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Sommario 

 

Le tecniche di ricostruzione degli sforzi sono state un campo di ricerca attivo sin dal 1987, quando 

Zienkiewicz e Zhu hanno proposto una procedura chiamata Superconvergent Patch Recovery (SPR) 

[1]. Tale procedura si basa su un’interpolazione ai minimi quadrati degli sforzi in punti 

superconvergenti su raggruppamenti di elementi contigui chiamati patch e fornisce campi di sforzo 

accurati che possono essere usati per stimare l’errore di discretizzazione. Negli anni seguenti sono 

state proposte numerose varianti di questa procedura cercando di migliorarne le prestazioni 

aggiungendo il soddisfacimento delle condizioni d’equilibrio. Successivamente è stata proposta 

un’altra tecnica chiamata Recovery by Equilibrium in Patches (REP)  [2]. In questo caso l’idea 

consiste nell’imporre l’equilibrio in forma debole su patch di elementi e risolvere le equazioni 

risultanti secondo uno schema ai minimi quadrati. 

Più recentemente è stata proposta un’altra procedura, basata sulla minimizzazione dell’energia 

complementare, chiamata Recovery by Compatibility in Patches (RCP) [3]. Questa procedura, per 

certi versi, può essere considerata la versione duale della REP poiché, sostanzialmente, impone la 

compatibilità in forma debole proiettando gli sforzi su un set di modi autoequilibrati.  

In questa tesi è presentata una forma migliorata dell’RCP allo scopo di garantire la convergenza 

delle derivate seconde delle risultanti degli sforzi. Al fine di ottenere tale risultato sono state testate 

due diverse strategie e la loro combinazione. La prima è di considerare patch più estese secondo 

quanto proposto in [4] mentre la seconda consiste nell’effettuare una seconda ricostruzione sugli 

sforzi ricostruiti. Si presentano alcuni test numerici effettuati in stato piano di tensione al fine di 

verificare e confrontare l’efficacia delle diverse procedure.  



Successivamente, una nuova tecnica di recovery chiamata Last Square Displacements (LSD) è 

presentata. La nuova procedura si basa sull’interpolazione secondo uno schema ai minimi quadrati 

degli spostamenti nodali ottenuti dall’analisi agli elementi finiti. Si è infatti osservato che la 

maggior parte dell’errore associato alle risultanti degli sforzi è introdotto nel momento in cui le 

funzioni di forma sono derivate per ottenere le deformazioni a partire degli spostamenti nodali.  

Questa procedura si è mostrata essere ultraconvergente ed è estremamente efficiente in quanto 

necessita in input solo degli spostamenti nodali che sono ottenuti direttamente dalla soluzione agli 

elementi finiti, evitando di dover estrarre i valori della risultante degli sforzi con il metodo 

tradizionale. Vengono dunque presentati alcuni test numerici in caso di stato piano di tensione che 

mostrano che la procedura è ultraconvergente e garantisce la convergenza delle derivate prime e 

seconde delle risultanti degli sforzi.  

Infine si presenta la ricostruzione degli sforzi trasversali nell’ambito della First-order Shear 

Deformation Theory nel caso delle piastre laminate mediante l’uso delle equazioni indefinite 

d’equilibrio tridimensionali. Si può dimostrare che [5] la convergenza di tale strategia di 

ricostruzione dipende dalla convergenza delle derivate prime e seconde delle risultanti degli sforzi 

che non è a priori garantita dalla maggior parte degli elementi finiti di basso ordine. RCP e LSD 

sono dunque qui usate al fine di garantire tale convergenza assicurando anche quella degli  sforzi 

ricostruiti. Si presentano, in fine, test numerici che confermano la validità di entrambe le procedure. 
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Introduction 

 

Stress recovery techniques have been an active research topic in the last few years since, in 

1987, Zienkiewicz and Zhu proposed a procedure called Superconvergent Patch Recovery 

(SPR) [1]. This procedure is a last-squares fit of stresses at super-convergent points over 

patches of elements and it leads to enhanced stress fields that can be used for evaluating 

finite element discretization errors. In subsequent years, numerous improved forms of this 

procedure have been proposed attempting to add equilibrium constraints to improve its 

performances. Later, another superconvergent technique, called Recovery by Equilibrium 

in Patches (REP), has been proposed in [2]. In this case the idea is to impose equilibrium in 

a weak form over patches and solve the resultant equations by a last-square scheme.  

In recent years another procedure, based on minimization of complementary energy, called 

Recovery by Compatibility in Patches (RCP) has been proposed in [3]. This procedure, in 

many ways, can be seen as the dual form of REP as it substantially imposes compatibility 

in a weak form among a set of self-equilibrated stress fields.  

In this thesis a new insight in RCP is presented and the procedure is improved aiming at 

obtaining convergent second order derivatives of the stress resultants. In order to achieve 

this result, two different strategies and their combination have been tested. The first one is to 

consider larger patches in the spirit of what proposed in [4] and the second one is to perform 

a second recovery on the recovered stresses. Some numerical tests in plane stress conditions 

are presented, showing the effectiveness of these procedures. 
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Afterwards, a new recovery technique called Last Square Displacements (LSD) is 

introduced. This new procedure is based on last square interpolation of nodal 

displacements resulting from the finite element solution. In fact, it has been observed that 

the major part of the error affecting stress resultants is introduced when shape functions are 

derived in order to obtain strains components from displacements.  

This procedure shows to be ultraconvergent and is extremely cost effective, as it needs in 

input only nodal displacements directly coming from finite element solution, avoiding any 

other post-processing in order to obtain stress resultants using the traditional method. 

Numerical tests in plane stress conditions are than presented showing that the procedure is  

ultraconvergent and leads to convergent first and second order derivatives of stress 

resultants. 

In the end, transverse stress profiles reconstruction using First-order Shear Deformation 

Theory for laminated plates and three dimensional equilibrium equations is presented. It 

can be seen [5] that accuracy of this reconstruction depends on accuracy of first and second 

derivatives of stress resultants, which is not guaranteed by most of available low order 

plate finite elements. RCP and LSD procedures are than used to compute convergent first 

and second order derivatives of stress resultants ensuring convergence of reconstructed 

transverse shear and normal stress profiles respectively. Numerical tests are presented and 

discussed showing the effectiveness of both procedures.  
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Chapter 1 

 

First-order Shear Deformation Theory (FSDT) 

 

For further convenience FSDT is here introduced so that in subsequent sections, stress 

recovery techniques will be presented for this structural model that will constitute the 

theoretical base for stress profile reconstruction presented in Chapter 8. 

First-order Shear Deformation Theory is here extended to laminated plates and presented 

as a two dimensional theory directly descending from a three dimensional one. This allows 

to rationally justify the introduction of the shear correction factor in the finite element 

solution and the use of three dimensional equilibrium equations for the reconstruction 

strategy of transverse stresses.  

Consider a flat cylinder with cross-section ! and constant thickness h is: 

  

C = x,y,z( )!!3
z ! -

h
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h
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   (1.1) 

The classical Reissner–Mindlin kinematic assumptions for shearable plates are applied to a 

multilayered structure considering the displacement field defined as: 

d =
u + z!

w

"

#
$

%

&
'       (1.2) 
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being u  a vector of in-plane displacements and ! a vector containing rotations of the fibre, 

orientated in the z direction, with respect to its undeformed configuration. 

 

Fig 2.1 – Kinematic and static plate quantities 

 

Using these kinematic assumptions, punctual strains in the three dimensional domain can 

be derived from the following compatibility equations: 

e = Dpu + zDb! = µ + z"      (1.3) 

! = D
s
w +"        (1.4) 

where e  and ! are in-plane and transverse three dimensional strain vectors respectively, 

µ is a vector of in-plane strains and !  is a vector of curvatures. The mentioned first-order 

differential operators can be written as: 

Dp = Db =
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    (1.5) 

so that compatibility equations are: 

  µ = Dpu ,     ! = D
b
" ,   ! = D

s
w +"    (1.6) 

Equilibrium equations can be obtained through the principle of virtual work in the form: 
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Dp

*
N = qx ,    D

b

*
M + S = c ,             D

s

*
S = q

z
                   (1.7) 

being N , M  and S  the membrane stress resultants, the moments and the shear stress 

resultants respectively, qx  the in plane load vector, c  the distributed couples vector, q
z
 the 

transverse  load and Dp

* , D
b

*  and D
s

*  first order differential operators, adjoint to Dp , D
b

 

and D
s
, respectively.   

Stress resultants are defined as: 

N = s

!h /2

h /2

" dz ,  M = zs

!h /2

h /2

" dz ,  S = !
"h /2

h /2

# dz       (1.8) 

Finally constitutive equation are given by: 

N = C
m
µ + C

mb
! ,   M = C

mb
µ + C

b
! ,  S = C

s
!             (1.9) 

where C
m

, C
mb

, C
b
 and C

s
, in case of a laminated plate composed of superimposed 

homogenous layers, are defined as follows: 

   Cm = zk ! zk-1( )
k=1

n.layers

" Cm

(k)
,      Cmb =

1

2
z
2

k ! z
2

k-1( )
k=1
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" Cm

(k)
  

              (1.10) 

        Cb =
1

3
z
3

k ! z
3

k-1( )
k=1

n.layers

" Cm

(k)
, 

 

Cs = k! zk ! zk-1( )
k=1

n.layers

" C
s

(k)
   

  

In the preceding relations z
k
 and z

k-1
are the top and bottom coordinates of the k -th 

lamina, C(k)

m
and C(k)

s
 are its constitutive matrix and k is 2x2 matrix containing shear 

correction factors while  !  operator denotes the component by component product. For 

every single layer it is therefore possible to write: 

 

s = C
m

(k)
e ,  

 
! = k!C

s

(k)"     (1.11) 
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Chapter 2 

 

Recovery by Compatibility in Patches 

 

Recovery by Compatibility in Patches has been early proposed in [3] and extended to 

homogenous plates in [6]. The idea is to obtain recovered stresses resultants by minimizing 

the complementary energy associated to a patch of elements, considered as a separate 

system, among an assumed set of self-equilibrated stress fields. Hence, it substantially 

attempts to enhance equilibrium while relaxing compatibility.  

Patches can be created considering a node or an element (Fig 2.1) and then adding as many 

orders of adjacent elements as needed in order to reach the required size.  

 

 

(a)                  (b) 

Fig  2.1 – Element patch (a); Node Patch (b) 
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In other works [5], the patch creation procedure was driven by the number of hems that 

were created around the element or the node. In this case, instead, hems are added until a 

minimum number of included elements is reached, typically equal to the one enclosed in 

the free field patch (Fig 2.2). Using this patch creation method, boundary patches have at 

least the same number of elements of the free field patch ensuring stability of the 

procedure at the border.  

 

(a)                       (b) 

Fig 2.2 – Free field patch (a); Boundary patch (b) 

 

If patches are centred on nodes the result is a node-patch while, if elements are chosen as 

central entity, element-patches are obtained. In the first case, once reconstructed stress 

fields are derived by RCP minimization, in the element domain the reconstructed solution 

is obtained averaging the values coming from all the considered element’s nodes directly 

in the point of interest (Fig 2.3). This strategy, differently from other procedures that 

compute the reconstructed stress fields using nodal values and shape functions, leads to 

pointwise equilibrated stress fields that are discontinuous between elements. 

 

Fig 2.3 – Stress field extraction for node patch. 
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In the second case the reconstructed stress fields on the patch is directly taken as the 

reconstructed solution for the central element so that no averaging process is needed. If this 

stress extraction strategies are adopted, no relevant difference between node-patch and 

element-patch performances have been observed being the major difference the number of 

element in the free field patch. 

To apply the recovery procedure, a new approximation for stress resultants over the patch 

is introduced: 

N
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M
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&

= P
r' +
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     (2.1) 

where the superscript r denotes the recovered solution, 

 

P
r is a matrix reporting on columns 

a set of self equilibrated modes, !  is a vector of unknown parameters and 

 

Np,Mp,Sp( )  is 

a particular solution of the plate equilibrium equations depending on external loads. 

Then the RCP minimization yields to the following compatibility condition over each 

patch if First-order Shear Deformation Theory is chosen as structural model: 

 

 

!NrT µ r " µ h( ) + !MrT # r " #h( ) + !SrT $ r " $ h( )[ ]
% p

& d% p   

 

! "N
r
,"M

r
,"S

r( )       (2.2) 

where 

 

!p  is the patch domain, µ r
, ! r

, " r( )  are the strain components obtained by the 

recovered stress resultants via the plates constitutive equations and µ h
, ! h

, " h( )  are the 

strain components resulting from the finite element solution. 

In all subsequent developments, a complete set of quadratic self-equilibrated stress modes 

have been chosen so that it is possible to directly evaluate second order derivatives of 

stress resultants simply considering analytic derivatives of the modes and the particular 

solution. 
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Substituting equation (2.1) in (2.2) leads to a system of linear algebraic equations, whose 

solution permits to determinate parameter !  and, consequently, the recovered stress field 

over the patch: 

H! = g       (2.3) 

where 

 

H = P
rT
C

!1
P
r( )d! j

! j

"
j=1

nep

# ,   g = PrT µh ,! h ," h( ) # PrTC#1 Np ,Mp ,Sp( )( )d! j

! j

$
j=1

nep

%   (2.4) 

being nep the number of element in the patch, ! j the generic element domain, and C
!1

the 

inverse of the plate constitutive matrix. 

Considering for simplicity a linear polynomial expansion instead of a quadratic one, (2.1) 

can be written as: 
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where 
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being q
x
,q

y
,q

z
!" #$  distributed surface load and c

x
,c

y
!" #$  distributed couples.  
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In order to guarantee convergence of second order derivatives of stress resultants, two 

different strategies and their combination are here proposed. The first one is to consider 

wider patches (Fig 2.4) and the second one is to perform a second recovery on the 

recovered stresses. This is possible obtaining, through constitutive equations, strains 

related to recovered stresses and using them in a second recovery procedure. Four 

procedures are then analyzed: 

 

(a)      (b) 

Fig 2.4 –Patch type A (a), Patch type B (b). 

 

Type 1 - Single RCP on patch type A 

Type 2 - Single RCP on patch type B 

Type 3 - Double RCP on patch type A 

Type 4 - Double RCP on patch type B 

 

where Type 1 corresponds to the RCP in its standard form [3], used in [5] in order to 

obtain convergence of first derivatives in a laminated plate bending problem with the only 

difference that in that case standard patch creation method was adopted so that boundary 

patches were smaller than free field ones. 
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Chapter 3 

 

Numerical results presentation 

 

In the next chapter the four proposed procedures are tested on plain stress benchmark 

problems. In order to adapt the formulation obtained for RCP considering a FSDT 

structural model, it is sufficient to consider equal to zero all the quantities related to shear 

and bending effects and impose the constitutive equations for plain stress problems to 

membrane strains and stress resultants. In order to avoid singularity of constitutive matrix 

the diagonal elements outside the membrane related submatrix can be taken equal to unity 

and anyway different from zero. 

Benchmark problem require that analytical solution is known so that error associated to 

numerical solution can be calculated. In this case a displacement field has been supposed 

over the considered domain. Analytical stress resultants fields can be calculated 

substituting compatibility equations (1.6) into the constitutive equations (1.9). Then, using 

equilibrium equations (1.7), analytical load fields can be obtained.  

The problem is then solved using a Finite Element approach in with analytical 

displacements are imposed at the domain boundary nodes and the load fields are applied in 

the domain. 

A unit length square domain is considered. Thickness is supposed to be equal to one tenth 

of the side length. Elastic modulus is 1000000 and Poisson modulus equal to 0.3.  
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Analytic displacements fields for benchmark problems are here presented: 

Problem 1 -  u = xysin(! x)sin(! y)  

Problem 2 -  u = xy 1 - x( ) 1 - y( ) 1+2x+7y( )  

Problem 3 -  u = y
3  

In order to evaluate the effectiveness and the performances of the procedures, error 

convergence rate is calculated. This quantity is defined in different ways depending on the 

physical meaning of the investigated quantity. In particular, if stress resultants are 

considered, error is calculated in energy norm resulting for membrane problems in: 

 

 

e =
1

2
N ! N

ex( )
T

C
!1
N ! N

ex( )           (3.1) 

where N is the vector of numerically calculated membrane stress resultants, N
ex

 is the 

analytical solution and C
!1

 is the inverse of the constitutive matrix.  

When stress resultants derivatives are considered, energy norm has not precise physical 

meaning so that a scalar product is preferred: 

e = dN ! dN
ex( )

T

dN ! dN
ex( )            (3.2) 

where dN  is a column vector containing for each stress resultant its derivative in both axis 

directions and for second derivatives also the mixed one. 

Since all defined error indicators are related to the quadratic value of stress resultants 

errors, in all subsequent results error is considered as the square root of the quantity just 

defined.  

Global convergence is then evaluated integrating the error in the whole domain and 

comparing it with mesh refinements in a double logarithmic graph. 

Global convergence is a key synthetic indicator to evaluate the effectiveness of the 

procedures. Nevertheless to have a deeper understanding of its behaviour, in this thesis a 

new representation of this data is developed. The idea is that if mesh refinements are 

performed dividing each element in more elements, the original element nodes are 
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common to the finer and the coarser mesh. This means that convergence maps can be 

created locally comparing the error variation estimated like in (3.1) and (3.2) and the 

variation of the characteristic mesh length. Since reconstructed stress fields are 

discontinuous between elements, error associated to the point is calculated averaging all 

values obtained considering the node as part of all its adjacent elements. This maps permits 

to directly observe the presence of super-convergent points and check the procedure’s 

stability at boundary patches. 

Another important evaluation instrument are accuracy maps. In this thesis they are 

obtained representing the local error associated to a point and then dividing it for the 

maximum value of the related local energy found in the domain. In order to render the 

results in a clearer way the logarithm is then extracted. 

In subsequent chapters, stress resultants accuracy maps are obtained considering an 

internal mesh of 3x3 gauss points in the element domain plus their projection on the 

element sides for each element.  

All subsequent results have been obtained considering four node elements on regular mesh 

and refinements obtained dividing each side with 8, 16, 32 and 64 elements.  

 

(a)     (b) 

Fig 3.1 – 8 (a) and 16 (b) elements per side mesh refinements  
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Chapter 4 

 

Numerical tests for RCP 

 

Problem 1 

   

     (a)                          (b)  

 

          (c) 

Fig 4.1 – Global convergence of stresses (a), first derivatives (b), second derivatives (c) 
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Subsequent accuracy maps are obtained on a 64 elements per side mesh and convergence 

maps are obtained comparing error associated to 32 and 64 elements per side refinements. 

   

(a)      (b) 

Fig 4.1 – Accuracy maps. Finite element (a), RCP Type 1 (b) 

 

     

(a)    (b)    (c) 

Fig 4.2 – Accuracy maps. RCP Type 2 (a), RCP Type 3 (b), RCP Type 4 (c) 

 

(a)    (b)    (c) 

Fig 4.3 – Convergence maps of RCP Type 1. Stresses (a), First derivatives (b), Second derivatives (c) 
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(a)    (b)    (c) 

Fig 4.4 – Convergence maps of RCP Type 2. Stresses (a), First derivatives (b), Second derivatives (c) 

 

 

(a)    (b)    (c) 

Fig 4.5 – Convergence maps of RCP Type 3. Stresses (a), First derivatives (b), Second derivatives (c) 

 

 

(a)    (b)    (c) 

Fig 4.9 – Convergence maps of RCP Type 4. Stresses (a), First derivatives (b), Second derivatives (c) 
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It can be observed that, contrarily from what was expected, in this test RCP seems to have 

better asymptotical stability in evaluating second derivatives than first derivatives. 

Considering problems with polynomial analytical solution it has been possible to 

understand that RCP is affected by random activation of low order modes due to 

discretization errors in finite element solution. The contribution of these modes is modest 

but when high accuracy are reached, they become dominant. This explains why, in some 

cases, second derivatives shows higher stability than first ones. It has been proven that the 

problem can be corrected under-integrating complementary energy using a single Gauss 

point. Doing so the procedure becomes very similar to SPR with equilibrium constraints 

but physical meaning is lost. 

It is well known that in finite element solution, some point in the element domain are 

characterized by great accuracy and superconvergence. Starting from this observation in 

1987 Zienkiewicz and Zhu [1] proposed SPR that, as already mentioned, is a recovery 

technique based on interpolation of stresses at optimal stress points. Subsequent accuracy 

maps, together with Fig 4.1 (a), show that the centre of the element is characterized by 

accuracy that can be two and more order of magnitude higher than the rest of the element 

domain, confirming the validity of the idea beneath SPR procedure. 

  

(a)       (b) 

Fig 4.10 – Accuracy maps of Fem stresses for 16 (a) and 32 (b) elements per side meshes 
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Problem 2 

   

(a)       (b) 

 

       (c) 

Fig 4.11 – Global convergence of stresses (a), first derivatives (b), second derivatives (c). 

 

 

(a)    (b)    (c) 

Fig 4.12 – Convergence maps of RCP Type 4. Stresses (a), First derivatives (b), Second derivatives (c) 
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(a)    (b)    (c) 

Fig 4.13 – Convergence maps of RCP Type 2. Stresses (a), First derivatives (b), Second derivatives (c) 

 

 

(a)    (b)    (c) 

Fig 4.14 – Convergence maps of RCP Type 3. Stresses (a), First derivatives (b), Second derivatives (c) 

 

 

(a)    (b)    (c) 

Fig 4.15 – Convergence maps of RCP Type 4. Stresses (a), First derivatives (b), Second derivatives (c) 
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For this test, a comparison between stresses accuracy reached with FEM, RCP Type 1 and 

RCP Type 4 is presented confirming the good performance of FEM at optimal stress 

points. Considering RCP it can be noticed that accuracy decrees moving from the centre to 

the border of the patch but in a much smoother way than FEM. These maps exclude that an 

effective improvement of the stress extraction procedure could be obtained averaging 

values coming from patches far from the point of interest like the ones enclosed in the 

second ring of patch type B. These results have been confirmed in numerical tests, that are 

not here reported, where stresses were extracted averaging information coming from all 

patches containing the point of interest. 

 

 

(a)    (b)    (c) 

Fig 4.16 – Accuracy maps for 8x8 elements mesh. FEM (a), RCP Type 1 (b), RCP Type 4 (c) 

 

 

(a)     (b)     (c) 

Fig 4.14 – Accuracy maps for 16x16 elements mesh. FEM (a), RCP Type 1 (b), RCP Type 4 (c) 
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(a)    (b)     (c) 

Fig 4.14 – Accuracy maps for 32 elements per side mesh. FEM (a), RCP Type 1 (b), RCP Type 4 (c) 

 

From the presented data it can be concluded that RCP Type 1 is the most suitable if 

recovery is performed in order to drive mesh refinement, as its accuracy is always better 

that FEM in every point of the domain. RCP Type 3 and Type 4 are the most suitable if 

stable convergence of stress derivatives is needed like in transverse stress profiles 

reconstruction in laminated plates (Chapter 9). 
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Chapter 4 

 

RCP-based recovery on derivatives 

 

This recovery technique can be considered a mixed form between the DoubleL
2
-projection 

described in [4] and RCP as it substantially add equilibrium constraint to the first one using 

RCP procedure even though, in this case, the minimization has not precise physical 

meaning. 

In fact, it can be easily observed that if a matrix of self-equilibrated modes is derived with 

respect of one axis direction, the resultant matrix of derivative modes is equivalent to a 

matrix of self-equilibrated modes with one less degree of completeness. 

For example, consider the matrix of quadratic self-equilibrated modes for membrane stress 

resultants that appears in the reconstructed solution (2.1), analogous to (2.5): 
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If the derivatives with respect of the 

 

x  axis of the (4.1) are considered: 
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 (4.2) 

It can be noticed that the matrix that appear in the new equation (4.2) is still a matrix of 

self-equilibrated modes but with one less degree of completeness.  

If two RCP procedure are performed introducing derivatives of stress resultants with 

respect to one axis each time instead of stress resultants, identity matrix is introduced 

instead of inverse of constitutive matrix and the derivative of the particular solution with 

respect to the considered axis is introduced instead of the particular solution, the procedure 

is transformed in a L
2
-projection of derivatives among a set of derivatives modes 

descending from a set of self-equilibrated stress modes.  

 

!dNrT
dNr " dNh( ) + !dMrT

dMr " dMh( ) + !dSrT dSr " dSh( )[ ]
# p

$ d# p 

 

! "dN
r
,"dM

r
,"dS

r( )      (4.3) 

where 

 

!p  is the patch domain, dN
r
,dM

r
,dS

r( )  are the recovered stresses derivatives with 

respect of one axis and dN
rh
,dM

rh
,dS

rh( )  are the stresses derivatives with respect of the 

some axis resulting from the fist RCP or FEM solution if high order elements are used. 

Two different values for the mixed second order derivatives are obtained from this 

procedure so that averaging between them is needed.  

No results are shown for this procedure as, at this stage, does not seem competitive with 

other procedures here presented but it might be investigated if higher order derivatives are 

needed. 
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Chapter 5 

Last Square Displacements (LSD) 

 

The idea of Last Square Displacements (LSD) steams from a very simple observation: if 

we extract stresses using the traditional method introducing exact nodal displacements 

instead of values coming from Finite Element analysis, no improvement in accuracy or 

convergence rate of stress resultants is observed (Fig 5.1). 

 

Fig 5.1 – Global convergence rate for Fem and Fem using exact nodal values for Problem 2. 

 

This means that the preponderant contribution to error affecting stress resultants is not 

introduced in the global resolution, when nodal displacements are calculated, but in the 

subsequent step when strains are obtained deriving shape functions.  

Moving from this observation a new recovery technique has been developed aimed at 

preserving information since the beginning, that is to say, avoiding shape function 

derivation in order to obtain strains and than stress resultants via constitutive matrix. 
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Many different implementations of this idea can be developed but the simplest one is to 

use a patch-based approach where displacements nodal values are interpolated using a last 

square scheme over the patches leading to continuous displacement fields in the patch 

domain.  

Each displacement component is interpolated separately and its derivatives are calculated 

directly in every point of interest. Element-patch and node-patch based approaches are 

possible exactly like in RCP (see Chapter 2) but here only the first one is presented as it 

does not require any additional averaging after last square minimization and for this reason 

can be considered the most cost effective between the two possibilities. 

In this case it is crucial to extend border patches with the procedure presented for RCP so 

that patches will contain at least a minimum number of nodes ensuring that the 

pseudoinverse matrix is not singular. 

Here, in order to estimate second order derivatives of stress resultants a complete set of 

cubic polynomials have been chosen to reconstruct each displacement field from nodal 

values so that estimation for second order derivatives of stresses (that is to say third order 

derivatives of displacements) is obtained. 

For each displacement field a new representation is introduced: 

u
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%[ ]   (5.1) 

where u
i

r
(x, y)  is the recovered field for the i-th displacement component and ! is a vector 

of unknown parameters. Patch reference system is based on the centre of the element the 

patch refers to, like in RCP procedure. 

 

If uij  is the value of the i-th displacement component in the j-th node of the current patch 

and x j , yj  are the j-th node values of the local coordinates then for each node over the 

patch we can write: 
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(5.2) 

that, using other symbols, can be written as: 

u
i
= A!      (5.3) 

than OLS minimization leads to: 

      ! = A
T
A( )

"1

A
T
u
i
                (5.4) 

that can be solved providing unknown parameters ! . 

Once vector !  has been estimated the reconstructed displacement field is known point 

wise in the patch domain as well as its derivatives that physically represent strains and 

strains derivatives. Thus, using constitutive equations, stress resultants and their 

derivatives can be obtained. 

The procedure is simple and cost effective, as it requires in input only data directly 

available after Finite Element solution without any additional post processing in order to 

evaluate stress resultants in the traditional way and can be easily extended to three-

dimensional problems and to other physical fields in order to use low order elements 

ensuring convergence of first, second and third derivatives of the principal variable. 

At the present stage the procedure has been tested only in regular meshes but the extreme 

robustness of the OLS method has been widely verified for example in Quadratic Fitting 

(QF) method used in [4]. 

Moreover, numerical tests indicate that LSD is an ultraconvergent procedure as it is able to 

exactly recover the analytical solution for cubic displacements fields when linear shape 

functions are used in the finite element analysis. 
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Chapter 6 

Numerical tests for LSD 

 

For these tests patch Type A has been used as it has shown to provide best performances 

with the minimum computational cost. In general, as already observed for RCP, using 

larger patches ensure higher convergence rate but decrees accuracy for coarse meshes. 

 

Problem 1 

                

(a)       (b) 

 

            (c) 

Fig 6.1 – Convergence of stresses (a), first derivatives (b) and second derivatives (c) 
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(a)      (b) 

Fig 6.2 – Accuracy maps for 8 elements per side mesh. FEM (a), LSD (c) 

  

(a)      (b) 

Fig 6.3 – Accuracy maps for 16 elements per side mesh. FEM (a), LSD (c) 

   

(a)      (b) 

Fig 6.4 – Accuracy maps for 32 elements per side mesh. FEM (a), LSD (c) 
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(a)       (b) 

           

(c)                (d) 

Fig 6.5 – Convergence maps. Fem stresses (a), LSD stresses (b),  

LSD first derivatives (c), LSD second derivatives (d) 
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Problem 2 

 

(a)      (b) 

 

(c)        

Fig 6.6 – Convergence of stresses (a), first derivatives (b) and second derivatives (c) 

 

   

(a)       (b) 

Fig 6.7 – Accuracy maps for 32 elements per side mesh. FEM (a), LSD (b) 
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(a)      (b) 

   

(c)             (d) 

Fig 6.8 – Convergence maps. Fem stresses (a), LSD stresses (b),  

LSD first derivatives (c), LSD second derivatives (d) 
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Problem 3 

Problem 3 is here used to prove ultraconvergence of the procedure. Other tests, using cubic 

displacement fields, clearly confirmed this result.  

  

(a)      (b) 

 

(c)        

Fig 6.9 – Convergence of stresses (a), first derivatives (b) and second derivatives (c) 

 

Great accuracy confirms that exact solution has been recovered but error associated to first 

and second stress derivatives rapidly increases with mesh refinements. The same behaviour 

was observed in [4] using the so-called Quadratic Fitting (QF). In that case it has been 

explained thinking that the function to recover becomes nearly constant if fine meshes are 

used and derivation becomes sensitive to numerical errors. 
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Chapter 7 

 

Transverse stress profiles reconstruction for laminated plates 

 

Composite laminated plates are nowadays widely used in many different structural 

applications and a number of laminate theories have been proposed in literature [8]. 

Among these, the First-order Shear Deformation Theory (FSDT) is usually considered a 

good compromise between accuracy and computational efficiency. However, it must be 

noted that in FSDT transverse shear deformation effects are accounted for in a simplified 

manner while transverse normal effects are completely neglected.  

A hybrid-stress finite element for the analysis of FSDT composite laminated plates and an 

effective procedure to reconstruct transverse shear stresses profiles have been recently 

proposed in [5]. There, to guarantee convergence of the reconstruction strategy, stress 

resultants entering the reconstruction process are first recovered using RCP.  

Here, the same finite element formulation is used [5] and attention is focused on 

reconstruction of transverse normal stress profiles. Once accurate transverse shear stresses 

are reconstructed, three-dimensional force equilibrium in the thickness direction is used to 

compute the transverse normal stress profile. Indeed, the accuracy of this reconstruction 

depends on the accuracy of second derivatives of stress resultants. In fact three 

dimensional undefined equilibrium conditions can be written as: 

Dp

*s ! "z# ! bx = 0 ,  D*

s
! " #

z
$
z
" b

z
= 0     (7.1) 
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where b
x
is the vector of in-plane body forces, b

z
 is the transverse body force and !

z
the 

derivative with respect to z . The only unknowns, once stress resultants derivatives are 

identified, are ! and 

 

!
z
. Integrating these equations in the thickness direction, imposing 

boundary conditions on top and bottom faces of the laminate, interlaminar continuity and 

the static equivalence with shear transverse stress resultants S , transverse stress profiles 

can be reconstructed. 

Introducing for convenience inverse relations for (1.9): 

µ = F
m
N + F

mb
M   ! = F

mb
N + F

b
M   ! = F

s
S   (7.2) 

Resulting equations for transverse shear stresses are: 

! (z) = " px
(-)
+ Dp

*s " bx( )
-h /2

z

# dz ,    (7.3) 

where in-plane stresses s are obtained from the solution of the plate problem: 

 

s = Cm

(k)
FmN + FmbM( ) + z FmbN + FbM( )!" #$      (7.4) 

and transverse normal stress profile is reconstructed as:  

! (z) = " pz
(-)
+ Ds

*# (z) " bz( )
-h / 2

z

$ dz     (7.5) 

being p
x

(-)  and pz
(-)  the in surface traction on the laminate bottom face.  

It can be proved that, if N , M and S  satisfy equilibrium condition (1.7), the reconstructed 

stress profile automatically meet all reported conditions. 

This means that, if RCP is used to recover stress resultants and calculate their derivatives, 

the transverse profiles reconstruction procedure is extremely simple and there is no need of 

corrections to meet the boundary condition at the top of the laminate once the bottom one 

is imposed. 
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Chapter 8 

8.1 Transverse stress profiles reconstruction: numerical results 

 

A simply supported square laminated plate is considered under sinusoidal load of unit 

maximum intensity. Side length L and thickness h are chosen equal respectively to 9 and 

0.9 so that L / h  ratio is 10. Thanks to the double in-plane symmetry only a quarter of the 

plate is considered. 

 

Fig. 8.1 – Simply supported square plate with 8x8 mesh. 

 

Two staking sequences are considered: a symmetric (0/90/0) and an antisymmetryc (0/90). 

Lamina mechanical properties are: 

E
b
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Shear correction factors for cylindrical bending are assumed as proposed in [9] and are 

considered as constant values. Even though here is not presented, an iterative procedure 

could be implemented in order to update shear correction factors to the value descending 

from the reconstructed shear stress profiles. 

In this case constant values are chosen as k
11
= 235445 / 404004 , k

22
= 289 / 360 , k

12
= 0  

for (0/90/0) and k
11
= k

22
= 297680 / 362481 , k

12
= 0  for (0/90). Reference solutions have 

been calculated according to [8].  

Seemingly to plain stress cases presented in previous chapters, error convergence graphs 

and maps are obtained in order to validate the effectiveness of the procedures.  

Differently from plane cases, here, the degree of completeness of polynomial expansion is 

not the some for all stress resultants when RCP is used. In fact, if self-equilibrated modes 

are considered, shear resultants can be obtained as a linear combination of moments first 

derivatives so that they necessarily have one less degree of completeness. This means that, 

in the matrix of self-equilibrated modes, they are accounted for in a more simplified way.  

For example, consider the matrix of self-equilibrated modes if a complete quadratic 

representation is chosen for the reconstruction of moments and shear resultants (2.1): 
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(8.1) 

In order to respect equilibrium equations (1.7) shear resultants 

 

S  can be at most linear.  

Another crucial point is that RCP is based on minimization of complementary energy on 

patches. In this case, as the considered plate is thin, shear energy is very small compared to 

bending one so that recovery enhances moments with better results than shear resultants.  

However it must be noted that, if energy associated to shear would increase, for example 

considering a thick plate, the procedure would automatically account for that. 
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Nonetheless, it must be noted that, in order to perform the transverse stress profile 

reconstruction as described in Chapter 7, only in-plane stress resultant derivatives are 

required so that no concern arises if transverse shear stress resultants derivatives are not 

convergent. 

Finally it must be noted that staking sequence (0/90) shows membrane-bending coupling 

so that membrane-bending total energy must be considered: 
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while the energy associated to transverse shear resultants is : 

 

e
s

=
1

2
S ! S

ex[ ]
T

F
s
S ! S

ex[ ]

 

   (8.3) 

Once in-plane and transverse stress profiles are reconstructed it is possible to evaluate the 

three-dimensional error energy associated to the profiles. This is possible integrating the 

error energy through the thickness and associating the obtained value to the projection of 

the considered fibre on the 

 

xy  plane: 

 

e(x, y) =
1

2
!(x, y, z) -!

ex
(x, y, z)[ ]C"1

-h/2

h/2

# !(x, y, z) -!
ex
(x, y, z)[ ]dz   (8.4) 

where 

 

!  is a vector containing the reconstructed three dimensional stresses, 

 

!
ex

 contains 

the exact three dimensional stresses and 

 

C
!1  is the inverse of the three dimensional 

constitutive matrix. 

In subsequent profiles convergence graphs and maps, (8.4) has been obtained both 

considering the global three-dimensional energy and isolating energy associated to in-

plane stresses, transverse shear stresses and transverse normal stresses related to stress 

resultants, stress resultant first derivatives and second derivatives respectively.  

It must be noted that finite element stress resultants in case of RCP are obtained from the 

hybrid element [5] and in LSD are obtained deriving displacements fields. This explains 

the widely different performance of fem solution in (0/90) in evaluating shear resultants. 
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8.2 Numerical tests for RCP 

  

(a)      (b) 

Fig 8.2 – Global convergence of stress resultants for (0/90/0). Moments and membrane (a), Shear (b)  

 

  

(a)      (b) 

  

(c)      (d) 

Fig 8.3 – Global convergence of stress profiles in (0/90/0). Global energy (a), in-plane stresses (b),  

transverse shear stresses (c) transverse normal stresses (d). 
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(a)       (b) 

Fig 8.4 – Convergence map for in plane stress profiles in (0/90/0). RCP Type 1 (a), RCP Type 4 (b) 

 

  

(a)        (b) 

Fig 8.5 – Convergence map for transverse shear stress profiles in (0/90/0). RCP Type 1 (a), RCP Type 4 (b) 

 

  

(a)      (b) 

Fig 8.6 – Convergence map for transverse normal stress profiles in (0/90/0). RCP Type 1 (a), RCP Type 4 (b) 



 41 

 

Fig 8.7 – Reconstructed transverse stress profiles at point A for (0/90/0) in an 8x8 mesh.  

 

Fig 8.8 – Reconstructed transverse stress profiles at point B (0/90/0) in an 8x8 mesh.  

 

(a)      (b) 

Fig 8.9 – Reconstructed transverse normal stress profiles at point B (0/90/0). 8x8 mesh (a), 16x16 mesh (b). 
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(a)      (b) 

Fig 8.7 – Global convergence of stress resultants for (0/90). Moments and membrane (a), Shear (b). 

 

  

(a)      (b) 

  

(c)      (d) 

Fig 8.8 – Global convergence of stress profiles in (0/90). Global energy (a), In-plane stresses (b),  

transverse shear stresses (c) transverse normal stresses (d). 
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(a)      (b) 

Fig 8.9 – Convergence map for in plane stress profiles in (0/90). RCP Type 1 (a), RCP Type 4 (b) 

  

(a)      (b) 

Fig 8.10 – Convergence map for transverse shear stress profiles in (0/90). RCP Type 1 (a), RCP Type 4 (b) 

  

(a)      (b) 

Fig 8.11 – Convergence map for transverse normal stress profiles in (0/90).  RCP Type 1 (a), RCP Type 4 (b) 
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Fig 8.12 – Reconstructed transverse stress profiles at point A for (0/90/0) in an 8x8 mesh.  

 

 

Fig 8.13 – Reconstructed transverse stress profiles at point A for (0/90/0) in an 8x8 mesh.  

 

It can be clearly seen that RCP Type 3 ensure very accurate reconstructed profiles even if 

coarse meshes are used and that boundary conditions at the top and bottom side of the 

laminate are automatically satisfied if the proposed reconstruction procedure is used. 

RCP Type 3 is the best combination between accuracy, convergence stability and 

computational cost. RCP Type 1 is very accurate and has a small computational cost but 

does not ensure convergence of the reconstructed transverse normal stress profiles.  

Enlarging the patch, like in RCP Type 3 and 4, does not seem to be a convenient strategy 

as it leads to inaccurate second order derivatives and, thus, transverse normal stress 

profiles (especially at the domain border) although it ensures convergence of the 

reconstructed profiles everywhere in the domain. 



 45 

8.3 Numerical tests for LSD 

 

  

(a)       (b) 

Fig 8.14 – Global convergence of stress resultants for (0/90/0). Moments and membrane (a), Shear (b)  

 

  

(a)       (b) 

  

(c)      (d) 

Fig 8.15 – Global convergence of stress profiles in (0/90/0). Global energy (a), in-plane stresses (b),  

transverse shear stresses (c) transverse normal stresses (d). 
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(a)      (b) 

   

(c)      (d) 

Fig 8.16 – Convergence map for (0/90/0). Global energy (a), in-plane stresses (b),  

transverse shear stresses (c), transverse normal stresses (d). 

 

 

Fig 8.17 – Reconstructed transverse stress profiles at point A for (0/90/0) for different mesh refinements.  
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(a)      (b) 

Fig 8.18 – Global convergence of stress resultants for (0/90). Moments and membrane (a), Shear (b)  

 

  

(a)      (b) 

  

(c)      (d) 

Fig 8.19 – Global convergence of stress profiles in (0/90). Global energy (a),, in-plane stresses (b),  

transverse shear stresses (c) transverse normal stresses (d). 
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(a)      (b) 

   

(c)      (d) 

Fig 8.20 – Convergence map for (0/90). Global energy (a), in-plane stresses (b),  

transverse shear stresses (c), transverse normal stresses (d). 

 

 

Fig 8.21 – Reconstructed transverse stress profiles at point B for (0/90) in an 8x8 mesh.  
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Conclusions 

 

The present work focuses on stress recovery techniques aiming at obtaining a procedure 

that ensures convergence of stresses second order derivatives.  

Enhanced stress fields can be used in several practical applications like automatic mesh 

refinement and transverse stress profile reconstruction in laminated plates. In the first case 

the enhanced stress field is used to calculate an error estimation in order to drive the 

refinement process while, in the second case, first and second order derivatives of stress 

resultants are used in order to reconstruct the transverse shear and normal stress profiles 

respectively using three-dimensional equilibrium equations.  

It can be demonstrated that, if stresses satisfy pointwise equilibrium equations, the 

reconstruction procedure is extremely simple without any need of additional correction in 

order to meet boundary conditions on the top and bottom sides of the laminate.  

Recovery by Compatibility in Patches (RCP) is here chosen to enhance stress fields due to 

its equilibrating nature and it is properly modified in order to ensure second order 

derivatives convergence and consequently of the whole transverse stress profile 

reconstruction strategy. Two different approaches and their combination are here analyzed:  

the first one is to perform a second recovery on recovered stresses and the second one is to 

consider larger patches. 

Numerical tests in plain stress conditions are first presented showing the effectiveness of 

the proposed procedures and are used to confirm results later obtained for a bending 

problem in a laminated plate where the profile reconstruction is actually performed. 

Afterwards, a new stress recovery procedure called Last Square Displacements (LSD), 

based on nodal displacement interpolation, is introduced and numerical results are 

presented. This new technique is extremely cost effective, it ensures convergence of 

stresses and their first and second order derivatives, is easily extendable to other physical 

fields and shows to be ultraconvergent.  
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Results concerning RCP show that considering larger patches, even though improve 

asymptotical convergence stability of stress derivatives, decreases their accuracy. On the 

other side, performing the double recovery ensures better accuracy but has a higher 

computational cost. Despite these differences, all RCP based procedures have shown very 

high accuracy for stresses and their first and second derivatives leading always to accurate 

reconstructed stress profiles probably also due to its equilibrating nature. 

Last Square Displacements procedure shows to be extremely stable, cost effective and 

accurate in evaluating stresses and their first derivatives but poor accuracy is reached in 

evaluating second order derivatives leading to inaccurate transverse normal stress profiles. 

It can be concluded that, on one hand, RCP on single patch with double recovery is the 

most suitable technique for transverse stress profile reconstruction as it is the best 

compromise between accuracy, convergence stability and computational cost. On the other 

hand, LSD is the most suitable for automatic mesh refinement as it has a minimal 

computational cost ensuring very high stress accuracy even at coarse mesh refinements. 

For future research, two possibilities could be investigated. The first one is to develop a 

mixed technique introducing LSD stresses in RCP procedure.  Stress fields enhanced by 

LSD could then undergo RCP element-by-element without the need of a patch based 

approach ensuring lower computational costs.  

The second one is to add equilibrium constraint to LSD in order to obtain better 

performances. This would be possible imposing OLS minimization at the some time for all 

displacements field and adding conditions on derivatives in order to satisfy punctual 

equilibrium equations in selected points. This second possibility would increase the 

procedure computational cost but could ensure higher accuracy. In fact, adding equilibrium 

equations, it would be possible to use high order polynomial sets on small patches ensuring 

pseudoinverse matrix invertibility. 
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