ALMA MATER STUDIORUM - UNIVERSITA DI
BOLOGNA

SCUOLA DI SCIENZE

Corso di Laurea Magistrale in Informatica

DEVELOPMENT OF DATA-DRIVEN
DISPATCHING HEURISTICS FOR
HETEROGENEOUS HPC SYSTEMS

Relatore: Presentata da:
Chiar.mo Prof. Alessio Netti
Ozalp Babaoglu

Correlatore:
Chiar.ma Prof.ssa
Zeynep Kiziltan

IT Sessione
Anno Accademico 2016/2017






“When we first went out into space, you showed me the Galaxy.

Do you remember?”
“Of course.”

“You speeded time and the Galaxy rotated visibly. And I said, as though
anticipating this very time, ‘The Galazy looks like a living thing, crawling

through space.’” Do you think that, in a way, it is alive already?”

[Isaac Asimov - Foundation’s Edge/






Introduzione

Nell’ambito dei sistemi High-Performance Computing, realizzare euristiche di
dispatching efficaci é fondamentale al fine di ottenere buoni livelli di Quality
of Service. Per dispatching intendiamo i metodi tramite cui i task (o jobs)
sottomessi dagli utenti al sistema sono selezionati e preparati per ’avvio su
di esso, sia in termini temporali che di allocazione delle risorse. In questo
contesto, ci concentreremo sul design e ’analisi di euristiche di allocazione
per il dispatching; tali euristiche saranno progettate per sistemi HPC etero-
genet, nei quali i vari nodi possono essere equipaggiati con diverse tipologie di
unita di elaborazione. Alcune di esse, inoltre, saranno di tipo data-driven,
e dunque sfrutteranno 'informazione fornita dal workload corrente in modo
da stimare parametri ignoti del sistema, e migliorare la propria efficacia.

Considereremo in particolare Eurora, un sistema HPC eterogeneo realizzato
da CINECA, a Bologna, oltre che un workload catturato dal relativo log di
sistema, contenente jobs reali inviati dagli utenti. Un contesto di tal genere,
in piccola scala ed eterogeneo, costituisce 'ambiente perfetto per la valu-
tazione di diversi metodi di dispatching. Tutto cio é stato possibile grazie ad
AccaSim, un simulatore di sistemi HPC da noi sviluppato nel Dipartimento
di Informatica - Scienza e Ingegneria (DISI) dell’Universita di Bologna: Ac-
caSim é uno strumento innovativo per I'analisi dei sistemi HPC, il quale ha

attualmente pochissimi rivali in termini di flessibilita ed efficienza.

In particolare, quest’elaborato affronta il tema della valutazione di metodi
di dispatching HPC in un ambiente simulato, insieme all’impiego di euristiche
data-driven per la predizione della durata dei jobs. Cio é stato fatto al fine
di stimare 'impatto di tali tecniche sul throughput del sistema, in termini di
tempi di attesa e dimensione della coda dei jobs, ancora una volta nell’ambito
dei sistemi HPC eterogenei, piu difficili da gestire rispetto alle controparti
omogenee.
Il contributo principale di questo lavoro consiste nel design e nello sviluppo di

nuove euristiche di allocazione: queste sono state impiegate insieme a metodi



di scheduling gia disponibili, i quali sono stati a loro volta adattati e miglio-
rati. Le euristiche sviluppate sono state poi testate con il workload di Eurora
disponibile, in diverse condizioni operative, e successivamente analizzate. In-
fine, si é contribuito in modo significativo allo sviluppo di diverse parti core
del simulatore AccaSim.

Quest’elaborato mostra che I'impatto di diverse euristiche di allocazione sul
throughput di un sistema HPC eterogeneo non ¢ trascurabile, con variazioni
in grado di raggiungere picchi di un ordine di grandezza. Tali differenze in
termini di throughput sono inoltre molto piti pronunciate se si considerano
brevi intervalli temporali, come ad esempio dell’ordine dei mesi, suggerendoci
che il comportamento a lungo termine del sistema ¢ dettato principalmente
dal metodo di scheduling utilizzato. Abbiamo inoltre osservato che I'impiego
di euristiche per la predizione della durata dei jobs & di grande beneficio al
throughput su tutte le euristiche di allocazione, e specialmente su quelle che
integrano in maniera pitt profonda tali elementi data-driven. Infine, ’analisi
effettuata ha permesso di caratterizzare integralmente il sistema Furora ed
il relativo workload, permettendoci di comprendere al meglio gli effetti su di
esso dei diversi metodi di dispatching, nonché di estendere le nostre consid-

erazioni anche ad altre classi di sistemi.

La tesi ¢ strutturata come segue: nel Capitolo 1 presenteremo una breve
panoramica dei sistemi HPC, mentre nel Capitolo 2 introdurremo formal-
mente il problema del dispatching, insieme alle soluzioni pitt comuni per lo
scheduling e I'allocazione. Nel Capitolo 3 descriveremo il sistema Eurora, e
successivamente il simulatore AccaSim, sviluppato ed utilizzato nell’ambito
della tesi, nel Capitolo 4. Presenteremo dunque le soluzioni per lo schedul-
ing e 'allocazione sviluppate nel Capitolo 5, e nel Capitolo 6 discuteremo i
risultati sperimentali ottenuti con esse. Infine, nel Capitolo 7 presenteremo

le nostre conclusioni, nonché la direzione del lavoro futuro.

ii



Introduction

In the context of High-Performance Computing systems, good dispatching
methods are a fundamental component that can help achieve good Quality
of Service levels. By dispatching, we intend the methods with which tasks (or
jobs) submitted by users to the system are selected and allowed to start on
it, both in terms of timing and allocation of resources. In this work, we will
focus on the design of allocation heuristics for dispatching; these will be
targeted at heterogemeous HPC systems, which may possess different kinds
of computing units in different nodes of the system. Some of our heuristics
will be data-driven as well, thus exploiting information in the workload in
order to estimate certain parameters and improve their own effectiveness.

Our analysis will be focused on Eurora, an heterogeneous HPC system de-
veloped by CINECA, in Bologna, and on a workload captured from its log
trace, containing real user-submitted jobs: such a small-scale, heterogeneous
context is a very good testbed for the evaluation of dispatching methods. All
of our work was possible thanks to AccaSim, an HPC system simulator that
we have developed in the Department of Computer Science and Engineering
(DISI) of the University of Bologna: AccaSim is a novel instrument for the
analysis of HPC systems, which has currently very few competitors in terms

of flexibility and speed.

In detail, our work deals with the evaluation of HPC dispatching methods
in a simulated environment, while using data-driven heuristics for the pre-
diction of the jobs’ duration. This was done in order to assess their impact
on system throughput, in terms of job queue size and waiting times, again
in the context of heterogeneous HPC systems, which are harder to manage
than homogeneous systems.

The main contribution of our work lies with the design and development
of new allocation heuristics: these were used together with some already-
available scheduling methods, which were adapted and tweaked as well. The

developed heuristics were then tested against the available workload for Eu-

il



rora, in a variety of conditions, and subsequently analyzed. At last, in our
work we have significantly contributed to the development of various core
parts of the AccaSim simulator.

This work shows that the impact of allocation heuristics on the throughput
of an heterogeneous HPC system is not negligible, with variations that reach
up to an order of magnitude in size. The differences in throughput between
the various heuristics are also much more pronounced when considering short
time frames, such as months, suggesting us that the system’s long term be-
havior is dominated by the scheduling method being used. We have also
observed that the usage of job duration prediction heuristics greatly benefits
the throughput across all allocation heuristics, and especially on those that
integrate such data-driven elements more deeply. Finally, our analysis helped
fully characterize the Eurora system and its workload, allowing us to better
comprehend the effect of various dispatching methods on it, and to extend

our considerations to other systems as well.

The thesis is structured as follows: in Chapter 1 we will present a brief
overview of HPC systems, and in Chapter 2 we will extensively discuss the
dispatching problem, together with the most common solutions for scheduling
and allocation. In Chapter 3 we will introduce the Eurora system, followed
by the AccaSim simulator, which was developed and used in our work, in
Chapter 4. We will then present all of the scheduling and allocation solutions
that were developed in Chapter 5, and in Chapter 6 we will discuss the
experimental results obtained with such heuristics. At last, in Chapter 7 we

will present our conclusions, and point the direction of future work.

v



Contents

1 An Overview of HPC Systems

2

1.1
1.2
1.3
1.4

1
HPC Systems and their Purposes . . . . . . . .. .. .. ... ... 1
Taxonomy of HPC Systems . . . . . ... ... ... .. ...... 2
State of the Art . . . . . . . . . . ... 4
Typical Structure of an HPC System . . . . . . ... .. ... ... 5
1.4.1 Physical Architecture . . . . . ... .. ... ... .. ... 5
1.4.2 Software Architecture . . . . .. .. .. ... ... ..... 7

Dispatching in HPC Systems 9
2.1 The Dispatching Problem . . . . . . ... ... ... ... .... 9
2.1.1 Formal Definition of Job . . . . . . ... ... ... ... .. 9
Practical Assumptions . . . . . . . ... ... .. ... ... 11

Definition of Workload . . . . . . . ... ... ... .. ... 12

2.1.2  Formal Definition of Dispatcher . . . . . . . . ... ... .. 12
2.1.3 Metrics for the Evaluation of Schedules . . . .. ... ... 14
Makespan . . . . . . .. ... 14

Waiting Time . . . . .. .. . ..o 15

Slowdown . . . . . .. .. ... 16
Throughput and Queue Size . . . . . . . .. ... ... ... 16

Resource Utilization . . . . . .. ... .. ... ... ..., 17

Resource Allocation Efficiency . . . . . . .. ... ... ... 18

2.2 The Scheduling Sub-Problem . . . ... ... ... ......... 19
2.2.1 Definition and Hypotheses . . . . . . . .. . ... ... ... 19
2.2.2  Common Scheduling Algorithms . . . . .. ... ... ... 21
First-Come First-Served . . . . . .. . ... ... ... ... 21

Longest Job First and Shortest Job First . . . . . . ... .. 21

Priority Rule-Based . . . . . .. ... ... ... ... .. 22

Backfill . . . . . ... 22
Optimization and Planning-Oriented Algorithms . . . . . . 24

2.3 The Allocation Sub-Problem . . . . . . . ... ... ... ... ... 25
2.3.1 Definition and Hypotheses . . . . . . . .. .. ... .. ... 25
2.3.2  Common Allocation Algorithms . . . . . .. ... ... ... 27
Simple First-Fit Policy . . . . . . ... ... .. ... .... 27



CONTENTS

Best-Fit Policy . . . . .. .. ... .. ... 0. 27

Priority Rule-Based . . . . . .. . ... ... ... ... .. 28
Cooling-aware and Power-aware Placement . . . . . .. .. 29
Topology-aware Placement . . . . . . . . ... .. ... ... 30

2.4 Commercial Workload Management Systems . . . . . . .. ... .. 30
The Eurora System 32
3.1 System Overview . . . . . . . . . . . . ... 32
3.2 Analyzing the Eurora Workload . . . . . . .. ... ... ...... 34
3.2.1 Workload Overview . . . . . . . . ... ... ... ...... 34
3.2.2 Detailed Analysis . . . . . .. ... L 36
Standard Jobs . . . ... 37

MIC-based Jobs . . . . . .. ... 37

GPU-based Jobs . . . . . .. ... 38

3.3 Estimating the Job Duration . . ... .. ... ... ... ..... 40
The AccaSim Simulator 42
4.1 The Purpose of HPC System Simulators . . . . . .. ... ... .. 42
4.2 Stateofthe Art . . . . . . .. 43
4.3 Overview of AccaSim . . . . . . . . . .. ... 44
4.3.1 Main Features. . . . . . .. ... ... .. .. 45
4.3.2  Architecture Overview . . . . . . . . .. ... ... ..... 46
4.3.3 Implementation . . . . . ... ... Lo 48
Class Diagram . . . . . . ... ... ... ... ....... 48

The Scheduler and Allocator Interfaces . . . . . . . ... .. 49

Simulation Process . . . . . . .. ... ... L. 50

4.4  Performance of the Simulator . . . . .. ... ... ... ... ... 53
4.4.1 Test Methodology . . . . ... ... ... ... ... ... 93
4.4.2 Performance Results . . . . . ... ... ... ... ..... 53
Developing New Dispatching Heuristics 56
5.1 Approach and Methodology . . . . . ... .. ... ... ...... 56
5.2 Available Scheduling Algorithms . . . . . .. ... ... ... ... o7
5.2.1 Simple Heuristic . . . ... .. .. ... . L. o7
5.2.2 Easy Backfill . . ... ... .. ... 0L 58
5.2.3 Priority Rule-Based . . . . .. ... ... ... ....... 58
5.2.4 Constraint Programming-Based . . . . . . .. .. ... ... 60

5.3 Developed Allocation Heuristics . . . . . . . ... ... .. ..... 63
5.3.1 First-Fit Heuristic . . . ... ... ... ... ... ..... 63
5.3.2 Best-Fit Heuristic . . . . . ... .. ... ... ... ..., 66
5.3.3 Balanced Heuristic . . . .. .. ... ... ... ....... 66
5.3.4 Weighted Heuristic . . . . . ... .. ... ... ... .... 69
5.3.5 Hybridization Strategies . . . . . . .. .. ... ... 70
Hybrid Heuristic . . . . . ... . ... ... ... .. .... 70

vi



CONTENTS

Priority-Weighted Heuristic . . . . . .. ... ... ... .. 71

6 Experimental Results 73
6.1 Test Methodology . . . . . . . . . . .. . ... ... ... ..., 73
6.2 Full Workload Tests . . . . . .. ... ... .. ... ... ..... 74
6.2.1 Results Overview . . . . . . . .. .. .. ... ... ..... 75

6.2.2 Slowdown Analysis . . . . . . ... ... ... ... ... 7

6.2.3 Queue Size Analysis . . . . . ... ... L 79

6.2.4 Resource Allocation Efficiency Analysis . . . . .. ... .. 81

6.2.5 Load Ratio Analysis . . . . . ... ... ... ... ..... 83

6.3 Single Test Cases . . . . . . . . . . . 86
6.3.1 May 2014 . . . . . .. 87

6.3.2 June 2014 . . . ... 88

6.3.3 August 2014. . . . . . 89

6.3.4 September 2014 . . . . . .. ... 91

6.3.5 January 2015 . . . . . ... Lo 92

6.4 Experimental Observations . . . ... .. ... ... .. ...... 93

7 Conclusions and Future Work 95
7.1 Conclusions . . . . . . . .. ... 95
7.2 Future Work . . . . .. ... 97

vil



List of Figures

1.1 Market Share for HPC Architectures over time . . . . ... .. .. 2
1.2 Physical architecture of Sunway-Taihulight . . . . . . ... ... .. 6
1.3 Example software architecture of an HPC system . . . . . . .. .. 7
2.1 Schematization of a simple dispatching system . . . . . . . . .. .. 14
2.2 An example resource utilization plot . . . .. . ... ... ... .. 18
2.3 An example application of Easy Backfill . . . ... ... ... ... 23
3.1 A picture of the Eurora System . . . . . ... ... . ... ... .. 33
3.2 Eurora workload distributions - All Jobs . . . . . ... .. ... .. 35
3.3 Eurora workload distributions - Standard jobs . . . . . . . ... .. 37
3.4 Eurora workload distributions - MIC-Based jobs. . . . . . . .. .. 38
3.5 Eurora workload distributions - GPU-Based jobs . . . . .. .. .. 39
3.6 Error distribution for job length prediction in Eurora . . . . . . .. 41
4.1 The monitoring tools in AccaSim . . . . . . . .. .. ... ... .. 46
4.2  Architecture of AccaSim . . . . . ... ... 47
4.3 AccaSim’s class diagram . . . . ... ..o 48
4.4 Scalability plots in AccaSim . . . . . . . ... ... 55
5.1 Class diagram for the allocator package . . ... ... ... .... 64
5.2  An example application of the Balanced allocator . . . . . . . . .. 67
6.1 Test Results - Overview . . . . . . . . ... .. ... .. ...... 76
6.2 Test Results - Slowdown . . . . . ... ... ... ... ... ... 78
6.3 Test Results - Queue Size . . . . ... .. ... ... ... ..... 80
6.4 Test Results - Resource Allocation Efficiency . . .. ... ... .. 82
6.5 Test Results - Load Ratio . . . . . ... ... ... ... ...... 84
6.6 Test Results - Load Ratio Per-Resource . . . . ... ... ... .. 85
6.7 Test Results - May 2014 . . . . . . . .. ... ... ... 87
6.8 Test Results - June 2014 . . . . . . . . . . . .. ... ... ... 89
6.9 Test Results - August 2014 . . . . . . . . ... ... 90
6.10 Test Results - September 2014 . . . . . . . . .. . ... ... .... 91
6.11 Test Results - January 2015 . . . . . . . ... ... ... ... ... 93



List of Tables

3.1 Parameters of the job queues in Eurora

3.2 Statistics for jobs in the Eurora workload . . . ... .. ... ...

4.1 AccaSim’s resource usage statistics . .

1X



Chapter 1

An Overview of HPC Systems

In this chapter we will introduce the main notions behind HPC systems, and
will provide basic knowledge which will be essential for the rest of the thesis.
We will also look at the state of the art in HPC systems, and at the main

architectural schemes used in this field.

The chapter is organized as follows: in Section 1.1 we will introduce the
notion of HPC system. In Section 1.2 we will then look at the taxonomy of
HPC systems, and at the architectural solutions that have emerged during
the years. In Section 1.3, instead, we will present the state of the art in this
field, while in Section 1.4 we will describe a generic architecture for systems
of this kind.

1.1 HPC Systems and their Purposes

High-Performance Computing (HPC) defines a class of systems and prob-
lems, sharing the need for powerful computational resources and high flex-
ibility [1]. While there is no formal definition, an HPC system is generally
characterized by a custom-designed architecture, which offers computational
resources to its users that are not commonly attainable. This necessity arises
in turn from the need to perform very complex, data-intensive and resource-

hungry tasks (or jobs) in a reasonably small time, which is very common



1.2. TAXONOMY OF HPC SYSTEMS

Share

1995 2000 2010

|| single Processor Constellations SMP [T Cluster

W ver I sivo

Figure 1.1: A plot of the market share for different HPC architectures over
time. Image taken from [2].

today in research and industrial contexts.

The internal structure of an HPC system is usually hidden from the user,
who interacts with it through specific interfaces. Such structure, however, is
usually very complex and includes intricate networking, cooling and power
infrastructures as the scale of the system grows, making the design and op-

timization of HPC systems an open research field.

HPC systems are used in a wide array of applications. Some of these,
for example, are related to fields like big data, complex systems, NP-Hard
problem solving and scientific computing in general: the number of fields in
which there is a need for HPC systems and techniques is becoming higher

and higher as technology advances.

1.2 Taxonomy of HPC Systems

Popular Architectures HPC systems come in different forms and shapes,
and have greatly evolved in the last 20 years according to technological ad-

vancements [1], as it can be seen in Figure 1.1. In the past, HPC systems

2



1.2. TAXONOMY OF HPC SYSTEMS

mostly came in the form of mainframes, which were very powerful machines
composed by just one node. These machines required specialized hardware
and were highly expensive.

Modern HPC systems, and the dramatic improvement in terms of computing
power that came with them, arrived however with the advent of Cluster ar-
chitectures: with this term we refer to systems composed of a large number of
inexpensive commodity machines. These machines can offer great combined
computing power, and are also easy to replace in case of failure. In general,
the resources in such a system are shared between many users as well. Being
heavily distributed, Cluster systems are however burdened by many issues
regarding connectivity, fault tolerance and power management. A variant of
the Cluster architecture is the Grid one [3], in which machines in the system
are geographically distributed, with network latency and node heterogeneity
thus becoming critical aspects.

While our work is general and not bound to a specific system type, we will

from now on focus on Cluster systems for our analysis.

Homogeneous and Heterogeneous Systems We may further divide
HPC systems in two more categories, namely Homogeneous and Heteroge-
neous systems. As the name implies, an Homogenous system is one where
there is only one type of main processing unit and one instruction set. This
implies that all nodes are identical and made of the same components. In an
Heterogenous system, instead, each node may possess multiple types of pro-
cessing units and accelerators; for example, nodes may include GPU, FPGA
or MIC units. Besides, nodes may be made of different components entirely.
While heterogeneous HPC systems are generally more flexible than homoge-
nous ones, they are also harder to manage, as the fragmentation of available

resources may become a serious concern.

Online and Batch Systems HPC systems and computer systems in gen-
eral can operate in online and batch modes: a system operating in batch

mode will execute a pre-defined, static set of jobs at specific times. No new



1.3. STATE OF THE ART

jobs can be added without manual intervention, and finding the best order
and resource assignment for the tasks to be executed is something that needs
to be done only once. The jobs will complete in a finite amount of time, and
the system will return to an idle state after that.

Online systems, on the other hand, are highly interactive and allow new
jobs to freely enter at any time, without particular timing boundaries, and
as such they are always running. This second class of systems, while much
more powerful than batch systems, is also harder to manage as well, because
of resource management concerns. Practically all HPC systems fall into the
online category, and as such, we will treat techniques and algorithms designed

for these systems.

1.3 State of the Art

At the time of writing (June 2017) the most powerful HPC system in the
world is the Sunway-TaihuLight, located at the National Supercomputing
Center in Wuxi, China [4]. This system can reach a peak performance of
125PFlops, and is made of more than 40000 computing nodes, grouped hi-
erarchically at multiple levels. Each node contains an SW26010 unit, which
is an integrated, heterogeneous, many-core processor, and 32GB of RAM.

Power consumption under full load is measured at 15.371 MW.

Immediately after TaihuLight system we can find its predecessor, the
Tianhe-2 system, scoring 33.9PFlops of peak performance, and also located
at China’s National Supercomputing Center. It is composed of 16000 com-
puting nodes, each having an Intel IvyBridge Xeon CPU, an Intel Xeon Phi
co-processor, and 88GB of RAM. Other notable HPC systems are the Piz
Daint and the Titan, with peak performances of 19.6PFlops and 17.6PFlops
respectively [2].

As we can see, the most powerful HPC systems have broken the 100PFlops
barrier, and are growing towards the exa-scale goal, which implies perfor-

mance in the order of ExaFlops. This goal cannot be however reached by

4



1.4. TYPICAL STRUCTURE OF AN HPC SYSTEM

just increasing the size of current HPC systems, as power consumption is a
serious concern. To reach exa-scale performance, in fact, an increase of at
least one order of magnitude in power consumption is required, compared to
current HPC systems [5]; this means that the development of new techniques
and architectures aimed at improving the energy efficiency and sustainability

of HPC systems is now necessary more than ever.

1.4 Typical Structure of an HPC System

HPC systems may have wildly different software and physical architectures,
depending on their nature and purpose: here, we will present the architecture

of a generic cluster-based online HPC system.

1.4.1 Physical Architecture

In Figure 1.2 the physical architecture of the Sunway-TaihuLight system,
introduced in Section 1.3, is shown. Being generic enough, this architecture
will be used as a template to characterize how an HPC system usually works

and arranges its physical resources.

Frontend Section The frontend of the system is made of a series of servers
through which users can interact with it. Like in every large-scale system,
such servers may be divided in different groups depending on their purpose,

like web access, system control, storage access, and so on.

Backend Section We can find a backend section in the system as well.
Such backend section is usually tasked with control and management of the
system as a whole, and will include nodes for resource and state management,

besides job dispatching.

Computing Nodes The computing section includes most of the physical

resources in the system, and is made of the machines, or nodes, that actually



1.4. TYPICAL STRUCTURE OF AN HPC SYSTEM

Directory Sy Application
control servers servers

994/909/09/09009

Management network A

Central switch network 0

Figure 1.2: The physical architecture of the Sunway-TaihuLight HPC system.
Image taken from [4].

execute jobs, and have the most computational power available. Computing
nodes are usually organized hierarchically in sub-groups depending on the
size of the system, physically and logically. This can lead to more efficient

networking architectures, and can make the management of the system easier.

Networking Infrastructure Networking is a critical part in any HPC
system. Different internal networks are usually employed for different pur-
poses, such as for management or storage access. These networks are also
arranged with a hierarchical structure reflecting that of computing nodes,

thus with multiple levels of network switching.



1.4. TYPICAL STRUCTURE OF AN HPC SYSTEM

_HPCusers & & HPCsystem ]
: Workload Management System System resources | !

Job dispatcher

User 2

QoepIU]

User 1 le

[z } b o
@ 1 ; Resource

i E manager o)

O S

O b S
© i  F o <

=

Figure 1.3: A simplified scheme for the software architecture of a generic
HPC system. Image taken from [6].

1.4.2 Software Architecture

In Figure 1.3 we can see the typical basic software architecture used in mod-
ern HPC systems. The components we will now present are part of the
Workload Management System, which is the component regulating the use

of physical resources in the system, and the one we are most interested in.

User Interface Users interact with the system through a software inter-
face, which acts as a frontend. This interface allows jobs to be remotely
submitted by users, and regulates their arrival and execution; besides, it will
also allow users to track their status, and manage them. It could be either a
G UlI-based or command-line interface. An HPC system usually also has one
or more queues for jobs submitted by users that are waiting to be executed,

with different priorities and features.

Dispatcher Actual management of jobs is handled by the dispatcher com-
ponent, which periodically selects one or more jobs from the queues, and
allows them to start on the system, either in a reactive or proactive way.

The dispatcher includes the scheduler and allocator components, which re-
spectively define the when and where of each job’s execution. In detail, the

scheduler decides when a job should be executed, thus imposing the ordering



1.4. TYPICAL STRUCTURE OF AN HPC SYSTEM

of jobs in the queue. The allocator, instead, decides which resources and
computing nodes in the system a job should use. In general, the dispatcher
component is the one responsible in the system with ensuring a good Quality
of Service (QoS) level, by minimizing the waiting times for the submitted
jobs. Besides deciding which, when and how jobs should run, the dispatcher
is also tasked with triggering the start of these jobs by interacting with the

resource manager Component.

Resource Manager The dispatcher is able to start jobs and allocate them
on specific nodes thanks to an abstraction layer called the resource manager:
this entity keeps track of the state of resources and nodes in the system,
besides that of running jobs. The resource manager usually acts as a server,
with a monitor-like client running in each node in the system. Thus, when the
dispatcher wants to execute a job, it will interact with the resource manager
in order to perform scheduling and allocation, and then again to physically

allocate the resources needed for the new job.



Chapter 2
Dispatching in HPC Systems

In this Chapter we will analyze the dispatching problem in HPC system,
and see how it can be formalized. We will also discuss which are the most
commonly used techniques and algorithms, and we will present some of the

commercial solutions available on the market.

The Chapter is organized as follows: in Section 2.1 we will lay the formal
foundations for the dispatching problem. In Sections 2.2 and 2.3, instead, we
will discuss the scheduling and allocation sub-problems, respectively. Finally,
in Section 2.4 we will look at the main commercial solutions for dispatching

in HPC systems that are available in the market.

2.1 The Dispatching Problem

2.1.1 Formal Definition of Job

A job is, generically, a user-submitted task that is to be executed on an HPC
system. Jobs in most HPC systems belong to the parallel class, and are
composed of many independent running units that can communicate with
each other, for example through message-passing interfaces [7].

A job J, made of an executable file together with its arguments and input

data, is identified by an unique ID J;p, and has various attributes associated



2.1. THE DISPATCHING PROBLEM

to it. Some of them are related to time, and the most important are:

e J,: the queue in the system to which the job was submitted;
e J;,: the time at which the job was submitted to the system;
e J;.: the time at which the job started its execution;

e J; : the time at which the job ended its execution;

o J;.: the expected duration for the job, which is an estimation and not

representative of the real duration;

o J; : the real duration for the job, which is computed after its termina-

tion as J;, — Ji.;

.Jd‘

w

the wall time, which is the maximum time for which the job is

allowed to run, and usually determined by the system itself;

A job may have other descriptive attributes, such as the name of the user
that submitted it. There also are some attributes specifically associated to
the resources requested by the job and supplied to it: a resource is the most
elementary hardware unit of a certain kind available in a computing node,

like a CPU core, or a certain quantity of RAM. These attributes are:

e J,: the number of job units requested by the job. These can be consid-
ered as the independent instances, each of them running on a specific

node, that make up the job;

e J.: adata structure representing which types of resources are needed by
each job unit, and in which amount. A job unit request is homogeneous
if all J, units request the same type and amount of resources, and

heterogeneous otherwise;

e J,: the resource assignation given by the system for the job, when it is
scheduled to start. It can be interpreted as a vector of J,, records, with
each of them containing the list of resources in a specific node assigned

for a particular job unit.

10



2.1. THE DISPATCHING PROBLEM

According to how they behave in regards to the resources supplied by the

system, we can additionally define various classes of jobs [7]:

e Rigid: these jobs need the exact amount of resources that were re-
quested in order to run, and cannot adapt to any kind of change in

their amount, either at run-time or at scheduling time;

e Evolving: unlike rigid jobs, they may request on their own initiative
new resources to the system at run-time. If such new resources are not

supplied by the system, the job won’t be able proceed;

e Moldable: these jobs can adapt to an amount of resources supplied
by the system that is higher or lower than the requested one; after the
jobs starts, however, such allocation of resources is never allowed to

change again;

e Malleable: they are a generalization of moldable jobs, and admit
changes in the allocation of resources in respect to the requested ones

both at run-time and at scheduling time.

Practical Assumptions

Job unit requests in PBS-based systems like Eurora, presented in Section 3.1,
are all bound to be rigid and homogeneous, using J,, resource-wise identical
job units. Since this is a reasonable assumption, and Eurora is our system of
interest, we will also adopt this constraint, which has nothing to do with the
heterogeneity of the underlying HPC system. Under this assumption, the J,.
structure will be a list, with each element J, in it defining the amount of
resources for type k needed by each job unit.

Also, the system’s behavior regarding the wall time J;, may differ according
to its nature: again, as in Eurora, we will suppose that any job exceeding in

duration its wall time value will be terminated by the system.

11



2.1. THE DISPATCHING PROBLEM

Definition of Workload

Workloads are a very important part in the analysis of HPC systems. A
workload is simply a set of jobs relative to a certain time frame, that need
to be dispatched according to their submission time values and resource re-
quests. A workload may be synthetic, and thus generated statistically by
software, or extracted from log traces belonging to a real HPC system. In
both cases, the jobs’ real durations are included, allowing the workload to
be used in simulated environments. Also, being inherently static, a workload
allows for repeatable experiments and for reliable comparisons between mul-
tiple dispatching techniques. A workload is usually stored in a text-like file,
with a certain format and specific attributes, with each entry corresponding

to a single job.

2.1.2 Formal Definition of Dispatcher

The dispatcher is a software component in online HPC systems, which selects
pending jobs from the queue, and allows them to start their execution. For
simplicity, we will consider a system with only one queue available, but our
considerations will be valid for systems with multiple queues as well. A
dispatcher should be very fast and not computationally intensive, as it is
the component responsible for guaranteeing a good QoS level in the system,
and it can negatively impact its performance. The dispatcher is part of the

Workload Management System, and it may behave in two different ways:

e Reactive: the dispatcher is invoked only when significant events occur
in the system and trigger a status change, such as when new jobs arrive

on the queue, or some others terminate;

e Proactive: the dispatcher is invoked independently from events in the
system, for example in a slotted manner, thus dispatching jobs in the

queue at regular time intervals.

12



2.1. THE DISPATCHING PROBLEM

The basic behavior of a dispatcher is shown in Equation 2.1. The dis-
patcher, when invoked, will allow a subset D of jobs waiting for execution in
the queue Q to start. For each job J of D, the dispatcher will have assigned
to it a starting time Jtis and a resource assignation J!. This assignment is
called a dispatching decision, and jobs in D that were scheduled to start at

the current time step are prepared and removed from the queue.

In a dispatcher, the scheduler and allocator components can be identified:
the scheduler is tasked to determine the starting time J;, of each job in D and
is identified by the s function, which may depend on both the characteristics
of job J¢ and the status of the queue (). The allocator, instead, defines a
suitable resource assignment J! for each scheduled job, and is identified by
the a function, again depending on both the job J* and the queue (). Both
the scheduler and the allocator interact with the resource manager compo-
nent introduced in Section 1.4, in order to obtain information regarding the

system’s status.

D= (JYJ?% ..., 0 CQ )1
Ji=s(J,Q), J.=a(J,Q) VJ €D 21
The three phases of dispatching, namely job selection, scheduling and al-
location are not to be intended in a sequential order. The subset D of jobs
that are successfully dispatched is actually determined after the scheduling
and allocation phases. In general, a feedback loop is present between the
three parts of dispatching: the scheduler may select a particular subset of
jobs to dispatch depending on its job selection heuristics, with certain start-
ing times, and pass them to the allocator. However, the allocator may not
be able to find suitable assignations for certain jobs, forcing the scheduler to
select another strategy, or a different subset of jobs altogether.
The reasoning we presented is synthesized in Figure 2.1. In this figure, the
solid lines represent the flow of execution, while dashed lines represent infor-

mation used by entities in the dispatcher.

13



2.1. THE DISPATCHING PROBLEM

Dispatcher

Job Queue j Scheduler

Starting
Times

Y.

Dispatching Decision

Job Selection
awooINQ
uoneso||y

Resource

Resource b Allocat Assignments
Manager  f----_-}-- O ocator

Figure 2.1: A representation of the workflow for a simple dispatching system.

2.1.3 Metrics for the Evaluation of Schedules

In this section we will present some of the many metrics generally used to
evaluate the effectiveness of a dispatcher. These metrics consider different
factors, and cover various aspects of the system: by using combining them, we
can obtain a detailed view of the dispatcher’s behavior, and make reasonable
comparisons. As anticipated, a dispatcher is usually tested with a workload
in order to evaluate its performance. This kind of methodology is preferable,

as it allows for reliable and repeatable experiments.

All of the metrics we will present are mainly comparative: if a dispatcher
achieved bad performance on a certain workload, it wouldn’t necessarily mean
that the dispatcher itself is not effective, but most likely that the workload
is inherently difficult and hard to manage. At the same time, by using the
same workload we can effectively compare various dispatching methods.
Finally, as most of the following metrics are computed on a per-job or per-
step basis, it is usually necessary to look at their distribution for a given

workload in order to obtain meaningful data on the system’s behavior.

Makespan

The makespan is a temporal metric, and is very common for the evaluation

of scheduling systems. It is formulated as follows:

14



2.1. THE DISPATCHING PROBLEM

mks = max (J;)— min (J}.) (2.2)

0<i<n—1 0<i<n—1° **

As represented in Equation 2.2, the makespan expresses the time interval
between the earliest starting job, and the latest ending job. It is, in other
words, an estimation of how effectively a dispatcher can pack jobs by assign-
ing them to resources in the system: lower makespans signify better results,
as it means the dispatcher is able to efficiently use the resources available in
the system, which will be busy for a shorter time.

The makespan metric, however, is meaningful only for batch systems, that
are bound to run for finite amounts of time; for online systems, instead, which
are by definition made to be ever-running and prone to continuously-changing

work conditions, the makespan is less relevant and not important.

Waiting Time
The waiting time is a temporal, per-job metric, and as the name implies it
can be expressed through the following formula:

wa’ét] = Jts — Jt (23)

q

As it can be seen in Equation 2.3, the waiting time for a job corresponds
to the time interval between its arrival in the queue, expressed by J; , and
its starting time, represented by .J;,. In general, lower waiting times can be
associated with better results, as the system is able to promptly dispatch

jobs without having them to wait too much time in the queue.

Sometimes, for systems with multiple job queues each with a different
priority and expected waiting time, it may be useful to consider a normalized
form of the waiting time, which is the tardiness: this metric corresponds to
the job’s wait divided by the expected waiting time for its queue, and is an
approximation of the job’s relative delay compared to how much it would

have been expected to wait before being started.

15



2.1. THE DISPATCHING PROBLEM

Slowdown

The slowdown metric can be seen as a refined form of the waiting time [8].
The waiting time, in fact, does not consider one important fact: jobs with
long durations are less susceptible to high waiting times, as they will have
lower influence on the total turnaround time, represented by wait; + Jg, ,
which is the sum between the waiting and the real execution times. On
shorter jobs, instead, the turnaround time could easily become greater than
the execution time by orders of magnitude. The slowdown metric captures
this, and can be interpreted as a sort of perceived waiting time. It is formu-

lated as follows:

waitJ + Jdr
Ja

As expressed in Equation 2.4, the slowdown is computed as the turnaround

T

time normalized by the real execution time of the job. A system achieving
comparatively lower slowdown times is more performant: however, since the
slowdown has a big impact on short jobs mainly, it is usually good practice
to also consider the standard waiting time, which is equally representative

for short and long jobs.

Throughput and Queue Size

The throughput and the queue size metrics are highly descriptive of a dis-
patcher’s performance. These are not per-job metrics, but rather per-step
ones: this means they are computed every time the dispatcher is invoked to
schedule new jobs. The queue size and throughput metrics can be expressed

through the following equation:

tpe = | D
qst = |Q
Equation 2.5 can be interpreted in a straightforward way. The throughput

(2.5)

tp corresponds to the size of the set of jobs D that are successfully dispatched

16



2.1. THE DISPATCHING PROBLEM

and started at a certain time t, as seen in Equation 2.1. The queue size gs,
instead, corresponds to the size of the queue @) after dispatching has been
performed. As said earlier, both metrics are computed for every time step ¢
in which the dispatcher is invoked. Also, the two metrics behave similarly:
an higher throughput corresponds to a lower queue size, both of which mean
the dispatcher is able to schedule jobs effectively. Considering just one of the

two is usually enough to evaluate the performance of a system.

Resource Utilization

The most generic metric for the evaluation of a dispatcher in an HPC system
is the resource utilization: it consists in the amount of resources in the system
that are actively used by jobs at every time step. This is a per-step metric as
well, but in this case we are considering all time steps, and not only those in
which dispatching is involved. This is because jobs terminate their execution
and free resources in the system independently from the dispatcher. A simple

way to compute resource utilization is the following:

Rused
Rtotal

The formula depicted in Equation 2.6 defines the load ratio at time t,

load; = (2.6)

which is the ratio between the amount of used resources R, .4 in the system,
and the total amount Ry, of those available by default in it. This is a
very good way to express the resource utilization, since the load ratio is
represented by a number bounded in the range [0, 1], thus independent from
the scale of the system.

It is common to consider a specific subset of resource types in the system,
in order to obtain more comprehensible and meaningful results: because of
this, resource utilization is often computed in regards to CPU resources alone,

since they are the most common ones and usually needed by all jobs.

In this case, looking at the distribution of resource utilization values may

not be informative: using a visualization in function of time is much better,

17



2.1. THE DISPATCHING PROBLEM

Resource Utilization - Eurora - Month 01/2015, 1st week

1.04

0.8 1

o
o

CPU Load Ratio
o
H

0.2

0.0 T T T T T T
1/01 2/01 3/01 4/01 5/01 6/01 7/01
Time

Figure 2.2: A plot depicting CPU resource utilization for the Eurora system,
in the first week of January 2015.

and allows us to better compare different dispatching methods, as seen in
Figure 2.2. The explanation is that the resource utilization metric is not
meaningful at all times: during its normal operation, an HPC system will
cross many working phases, some of which are not relevant. We are not, in
fact, interested in periods when the system is in an idle or low-utilization
state. We are only interested in observing the behavior of the system when it
is almost fully loaded and there is a constant stream of jobs being submitted,

as only in this scenario the qualities of a particular dispatcher can arise.

In general, low average resource utilization values and long queues in-
dicate fragmentation in the system: with this term we mean the condition
in which some nodes have few resources left, that cannot be used by any
job and are thus wasted, and is mostly caused by badly designed allocation
heuristics. Conversely, a dispatcher able to keep the system’s resources fully

loaded at most times is usually very good.

Resource Allocation Efficiency

Resource allocation efficiency is a metric that can be used to evaluate the

performance of a dispatching system, in regards to its decisions [9]. It is a

18



2.2. THE SCHEDULING SUB-PROBLEM

per-job metric, and is formulated as follows:

I * k; ke
res
effr= m (2.7)
i€Ja

In Equation 2.7, the upper member in the fraction represents the total
amount of resources needed by a job, with J,, being its job units, and J, ; the
amount of resources of type k£ needed by each of them. J, is instead the list
of distinct node assignations for job J, and R, (7) is the amount of available

resources in such nodes before dispatching.
The resource allocation efficiency allows us to estimate how efficiently a dis-
patcher can allocate jobs in the system: high values indicate that a job
uses few nodes, and that these nodes are used to their fullest, leaving no
free resources, and thus also implying low fragmentation. An highly effi-

cient dispatching system will lead to higher throughput, and to lower power

consumption as well.

This metric can be formulated on a per-step basis as well: in this case,
at each time step all the running jobs and the nodes on which they are
allocated are considered. This variant of the resource allocation efficiency
metric is mostly related to the system utilization over time, and can be seen

as a refined form of the load ratio.

2.2 The Scheduling Sub-Problem

2.2.1 Definition and Hypotheses

In HPC systems, the scheduling problem consists in assigning starting times
Ji, to a series of jobs, by using heuristics in order to maximize the resource
usage of the system, and minimize the waiting times. At this stage we are
not assigning resources to jobs, but only determining, if necessary, wether
they fit the current available resources in the system or not: which of those

will be assigned to them is up to the allocator to decide.

19



2.2. THE SCHEDULING SUB-PROBLEM

In general, there are two possible approaches to scheduling in HPC systems
[10]. These are:

e Queueing: the scheduler will use a certain ordering criteria for jobs in
the queue, and will try to schedule as many of them as possible every
time the dispatcher is invoked, in a sequential order: hence, jobs are
always given an immediate starting time, corresponding to when the
scheduler made its decision. When the scheduler reaches a job that
cannot be dispatched, because there are not enough available resources
in the system, it will terminate, as not to violate the properties of the
queue. This is the most common approach; it is also very simple, and

not computationally complex.

e Planning: every time the dispatcher is invoked, the scheduler will try
to compute a schedule plan for all jobs in the queue, or a subset of
them; that is, a specific starting time is assigned to each job, without
violating the system’s resource constraints. This is done in order to find
the globally best possible placement for jobs, in terms of waiting times
or other metrics, which simply cannot be done by a queueing-oriented
scheduler. Unfortunately, planning-oriented scheduling algorithms are
inherently complex, as the problem itself of assigning starting times
to tasks with certain constraints belongs to the NP-Hard class [11];
besides, in order to compute such a schedule and obtain good results,
it is necessary to have reliable estimations J;, of the jobs’ length: this is
often not the case, and all we have is the wall time J;,, which severely

over-estimates the job length and leads to resource waste.

Out of the two presented approaches, the queueing one is the most com-
monly used in HPC systems, and in most commercial solutions for dis-
patching. The planning approach, instead, while being potentially better
is plagued by its computationally intensive nature, and thus more rarely

used.

20



2.2. THE SCHEDULING SUB-PROBLEM

2.2.2 Common Scheduling Algorithms

In this section we will discuss the most common algorithms for scheduling in
HPC systems. Please note that these methods all belong to the queueing-

oriented kind, except the last one.

First-Come First-Served

The first and most simple scheduling algorithm we will present is First Come
First Served (FCFS). As the name implies, this method does not impose any
kind of ordering on the job queue, and the scheduler will try to dispatch jobs
in the order in which they arrived.

This algorithm has some qualities: first of all, as we mentioned earlier, it
is very simple and computationally inexpensive. Also, since jobs are not
artificially sorted, it ensures fairness in the scheduling process, and it is not
possible for some jobs to suffer starvation. Finally, it does not need any kind
of information about the system or the jobs in order to perform its dispatching
decisions. However, since no kind of optimization is performed, FCFS may
pick jobs in a highly sub-optimal order, thus leading to bad performance, low

resource usage in the system, and long waiting times.

Longest Job First and Shortest Job First

The Shortest Job First (SJF) and Longest Job First (LJF) algorithms are
the natural evolution of FCFS. In simple words, these two methods will sort
jobs in the queue by using their estimated duration in ascending (SJF) or
descending order (LJF). These are slightly more computationally expensive
than the FCFS algorithm, however the computational cost can be reduced
by maintaining the job queue in a sorted state between dispatching calls.

The choice between SJF and LJF is not obvious, and mainly depends on
the kind of workload the system is subject to. However, among the two,
SJF is usually the most robust choice, and leads to good results in terms of

throughput and waiting times, despite being very simple.

21



2.2. THE SCHEDULING SUB-PROBLEM

Unfortunately, these two algorithms still have some issues to be considered:
first of all, since sorting is explicitly performed on the job queue, we must
consider the possibility of starvation for some jobs. For example, in a system
employing SJF where the frequency of short jobs is very high, a long job may
end up waiting indefinitely in the queue. Secondly, both methods need an
estimation .Jy, of the jobs’ length in order to perform sorting: if there is not

one available, the wall time .J;, must be used, leading to worse results.

Priority Rule-Based

Priority Rule-Based (PRB) scheduling is a generalization of the FCFS, SJF
and LJF algorithms seen before [12]|. Tt still uses a simple queueing-oriented
approach, but in this case the sorting criteria for the jobs is a generic priority
rule that can be changed and tuned according to the users’ needs and the
system’s type. For example, in a system with multiple job queues, each with
a specific priority and expected waiting time, a priority rule could be based
on a job’s tardiness, introduced in Section 2.1.3 [7].

As with the methods we have seen before, caution must be taken while de-
signing new priority rules: the risk of favoring certain classes of jobs while

compromising others, with certain workload distributions, is always present.

Backfill

Backfill is a very commonly used queueing-oriented scheduling technique,
and is an industry standard in HPC systems. Generally speaking, backfill is
not a technique made to replace the heuristics we have presented so far, but
rather it can be placed on top of them, as it does not make any assumptions

on job ordering.

In a standard scheduling algorithm, like the ones we have seen earlier,
jobs are scheduled in a sequential manner depending on the queue’s ordering.
This is what we would call the normal mode of the scheduler. Whenever the

allocation for a job fails, the scheduler terminates, and returns the set of jobs

22



2.2. THE SCHEDULING SUB-PROBLEM

Computer nodes

Estimated | Actual
6 - Job ID Time Time
J1 4 4
44+ T, J2 5 5
I3 3 3
L1 I
Ji
x‘ i | i f f Time
0 2 4 6 8§ 10 12 14

Figure 2.3: The representation of a schedule produced by an Easy backfill
algorithm. Image taken from [13].

that it managed to schedule. In a backfill scheduler, instead, the procedure
does not terminate when a job cannot be allocated: instead, a reservation is
made for it. Specifically, the algorithm will scan through the set of currently
running jobs, and from their estimated duration J; it will compute the
earliest starting time in which enough resources will be available in order to
start the blocked job. Then, a set of resources in the system is reserved for
that specific starting time and for the job’s expected duration.

As long as the reservation has not been fulfilled, the scheduler operates in
the homonymous backfill mode: in this special mode, the scheduler will try
to dispatch jobs in the queue other than the blocked one, as long as they do
not interfere with the reservation; in particular, they must not use any of the
resources in the reserved set, in the time frame of the blocked job’s planned
execution. Also, in backfill mode the scheduler is allowed to skip jobs in the

queue that cannot be dispatched.

What we just described is the basic functioning of the backfill algorithm.

There are, however, two different variants of this technique:

e Easy Backfill: only one reservation at most is maintained at any time.
This reservation corresponds to the blocked job, which is located at the

head of the queue;

23



2.2. THE SCHEDULING SUB-PROBLEM

e Conservative Backfill: multiple reservations are admitted, and cre-
ated whenever a job cannot be scheduled. In this case, there is no real

functional distinction between the normal and backfill modes.

It has been shown that there is no clear winner between the two Backfill
modes, and their behavior mainly depends on the kind of workload they are
subject to [13], even though Conservative is much more complex than Easy
Backfill. In Figure 2.3 a representation of how Easy backfill works can be
seen, with J? being the blocked job.

Finally, it must be said that since backfill relies on estimations for the jobs’
length, its performance heavily depends on these: in fact, an overestimation
of the jobs’ length might lead to wasted resources in the backfill interval,
while an underestimation could lead either to preemption of the jobs that
didn’t manage to finish before the end of the backfill interval, if the system

supports it [14], or to a delay of the reservation itself.

Optimization and Planning-Oriented Algorithms

In this last section we will look at how the scheduling problem can be for-
mulated in order to pursue an optimization and planning-oriented approach.
In general, an algorithm of such kind will operate on a subset of the job queue
of fixed maximum size, which will be sorted according to some priority rule.
As mentioned earlier, for these jobs a schedule plan is computed, detailing
the starting times for each one of them. As such, this is the only case in
which the subset D of jobs that are to be dispatched is determined before
the scheduling procedure.

In order to formalize the problem, we will now define its parameters:

e Variables: the starting times .J;, for jobs in the subset D of the queue

being considered;

e Constraints: the schedule plan must never violate the system’s re-

source availability constraints;

24



2.3. THE ALLOCATION SUB-PROBLEM

e Objective Functions: a certain metric that is to be minimized in or-
der to obtain an optimal solution, such as the makespan or the average

waiting time.

This is a general characterization for the scheduling problem, which is
valid for most applications in HPC systems. Having defined its parameters,
a method for solving the problem has to be chosen: since it belongs to the
NP-Hard class, exhaustive search must be excluded from the viable alterna-
tives, as it would be unfeasible on an online system. Besides, a sub-optimal
solution is often more than enough for this kind of task. As such, optimiza-
tion techniques like simulated annealing, genetic optimization, tabu search or
constraint programming are much preferable. In general, these techniques
can be adapted to the timing constraints of the system by applying temporal
limits to the search, with better solutions more likely to be found as the

search time is increased.

As we have seen with the previous algorithms, being able to correctly
estimate the jobs’ length is critical: wrong estimations will result in the
computed schedule plan to not be respected, thus worsening the performance
of the algorithm. At the same time, an approach must be defined in regards
to new jobs arriving in the queue. The algorithm might be designed to
preserve an already-computed schedule plan, and fit the new jobs inside it at
the next dispatching call. Conversely, it might be preferable to recompute the
schedule plan from scratch every time, leading to potentially better results
but also to an higher computational cost. An algorithm belonging to this

class will be described with great detail in Section 5.2.4.

2.3 The Allocation Sub-Problem

2.3.1 Definition and Hypotheses

In this section we will treat the allocation sub-problem in dispatching. This

consists in assigning a set of resources J,, according to their requested job

25



2.3. THE ALLOCATION SUB-PROBLEM

units .J,, and resource types J,., to jobs in the subset D of the queue that
were selected by the scheduler and given a starting time.

Allocation is a task of great importance in an HPC system. Good alloca-
tion policies allow to greatly improve parameters of the system like power
consumption and average temperature, but also allow for lower resource frag-
mentation and, in turn, lower waiting times.

We can distinguish between two main approaches for allocation in HPC sys-
tems [15]:

e First-Fit: this approach is similar to queueing-oriented scheduling. In
this case, jobs are allocated one by one separately, in the order specified
by the scheduler. For each job, resources are picked from a list of nodes,
which is sorted according to a certain criteria: the algorithm will pick
resources from the list while traversing it, until the job’s request has
been satisfied. Usually, the algorithm will try to fit as many job units
as possible in each selected node. If the algorithm reaches the end of
the list without finding enough resources, the allocation is considered

as failed, and the scheduler must then decide how to proceed;

e Mapping: conversely, this approach is equivalent to planning-oriented
scheduling. Here, jobs in D are considered as a whole and collectively
allocated, using complex algorithms that try to optimize specific met-
rics [15]. Like the scheduling problem, also the mapping problem, which
consists in assigning resources to a given set of jobs in an optimal man-
ner, belongs to the NP-Hard class. Besides, most mapping methods
are made to be used on their own, without depending on a scheduler,
as they can decide the jobs’ starting times as well: in these cases, our
proposed architecture for a dispatcher, seen in Section 2.1, is not ap-

plicable.

In most HPC systems, allocation algorithms belonging to the first-fit class
are used. Mapping algorithms, while potentially better, are also much more

complex, and usually need specialized software architectures in order to be

26



2.3. THE ALLOCATION SUB-PROBLEM

correctly integrated with scheduler algorithms. For these reasons, we will not

further discuss mapping algorithms.

2.3.2 Common Allocation Algorithms

In this section we will present some allocation methods that fall into the
first-fit category, and are very commonly used in HPC systems. Most of the
algorithms in this section perform a fail-first search: this means that the
ordering of nodes is such that a suitable allocation is more likely to be found
on later nodes in the sorted list, rather than the first ones. This is due to
the fact that such type of search, while theoretically more expensive than a

success-first one, usually allows for better results.

Simple First-Fit Policy

The first algorithm for allocation we will present is the simple first-fit pol-
icy: similarly to the FCFS scheduling policy presented in Section 2.2.2; this
method does not perform any kind of sorting, and nodes are scanned for
available resources in their default order. This order may be numerical or
lexicographical basing on each node’s ID, but it may also be a static ordering

made to improve certain performance parameters.

While simple, this algorithm has not inherently bad performance; it is in
fact very common in HPC systems. It also has a few interesting properties:
since nodes are always scanned in the same order for all jobs, the system’s
resources will statistically be filled in an incremental manner. This means
that before moving to the next nodes in the list, the previous ones will usually

have reached maximum load, leading in turn to low resource fragmentation.

Best-Fit Policy

The best-fit heuristic is an improvement over the basic first-fit allocation
method. In this case, nodes in the system are actively sorted according to

the amount of resources available in them, in ascending order. This means

27



2.3. THE ALLOCATION SUB-PROBLEM

that the first elements in the nodes’ list will usually correspond to ones that
have none or very little available resources.

The purpose of this is to decrease fragmentation in the system and thus
perform consolidation. The first-fit policy is not enough for this, as jobs will
terminate and release their resources in arbitrary order, which means that,
when the system is fully loaded and running, the allocator’s performance may
become completely random. The best-fit policy addresses this, ensuring that
at every allocation the best-fitting nodes are selected, keeping fragmentation

low.

For complex, sorting-based allocation algorithms like best-fit performance
may be a concern: systems may in fact scale horizontally indefinitely, and
could be made of thousands of nodes. Performing sorting on the nodes’ list
at every allocation is thus not very efficient. To address this, there usually
are two possible ways: a persistent, sorted list of nodes in the system may be
kept, which will drastically decrease the computational cost of the algorithm;
in alternative, smaller subsets of nodes in the system may be considered for

allocation, by using for example tree-based selection techniques.

Priority Rule-Based

As we have seen with the scheduling problem, there also exists a priority
rule-based generalization for allocation algorithms. In this case, the order of
nodes in the system picked for allocation depends on a user-defined priority
rule, which may take several factors into account. Again, the development
of priority rules is not a trivial task, and without mindful design it can lead

to badly performing allocators.

Such an allocation heuristic, for example, may be related to heterogeneous
systems equipped with multiple accelerator types: a priority rule could weight
different resource types, assigning greater weight to those that are scarce in
the system and not available in every node, in order to not penalize jobs

that actually need them. The nodes containing such resources would then

28



2.3. THE ALLOCATION SUB-PROBLEM

be statistically placed towards the end of the nodes’ list, thus preserving the

critical resources.

Cooling-aware and Power-aware Placement

Some allocators in the literature are aimed at minimizing the system’s tem-
perature and cooling power [16]. Cooling systems are in fact a very important
component in HPC systems, and managing to keep the overall system tem-
perature low will lead to better performance and to more efficient power con-
sumption. These techniques go under the name of cooling-aware placement,
and it is estimated that, in an optimal scenario, the use of such algorithms
can reduce the costs for environmental management in an HPC system by
up to 30% [17].

Minimizing the overall system’s temperature increase after the allocation
of a job implies the use of complex optimization and heuristic techniques,
besides models for temperature prediction in specific parts of the system.
Also, in order to keep track of the system’s temperature in all nodes, an
additional hardware-software infrastructure is necessary.

Having said this, such a type of allocation is usually obtained by placing jobs
in nodes that are physically far from each other, in order to evenly distribute
the temperature increase; in fact, placing all job units in nodes close to each
other would cause a spike in the temperature for that area, which would

require higher cooling power.

Cooling-aware placement can help reduce overall power consumption:
however, that is often not enough, and specialized power-aware placement
techniques are needed. As we have seen, the first-fit and best-fit algorithms
are able to keep fragmentation in a system low: this is a good starting point
for power consumption optimization, as having nodes either in a fully loaded
or idle state is an ideal condition. This way, many nodes are able to enter
special, low-power idle modes, that can drastically improve the overall energy

efficiency.

29



2.4. COMMERCIAL WORKLOAD MANAGEMENT SYSTEMS

Similarly to what we have seen with cooling-aware placement, there are com-
plex power-aware placement algorithms, which try to minimize the overall
power consumption increase after the allocation of a job [18]; again, complex
models for power consumption prediction in regards to the system’s hardware

components must be used.

Topology-aware Placement

Often the physical placement of a job, independently from the resources
available in its assigned nodes, may have a big impact on its performance.
Parallel jobs, in fact, usually have intricate communication patterns: this
means that the farther away job units are placed from each other, the more
network hops are needed for communication. This implies higher network
strain and latency times, which both lead to worse performance on the job’s
side, and higher power consumption. For this reason, some allocation meth-
ods try to place units of the same job in a physical area as small as possible,

trying to improve the locality of a job.

In order to perform this kind of allocation, it is necessary to know the
topology of the system. Many such algorithms are known in literature [19],
and the allocation policy used in Slurm also exploits locality [20]: these
methods map nodes in a tree, with each level signifying different grouping
hierarchies for nodes. Leaf nodes sharing the same parent generally belong to
the same basic grouping unit, which may be a rack or a cabinet. This kind
of approach allows for efficient tree-based search techniques, and is most

effective on large-scale systems.

2.4 Commercial Workload Management Systems

In this section we will present some of the most famous commercial HPC

Workload Management Systems, and their peculiarities.

30



2.4. COMMERCIAL WORKLOAD MANAGEMENT SYSTEMS

The first solution we are looking at is Slurm [20], which is a free, open
source HPC dispatching system targeted for Linux/Unix. Slurm is main-
tained on GitHub, and has an active community behind it. Due to its highly
modular and customizable nature, Slurm is used in roughly the 60% of HPC
systems in the world, including the Tianhe-2 system introduced in Section
1.3. Besides job scheduling and resource management, Slurm has many other
features, mainly for system monitoring and control. It is advertised as an
highly scalable system and as easy to configure, thus useful in many contexts.
Slurm uses a topology-aware allocation policy, trying to improve locality and

resource utilization, and supports heterogeneous job unit requests as well.

The second WMS we present is Portable Batch System (PBS) [21],
which is a commercial product made by Altair. This is the dispatching system
also used in Eurora, and is an highly reliable product that has been on the
market for 20 years in different iterations, even though originally it was free
and open source. Many other products in the market are based on PBS,
such as Torque, which we will describe later. Compared to Slurm, PBS has
also power-aware capabilities, however it is far less modular and harder to
customize. Unlike the former, PBS also does not support heterogeneous job
unit requests, which means a PBS job is limited to having .J,, homogeneous

job units, each requiring the same amount and type of resources.

Torque [22]| is a WMS based on the original open-source PBS project.
It is produced by Adaptive Computing, but is free and open source, with
the company being tasked with user support and development. Similarly
to Slurm, Torque is highly modular, scalable and customizable, and can be
adapted to a great variety of systems, with a focus on heterogeneous ones.
At last, we will talk about the Maui system [23], which is right now also
under the custody of Adaptive Computing. Maui is mostly a predecessor to
modern dispatching systems, and was mainly developed during the 90s. It
provided customizable fairness, job priority and allocation policies, which
are a standard in modern products. It is now discontinued, and its core was

inherited by the Moab system, now still actively developed.

31



Chapter 3
The Eurora System

In this chapter we will introduce the Eurora system, which was chosen in
order to evaluate the various dispatching methods that will be presented
later. We will analyze a workload from Eurora as well, in order to better
understand its usage patterns, and finally we will discuss some methods to

estimate the jobs’ durations on such workload.

The chapter is structured as follows: in Section 3.1 we will introduce the
Eurora system, and its main features. In Section 3.2 we will then analyze the
workload from Eurora that will also be used for testing later in the thesis.
Finally, in Section 3.3 we will discuss a data-driven method for the estimation

of the jobs’ durations in the workload.

3.1 System Overview

Eurora is a prototype HPC system built in 2013 by CINECA in Bologna,
Italy, in the scope of the Partnership for Advanced Computing in Europe
(PRACE) [|24], and is pictured in Figure 3.1. It is a small-scale HPC system
with an hybrid architecture, designed for low power consumption: Eurora
was in fact listed as #1 in the Greenb00 list of Top500, which ranks the most
efficient HPC systems worldwide, in July 2013 [2]. It could achieve a 3.2
GFlops/W computing power, and had a peak power usage of 30.7TKW.

32



3.1. SYSTEM OVERVIEW

Figure 3.1: A picture of the Eurora system. Image taken from [24].

The Eurora system is a heterogeneous cluster made of 64 nodes: each of
these nodes has two Intel Xeon SandyBridge CPUs with 8 cores, 16GB of
RAM, and 100TB of disk space. Additionally, each node has two accelerator
units available: specifically, 32 nodes are equipped with two NVIDIA Tesla
K20 GPUs, while the remaining 32 are equipped with two Intel Xeon Phi
Many-Integrated-Cores (MIC) units. Some nodes differ slightly in terms of
CPU and RAM: one half of the nodes, in fact, uses CPUs clocked at 2.0Ghz,
while the other half uses CPUs with a clock of 3.1Ghz. At the same time,
6 nodes in the system, with the higher performance CPUs, mount 32GB of
RAM storage instead of 16.

The system’s network has the topology of a 3D torus, and networking
tasks in each node are handled by an Altera Stratix-V FPGA unit and by an
InfiniBand switch operating in Quad Data Rate mode. InfiniBand is a stan-
dard for computer networking with very high throughput and low latency,

and is commonly used in HPC systems [25].

The nodes run a Linux CentOS 6.3 distribution, and the workload man-
agement system being used is Portable Batch System (PBS), which employs

various heuristics for optimal throughput and resource management; since

33



3.2. ANALYZING THE EURORA WORKLOAD

Queue Max. Nodes Max. Cores/GPUs Max. Time Approx Wait

debug 2 32 /4 00:30:00 Seconds
parallel 32 512 / 64 06:00:00 Minutes
longpar 16 256 / 32 24:00:00 Hours

Table 3.1: The constraints related to each of the job queues in Eurora.

PBS is being used, jobs in Eurora are limited to homogeneous job unit re-
quests, as mentioned in Section 2.4. Additionally, Eurora uses three different
queues for job dispatching [7]|, named debug, parallel and longpar, with dif-
ferent priorities and resource constraints. The debug queue is designed for
quick, small jobs executed for debug purposes; the parallel queue is instead
designed for ordinary jobs, while the longpar queue is made for long, low
priority jobs that are to be scheduled during the night. The specifics for each

queue can be seen in Table 3.1.

The heterogeneity seen in the available resources grants great flexibility to
Eurora, and also makes it an interesting system to analyze, especially due to
its limited scale. In such a 