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Abstract 

 

In the communication world, the demand for latest technologies growth is increasing day-by-

day, especially for antenna arrays. Ultra-wideband Technology is a trusted key for future 

generation radio frequency identification systems to conquer them as high as the limitations of 

the ongoing narrow bandwidth radio frequency identification technology like decreasing the 

space coverage, insufficient ranging resolution for accurate localization, sensitivity to 

interference, and multiple access capabilities.  

The idea in practice is to apply the Time Modulation technique which means the presence of 

switches at the antenna ports, which is a new procedure, but typically adopted for narrowband 

antennas arrays. So, for the arrays working at a single frequency.  

Here we are trying to see if it is possible to apply this excitation technique also to ultra-

wideband antennas. So, in this case, instead of having two monopoles for instance as well as 

our application, we have used two Ultra-wideband antennas working in the lower European 

UWB band [3.1 – 4.8]GHz. 

For single narrow band antennas, we see what it happens only at single band frequency. In this 

case, having UWB antennas, we must split our 2GHz band from 3 to 5GHz into windows of 

500MHz. 

This dissertation mainly focuses on the two important characteristics. They are: localization 

and power transmission both realized by the time modulated antenna array and evaluates their 

application in the communication system. The first step of experiment localization is carried 

out on a computer by using the software tool called Computer Simulation Technology (CST) 

in the range from 3GHz to 5GHz and then merging the results with a MATLAB programming 

to extract the far-field results and by using Nonlin software which was developed by the 

researchers of DEI: with this procedure we are able to evaluate the simulation results of far-

field by taking into account all the possible phenomena, both linear and non-linear, taking place 

in the radiating system under test. 

 Index terms -- Linear antenna arrays, time modulated array, Ultra-wideband reader, 

wireless power transfer, localization, radio frequency identification, Electromagnetic analysis, 

Digital Communication. 
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Chapter 1: INTRODUCTION 

 

In the modern society, there is a lot of applications based on networked low-cost nodes (tags) 

that are shared or distributed in the space: logistic, wireless sensor networks, and industrial 

automation. The development of information technologies is in an exorable way leading us 

towards the introduction of systems more and more distributed in the environment.  

 

Wireless services are more demanding and one of the fast growing sectors telecommunication 

history as they provide mobility, capacity, and robustness. Moreover, antennas and most of all 

a proper combination of antennas play a vital role in wireless systems communication and 

signal processing helps to achieve the desired goal by receiving desired signals and filtering 

unwanted ones. 

 

One of the important features of the sensor network is sustainability. The investigation of latest 

technologies is aimed to reduce power consumption and to design small antennas with low loss 

and beam steering features. Antenna devices of sensor networks must be capable of sensing, 

the electromagnetic field in the environment, thus adopting the radiation characteristics of the 

generated field to improve the quality of service of the communication link and to reduce the 

power consumption and smart antenna technology has to consider the hardware complexity, 

making the solution feasible in the context of sensors.  

Indoor location sensing system has become more popular in recent years. The primary progress 

in indoor location sensing system has been made during the last ten years. Therefore, both the 

research and commercial and industries are currently involved in the research and development 

of the systems.  

Wireless technology has extended its applications to medical, industrial, public safety and 

transport system due to their accessibility. For this reason, wireless power transfer (WPT) is 

foreseen as one of the key enabling technologies for an energy-aware world, for the effective 

implementation of the so popular paradigm of the Internet of Things. With these smart 

strategies, providing RF energy to a large number of wireless nodes has become leading of 

importance. 

 

Wireless power transmission (WPT) is attracting a wide range of courses in different types of 

fields and also becoming a major active research area because of its potential in providing 

massive technology. The wireless power transmission will be mandatory to use in the future 

because this technology enables the transmission of electrical energy from a power source to 

an electrical load across an air gap without interconnecting wires.  

 

Radio-frequency identification (RFID) is a technology working at a radio frequency for the 

real-time object identification. This technique is facing a rapid adoption in several fields. An 

RFID system consists of readers and tags applied to objects. So, this technology is used to 

automatically identify the object and/or tracking them. So in this RFID technology, the RFID 

tag is used attached to the objects which we want to track. So, the  RFID reader is continuously 

sending radio waves: whenever the tagged object is in the range of the reader then this RFID 

tag is used to transmit its feedback signal to the reader. By using the RFID technology we can 

track even multiple objects at the same time. 
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RFID communication takes place between one or more readers and one or more tags. The 

reader is typically the bigger, more expensive and intelligent part of the RFID link, while the 

tag is usually of smaller dimensions, cheaper and with less computational power on board. 

They communicate with each other and they exchange information. By using the signals 

received from the tags, readers are able to identify tags position, with different techniques 

(e.g.TDOA, AOA, etc). 

 

In UWB localization applications the antennas are designed to "work properly" on a very wide 

bandwidth, typically of 500 MHz or more. Where "work properly" means they have good and 

constant radiation characteristics (i.e. gain, radiation efficiency, rad. patterns, etc.).  

 

UWB localization is just a method that uses UWB techniques for localization purpose. UWB 

techniques consist in communicating via signals that have an extremely short duration (often 

referred to as "pulses"), and this means that in frequency domain they occupy a very large 

bandwidth ("UWB" stands for Ultrawide Bandwidth).  

 

UWB techniques are used because they have many advantages with respect to narrowband 

communication: they use extremely low power signals in terms of spectral density and they are 

very robust versus fading, which is typically present in indoor environments. When the 

communication between readers and tags takes place with UWB techniques, instead of 

narrowband signals, you can say you are working with UWB localization techniques.  

 

 

 

1.1 UWB 

UWB is a communication method which can be used in the wireless networking that can use a 

low power consumption and attain high bandwidth connections. To transmit the huge data over 

a short distance without using a large amount of power. UWB technology is, therefore, utilizing 

that can utilize a very low energy level for short-range, high-bandwidth communications by 

exploiting a consistent portion of the radio spectrum.  

While conventional wireless signals occupy bandwidth between several hundred kilohertz and 

tens of megahertz UWB (ultra-wideband) technology sends and receives data at bandwidths 

over 500MHz at very low power spectral densities. Because of the low power density level of 

UWB signals and their high frequencies, they can only travel up to a limited distance and do 

not interfere much with other waves. When determining locations using wireless signals the 

length of signal pulse affect accuracy IR UWB (Impulse Radio Ultra-wideband) uses very short 

pulses of nanoseconds which allow measuring distances with a high degree of accuracy.  

The bandwidth of an antenna is the antenna operating frequency band within which the antenna 

performances, such as input impedance, radiation pattern, gain, efficiency, and etc., are the 

desired ones. The most commonly used definitions for the antenna bandwidth are the fractional 

bandwidth (for narrow or wideband definition) and the bandwidth ratio (for ultra-wideband 

definition). 

The fractional Bandwidth is defined as 

 

BW=fh-fl/fc*100% 
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The Bandwidth ratio is defined as 

 

BW=fh/fl:1 
 

• fl is the lower frequency of the operation band. 

 

• fh is the lower frequency of the operation band. 

 

• fc is the lower frequency of the operation band. 

 

 

The advantages of UWB can finally be summarized in this way: 

 

• Coexistence with current narrowband and wideband radio services. 

 

• It has large channel capacity. 

 

• The ability to work low signal-noise ratios. 

 

• Low transmit power.  

 

• High performance in multipath channels. 

 

 

 

 

1.2 TMA 
 

Generally, arrays of the antennas are excited using narrowband signals, but time modulation is 

an excitation technique used to control radiation power spectrum by enabling or disabling 

individual array elements and by exiting them with variable periodic pulses by means of 

switches: The frequency with which they are driving is often called modulation frequency(FM) 

and is several orders of magnitude lower than the  RF carrier to be transmitted(f0). These arrays 

are called Time Modulation Arrays (TMAs). This technique takes full advantage of a new 

degree of freedom at the time. In this way, beam steering becomes easy and cheap. 

Recent works have achieved a great control over the sidelobes of the main power pattern at the 

radiated RF carrier signal f0. But one of the major characteristics of TMA is the fact that, due 

to their time-dependent array factor, they are able to radiate at the harmonics of the RF carrier 

(f0±fM): the so-called sideband radiation. Many types of research have focused on the reduction 

of the sideband radiation through the strategic control of the on/off pulses that modulate the 

excitations of the antenna elements. More recently, some applications have demonstrated to be 

possible through the useful exploitation of the sideband radiation: localization and WPT are 

among these applications. 
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Figure. 1. Schematic representation of a linear-element TMA with detailed diodes switch bias 

networks, including dc-block capacitors [1] 

 

 

1.3 RFID 

As already said, an RFID system contains two components; RFID reader and the RFID tag. 

This RFID tag could be an active tag, or it could be a passive tag, or it could be a semi-passive 

tag. Now, these passive tags do not have their own power supply. So, each passive tag relies 

on the radio waves which is coming from the RFID reader as its source of energy. While in 

case of a semi-passive tag, they used to have their own power supply. But for transmitting the 

feedback signal back to the RFID reader they used to rely on the signal which is coming from 

the RFID reader. While in case of an active tag, they use to have their own power supply. But 

for transmitting the signal back to the reader also they are relying on their own power supply. 

So, as this passive tag does not have their own power supply, so the range is less compared to 

the active and semi-passive tags.  

 

Now, this RFID reader consists of three components. So, the first component of RFID reader 

is RF signal generator. So, this signal generator generates the radio waves which are transmitted 

using this antenna and also to receive the feedback signal which is coming from the tag, the 

RFID reader also has a receiver of signal detector and to process the information which is being 

sent by the RFID tag, this RFID reader also has micro-controller. Now let us see about RFID 

tags, which are being used today are passive tags. Because these passive tags are quite cheaper 

compared to the active tags as well as they do not require any power source, so they are quite 

compact and eco-friendly. 
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Chapter 2: UWB localization with TMA 

 

The new idea of this thesis work is to implement UWB localization application in an indoor 

environment where there are several sensors, equipped with rectifying antenna and are 

randomly placed, by resorting to a UWB reader adopting the Time Modulation Technique. The 

localization system is a set of measurements used to find the unknown positions of target nodes. 

UWB technology offers the potential of achieving high ranging accuracy through Time on 

arrival (TOA) measurements even in harsh environment. UWB devices have low complexity, 

size, and cost. 

The TMA has been fully deployed in wireless power transmission (WPT) two-step procedure 

but using narrowband antennas. In the first step, only two antenna elements of TMA are 

periodically driven by using switches to localize the Ntag tags. In the second step, the nA- 

element array is used to precisely energize the previously detected tags. So, in both cases, we 

are taking into the account the advantage from TMA capabilities to perform a various type of 

radiations at fundamental f0 and the first sideband harmonics f0±fM. The new idea of this thesis 

job is to reproduce for the first time, the first step with UWB antennas, thus creating the first 

TMA-UWB reader to be adopted for indoor localization. 

 

Localization Step: 

The UWB technology has the advantage of extremely low power consumption, robustness 

against fast fading, enabling sub-meter precision indoor localization. For localization process 

in RFID system, we have deployed tags and readers in an indoor environment with a known 

position. The UWB RFID tag is normally attached to an object that needs to be localized.  

An indoor positioning system is a system that continuously and in real time determine the 

position of an object in an indoor environment and has various applications. In comparison 

with the outdoor environment, the indoor environments are more complex than the outdoor 

environment because there are several objects such as pieces of equipment walls, and people 

that may reflect signals and lead to multi-path and delay problems. 

The use of UWB is suggested in indoor scenarios because it is very robust (with respect to 

fading). UWB transmitter can be very simple and is characterized by an extremely low duty 

cycle transmitted signal. Such a transmitter has a low complexity and low consumption 

depending on the pulse repetition.  

One of the applications of UWB technology in RFID field is location tracking in indoor 

environments. In these, applications the tag position is not estimated based on the distance 

between tag and readers but instead, localization schemes based on time difference of arrival 

(TDOA) and angle of arrival (AOA) of the incoming of signals are adopted. These localization 

strategies make use of more UWB readers, placed in known positions, that need to perform 

onboard calculations. 
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The UWB tag broadcasts through backscattering the received signals in periodic burst and is 

received by the readers placed at known positions. Readers are synchronized through a wired 

connection and share their respective TOA independently and TDOA is computed with respect 

to common reference clock provided.  

The measurement of time is in the order 1ns or less so, in order to calculate the position at least 

three readers with known positions and two TDOA measurements are required. Each of these 

two measurements is geometrically interpreted to hyperbola of the constant time difference 

between two readers. Whereas, in cases where the angle of arrival (AOA) is deployed, the angle 

of arrival of the incoming radio signal is measured and can be estimated by multiple antennas 

which are separated by know distance [antenna array]. In this case, synchronization is not 

necessary.  

The idea proposes in this thesis, try to avoid the use of a high number of UWB readers and to 

resort to heavy calculations, by means of the new UWB-TMA reader based on a UWB 

application of the monopulse radar principle. 
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Chapter 3: New UWB TMA two-spiral array reader 

The system is shown in Figure 2 and it consists of two Archimedean spiral antennas separated 

by a distance of λ/2@4GHz. 

 

Figure 2: Layout of two UWB Archimedean spiral antennas 

Time modulation is typically adopted as excitation for narrowband antenna arrays through the 

switches present at each antenna port. In this thesis, we are trying to see if it is possible to apply 

the excitation technique adopted for narrowband antenna arrays to Ultra-wideband antenna 

arrays, too. So, for this case instead of having two narrowband monopoles we consider two 

UWB Archimedean spiral antennas.  

In this case, we have to split our 2GHz band from 3 to 5GHz into windows of 500MHz and we 

have to look what happens in each window in order to verify if the Sum (∑) and Difference (∆) 

patterns behave in the proper way in the whole bandwidth, in such a way to suitably exploiting 

the monopulse radar principle all over the UWB band. 
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The UWB system works at frequency f0 in the band of 3GHz to 5GHz and the modulation 

frequency fM = 1MHz i.e. it is the frequency with which we periodically open and closes the 

switches. In previous works, single frequency TMA of two monopoles was adopted for the 

localization of tagged objects: the idea was to use the radiation patterns of the sum (∑) at f0 and 

the difference (∆) at f0±fM by exciting the monopole with the symmetric red pulses of Figure:3. 

If we then combine the sum and difference, it is possible to create the figure of merit Maximum 

Power Ratio (MPR). 

MPR = ∑[dBm] - ∆[dBm] 

 

Which is extremely useful for localization purposes, has already demonstrated with 

narrowband arrays. 

 

 

 

Figure 3: The two 0.5TM points must be aligned in the figure of a two-element array for 

localization [1] 
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Figure 4: Fixed ∑ and steerable ∆ pattern of an ideal array of two elements.  

In practice, the Sum (∑) and Difference (∆) in the formula are the signals backscattered from 

the tag, and received at the sum, and at the different ports of the reader. So, this thin peak is 

shown in Figure:4 is very useful for localization it allows to accurately detect the direction 

from which the signal comes from.  

Additionally, if we change the duty cycle of the two sequences driving the switches by acting 

on the parameter d of figure:3. we can change the position of the negative peak (hence the 

positive peak of the MPR, too, as in Figure:4) and, thanks to the TMA sideband radiation 

phenomenon, one peak is at the positive sideband f0+fM and the other one is at negative band 

side f0-fM. So, the purpose of my thesis work is to verify if we can reproduce this behavior with 

Ultra-wideband(UWB) antennas to have an accurate TMA-based UWB reader able to localize 

in indoor scenarios because it is robust with respect to the fading thanks to the large adopted 

spectrum. 

So, we start verifying by the electromagnetic simulation of these two antennas and by the 

extraction of the field radiated by each antenna in the presence of the other, so in this way, we 

take into account the electromagnetic coupling. We introduce the information of the far-field 

radiated by each antenna in the NONLIN software which is a non-linear RF circuit simulator 

based on the Harmonic Balance method, that has been developed by the Unibo team of RFCAL 

laboratory. We start the simulation with a sinusoidal RF signal (f0) entering the antenna array. 

So, we made some trails with the RF tone ranging from 3GHz to 5GHz because here we want 

to verify the quality of radiation pattern of the Sum (∑) and Difference (∆) for the UWB array, 

what is important to underline in this case is; the distance between the antennas: - it is typically 

/2 for resonant antennas. Here we have antennas with huge bandwidth, so, we made a trade-

off by choosing this distance equal to  divided by 2 at the central frequency of the band (i.e. 

4GHz). 
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In these conditions, we are extracting far field of the sum (∑) and difference (∆) for these 

frequencies of the UWB band and we also make the tuning of the rectangular pulses in order 

to change the position of the difference pattern for localization purposes.  

 

Figure 5: UWB wave form of pulse  

 

Figure 6: Frequency spectrum of the adopted UWB pulse 
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The last step is to replace the sinusoidal excitation with the UWB pulse, in order to test the 

system in realistic operating conditions. So, we made the long number of trails to select the 

proper shape of the exciting UWB pulse: the chosen shape was the that one shown in Figure:5, 

i.e. two pulses with opposite polarity (representing a logical “0”) with duration of 300ps, a 

period of 5ns and the separation of 800ps. The corresponding spectrum is shown in Figure:6: 

most of the spectral lines in the desired region, i.e. in between 3GHz and 5GHz. We make the 

simulation with fUWB is 250MHz (=1/5ns) representing the spacing between the adopted NH 

=32 harmonics (=> 32*200MHz = 6.4 GHz is the frequency band under exam) use to describe 

UWB signal and fM is 1MHz, under these excitation conditions we realize the extraction of the 

radiated field: in order to intercept the desired far-field, we have first to identify the proper 

harmonic in the spectrum: if we indicate with k*fUWB (with k=0, 1, 2, ….. 32) the generic 

frequency of spectrum, when k is 15 => kfUWB = 3GHz, k is 20 => kfUWB = 4GHz and k is 25 

=> kfUWB = 5GHz. So, the result which we obtain at the end is extremely rigorous because we 

make a non-linear/ electromagnetic simulation of the real system under the real excitation 

conditions, thus evaluating the real signal that this reader would send into space in the future. 
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Chapter 4: Design of a UWB Spiral Antenna 

 

The idea is taken from planar two elements TMAs with λ/2 – spaced monopoles. 

 

 

Figure 7: Planar two elements of TMAs with spaced monopoles. [1] 

We have various types of wideband antenna available, in this case, we are going to design the 

Ultra-wideband antenna which looks like a spiral. In choosing antenna topology for UWB 

design, various kinds of factors are considered including physical profile, impedance 

bandwidth, radiation pattern, and radiation efficiency. In this thesis, two Archimedean spiral 

antennas are designed and simulated. A spiral is a well known wideband antenna and it has 

been used for many wideband RF systems. Two arms Archimedean spiral antenna has been 

chosen for investigation of Time Modulated linear array antenna techniques for an Ultra-

wideband reader. 

 

 

Figure 8: UWB-UHF dipole antenna [2] 
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The Archimedean spiral antenna providing the minimum size has been chosen by comparison 

of the electromagnetic simulations of an Archimedean and logarithmic spiral antenna, both 

printed on a 1.5mm thick RF-4 substrate that is εr = 4.3, tan(δ) = 0.025 at 10GHz: the 

Archimedean spiral resulted in less space-consuming (only 5.5*5.5 cm2 substrate footprint). 

Electromagnetic simulation results exhibit good radiating characteristics in the Ultra-wideband 

band, the antenna impedance has the almost has a constant value of 120 ohms while the 

radiating efficiency and realized gain are approximately equal to the 95 percent and 3.5dBi 

respectively. 

The parametric study of two arm Archimedean spiral antenna is done by using the 

commercially available Computer Simulations Technology (CST), Microwave tool in the 

frequency range of 2.5GHz to 5GHz.  

CAD APPROACH 

We used CST MICROWAVE STUDIO (CST MWS) for our antenna design which is the 

leading-edge tool for the fast and accurate 3D simulation of high-frequency devices and market 

leader in Time domain simulation. It enables the fast and accurate analysis of antennas, filters, 

couplers, planar and multi-layer.  

By clicking on the new project in the CST environment, you will be able to create a project.  
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You need to choose area of application and then the workflows  
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The adopted CAD approach is based on the Harmonic Balance method which is a widely used 

method for analysis or design of nonlinear RF circuit: according to its principles, the entire 

circuit, including the two Ultra-wideband (UWB) antennas and the switches, can be divided 

into two sub-networks. one is linear, it contains the linear lumped elements and the antennas, 

and it can be described in the frequency domain; the other one is non-linear, it contains switches 

and it can be accurately described in the time domain. The two sub-networks are connected by 

a number nB of common or device ports, where the Kirchhoff’s current laws are applicable in 

the frequency domain, in order to build the non-linear solving system. 

In figure 8 above we are seeing the dual mode UWB-UHF antenna from which my job started: 

it also has two UHF dipoles directly obtained from the two spiral arms. For the purpose of my 

thesis, these dipoles are useless because the energy harvesting capability at the UHF band, for 

which they were created, is not among the purposes of my job: - therefore I have to first 

eliminate the dipoles. 

 

Figure 9: Two arm Archimedean spiral antenna 

 

After removing the two ends of the dipoles, we need one identical antenna because the goal is 

to reproduce the localization step previously described by means of an array of two UWB spiral 

antennas. The distance between the two UWB antennas has been fixed at L=λ/2@4GHz: of 

course, this is the standard distance at 4GHz only, because of the big frequency band here 

considered; as a consequence, the two antennas will be “closer” at the lower frequency (3GHz) 

and “more distant” at the higher frequency(5GHz). We have two ports for this two spiral 

antennas ie., P1 and P2. After finish to design dual antennas we have to start the simulation.  
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Figure 10: Two Archimedean spiral antennas with the distance /2@4GHz in CST studio. 

 

After the end of the simulation, to plot the cartesian radiation pattern in the xz-plane (here keep 

phi const = 00), we have to select the post-processing in the CST CAD tool at the top and export 

the ASCII files for each frequency of the spectrum ie. 

Ē = Eθ*iθ + Eϕ*iϕ 

In order to look at the Sum and Difference patterns, it is possible to properly combine the 

results of the two simulations with the excitation applied at port-1 and port-2, respectively. 

For Sum (∑)   =>  p1[1,00]+p2[1,00] 

For Difference (∆) => p1[1,00]+p2[1,1800] 

 

The graph of the Far-field results is shown both in Cartesian and polar plots at all considered 

frequency of the UWB band. 
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Figure 11: Cartesian and polar plots for Farfield at frequency_3000MHz [1] 
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Figure 12: Cartesian and polar plots for Farfield at frequency_3000MHz {1[1,0]+2[1,0]} 
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Figure 13: Cartesian and polar plots for Farfield at frequency_3000MHz {1[1,0]+2[1,180]} 
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Figure 14: Cartesian and polar plots for Farfield at frequency_3000MHz [2] 
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Figure 15: Cartesian and polar plots for Farfield at frequency_3500MHz [1] 
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Figure 16: Cartesian and polar plots for Farfield at frequency_3500MHz {1[1,0]+2[1,0]} 
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Figure 17: Cartesian and polar plots for Farfield at frequency_3500MHz {1[1,0]+2[1,180]} 
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Figure 18: Cartesian and polar plots for Farfield at frequency_3500MHz [2] 

 

 



35 
 

 

 

 

 

 

 

Figure 19: Cartesian and polar plots for Farfield at frequency_4000MHz [1] 
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Figure 20: Cartesian and polar plots for Farfield at frequency_4000MHz {1[1,0]+2[1,0]} 
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Figure 21: Cartesian and polar plots for Farfield at frequency_4000MHz {1[1,0] +2[1,180]} 
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Figure 22: Cartesian and polar plots for Farfield at frequency_4000MHz [2] 
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Figure 23: Cartesian and polar plots for Fairfield at frequency_4500MHz [1] 
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Figure 24: Cartesian and polar plots for Farfield at frequency_4500MHz {1[1,0]+2[1,0]} 
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Figure 25: Cartesian and polar plots for Farfield at frequency_4500MHz {1[1,0] +2[1,180]} 
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Figure 26: Cartesian and polar plots for Farfield at frequency_4500MHz [2] 



43 
 

 

 

 

 

Figure 27: Cartesian and polar plots for Farfield at frequency_5000MHz [1] 
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Figure 28: Cartesian and polar plots for Farfield at frequency_5000MHz {1[1,0]+2[1,0]} 
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Figure 29: Cartesian and polar plots for Farfield at frequency_5000MHz {1[1,0]+2[1,180]} 
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Figure 30: Cartesian and polar plots for Farfield at frequency_5000MHz [2] 
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Chapter 5: MATLAB SCRIPT   

 

Now Run the MATLAB script for a two-port array for each frequency and create the files .txt: 

far-field_2500MHz.txt, far-field_3000MHz.txt, far-field_3500MHz.txt, far-

field_4000MHz.txt, far-field_4500MHz.txt, far-field_5000MHz.txt. 

 

Sample Programme 
 

fid=fopen('UWB_2500.txt','w'); 
f1=fopen('farfield_2.5p1.txt','r'); 
f2=fopen('farfield_2.5p2.txt','r'); 

  
indice=0; 

  
while fopen(f1) 
    tline1 = fgets(f1); 
    tline2 = fgets(f2); 

     
    if indice>180 && indice < 543 
        fprintf(fid,'%s\n','2500000000'); 
        fprintf(fid,'%s\n',tline1(96:126)); 
        fprintf(fid,'%s\n',tline2(96:126)); 

         
        fprintf(fid,'%s\n',tline1(56:86)); 
        fprintf(fid,'%s\n',tline2(56:86)); 

        
    end 
       indice=indice+1; 
end 
fclose(fid); 
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Chapter 6: SIMULATION RESULTS 

 

The experiment is then carried out with the Nonlin software. 

Here we are going to verify the localization capabilities of the UWB array in the following two 

cases. 

▪ Case A: Periodical or Sinusoidal input RF signals (in the 3-5 GHz range). 

▪ Case B: UWB Pulse excitation (occupying the 3-5 GHz portion of the spectrum). 

The simulation of our two-nonlinear radiating system finally allows the extraction of the actual 

field radiated by that the system; in this way, we are considering the electromagnetic couplings 

and the actual dynamic of the nonlinear switches.   

6.1 Periodical or Sinusoidal input RF signals (in the 3-5 GHz range): 

First of all, we have to examine the UWB behavior under sinusoidal excitation entering the 

antenna array. Here we make the simulation trails with five different types of frequencies: 

3Ghz, 3.5Ghz, 4GHz, 4.5GHz, and 5GHz. Because we must verify the conditions of the 

radiation pattern of the Sum (∑) and Difference (∆). It is the first time we make this to UWB 

antennas. 

As previously said, the distance between the two antennas with high bandwidth is  divided by 

2 @ 4GHz. 

 

 

Figure 31: Simulation of the sinusoidal pattern for 2UWB_3GHz. 
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Figure 32: Simulation of the sinusoidal pattern for 2UWB_3.5GHz. 

 

 

Figure 33: Simulation of the sinusoidal pattern for 2UWB_4GHz. 
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Figure 34: Simulation of the sinusoidal pattern for 2UWB_4.5GHz. 

 

 

Figure 35: Simulation of the sinusoidal pattern for 2UWB_5GHz. 

 

The previous curves show the excellent behavior of the Sum and Difference radiation patterns 

in the entire frequency band, including the negative peaks tuning by acting on the duty cycle 

of the driving sequences shapes, as explained before. 



51 
 

6.2 UWB Pulse excitation (occupying the 3-5 GHz portion of the spectrum): 

In this case, we are going to replace the sinusoidal excitation with the UWB pulse. The 

corresponding results are reported in Figures 36 to 50. 

We need to insert the 32 harmonics representing the pulse as excitations. After running this 

heavy simulation (because it is also takes into account the simultaneous modulation of the 

switches with fM = 1MHz) we are able to extract again the Sum and Difference patterns in 

correspondence of the 15th, 20th, and 25th harmonics of the UWB spectrum i.e. at 3, 4 and 5GHz. 

 

 

 

Figure 36: The Sum and Difference patterns in correspondence of the 15th harmonic of the 

UWB spectrum i.e. 3GHz (with parameter d=0%) 
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Figure 37: The Sum and Difference patterns in correspondence of the 15th harmonic of the 

UWB spectrum i.e. at 3GHz (with parameter d=4%) 

 

 

Figure 38: The Sum and Difference patterns in correspondence of the 15th harmonic of the 

UWB spectrum i.e. at 3GHz (with parameter d=8%) 
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Figure 39: The Sum and Difference patterns in correspondence of the 15th harmonic of the 

UWB spectrum i.e. at 3GHz (with parameter d=16%)  

 

Figure 40: The Sum and Difference patterns in correspondence of the 15th harmonic of the 

UWB spectrum i.e. at 3GHz (with parameter d=32%) 
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Figure 41: The Sum and Difference patterns in correspondence of the 20th harmonic of the 

UWB spectrum i.e. at 4GHz (with parameter d=0%) 

 

Figure 42: The Sum and Difference patterns in correspondence of the 20th harmonic of the 

UWB spectrum i.e. at 4GHz (with parameter d=4%) 
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Figure 43: The Sum and Difference patterns in correspondence of the 20th harmonic of the 

UWB spectrum i.e. at 4GHz (with parameter d=8%) 

 

Figure 44: The Sum and Difference patterns in correspondence of the 20th harmonic of the 

UWB spectrum i.e. at 4GHz (with parameter d=16%) 
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Figure 45: The Sum and Difference patterns in correspondence of the 20th harmonic of the 

UWB spectrum i.e. at 4GHz (with parameter d=32%) 

 

Figure 46: The Sum and Difference patterns in correspondence of the 25th harmonic of the 

UWB spectrum i.e. at 5GHz (with parameter d=0%) 
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Figure 47: The Sum and Difference patterns in correspondence of the 25th harmonic of the 

UWB spectrum i.e. at 5GHz (with parameter d=4%) 

 

Figure 48: The Sum and Difference patterns in correspondence of the 25th harmonic of the 

UWB spectrum i.e. at 5GHz (with parameter d=8%) 
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Figure 49: The Sum and Difference patterns in correspondence of the 25th harmonic of the 

UWB spectrum i.e. at 5GHz (with parameter d=16%) 

 

Figure 50: The Sum and Difference patterns in correspondence of the 25th harmonic of the 

UWB spectrum i.e. at 5GHz (with parameter d=32%) 



59 
 

 

The results are plotted in Figure:36 to Figure:50, show an excellent behaviour in terms of Sum 

and Difference radiation patter in all the frequency bands. This leads to conclude that the UWB 

array behaves well in the entire UWB band even under UWB excitation conditions.  

The result we obtain at the end are extremely rigorous because we made a Non-linear 

electromagnetic simulation of the real system with real signals. 
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CONCLUSION 

 

The distinct features of UWB Technology provides efficient solutions for RFID 

Systems. The various fields take the advantage of real time object detection and 

localization applications. The recent invention for UWB RFID is for commercial 

purposes. The basic idea in this work is Time Modulation technique operated on 

switches at the antenna ports. The proposed antenna system introduces a compact 

and low-profile antenna. 

In This thesis, I have studied two basic characteristics. They are: localization and 

power transmission both realized by the time modulated antenna array. But my 

attention has been devoted mostly to “Localization”; for the first time, 

localization has been carried out with an UWB two-spiral array driven according 

to the time-modulation techniques. Study of Time Modulated Antenna array is 

carried out by means of a nonlinear/electromagnetic co-simulation, based on the 

combined use of the software tool called computer simulation technology (CST) 

in the ranges at 3GHz to 5GHz for the electromagnetic analysis, and proprietary 

software developed at the University of Bologna for the final circuit analysis of 

the nonlinear radiating system. 

With these tools we verified the localization capabilities of the UWB array in the 

following two cases: A) periodic or sinusoidal input RF signals in the 3-5GHz 

range and B) UWB pulse excitation, occupying the 3-5GHz portion of the 

spectrum. 

The results we obtain at the end are extremely rigorous because we made a 

Nonlinear electromagnetic simulation of the real system under the real excitation 

conditions, thus evaluating the real signal that this reader would send into the 

space in the future. The promising behaviour of the UWB-TMA reader makes it 

a future candidate for localization in harsh indoor environments. 
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