

gerEnter(...) function on the Collider B GameObject’s script. This

chain of events is exploited for the creation of functionalities, like

AskMessageFromSituatedObjectTriggered(...) and RetrieveMes-

sageFromSituatedObjectTriggered(...), where collided Objects are

retrieved using the triggered collider, so they are methods to be used

within OnTriggerEnter(...) functions.

This opens up a variety of situations: there could be created worlds in

which objects are only visible on fixed distances (Colliders are created

specifying radius property, meaning that a radius of 3 units will provide

a GameObject of a Collider visible only within 3 meters from its loca-

tion), or collecting all GameObjects within a certain area (even relative

to the actual position of the target object), or only when colliding with

them. There could also be objects with a trigger collider functioning

like areas, where objects may pass through them and being informed

of something.

Actually, it is possible to also exploit the OnCollisionXXX(...) meth-

ods, dealing with real collisions between Colliders and Rigidbodies, but

they are not covered by this version of API.

• sometimes it could be useful to create objects with a base LINDA sup-

port, for example placeholder objects like chairs, tables or blackboards

which do not need a complex behavioural script but may act just like

containers with only LINDA primitives and Prolog support (so, with an

initial empty theory).

The API provides the MakeObjectSituated(...) function which en-

ables a particular GameObject the possibility of running Prolog re-

62

4.3 Unity3D side: the LindaLibrary and
LindaCoordinationUtilities API 63

Figure 4.6: Working with colliders and triggers: when a collision between 2 Colliders of different GameOb-

jects is detected, if one of the objects is provided of a Rigidbody Component, an event is raised and it can

be captured by functions like OnTriggerEnter(...), . . .

quests and LINDA primitives: in details, it is basically a second C#

Script called SituatedKB attached to the same object which provides

a local KB to be used. Moreover, the RemoveSituatednessFromOb-

ject(...) function removes that possibility from a certain GameOb-

ject. This enables the possibility to make every GameObject a tu-

plespace itself both in Editor Mode (design time) and during runtime,

eventually removing this possibility restoring the old object properties.

Although these new functionalities enable a variety of interaction possibilities

among objects and agents, functions involving Colliders, triggers and suspen-

sive semantic are meant to be used in a specific manner and implemented

following a particular technique:

• when designing an agent using the OnTriggerEnter(...) functional-

ity in order to catch and deal with collisions, programmers must be

aware that it is a periodically called function, meaning that it is exe-

cuted every time a collision occurs within the Unity3D game engine:

suspending the execution on these kind of functions is impossible (in a

similar way like the Update() function, it is called always every frame

from scratch)

• in order to “simulate” a suspension when calling LindaCoordinationU-

tilities suspensive API within methods like this, the AbstractLinda

script was extended with new concepts and functionalities, explained

as follows:

63

64 MAS and Unity3D

1. bool suspended : variable which has been added in order to check

when a specified agent is suspended on something or not, useful

for methods that handle collisions and to prevent external calls to

the AwakeAgent function (provided by AbstractLinda script) to

awake agents not currently suspended (check performed both by

AbstractLinda and the LindaLibrary itself when attempting to

awake some agent)
2. bool enabledOrSuspensionCheck(Collider coll) : method that

controls if the current agent/object is suspended on something,

this method must be called as a base one within the OnTrig-

gerXXX(...)3 personal implementation, in order to prevent the

same agent to continually suspend itself on the same tuple (due

to OnTriggerXXX(...) calling by the game engine explained be-

fore)
3. every LindaCoordinationUtilities suspensive function has been

implemented with an optional parameter, disableCollider (true by

default), which can be used for different semantics. The program-

mer can decide if the agent trigger collider must be disabled during

its suspension or not, in order to avoid the OnTriggerXXX(...)

method to be called for incoming collisions even if the agent is

currently suspended, by simply setting the optional parameter (by

default, trigger colliders are disabled during the whole suspension

time).

This semantic is NOT alternative to the suspended variable set-

ting, but it is an additional semantic provided to the programmer,

which can decide if its designed agent/object must be responsive

to trigger collisions even when suspended

Listing 4.9 shows a snapshot of a typical OnTriggerEnter(...) implemen-

tation enriched with suspension check and LindaCoordinationUtilities

call:

3the “XXX” string written on OnTriggerXXX(...) and OnCollisionXXX(...) methods means that

different kind of functionalities are exploitable when using colliders, not only OnTriggerEnter(...)

(capturing when the trigger Collider begins touching another one) but also OnTriggerExit(...),

OnTriggerStay(...), and so on.

64

4.3 Unity3D side: the LindaLibrary and
LindaCoordinationUtilities API 65

//inside a GameObject’s C\# Script inheriting from AbstractLinda, with a trigger Collider

void Start(){...}

void Update(){...}

async void OnTriggerEnter(Collider coll) {

//check if suspended on something

if (base.enabledOrSuspensionCheck (coll)) {

return;

}

//logic here

//agent suspension with trigger colliders disabled

await LindaCoordinationUtilities.RetrieveMessageSuspendedFromSituatedObjectTriggered

("allGood", coll, this);

//done suspension: trigger colliders are back, continue doing things

}

Listing 4.9: OnTriggerEnter usage with suspensive semantic following the TAP asynchronous pattern

65

Chapter 5

API extension: Spatial

Tuplespaces, Regions and

BagOfTuples concepts

Unity3D is a game development environment and cross-platform engine which

enables and makes it easy to develop complex systems and applications even

supporting distribution and deployment to Augmented/Virtual/Mixed Real-

ity platforms, including Vuforia1, Microsoft Hololens2, Apple ARKit3.

Exploiting Unity3D functionalities, development patterns and internal con-

structs to create worlds, videogames, applications and MAS empowered with

a proper coordination model, could allow research ideas to be actually real-

ized within Unity3D.

With that idea, deeply influenced by the SpaT work in [30], comes a first

extension of the LindaCoordinationUtilities library, in order to support

creation, modelling and utilization of all coordination constructs (tuples, tu-

plespaces, ...) as a usual GameObject construct.

In this way, the same object may be accessed like any other object within the

game engine and yet modelled like a real, living concept (so with a Rigidbody

enabling Physics and forces calculation, Collider for collisions, Animation

with animation support, and so on).

1https://www.vuforia.com/
2https://www.microsoft.com/it-it/hololens
3https://developer.apple.com/arkit/

67

68 API extension: Spatial Tuplespaces, Regions and BagOfTuples

Figure 5.1: Spatial tuples and regions original idea, where agents insert and retrieve spatial tuples

possibly defining specific locations and regions. Adapted from [30]

This is the direction: whoever wants to use LindaCoordinationUtilities

API knows that it is possible to create MAS in which agents and objects are

coordinated in the same way, both interacting with each other exchanging

information between local KBs and coordinating with a GlobalKB or stan-

dard objects living in the scene (a table, a door, a region, whatever you like)

in many different fashions (seeing them from a specified distance, when col-

liding with them, when someone disclose a GameObject existence, and so

on).

As depicted in Figure 5.1, the original idea was dealing with spatially lo-

cated tuples and tuplespaces, along with exploiting regions as a decoration

of physical space with information: next section describes how this idea has

been realized as a first prototype into concrete GameObjects living in a real,

complex, designed Unity3D world.

Summing up, this chapter aims to introduce specific features, like spatial

tuples and tuplespaces, regions, finally proposing a simple extension to the

library with the BagOfTuples concept.

5.1 Spatial Tuplespaces and Regions: archi-

tecture and main concepts

Two concepts are being introduced here in order to better understand how

to properly use these API, they are both C# classes and tags/layers:

• SpatialTupleSpace, a C# class representing a tuplespace which lives

physically in the Unity3D scene: it could have several properties, such

as a fixed shape (all Unity3D’s PrimitiveTypes are allowed, e.g. square,

68

5.1 Spatial Tuplespaces and Regions: architecture and main
concepts 69

sphere, cylinder, cube, and so on), a trigger Collider, a Rigidbody (the

tuplespace could be subject to Physics or not), an orientation, and so

on.

The most important Component is a C# Script called SituatedKB,

which enables a Prolog engine and LINDA utilities within it, with the

KB as the Prolog core of the GameObject (so, the KB could be seen

as the tuplespace itself).

Every SpatialTupleSpace must have tag or layer set to SpatialTu-

pleSpace, explained later.

• Region, a C# class representing an external area, living and situated in

a fixed location on the Unity3D scene, composed of a shape, location as

the SpatialTupleSpace object, but it is provided with a a transparent,

fully customizable Collider, providing radius and shape, and of a C#

Script called SituatedKB (just like the SpatialTupleSpace object).

This is the basic construct when is needed to create a Region, which

could be crossed4 by an agent in order to interact with it using the

LindaCoordinationUtilities API with the OnTriggerEnter(...)

method.

This concept can be seen as a tuplespace which lives inside a spatial

region, with fixed location, size and shape, and which could be a nest

of coordination tuples, informing every object that crosses its trigger

collider about something useful.

As for the SpatialTupleSpace object, the Region object must be tagged

and layered with Region, all reasons are explained next.

• “SpatialTupleSpace” and “Region” tag and layers, are a Unity3D

construct useful to identify objects in the project ad to create groups

that share some particular properties.

Indeed, they are completely editable properties during Editor Mode

and they are pervasively used within LindaCoordinationUtilities

library in order to better and faster group similar objects, in particular:

1. every time an object with an AbstractLinda script is created at

runtime, it is provided by default of the correspondent tag or layer

4Trigger Colliders do the trick: colliders with that property active are crossable without Physics collision

forces application.

69

70 API extension: Spatial Tuplespaces, Regions and BagOfTuples

Figure 5.2: SpatialTupleSpaces and Region GameObjects creation using LindaCoordinationUtilities API:

these functions create spatial tuplespaces as concrete physical objects.

(“SpatialTupleSpace” if it is a spatial tuplespace, “Region” if it

is a Region) in order to allow future functions to find them, but

constraining the programmer to use these tag or layer values every

time it need to create these GameObjects.

Moreover, “SpatialTupleSpace” and “Region” have to be man-

ually added during Editor Time in order to let LindaCoordina-

tionUtilities API to be properly used (otherwise, a system er-

ror will be thrown), while every GameObject must have a different

name (in order to avoid the game engine to mistake objects)

2. tags and layers are used in functions where it is needed to search

for GameObjects of a fixed category, restricting the searching field

only to ones which could be targeted, so objects with Prolog sup-

port.

In addition to that, tags an layers are very useful when searching

for GameObjects using functions which need the Collider compo-

nent (for example, the GetSituatedObjectsFromArea(...)

method returns a fixed number of GameObjects within a cer-

tain Spherical Collider generated in a fixed point, returning only

objects with layer SpatialTupleSpace or Region, limiting the

game engine’s searching field and increasing performance), so all

GameObject with tag or layer not properly set to the previous

ones will not be found.

70

5.1 Spatial Tuplespaces and Regions: architecture and main
concepts 71

This extension expands as well the interaction model and Unity3D’s LINDA

architecture: every object with a C# Script attached which extends the Ab-

stractLinda script is provided with a Prolog engine and LINDA communica-

tion utilities (Prolog side), so it can be seen as a situated, spatial tuplespace

moving and living in the scene with the GameObject to which is attached.

Moreover, the fundamental construct is the KnowledgeBase (KB), provided

in each AbstractLinda script as the GameObject’s local one, which is moving

with the object itself around the scene and could be targeted by LindaLi-

brary and LindaCoordinationUtilities functions, enabling a general tu-

plespace interaction model.

On top of that, every GameObject could be considered as the physical repre-

sentation of a particular concept, w.r.t. the abstraction provided by Unity3D.

Since everything is a GameObject within Unity3D scene modelling, and those

which possess a Script Component inheriting from the AbstractLinda one are

enabled with Prolog engine and tuplespace based interaction model, we can

state that tuplespaces are seen like GameObjects themselves, so tuplespaces

can react to Physics and collisions while living within a physical, evolving

environment.

Listing 5.1 provides a snapshot of the implemented functions exploitable

using LindaCoordinationUtilities API and SpatialTupleSpaces and Re-

gion class signatures, while Listing 5.2 shows simple examples of SpatialTu-

pleSpaces and Regions creation:

//SpatialTupleSpace class

public SpatialTupleSpace(string name, Vector3 location, bool invisible, bool isTrigger,

Vector3 scale, bool isRigid) {...}

//Region class

public Region (string name, Vector3 centre, Vector3 scale, PrimitiveType type, bool

isTrigger, Quaternion rotation) {...}

//LindaCoordinationUtilities API for creating Spatial Tuplespaces and Regions

static bool SendMessageToLocation (string message, SpatialTupleSpace ts) {...}

static bool SendMessageToRegion (string message, Region reg) {...}

static bool SendMessageToAllObjectsInRegion (string message, Region reg, int num) {...}

static bool SendMessageToAllObjectsInRegion (string message, Vector3 centre, float radius,

int num) {...}

static ReturnTypeKB SendMessageToRegionName (string message, string name) {...}

static void SendMessageToAllRegions (string message) {...}

71

72 API extension: Spatial Tuplespaces, Regions and BagOfTuples

static void SendMessageToAllRegionsName (string message, string name) {...}

//Examples

//creation of a SpatialTupleSpaces object with a single tuple localized in the current

agent’s spatial position, visible to everybody (with a mesh), not triggerable itself,

with scale of (1,1,1), so 1m x 1m x 1m, with a Rigidbody (enabling Physics forces to

be applied) and with a BoxCollider sized (3,3,3) (currently, only SpatialTupleSpaces

with a boxed shape are supported)

SpatialTupleSpace sts = new

SpatialTupleSpace("Location"+counter,transform.localPosition,false,Vector3.one,true,new

Vector3 (3,3,3))

LindaCoordinationUtilities.SendMessageToLocation ("iWasHere("+this.name.ToLower

()+","+counter+")", sts);

//Creation of a Region named ‘‘Caution’’ in the current object’s location, with a cubic

shape sized (10,10,10) (so the region will be visible from that location to a 10

meters distance), the region is triggerable (meaning that it could be trespassed on,

with no collision forces) with a standard rotation

Region reg = new Region ("Caution", transform.position, new Vector3 (10f, 10f, 10f),

PrimitiveType.Cube,true, Quaternion.identity);

LindaCoordinationUtilities.SendMessageToRegion ("stop("+counter+")",reg);

Listing 5.1: LindaCoordinationUtilities block making available SpatialTupleSpaces and Region creation

and handling

//Examples

//creation of a SpatialTupleSpaces object with a single tuple localized in the current

agent’s spatial position, visible to everybody (with a mesh), not triggerable itself,

with scale of (1,1,1), so 1m x 1m x 1m, with a Rigidbody (enabling Physics forces to

be applied) and with a BoxCollider sized (3,3,3) (currently, only SpatialTupleSpaces

with a boxed shape are supported)

SpatialTupleSpace sts = new

SpatialTupleSpace("Location"+counter,transform.localPosition,false,Vector3.one,true,new

Vector3 (3,3,3))

LindaCoordinationUtilities.SendMessageToLocation ("iWasHere("+this.name.ToLower

()+","+counter+")", sts);

//Creation of a Region named ‘‘Caution’’ in the current object’s location, with a cubic

shape sized (10,10,10) (so the region will be visible from that location to a 10

meters distance), the region is triggerable (meaning that it could be trespassed on,

with no collision forces) with a standard rotation

Region reg = new Region ("Caution", transform.position, new Vector3 (10f, 10f, 10f),

PrimitiveType.Cube,true, Quaternion.identity);

LindaCoordinationUtilities.SendMessageToRegion ("stop("+counter+")",reg);

Listing 5.2: LindaCoordinationUtilities examples: creation of SpatialTupleSpaces and Regions as

standard Unity3D objects

72

5.2 BagOfTuples: idea and design 73

SendMessageToLocation(string message, ...) and

SendMessageToRegion(string message, ...) will create the specified Spa-

tialTupleSpace and Region GameObjects in the scene at runtime, eventually

adding the “message” tuple in their local KBs: from now on, they will live

in the simulation and could be exploited as a standard tuplespace, so using

LindaLibrary tuplespace based interactions or with trigger colliders exploit-

ing OnTrigger collisions on moving agents (Figure 5.2).

There also exist many different variants, making simpler to interact with ob-

jects, SpatialTupleSpaces and Regions within a specified area. In particular,

the SendMessageToAllObjectsInRegion(...) method is provided with 2

variants, the first one makes possible to create a Region, collecting all Spa-

tialTupleSpace GameObjects within it and performing a LINDA out on every

KB found (targeting the Region too), while the second one will only target

objects within a specified spherical region, not creating it.

Regions and SpatialTupleSpace GameObjects will be the physical represen-

tation of a tuplespace which lives and interacts with other objects in the

created world. Both GameObjects could be created specifying an invisible

mesh (so they will be invisible in the scene but still reachable via collider

or name searching) and, using the full customizable C# classes SpatialTu-

pleSpace and Region, it is possible to create objects only visible within a

specified distance.

For example, setting the collider size to 3 units means that the specified

GameObject will only be visible within that distance, meaning that an agent

willing to interact with that object via OnTriggerEnter(...) method and

LindaCoordinationUtilities API is required to get close to it, eventually

overlapping both colliders.

5.2 BagOfTuples: idea and design

It may be possible that tuples share the same spatial location, for example

they are inserted into the same GameObject, the same SpatialTupleSpace or

Region, so multiple tuples could be created in the same place or attached to

some agent in order to be moved with it: placing different tuples in the same

spatial position (so, multiple overlapping GameObjects) is not possible to be

73

74 API extension: Spatial Tuplespaces, Regions and BagOfTuples

implemented in Unity3D, due to different reasons:

• it must be possible to add a variety of tuples in the same spatial lo-

cation, so creating a multiplicity of GameObjects in the same place

(even with a very small size, or without Collider and Rigidbody) causes

Unity3D to not correctly handle all objects

• in order to create different objects in the same location they must

be without Colliders or Rigidbody, so no Physics and no real forces:

moreover, Colliders must all be triggers, in order to prevent Physics

to throw them away, meaning that all triggering events generated by

a multiplicity of objects in the same place could bring to performance

problems

This problematic brings the idea of a new concept: BagOfTuples.

It consists of providing a target GameObject of a child object, called BagOf-

Tuples, which is capable of carrying tuples as information chunks like a bag:

child objects are complete GameObjects dependent on the parent one, mean-

ing that their relative position, size, movement, and so on are strongly bound

to the parent object (if the parent GameObject starts to move, all child ob-

jects will be moved with it).

BagOfTuples GameObject is provided with its own tag/layer named BagOf-

Tuples in order to be properly retrieved by new LindaCoordinationUtil-

ities API. Moreover, it could be provided with a Rigidbody and with a

customizable trigger Collider, which will depend on the parent one (if the

parent is provided with a Collider, the children one will be scaled accord-

ingly: the API functions will provide the possibility of customizing this size).

This means that BagOfTuples is meant to be a basic tuplespace itself, allow-

ing many features:

• it could be seen like a separate yet interactive tuplespace, which could

potentially carry various different type of informations even not present

within the parent GameObject’s KB: it is like a bag of information to

be carried and exchanged among agents

• this item is provided with its own consistency: it is possible to be man-

aged during Editor Mode and runtime with new LindaCoordinationU-

tilities API, determining its Collider size and, since it has its own body,

74

5.2 BagOfTuples: idea and design 75

could be subject to different situations (could be lost, exchanged, de-

stroyed, discovered, and so on) like any other object

• BagOfTuples is capable of enabling Prolog and LINDA interaction model

in GameObjects not capable of, expanding their possibilities for the

amount of time they possess and handle it

This is a collection of information, like a bag or a sack, which could be used

by agents with coordination or information purposes, and it could be at-

tached and carried by GameObject even without letting it aware of that, so

it might contains information and knowledge unknown even to the parent

GameObject.

The new extension of LindaCoordinationUtilities API provides new func-

tionalities in this direction: it will be possible to create BagOfTuples attach-

ing them to GameObjects, know if a target object is provided with a BagOf-

Tuple, interact with them using LINDA primitives, duplicate/acquire/send

the entire BagOfTuple GameObject to a specified target/location. Moreover,

agents suspended on the BagOfTuples KB will remain in that state even if

the object is exchanged with other agents, letting them be awakened only at

the right time.

//LindaCoordinationUtilities API for creating, exchanging and interacting with BagOfTuples

static GameObject IsObjectWithBagOfTuples(string name) {...}

static GameObject IsObjectWithBagOfTuples(GameObject target) {...}

static bool AttachBagOfTuplesToObject(string name, float radius = float.NaN) {...}

static bool AttachBagOfTuplesToObject(GameObject parent, float radius = float.NaN) {...}

static bool TellToObjectBag(string message, string parentName) {...}

static bool TellToObjectBag(string message, GameObject parentObject) {...}

static bool AskToObjectBag(string message, string parentName) {...}

static bool AskToObjectBag(string message, GameObject parentObject) {...}

static bool RetrieveFromObjectBag(string message, string parentName) {...}

static bool RetrieveFromObjectBag(string message, GameObject parentObject) {...}

static bool AcquireBagOfTuples(GameObject myself, string target) {...}

static bool AcquireBagOfTuples(GameObject myself, GameObject target) {...}

static bool SendBagOfTuples(GameObject bag, string name) {...}

static bool SendBagOfTuples(GameObject bag, GameObject target) {...}

Listing 5.3: LindaCoordinationUtilities block implementing BagOfTuples concept

75

76 API extension: Spatial Tuplespaces, Regions and BagOfTuples

Figure 5.3: BagOfTuples idea and concept: the BagOfTuples GameObject (white cube with a blue one

inside) is a normal object with a shape and a physical body, which could be attached to other GameObject

and be carried all over the scene. Moreover, since it is a tuplespace itself, it will be interactible using

LindaCoordinationUtilities specific API, and can be moved or cloned on every GameObject on the fly

(duplicating its Knowledge Base with the same theory loaded, even suspended agents)

The new LindaCoordinationUtilities API extension features are the fol-

lowing (Listing 5.3):

• IsObjectWithBagOfTuples(...) checks if a target GameObject is pro-

vided with a BagOfTuples object, returning it if successful

• AttachBagOfTuplesToObject(...) creates a new BagOfTuples

GameObject attached to a parent object with a Spherical Collider of

the specified radius (by default is not provided, meaning that it will

have the same radius as the parent one, if the parent GameObject is not

with a Collider, the BagOfTuples one will be defined with a standard

size of 5 meters)

• standard functions in order to interact with BagOfTuples via the tu-

plespace based communication model and LINDA primitives from Lin-

daLibrary (TellToObjectBag(...), AskToObjectBag(...),

RetrieveFromObjectBag(...))

• suspensive semantic on BagOfTuples is not currently supported, but it

could be achieved with standard LindaCoordinationUtilities API

dealing with BagOfTuples’ KB

• AcquireBagOfTuples(...) and SendBagOfTuples(...) are able to

clone a BagOfTuples GameObject (along with its KB and all tuples

within it), attaching it to the specified object (eventually failing if the

target GameObject is already provided with a BagOfTuples child ob-

ject)

76

Chapter 6

Case Studies

This chapter presents 2 different case studies, aiming to test and show how

LindaLibrary and LindaCoordinationUtilities API can be exploited to

reach desired interaction and coordination purposes.

In order to cover all API, 3 different application scenarios have been created:

• the first one is the classic and well-known Dining Philosophers coor-

dination problem, where are tested LindaLibrary API and function-

alities not focusing on concurrency problems (since they are absent

in Unity3D, because its base single threaded structure, but this can

change with C# 4.6 and Task support) but only on function valida-

tions. A special variation of this problem has been developed in order

to also verify and validate some of the LindaCoordinationUtilities

functionalities, in a way like the one stated in [30], with tuplespace and

chairs spatially situated, placed within the tuplespace region and au-

tomatically retrieved (exploiting LindaCoordinationUtilities func-

tions and Unity3D basic constructs) and assigned by chopstick pairs

• the second one is directly inspired by the Breadcrumbs simple example

explained in [30], where an agent able to freely move in the scene imple-

ments the breadcrumbs pattern, depositing spatial tuples while moving

and allowing other agents to retrieve that and follow the same path,

testing and validating the LindaCoordinationUtilities API. Here,

too, it has been implemented a second variation of the test, allowing

the agent which makes breadcrumbs to create regions with warning tu-

ples, where a second agent must stop whenever it collides with the same

77

78 Case Studies

region, finally resuming its follow actions once some “resume” message

occurs in the created Region.

The goal in each scenario is to test and validate how developed API are able

to correctly tackle complexity resulting into the expected behaviour.

Moreover, the main purpose is to demonstrate how the integration of a

new interaction and communication model, along with the exploitation of

Unity3D built-in features and concepts could be achieved and well-used with

the developed libraries and MAS abstractions, expanding the standard inter-

action model already present in Unity3D with a new, more general level.

For these reasons, the design and implementation work was not focussed on

concurrency and multi-threading problems, since Unity3D is entirely based

on a single thread model, so no concurrency allowed until the new experi-

mental version of the game engine, which brings .NET Framework 4.6 to be

used with all significant features, such as the Task API.

Therefore, the multi-threaded and concurrent sides have not been taken into

consideration for this case studies for time reasons and instability of the

experimental version, but could be addressed by future investigations.

6.1 Experiment n◦1: Dining Philosophers (Lin-

daLibrary API test)

In this scenario, a simple multi-agent system modelling the Dining Philoso-

pher problem has been set up [9], in order to test and evaluate the LindaL-

ibrary functionalities. The setup is as follows: N philosopher agents (repre-

sented as spheres, but they could be any 3D or 2D assets) share N chopsticks

and a central bowl (the main tuplespace), each philosopher either eats or

thinks and, in order to eat, each one needs 2 chopsticks which are shared by

2 adjacent agents, so they have to be atomically acquired an released while

thinking, ensuring fairness and avoiding deadlock problems.

The Unity3D scene was actually build in a very simple way, exploiting base

3D constructs like cube, spheres, cylinders, since the main objective is not

the graphics or performance but rather verify correctness and ease of use of

78

6.1 Experiment n◦1: Dining Philosophers 79

LindaLibrary functionalities. Again, we exploit Unity3D’s world fast proto-

typing, using built-in simple 3D objects but yet with all necessary features

potentially enabled, such as NavMeshAgent in order to move the object,

trigger Colliders, Rigidbody, and so on, leaving apart complex 3D prefabs,

Animations, and so on.

In particular, philosophers are proper agents, able to move in the scene and

they are represented as spheres able to change mesh color in according to

their behavioural state (think, wait, eat), while chairs are represented with

a cylindric shape and the central tuplespace is a bigger black sphere.

We do not focus here on deadlock analysis and issues by adopting the triv-

ial solution of the resource hierarchy, where tuples are partially ordered and

philosophers will always pick up the lower-numbered fork first, meaning that

the last agent will choose the chopstick with the opposite order unlike all

other philosophers (picking up first the right one instead the usual left one).

Chopsticks are represented as ordinary tuples, so Prolog facts within the table

tuplespace (in this scenario, it is the GlobalKB one), in the form of chop(X),

where X is the chopstick number (from 0 to N-1), all of them placed in the

GlobalKB tuplespace. In particular, each chair is provided by an Id, from 0

to N-1, retrieved by the philosopher currently using it and each chair needs

a chopstick pair in order to let its own philosopher to correctly eat (chop(i)

represents the left chopstick of the i-th chair, while philosopher i needs

chop(i) and chop(i+1%N) to eat).

The philosopher’s stages are the following:

• each philosopher starts with a “Think” phase which lasts a random

number of seconds, releasing all previously obtained chopstick pair to

the tuplespace

• next, it will perform the “Wait” phase, acquiring left and right chop-

sticks with separate LINDA in primitives, suspending its execution if

not found

• once acquired both of them, the “Eat” phase can start, where the

philosopher eats for a random number of seconds

79

80 Case Studies

• once finished eating, the last phase called “ReleasingChops” will re-

lease both chopsticks on the GlobalKB tuplespace, eventually awaken-

ing agents currently suspended on some tuple

• the philosopher cycle restarts

Visually it is possible to understand which phase each philosopher is currently

performing by the color assumed by the philosopher’s mesh, in particular:

blue represents the “Think” phase, red represents the “Wait” phase and

green stands for the “Eat” phase. Next subsections explain in details both

situated and spatial versions.

6.1.1 Situated version

The situated version of the Dining Philosophers scenario is developed using

chairs as situated objects appointed to interact with the tuplespace, retriev-

ing and releasing the needed 2 chopsticks necessary to the actual philosopher.

In a real scenario, chopsticks are assigned based on the table position, so they

are distributed to chairs following this property, so chairs are responsible to

interact with the tuplespace, while philosophers only need to find an avail-

able chair.

Moreover, this situated approach makes the coordination abstraction aware

of the surrounding space, in which the central tuplespace is able to interact

with chairs and to provide the required chopsticks only relying on the actual

place (and not talking directly with the philosopher with specific Ids).

The world design and development follows a very simple and basic imple-

mentation, but it can be made arbitrarily complex using 3D assets, specific

agent prefabs and world customization using external softwares or directly

exploiting Unity3D creation features, but for the API test and validation

purpose it is not required.

In details, philosophers’ and chairs’ C# Script Components define their be-

havioural model and, for this particular scenario, it is not necessary to in-

herit from AbstractLinda Script (since it is not required for philosophers and

chairs to be a tuplespace themselves, they interact with the global one, but

the example code does it anyway). Moreover, philosophers deal with chairs

GameObjects communicating their needs (IWantToEat and ReleaseChops),

80

6.1 Experiment n◦1: Dining Philosophers 81

while the real interaction and communication model performs in table-chair

connection, handling chopsticks as tuple concepts among philosophers which

suspend their execution if a needed tuple is not currently available.

This version has been developed in order to test and validate the LindaLi-

brary API, dealing with tuplebased coordination using LINDA primitives, a

central Prolog KB and suspensive semantic.

public class SituatedPhilosopher : AbstractLinda {

public int idPhilosopher;

public int numPhilosophers;

public Material thinkMaterial;

public Material eatMaterial;

public Material waitMaterial;

private Chair chair;

public int IdPhilosopher {

get {

return idPhilosopher;

}

set {

idPhilosopher = value;

}

}

public int NumPhilosophers {

get {

return numPhilosophers;

}

}

// Use this for initialization

void Start () {

chair = GameObject.Find ("Chair" + IdPhilosopher).GetComponent<Chair> ();

DoThings ();

}

// Update is called once per frame

void Update () {

}

async void DoThings ()

{

while (true) {

await Think ();

await GetChops ();

await Eat ();

ReleaseChops ();

}

}

public async Task Think ()

{

GetComponent<Renderer> ().material.color = thinkMaterial.color;

await Task.Delay (Random.Range (3,10)*1000);

}

async Task GetChops ()

{

GetComponent<Renderer> ().material.color = waitMaterial.color;

if (chair.IsAvailable) {

81

82 Case Studies

chair.IsAvailable = false;

}

await chair.IWantToEat (this);

}

public async Task Eat ()

{

GetComponent<Renderer> ().material.color = eatMaterial.color;

await Task.Delay (Random.Range (5,10)*1000);

}

private void ReleaseChops ()

{

chair.DoneEating ();

}

}

Listing 6.1: SituatedPhilosopher C# Script Component code

public class Chair : AbstractLinda {

private bool isAvailable;

private int id;

private int totalPhils;

public Material availMaterial;

public Material notAvailMaterial;

public bool IsAvailable {

get {

return isAvailable;

}

set {

isAvailable = value;

}

}

public int Id {

get {

return id;

}

set {

id = value;

}

}

public async Task IWantToEat(SituatedPhilosopher phil){

Id = phil.IdPhilosopher;

totalPhils = phil.NumPhilosophers;

print (Id + " : awaiting chop(" + Id + ")");

await LindaLibrary.Linda_IN_SUSP (string.Format ("chop({0})", Id), this);

print (Id + " : awaiting chop(" + (Id+1)%(totalPhils) + ")");

await LindaLibrary.Linda_IN_SUSP (string.Format ("chop({0})", (Id+1)%(totalPhils)), this);

print (Id+" DONE AWAITING");

}

public void DoneEating(){

print (Id + " : RELEASING chop(" + Id + ")");

LindaLibrary.Linda_OUT (string.Format ("chop({0})",Id));

print (Id + " : RELEASING chop(" + (Id+1)%(totalPhils) + ")");

LindaLibrary.Linda_OUT (string.Format ("chop({0})", (Id+1)%(totalPhils)));

print (Id + " : DONE OUT");

IsAvailable = true;

}

}

Listing 6.2: Chair C# Script Component code

82

6.1 Experiment n◦1: Dining Philosophers 83

Figure 6.1: Unity3D situated Dining Philosophers: Start Phase

Figure 6.2: Unity3D situated Dining Philosophers: Eat Phase

83

84 Case Studies

6.1.2 Spatial version

The spatial version of the Dining Philosophers test is directly inspired by [30]

and it is developed in order to validate if the LindaCoordinationUtilities

API support of Regions and spatial tuplespaces is correctly handled.

In particular, this scenario is designed differently from the situated one: since

from the philosopher and chair behaviour sides all remains the same (again,

philosophers are composed of the same Script Component version and inter-

act with chairs, which are situated and responsible of the actual coordina-

tion), the scene is provided with additional GameObjects (representing chops

as cubic objects) and the GlobalKB tuplespace is designed as a spherical Re-

gion with radius of 9 meters. These elements provide a new scenario, with

new properties:

• the central tuplespace called Table is now a Region, with a definite

trigger Collider of a specific size (spherical in this case) and it is

situated, meaning that it is aware of which GameObjects are within its

radius

• both Chops and Chairs are SpatialTupleSpaces GameObjects, which

means that they are tuplespaces living in a physical environment: the

real fact here is about all Chop GameObjects, which are indeed pro-

vided with the SpatialTupleSpaces tag and layer in order to be spa-

tially situated and correctly found by LindaCoordinationUtilities

searches

The spatial version make use of LindaCoordinationUtilities functionali-

ties in order to deal with physical objects: the central tuplespace Region is

aware of which and how many Chop GameObjects are available to be used by

exploiting the GetSituatedObjectsFromArea(...) function, which returns

a limited amount of objects with SpatialTupleSpaces or Region tags that are

currently inside the specified area.

In this way, the aim is to limit the search to only SpatialTupleSpaces objects

with the Chop name, while the Table Region is aware of how many chops

are currently spread in the scene (eventually inserting a standard tuple in its

tuplespace in the form of chop(X) for each retrieved Chop object).

Moreover, the same behaviour is followed by all Chair object, which are not

84

6.1 Experiment n◦1: Dining Philosophers 85

(a) SpaT Dining Philosophers idea, adapted from

[30]

(b) Unity3D spatial Dining Philosophers: Start

Phase

aware of which pair of chopstick are available next to them until via GetSi-

tuatedObjectsFromArea(...) call it retrieves which are the closest to be

correctly used.

Thus, a philosopher which wants to eat from a specific chair is able to move

to the chair location and interacts with it providing its needs just like the

situated scenario described before.

Therefore, since every spatial tuple Chop is represented by a physical con-

cept (and it is placed on the Table Region in order to be found by the central

tuplespace, and shared by two adjacent seats because of its location is within

the chairs’ collider intersection), the philosopher would receive by its actual

chair the chosen two chopstick spatial tuples (chop(X) and chop((X+1)%N),

because the chopstick positions spatially match with the searched ones.

The philosophers’ behaviour is basically the same as the situated example ex-

plained before, but it exploits LindaCoordinationUtilities API version in

order to use all necessary LINDA primitives with an higher-level of abstraction

(using Retrieve, Ask, Tell, RetrieveSuspend, and so on).

Functions provided by LindaCoordinationUtilities are useful to reach dif-

ferent kind of behaviours and have been validated from the interaction and

coordination point of view: considering that Unity3D basic communication

and interaction mechanisms consist of fixed procedure call, this new abstrac-

tion level brings a new, more general interaction model extending Unity3D

functionalities.

In the classic Unity3D mechanism, functions meant to be called as communi-

85

86 Case Studies

cation actions have to be previously written in every C# Script Component

(the coordinable entity), so Script Components are able to communicate with

each other only with procedure call mechanism.

public class SpatialTable : AbstractLinda

{

private GameObject[] objs;

// Use this for initialization

void Start () {

LindaLibrary.SetLocalKB (path,gameObject);

SphereCollider c = gameObject.GetComponent<SphereCollider>();

objs = LindaCoordinationUtilities.GetSituatedObjectsFromArea (transform.localPosition, c.bounds.extents.x, 25);

for (int i = 0; i < objs.Length; i++) {

if (objs[i].name.Contains("Chop")) {

string thename = objs [i].name;

LindaCoordinationUtilities.Tell ("chop(" + thename.Substring (thename.Length - 1) + ")",gameObject));

}

}

}

// Update is called once per frame

void Update () {

}

}

Listing 6.3: SpatialTable C# Script Component code

public class SpatialChair : AbstractLinda {

private bool isAvailable;

private int id;

private int totalPhils;

private GameObject[] objs;

private GameObject table;

private int chop1, chop2;

private GameObject chop1go, chop2go;

public Material availMaterial;

public Material notAvailMaterial;

public bool IsAvailable {

get {

return isAvailable;

}

set {

isAvailable = value;

}

}

public int Id {

get {

return id;

}

set {

id = value;

}

}

void Start(){

table = GameObject.Find ("Table");

CapsuleCollider c = gameObject.GetComponent<CapsuleCollider> ();

objs = LindaCoordinationUtilities.GetSituatedObjectsFromArea (transform.localPosition, c.bounds.extents.x, 10);

int count = 0;

for (int i = 0; i < objs.Length; i++) {

86

6.1 Experiment n◦1: Dining Philosophers 87

if (count == 2) {

break;

}

if (objs[i].name.Contains("Chop")) {

string thename = objs [i].name;

if (count == 0) {

chop1 = Convert.ToInt32(thename.Substring (thename.Length - 1));

chop1go = objs [i];

count++;

continue;

}

if (count==1) {

chop2 = Convert.ToInt32(thename.Substring (thename.Length - 1));

chop2go = objs [i];

count++;

}

}

}

}

public async Task IWantToEat(SpatialPhilosopher phil){

print (name + " : awaiting chop(" + chop1 + ")");

await LindaCoordinationUtilities.RetrieveSuspend (string.Format ("chop({0})", chop1), table, this);

chop1go.GetComponent<Renderer> ().material = Resources.Load ("Materials/Red") as Material;

print (name + " : awaiting chop(" + chop2 + ")");

await LindaCoordinationUtilities.RetrieveSuspend (string.Format ("chop({0})", chop2), table, this);

chop2go.GetComponent<Renderer> ().material = Resources.Load ("Materials/Red") as Material;

print (name + " DONE AWAITING");

}

public void DoneEating(){

print (name + " : RELEASING chop(" + chop1 + ")");

chop1go.GetComponent<Renderer> ().material = Resources.Load ("Materials/Green") as Material;

LindaCoordinationUtilities.Tell (string.Format ("chop({0})", chop1), table);

print (name + " : RELEASING chop(" + chop2 + ")");

chop2go.GetComponent<Renderer> ().material = Resources.Load ("Materials/Green") as Material;

LindaCoordinationUtilities.Tell (string.Format ("chop({0})", chop2), table);

IsAvailable = true;

}

}

Listing 6.4: SpatialChair C# Script Component code

Next test scenarios will be useful to test if MAS-like abstractions, along with

high-level and more abstract coordination functionalities can be exploited

and easily used.

87

88 Case Studies

Figure 6.3: Unity3D spatial Dining Philosophers: first Think Phase

Figure 6.4: Unity3D spatial Dining Philosophers: Eat Phase

88

6.2 Experiment n◦2: Breadcrumbs 89

6.2 Experiment n◦2: Breadcrumbs (LindaCo-

ordinationUtilities API test)

As stated in the beginning of this chapter, the current scenario has been

directly inspired by [30] example: an agent, able to move in the scene, is able

to deposit spatial tuples as a physical object while moving with an operation

like

out(wasHere(me,C) @here),

resulting in the actual trajectory completely covered and observable by other

agents, which could follow it simply observing the spatial distribution of

wasHere/2 tuples.

From this description, the SpaT extension of the basic tuple-based model

lacks of a concrete representation of possible heterogeneous tuples and tu-

plespaces conceptually located in a physical space and able to move. The

LindaCoordinationUtilities API comes in this direction, directly follow-

ing the SpaT idea and, with Unity3D support and features, making possible

to build MAS-like systems, letting the coordination primitives to behave

accordingly to GameObject spatial properties and to be space-based and

space-aware. In details, the current scenario proceeds as follows (also showed

in Figure 6.5):

• the agent called Hansel is a standard GameObject with a spherical

shape, able to move in the created arena (by attaching the NavMe-

shAgent Component), and every N seconds (where N is a int prop-

erty directly customizable in Editor Mode) leaves a sign of its pas-

sage creating, in its current spatial location, a situated tuple by using

the SendMessageToLocation(...) function and creating a SpatialTu-

pleSpace GameObject (which is the physical conceptualization of a

tuplespace) with a specific tuple in the form of

iWasHere(name,C),

where name is the GameObject’s name and C is a counter, incre-

mented every time it performs this operation.

So, the path followed by Hansel agent is described by spatial tuples left

on it, like the breadcrumbs pattern (Listing 6.5).

89

90 Case Studies

• a second agent named Follower is appointed to follow Hansel’s path by

consuming the right spatial tuples (so, only those with iWasHere(name,C)

tuple within its KB), by using its trigger Collider (in order to capture

collisions with other object’s Colliders) and the OnTriggerEnter(...)

method while exploiting LindaCoordinationUtilities functions:

AskMessageFromSituatedObjectTriggered (‘‘iWasHere(hansel,)’’,coll)

performs a LINDA in primitive on the collided SpatialTupleSpace, in-

teracting with its KB searching for that particular tuple, if found the

spatial tuple object is consumed and its location followed (the counter

number obtainable from the tuple template using

AskParam (‘‘X’’, ‘‘iWasHere(lindaagent,X)’’, coll.gameObject),

marks temporarily the spatial tuples, following them in an ordered and

temporal way) (Listing 6.6).

Figure 6.5: Unity3D Breadcrumbs example: the Hansel agent (blue sphere) is placing breadcrumbs as

spatial tuplespaces with specific tuple (white little cubes), while the Follower agent (white sphere) is

following it collecting all crumbs along the path

This simple example shows how LindaCoordinationUtilities API are use-

ful to exploit tuples and tuplespaces as living information layers, with a

concrete representation in the physical environment and enhancing the gen-

erative communication power with the breadcrumbs pattern adoption.

90

6.2 Experiment n◦2: Breadcrumbs 91

Moreover, Unity3D built-in constructs and features come in handy introduc-

ing new interaction patterns and models, like collision handling, GameObject

searching, and so on, allowing the programmer and designer to exploit them

in order to develop complex, MAS-like systems and pervasive computing sce-

narios supporting space-based coordination and interaction models.

public class Hansel : AbstractLinda {

public float deltaTime;

private int counter = 0;

private Coroutine coroutine;

private bool doing;

// Use this for initialization, called once in the beginning

void Start () {

//starts the ‘‘creation of breadcrumbs’’ coroutine

coroutine = StartCoroutine (DoThingsPeriodically ());

doing = true;

}

// Update is called once per frame

void Update () {

//things to do once per frame

}

private IEnumerator DoThingsPeriodically ()

{

while (true) {

yield return new WaitForSeconds (deltaTime);

//creation of breadcrumbs as spatial tuplespaces with one initial tuple, with a cubic shape of standard

dimensions (1x1x1)

LindaCoordinationUtilities.SendMessageToLocation ("iWasHere("+this.name.ToLower ()+","+counter+")",

new SpatialTupleSpace("Location"+counter,transform.localPosition,false,Vector3.one,true,new Vector3 (3,3,3)));

counter++;

}

}

}

Listing 6.5: Hansel C# Script Component code

public class Follower : AbstractLinda {

private NavMeshAgent agent;

private int counter;

private Collider destroyable;

private bool once = true;

// Use this for initialization

void Start () {

agent = gameObject.AddComponent<NavMeshAgent> ();

agent.autoBraking = true;

}

// Update is called once per frame

void Update () {

}

void OnTriggerEnter(Collider coll) {

if (LindaCoordinationUtilities.AskMessageFromSituatedObjectTriggered ("iWasHere(lindaagent,_)",coll).Equals

(ReturnTypeKB.True)) {

var tupleCounter = Convert.ToInt32 (LindaCoordinationUtilities.AskParam ("X", "iWasHere(lindaagent,X)",

coll.gameObject));

destroyable = coll;

Destroy (destroyable.gameObject,1.7f);

91

92 Case Studies

if (tupleCounter > counter) {

agent.destination = coll.transform.position;

counter = tupleCounter;

}

}

}

}

Listing 6.6: Follower C# Script Component code

The next version of the Breadcrumbs scenario shows how Regions and sus-

pensive semantic API can be exploited.

6.2.1 Second version: Regions and suspension using

trigger Colliders

Extending the Breadcrumbs experiment with a new scenario which could be

useful to test and validate the second part of LindaCoordinationUtili-

ties library means that it must provide and test other constructs, such as

Regions and suspensive semantic, demonstrating and validating this side of

the library.

In particular, the Breadcrumbs experiment has been extended and the be-

havioural dynamic is expected to be as follows (also depicted in Figure 6.6):

1. the Hansel-Follower breadcrumbs pattern is still used, so Follower agent’s

purpose is to follow the path of Hansel agent correctly consuming spa-

tial tuples left on the way

2. a new mechanic has been added to Hansel agent extending its C#

Script: while moving, agent Hansel is able to create a spatial Region

any time, inserting a warning tuple in the form of

stop(hansel,X),

where X is the counter explained before (Listing 6.7)

3. the previously created cubic Region named Caution is placed on the

Hansel agent path, meaning that the agent Follower will unavoidably

collide with it1: since Follower is provided with a trigger Collider, the

collision generates an event caught by the OnTriggerEnter function

1The collider size is a multiplicator of the actual GameObject’s scale (defined in Transform Component),

for instance a 3D object with spherical shape and scale of 1x1x1 units (3D Cartesian dimensions, x y z)

provided by a spherical collider with a radius of 3 means that the actual object’s body is 1x1x1 meters

92

6.2 Experiment n◦2: Breadcrumbs 93

(as shown in Listing 6.8) of Follower C# Script, which controls if the

collided GameObject is a Region and if the stop tuple is present, the

agent stops and waits for some good tuple on the same Region in order

to resume its path

4. the awaited tuple is in the form of allGood and it is intended to be

inserted into the Caution region by Hansel agent: once performed the

SendMessageToAllRegionsName(‘‘allGood’’, ‘‘Caution’’), the

Follower agent will resume its previous path, while Hansel restarts pro-

ducing breadcrumbs as spatial tuplespaces with specific tuples

Figure 6.6: Unity3D Breadcrumbs extended example: the Hansel agent (blue sphere) leaves breadcrumbs

(white little cubes) over its path, the Follower agent (white sphere) follows the path consuming bread-

crumbs and stopping when reaching a Caution Region (light blue transparent cube), until a good tuple

is inserted into the same region; finally, when the expected tuple is inserted into Region tuplespace, the

Follower agent resumes from suspension, crossing the Region and resuming the breadcrumbs collection

This scenario shows how LindaCoordinationUtilities API can be success-

fully used to create Regions and spatial tuples of different dimensions and

locations, as well as manipulate them in an easy way while designing and im-

plementing the agent’s behavioural module and semantic, enhancing Unity3D

scaled (if spherical, it will have a diameter of 1 meter, radius of 0,5 meter), while the Collider will have a

radius of 1 ∗ 3 meters (so, following the simple multiplication size ∗ scale), concluding in having a Collider

with 3 meters radius (this is located to spherical scales/sizes: for example, a cubic object sized 1x1x1 units

and with collider scaled 3x3x3 units means exactly what it says, a 1x1x1 meter body with a 3x3x3 meter

collider).

93

94 Case Studies

basic functionalities with a new abstraction level provided to the Unity3D

middleware. In particular, spatial and situated knowledge sharing is enabled

by providing Regions to be tuplespaces themselves, with tuples as knowledge

to be shared to every GameObject (with Prolog support) interacting with

it or currently situated inside the Region influence, using LindaCoordina-

tionUtilities API, as well as basic forms of awareness and spatial mutual

exclusion, as following:

• awareness : Follower agent awaiting a specific tuple or stopping when

entering or seeing a Region with danger messages, so new informa-

tion to the agent which could change the behaviour introducing a new

knowledge level needed to be faced

• spatial mutual exclusion: multiple Follower agents will stop and suspend

their execution when bumping into the Caution Region, only to be

all awakened by Hansel tuple insertion into the same region, like a

checkpoint or a region lock

public class Hansel : AbstractLinda {

public float deltaTime;

private int counter = 0;

private Coroutine coroutine;

private bool doing;

// Use this for initialization, called once in the beginning

void Start () {

//starts the ‘‘creation of breadcrumbs’’ coroutine

coroutine = StartCoroutine (DoThingsPeriodically ());

doing = true;

}

// Update is called once per frame

void Update () {

if (Input.GetKeyDown (KeyCode.Space)) {

print ("SPACE, CREATING REGION HERE...");

print ("STOP MAKING BREADCRUMBS");

doing = false;

StopCoroutine (coroutine);

Region reg = new Region ("Caution", transform.position, new Vector3 (20f, 20f, 20f), PrimitiveType.Cube,true,

Quaternion.identity);

LindaCoordinationUtilities.SendMessageToRegion ("stop("+counter+")",reg);

}

if (Input.GetKeyDown (KeyCode.C)) {

print ("C, SENDING OK MESSAGE TO REGION");

LindaCoordinationUtilities.SendMessageToAllRegionsName ("allGood","Caution");

coroutine = StartCoroutine (DoThingsPeriodically ());

}

}

private IEnumerator DoThingsPeriodically () {

while (true) {

yield return new WaitForSeconds (deltaTime);

//creation of breadcrumbs as spatial tuplespaces with one initial tuple, with a cubic shape of standard

dimensions (1x1x1)

LindaCoordinationUtilities.SendMessageToLocation ("iWasHere("+this.name.ToLower ()+","+counter+")",

new SpatialTupleSpace("Location"+counter,transform.localPosition,false,Vector3.one,true,new Vector3 (3,3,3)));

94

6.2 Experiment n◦2: Breadcrumbs 95

counter++;

}

}

}

Listing 6.7: Hansel C# Script Component code

public class Follower : AbstractLinda {

private NavMeshAgent agent;

private int counter;

private Collider destroyable;

private bool once = true;

// Use this for initialization

void Start () {

agent = gameObject.AddComponent<NavMeshAgent> ();

agent.autoBraking = true;

}

// Update is called once per frame

void Update () { }

//async keyword necessary when using TAP asynchronous pattern with LindaCoordinationUtilities suspensive API

async void OnTriggerEnter(Collider coll) {

if (base.enabledOrSuspensionCheck (coll)) {

return;

}

if (coll.CompareTag ("Region") && coll.name.Equals ("Caution")) {

print ("REGION: SHOULD I STOP?");

if (LindaCoordinationUtilities.RetrieveMessageFromSituatedObjectTriggered ("stop(_)",coll).Equals

(ReturnTypeKB.True)) {

print ("STOPPING AND AWAITING A GOOD MESSAGE");

NavMeshPath navpath = agent.path;

agent.ResetPath ();

await LindaCoordinationUtilities.RetrieveMessageSuspendedFromSituatedObjectTriggered ("allGood", coll, this);

print ("DONE AWAITING GOOD MESSAGE");

agent.SetPath (navpath);

} else {

print ("SHOULD I STOP? NOPE, CONTINUING BREADCRUMBS COLLECTION");

}

}

if (LindaCoordinationUtilities.AskMessageFromSituatedObjectTriggered ("iWasHere(lindaagent,_)",coll).Equals

(ReturnTypeKB.True)) {

var tupleCounter = Convert.ToInt32 (LindaCoordinationUtilities.AskParam ("X", "iWasHere(lindaagent,X)",

coll.gameObject));

destroyable = coll;

Destroy (destroyable.gameObject,1.7f);

if (tupleCounter > counter) {

agent.destination = coll.transform.position;

counter = tupleCounter;

}

}

}

}

Listing 6.8: Follower C# Script Component code

6.2.1.1 Further experiment: BagOfTuples interaction and cloning

As a further investigation, in order to test and validate the BagOfTuples

functions of LindaCoordinationUtilities API it was decided to slightly

modify the Breadcrumbs example as follows:

95

96 Case Studies

• when the Follower agent triggers the Caution Region collider and founds

the stop tuple, it creates a BagOfTuples object on the Hansel agent

(using the LindaCoordinationUtilities function AttachBagOfTu-

plesToObject(...)), then it stops its execution awaiting the good

tuple on the Region field and a special tuple on the BagOfTuples just

created

• the Hansel agent, when providing the Caution Region of the good

tuple, performs a TellToObjectBag(...) call on its BagOfTuples (if

attached, this call would have failed previously) inserting the special tu-

ple awaited from Follower after N seconds, where N is a random number

from 3 to 5 seconds

• in this way, Follower agent execution is restarted only after both tuples

from different tuplespaces are correctly retrieved. If the same BagOfTu-

ples GameObject were previously passed on a different object (attach-

ing it to its surface, eventually destroying the original one), the Follower

agent would still have to wait for the special tuple to be inserted to the

same GameObject, meaning that BagOfTuples can carry every kind of

information, both simple tuples and special tuples of suspended agents

(with syntax tuple s(X,Y,$ref))

6.3 Results

Both case studies have been engineered in order to validate the library func-

tionalities and to demonstrate improvements and benefits from their use.

Functions from LindaLibrary and LindaCoordinationUtilities API are

indeed useful to provide a new way to deal with interactions and commu-

nication during Unity3D design and implementation, while exploiting some

features to provide new interaction ways (like collisions) and a new abstrac-

tion level.

Moreover, in addition to simple validation tests and functionalities verifica-

tions, both libraries (also with Prolog and LINDA support) enhance Unity3D

with a new abstraction level, offering general and novel interaction possibil-

ities rather than the simple procedure-call mechanism.

Without LindaLibrary and LindaCoordinationUtilities, the only avail-

96

6.3 Results 97

able mechanism in Unity3D to deal with interaction and communication is

procedure-call: all functions intended to be called as communication acts

must be written inside the target GameObject’s Script Component. This

mechanism is requested by Unity3D performance research, but it lacks of

generality: the tuplespace based interaction model provides a new abstrac-

tion level, bringing to Unity3D properties and features not present before.

These solutions can be easily improved and extended, searching for perfor-

mances and optimality, but they are representative of a first integration step

between Game Engines and MAS, enabling a new interaction and coordina-

tion model to be used and closing the gap from the societal point of view.

97

Chapter 7

Conclusions and Future Work

Complex system engineering is going to be deeply impacted from coordina-

tion models, languages and technologies, in particular when talking about

methodologies, abstraction levels and software processes as well.

Many real-world application scenarios are (and will be) subjected to tech-

nical challenges, where design and development of complex systems can be

tackled by adopting a proper coordination and interaction model.

In this way, this dissertation surveyed the integration possibilities of inter-

action and coordination models with Game Engines, presenting two C#

libraries, LindaLibrary and LindaCoordinationUtilities which can be

taken as a introductory step in exploiting MAS abstractions and mecha-

nisms within Unity3D.

Along with a simple Prolog development of Linda primitives, the Unity3D

libraries bridge the gap between the theoretical MAS societal abstraction

and the Game Engines world, providing a new interaction and coordination

model to be directly exploitable in the construction of complex software sys-

tems and videogames.

Moreover, Unity3D is an IDE with lots of features and supported technolo-

gies, so general and complex systems/applications are enabled to be built:

the LindaLibrary and LindaCoordinationUtilities libraries is organized

and engineered around Unity3D functionalities, allowing tuplespace based

model to feature a new abstraction level, bringing important properties of

coordination and interaction models typical of MAS abstractions.

99

This is a prototype work, started with the purpose of investigate to what

extent it is possible to support tuplespace based interaction in Unity3D and

gone far beyond, so improvements and future works are surely possible and

needed.

On top of that, refinements to libraries themselves and Prolog code: con-

tents and organization are open to improvements and reshaping, as well as

the code structure and, most importantly, a better use of Unity3D function-

alities and Prolog integration, in order to improve performance and overall

system organization.

Also, more complex examples and case scenarios are needed to be done, in

order to analyse both libraries in terms of expressiveness, flexibility, efficacy

and (most importantly) utility: it’s indeed interesting to build applications

using LindaLibrary and LindaCoordinationUtilities with modern tech-

nologies fully exploiting Unity3D features, such as augmented/physical real-

ity, distributed systems with multiplayer support and immersive simulations,

in order to verify how this work succeeded in its purpose to bring concrete

functionalities and new ways of dealing with complexity in MAS develop-

ment.

Ringraziamenti

Questo lavoro sancisce la conclusione del mio percorso accademico durato più

di 5 anni, grazie al quale ho imparato tante cose ma, soprattutto, mi ha fatto

crescere sia professionalmente che come uomo. Il periodo trascorso a Cesena

è stato meraviglioso, sebbene difficile all’inizio: molta della mia crescita la

devo a questa città, alle persone che ho incontrato qùı, alle amicizie matu-

rate e a tutte le sfide a cui sono stato sottoposto.

Inizio con il ringraziare i miei genitori, mia sorella e tutta la mia famiglia,

la quale mi è sempre stata vicina e sostenuto in ogni momento, senza mai

dubitare delle mie capacità e talvolta scontrandosi con il mio carattere: senza

di voi non sarei quello che sono ora.

Ringrazio la mia ragazza Valentina, la quale da oltre 10 anni rappresenta il

mio punto di riferimento, sempre pronta a dimostrarmi fiducia e a rassicu-

rarmi nei momenti più difficili: si apre una nuova pagina, ma saremo ancora

più uniti.

Ringrazio il prof. Andrea Omicini e il dott. Stefano Mariani per la fiducia e

la disponibilità dimostratami lungo tutto il mio percorso accademico e so-

prattutto in questo progetto: la loro passione, interesse e professionalità sono

stati fondamentali e coinvolgenti, le discussioni con loro sempre fonte di ispi-

razione e di miglioramento.

A tutti gli amici che ho conosciuto durante questi 2 anni di magistrale, e

a tutti quelli che ormai fanno parte della mia vita da molto tempo, dedico

questo traguardo: per chi c’è stato, per chi ci sarà, siete stati importanti e,

se lo vorrete, lo sarete in futuro.

Si conclude quindi un capitolo importantissimo della mia vita, costellato da

sfide e da soddisfazioni, quindi si apre una nuova pagina, tutta da scrivere:

cos̀ı com’è stato 5 anni fa, ora sarà tutto nuovo, ma ciò che sicuramente per

me rimarrà invariato sarà la volontà di avere tutti voi ancora parte della mia

vita, per cui grazie ancora a tutti con il cuore!

Bibliography

[1] Unity Manual: execution order of event functions. https://docs.

unity3d.com/Manual/ExecutionOrder.html. Accessed: 2018-01-26.

[2] Blair, J. and Lin, F. (2011). An approach for integrating 3d virtual worlds

with multiagent systems. In Advanced Information Networking and Ap-

plications (WAINA), 2011 IEEE Workshops of International Conference

on, pages 580–585. IEEE.

[3] Bordini, R. H., Hübner, J. F., and Wooldridge, M. (2007). Programming

multi-agent systems in AgentSpeak using Jason, volume 8. John Wiley &

Sons.

[4] Ciancarini, P. (1996). Coordination models and languages as software

integrators. ACM Computing Surveys (CSUR), 28(2):300–302.

[5] Ciancarini, P. and Gelernter, D. (1992). A distributed programming en-

vironment based on logic tuple spaces. In FGCS, pages 926–933.

[6] Ciancarini, P., Omicini, A., and Zambonelli, F. (1999). Multiagent system

engineering: The coordination viewpoint. In International Workshop on

Agent Theories, Architectures, and Languages, pages 250–259. Springer.

[7] Denti, E. and Omicini, A. (1999). Engineering multi-agent systems in

luce. In Proceedings of the ICLP, volume 99.

[8] Denti, E., Omicini, A., and Ricci, A. (2001). tuprolog: A light-weight

prolog for internet applications and infrastructures. In International Sym-

posium on Practical Aspects of Declarative Languages, pages 184–198.

Springer.

https://docs.unity3d.com/Manual/ExecutionOrder.html
https://docs.unity3d.com/Manual/ExecutionOrder.html

104 BIBLIOGRAPHY

[9] Dijkstra, E. W. (1968). Cooperating sequential processes. In The origin

of concurrent programming, pages 65–138. Springer.

[10] Finin, T., Fritzson, R., McKay, D., and McEntire, R. (1994). Kqml as an

agent communication language. In Proceedings of the third international

conference on Information and knowledge management, pages 456–463.

ACM.

[11] Freeman, E., Hupfer, S., and Arnold, K. (1999). JavaSpaces principles,

patterns, and practice. Addison-Wesley Professional.

[12] Gelernter, D. (1985). Generative communication in linda. ACM Trans-

actions on Programming Languages and Systems (TOPLAS), 7(1):80–112.

[13] Gelernter, D. and Carriero, N. (1992). Coordination languages and their

significance. Communications of the ACM, 35(2):96.

[14] Indraprastha, A. and Shinozaki, M. (2009). The investigation on using

unity3d game engine in urban design study. Journal of ICT Research and

Applications, 3(1):1–18.

[15] Kaminka, G. A., Veloso, M. M., Schaffer, S., Sollitto, C., Adobbati,

R., Marshall, A. N., Scholer, A., and Tejada, S. (2002). Gamebots: a

flexible test bed for multiagent team research. Communications of the

ACM, 45(1):43–45.

[16] Kim, S. L., Suk, H. J., Kang, J. H., Jung, J. M., Laine, T. H., and

Westlin, J. (2014). Using unity 3d to facilitate mobile augmented reality

game development. In Internet of Things (WF-IoT), 2014 IEEE World

Forum on, pages 21–26. IEEE.

[17] Lewis, M. and Jacobson, J. (2002). Game engines in scientific research

- introduction. 45:27–31.

[18] Ma, W., Tran, D., and Sharma, D. (2007). Using tuple space to coor-

dinate multiagent activities. In International Conference on Knowledge-

Based and Intelligent Information and Engineering Systems, pages 589–

596. Springer.

BIBLIOGRAPHY 105

[19] Mamei, M. and Zambonelli, F. (2006). Field-based coordination for per-

vasive multiagent systems. Springer Science & Business Media.

[20] Mariani, S. and Omicini, A. (2013). Tuple-based coordination of stochas-

tic systems with uniform primitives. From Objects to Agents.

[21] Mariani, S. and Omicini, A. (2016). Game engines to model mas: A

research roadmap. In WOA, pages 106–111.

[22] Marks, S., Windsor, J., and Wünsche, B. (2007). Evaluation of game

engines for simulated surgical training. In Proceedings of the 5th inter-

national conference on Computer graphics and interactive techniques in

Australia and Southeast Asia, pages 273–280. ACM.

[23] Molesini, A., Omicini, A., and Viroli, M. (2009). Environment in agent-

oriented software engineering methodologies. Multiagent and Grid Sys-

tems, 5(1):37–57.

[24] Omicini, A. (2013). Nature-inspired coordination models: Current status

and future trends. ISRN Software Engineering, 2013.

[25] Omicini, A. and Denti, E. (2001). From tuple spaces to tuple centres.

Science of Computer Programming, 41(3):277–294.

[26] Omicini, A. and Zambonelli, F. (1999). Coordination for internet ap-

plication development. Autonomous Agents and Multi-agent systems,

2(3):251–269.

[27] Omicini, A. and Zambonelli, F. (2003). Mas as complex systems: A

view on the role of declarative approaches. In International Workshop on

Declarative Agent Languages and Technologies, pages 1–16. Springer.

[28] Papadopoulos, G. A. and Arbab, F. (1998). Coordination models and

languages. In Advances in computers, volume 46, pages 329–400. Elsevier.

[29] Ricci, A., Omicini, A., Viroli, M., Gardelli, L., and Oliva, E. (2006). Cog-

nitive stigmergy: Towards a framework based on agents and artifacts. In

International Workshop on Environments for Multi-Agent Systems, pages

124–140. Springer.

106 BIBLIOGRAPHY

[30] Ricci, A., Viroli, M., Omicini, A., Mariani, S., Croatti, A., and Pianini,

D. (2016). Spatial tuples: Augmenting physical reality with tuple spaces. In

International Symposium on Intelligent and Distributed Computing, pages

121–130. Springer.

[31] Rossi, D., Cabri, G., and Denti, E. (2001). Tuple-based technologies for

coordination. In Coordination of Internet agents, pages 83–109. Springer.

[32] Theraulaz, G. and Bonabeau, E. (1999). A brief history of stigmergy.

Artificial life, 5(2):97–116.

[33] Trenholme, D. and Smith, S. P. (2008). Computer game engines for

developing first-person virtual environments. Virtual reality, 12(3):181–

187.

[34] van Oijen, J., Vanhée, L., and Dignum, F. (2011). Ciga: a middleware

for intelligent agents in virtual environments. In International Workshop

on Agents for Educational Games and Simulations, pages 22–37. Springer.

[35] Vilenica, A., Pokahr, A., Braubach, L., Lamersdorf, W., Sudeikat, J.,

and Renz, W. (2010). Coordination in multi-agent systems: A declarative

approach using coordination spaces. na.

[36] Viroli, M. and Casadei, M. (2009). Biochemical tuple spaces for self-

organising coordination. In International Conference on Coordination Lan-

guages and Models, pages 143–162. Springer.

[37] Viroli, M., Pianini, D., and Beal, J. (2012). Linda in space-time: an

adaptive coordination model for mobile ad-hoc environments. In Interna-

tional Conference on Coordination Languages and Models, pages 212–229.

Springer.

[38] Wang, S., Mao, Z., Zeng, C., Gong, H., Li, S., and Chen, B. (2010). A

new method of virtual reality based on unity3d. In Geoinformatics, 2010

18th International Conference on, pages 1–5. IEEE.

[39] Wegner, P. (1996). Coordination as constrained interaction. In Inter-

national Conference on Coordination Languages and Models, pages 28–33.

Springer.

BIBLIOGRAPHY 107

[40] Weyns, D., Omicini, A., and Odell, J. (2007). Environment as a first

class abstraction in multiagent systems. Autonomous agents and multi-

agent systems, 14(1):5–30.

[41] Wyckoff, P., McLaughry, S. W., Lehman, T. J., and Ford, D. A. (1998).

T spaces. IBM Systems journal, 37(3):454–474.

[42] Zambonelli, F. and Omicini, A. (2004). Challenges and research di-

rections in agent-oriented software engineering. Autonomous agents and

multi-agent systems, 9(3):253–283.

	Sommario
	Abstract
	Introduction
	Background
	Motivation
	Goal
	Game Engines
	Unity3D: Features

	MAS theory
	Agents
	Society
	Environment

	Logic Programming and Prolog
	Logic Programming: overview
	Prolog: overview

	Coordination and Interaction models: overview
	Major classes and models
	LINDA and tuplespace based model

	Prolog integration: feasibility study
	Prolog integration in Unity3D
	tuProlog attempt
	Why it is a failure (for now)

	UnityProlog attempt
	Features and limitations

	Coordination and interaction in Unity3D
	Prolog support in Unity3D
	UnityProlog's KnowledgeBase (KB)
	UnityProlog's constructs: Structures, LogicVariables, ISOPrologReader
	Unity-Prolog interactions
	Prolog-Unity interactions

	MAS and Unity3D
	Tuplespaces and LINDA in Unity3D: main idea
	System design

	Prolog side background support: tuples, tuplespaces and Linda primitives
	Suspensive semantic - Prolog support

	Unity3D side: the LindaLibrary and LindaCoordinationUtilities API
	LindaLibrary API: Linda primitives and suspensive semantic support
	Suspensive semantic: Unity3D mechanisms
	Creating unpredictability: (random) primitives

	High-level communication library: LindaCoordinationUtilities API
	LindaCoordinationUtilities API: analysis
	LindaCoordinationUtilities API: implementation
	LindaCoordinationUtilities API: towards exploiting Unity3D constructs

	API extension: Spatial Tuplespaces, Regions and BagOfTuples
	Spatial Tuplespaces and Regions: architecture and main concepts
	BagOfTuples: idea and design

	Case Studies
	Experiment n°1: Dining Philosophers
	Situated version
	Spatial version

	Experiment n°2: Breadcrumbs
	Second version: Regions and suspension using trigger Colliders
	Further experiment: BagOfTuples interaction and cloning

	Results

	Conclusions and Future Work
	Bibliography

