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“When we first went out into space, you showed me the Galaxy.
Do you remember?”

“Of course.”

“You speeded time and the Galaxy rotated visibly. And I said, as though
anticipating this very time, ‘The Galaxy looks like a living thing, crawling

through space.’ Do you think that, in a way, it is alive already?”

[Isaac Asimov - Foundation’s Edge]





Introduzione

Nell’ambito dei sistemi High-Performance Computing, realizzare euristiche di
dispatching efficaci è fondamentale al fine di ottenere buoni livelli di Quality
of Service. Per dispatching intendiamo i metodi tramite cui i task (o jobs)
sottomessi dagli utenti al sistema sono selezionati e preparati per l’avvio su
di esso, sia in termini temporali che di allocazione delle risorse. In questo
contesto, ci concentreremo sul design e l’analisi di euristiche di allocazione
per il dispatching; tali euristiche saranno progettate per sistemi HPC etero-
genei, nei quali i vari nodi possono essere equipaggiati con diverse tipologie di
unità di elaborazione. Alcune di esse, inoltre, saranno di tipo data-driven,
e dunque sfrutteranno l’informazione fornita dal workload corrente in modo
da stimare parametri ignoti del sistema, e migliorare la propria efficacia.
Considereremo in particolare Eurora, un sistema HPC eterogeneo realizzato
da CINECA, a Bologna, oltre che un workload catturato dal relativo log di
sistema, contenente jobs reali inviati dagli utenti. Un contesto di tal genere,
in piccola scala ed eterogeneo, costituisce l’ambiente perfetto per la valu-
tazione di diversi metodi di dispatching. Tutto ciò è stato possibile grazie ad
AccaSim, un simulatore di sistemi HPC da noi sviluppato nel Dipartimento
di Informatica - Scienza e Ingegneria (DISI) dell’Università di Bologna: Ac-
caSim è uno strumento innovativo per l’analisi dei sistemi HPC, il quale ha
attualmente pochissimi rivali in termini di flessibilità ed efficienza.

In particolare, quest’elaborato affronta il tema della valutazione di metodi
di dispatching HPC in un ambiente simulato, insieme all’impiego di euristiche
data-driven per la predizione della durata dei jobs. Ciò è stato fatto al fine
di stimare l’impatto di tali tecniche sul throughput del sistema, in termini di
tempi di attesa e dimensione della coda dei jobs, ancora una volta nell’ambito
dei sistemi HPC eterogenei, più difficili da gestire rispetto alle controparti
omogenee.
Il contributo principale di questo lavoro consiste nel design e nello sviluppo di
nuove euristiche di allocazione: queste sono state impiegate insieme a metodi
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di scheduling già disponibili, i quali sono stati a loro volta adattati e miglio-
rati. Le euristiche sviluppate sono state poi testate con il workload di Eurora
disponibile, in diverse condizioni operative, e successivamente analizzate. In-
fine, si è contribuito in modo significativo allo sviluppo di diverse parti core
del simulatore AccaSim.
Quest’elaborato mostra che l’impatto di diverse euristiche di allocazione sul
throughput di un sistema HPC eterogeneo non è trascurabile, con variazioni
in grado di raggiungere picchi di un ordine di grandezza. Tali differenze in
termini di throughput sono inoltre molto più pronunciate se si considerano
brevi intervalli temporali, come ad esempio dell’ordine dei mesi, suggerendoci
che il comportamento a lungo termine del sistema è dettato principalmente
dal metodo di scheduling utilizzato. Abbiamo inoltre osservato che l’impiego
di euristiche per la predizione della durata dei jobs è di grande beneficio al
throughput su tutte le euristiche di allocazione, e specialmente su quelle che
integrano in maniera più profonda tali elementi data-driven. Infine, l’analisi
effettuata ha permesso di caratterizzare integralmente il sistema Eurora ed
il relativo workload, permettendoci di comprendere al meglio gli effetti su di
esso dei diversi metodi di dispatching, nonché di estendere le nostre consid-
erazioni anche ad altre classi di sistemi.

La tesi è strutturata come segue: nel Capitolo 1 presenteremo una breve
panoramica dei sistemi HPC, mentre nel Capitolo 2 introdurremo formal-
mente il problema del dispatching, insieme alle soluzioni più comuni per lo
scheduling e l’allocazione. Nel Capitolo 3 descriveremo il sistema Eurora, e
successivamente il simulatore AccaSim, sviluppato ed utilizzato nell’ambito
della tesi, nel Capitolo 4. Presenteremo dunque le soluzioni per lo schedul-
ing e l’allocazione sviluppate nel Capitolo 5, e nel Capitolo 6 discuteremo i
risultati sperimentali ottenuti con esse. Infine, nel Capitolo 7 presenteremo
le nostre conclusioni, nonché la direzione del lavoro futuro.
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Introduction

In the context of High-Performance Computing systems, good dispatching
methods are a fundamental component that can help achieve good Quality
of Service levels. By dispatching, we intend the methods with which tasks (or
jobs) submitted by users to the system are selected and allowed to start on
it, both in terms of timing and allocation of resources. In this work, we will
focus on the design of allocation heuristics for dispatching; these will be
targeted at heterogeneous HPC systems, which may possess different kinds
of computing units in different nodes of the system. Some of our heuristics
will be data-driven as well, thus exploiting information in the workload in
order to estimate certain parameters and improve their own effectiveness.
Our analysis will be focused on Eurora, an heterogeneous HPC system de-
veloped by CINECA, in Bologna, and on a workload captured from its log
trace, containing real user-submitted jobs: such a small-scale, heterogeneous
context is a very good testbed for the evaluation of dispatching methods. All
of our work was possible thanks to AccaSim, an HPC system simulator that
we have developed in the Department of Computer Science and Engineering
(DISI) of the University of Bologna: AccaSim is a novel instrument for the
analysis of HPC systems, which has currently very few competitors in terms
of flexibility and speed.

In detail, our work deals with the evaluation of HPC dispatching methods
in a simulated environment, while using data-driven heuristics for the pre-
diction of the jobs’ duration. This was done in order to assess their impact
on system throughput, in terms of job queue size and waiting times, again
in the context of heterogeneous HPC systems, which are harder to manage
than homogeneous systems.
The main contribution of our work lies with the design and development
of new allocation heuristics: these were used together with some already-
available scheduling methods, which were adapted and tweaked as well. The
developed heuristics were then tested against the available workload for Eu-
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rora, in a variety of conditions, and subsequently analyzed. At last, in our
work we have significantly contributed to the development of various core
parts of the AccaSim simulator.
This work shows that the impact of allocation heuristics on the throughput
of an heterogeneous HPC system is not negligible, with variations that reach
up to an order of magnitude in size. The differences in throughput between
the various heuristics are also much more pronounced when considering short
time frames, such as months, suggesting us that the system’s long term be-
havior is dominated by the scheduling method being used. We have also
observed that the usage of job duration prediction heuristics greatly benefits
the throughput across all allocation heuristics, and especially on those that
integrate such data-driven elements more deeply. Finally, our analysis helped
fully characterize the Eurora system and its workload, allowing us to better
comprehend the effect of various dispatching methods on it, and to extend
our considerations to other systems as well.

The thesis is structured as follows: in Chapter 1 we will present a brief
overview of HPC systems, and in Chapter 2 we will extensively discuss the
dispatching problem, together with the most common solutions for scheduling
and allocation. In Chapter 3 we will introduce the Eurora system, followed
by the AccaSim simulator, which was developed and used in our work, in
Chapter 4. We will then present all of the scheduling and allocation solutions
that were developed in Chapter 5, and in Chapter 6 we will discuss the
experimental results obtained with such heuristics. At last, in Chapter 7 we
will present our conclusions, and point the direction of future work.
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Chapter 1

An Overview of HPC Systems

In this chapter we will introduce the main notions behind HPC systems, and
will provide basic knowledge which will be essential for the rest of the thesis.
We will also look at the state of the art in HPC systems, and at the main
architectural schemes used in this field.

The chapter is organized as follows: in Section 1.1 we will introduce the
notion of HPC system. In Section 1.2 we will then look at the taxonomy of
HPC systems, and at the architectural solutions that have emerged during
the years. In Section 1.3, instead, we will present the state of the art in this
field, while in Section 1.4 we will describe a generic architecture for systems
of this kind.

1.1 HPC Systems and their Purposes

High-Performance Computing (HPC) defines a class of systems and prob-
lems, sharing the need for powerful computational resources and high flex-
ibility [1]. While there is no formal definition, an HPC system is generally
characterized by a custom-designed architecture, which offers computational
resources to its users that are not commonly attainable. This necessity arises
in turn from the need to perform very complex, data-intensive and resource-
hungry tasks (or jobs) in a reasonably small time, which is very common
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1.2. TAXONOMY OF HPC SYSTEMS

Figure 1.1: A plot of the market share for different HPC architectures over
time. Image taken from [2].

today in research and industrial contexts.

The internal structure of an HPC system is usually hidden from the user,
who interacts with it through specific interfaces. Such structure, however, is
usually very complex and includes intricate networking, cooling and power
infrastructures as the scale of the system grows, making the design and op-
timization of HPC systems an open research field.

HPC systems are used in a wide array of applications. Some of these,
for example, are related to fields like big data, complex systems, NP-Hard
problem solving and scientific computing in general: the number of fields in
which there is a need for HPC systems and techniques is becoming higher
and higher as technology advances.

1.2 Taxonomy of HPC Systems

Popular Architectures HPC systems come in different forms and shapes,
and have greatly evolved in the last 20 years according to technological ad-
vancements [1], as it can be seen in Figure 1.1. In the past, HPC systems

2
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mostly came in the form of mainframes, which were very powerful machines
composed by just one node. These machines required specialized hardware
and were highly expensive.
Modern HPC systems, and the dramatic improvement in terms of computing
power that came with them, arrived however with the advent of Cluster ar-
chitectures: with this term we refer to systems composed of a large number of
inexpensive commodity machines. These machines can offer great combined
computing power, and are also easy to replace in case of failure. In general,
the resources in such a system are shared between many users as well. Being
heavily distributed, Cluster systems are however burdened by many issues
regarding connectivity, fault tolerance and power management. A variant of
the Cluster architecture is the Grid one [3], in which machines in the system
are geographically distributed, with network latency and node heterogeneity
thus becoming critical aspects.
While our work is general and not bound to a specific system type, we will
from now on focus on Cluster systems for our analysis.

Homogeneous and Heterogeneous Systems We may further divide
HPC systems in two more categories, namely Homogeneous and Heteroge-
neous systems. As the name implies, an Homogenous system is one where
there is only one type of main processing unit and one instruction set. This
implies that all nodes are identical and made of the same components. In an
Heterogenous system, instead, each node may possess multiple types of pro-
cessing units and accelerators; for example, nodes may include GPU, FPGA
or MIC units. Besides, nodes may be made of different components entirely.
While heterogeneous HPC systems are generally more flexible than homoge-
nous ones, they are also harder to manage, as the fragmentation of available
resources may become a serious concern.

Online and Batch Systems HPC systems and computer systems in gen-
eral can operate in online and batch modes: a system operating in batch
mode will execute a pre-defined, static set of jobs at specific times. No new
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jobs can be added without manual intervention, and finding the best order
and resource assignment for the tasks to be executed is something that needs
to be done only once. The jobs will complete in a finite amount of time, and
the system will return to an idle state after that.
Online systems, on the other hand, are highly interactive and allow new
jobs to freely enter at any time, without particular timing boundaries, and
as such they are always running. This second class of systems, while much
more powerful than batch systems, is also harder to manage as well, because
of resource management concerns. Practically all HPC systems fall into the
online category, and as such, we will treat techniques and algorithms designed
for these systems.

1.3 State of the Art

At the time of writing (June 2017) the most powerful HPC system in the
world is the Sunway-TaihuLight, located at the National Supercomputing
Center in Wuxi, China [4]. This system can reach a peak performance of
125PFlops, and is made of more than 40000 computing nodes, grouped hi-
erarchically at multiple levels. Each node contains an SW26010 unit, which
is an integrated, heterogeneous, many-core processor, and 32GB of RAM.
Power consumption under full load is measured at 15.371 MW.

Immediately after TaihuLight system we can find its predecessor, the
Tianhe-2 system, scoring 33.9PFlops of peak performance, and also located
at China’s National Supercomputing Center. It is composed of 16000 com-
puting nodes, each having an Intel IvyBridge Xeon CPU, an Intel Xeon Phi
co-processor, and 88GB of RAM. Other notable HPC systems are the Piz
Daint and the Titan, with peak performances of 19.6PFlops and 17.6PFlops
respectively [2].

As we can see, the most powerful HPC systems have broken the 100PFlops
barrier, and are growing towards the exa-scale goal, which implies perfor-
mance in the order of ExaFlops. This goal cannot be however reached by
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just increasing the size of current HPC systems, as power consumption is a
serious concern. To reach exa-scale performance, in fact, an increase of at
least one order of magnitude in power consumption is required, compared to
current HPC systems [5]; this means that the development of new techniques
and architectures aimed at improving the energy efficiency and sustainability
of HPC systems is now necessary more than ever.

1.4 Typical Structure of an HPC System

HPC systems may have wildly different software and physical architectures,
depending on their nature and purpose: here, we will present the architecture
of a generic cluster-based online HPC system.

1.4.1 Physical Architecture

In Figure 1.2 the physical architecture of the Sunway-TaihuLight system,
introduced in Section 1.3, is shown. Being generic enough, this architecture
will be used as a template to characterize how an HPC system usually works
and arranges its physical resources.

Frontend Section The frontend of the system is made of a series of servers
through which users can interact with it. Like in every large-scale system,
such servers may be divided in different groups depending on their purpose,
like web access, system control, storage access, and so on.

Backend Section We can find a backend section in the system as well.
Such backend section is usually tasked with control and management of the
system as a whole, and will include nodes for resource and state management,
besides job dispatching.

Computing Nodes The computing section includes most of the physical
resources in the system, and is made of the machines, or nodes, that actually
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Figure 1.2: The physical architecture of the Sunway-TaihuLight HPC system.
Image taken from [4].

execute jobs, and have the most computational power available. Computing
nodes are usually organized hierarchically in sub-groups depending on the
size of the system, physically and logically. This can lead to more efficient
networking architectures, and can make the management of the system easier.

Networking Infrastructure Networking is a critical part in any HPC
system. Different internal networks are usually employed for different pur-
poses, such as for management or storage access. These networks are also
arranged with a hierarchical structure reflecting that of computing nodes,
thus with multiple levels of network switching.
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HPC system
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Figure 1.3: A simplified scheme for the software architecture of a generic
HPC system. Image taken from [6].

1.4.2 Software Architecture

In Figure 1.3 we can see the typical basic software architecture used in mod-
ern HPC systems. The components we will now present are part of the
Workload Management System, which is the component regulating the use
of physical resources in the system, and the one we are most interested in.

User Interface Users interact with the system through a software inter-
face, which acts as a frontend. This interface allows jobs to be remotely
submitted by users, and regulates their arrival and execution; besides, it will
also allow users to track their status, and manage them. It could be either a
GUI -based or command-line interface. An HPC system usually also has one
or more queues for jobs submitted by users that are waiting to be executed,
with different priorities and features.

Dispatcher Actual management of jobs is handled by the dispatcher com-
ponent, which periodically selects one or more jobs from the queues, and
allows them to start on the system, either in a reactive or proactive way.
The dispatcher includes the scheduler and allocator components, which re-
spectively define the when and where of each job’s execution. In detail, the
scheduler decides when a job should be executed, thus imposing the ordering
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of jobs in the queue. The allocator, instead, decides which resources and
computing nodes in the system a job should use. In general, the dispatcher
component is the one responsible in the system with ensuring a good Quality
of Service (QoS) level, by minimizing the waiting times for the submitted
jobs. Besides deciding which, when and how jobs should run, the dispatcher
is also tasked with triggering the start of these jobs by interacting with the
resource manager component.

Resource Manager The dispatcher is able to start jobs and allocate them
on specific nodes thanks to an abstraction layer called the resource manager :
this entity keeps track of the state of resources and nodes in the system,
besides that of running jobs. The resource manager usually acts as a server,
with a monitor-like client running in each node in the system. Thus, when the
dispatcher wants to execute a job, it will interact with the resource manager
in order to perform scheduling and allocation, and then again to physically
allocate the resources needed for the new job.
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Chapter 2

Dispatching in HPC Systems

In this Chapter we will analyze the dispatching problem in HPC system,
and see how it can be formalized. We will also discuss which are the most
commonly used techniques and algorithms, and we will present some of the
commercial solutions available on the market.

The Chapter is organized as follows: in Section 2.1 we will lay the formal
foundations for the dispatching problem. In Sections 2.2 and 2.3, instead, we
will discuss the scheduling and allocation sub-problems, respectively. Finally,
in Section 2.4 we will look at the main commercial solutions for dispatching
in HPC systems that are available in the market.

2.1 The Dispatching Problem

2.1.1 Formal Definition of Job

A job is, generically, a user-submitted task that is to be executed on an HPC
system. Jobs in most HPC systems belong to the parallel class, and are
composed of many independent running units that can communicate with
each other, for example through message-passing interfaces [7].
A job J , made of an executable file together with its arguments and input
data, is identified by an unique ID JID, and has various attributes associated
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to it. Some of them are related to time, and the most important are:

• Jq: the queue in the system to which the job was submitted;

• Jtq : the time at which the job was submitted to the system;

• Jts : the time at which the job started its execution;

• Jte : the time at which the job ended its execution;

• Jde : the expected duration for the job, which is an estimation and not
representative of the real duration;

• Jdr : the real duration for the job, which is computed after its termina-
tion as Jte − Jts ;

• Jdw : the wall time, which is the maximum time for which the job is
allowed to run, and usually determined by the system itself;

A job may have other descriptive attributes, such as the name of the user
that submitted it. There also are some attributes specifically associated to
the resources requested by the job and supplied to it: a resource is the most
elementary hardware unit of a certain kind available in a computing node,
like a CPU core, or a certain quantity of RAM. These attributes are:

• Jn: the number of job units requested by the job. These can be consid-
ered as the independent instances, each of them running on a specific
node, that make up the job;

• Jr: a data structure representing which types of resources are needed by
each job unit, and in which amount. A job unit request is homogeneous
if all Jn units request the same type and amount of resources, and
heterogeneous otherwise;

• Ja: the resource assignation given by the system for the job, when it is
scheduled to start. It can be interpreted as a vector of Jn records, with
each of them containing the list of resources in a specific node assigned
for a particular job unit.

10



2.1. THE DISPATCHING PROBLEM

According to how they behave in regards to the resources supplied by the
system, we can additionally define various classes of jobs [7]:

• Rigid: these jobs need the exact amount of resources that were re-
quested in order to run, and cannot adapt to any kind of change in
their amount, either at run-time or at scheduling time;

• Evolving: unlike rigid jobs, they may request on their own initiative
new resources to the system at run-time. If such new resources are not
supplied by the system, the job won’t be able proceed;

• Moldable: these jobs can adapt to an amount of resources supplied
by the system that is higher or lower than the requested one; after the
jobs starts, however, such allocation of resources is never allowed to
change again;

• Malleable: they are a generalization of moldable jobs, and admit
changes in the allocation of resources in respect to the requested ones
both at run-time and at scheduling time.

Practical Assumptions

Job unit requests in PBS-based systems like Eurora, presented in Section 3.1,
are all bound to be rigid and homogeneous, using Jn resource-wise identical
job units. Since this is a reasonable assumption, and Eurora is our system of
interest, we will also adopt this constraint, which has nothing to do with the
heterogeneity of the underlying HPC system. Under this assumption, the Jr
structure will be a list, with each element Jr,k in it defining the amount of
resources for type k needed by each job unit.
Also, the system’s behavior regarding the wall time Jdw may differ according
to its nature: again, as in Eurora, we will suppose that any job exceeding in
duration its wall time value will be terminated by the system.
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Definition of Workload

Workloads are a very important part in the analysis of HPC systems. A
workload is simply a set of jobs relative to a certain time frame, that need
to be dispatched according to their submission time values and resource re-
quests. A workload may be synthetic, and thus generated statistically by
software, or extracted from log traces belonging to a real HPC system. In
both cases, the jobs’ real durations are included, allowing the workload to
be used in simulated environments. Also, being inherently static, a workload
allows for repeatable experiments and for reliable comparisons between mul-
tiple dispatching techniques. A workload is usually stored in a text-like file,
with a certain format and specific attributes, with each entry corresponding
to a single job.

2.1.2 Formal Definition of Dispatcher

The dispatcher is a software component in online HPC systems, which selects
pending jobs from the queue, and allows them to start their execution. For
simplicity, we will consider a system with only one queue available, but our
considerations will be valid for systems with multiple queues as well. A
dispatcher should be very fast and not computationally intensive, as it is
the component responsible for guaranteeing a good QoS level in the system,
and it can negatively impact its performance. The dispatcher is part of the
Workload Management System, and it may behave in two different ways:

• Reactive: the dispatcher is invoked only when significant events occur
in the system and trigger a status change, such as when new jobs arrive
on the queue, or some others terminate;

• Proactive: the dispatcher is invoked independently from events in the
system, for example in a slotted manner, thus dispatching jobs in the
queue at regular time intervals.
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The basic behavior of a dispatcher is shown in Equation 2.1. The dis-
patcher, when invoked, will allow a subset D of jobs waiting for execution in
the queue Q to start. For each job J i of D, the dispatcher will have assigned
to it a starting time J i

ts and a resource assignation J i
a. This assignment is

called a dispatching decision, and jobs in D that were scheduled to start at
the current time step are prepared and removed from the queue.

In a dispatcher, the scheduler and allocator components can be identified:
the scheduler is tasked to determine the starting time J i

ts of each job in D and
is identified by the s function, which may depend on both the characteristics
of job J i, and the status of the queue Q. The allocator, instead, defines a
suitable resource assignment J i

a for each scheduled job, and is identified by
the a function, again depending on both the job J i and the queue Q. Both
the scheduler and the allocator interact with the resource manager compo-
nent introduced in Section 1.4, in order to obtain information regarding the
system’s status.

D = (J1, J2, ..., Jn) ⊆ Q

J i
ts = s(J i, Q), J i

a = a(J i, Q) ∀J i ∈ D
(2.1)

The three phases of dispatching, namely job selection, scheduling and al-
location are not to be intended in a sequential order. The subset D of jobs
that are successfully dispatched is actually determined after the scheduling
and allocation phases. In general, a feedback loop is present between the
three parts of dispatching: the scheduler may select a particular subset of
jobs to dispatch depending on its job selection heuristics, with certain start-
ing times, and pass them to the allocator. However, the allocator may not
be able to find suitable assignations for certain jobs, forcing the scheduler to
select another strategy, or a different subset of jobs altogether.
The reasoning we presented is synthesized in Figure 2.1. In this figure, the
solid lines represent the flow of execution, while dashed lines represent infor-
mation used by entities in the dispatcher.
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Figure 2.1: A representation of the workflow for a simple dispatching system.

2.1.3 Metrics for the Evaluation of Schedules

In this section we will present some of the many metrics generally used to
evaluate the effectiveness of a dispatcher. These metrics consider different
factors, and cover various aspects of the system: by using combining them, we
can obtain a detailed view of the dispatcher’s behavior, and make reasonable
comparisons. As anticipated, a dispatcher is usually tested with a workload
in order to evaluate its performance. This kind of methodology is preferable,
as it allows for reliable and repeatable experiments.

All of the metrics we will present are mainly comparative: if a dispatcher
achieved bad performance on a certain workload, it wouldn’t necessarily mean
that the dispatcher itself is not effective, but most likely that the workload
is inherently difficult and hard to manage. At the same time, by using the
same workload we can effectively compare various dispatching methods.
Finally, as most of the following metrics are computed on a per-job or per-
step basis, it is usually necessary to look at their distribution for a given
workload in order to obtain meaningful data on the system’s behavior.

Makespan

The makespan is a temporal metric, and is very common for the evaluation
of scheduling systems. It is formulated as follows:
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mks = max
0≤i≤n−1

(J i
te)− min

0≤i≤n−1
(J i

ts) (2.2)

As represented in Equation 2.2, the makespan expresses the time interval
between the earliest starting job, and the latest ending job. It is, in other
words, an estimation of how effectively a dispatcher can pack jobs by assign-
ing them to resources in the system: lower makespans signify better results,
as it means the dispatcher is able to efficiently use the resources available in
the system, which will be busy for a shorter time.
The makespan metric, however, is meaningful only for batch systems, that
are bound to run for finite amounts of time; for online systems, instead, which
are by definition made to be ever-running and prone to continuously-changing
work conditions, the makespan is less relevant and not important.

Waiting Time

The waiting time is a temporal, per-job metric, and as the name implies it
can be expressed through the following formula:

waitJ = Jts − Jtq (2.3)

As it can be seen in Equation 2.3, the waiting time for a job corresponds
to the time interval between its arrival in the queue, expressed by Jtq , and
its starting time, represented by Jts . In general, lower waiting times can be
associated with better results, as the system is able to promptly dispatch
jobs without having them to wait too much time in the queue.

Sometimes, for systems with multiple job queues each with a different
priority and expected waiting time, it may be useful to consider a normalized
form of the waiting time, which is the tardiness : this metric corresponds to
the job’s wait divided by the expected waiting time for its queue, and is an
approximation of the job’s relative delay compared to how much it would
have been expected to wait before being started.
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Slowdown

The slowdown metric can be seen as a refined form of the waiting time [8].
The waiting time, in fact, does not consider one important fact: jobs with
long durations are less susceptible to high waiting times, as they will have
lower influence on the total turnaround time, represented by waitJ + Jdr ,
which is the sum between the waiting and the real execution times. On
shorter jobs, instead, the turnaround time could easily become greater than
the execution time by orders of magnitude. The slowdown metric captures
this, and can be interpreted as a sort of perceived waiting time. It is formu-
lated as follows:

sldJ =
waitJ + Jdr

Jdr
(2.4)

As expressed in Equation 2.4, the slowdown is computed as the turnaround
time normalized by the real execution time of the job. A system achieving
comparatively lower slowdown times is more performant: however, since the
slowdown has a big impact on short jobs mainly, it is usually good practice
to also consider the standard waiting time, which is equally representative
for short and long jobs.

Throughput and Queue Size

The throughput and the queue size metrics are highly descriptive of a dis-
patcher’s performance. These are not per-job metrics, but rather per-step
ones: this means they are computed every time the dispatcher is invoked to
schedule new jobs. The queue size and throughput metrics can be expressed
through the following equation:

tpt = |D|

qst = |Q|
(2.5)

Equation 2.5 can be interpreted in a straightforward way. The throughput
tp corresponds to the size of the set of jobs D that are successfully dispatched
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and started at a certain time t, as seen in Equation 2.1. The queue size qs,
instead, corresponds to the size of the queue Q after dispatching has been
performed. As said earlier, both metrics are computed for every time step t

in which the dispatcher is invoked. Also, the two metrics behave similarly:
an higher throughput corresponds to a lower queue size, both of which mean
the dispatcher is able to schedule jobs effectively. Considering just one of the
two is usually enough to evaluate the performance of a system.

Resource Utilization

The most generic metric for the evaluation of a dispatcher in an HPC system
is the resource utilization: it consists in the amount of resources in the system
that are actively used by jobs at every time step. This is a per-step metric as
well, but in this case we are considering all time steps, and not only those in
which dispatching is involved. This is because jobs terminate their execution
and free resources in the system independently from the dispatcher. A simple
way to compute resource utilization is the following:

loadt =
Rused

Rtotal

(2.6)

The formula depicted in Equation 2.6 defines the load ratio at time t,
which is the ratio between the amount of used resources Rused in the system,
and the total amount Rtotal of those available by default in it. This is a
very good way to express the resource utilization, since the load ratio is
represented by a number bounded in the range [0, 1], thus independent from
the scale of the system.
It is common to consider a specific subset of resource types in the system,
in order to obtain more comprehensible and meaningful results: because of
this, resource utilization is often computed in regards to CPU resources alone,
since they are the most common ones and usually needed by all jobs.

In this case, looking at the distribution of resource utilization values may
not be informative: using a visualization in function of time is much better,
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Figure 2.2: A plot depicting CPU resource utilization for the Eurora system,
in the first week of January 2015.

and allows us to better compare different dispatching methods, as seen in
Figure 2.2. The explanation is that the resource utilization metric is not
meaningful at all times: during its normal operation, an HPC system will
cross many working phases, some of which are not relevant. We are not, in
fact, interested in periods when the system is in an idle or low-utilization
state. We are only interested in observing the behavior of the system when it
is almost fully loaded and there is a constant stream of jobs being submitted,
as only in this scenario the qualities of a particular dispatcher can arise.

In general, low average resource utilization values and long queues in-
dicate fragmentation in the system: with this term we mean the condition
in which some nodes have few resources left, that cannot be used by any
job and are thus wasted, and is mostly caused by badly designed allocation
heuristics. Conversely, a dispatcher able to keep the system’s resources fully
loaded at most times is usually very good.

Resource Allocation Efficiency

Resource allocation efficiency is a metric that can be used to evaluate the
performance of a dispatching system, in regards to its decisions [9]. It is a
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per-job metric, and is formulated as follows:

effJ =

Jn ∗
∑

k∈res
Jr,k∑

i∈Ja
Ravl(i)

(2.7)

In Equation 2.7, the upper member in the fraction represents the total
amount of resources needed by a job, with Jn being its job units, and Jr,k the
amount of resources of type k needed by each of them. Ja is instead the list
of distinct node assignations for job J , and Ravl(i) is the amount of available
resources in such nodes before dispatching.
The resource allocation efficiency allows us to estimate how efficiently a dis-
patcher can allocate jobs in the system: high values indicate that a job
uses few nodes, and that these nodes are used to their fullest, leaving no
free resources, and thus also implying low fragmentation. An highly effi-
cient dispatching system will lead to higher throughput, and to lower power
consumption as well.

This metric can be formulated on a per-step basis as well: in this case,
at each time step all the running jobs and the nodes on which they are
allocated are considered. This variant of the resource allocation efficiency
metric is mostly related to the system utilization over time, and can be seen
as a refined form of the load ratio.

2.2 The Scheduling Sub-Problem

2.2.1 Definition and Hypotheses

In HPC systems, the scheduling problem consists in assigning starting times
Jts to a series of jobs, by using heuristics in order to maximize the resource
usage of the system, and minimize the waiting times. At this stage we are
not assigning resources to jobs, but only determining, if necessary, wether
they fit the current available resources in the system or not: which of those
will be assigned to them is up to the allocator to decide.
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In general, there are two possible approaches to scheduling in HPC systems
[10]. These are:

• Queueing: the scheduler will use a certain ordering criteria for jobs in
the queue, and will try to schedule as many of them as possible every
time the dispatcher is invoked, in a sequential order: hence, jobs are
always given an immediate starting time, corresponding to when the
scheduler made its decision. When the scheduler reaches a job that
cannot be dispatched, because there are not enough available resources
in the system, it will terminate, as not to violate the properties of the
queue. This is the most common approach; it is also very simple, and
not computationally complex.

• Planning: every time the dispatcher is invoked, the scheduler will try
to compute a schedule plan for all jobs in the queue, or a subset of
them; that is, a specific starting time is assigned to each job, without
violating the system’s resource constraints. This is done in order to find
the globally best possible placement for jobs, in terms of waiting times
or other metrics, which simply cannot be done by a queueing-oriented
scheduler. Unfortunately, planning-oriented scheduling algorithms are
inherently complex, as the problem itself of assigning starting times
to tasks with certain constraints belongs to the NP-Hard class [11];
besides, in order to compute such a schedule and obtain good results,
it is necessary to have reliable estimations Jde of the jobs’ length: this is
often not the case, and all we have is the wall time Jdw , which severely
over-estimates the job length and leads to resource waste.

Out of the two presented approaches, the queueing one is the most com-
monly used in HPC systems, and in most commercial solutions for dis-
patching. The planning approach, instead, while being potentially better
is plagued by its computationally intensive nature, and thus more rarely
used.
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2.2.2 Common Scheduling Algorithms

In this section we will discuss the most common algorithms for scheduling in
HPC systems. Please note that these methods all belong to the queueing-
oriented kind, except the last one.

First-Come First-Served

The first and most simple scheduling algorithm we will present is First Come
First Served (FCFS). As the name implies, this method does not impose any
kind of ordering on the job queue, and the scheduler will try to dispatch jobs
in the order in which they arrived.
This algorithm has some qualities: first of all, as we mentioned earlier, it
is very simple and computationally inexpensive. Also, since jobs are not
artificially sorted, it ensures fairness in the scheduling process, and it is not
possible for some jobs to suffer starvation. Finally, it does not need any kind
of information about the system or the jobs in order to perform its dispatching
decisions. However, since no kind of optimization is performed, FCFS may
pick jobs in a highly sub-optimal order, thus leading to bad performance, low
resource usage in the system, and long waiting times.

Longest Job First and Shortest Job First

The Shortest Job First (SJF) and Longest Job First (LJF) algorithms are
the natural evolution of FCFS. In simple words, these two methods will sort
jobs in the queue by using their estimated duration in ascending (SJF) or
descending order (LJF). These are slightly more computationally expensive
than the FCFS algorithm, however the computational cost can be reduced
by maintaining the job queue in a sorted state between dispatching calls.
The choice between SJF and LJF is not obvious, and mainly depends on
the kind of workload the system is subject to. However, among the two,
SJF is usually the most robust choice, and leads to good results in terms of
throughput and waiting times, despite being very simple.
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Unfortunately, these two algorithms still have some issues to be considered:
first of all, since sorting is explicitly performed on the job queue, we must
consider the possibility of starvation for some jobs. For example, in a system
employing SJF where the frequency of short jobs is very high, a long job may
end up waiting indefinitely in the queue. Secondly, both methods need an
estimation Jde of the jobs’ length in order to perform sorting: if there is not
one available, the wall time Jdw must be used, leading to worse results.

Priority Rule-Based

Priority Rule-Based (PRB) scheduling is a generalization of the FCFS, SJF
and LJF algorithms seen before [12]. It still uses a simple queueing-oriented
approach, but in this case the sorting criteria for the jobs is a generic priority
rule that can be changed and tuned according to the users’ needs and the
system’s type. For example, in a system with multiple job queues, each with
a specific priority and expected waiting time, a priority rule could be based
on a job’s tardiness, introduced in Section 2.1.3 [7].
As with the methods we have seen before, caution must be taken while de-
signing new priority rules: the risk of favoring certain classes of jobs while
compromising others, with certain workload distributions, is always present.

Backfill

Backfill is a very commonly used queueing-oriented scheduling technique,
and is an industry standard in HPC systems. Generally speaking, backfill is
not a technique made to replace the heuristics we have presented so far, but
rather it can be placed on top of them, as it does not make any assumptions
on job ordering.

In a standard scheduling algorithm, like the ones we have seen earlier,
jobs are scheduled in a sequential manner depending on the queue’s ordering.
This is what we would call the normal mode of the scheduler. Whenever the
allocation for a job fails, the scheduler terminates, and returns the set of jobs
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Figure 2.3: The representation of a schedule produced by an Easy backfill
algorithm. Image taken from [13].

that it managed to schedule. In a backfill scheduler, instead, the procedure
does not terminate when a job cannot be allocated: instead, a reservation is
made for it. Specifically, the algorithm will scan through the set of currently
running jobs, and from their estimated duration Jde it will compute the
earliest starting time in which enough resources will be available in order to
start the blocked job. Then, a set of resources in the system is reserved for
that specific starting time and for the job’s expected duration.
As long as the reservation has not been fulfilled, the scheduler operates in
the homonymous backfill mode: in this special mode, the scheduler will try
to dispatch jobs in the queue other than the blocked one, as long as they do
not interfere with the reservation; in particular, they must not use any of the
resources in the reserved set, in the time frame of the blocked job’s planned
execution. Also, in backfill mode the scheduler is allowed to skip jobs in the
queue that cannot be dispatched.

What we just described is the basic functioning of the backfill algorithm.
There are, however, two different variants of this technique:

• Easy Backfill: only one reservation at most is maintained at any time.
This reservation corresponds to the blocked job, which is located at the
head of the queue;
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• Conservative Backfill: multiple reservations are admitted, and cre-
ated whenever a job cannot be scheduled. In this case, there is no real
functional distinction between the normal and backfill modes.

It has been shown that there is no clear winner between the two Backfill
modes, and their behavior mainly depends on the kind of workload they are
subject to [13], even though Conservative is much more complex than Easy
Backfill. In Figure 2.3 a representation of how Easy backfill works can be
seen, with J2 being the blocked job.

Finally, it must be said that since backfill relies on estimations for the jobs’
length, its performance heavily depends on these: in fact, an overestimation
of the jobs’ length might lead to wasted resources in the backfill interval,
while an underestimation could lead either to preemption of the jobs that
didn’t manage to finish before the end of the backfill interval, if the system
supports it [14], or to a delay of the reservation itself.

Optimization and Planning-Oriented Algorithms

In this last section we will look at how the scheduling problem can be for-
mulated in order to pursue an optimization and planning-oriented approach.
In general, an algorithm of such kind will operate on a subset of the job queue
of fixed maximum size, which will be sorted according to some priority rule.
As mentioned earlier, for these jobs a schedule plan is computed, detailing
the starting times for each one of them. As such, this is the only case in
which the subset D of jobs that are to be dispatched is determined before
the scheduling procedure.
In order to formalize the problem, we will now define its parameters:

• Variables: the starting times Jts for jobs in the subset D of the queue
being considered;

• Constraints: the schedule plan must never violate the system’s re-
source availability constraints;
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• Objective Functions: a certain metric that is to be minimized in or-
der to obtain an optimal solution, such as the makespan or the average
waiting time.

This is a general characterization for the scheduling problem, which is
valid for most applications in HPC systems. Having defined its parameters,
a method for solving the problem has to be chosen: since it belongs to the
NP-Hard class, exhaustive search must be excluded from the viable alterna-
tives, as it would be unfeasible on an online system. Besides, a sub-optimal
solution is often more than enough for this kind of task. As such, optimiza-
tion techniques like simulated annealing, genetic optimization, tabu search or
constraint programming are much preferable. In general, these techniques
can be adapted to the timing constraints of the system by applying temporal
limits to the search, with better solutions more likely to be found as the
search time is increased.

As we have seen with the previous algorithms, being able to correctly
estimate the jobs’ length is critical: wrong estimations will result in the
computed schedule plan to not be respected, thus worsening the performance
of the algorithm. At the same time, an approach must be defined in regards
to new jobs arriving in the queue. The algorithm might be designed to
preserve an already-computed schedule plan, and fit the new jobs inside it at
the next dispatching call. Conversely, it might be preferable to recompute the
schedule plan from scratch every time, leading to potentially better results
but also to an higher computational cost. An algorithm belonging to this
class will be described with great detail in Section 5.2.4.

2.3 The Allocation Sub-Problem

2.3.1 Definition and Hypotheses

In this section we will treat the allocation sub-problem in dispatching. This
consists in assigning a set of resources Ja, according to their requested job
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units Jn and resource types Jr, to jobs in the subset D of the queue that
were selected by the scheduler and given a starting time.
Allocation is a task of great importance in an HPC system. Good alloca-
tion policies allow to greatly improve parameters of the system like power
consumption and average temperature, but also allow for lower resource frag-
mentation and, in turn, lower waiting times.
We can distinguish between two main approaches for allocation in HPC sys-
tems [15]:

• First-Fit: this approach is similar to queueing-oriented scheduling. In
this case, jobs are allocated one by one separately, in the order specified
by the scheduler. For each job, resources are picked from a list of nodes,
which is sorted according to a certain criteria: the algorithm will pick
resources from the list while traversing it, until the job’s request has
been satisfied. Usually, the algorithm will try to fit as many job units
as possible in each selected node. If the algorithm reaches the end of
the list without finding enough resources, the allocation is considered
as failed, and the scheduler must then decide how to proceed;

• Mapping: conversely, this approach is equivalent to planning-oriented
scheduling. Here, jobs in D are considered as a whole and collectively
allocated, using complex algorithms that try to optimize specific met-
rics [15]. Like the scheduling problem, also themapping problem, which
consists in assigning resources to a given set of jobs in an optimal man-
ner, belongs to the NP-Hard class. Besides, most mapping methods
are made to be used on their own, without depending on a scheduler,
as they can decide the jobs’ starting times as well: in these cases, our
proposed architecture for a dispatcher, seen in Section 2.1, is not ap-
plicable.

In most HPC systems, allocation algorithms belonging to the first-fit class
are used. Mapping algorithms, while potentially better, are also much more
complex, and usually need specialized software architectures in order to be
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correctly integrated with scheduler algorithms. For these reasons, we will not
further discuss mapping algorithms.

2.3.2 Common Allocation Algorithms

In this section we will present some allocation methods that fall into the
first-fit category, and are very commonly used in HPC systems. Most of the
algorithms in this section perform a fail-first search: this means that the
ordering of nodes is such that a suitable allocation is more likely to be found
on later nodes in the sorted list, rather than the first ones. This is due to
the fact that such type of search, while theoretically more expensive than a
success-first one, usually allows for better results.

Simple First-Fit Policy

The first algorithm for allocation we will present is the simple first-fit pol-
icy: similarly to the FCFS scheduling policy presented in Section 2.2.2, this
method does not perform any kind of sorting, and nodes are scanned for
available resources in their default order. This order may be numerical or
lexicographical basing on each node’s ID, but it may also be a static ordering
made to improve certain performance parameters.

While simple, this algorithm has not inherently bad performance; it is in
fact very common in HPC systems. It also has a few interesting properties:
since nodes are always scanned in the same order for all jobs, the system’s
resources will statistically be filled in an incremental manner. This means
that before moving to the next nodes in the list, the previous ones will usually
have reached maximum load, leading in turn to low resource fragmentation.

Best-Fit Policy

The best-fit heuristic is an improvement over the basic first-fit allocation
method. In this case, nodes in the system are actively sorted according to
the amount of resources available in them, in ascending order. This means
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that the first elements in the nodes’ list will usually correspond to ones that
have none or very little available resources.
The purpose of this is to decrease fragmentation in the system and thus
perform consolidation. The first-fit policy is not enough for this, as jobs will
terminate and release their resources in arbitrary order, which means that,
when the system is fully loaded and running, the allocator’s performance may
become completely random. The best-fit policy addresses this, ensuring that
at every allocation the best-fitting nodes are selected, keeping fragmentation
low.

For complex, sorting-based allocation algorithms like best-fit performance
may be a concern: systems may in fact scale horizontally indefinitely, and
could be made of thousands of nodes. Performing sorting on the nodes’ list
at every allocation is thus not very efficient. To address this, there usually
are two possible ways: a persistent, sorted list of nodes in the system may be
kept, which will drastically decrease the computational cost of the algorithm;
in alternative, smaller subsets of nodes in the system may be considered for
allocation, by using for example tree-based selection techniques.

Priority Rule-Based

As we have seen with the scheduling problem, there also exists a priority
rule-based generalization for allocation algorithms. In this case, the order of
nodes in the system picked for allocation depends on a user-defined priority
rule, which may take several factors into account. Again, the development
of priority rules is not a trivial task, and without mindful design it can lead
to badly performing allocators.

Such an allocation heuristic, for example, may be related to heterogeneous
systems equipped with multiple accelerator types: a priority rule could weight
different resource types, assigning greater weight to those that are scarce in
the system and not available in every node, in order to not penalize jobs
that actually need them. The nodes containing such resources would then
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be statistically placed towards the end of the nodes’ list, thus preserving the
critical resources.

Cooling-aware and Power-aware Placement

Some allocators in the literature are aimed at minimizing the system’s tem-
perature and cooling power [16]. Cooling systems are in fact a very important
component in HPC systems, and managing to keep the overall system tem-
perature low will lead to better performance and to more efficient power con-
sumption. These techniques go under the name of cooling-aware placement,
and it is estimated that, in an optimal scenario, the use of such algorithms
can reduce the costs for environmental management in an HPC system by
up to 30% [17].

Minimizing the overall system’s temperature increase after the allocation
of a job implies the use of complex optimization and heuristic techniques,
besides models for temperature prediction in specific parts of the system.
Also, in order to keep track of the system’s temperature in all nodes, an
additional hardware-software infrastructure is necessary.
Having said this, such a type of allocation is usually obtained by placing jobs
in nodes that are physically far from each other, in order to evenly distribute
the temperature increase; in fact, placing all job units in nodes close to each
other would cause a spike in the temperature for that area, which would
require higher cooling power.

Cooling-aware placement can help reduce overall power consumption:
however, that is often not enough, and specialized power-aware placement
techniques are needed. As we have seen, the first-fit and best-fit algorithms
are able to keep fragmentation in a system low: this is a good starting point
for power consumption optimization, as having nodes either in a fully loaded
or idle state is an ideal condition. This way, many nodes are able to enter
special, low-power idle modes, that can drastically improve the overall energy
efficiency.
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Similarly to what we have seen with cooling-aware placement, there are com-
plex power-aware placement algorithms, which try to minimize the overall
power consumption increase after the allocation of a job [18]; again, complex
models for power consumption prediction in regards to the system’s hardware
components must be used.

Topology-aware Placement

Often the physical placement of a job, independently from the resources
available in its assigned nodes, may have a big impact on its performance.
Parallel jobs, in fact, usually have intricate communication patterns: this
means that the farther away job units are placed from each other, the more
network hops are needed for communication. This implies higher network
strain and latency times, which both lead to worse performance on the job’s
side, and higher power consumption. For this reason, some allocation meth-
ods try to place units of the same job in a physical area as small as possible,
trying to improve the locality of a job.

In order to perform this kind of allocation, it is necessary to know the
topology of the system. Many such algorithms are known in literature [19],
and the allocation policy used in Slurm also exploits locality [20]: these
methods map nodes in a tree, with each level signifying different grouping
hierarchies for nodes. Leaf nodes sharing the same parent generally belong to
the same basic grouping unit, which may be a rack or a cabinet. This kind
of approach allows for efficient tree-based search techniques, and is most
effective on large-scale systems.

2.4 Commercial Workload Management Systems

In this section we will present some of the most famous commercial HPC
Workload Management Systems, and their peculiarities.
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The first solution we are looking at is Slurm [20], which is a free, open
source HPC dispatching system targeted for Linux/Unix. Slurm is main-
tained on GitHub, and has an active community behind it. Due to its highly
modular and customizable nature, Slurm is used in roughly the 60% of HPC
systems in the world, including the Tianhe-2 system introduced in Section
1.3. Besides job scheduling and resource management, Slurm has many other
features, mainly for system monitoring and control. It is advertised as an
highly scalable system and as easy to configure, thus useful in many contexts.
Slurm uses a topology-aware allocation policy, trying to improve locality and
resource utilization, and supports heterogeneous job unit requests as well.

The second WMS we present is Portable Batch System (PBS) [21],
which is a commercial product made by Altair. This is the dispatching system
also used in Eurora, and is an highly reliable product that has been on the
market for 20 years in different iterations, even though originally it was free
and open source. Many other products in the market are based on PBS,
such as Torque, which we will describe later. Compared to Slurm, PBS has
also power-aware capabilities, however it is far less modular and harder to
customize. Unlike the former, PBS also does not support heterogeneous job
unit requests, which means a PBS job is limited to having Jn homogeneous
job units, each requiring the same amount and type of resources.

Torque [22] is a WMS based on the original open-source PBS project.
It is produced by Adaptive Computing, but is free and open source, with
the company being tasked with user support and development. Similarly
to Slurm, Torque is highly modular, scalable and customizable, and can be
adapted to a great variety of systems, with a focus on heterogeneous ones.
At last, we will talk about the Maui system [23], which is right now also
under the custody of Adaptive Computing. Maui is mostly a predecessor to
modern dispatching systems, and was mainly developed during the 90s. It
provided customizable fairness, job priority and allocation policies, which
are a standard in modern products. It is now discontinued, and its core was
inherited by the Moab system, now still actively developed.
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Chapter 3

The Eurora System

In this chapter we will introduce the Eurora system, which was chosen in
order to evaluate the various dispatching methods that will be presented
later. We will analyze a workload from Eurora as well, in order to better
understand its usage patterns, and finally we will discuss some methods to
estimate the jobs’ durations on such workload.

The chapter is structured as follows: in Section 3.1 we will introduce the
Eurora system, and its main features. In Section 3.2 we will then analyze the
workload from Eurora that will also be used for testing later in the thesis.
Finally, in Section 3.3 we will discuss a data-driven method for the estimation
of the jobs’ durations in the workload.

3.1 System Overview

Eurora is a prototype HPC system built in 2013 by CINECA in Bologna,
Italy, in the scope of the Partnership for Advanced Computing in Europe
(PRACE) [24], and is pictured in Figure 3.1. It is a small-scale HPC system
with an hybrid architecture, designed for low power consumption: Eurora
was in fact listed as #1 in the Green500 list of Top500, which ranks the most
efficient HPC systems worldwide, in July 2013 [2]. It could achieve a 3.2
GFlops/W computing power, and had a peak power usage of 30.7KW.
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Figure 3.1: A picture of the Eurora system. Image taken from [24].

The Eurora system is a heterogeneous cluster made of 64 nodes: each of
these nodes has two Intel Xeon SandyBridge CPUs with 8 cores, 16GB of
RAM, and 100TB of disk space. Additionally, each node has two accelerator
units available: specifically, 32 nodes are equipped with two NVIDIA Tesla
K20 GPUs, while the remaining 32 are equipped with two Intel Xeon Phi
Many-Integrated-Cores (MIC) units. Some nodes differ slightly in terms of
CPU and RAM: one half of the nodes, in fact, uses CPUs clocked at 2.0Ghz,
while the other half uses CPUs with a clock of 3.1Ghz. At the same time,
6 nodes in the system, with the higher performance CPUs, mount 32GB of
RAM storage instead of 16.

The system’s network has the topology of a 3D torus, and networking
tasks in each node are handled by an Altera Stratix-V FPGA unit and by an
InfiniBand switch operating in Quad Data Rate mode. InfiniBand is a stan-
dard for computer networking with very high throughput and low latency,
and is commonly used in HPC systems [25].

The nodes run a Linux CentOS 6.3 distribution, and the workload man-
agement system being used is Portable Batch System (PBS), which employs
various heuristics for optimal throughput and resource management; since
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Queue Max. Nodes Max. Cores/GPUs Max. Time Approx Wait
debug 2 32 / 4 00:30:00 Seconds
parallel 32 512 / 64 06:00:00 Minutes
longpar 16 256 / 32 24:00:00 Hours

Table 3.1: The constraints related to each of the job queues in Eurora.

PBS is being used, jobs in Eurora are limited to homogeneous job unit re-
quests, as mentioned in Section 2.4. Additionally, Eurora uses three different
queues for job dispatching [7], named debug, parallel and longpar, with dif-
ferent priorities and resource constraints. The debug queue is designed for
quick, small jobs executed for debug purposes; the parallel queue is instead
designed for ordinary jobs, while the longpar queue is made for long, low
priority jobs that are to be scheduled during the night. The specifics for each
queue can be seen in Table 3.1.

The heterogeneity seen in the available resources grants great flexibility to
Eurora, and also makes it an interesting system to analyze, especially due to
its limited scale. In such a context, the dispatcher component has primary
importance, in order to make good use of the system: for these reasons,
Eurora will be the object of our analysis in the scope of new dispatching
heuristics development.

3.2 Analyzing the Eurora Workload

We will now consider a workload extracted from Eurora’s log traces, and
analyze it thoroughly from different points of view. The workload will be
used for testing later in the process, with the AccaSim simulator that will be
presented in Chapter 4.

3.2.1 Workload Overview

The workload is made of 372320 jobs and covers one year of data, from April
2014 to June 2015. As mentioned earlier, in Eurora there are GPU and
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Figure 3.2: Job Duration and resource requests distributions for all jobs in
the workload.

MIC accelerators available in some nodes, so it will be useful to consider
different classes of jobs according to the resources they use. In particular,
we will consider Standard jobs, which use only CPU and memory resources,
GPU-Based jobs, which also use GPU resources, and finally MIC-Based jobs,
which use MIC accelerators. It is not possible for a job to use both GPU
and MIC accelerators, since a node may have only one of these available at
a time, and PBS does not allow heterogeneous job unit requests.

In Table 3.2 we can see some statistics for the workload. It can be seen
that GPU-Based jobs are the most frequent ones, making up over 75% of the
entire workload. Standard jobs instead have a share of roughly 22%, while
MIC-Based jobs have a very marginal role, amounting to just 0.7%.
It can also be seen that the average real job duration is low, amounting to
16 minutes. Predictably, such a low value is due to the GPU-Based jobs,
which have an average duration of just 6 minutes, while MIC-Based jobs
tend to be much longer, with a value of 56 minutes. Standard jobs, instead,
are mostly in the middle ground, with a value of 47 minutes. We can see
that the maximum duration value belongs to a GPU-Based job, with 23:33
hours, close to the 24 hours wall time limit in Eurora. This value is mostly
an outlier in the distribution, and not really meaningful about the duration
of GPU-Based jobs.
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Job Types Share Number Avg. Duration
[hh:mm:ss]

Max. Duration
[hh:mm:ss]

All 100% 372320 00:16:08 23:33:54
Standard 22.8% 85046 00:47:36 17:28:38
MIC-Based 0.7% 2500 00:56:28 08:12:26
GPU-Based 76.4% 284774 00:06:23 23:33:54

Table 3.2: Statistics for different kinds of jobs in the Eurora workload.

In Figures 3.2a and 3.2b we can see, respectively, the distributions for
job duration and resource requests in the workload. The durations follow
an heavy-tailed distribution, with most jobs being relatively short and few
of them reaching close to the maximum limit. Because of this, we expect
scheduling policies such as Shortest Job First to behave really well with this
workload.
The jobs’ resource requests distribution has an heavy-tailed behavior as well,
and most jobs in the workload are not particularly resource-hungry. For this
reason, Backfill may be a very effective scheduling policy as well. It should
be noted that in this second plot, we are considering the total amount of
resources requested by a job. The resource requests of each job are then
normalized against the total amount available in the system for a given type,
in order to obtain an homogeneous visualization across all resource types.
For this same reason, we can see that the CPU resource request distribution
is truncated closely to the 0.6 value: this is because, in Eurora, jobs are not
allowed to use more than 512 cores in the system against the 1024 available,
as explained in Section 3.1.

3.2.2 Detailed Analysis

We will now analyze with this same approach the single classes of jobs intro-
duced earlier, and see if we can find any peculiarities in them.
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Figure 3.3: Job Duration and resource requests distributions for Standard
jobs in the workload.

Standard Jobs

Standard jobs, as said earlier, only use CPU and memory resources, and make
up roughly 22% of the Eurora workload. In Figures 3.3a and 3.3b we can see,
again, their distributions for job duration and resource requests respectively.
It can be seen that these distributions do not differ in a meaningful way
compared to the ones presented earlier, for all jobs. This is to be expected,
especially for the resource requests distribution, as Standard jobs are heavily
based on CPU and memory resources, and thus have a strong influence on
the global distribution, proving responsible for its heavy-tailed behavior.

Since these jobs can fit all nodes in the system and do not have special
needs, we won’t need to adopt particular policies in order to improve their
QoS.

MIC-based Jobs

We will now consider MIC-Based jobs in Eurora, which use CPU, memory
and MIC resources, and constitute only the 0.7% of the entire workload.
In Figures 3.4a and 3.4b, we can see the job duration and resource requests
distributions for this class of jobs. While similar to the ones we have previ-
ously seen, the job duration distribution has a slightly fatter tail: this results
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Figure 3.4: Job Duration and resource requests distributions for MIC-Based
jobs in the workload.

in longer average job durations, as we have seen in Table 3.2. This is counter-
intuitive, as accelerator-based jobs would be expected to last much less than
Standard jobs. However, there are no jobs longer than roughly 8 hours.
The resource distribution is, instead, much more concentrated on the left
side, and does not exhibit an heavy-tailed behavior. This means that MIC-
Based jobs generally require very few resources and, interestingly, there are
no jobs requiring more than 20% of the MIC units available in the system.

MIC-Based jobs may be difficult to manage: while not extremely long,
they have an high average duration, and they rely on a resource type that is
scarcely available in the system. Also, since the frequency of MIC-Based jobs
is so low, it is very likely for high fragmentation to occur for MIC resources,
as their nodes would be filled by Standard jobs most of the time. This could
result in extremely high waiting times for MIC-Based jobs.

GPU-based Jobs

We will at last consider GPU-Based jobs, which use CPU, memory and GPU
resources. This is a very important class of jobs, as it makes up more than
75% of the workload. The corresponding job duration and resource requests
distribution can be seen respectively in Figures 3.5a and 3.5b. As for the
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Figure 3.5: Job Duration and resource requests distributions for GPU-Based
jobs in the workload.

job duration distribution, it can be seen that while there is an heavy-tailed
behavior, with few jobs having very high durations, the distribution is highly
concentrated on the left side, thus resulting in very low average job durations.
The job resource distribution, similarly to the MIC-Based jobs one, is also
highly leaning to the left side, meaning that most GPU-Based jobs are small
in terms of resources. However, there is indeed an heavy-tailed behavior here,
meaning that a small subset of jobs will need a large amount of resources,
with one particular job needing all GPU units available in the system.

GPU-Based jobs are absolutely critical in Eurora. They make up the
biggest part of the workload, and while on average they are very short in
terms of duration, they also rely on a resource type which is scarce. This
combination could result in a bottleneck to the performance of the entire
system, limiting the effectiveness of job dispatching heuristics. The danger
of resource fragmentation for GPUs in the system is always around the corner
as well. Finally, as these jobs are on average very short, they will also be
sensible to the waiting time, which could result in very high slowdown values.
Because of this, we will need to pay extreme caution to GPU-Based jobs, and
for fairness to all accelerator-based jobs in Eurora.
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3.3 Estimating the Job Duration

There are three variants of the Eurora workload, according the estimated job
duration values Jde being used. These are:

• Using the wall time Jdw as a job duration estimation; the worst results
are expected from this variant, due to its severe over-estimation;

• Using the real time Jdr as a job duration estimation; we expect the best
results from this variant, which serves mostly as a theoretical baseline;

• Using a data-driven estimation Jde computed from the workload.

The last approach we introduced, which uses an estimation computed
from the data, is based on a simple heuristic [26]. This technique tries to
build job profiles, starting from the available log data and user histories: these
profiles include the user name, the job name, the queue name, the wall-time,
and also the amount of resources that are needed by the job. In simple words,
the algorithm will search for past jobs that are similar to the current one, and
pick their duration as an estimation. It has in fact been observed that jobs
with similar profiles have approximately the same duration for long periods
of time: in other words, there is a temporal locality principle at work with
such jobs. This is due to the fact that, in a certain time frame, the same
job might be repeated many times for debugging purposes, or with different
parameter combinations, usually employing the same input data. After a
certain time, the same profile usually shifts to a new duration, and remains
again stable for some time.

The heuristic can be formulated through a set of matching rules with de-
creasing priority. These are the following, starting from the most important:

1. A full profile match for the job is searched in the user history;

2. A match is searched, allowing the job names to have just a prefix in
common. Users, in fact, often name similar jobs incrementally;

3. A match is searched, allowing only the resources use to differ;
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Figure 3.6: Distributions for absolute error in the estimation of job duration,
for wall time values and the prediction heuristic, on the Eurora workload.

4. A match is searched, allowing not only the resources use to differ, but
also the job name like in rule No.2;

5. A match is searched by using only the job name, or at least its prefix;

6. The job’s wall time is used as an estimation.

In Figure 3.6 we can see the absolute error distributions in the estimation
of job duration, by using the default wall time values and the prediction
method described here. The prediction heuristic fares much better than the
wall time: the former achieves an average error of 40 minutes, while the
latter has one of 310 minutes. However, unlike the wall-time, our method
can under-estimate the durations as well, which must be taken into account.
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Chapter 4

The AccaSim Simulator

In this Chapter we will introduce the HPC simulation environment that was
developed and used in the scope of the thesis, named AccaSim. We will
also discuss the implications of using a simulation environment for HPC
dispatching research, and what is the state of the art in this field.

In Section 4.1 we will present the reasons for which the need for HPC
simulation systems has arisen. In Section 4.2 we will instead describe the
state of the art in this field. In Section 4.3 we will then introduce the AccaSim
simulator together with, in Section 4.4, some scalability and performance
results obtained with it.

4.1 The Purpose of HPC System Simulators

One may wonder on why an HPC system simulator would be necessary. There
are many reasons that have triggered the development of such simulators,
among which is the necessity to test and evaluate dispatching methods and
system management policies, in the scope of HPC dispatching research.
As we explained in Chapter 2, good dispatching methods can effectively
improve in a substantial manner the efficiency and QoS of HPC systems;
however, the effectiveness of said methods cannot be estimated a priori, but
rather depends on many real-world variables, such as the structure of the
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workloads or of the system itself. For these reasons, dispatching methods
must be thoroughly tested before being used, and evaluated according to the
criteria and techniques we described earlier.

Still, this kind of testing cannot be done on a real HPC system, for a wide
variety of reasons: first of all, HPC systems usually deliver vital services to
users, so they cannot be arbitrarily put under testing, thus potentially reduc-
ing the quality of service or even disrupting the system’s functions. Besides,
obtaining a real HPC system may be impossible for researchers. Also, testing
should be done on sufficiently big workloads, composed of thousands jobs, in
order to obtain meaningful data: this, in a real system, would take years of
time, and it is, of course, unacceptable. Lastly, one vital condition in order
to obtain meaningful and comparable results, is the repeatability of experi-
ments: this condition does not apply on real HPC systems, as users freely
submit jobs and working conditions change over time; to obtain repeatable
experiments, a static workload must be used.
For the reasons above, in order to perform testing of dispatching methods
and evaluate them, we need an HPC system simulator, which should be able
to replicate the behavior of a real system, while retaining short simulation
times, and repeatability through the use of pre-defined workloads.

4.2 State of the Art

Different kinds of simulators for HPC systems have appeared in the last years,
focused on different aspects. For example, in [27] a simulator was developed
for the analysis of network systems and topologies in HPC installations; in
[28], instead, an HPC system simulator was developed with energy-aware ca-
pabilities, named Performance and Energy-Aware Scheduling (PEAS).

In our work, we are more interested in simulators focused on the Work-
load Management System (WMS) part, which includes the dispatcher com-
ponent, and that can be thus used to evaluate different scheduling and allo-
cation heuristics. In this class of simulators, the most recent appears to be
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Scheduling Simulation Framework (ScSF) [29]: this simulator is based
on an actual installation of the Slurm WMS, which interacts with a virtual-
ized resource layer, and integrates a synthetic job generation system. Being
based on a real WMS, ScSF is able to produce very reliable results, that are
extremely close to those one would obtain in a real system. However, due
to its nature, ScSF is a very resource-hungry simulator, and cannot be used
effectively on a commodity machine. For the same reasons, ScSF is hard to
setup and not easy to customize.

Among the other notable simulators there is Cluster Discrete Event

Simulator (CDES) [30], which however is limited to pre-defined scheduling
and allocation algorithms, and relies on fixed resource types. CDES, besides,
cannot be customized, as its implementation is not publicly available.
Lastly, in [31] an HPC system simulator was developed, based on the Om-
net++ software [32]. Such software is however mostly devoted at network
simulation and analysis, so the resulting simulator is very limited and difficult
to customize, while being also limited to fixed resource types, like CDES.

As it can be seen, the available simulators are mostly targeted at specific
purposes and aspects of HPC systems, being in general resource-hungry and
difficult to customize.

4.3 Overview of AccaSim

AccaSim is a free, open-source HPC system simulator focused on the eval-
uation of dispatching methods [6]. It was developed at the University of
Bologna, Italy, at the Department of Computer Science and Engineering
(DISI), and its main contributors are Cristian Galleguillos, Zeynep Kiziltan
and Alessio Netti. AccaSim is structured as a discrete event simulator, and
the simulated system’s status is changed according to events that are trig-
gered by the simulator. Since we are simulating HPC systems, these events
are mainly represented by the submission, start and termination of jobs.
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The simulator is written in Python, a high-level, object-oriented, inter-
preted programming language, and is designed to run with versions 3.4 and
above. AccaSim has very few dependencies that are outside of the standard
Python distribution, and these are the psutil, json and matplotlib libraries,
which can be easily obtained. The simulator’s source code is freely available
on GitHub [33], and a stable version can be found on the Pypi repository.

4.3.1 Main Features

AccaSim is designed to be as flexible and customizable as possible. It allows
the definition of arbitrary HPC systems, which can be either homogeneous or
heterogeneous. This definition is contained in a json configuration file, which
is loaded when the simulator is started. AccaSim also allows the use of any
kind of workload, as long as it is compatible with the simulated system. The
user must supply a parser for the workload’s format, in order to correctly
read and use it. By default, AccaSim supplies a parser for the Standard

Workload Format (SWF) [34].

The development of custom dispatching methods is supported as well:
users just need to design classes that comply to the default interface used by
the simulator for dispatching. At the same time, the simulator can be tuned
and improved thanks to its modular structure, making it easy to integrate
power-aware or topology-aware behavior. The addition of such secondary
information is natively supported by AccaSim, thanks to its additional data
functionality, which does not imply the modification of the simulator’s core.
Unfortunately, AccaSim doesn’t support multiple job queues yet, meaning
that jobs from different queues in such a system will be mixed in one only
queue. However, the original information is still present and can be exploited
by the dispatcher.

AccaSim also supports various output and monitoring functionalities.
First of all, the output of each simulation is given by a scheduling file, which
will contain records for each dispatched job in the workload, and will be
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(a) The Watcher tool. (b) The Visualization tool.

Figure 4.1: The monitoring tools offered by AccaSim. Image taken from [6].

in a user-specified format; the simulator will also output a pretty print file,
which is the equivalent of the scheduling file, but in a more humanly readable
format, and a statistics file, which contains several statistics regarding the
entire simulation. However, AccaSim also supports the output of detailed
resource usage logs for benchmarking, with entries containing data regarding
the management and dispatching phases in each step of the simulation.

Lastly, in Figure 4.1 we can see some of the monitoring tools offered by
AccaSim. The first of these is a watcher daemon, which can be remotely
queried, and returns information regarding the ongoing simulations. There
is also a visualization tool, which allows to see the real-time resource usage
of the virtual HPC system, mainly for debug purposes.

AccaSim is also designed to be lightweight and scalable: it can be used
on any commodity machine, and can be configured in few minutes.

4.3.2 Architecture Overview

In Figure 4.2 we can see a representation of AccaSim’s software architecture,
which we will now analyze. First of all, we have the job submission com-
ponent, which is tasked with mimicking the submission of jobs by users: a
reader object will directly read entries from a real or synthetic workload,
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Figure 4.2: AccaSim’s architecture. Image taken from [6].

while the job factory component will convert these to internal object repre-
sentations for jobs, ready to be used in the simulator. A parser object can be
set for use by the reader, in order to add compatibility to different workload
formats.

The job submission process itself is handled by the event manager com-
ponent, to which the generated jobs are passed. Such component is tasked
with handling the simulated behavior of both the resources in the virtual
HPC system, and of the jobs running on it. The resource manager and
job manager sub-components do this, respectively: the two can be used to
retrieve information about the system as well, during dispatching.

Finally, the dispatcher component in the system includes the scheduler
and allocator sub-components. At each time step, the simulator will invoke
the scheduler, which will invoke in turn the allocator for the subset of jobs
it has selected from the queue, and that are to be started immediately.

There are various additional components in the simulator’s architecture:
AccaSim provides an additional data interface, allowing to plug secondary
information to the simulator, that can then be used by the dispatcher. Such
mechanism is transparent, and allows to extend the simulator without ex-

47



4.3. OVERVIEW OF ACCASIM

resource_manager

groups

resources

resources_status

allocate()

release()

availability()

job

id

submit_time

duration

resources

write_out()

allocator_base

allocate()

scheduler_base

allocator

schedule()

hpc_simulator

reader

event_manager

dispatcher

additional_processes

watcher

visualization

start_simulation()

reader

current_time

job_factory

next()

default_reader

file

read()

parse()

job_factory

system_resources

job_base

factory()

event_manager

current_time

events

job_manager

resource_manager

load()

submit()

dispatch()

complete()
additional_data

event_manager

add_data()

exec()

job_manager

loaded

queued

running

add_job()

update_state()

watcher

listen()

visualization

start()

stop()

Figure 4.3: AccaSim’s class diagram. Image taken from [6].

plicitly modifying the event manager component. Such additional data could
be power-related, or even failure-related.
The tools part, instead, is represented by all the daemons and accessory
functions that are user-specified and bound to the simulation, usually be-
ing output-related: by default, the watcher and visualization tools presented
earlier are implemented, which are designed to run on separate threads in
respect to the simulation.

4.3.3 Implementation

Class Diagram

In Figure 4.3 we can see the UML class diagram for AccaSim’s core compo-
nents. While the entire simulator is open and completely modifiable, some
specific parts were made to be more easily customizable and interchangeable:
these are marked in bold, in the diagram.
Among the customizable parts, we can see the scheduler and allocator compo-
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nents, represented by the scheduler_base and allocator_base abstract classes:
users can design custom dispatching methods, just by creating new classes
that implement these two interfaces. Along the same lines, users can specify
custom reader objects, by implementing the reader abstract class, as well as
parser objects, adding compatibility to diverse workload formats. The de-
fault reader, predictably named default_reader, supports the SWF format.
Finally, by extending the additional_data class, users can supply additional
information which can be used by the simulator in a transparent manner.

The Scheduler and Allocator Interfaces

We will dedicate some time to how the scheduler_base and allocator_base
interfaces are structured, since such entities are so important in our work.
Starting from the scheduler_base interface, it is designed so that the simula-
tor can invoke the scheduler through a standard schedule method. Its syntax
is the following:

schedule(cur_time, es_dict, es, debug)

The cur_time argument simply indicates the current time; the es_dict
argument, instead, points to the job dictionary used by the simulator, in order
to retrieve information about single jobs by using the corresponding IDs; the
es argument is the job queue itself, or a subset of it, which is structured as
a list of IDs. The debug argument, finally, is just a boolean flag allowing
to turn on and off verbose output. The method must return an array of
tuples, one for each job in es, each containing respectively the starting time
(if found), the job’s ID, and a list of length Jn defining to which node each
job unit was assigned. The simulator will then proceed to dispatch all jobs
that have a starting time corresponding to the current time.

Proceeding to the allocator_base interface, it is designed so that it can
be used by any scheduler in a transparent way, through an allocate method.
Its syntax is the following:
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allocate(es, cur_time, skip, reserved_time, reserved_nodes,

↪→ debug)

This method’s arguments are similar to the ones specified earlier. Here
however, the es list contains references to the job objects themselves, in this
case the ones supplied by the scheduler and for which an allocation is to be
computed. The skip parameter is a boolean, which can allow the allocator
to skip jobs in es if an allocation cannot be found, instead of stopping the
allocation process altogether. This can be needed by some schedulers. The
reserved_time and reserved_nodes arguments, instead, are related to backfill
implementations, and allow to set a list of reserved nodes that are to be
avoided by the allocator in a certain time frame. The method has the same
return type as the schedule one. Depending on wether the allocations were
successful or not, the scheduler will then decide how to proceed.

Simulation Process

We will now describe the simulator’s behavior at runtime. First of all, an
hpc_simulator object must be instanced. Its constructor will take the fol-
lowing arguments:

• The filepath of the workload to be used;

• The filepath of the system configuration file;

• A scheduler object.

The simulator’s constructor also accepts an optional reader object, for
workloads written in custom format. If none is specified, a default_reader
instance will be used, again for the SWF format. The system configura-
tion file, written in json, will contain the simulator’s settings, in particular
regarding the output format, and will also contain the path to a second con-
figuration file, which will instead define the structure of the simulated HPC
system: such file will be divided in two parts, the first of which will detail the
node types in the system, in terms of resource availability, while the second
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part will define how many nodes are available for each type. The scheduler
object, instead, must be an instance of a scheduler_base-like class, which in
its constructor needs in turn an allocator_base-like object, thus defining the
complete dispatching method.

Having instanced the simulator object, the simulation can be started
through the start_simulation method, which has the following syntax:

start_simulation(visualization, watcher, debug)

This method accepts various boolean arguments, allowing to enable or
disable verbose output, besides the watcher and visualization tools.
AccaSim, as mentioned earlier, is a discrete event simulator, meaning that it
will progress through discrete time steps : these steps correspond to events
that change the status of the system, which in this case are the submission,
the start and termination of jobs. Time steps are thus dynamically added as
new jobs are loaded and dispatched, and used to advance the simulation.
Jobs themselves can have various statuses. Such statuses are loaded, queued,
running and completed. A job which has been read from the workload will
shift from the loaded to the queued status, when its submission time Jtq is
reached. At this point it will be added to the internal job queue. Once
dispatched, the job will then reach the running status, and when terminated
it will finally reach the completed status. The real duration Jtr for each job
is known only by the simulator itself, and not by the dispatching component:
like in a real system, the latter can only use the estimated duration Jte and
wall time Jtw values in its computations.

The main simulation loop is fairly simple. At every simulation time step,
the simulator will execute the following procedures:

1. release the resources related to jobs that have terminated in the cur-
rent time step; the jobs are then removed from all data structures in the
simulator, shifted to the completed state, and their entries are written
to the output scheduling file;
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2. if there are pending jobs in the queue, perform dispatching by invok-
ing the scheduler, which will pick a set of jobs from the queue, and
pass them to the allocator; the scheduler will then return the set of
jobs that can be dispatched immediately, together with their resource
assignments;

3. if there are jobs to be dispatched, start them on the virtual system
through the resource manager component, thus modifying their state
from queued to running ; new time steps corresponding to the real and
estimated termination times for all started jobs are also added, by using
their Jtr and Jte values;

4. if the amount of jobs that are loaded but not yet queued is below a
certain threshold, load the next jobs from the workload, and add the
corresponding submission time steps; these jobs will be in the loaded
state. The reading process is incremental, in order to minimize the
memory usage related to big workloads;

5. transfer on the queue all jobs submitted at the next time step, shifting
their state from loaded to queued, and set this one step as current;

6. if its output is enabled, a new entry is written to the resource usage
log file, detailing how much time was taken by the simulation and
dispatching phases for the current time step, besides memory usage
and queue size.

The simulation ends when there are no more queued, running or loaded
jobs, and the selected workload file has been completely read. At this point
the output statistics file is written, detailing the total simulation time, the
average waiting and slowdown times, and other such metrics. The simulator
will then terminate.
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4.4 Performance of the Simulator

In this section we will evaluate the performance of the simulator, after de-
scribing which tests were performed and on which data, in order to support
the claim that AccaSim is fast and lightweight.

4.4.1 Test Methodology

In order to perform our tests, we chose to model the Seth system [35], located
at the High-Performance Computing Center North (HPC2N), in Sweden.
The system, built in 2001 and now retired, is composed of 120 nodes, each
having two AMD Athlon MP2000+ dual-core CPUs and 1GB of RAM. There
is a public workload available for the Seth system extracted from its log trace
[36], including roughly 200000 jobs and spanning through 3.5 years, from July
2002 to January 2006. The workload is in SWF format, and thus compatible
with the simulator’s default parser. The configuration files, together with the
workload we used, are available as examples on AccaSim’s GitHub repository.

Said workload was then tested with a series of dispatching methods.
We employed four different scheduler types, namely First-Come First-Served
(here named FIFO according to its implementation), Longest Job First (LJF),
Shortest Job First (SJF) and Easy Backfill (EBF). With these schedulers,
two different allocation heuristics were used, which were First Fit (FF) and
Best Fit (C), resulting in a total of eight combinations. The eight tests, split
in sets of four on two threads, were performed on an Apple Macbook Pro
Machine, mounting an Intel dual-core i5@2.2Ghz CPU, and 8GB of RAM.

4.4.2 Performance Results

We will now discuss the performance of the simulator from diverse points
of view. All the data and plots proposed here were computed starting from
the resource usage logs written for each test by AccaSim. In Table 4.1 we
can see various resource usage statistics for the test instances; first of all,
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Disp. Method Tot. Time
[mm:ss]

Disp. Time
[mm:ss]

Avg. Mem.
[MB]

Max. Mem.
[MB]

FIFO-FF 24:44 03:23 27.8 41.4
FIFO-C 26:31 04:43 27.5 40.9
LJF-FF 29:45 07:26 32.7 54.7
LJF-C 30:26 08:12 32.9 54.7
SJF-FF 25:48 05:19 32.5 54.7
SJF-C 27:19 06:14 32.5 55.4
EBF-FF 68:27 46:15 26.8 40.2
EBF-C 71:43 48:31 26.9 40.2

Table 4.1: Resource usage of the simulator.

we can see that across all instances RAM usage peaks at 55MB, keeping an
average below 30MB: AccaSim’s need for so little RAM memory grants it
great parallelization potential.

From the CPU point of view, we can see that most simulation instances
lasted around 30 minutes, with the only exception being the EBF instances,
that lasted roughly 70 minutes. This is to be expected, as Backfill is a much
more computationally intensive scheduling algorithm compared to the others.
We can also see the amount of simulation time that was specifically reserved
to dispatching: once again, we can see higher values for EBF. The remaining
time, which is used by the simulator to perform management tasks, such as
the loading, starting and termination of jobs, is mostly constant across all
test instances, and amounts to roughly 22 minutes. This is, once again, a
reasonable value, and the similar behavior of the simulator on all instances
makes it a reliable and predictable tool. The full simulation time, obviously,
also strongly depends on the specific workload, with higher times related to
more difficult and bigger instances.

In Figure 4.4a, we can see the average time required per simulation step
on all test instances. The results confirm what we have said earlier: the sim-
ulator itself, in its management tasks, takes a low, homogeneous footprint
on all instances, averaging slightly above 2ms; the rest of the time, which is
related to dispatching, depends on the scheduling and allocation heuristics
that were used.
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Figure 4.4: Scalability of the simulation process. Image taken from [6].

We also propose a scalability-oriented analysis: in Figure 4.4b, we can see a
plot depicting the time required by a specific dispatching method in function
of the queue size, again obtained from the test data, thus estimating the
computational complexity of each dispatching method. While all methods
retain a linear behavior, we can clearly see that EBF is much more intensive
than the others, scaling worse with higher queue sizes. It can also be seen
that the allocation heuristic being used does not make a big difference, sug-
gesting that the overall time complexity is dominated by the scheduler.
This kind of plot can be really useful, as it allows to perform a reliable scala-
bility analysis through real data in real-world conditions, proving AccaSim’s
potential as a testing and evaluation tool for dispatching methods.

These results shown by AccaSim are highly satisfying, as despite the
workload’s size, the simulator has still shown reasonably low simulation times
and a constant, small and reliable footprint on the system’s resources.
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Chapter 5

Developing New Dispatching

Heuristics

In this chapter we will finally face the development of new dispatching heuris-
tics for our target system, which is Eurora: we will thus present the schedul-
ing and allocation heuristics that were actively developed.

In Section 5.1 we will discuss the design and development approach we
pursued. In Sections 5.2 and 5.3, we will then discuss the scheduling and
allocation heuristics, respectively, that were developed and that will be tested
against the available workload.

5.1 Approach and Methodology

While developing new dispatching heuristics, we will adopt a data-driven
approach: the design and implementation process will not be guided by the-
oretical or intuitive assumptions, but rather by practical analysis on the
available data, which will provide us with a robust knowledge and under-
standing about the system’s behavior. At the same time, constant testing
will have a big influence on the development process, thus allowing us to
improve our heuristics as we are able to see how they behave on our system.
This kind of approach can be adopted, of course, because we have the right
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instruments for it: namely, a large and reliable workload, and an efficient
simulation environment. Our approach is data-driven also in other ways:
some of the heuristics we will use, for example to predict the job duration as
described in Section 3.3, are deeply data-driven as well, in the sense that they
employ data matching techniques rather than ones belonging to traditional
programming.

We should also point out what was effectively done in the scope of the
thesis: the scheduling algorithms that will be presented were already avail-
able, and on these the work was focused on improvement. The biggest part
of the work was done on the allocation heuristics, which were designed and
implemented from scratch. A specific framework was designed as well: such
framework is the one resulting in AccaSim, presented in Chapter 4, which
allows the integration between schedulers and allocators.

5.2 Available Scheduling Algorithms

In this section we will present and describe the scheduling methods, which
were already available for use, and that will be used for testing. All of
the following algorithms were implemented according to the scheduler_base
interface for AccaSim described in Section 4.3.3.

5.2.1 Simple Heuristic

The first scheduling algorithm we will propose is a simple queueing-oriented
algorithm, which just sorts the job queue according to a specific criteria.
This method is implemented in the simple_heuristic class, and can operate
in three different modes. These are First Come First Served (FCFS), Short-
est Job First (SJF) and Longest Job First (LJF). These three modes are
implemented, obviously, by using the estimated duration value Jde for each
job in the queue.

The algorithm’s behavior is very simple: at each invocation it will sort the

57



5.2. AVAILABLE SCHEDULING ALGORITHMS

job queue passed to it by the WMS, and then try to schedule each single job
to start immediately. In order to do so, each job is passed to the allocator,
which will return a suitable resource assignment for it. When an allocation
fails, and a job cannot be scheduled, the scheduler will stop and return the list
of jobs that were successfully allocated and that can be started immediately.
This is the implementation that was used in Section 4.4 to test the AccaSim
simulator with the FCFS, SJF and LJF algorithms.

5.2.2 Easy Backfill

The second scheduling algorithm that was implemented, still in a queueing-
oriented fashion, is an Easy Backfill algorithm. Its implementation can be
found in the backfill_heuristic class.

This Easy Backfill implementation does not perform any kind of sorting
on the job queue, which is left in its FIFO ordering. It should be pointed
out, however, that at this stage the reservations for blocked jobs are managed
on a per-node basis: this means that a whole node is always reserved for a
blocked job, and not a subset of its resources. When the reservation time is
reached, the allocator will then pick the subset of resources actually needed
by the job. The algorithm could thus be improved by allowing other jobs to
be allocated on the reserved nodes, in backfill mode, as long as they leave an
amount of resources which is sufficient for the reservation. However, we are
not sure if this could bring any sensible benefit. Since this method strictly
follows the behavior of the algorithm found in literature, there is not much
left to say about it. This is also the implementation used in Section 4.4 to
test the AccaSim simulator.

5.2.3 Priority Rule-Based

The heuristic we will present here is again queueing-oriented, and of the
priority rule-based type [7]. It is implemented in the prb_heuristic class.

This PRB algorithm is functionally very similar to the previous Simple
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Heuristic we presented. However, in this case the jobs are ranked according
to their estimated tardiness, first introduced in Section 2.1.3, which is the
relative delay compared to the expected waiting time for the job’s queue. As
presented in Section 3.1, in fact, the Eurora system has three job queues, each
with a different estimated waiting time depending on its specific purpose.
This value, defined as ewtq, is assumed to be of 1 hour for the debug queue,
of 6 hours for the parallel queue, and finally of 24 hours for the longpar queue.
These are taken into account by the scheduler, as AccaSim does not natively
support multiple job queues. At this point, to each job can be associated the
following ranking:

rankJ = −max(ewt) ∗ waitJ
ewtJq

(5.1)

In Equation 5.1, waitJ represents the current waiting time for job J , while
ewtJq is the expected waiting time for the queue it belongs to. max(ewt),
finally, is simply a normalization factor which corresponds to the maximum
ewt value for all queues in the system. This way, the algorithm will always
pick the jobs with the greatest tardiness value in the queue first.
There is also a tie-breaker mechanism in place, for jobs that share the same
ranking. This secondary ranking is given by the following formula:

tbJ = Jde ∗ [Jn ∗
∑
k∈res

Jr,k] (5.2)

In Equation 5.2, Jde is the expected duration for job J , while Jn is the
number of requested job units, and Jr,k is the resource request for a specific
resource type k in the system, in a single job unit. The product seen in the
second member simply expresses the total amount of resources requested by
the job. This amount, multiplied by the job’s expected duration, is usually
referred to as the job’s geometry, which is a simple approximation of how
much a certain job is going to keep the system busy. In this case, the tie-
breaker mechanism will favor jobs with a smaller geometry, which require
less resources and last for a lower time.
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It should be noted that this PRB algorithm, unlike the Simple Heuristic,
will not stop at the first allocation fail: instead, it will still try to allocate the
remaining jobs in the queue, until the end of it is reached. This can help to
improve the throughput, but could introduce the risk of starvation for some
jobs.

5.2.4 Constraint Programming-Based

The scheduling algorithm we will now present is planning-oriented, unlike the
ones we have discussed before. It is implemented in the cpa_scheduler class,
and is based on the constraint programming technique, which is an highly
optimized form of heuristic search based on sets of constraints that are to be
respected, and used to prune the search tree [7]. The algorithm, specifically,
employs the or-tools library made by Google [37], which implements various
models and search algorithms for constraint programming and optimization
in general.

As previously explained, a planning-oriented scheduling algorithm will try
to generate a schedule plan, thus assigning certain starting times to all jobs
in the queue. In this case, the size of the problem is bounded, in order to cope
with the online nature of the underlying system: every time the algorithm is
invoked, the job queue is sorted in the same way as in the Priority Rule-Based
algorithm presented earlier. Out of this sorted queue, a feasible schedule will
be searched only for the first N jobs at most (by default 100). The remaining
jobs won’t be considered in the optimization process, and will be statically
scheduled sequentially, one after the other, beyond a maximum makespan
point. This maximum makespan point is defined as follows:

max_mks = t+
∑
Ji∈Q

J i
de +

∑
Ji∈R

[J i
de − (t− J i

ts)] (5.3)

In Equation 5.3, t represents the current time, whileR is the set of running
jobs, and Q is the job queue. Basically, we are summing the total estimated
duration of all jobs in the queue, and the total estimated remaining time for
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running jobs. This, in other words, is a worst-case makespan, obtained if
all jobs are scheduled and complete in a sequential manner. This value is
also an upper bound to the search space for the jobs’ starting times, which
is limited to the interval [t,max_mks].

The set of decision variables used in the model is constituted of Interval
variables, one for each job in the subset of the queue being considered. An
Interval variable specifies the starting point Jts of an activity, which is char-
acterized by a fixed duration, in this case Jde . Such starting point has also
lower and upper bounds associated to it for the search, which are once again
t and max_mks, making up the variables’ domains of admissible values as
well.

The model is then characterized by a set of constraints, which are of the
Cumulative type, and are one for each resource type k in the system. Thus,
for Eurora, we will have four such constraints, namely for core, memory, gpu
and mic resources. Cumulative, which is a global constraint, is formulated
as follows:

cumulative([S1, S2, ..., Sn], [D1, D2, ..., Dn], [C1, C2, ..., Cn], C)

iff
∑

i|Si≤u<Si+Di

Ci ≤ C ∀u ∈ D (5.4)

In Equation 5.4 we are imposing that all tasks i, with certain starting
times Si, durations Di, and resource requests Ci, must never violate the
total capacity C for such resource, at any time u. D is, finally, the domain of
the S variables. In simple words, jobs must never be scheduled so that they
would use more resources than those available in the system. In our specific
case, the parameters for the equations above would be the following:
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Si = J i
ts

Di = J i
de

C = Ck ∀1 ≤ i ≤ n

Ci = J i
n ∗ J i

r,k

D = [t,max_mks]

(5.5)

In Equation 5.5, the quantity J i
n ∗ J i

r,k expresses the total request for
resource type k by job J i, while Ck is the total capacity for such resource
type in the system. The jobs J i being considered for these constraints are
those in the queue to be scheduled, and those that are currently running as
well. Since we are only considering the total resource availability for each
type in the system, without distinguishing between the single nodes, and we
are using the estimated duration for each job, the resulting model is relaxed.
This means that some inconsistencies could be found in the resulting schedule
plans, which will then be detected by the allocator, generating a feedback loop
between the two entities.

Finally, the objective function that will be minimized is the average
normalized tardiness seen in the Priority Rule-Based scheduler, as its first
ranking operator rankJ . The resulting formula is the following:

f(S) =
1

N

∑
J∈S

−max(ewt) ∗ waitJ
ewtJq

(5.6)

In Equation 5.6, S represents a full or partial solution that was found,
containing the assignments for the jobs’ starting times. This is the function
that guides the branching and variable choice strategies as well.

At this point, the search procedure itself can be started: given the vari-
ables to assign, the constraints to respect and the objective function to mini-
mize, an heuristic search is performed with the CPSolver or-tools class. This
search process is time-limited : if the algorithm cannot complete within the
basic time limit (1 second) and no solution is found, a new search is started
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by doubling such time limit. The process is repeated until a solution is found,
or a maximum time limit is reached, in which case no job is scheduled. In
general though, to higher time limits correspond better solutions. In this
case we are obviously not interested in obtaining the optimal solution, but
rather we prefer sub-optimal ones that work just as well, and that can be
obtained in a reasonable time.
After a schedule plan is found, all jobs with a starting point corresponding to
the current time are supplied to the chosen allocator: in this phase, it could
happen that some inconsistencies are found by it, and that some of the jobs
cannot be dispatched. These jobs are left in the queue, and will be again
considered for scheduling in the future, when a new search will be performed.
The other jobs, scheduled to start later, are simply discarded, and will be
considered again at the next scheduling call for a new search. This is the easi-
est solution to make the algorithm adaptable against new jobs arriving in the
queue, job duration over/under-estimations, and allocation inconsistencies.

5.3 Developed Allocation Heuristics

In this section we will now finally discuss the active development of allocation
heuristics, done in the scope of the thesis. The algorithms are all based on
the allocator_base interface in AccaSim, introduced in Section 4.3.3, and all
belong to the first-fit type of heuristics.

5.3.1 First-Fit Heuristic

The first allocation heuristic we will present is a simple first-fit algorithm,
which does not sort nodes in the system. It is implemented in the alloca-
tor_simple class, which is very important in the project, as it implements
the basic allocation loop that will be used by all of the other heuristics. The
entire allocator collection is in fact implemented in a object-oriented way,
and the other allocators just extend the Simple one, in order to maximize
code re-use and reliability: the full class diagram can be seen in Figure 5.1.
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Allocator_simple

+ allocate()
+ set_resources()
- sort_resources()
- adjust_resources()

Allocator_consolidate

- sort_resources()
- adjust_resources()

Allocator_balanced

- sort_resources()
- adjust_resources()

Allocator_weighted

+ set_resources()
+ allocate()
+ set_attr()

Allocator_hybrid

- sort_resources()

Allocator_priority_weighted

+ allocate()
- sort_resources()

<<interface>>
Allocator_base

+ allocate()
+ set_resources()
+ set_attr()

Figure 5.1: The class diagram for the package of allocators that was made.

The algorithm accepts single jobs or lists of jobs indifferently. We will
summarize its flow in the set of steps that follows:

1. Prepare the list of nodes in the system, through the sort_resources
method, which returns a list of node IDs. In this specific algorithm the
method is a dummy, and will just return the list of nodes as given by
the resource manager without sorting them in any way;

2. For each job in the input list to be allocated:

(a) If the reserved_nodes and reserved_time arguments are present,
compute the list of nodes that cannot be used, as they are re-

served by a backfill algorithm, by checking the overlap between
the reservation time and the job’s expected duration in respect to
the current time;

(b) Traverse the sorted list of nodes; for each node, compute its fit,
which is the number of job units fitting in it, and allocate as
many of them as possible; the cycle continues until all of the job’s
requested units are allocated, or the end of the list is reached;
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(c) If the allocation is successful, add its entry to the output list,
and sort again the list of nodes for the next job, with the ad-
just_resources method, which in this case is a dummy as well.
If the allocation was unsuccessful, there are two possibilities: if
the skip parameter is set to True, the entry for the job’s failed
allocation is added to the output list and the algorithm continues
with the next job; if the skip parameter is set to False, instead, all
of the subsequent jobs automatically fail as well and all of their
entries are written to the output list;

3. When all jobs have been processed return the allocation output list,
containing the node assignments for jobs to be dispatched immediately.

The algorithm was built to be as modular and flexible as possible. Since
the sort_resources and adjust_resources methods are already embedded in
the main allocation loop, any more elaborate allocator that wants to perform
sorting on the system’s nodes can be implemented by just extending these
two methods, without touching the allocate method at all. The distinction
between the two methods is also important: sort_resources must create from
scratch a sorted version of the nodes’ list, while adjust_resources will start
from an almost-sorted version of it resulting from the allocation of a job. This
approach leads to a huge performance improvement, as sorting an almost-
sorted list is usually very efficient.
The choice of allocating as many job units as possible in a single node is
natural as well: this way, we can greatly reduce strain on the network and
minimize the risk for resource fragmentation, by performing consolidation.
The allocator supports multiple reservations as well, making it compatible
with Conservative Backfill algorithms, and increasing its versatility.

The time complexity for this allocation algorithm is estimated to be, in
the worst case, at O(NM), where N is the number of jobs and M the number
of nodes in the system, assuming a constant, low, number of resource types k.
This worst case is reached when none of the jobs in the list can be allocated.
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5.3.2 Best-Fit Heuristic

The algorithm we will present here is a best-fit heuristic, and is implemented
in the allocator_consolidate class.

In this case, the best-fit condition is obtained by summing all resources
contained in a node, for all types, and by sorting them in ascending or-
der according to such amount. This implementation, in particular, is done
by extending the allocator_simple class: only the sort_resources and ad-
just_resources methods were extended, adding the necessary code to perform
sorting according to the best-fit policy.

This algorithm has a slightly higher time complexity compared to the sim-
ple first-fit one. The sorting methods use python’s sort algorithm, which is
based on an implementation of TimSort [38]. This algorithm has a worst-case
performance of O(nlog(n)), and a best-case performance of O(n), which is
achieved on almost-sorted arrays. We can safely say that the sort_resources
method will thus have a complexity of O(Mlog(M)), while adjust_resources
will have one of O(M), with M being again the number of nodes in the sys-
tem. The overall complexity of the algorithm would then be O(Mlog(M) +

MN), which can be approximated again to O(MN) if M and N , which is
the number of jobs, are in the same order of magnitude.

5.3.3 Balanced Heuristic

The heuristic we will present here is completely different from the ones seen
before, and is specifically targeted at Eurora and at other heterogeneous
systems as well. It is implemented in the allocator_balanced class, and like
the best-fit heuristic, it is based on the simple_allocator algorithm, with only
the sorting methods differing.

We will start from a simple observation made on the Eurora system: as
said in Section 3.1, half of the nodes in the system include GPU accelerators,
while the second half includes MIC units. In the default ordering, based on
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1 2 3 4 5 6 7 8

Nodes Before Sorting

3 4 5 6 1 7 2 8

Nodes After Sorting

Balanced Allocator Example Sorting

GPU
None
MIC

Figure 5.2: An example of the sorting technique used in Balanced on a fac-
simile of the Eurora system with 8 nodes, the first 4 having GPU resources,
and the remaining 4 MIC units.

their IDs, the nodes are divided in two distinct blocks depending on the ac-
celerator unit they have: specifically, we will find GPU units on the first 32
nodes, and MIC units on the last 32. This can lead to a series of problems:
when the system is almost empty, or many nodes have the same amount
of resources available, any sorting method will depend solely on the node
IDs. This means that many jobs will be allocated on nodes that have GPU
units, leading to fragmentation for such resource type, and to an unfair dis-
advantage for jobs requiring them, which are also the most common for this
system. Apart from this observation, it would be also natural in a hetero-
geneous system like Eurora to preserve scarce resources like the accelerator
units, by avoiding fragmentation in the respective nodes.

Basing on these preliminary observations, we designed the Balanced al-
locator, which is made to protect and balance the use of nodes possessing
certain resource types. Such balancing effect is achieved, in simple words, by
interleaving nodes having accelerator-like resources of different types, thus
not favoring any of them. This set of critical resource types, which the algo-
rithm must consider, can be set through its constructor: by default, these are
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the MIC and GPU types. The algorithm itself is rather simple, and works in
two phases:

1. All nodes in the system are collected in bins : there is a bin for each
critical resource type, and nodes are assigned to a specific bin according
to which of those they currently have available. If they do not have any,
they will be assigned to a special none bin. It may happen on some
systems that a node has multiple critical resource types: in this case, it
will be assigned to the bin for which it has the maximum availability;

2. The bins are combined in one only node list, which is built as follows:
at its head, there will be the nodes belonging to the none list, which
do not have any critical resources. Then, the rest of the list is built, at
each step, by picking a node from the currently longest bin, until they
are all empty. This approach is very similar to just interleaving the
bins, but is more robust when these are of different lengths, as nodes
possessing very scarce resource types are selected as last.

The Balanced allocator will avoid the allocation of jobs to nodes possess-
ing critical and scarce resources; even when these critical nodes are selected,
the ordering is such that no specific type of resource is penalized, but jobs
are rather distributed on nodes having different types of critical resources.
An example of which are the actual results of this sorting technique can be
seen in Figure 5.2. This allocator is most effective when the system is in a
low resource utilization state, and thus its balancing feature is more critical.
It should be noted, however, that it is designed with many assumptions in
mind, and for a specific system: it would be useless for homogeneous systems,
and even on other heterogeneous systems there would be no guarantee of its
effectiveness.

The algorithm is rather efficient: by default, no sorting is performed,
and since the first list-building phase of the algorithm has a linear cost of
O(M), the resulting complexity is equal to O(NM), exactly like in the first-fit
implementation.
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5.3.4 Weighted Heuristic

The Weighted heuristic is an improved version of the best-fit one, and is
implemented in the allocator_weighted class, which is also an extension of
simple_allocator.

Weighted performs sorting on the nodes’ list specifically for each job from
scratch, and does not adjust the sorted list after each allocation. Standard
best-fit performs in fact a job-independent sorting, and does not consider the
impact a job’s allocation has on a node, thus leading to potential resource
waste. Weighted does fix this: for each node, the number of fitting job units
is computed, and the amount of resources that would be left in the node
after such allocation is used to compute its ranking. Such sum is weighted
for each resource type as follows:

reqk =

∑
J∈Q

Jde ∗ Jn ∗ jr,k∑
J∈Q

Jde

wk =
reqk ∗ loadk

avlk

(5.7)

In Equation 5.7, wk is the weight itself which will be associated to re-
source type k, while reqk represents the average request for such resource
type by jobs J in the queue Q. This average is weighted by the expected
jobs’ duration, thus considering their geometry as well. loadk is instead the
load ratio for resource k, and avlk is its total base availability in the system,
acting as a normalization factor.
In other words, resources are weighted depending on how much they are
needed by jobs in the queue, and on their availability in the system: nodes
with scarcer, more needed resources will be put towards the end of the list in
order to be protected, similarly to what Balanced does with GPU and MIC
resources. The presence of complementary heuristic factors such as loadk and
reqk allows Weighted to perform well in most scenarios, for example when
the system has a small resource load or there are too few jobs in the queue
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to be considered. Many other solutions were tried, by removing components
in the heuristics or employing variants of them, but the one presented here
emerged to be the best-performing one.
Additionally, for schedulers like the Constraint Programming-Based one,
which compute actual schedule plans, the allocator is able to consider all
jobs scheduled in the future that are expected to overlap with the current
one, as well.

To limit the cost of the algorithm not all jobs in the queue are consid-
ered, but rather a sliding window of fixed length is used, starting from the
current job; besides, nodes that do not fit the considered job are discarded
before the sorting stage, thus improving its efficiency. Still, the algorithm
is more expensive than previous allocators, with a worst-case complexity of
O(NMlog(M)), since sorting has to be performed for each job.

Weighted is an effective and flexible allocator, often with performance
similar to Balanced, but without its strict design assumptions. It is, however,
less performant than the latter when the system is in a low resource utilization
state, as it does not possess its interleaving capability.

5.3.5 Hybridization Strategies

The Weighted and Balanced allocators have both good performance, but in
different scenarios, with Balanced usually performing better than Weighted
when the system has low resource load and vice versa. We will now present
some hybridization strategies that were developed, which try to combine the
strong points of both allocators in order to obtain optimal performance.

Hybrid Heuristic

The Hybrid allocator, implemented in the allocator_hybrid class, is literally
a combination of the Weighted and Balanced allocators. Specifically, it is an
extension of the allocator_weighted class, but accepts in its constructor a list
of critical resource types like Balanced.
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In this case, sorting on the nodes’ list is still performed per-job like in
Weighted, but the sorting procedure itself integrates the reasoning seen in
Balanced: the nodes are collected in bins like we have seen earlier, depending
on the set of critical resource types, but before these bins are combined in
the final list, they are sorted one by one according to the Weighted heuristic.
This allows to preserve the improved best-fit ranking seen in Weighted, while
integrating also the balancing and protection feature for critical resources
seen in Balanced, which cannot be achieved through standard sorting.

Hybrid is a worst-case approach to the critical resources problem pre-
sented earlier, and assumes fragmentation for those resources must be avoided
at all cost, at all times, without making assumptions on the workload’s distri-
bution. In fact, jobs needing such resources might be very rarely submitted,
and since the ordering imposed by the Balanced component is dominant
over the Weighted one, which is limited to the single bins, sub-optimal al-
location decisions may be performed. The complexity of the algorithm is
dominated by the Weighted sorting technique, and thus also results to be
O(NMlog(M)).

Priority-Weighted Heuristic

Priority-Weighted is the second hybridization strategy we will propose. It
is implemented in the allocator_priority_weighted class, which is again an
extension of allocator_weighted, and accepts a set of critical resource types
in its constructor.

This heuristic is a relaxed version of the Hybrid one, and is designed
with the purpose of protecting certain critical resource types, only if they
are actually needed by jobs, thus without using Balanced’s approach. This
is achieved by adding a new component to Weighted’s heuristic for resource
ranking, as in the following equation:

wk =
reqk ∗ loadk ∗ pk

avlk
(5.8)
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In Equation 5.8, pk acts as a priority value for each critical resource type
that was specified. For the other resource types, it is assumed to be always
equal to 1. Such priority value is implemented in a very simple way: ev-
ery time the allocation for a job requiring a certain critical resource k fails,
the priority value pk for such resource type is increased by a unitary value.
Conversely, when an allocation is successful, the corresponding value pk is
decreased. If a job requires multiple critical resource types, all of their prior-
ity values will be affected. The range in which the priority values can change,
together with the increment step, can be user-specified in the allocator con-
structor, and are by default set respectively to [1, 10] and 1.

This solution allows the allocator to dynamically react to new jobs arriv-
ing in the queue, thus taking into account the distribution of the workload,
and not treating all resource types equally. At the same time, since this
approach is seamlessly integrated in the Weighted heuristic, the allocator
will never pick highly ineffective allocation decisions: a node having critical
resources available, but with a good fit, will always be picked over a node
which has no critical resources available and a much worse fit. This condition
does not apply in Hybrid, which forces Balanced’s reasoning on Weighted.
Various other solutions were also tried for pk: for example, we tried using as
priority values the average number of allocation failures per-job or per-step,
the number of jobs in the queue for which allocation has failed, or even some
time-cooling priority mechanisms. Out of all of these, our priority mechanism
emerged to be the best technique, despite its simplicity.

Priority-Weighted is not always better than Hybrid: the two algorithms
have different strengths, with Priority-Weighted usually picking better allo-
cation decisions and being more adaptable to the workload distribution, and
Hybrid being able to better manage the system when it is not much loaded.
We must remember, in fact, that Hybrid implements the interleaving tech-
nique seen in Balanced, while Priority-Weighted does not. The algorithm
has the same time complexity of Weighted, at O(NMlog(M)), since it is a
natural extension of it.
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Chapter 6

Experimental Results

In this chapter we will finally look at the experimental results obtained with
the scheduling and allocation heuristics described earlier, on the Eurora work-
load. We will then draw our conclusions, after having described the behavior
of the system.

In Section 6.1 we will describe the test methodology, together with the
evaluation metrics that will be used. In Section 6.2 we will then look at the
results obtained with the full Eurora workload and in Section 6.3, instead,
we will analyze some more specific, focused test cases. In Section 6.4, finally,
we will draw our conclusions on the Eurora system and on the developed
heuristics.

6.1 Test Methodology

A wide number of tests was performed in the scope of the thesis. We used
the three variants of the Eurora workload, corresponding to the wall time,
real and estimated durations for jobs. Each of these three variants was tested
against all of the possible scheduler-allocator combinations: since we have 5
schedulers and 6 allocators available, we thus performed a total of 90 tests.
As we mentioned earlier, each test instance includes 372320 jobs, for a grand
total of 33.5 million jobs simulated and analyzed. We will use various metrics
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in order to evaluate the results obtained from testing, all of which were
introduced in Section 2.1.3.

The Eurora system was modeled and simulated through the AccaSim
simulator, presented in Chapter 4. In Eurora’s configuration file we defined
the two types of nodes in the system, possessing respectively GPU and MIC
accelerators, and their amount, which corresponds to 32 nodes for each type.
Finally, a parser was implemented in order to correctly read the job entries
from the workload, which are written in a custom format designed for the
PBS Workload Management System. It should be noted that since Eurora is
a system with multiple job queues, and AccaSim currently supports only one
queue, we may obtain slightly different results compared to the real system.
This, however, will not impact our observations regarding the effectiveness
of the dispatching methods being tested.

The tests were performed on a dedicated server machine, equipped with
a 16-cores Intel Xeon CPU and 8GB of RAM, and running Linux Ubuntu
16.04. We parallelized them on three different processes, one for each variant
of the Eurora workload. Each test instance took on average 5 hours to
complete; the only exceptions were the tests performed with the Constraint
Programming-Based scheduler, which required a time of one to two days.

Additionally, we performed a series of more specific tests: we considered
the jobs related to five different months in the Eurora workload, and con-
ducted tests with specific schedulers on them, in order to assess the influence
of an allocator on dispatching performance in short time frames.

6.2 Full Workload Tests

In this section we will present the results obtained with the full Eurora work-
load, and we will analyze them from different points of view.
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6.2.1 Results Overview

In Figure 6.1, we can see an overview of the results that were obtained with
the different schedulers, in terms of slowdown, queue size, and system load
ratio. For fairness, all schedulers were tested with the Simple allocator, as
this overview serves the purpose of understanding the macroscopic differences
between the scheduling methods.

The box plots depicted here show some key parameters of the metrics’
distributions: in particular, the horizontal lines represent the minimum, me-
dian and maximum values respectively. The triangles represent instead the
mean values, and the rectangles show the range between the first and third
quartiles. We used the logarithmic scale, because of the huge differences be-
tween the schedulers’ performance. Also, in order to obtain more meaningful
results, all jobs which achieved a slowdown of 1 across all test instances were
discarded from the distribution.

As it can be seen, the schedulers show enormous differences in terms of
performance, up to three orders of magnitude. These differences appear more
evident by considering the median and inter-quartile range values: the means,
in fact, are more influenced by outlier jobs that achieve bad performance
regardless of the scheduling method being used.
In terms of slowdown the clear winner appears to be the CP scheduler, for
which most jobs have values lower than 10. Predictably, the worst scheduler
is LJF, which is not a good choice for this kind of workload, mostly made
of short jobs. Conversely, SJF performs very well, with a performance close
to that of the CP scheduler. The EBF and PRB schedulers show instead
similar performance, and are in the middle ground.
All schedulers show a distinct improvement when using the real and predicted
job durations, thus proving the effectiveness of the latter. PRB is the only
scheduler being completely unaffected by the job duration estimation being
used: this makes sense, as this method does not consider the job duration in
any way, but only its delay compared to the queue’s expected waiting time.
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Figure 6.1: Overview of the test results for all schedulers, using the Simple
allocator.

In terms of queue size, the differences in performance are more nuanced:
while CP is again the best performer, with extremely low median values,
most schedulers achieve similar results. The influence of the job duration
estimation seems lower as well. Given their similar performance when using
the predicted job duration, one may prefer to choose the SJF scheduler over
the CP one: while the latter achieves globally optimal results, it is also
computationally expensive, while SJF is extremely lightweight.

Lastly, it can be seen that there are very minor differences in terms of
system load ratio. In this case, we considered the data related to time steps in
which the system had a load ratio higher than 75%, by including all resource
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types: this was done to emphasize the ability of each scheduler to keep the
system busy. As we can see, however, all schedulers show a very similar
behavior, with an average load ratio close to the 78% value. The absence of
big differences from this point of view is a curious fact, especially considering
that most schedulers show huge differences in terms of throughput.

6.2.2 Slowdown Analysis

We will now analyze more in detail the results we obtained, from the point
of view of slowdown. In Figure 6.2 the performance of all schedulers, tested
against all allocators, is shown. In this case, since the distributions are quite
similar within the same scheduler and the differences in performance are
smaller, we will only show the mean values in a linear scale. Like we have
done previously, jobs achieving a slowdown of 1 with all allocators for a fixed
scheduler were discarded from the computation.

It can be seen that, while the differences are not as big as across sched-
ulers, some allocators may significantly improve the performance of the dis-
patcher: for example, the PRB and EBF schedulers show an improvement
roughly between 15% and 20% when using allocation methods like Balanced
and Weighted. These improvements seem more evident when using the wall
time and the estimated duration, and they are in general much smaller when
using the real one.
LJF has a very peculiar behavior: unlike other schedulers, much better per-
formance is achieved when using the wall time duration, which is counter-
intuitive. This happens because LJF highly penalizes short jobs, which are
the most common in the Eurora workload, and the most sensible to slowdown
as well: by using the wall time duration, these jobs have a higher probability
of being picked first from the queue, hence the opposite behavior compared
to the other schedulers.

In general, it can be seen that the performance improvement related to
the allocators is more evident with low throughput schedulers: LJF has a
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Figure 6.2: Test results in terms of average slowdown for all schedulers.
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performance variability of over 50%, while SJF and CP see only minor dif-
ferences, suggesting us that their behavior is already close to the optimum
achievable with this workload. Drawing a winner among the various allo-
cators can be hard, as they show varying behavior: however, Weighted and
Priority-Weighted represent the most reliable alternatives, with stable per-
formance across all schedulers. Hybrid seems to be more unpredictable and
surprisingly, Consolidate seems to be the worst-performing allocator, often
worse even than Simple.

6.2.3 Queue Size Analysis

Queue size is the second parameter we will analyze in order to assess the
performance of the various allocation methods. In Figure 6.3 the performance
in terms of queue size is shown for each scheduler and allocator: like with
the slowdown, we are only showing the mean values, as they are sufficiently
descriptive for our analysis.

It seems evident that, for this specific parameter, the allocation method
being used has a smaller influence, compared to what we have seen with
the slowdown; there are still some differences, especially for the wall time
and estimated duration instances, with the biggest variations found again
in the LJF scheduler. PRB shows appreciable improvements as well: this
last case seems to be rather strange, as the Consolidate allocator shows a
distinctly worse average queue size, which is roughly 20% bigger than with
the Weighted and Balanced allocators.

The smaller improvements in terms of queue size, compared to what we
have seen with the slowdown, are expected. This is in fact a parameter that
depends primarily on the scheduler, which has full control over the job queue.
The allocator acts instead as a slave component with a limited, scheduler-
defined view of the queue, and thus having a smaller influence over it.
Still, the fact itself that the allocator policy being used can influence the
system’s throughput meaningfully is a relevant fact: as we have seen earlier,
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Figure 6.3: Test results in terms of average queue size for all schedulers.
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allocation methods are often made with a different purpose in mind, for
example to improve job locality or power consumption, while the scheduler
alone is usually in charge of maximizing the system’s throughput, unlike what
happens here.

6.2.4 Resource Allocation Efficiency Analysis

Having characterized the differences in terms of throughput between the var-
ious dispatcher configurations, we will now consider how efficiently resources
are allocated. In Figure 6.4 the mean resource allocation efficiency values,
calculated per-job in each test instance, are presented. Unlike with the slow-
down and queue size overview, the differences are not big enough to justify
the visualization of all parameters of the distribution, which are very similar
across all instances.

As it can be seen, all schedulers behave in a very similar way and show
the same kind of trend: this is to be expected, as the resource allocation ef-
ficiency depends mostly on the allocation policy being used, rather than the
scheduler. There are minor differences though, with LJF predictably scoring
lower values than the other schedulers.
With all schedulers, it can be seen that Consolidate is the allocator achieving
the highest mean resource allocation efficiency: this makes sense, as Consol-
idate is a pure best-fit allocator targeted at performing consolidation, while
the other methods are more throughput-oriented. Allocators like Priority-
Weighted and Hybrid are however able to reach values close to those of
Consolidate, which is a good result.

The results shown here are far from optimal: it can be seen that no
scheduler-allocator combination is able to reach mean resource allocation
efficiency values above 60%, which means that in most cases jobs are allocated
with a poor fit, thus leading to high resource fragmentation. This is weird, as
scheduling methods like Easy Backfill or the Constraint Programming-Based
one are highly performant, and designed to exploit the system’s resources
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Figure 6.4: Test results in terms of average resource allocation efficiency for
all schedulers.
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to their maximum at all times. The same goes, again, for allocators like
Consolidate. At the same time, the type of job duration estimation being
used does not produce significant improvements, with unstable results across
the various instances. This leads us to believe that the poor values obtained
here do not depend on the dispatching methods themselves, but rather on
the system’s design and on the workload’s structure.

6.2.5 Load Ratio Analysis

We will now perform a more detailed analysis about how the system’s re-
sources are used in our workload, and what issues there might be with Eu-
rora’s design, preventing the system from reaching optimal resource efficiency
values. For our purpose, we will use the per-step variant of the resource
allocation efficiency metric, which is similar to the load ratio and able to
characterize very well the utilization of resources in the system.
Also, at this stage we will only consider the Constraint Programming-Based
scheduler with the Weighted allocator, using the real duration variant of the
workload: this was done in order to present an optimal case, as confirmed by
the slowdown and queue size results, and to get rid of all dispatching-related
influence factors a priori. We still compared the results obtained with the
other schedulers and allocators, which proved to be similar or slightly worse
than the ones shown here.

In Figure 6.5 we present a first plot depicting the resource utilization
observed in our workload. Every point is related to a time step in the sim-
ulation: the X values represent the number of nodes used by running jobs,
while the Y values represent the resource allocation efficiency on such nodes
for said jobs. This is a density distribution plot, where darker areas represent
values with a higher frequency in the distribution, and vice versa.
This plot is not very informative: we can however see that, almost regardless
of the number of used nodes, the resource allocation efficiency is always in
the 60%-80% range, sometimes stretching even lower, and thus confirming
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Figure 6.5: Test results in terms of resource efficiency for the CP scheduler
with the Weighted allocator, while using the real job duration, for all resource
types.

our previous results. The fact that this metric is almost independent from
the X values is, again, not a good sign.

Figure 6.6 is much more insightful, as we present the same plot shown
earlier, but separated for each resource type in Eurora. It is evident that there
is no problem with the GPU and MIC resources: their resource allocation
efficiency values are almost always in the 80%-100% range, which is very
good and close to optimal. Among the two, MIC resources seem to perform
slightly worse, but it is likely due to the extremely low frequency of jobs
needing such resources. In fact, there are very few points in which more than
40% of the MIC-equipped nodes are used, which is also coherent with the
workload analysis performed in Section 3.2.

There are instead evident issues with the allocation of CPU and memory
resources: their resource allocation efficiency values are mostly low, and sim-
ilar to those of the first plot we have shown. Memory resources, in particular,
perform very bad, and their efficiency is mostly in the 40%-80% range. This
suggests us that these two resource types are badly used in the system, and
that fragmentation is high for them.

We can now draw come conclusions: first of all, there is a glaring issue
related to GPU-based jobs. The frequency of such jobs in the workload is too
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Figure 6.6: Test results in terms of resource efficiency for the CP scheduler
with the Weighted allocator, while using the real job duration, divided by
resource type.
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high compared to the amount of GPU resources available: this means that
such resources can act as a bottleneck to the entire system, thus impairing
its performance, while MIC resources go unused most of the time. Besides,
since there are only 2 GPUs in each node, at most 2 units for a given job can
be allocated to a single node: jobs requiring many units will thus be spread
over a large quantity of nodes, leaving a great amount of unused resources.
The second issue is related to memory management: in the PBS Workload
Management System, and in our workload as well, the basic memory alloca-
tion unit is 1GB, with each node having 16GB available. This kind of memory
allocation policy is too coarse, and will most likely lead to large amounts of
wasted memory in the system, as most jobs will be allocated considering a
worst-case upper bound. We are confident that a more fine-grained memory
allocation policy could dramatically improve the system’s throughput.

The low resource allocation efficiency values obtained with the various
dispatching configurations in Section 6.2.4, together with their low variabil-
ity, must then be attributed to a series of system-level issues that can be
hardly solved. This is also the reason for which the various schedulers and
allocators have such a dramatic effect on the throughput: in a small-scale and
delicate system like Eurora, job planning and management of the resources
are critical.

6.3 Single Test Cases

Having characterized the system’s behavior with the full workload, we will
now present some specific test cases, in which certain scheduling methods
were used on a subset of the full workload’s data. This will allow us to better
understand how allocation methods can influence the system’s throughput
on short time frames.
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Figure 6.7: Results obtained with the Constraint Programming-Based sched-
uler, for the May 2014 instance using the wall time duration.

6.3.1 May 2014

Here we consider all jobs which were submitted in May 2014. This workload
is made up of 4931 jobs, of which 68.8% are GPU-Based, while 30.8% are
of the Standard type, and the remaining 0.4% are MIC-Based. Since the
first two classes of jobs are mostly balanced in frequency, this instance is not
an excessively hard one. The Constraint Programming-Based scheduler was
used, together with the wall time as a job duration estimation.

As shown in Figure 6.7, there are large variations on the results depend-
ing on the allocator used. In particular, there is a 50% difference, in terms
of slowdown, between the Consolidate and Weighted allocators. Discarding
the former, all remaining allocators perform similarly, with Hybrid achiev-
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ing optimal performance. Similar improvements can also be seen with the
average queue size, even though they are more subtle, as observed earlier.

The resource utilization plot in terms of system load ratio is shown as well
for the month considered, and was obtained from the Weighted allocator’s
instance. It can be seen that the curve itself is rather smooth, since the CP
scheduler is able to keep resource utilization high and stable, by planning the
schedule in advance. Load ratio values are always low though, which may
be related to both the workload being very small, and to the considerations
made regarding Eurora’s design in Section 6.2.5.

6.3.2 June 2014

The second test instance we are presenting is related to the month of June
2014, and contains 6204 jobs. Of those, roughly 91% are GPU-Based, while
8.6% are Standard, and the remaining 0.4% are MIC-Based. This test was
performed with the Shortest Job First scheduler, using the predicted job
duration.

The results are shown in Figure 6.8. As it can be seen, the slowdown
and queue size average values are low and homogeneous for all allocators,
with negligible differences. This is due to both the workload being relatively
"easy", with most allocators being able to reach optimum results with the
SJF scheduler, and to the astoundingly high percentage of GPU-Based jobs,
which leaves little room for improvement on the allocator’s side.

The resource utilization plot, obtained again from the Weighted instance,
is also quite peculiar: the system load ratio is most of the time at a roughly
constant level, with a single, prolonged spike towards the middle of the
month. This likely means that the few jobs making up the workload are
short and spaced enough between each other, in terms of submission times,
to not cause any kind of congestion in the system regardless of the scheduler.
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Figure 6.8: Results obtained with the Shortest Job First scheduler, for the
June 2014 instance using the predicted job duration.

6.3.3 August 2014

We will consider now the month of August 2014, with 47967 jobs. These
are divided in 84.8% GPU-Based jobs, 14.8% Standard jobs, and 0.4% MIC-
Based jobs: the workload is similar to the June 2014 one, but much larger in
size. This test was performed by using the Easy Backfill scheduler, with the
predicted job duration.

In this case, there are again large variations in the results obtained with
the various allocators, which are shown in Figure 6.9. While all average
slowdown values are quite small, there is a 25% difference between Simple
and Weighted, and a 40% one between Consolidate and Weighted. This last
allocator is the best-performing one for this month as well. Queue size values
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Figure 6.9: Results obtained with the Easy Backfill scheduler, for the August
2014 instance using the predicted job duration.

show a similar trend, confirming Weighted’s good performance.

The resource utilization plot, as always related to the Weighted allocator,
is much more noisy than the previous ones, with load ratio values almost
always lower than the 60% threshold. This is rather surprising as Backfill, like
the CP scheduler, is able to efficiently fill the gaps in the system’s resources
to better use them. The spikes are then probably due to the high presence of
GPU-Based jobs: even if the system has a low load ratio, GPU-Based jobs
cannot be started as long as some accelerator units are not released, thus
leading to inefficient resource utilization.
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Figure 6.10: Results obtained with the Priority Rule-Based scheduler, for
the September 2014 instance using the wall time duration.

6.3.4 September 2014

The test instance analyzed in this section is related to the September 2014
month, and contains 77786 jobs. Of those, 87.8% are again GPU-Based,
11.4% are of the Standard type, and 0.8% are MIC-Based. This workload is
very similar to the August 2014 one: in order to obtain meaningfully different
results, we experimented with the Priority Rule-Based scheduler, using the
wall time duration.

The results depicted in Figure 6.10 show again meaningful differences be-
tween the various allocators. Balanced, together with its refinement Hybrid,
are the best-performing allocators, with 40% lower average slowdown values
compared to Simple and Consolidate. The same differences can be seen in
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the average queue sizes, and are more pronounced than in the other tests.
Weighted and Priority-Weighted do slightly worse than Balanced, but are
still better than Simple and Consolidate.

The resource utilization plot, obtained with the Weighted allocator, is
similar to the one seen for the August 2014 instance, thus confirming the
similarity between the two workloads, even though the schedulers being used
are different. In this case, much higher load ratio values are reached, going up
to 80%: this is likely due to the comparatively higher presence of jobs based
on CPU and memory alone, which can be allocated to the nodes equipped
with MIC units.

6.3.5 January 2015

The last workload we will analyze considers the January 2015 month, and
is made of 46768 jobs: of these, 93.4% are GPU-Based, 6.4% are Standard,
and only 0.2% are MIC-Based. The Priority Rule-Based scheduler was again
used, this time with the predicted job duration.

The results in Figure 6.11 are quite extreme: most allocators achieve
average slowdown values 50% lower than the Simple allocator, and almost
an order of magnitude lower than Consolidate. The queue size results reflect
those seen with the slowdown, with large differences being observed.
These results should not be taken as an example of the influence an allocation
method can make on system throughput, as they are exceptional: however,
they prove that allocation heuristics not designed with the target system in
mind can lead to disastrous results. This applies in particular to Consolidate,
which has very bad performance in this case, despite being a theoretically
optimal best-fit allocator.

The plot for resource utilization is quite peculiar, and was obtained again
with the Weighted allocator. The curve is mostly smooth, and shows a rising
trend from the start to the end of the month. This is likely an indicator of
the presence of very long jobs, both Standard and GPU-Based: in this case,
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Figure 6.11: Results obtained with the Priority Rule-Based scheduler, for
the January 2015 instance using the predicted job duration.

managing the resources efficiently is vital, as poor allocations can lead to
large numbers of jobs piling up in the queue, and to the bad results shown
here for the Simple and Consolidate allocators.

6.4 Experimental Observations

The experiments we performed show that the adoption of certain allocation
heuristics can substantially improve the throughput of an HPC system,
and thus the Quality of Service offered by it. Our claims are related to het-
erogeneous and small-scale systems in particular, in which the management
of certain resource types is vital, but can be extended to homogeneous or
large-scale systems as well.
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We have also shown that the impact of an allocator on the throughput is
more limited on long time frames, in the order of years: the overall, macro-
scopic behavior of the system is in this case dictated by the scheduler, with
light QoS improvements given by the allocator which can be up to 20%. At
the same time, we noticed bigger improvements with low-performance sched-
ulers, while smaller variations have been observed with high-performance
scheduling algorithms. This applies to the kind of job duration estimation
being used as well, with greater room for improvement observed when us-
ing low-accuracy measures like the jobs’ wall time. When considering short
time frames like months, however, the allocator has a much bigger impor-
tance, and can dramatically influence the throughput of the system, thus
impacting directly the QoS perceived by users. We even observed differences
of one order of magnitude in throughput, which are very significant.
All of these results depend, of course, on the workload’s typology: cases of
particularly difficult instances that result in bad QoS regardless of the sched-
uler and allocator being used are not rare, but they should not be taken much
into account, because of their exceptional nature.

We have also observed and explained the flaws present in Eurora’s design
and in its workload, which limit the system’s performance and efficiency: we
are referring, in particular, to the severe imbalance between the availability
of GPU resources, and the frequency of GPU-Based jobs in the workload.
The system was, in fact, designed under the assumption of uniform usage
of GPU and MIC resources. In this small-scale, delicate, resource-critical
environment the allocator’s role gains great importance, and it has proven to
be a fundamental component in the optimization of a Workload Management
System.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this work we have designed, implemented and analyzed various dispatching
methods targeted at heterogeneous HPC systems which, as we have seen, are
both more powerful and more delicate than their homogeneous counterparts,
and require better care in order for their potential to be fully exploited; our
analysis considered the Eurora HPC system, and was focused on through-
put evaluation specifically. We dedicated particular attention to allocation
heuristics, as most of the scheduling algorithms being used were already
available and just needed minor tweaking and improvement work. We have
also used and analyzed various methods for job duration estimation, with
particular attention on a novel data-driven prediction heuristic, which has
proven to be highly beneficial to system throughput.
Besides, we have contributed to the development of several core components
of AccaSim, an HPC Workload Management System simulator which has
been developed in the University of Bologna, and used in the context of our
research. Lastly, as a natural step, we have analyzed the Eurora system
and its workload: this analysis allowed us to show its peculiarities and weak
points, besides making the behavior of our algorithms more comprehensi-
ble and scientifically explainable. This will allow us, in turn, to make our

95



7.1. CONCLUSIONS

considerations independent from the specific system being used and its scale.

Our work has shown the importance of allocation heuristics in HPC sys-
tems: in a heterogeneous, small-scale context, an allocation heuristic de-
signed with a particular system in mind can significantly improve the Quality
of Service offered by it, and a good scheduler alone is not enough to achieve
this goal. We have also seen that a good heuristic for the prediction of the
jobs’ duration can improve the throughput by several orders of magnitude,
even though this is closely related to the scheduling policy being used, rather
than the allocation one.
We have, specifically, observed a certain duality while analyzing the effect of
allocation heuristics on throughput: while on long time frames, like years,
only small variations in throughput can be observed, up to 20%, much bigger
ones can be seen when considering short time frames, in the order of months,
which also correspond to the users’ perception of the system. We even ob-
served throughput variations as large as one order of magnitude: these lead
to a fundamental change in user experience with the HPC system being
considered, due to its online and interactive nature, and are therefore very
significant. This duality between short and long time frames also suggests
us that the system’s behavior is in the long term dominated by the schedul-
ing method being used, with the allocator acting as a slave component, in
accordance to the architecture model we proposed.

Our analysis of the Eurora system also allowed us to understand how
delicate heterogeneous HPC systems are, and how easy it is for them to
be used in inefficient ways, which lead to resource under-utilization, high
waiting times, and low energy efficiency. This stems, in our specific case,
from the interaction of the system with a workload with certain statistical
features, such as the very high frequency of GPU-Based jobs in Eurora’s,
which go against its design assumptions. Thanks to this analysis, we are
again able to fully comprehend the behavior of our algorithms, and thus
extend our considerations to larger-scale, different contexts as well, and to a
great variety of systems.
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7.2 Future Work

Future work will be targeted at testing the implemented allocation heuris-
tics’ effectiveness with different systems, and with different workloads, as we
need to get past the limits that lie within Eurora. This system was, in fact,
thoroughly explored and analyzed, and there is a need to move towards a
larger-scale context. We will also experiment with new, different allocation
heuristics more akin to the mapping type, in order to see how they compare
against the ones we developed, which are mainly designed to be lightweight.
Lastly, while already fast and efficient, our heuristics could see some opti-
mization work, in order to further improve their scalability.
As for AccaSim, the future plans for development are aimed at improving
existing features and adding new ones, as the core of the simulator is a solid
base. First of all, we plan to improve the visualization tools, by adding fea-
tures aimed at producing specific plots in order to evaluate the results. We
also plan to improve the resource usage monitoring features and, most im-
portantly, a synthetic job generation mechanism will be added, in order to
grant more flexibility to the simulator. This will allow us, in fact, to create
workloads with specific statistical features, useful for our research, without
needing actual data which may be difficult to obtain. Lastly, we plan to add
native support for systems with multiple job queues.

Our work regarding the AccaSim simulator was presented at the Latin
America High-Performance Computing Conference (CARLA 2017), held on
September 2017 in Buenos Aires, Argentina, with the paper "AccaSim: an
HPC Simulator for Workload Management". A second paper, focused on our
experimental results, is currently in the works and expected to be submitted
for the 15th International Conference on the Integration of Constraint Pro-
gramming, Artificial Intelligence, and Operations Research (CPAIOR 2018),
which will be held on June 2018 in Delft, Netherlands.
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