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Abstract

Environmental impact has become one of the most relevant issues in liner shipping during the
recent years. Maritime shipping is responsible for the 2.7 per cent of the world CO2 emissions,
of which 25 per cent is attributable to container ships. This business also produces a significant
quantity of sulphur, a very dangerous substance for human health, especially if it is emitted in
areas next to the coast. At the same time, bunker cost represents the biggest portion of the
operational cost of a shipping company. Slow steaming is a cheap and effective strategy from both
save pollutants emissions and bunker cost. Moreover, it can be immediately put into practice. This
report introduces a Mixed Integer Programming Model to solve the Liner Shipping Routing and
Speed Optimization Problem (LSRSOP). The final goal is to find the best route and to optimize
the the sailing speed of the vessel considering the Emission Control Areas and maximum transit
times between ports. Two Heuristic Methods -the 2-Steps Method and the Simulated Annealing-
are proposed to solve big instances that would require too much running time to be solved until
optimality. Both of them use a Hill-Climbing Algorithm that generates a slight different route from
a given one. A Bi-Objective Function Model has been designed for instances whose the optimal
solution can be found in reasonable time. It considers the operative cost of the vessel and the
external cost of emissions. The results show efficient solutions that are the "golden line" between
the most convenient solution for the company and the most sustainable solution.
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Chapter 1

Introduction

Maritime shipping industry enables the trade of a huge amount of goods all over the world. UN
(2015) estimates indicate that global seaborne shipments have increased by 3.4 per cent in 2014, at
the same rate as in 2013. The total volume moved was 9.84 billion tons. Maritime shipping made
its fortune thanks to the globalization of the last decades. The worldwide economy keeps growing
and it has given the rise to the need of a more dynamic and efficient market. This is due to the
participation of developing countries in the maritime shipping trade as well (UN, 2015). A general
view of the relationship between world Gross Domestic Product (GDP) and the volume of seaborne
trade is provided by DNV (Figure 1.1). The two trends are closely linked: in periods of low GDP
growth, as during the last crisis of 2009, the volume of seaborne trade shrinks.

Figure 1.1: The relationship between the world GDP growth and seaborne trade growth (Source: Clarkson
Research Services Ltd).

Ocean shipping’s economies of scale enable cheap goods transportation for long distances which
would not be feasible with costlier, less efficient means of transport. It allows 80 per cent of global
trade (Premti, 2016) by volume and, for this reason, it remains decisive for the global economy
development. At the same time, managing this business is still quite hard because a lot of factors
have to be taken into account. Indeed disruptions, bad weather conditions and port congestions
can cause delays and particular national laws can sometimes hinder this business.
Looking at the data showed above, it is clear that maritime transport can have a determinant role
in the world’s trade integration. This report wants to enhance the growth of this sector, that means
optimizing the cost structure related to it abiding by pollutants emissions restrictions issued by the
International Maritime Organization. A comparison will be done between the company and the
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CHAPTER 1. INTRODUCTION

environmental perspective: adjusting the sailing speed have totally different outcomes if one wants
to minimize the operative costs or the pollutants emitted.

Bulk shipments moved 4.55 billion tons in the last years and they are often transported as
tramp shipping; hence it is not treat in this study. “Other dry cargo” accounted for 35.2 per cent
of all dry cargo shipments. Containerized trade, which accounts for about two thirds of “other dry
cargo”, is expected to increase by 5.6 per cent, taking reaching a total of 1.63 billion tons (Figure
1.2). This report analyses container shipping since it represents one of the biggest portion of the
seaborne trade (Figure 1.3) and, as Section 2.3 shows, it is responsible of a consistent quantity of
pollutants emitted. Moreover, unlike crude oil ships, routes of container vessels are subjected to
maximum transit times constraints between ports, therefore sailing speed optimization of these
vessels is an interesting subject of study.

Figure 1.2: International seaborne trade, selected years (millions of tons loaded) (UN, 2015).

Figure 1.3: Structure of the international seaborne trade in percentage (UN, 2015).

In recent years, many regulations have been issued to limit the pollutants emissions from
maritime transportation. Combustion of fuel produces carbon dioxide (CO2), oxides of sulphur

2



(SOx), volatile organic compounds (VOCs), ozone, particulate matter (PM) and oxides of nitrogen
(NOx) (Cullinane et al., 2013). This report will focus on CO2 and SO2 because they are the most
detrimental emissions. CO2 is a well known greenhouse gas, hereafter GHG, responsible for the
climate change. Even if SO2 is not a GHG, it is detrimental for humans lungs and acute exposure
can cause respiratory problems, even bronchitis and tracheitis (McGranahan et al., 2012). It has
been shown that SO2 in the air increases death rates. Mortality increased by approximately 40% in
2012 due to trade-driven growth in shipping emissions (Corbett et al., 2007).
At the same time, shipping emissions, together with other humans activities, contribute to the
tremendous and damaging impact on the planet. Carbon emission is the main component of
the humanity’s Ecological Footprint, i.e. human demand on the ability of the planet to provide
renewable resources and ecological services (Figure 1.4). We are currently using 60 per cent more
resources than the planet is able to regenerate (WWF, 2017).

Figure 1.4: Global Ecological Footprint by component vs Earth’s biocapacity (green line), 1961-2012

Therefore, for both health and environmental reasons, the International Convention for the
Prevention of Pollution defined the North American, US Caribbean, North Sea and Baltic Sea as
Emission Control Areas (ECAs) to limit SOx and NOx in zones where people live. A threshold of
0.1 per cent of sulphur content in the fuel has been set in those areas. In other zones the sulphur
content limit is 3.5 per cent. Shipping companies will have to use a more refined and expensive
fuel in ECAs to respect the regulation. ECAs are shown in Figure 1.5. Adjusting sailing speed is
an effective strategy to optimize bunker consumption both inside and outside ECAs, that means
optimizing bunker cost. Moreover, it does not require additional investments.

Figure 1.5: Map of Emission Control Areas in Europe and North America (Fagerholt, Gausel, et al., 2015a)

3
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At the same way, the new regulations entering into force in January 2020 are interesting (Figure
1.6). In addition to the 0.1 per cent sulphur limit in the Sulphur ECAs, the global limit will be 0.5
per cent instead of the current 3.5%. The European Union Sulphur Directive imposes a maximum
0.5% sulphur content for ships in all EU seas by 2020, and a 0.1% limit in ports. China is taking
a staged approach and, in conjunction with Hong Kong, it may tighten the limit to 0.1% (DNV,
2012).

Figure 1.6: New IMO’s regulations from 2020.

1.1 Project Scope

Liner shipping is the business of carrying goods all over the world taking into account time
restrictions due to national and international policies and goods that lose value over time. A
container shipping network is based on a fixed schedule (usually one week) with a predetermined
trip duration. The trip duration is a multiple of a week and the number of weeks needed is equal to
the number of vessels employed so that every port is visited once a week. In other world, a different
vessel starts its round trip at the beginning of each week. An example of network is provided by
Pisinger 2014 and it is shown in Figure 1.7. The WestMed Service lasts 6 weeks and therefore 6
vessels are required.

4
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Figure 1.7: The WestMed Service,transporting containers between U.S. east coast and the western
Mediterranean.

The purpose of this study is defining a model to solve the Liner Shipping Routing and Speed
Optimization Problem (LSRSOP). The optimal solution finds the best route and the sailing speed
on each leg that minimize the operative cost of the vessel. The model has to consider maximum
transit times between ports and the above described ECAs. Moreover, it is also possible to find
the optimal solution minimizing the pollutants emitted. In this case, the external cost of emis-
sion will be calculated. By minimizing the two objective functions, two different solutions are
found: if the operative cost of the vessel are minimized, the average sailing speed will be high in
order to meet as delivery schedules as possible; if the external cost of emission is minimized, the
vessel will sail slowly in order to reduce the fuel consumption, that is limit emissions. The final
purpose of this report is to analyse both the environmental and the shipping company points of view.

Chapter 2 describes the cost structure of the shipping company with particular emphasis on the
impact of the bunker cost. In the same Chapter, the relation between sailing speed and bunker
consumption is shown; Section 2.3 shows relevant data about CO2 emissions and describes in depth
the Emission Control Areas. Finally, Section 2.4 describes the Liner Shipping Routing and Speed
Optimization Problem that will be modelled in this study.

Chapter 3 contains the literature review where the main articles about liner shipping problems
are described, as well as some relevant papers that have been useful to propose the solution methods
of this study.

Chapters 4 and 5 describe the mathematical formulation of the model and the instances used to
run the solution methods respectively.

Chapter 6 shows the solution methods proposed to solve the LSRSOP. For big instances it is not
possible to find optimal solutions, therefore two Heuristic Methods have been proposed (Sections
6.1-6.3.1). Section 6.4 is dedicated to the description of some User Cuts that had the purpose of
tightening the lower bound and decreasing the running time. Finally, Section 6.5 compares the
company prospective and the environmental point of view with a Bi-Objective Function Model and
Section 6.7 shows the result of the As-Is/To-Be Analysis considering the new regulations from 2020.

1.2 Contributions
This project is a master’s thesis developed in the Engineering Management Department of the
Technical University of Denmark. It will be delivered to the University of Bologna to obtain a
Master degree in Management Engineering. The project will be defended in both universities.

However, the report also represents a value for the academic society by:
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• Presenting a model for the LSRSOP that includes transit time and Emissions Control Areas
restrictions;

• Providing heuristic methods to solve large instances;

• Suggesting different approaches to decrease the running time to find the optimal solution;

• Defining a Bi-Objective Function Model to find optimal solutions that consider both the
company and the environmental point of view;

• Evaluating the variation of penalty cost of the company for different values of the cost per
hour of delay;

• Evaluating the SO2 savings due to the new IMO’s regulation from 2020.

6



Chapter 2

The Liner Shipping Business

The business of liner shipping is an important element of the world trade market. It consists of the
transportation of different goods all over the world by using container vessels. A service is a round
trip network that connects a given set of ports. Carriers would choose the most profitable port
calls but, at the same time, they have to accommodate the transit time limits between ports and
environmental and national regulations; that is why the research about liner shipping business is
challenging and interesting.
In Section 2.1 the cost structure of this business is described, with a particular focus on the bunker
cost, that is the biggest cost of a vessel. The relation between sailing speed and bunker cost is
described in Section 2.2. Section 2.3 shows the environmental impact related to liner shipping and
the regulations that will be considered in the mathematical model. The description of the Liner
Shipping Routing and Speed Optimization Problem is reported in Section 2.4.

2.1 Shipping Company Cost Structure
Shipping companies are interested in understanding their cost structure in order to study efficient
strategies to optimize it. On the other hand, policy makers collect information about maritime
trade costs to issue useful regulations. A global container shipping network has a very high total
cost (order of billion according to MaerskLine (2017)). Therefore, even a small improvement of the
network’s management can have a significant impact.
The cost of a carrier can be divided into fleet cost, cargo-handling cost and administrative cost
(30% according to Stopford (2009)). The biggest cost is the bunker cost (part of the fleet cost). It
accounts for 35%-50% of the overall cost and it overtakes both capital cost (acquiring and financing
a vessel) and operational cost (crew, maintenance and insurance) (Brouer et al., 2013). Moreover,
if the fuel price is around 500 [USD/ton], bunker cost can be three quarts of the total operating
cost (Ronen, 1982a). Bunker cost assumes different values according to the fluctuation of the oil
price: Figure 2.1 shows the fluctuations of two types of fuels. "BunkerWorld 380 Index" (BW380)
and "Maximum 0.1% Sulphur - Distillate Index" (BW0.1%S) are the fuels chosen for this study.
They have different sulphur contents and they have to be used in different sea areas in order to
comply with the environmental regulations.

An example of how much bunker cost is decisive on the balance sheet of a company, is given
by MaerskLine (2017): a variation of +/−100 [USD/ton] has an effect of +/−400 million[USD]
(Figure 2.2).

For these reasons, shipping lines work to keep bunker cost under control and to reduce it. They
can undertake some strategies such as: using cheaper grades of bunker fuel (like Intermediate Fuel
Oil 500 instead of Intermediate Fuel Oil 380) (Notteboom and Vernimmen, 2009a), re-designing
new vessels and controlling the speed. This report will be focused on the third alternative called
slow steaming. The main advantage of the slow steaming strategy is that, unlike the other stated
options, it does not require any additional investment to shipping companies.
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Figure 2.1: BW380 and BW0.1S price (BunkerWorld, 2017)

Figure 2.2: Sensitivities for the calendar year 2017 for four key value drivers (MaerskLine, 2017)

2.2 The Effect of Sailing Speed on Bunker Consumption

Bunker consumption can vary according to the sailing speed, the fuel cost, the draft of the vessel,
the weather condition and the design of the vessel. Figure 2.3 shows the relationship between speed
and fuel consumption of four different type of container vessels: 3000 twenty-foot equivalent units
(3000-TEU ships for short), 5000-TEU ships and 10000-TEU ships (Notteboom and Vernimmen,
2009a). A change in speed causes a dramatic increase of fuel consumption. For example, increasing
service speed from 16 to 20 knots, using a 5000 TEU container, has a variation of 15000 [USD/day].
Therefore the sailing speed is a key determinant of bunker cost and consumption.
Sailing at a high speed allows shipping companies to move a bigger amount of cargos over a given
period. On the other hand, fuel is the largest cost in container ship operations. Ocean carriers have
a huge interest in reducing the amount of fuel their ships consume, and have undertaken several
initiatives to improve fuel efficiency from reducing vessel speed, to sharing their vessels with other
carriers, to building larger ships that are more energy efficient per unit of cargo carried. Therefore,
in liner shipping the trade-off coming from this situation is between reducing bunker consumption
through speed reduction and achieving competitive delivery times to maximize revenues (Brouer
et al., 2013). Indeed, the cargo ship can slow steam to save fuel or accelerate to accommodate the
transit time restrictions and increase the service level.

As said in the previous section, it is possible to reduce bunker cost by installing new technological
components on the vessels. However, this entails high investments. A less expensive strategy is the
logistic-based "slow-steaming" that simply means reducing sailing speed. It has a high relevance
for the pollutants emissions reduction too (in-depth analysis in Section 2.3). Slow steaming was
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Figure 2.3: Relation between sailing speed and bunker consumption.

introduced in 2007 by Maersk Line to cut CO2 emissions per container by 12.5% from 2007 to 2009.
The shipping company claims that a speed reduction of 20 per cent saves 40 per cent less of fuel.
To guarantee the same route frequency and compensate the lower speed 1 or 2 extra vessels are
required (MaeskLine, 2010).

Liner companies are sometimes unwilling to apply the slow steaming strategy to reduce operating
cost because this causes an increase of inventory cost. Inventory cost is strictly tied to the transit
time of the vessel and it has a high impact especially for high-value goods transportation (Figure
2.4). This is even more an issue for perishable goods transportation. Nevertheless, reducing speed
to obtain sailing cost saving is preferable than giving priority to inventory cost reduction since the
latter is a discrete function.

Figure 2.4: Total, Bunker and Fleet Cost in Relation to Speed.

Another drawback of slow steaming is that having high transit times may make other means of
transport more convenient. This can happen especially in short sea trades like Europe.

It is clear that bunker consumption is a non-linear function of speed and approximations are
used to estimate it in mathematical models. As Psaraftis et al. (2013) show, bunker consumption
can be equal to A+Bvn(i,j), where A, B and n are input parameters such as A ≥ 0, B > 0, n ≥ 3
and v is the speed on (i, j) leg connecting two ports. Otherwise, bunker consumption can be
proportional to (w(i,j) + L)2/3 for a given speed, where L is the weight of the vessel and w(i,j) fuel
on board (Barrass, 2004).

Another formula, the one will be used in this study, is a cubic function described by Brouer
et al. (2013):
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F (s) =
(
s

vF∗

)3
· fF∗ (2.1)

where s is a generic speed between the minimum speed sFmin and the maximum speed sFmin of
vessel F , vF∗ is the design speed and fF∗ is the fuel consumption at design speed. The study of
Wang et al. (2012b) proves that this cubic function is a good approximation of bunker consumption.

2.3 Pollutants Emissions by Liner Shipping
Reducing the operating cost of the vessel is not the only advantage coming form adjusting sailing
speed. The environmental impact of liner shipping has a high relevance as well. According to
the study of IMO (2009), maritime shipping is responsible for the 2.7 per cent of the world CO2
emissions (Figure 2.5), of which 25 per cent is attributable to container ships (IMO, 2014).

Figure 2.5: Emissions of CO2 from shipping compared with global total emissions for 2007 (IMO, 2009)

Table 2.1 clearly shows that liner shipping is the most carbon-efficient form of transporting
goods. In this case, it is compared with diesel train, truck and air cargo. However, the fuel used
today by the vessels and for the other means of transport is still polluting in terms of SOx and
NOx; the pollution can be reduced even more thanks to environmental regulations and tactical
decisions such as slow steaming. This means that liner shipping business has a great potentiality to
sustain the global eco-friendly trade development.

Table 2.1: CO2 Emissions of Different Transport Means (Source: Swedish Network for Transport and the
Environment).

This report will be focused on liner shipping since this is the most CO2 emissions grade category
in the maritime sector (Table 2.2). Psaraftis et al. (2013) state that reducing sailing speed will
drastically reduce emissions too.
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Table 2.2: Bottom-up CO2 emissions from international shipping by ship type 2012 (IMO, 2014)

Carbon dioxide is one of the GHG responsible for the Earth temperature increment. The
Kyoto Protocol, adopted in 1997, is an international treaty that commits the 175 State Parties to
reduce greenhouse emissions in industrialised countries. However, aviation and shipping emissions
are difficult to calculate and they are omitted from the Protocol. Instead, Article 2.2 of the
Kyoto Protocol imposes that these two industries have to respect the regulations imposed by the
International Civil Aviation Organization and the International Maritime Organization, hereafter
IMO. As stated on IMO web site, “IMO has promoted the adoption of some 50 conventions and
protocols and adopted more than 1,000 codes and recommendations concerning maritime safety
and security, the prevention of pollution and related matters” (IMO, 2013).
One of the most important convention was the International Convention for the Prevention of
Pollution form ships, hereafter MARPOL. In this meeting a new regulation for sulphur content in
the fuel oil was issued: no more than 0.10 per cent allowed instead of 1 per cent. This limit is valid
form January the 1st 2015 inside the ECAs: North American, US Caribbean, North and Baltic Seas.
The zones belonging to ECAs are illustrated in Figure 1.5. Carriers must use a more expensive fuel
to sail in ECAs to respect the sulphur emission limit. The consequence of the regulation is that
ships that sail outside the ECAs use a cheap fuel called heavy fuel oil (HFO), and inside they use
the marine gas oil (MGO), more expensive but with low sulphur content (Fagerholt, Gausel, et al.,
2015a).

An alternative to HFO is the distillate Liquefied Natural Gas (LNG). It is a promising solution
since it allows cost saving in addition to comply with IMO’s regulations. Indeed, even if the
CO2 coefficients of HFO and LNG are quite similar (3.1144 and 3.206 [kgCO2/ton] respectively)
(Kontovas, 2014), it has a lower SO2 percentage content. To calculate the SO2 emissions, it is
necessary to multiply the total bunker consumption [ton/day] by the percentage of sulphur present
in fuel and by a factor of 0.02. The factor of 0.02 is derived from the chemical reaction of sulphur
with oxygen. Acciaro (2014) calculated the optimal deferral time for investment on switching to
LNG. The study suggests to invest in the near future but it states that a decrease in time spent
inside the SECAs would discourage the investment. However, new regulations will take into force
in 2020 (Figure 1.6): this definitely makes LNG an optimal response to emission’s limits standards.

To limit GHG emissions, IMO issued Market Based Measures by investing in more fuel efficient
ships and technologies. These measures entered into force on January the 1st 2013. Liner companies
have to clean the underwater parts of the ships and the propeller more often and to adopt eco-
friendly technologies such as waste heat recovery systems (IMO, 2011). Moreover, the attained
Energy Efficiency Design Index, measured in [gCO2/(ton ·mile)] has to be lower than a threshold.
The formula is provided by Psaraftis et al. (2013):

AttainedEEDI ≤ RequiredEEDI = (1−X/100) · a ·DWT c (2.2)
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where X is a reduction factor that varies on when the ship was built, DWT is the dead-weight
of the ship, a and c are parameters defined by IMO by a regression analysis.
A drawback of this limit is that the left-side of equation 2.2 is function of the design speed and the
right side is independent. This means that ship constructor could install a lower power to decrease
the design speed with the result of underpowered vessels will burn more fuel (and emit more CO2)
to maintain the same speed of normal vessels while satisfying the EEDI threshold requirement.

Since bunker consumption is directly proportional to pollutants emissions, controlling these
emissions by adjusting sailing speed is a reasonable option. Slow steaming is part of green logistic,
a wider concept introduced by Sbihi et al. (2010). The authors state that optimizing capacity
utilization and sailing speed of vessels will ensure a positive effect on the environment by reducing
pollutants emitted. Now the question is: how can policy makers encourage shipping companies to
diminish pollutants emitted? Instituting speed limits is not a useful strategy because it can have
several drawbacks. Firstly, as explained in Section 2.2 the inventory cost will increase or land-based
transports can become a valid substitution; secondly, building more vessels in response to delivery
delays can increase CO2 in shipping and recycling (Psaraftis et al., 2013). Therefore, it is necessary
to find the right balance between operating cost and environmental impact while setting speed.
Sailing speed is a key determinant for both shipping costs and environmental sustainability.

2.4 The Liner Shipping Routing and Speed Optimization
Problem

Patrick M Alderton (2004), Stopford and Brouer et al. (2013) provide an in-depth and historical
analysis of liner shipping. The mathematical model proposed in this study to solve the Liner
Shipping Routing and Speed Optimization Problem (LSRSOP) is based on some features described
by the cited authors. Figure 2.6 shows the three decision-making levels for liner container shipping
companies: strategic, tactical, and operational (Pesenti, 1995). At the strategic level, a liner
container shipping company makes long-term decisions, tactical decisions are made every three to
six months and operational decision are the ones taken during the route due to problems that may
arise. The sailing speeds between each pair of ports are decided simultaneously with the routing
and scheduling decisions.

Figure 2.6: Planning Levels for Liner Shipping (Fagerholt, 2001).

The features of the mathematical model to solve the LSRSOP are described in this Section.
Liner shipping consists of the transportation of goods with container vessels. A service or route, is
a sequence of port calls. The round trip service is the simplest service in which every port is visited
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once. The round trip can have different sizes. A trunk service is a network connecting several
central big ports, while a feeder service is focused on a single market characterized by a main port
and a set of smaller ports. The model of this study can be applied to both types of service.
The following paragraphs describes the features of a round service.

Value Proposition
The operative cost of the shipping company and the pollutants emitted have been considered to
define a route in this study. They are two conflicting factors that lead to different solutions for the
LSRSOP. Indeed, when the operative cost are minimized, the vessel sails fast because it has to
comply with the maximum transit times between ports. On the other hand, the vessel is going to
slow steam when the pollutants are minimized. This does not mean that slow steaming is used only
in the second case: sailing speed is optimized also in the first case because bunker cost is part of
the operative cost. The considered pollutants are SO2 and CO2 and the external cost of emissions
in USD is minimized in order to make the two objective functions comparable.

Frequency
The liner shipping industry differs from other maritime transportation modes primarily due to a
fixed public schedule with a given frequency of port calls (Stopford, 2009). As the WestMed Service
example in the introduction shows, a rotation with a weekly frequency is required in order to visit
each port once a week. This goal is achieved by employing several vessels sailing once week apart.
Rotation turnaround time varies from a single week up to 20 weeks. The sailing speed chosen
during the rotation is strictly related to the number of vessels. Figure 2.7 depicts the relationship
between number of vessels required and speed (in knots) for different service distances. It is clear
that, given the total distance, more vessels have to be employed if the sailing speed decreases.

Figure 2.7: The relationship between roundtrip distance, required vessel speed and the number of employed
vessels. (Notteboom and Vernimmen, 2009a)

There are some business rules that set a two-weeks frequency rotation for vessels with a capacity
of at most 800 forty feet equivalent unit (FFE), or a four-weeks frequency for vessels with a capacity
of at least 4200 FFE. Services using vessels with a capacity of at least 1200 FFE must have a weekly
frequency.

Vessel
Container vessels are characterized by specifications as FFE capacity, weight capacity, maximum
and minimum speeds, length, draft, number of reefer plugs and engine power. The defining attribute
is FFE capacity given as a nominal number. Moreover, each vessel has a design speed and a design
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fuel consumption at design speed. The vessel used in this study is Panamax 2400. Its features are
shown in Chapter 4, Data Description.

Ports
Ports have a maximum draft, and the berths have a maximum length. This can provoke incompati-
bilities between ports and vessels. Feeder ports are usually small, main ports are bigger and have
some transshipment facilities. The time spent in the port by a vessel, called port stay, depends
on the amount of cargo to load and unload in the given port for that particular call. The ports
considered in the instances of this study do not have incompatibilities with the vessel Panamax
2400.

Canal
The main canals traversed by marine shipments are the Panama canal and the Suez canal. They
allow fast connections between continents and therefore they reduce operative costs. Vessels have
to pay a transit duty. Panama canal has a draft limit, whereas Suez canal does not have draft
restriction for container vessels. Canal costs are not considered in the mathematical model since it
would increase the number of variables without any significant variation of the final solution.

Transit Time
Offering a short transit time is a competitive leverage for liner shipping companies. This is valid
especially when goods have a high economic depreciation, like clothes, or they are perishable, like
fruit. Maximum transit time between ports can also be affected by port rules or geographical
necessities. Transit times restrictions are decisive for the final solution of the LSRSOP since
generally the bunker cost savings are not enough to cover the cost of delays. Furthermore, it is very
difficult to estimate this cost: a sensitive analysis of this value shows its impact on the final cost.

Bunker Consumption
Bunker consumption depends on the vessel type, the sailing speed, the draft of the vessel, the
number of operational reefer containers powered by the vessel’s engine, and the weather. Therefore
estimating bunker consumption is not easy. As stated in Section 2.2, Formula 2.1 has been used in
this study to base the bunker consumption estimation on the sailing speed. Since sailing speed and
bunker consumption have a cubic relation, the relation between the sailing time and the bunker
consumption will be the one shown in Figure 2.8. Indeed, when the transit time is high, the vessel
burns less fuel and vice versa.

Figure 2.8: Sailing time-bunker consumption relation
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Chapter 3

Literature Review

Liner Shipping Routing and Scheduling Problem is a sub-problem of Travelling Salesman Problem,
the most studied problem in Operative Research (OR). Literature regarding routing and scheduling
within liner shipping has doubled in the last decade; this means that it is a relevant and interesting
research topic. Ronen (1983) wrote the first large overview that gives a classification of ship routing
and scheduling problems and models. Liner shipping resembles a bus network as it publishes
schedules and competes for cargo based on the service provided. Ronen points out that the analysis
becomes more realistic if bunker consumption, the highest past of operating cost, depends on speed.
Christiansen, Fagerholt, and Ronen (2004) and Christiansen, Fagerholt, Nygreen, et al. (2007)
provide exausive surveys of OR in maritime transportation. They state that uncertainty takes an
important role in maritime transportation and they hope to give the basis for future works. A
detailed description of the Liner Shipping network is given by Brouer et al. (2013). They firstly give
an overview of contributions of the LSNDP and then they provide a benchmark suite for developing
future works. The model of Álvarez (2009) is extended and a column generation algorithm is used
to solve it.

A useful contribution to solve large-scale instances of the Symmetric Traveling Salesman Problem
(STSP) to optimality is given by Padberg et al. (1991). They took instances both form literature
and from real cases; the algorithm is able to solve problems up to 2392 nodes. Kjeldsen (2011)
provides a classification scheme for routing and scheduling within liner shipping. She shows that
the model can have different formulations with respect to the final scope, cost structure, analysed
variables and constraints. P. Alderton (1981) describes a variety of criteria to set the speed that
maximizes profit. A model of liner shipping with non-simple routes is presented by Rana et al.
(1991) but it does consider transshipments. The major liner shipping companies such as Maersk
Line, MSC and Evergreen use weekly frequency for most of their services. The weekly frequency
constraint is introduced by Fagerholt (2004) in the two stages approach to find the optimal solution
of a liner shipping problem with weekly routes. In the first phase all the routes for each ship are
generated, in the second phase an IP model minimize the total operational cost for the whole fleet.
Agarwal et al. (2008) use the simultaneous ship-scheduling and cargo-routing model with weekly
routes. The branch-and-cut method of Reinhardt and Pisinger (2012) and a MIP formulation of
(Álvarez, 2009) solve smaller instances to optimality.

Managing the time factor is an important and, at the same time, challenging issue in liner
service business. Delays due to port congestions, weather or waiting times before berthing or
loading/unloading can have a negative impact on the companies profit (Notteboom, 2006).
Algorithms to solve the TSP with time windows are described by Solomon (1987) and Baker
(1983). As regard LSRSP, Fagerholt (2001) determines the optimal sailing speed in the so-called
"soft-time window" model where penalties are imposed if the vessel do not respect the time windows.
Hvattum et al. (2013) define the Speed Optimization Problem (SOP) and prove that, given the fuel
consumption as a convex function of speed and a fixed sequence of port calls, each with time window,
optimal speed can be found in quadratic time. Wang et al. (2012a) work on a robust schedule
design problem using penalties for delays. The problem is a mixed-integer non-linear stochastic

15



CHAPTER 3. LITERATURE REVIEW

model. Li et al. (2016) propose a multi-stage stochastic model in which legs are divided in segments
and the final goal is to find the optimal speed on each segment. The SOP of Aydin et al. (2017) is
characterized by stochastic port times and time windows. It is solved with dynamic optimization
by discretizing port arrival times to find approximate solutions. An interesting conclusion is that
real data from a liner shipping company perfoms better than data from benchmark methods.

The effect of bunker price on the network configuration of liner shipping has been studied by
Stopford (2009) and Notteboom and Vernimmen (2009b). The latter state that managing fuel
consumption gives the ship owner incentives to slow steam. Ronen (1982b) studies the fluctuation
of oil price and how it affects the optimal speed. His analysis on the trade-off between fuel
saving thanks to slow steaming ad loss of revenue due to increase of travel time is relevant. The
relationship between sailing speed and sleet size is studied in Ronen (2011). Lee et al. (2015)
analyses the relationship among slow steaming, bunker cost and delivery reliability. A speed model
that minimizes fuel consumption is presented by Du et al. (2011). They also deifne a non-linear
and not necessarily cubic fuel consumption function.

In the recent years, the environmental impact of liner shipping has gained a lot of relevance. The
above cited models can be extended by accounting the cost of emissions in the objective function.
Psaraftis et al. (2013), Christiansen, Fagerholt, Nygreen, et al. (2013) and Meng et al. (2013) are
the proof that liner shipping has focused not only on cost saving, but also on environmental issues.
Psaraftis et al. (2013) provide a wide taxonomy of non-emissions speed models and emissions speed
models. The study of Psaraftis et al. (2009) takes into account the SECAs, and shows that reducing
emissions inside SECAs causes a speed increase outside to balance the transit time, with an overall
emissions increase. Given a schedules sequence of port calls, each with time window, it is possible
to adjust the speed on the legs in order to reduce emissions (Fagerholt, Laporte, et al., 2010). A
big GHG reduction is achievable by optimizing sailing speed as well (Lindstad et al., 2011). They
also argue that seed limits regulations are a possible way to reduce speed. Fagerholt, Gausel, et al.
(2015b) show the effect of SECAs regulations; in particular, they analyse several scenarios where
the vessels can choose different routes, inside and outside SECAs, ta sail among ports.

Other relevant articles for this research are the ones related to Biobjective Mixed Integer
Programming. The above cited Lindstad et al. (2011) use the Pareto Optimality approach to find
solutions. Ehrgott et al. (2016) presents some the theory for combinatorial optimization problems;
Ehrgott (2006) and Eusébio et al. (2014) describe the ε-constraint method and how to find efficient
solution on the Pareto Frontier with it. The Simulated Annealing Algorithm is well described in
Bertsimas et al. (1993). Finally, Reinhardt, Clausen, et al. (2013) have been a good example of
Simulated Annealing Analysis.
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Chapter 4

Modeling

The proposed model to solve the Liner Shipping Routing and Speed Optimization Problem (LSRSOP)
is described in this Chapter. In Section 4.1 the basic Travel Salesman Problem and the solution
approaches are presented since the LSRSOP is based on it. As explained in Chapter 2, bunker
cost and transit time have a cubic correlation (Brouer et al., 2013), therefore the Linearisation
Method is required to measure the bunker consumption. The Linearisation Method of the Bunker
Consumption Function is explained in Section 4.2. The description of the LSRSOP in words and its
mathematical formulation are in Section 4.3. The proposed model to solve the LSRSOP is shown in
Section 4.4. Two objective function can be used to define the rotation and the sailing speed among
the ports: one that minimizes the pollutants emitted and one that minimizes the operative cost of
the vessel.

4.1 The Traveing Salesman Problem
In the Asymmetric Travelling Salesman Problem (ATSP), the salesman has to visit all the cities
minimizing the total distance in the round-trip configuration. There are many studies proving
that the TSP is hard. Given a feasible solution, proving the optimality is difficult (Papadimitriou
and Steiglitz, 1977). It is unlikely that there is a polynomial time algorithm to obtain an optimal
solution. Indeed, if the number of cities increases, the number of variable increases exponentially.
(Held et al., 1962) show that the number of cities permutations, i.e. all feasible routes, is (N − 1)!
for the ATSP.

The ATSP is defined on a directed graph G = (V;A), where V = {1...n} is the set of vertices
and A = {(i, j)|i, j ∈ V } is the set of directed arcs between the vertices. The ATSP is proven being
NP-hard in Papadimitriou (1977). Given the distance between each pair of vertices d(i,j), (i, j) ∈ A,
the basic ATSP formulation is the following:

Minimize: ∑
(i,j)∈A

d(i,j) · x(i,j) (4.1)

Subject to: ∑
j∈V

x(i,j) = 1 ∀i ∈ V (4.2)

∑
i∈V

x(i,j) = 1 ∀j ∈ V (4.3)

the solution does not contain subtours (4.4)
x(i,j) ∈ {0, 1} ∀(i, j) ∈ V (4.5)
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The objective function 4.1 minimises the total travelled distance. If an arc (i, j) is in the final
solution the boolean variable x(i,j) will be equal to 1. Constraints 4.2 and 4.3 ensure that only one
arc leaves and enters each vertex and constraints 4.5 define the integrality of the decision variables.
Constraints 4.4 avoid that the solution has more than 1 route and they are called in literature
subtour elimination constraints (SEC). The number of these constraints can be extremely high and
it strongly influences the running time to solve the problem. As Öncan et al. (2009) show, there are
different formulations to apply these constraints, each one characterized by its number of generated
constraints. Another issue to consider when the SEC are defined is the efficiency of them, i.e. how
much they tighten the gap between the LP relaxation and the integer solution.

The LP relaxation is a technique that consists of replacing the integrality constraints of the
variables with the constraint where each variable belong to the interval [0,1]. The LP relaxation
produce, in case of minimization problems, a "lower bound" (LB), i.e. a feasible not-integer solution.
Given two formulations of the same problem F1 and F2, we can say that F1 is stronger than F2 if
the LB obtained from the LP relaxation of F1 is at least equal to the one obtained by solving the
LP relaxation of F2. Once a formulation is chosen, it is necessary to choose the best strategy to fill
the gap between the LB and the Optimal Solution (Figure 4.1).

Figure 4.1: Gap between the Relaxed Solution and the Optimal Integer Solution

Among all the formulations for the SEC, two of them have been used in this study: the one
proposed by Miller, Tucker and Zemlin (MTZ) and the one from Dantzig, Fulkerson and Johnson
(DFJ). Given n vertices, the number of the SEC of the first formulation is polynomial while it
is exponential for the second formulation; this means that the former has a lower computational
complexity that the latter. On the other hand, DFJ’s formulation is stronger than the MTZ’s one
in the LP relaxation (Öncan et al., 2009). MTZ constraints are part of the model proposed to
solve the LSRSOP and they are constraints 4.23 in Section 4.4; while DFJ constraints are used as
explained in Section 6.4.1 and they are formulated as follows:∑

i,j∈S
x(i,j) ≤| S | −1 S ⊆ V, 2 ≤| S |≤ n− 1,

where V is the set of all vertices, n is its cardinality and S any subset of V .

4.2 Linearization Method of the Bunker
Consumption Function

One of the issues of modelling the LSRSOP is how to calculate bunker consumption. As simple way
to do it is suggested by Zis et al. (2016). The authors consider the specific fuel oil consumption
of the engine, the engine load and the installed engine power. Obtaining these data for a specific
vessel is sometimes hard and, even if the researcher has them, some approximations are required.
Therefore, the Linearization Method of the Bunker Consumption Function has been used in this
study as it is applied in other papers about liner shipping (Reinhardt, Plum, et al., 2016).

The cubic law 2.1 described by (Brouer et al., 2013) is a correct and accurate formula to relate
the fuel consumption to the sailing speed variation. Given the distance between ports, the fuel
consumption can be related to the transit time on the leg as well. The Linearization Method of
the Bunker Consumption Function approximates the cubic relation between transit time and fuel
consumption by using different secants as (Reinhardt, Plum, et al., 2016) shows in Figure 4.2. Of
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course the more are the secants, the better the approximation will be. A linear static method
has been chosen instead of a dynamic one in order to not make the model too much complex in
computational point of view, allowing a small approximation. This method is well described in the
thesis of Dithmer (2015).

Figure 4.2: Fuel consumption in function of the sailing time (left); fuel consumption approximated by 15
secants (right)

Given the distance between two ports d and the design sailing speed s∗, the transit time on
that leg at the design speed will be:

t∗ = d

s∗
. (4.6)

By using the formula 4.6 in the cubic law 2.1, the bunker consumption can be written as follows:

F (t) =
( s
s∗

)3
· f∗

=
( d
t
d
t∗

)3
· f∗

= t3∗ ·
1
t3
· f∗

=
( d
s∗

)3
· 1
t3
· f∗

= f∗

s3
∗
· d3 · 1

t3

(4.7)

The last equation 4.7 is the hourly bunker consumption for the vessel, when it takes time t
to cover a given leg. Therefore, in order to obtain the total bunker consumption on that leg, the
transit time t has to be multiplied to equation 4.7 obtaining:

F (t) = f∗

s3
∗
· d3 · t−2 (4.8)

This is equation of the left function shown in Figure 4.2. As stated before, the secants are useful
to approximate the cubic relation 4.8. Given a set of secants N and the transit time for each leg,
we want to define their equation in order to compute the bunker consumption. The general formula
to compute the bunker consumption y to changing transit time x is: y = φx + ω, where φ is a
negative slope and ω the intersection with the y-axis. The slope of secant n is:

φn = F (tn)− F (tn−1)
tn − tn−1

; (4.9)
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the intersection of secant n is:

ωn = F (tn)− φn · tn; (4.10)

where tn is the end point of secant n and F (tn) the fuel consumption at time tn. The journey
time for the leg at each point tn is equally spread across the interval [t0; tN ] that are the minimum
and maximum transit times on the given leg. Given the distance between two ports i and j and N
secants, the values of these transit times are:

t
(i,j)
0 = d

Smax
∀(i, j) ∈ A (4.11)

t
(i,j)
N = d

Smin
∀(i, j) ∈ A (4.12)

t(i,j)n =
( t(i,j)N − t(i,j)0

N

)
· n+ t

(i,j)
0 ∀(i, j) ∈ A,n 6= 0, N (4.13)

The bunker consumption of secant n on leg (i, j) BC(i,j)
n is defined as equation 4.8:

BC(i,j)
n = f∗

s3
∗
· d3 · (t(i,j)n )−2 ∀(i, j) ∈ A,n ∈ N (4.14)

At this point it is possible to calculate the slopes φn and intersections ωn for each leg as shown
before:

φn =
BC(t(i,j)n )−BC(t(i,j)n−1)

t
(i,j)
n − t(i,j)n−1

∀(i, j) ∈ A,n = N (4.15)

φn =
BC(t(i,j)n+1)−BC(t(i,j)n )

t
(i,j)
n+1 − t

(i,j)
n

∀(i, j) ∈ A,n = 0, 1.., N − 1 (4.16)

ω = BC(t(i,j)n )− φn · t(i,j)n ∀(i, j) ∈ A,n ∈ N (4.17)

Equations 4.15, 4.16 and 4.17 are going to be used in the model to set the lower bounds of the
bunker consumptions. In particular they are used in constraints 4.32, 4.33, 4.34, 4.35 in Section 4.4.

4.3 The Liner Shipping Routing and
Speed Optimization Model

The Liner Shipping Routing and Speed Optimization Problem (LSRSOP) has the objective of
minimizing the bunker and the vessels leasing costs while defining a feasible service among
a set of ports. At the same time, the model can be used to find a rotation minimizing the
external cost of SO2 and CO2 emissions. In particular, given:

• A set of ports, divided in ports inside the Sulphur Emission Control Areas (SECA) and ports
outside the SECA;

• The legs between ports, divided in three sets: legs inside SECA, legs outside SECA, crossing
legs, i.e. legs connecting 2 ports in different areas (from inside to outside SECA or vice versa)
and legs that start and end inside SECA with a segment outside;

• The distances between the ports;

• The time the vessel stays in each port;
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• A set of pairs of ports having a maximum transit time constraint;

• Maximum transit times between some ports;

• The percentage inside SECA for each leg;

• Slopes and Intersections of the bunker consumption/transit time graph (Section 6.2).

If a feasible solution exist, the output is:

• A rotation that visit each port once;

• The transit time between each pair of ports included in the best rotation;

• The number of vessels employed to guarantee a weekly frequency;

• The total bunker consumption on the rotation;

• CO2 and SO2 emissions;

• external cost of CO2 and SO2 emissions.

Hypothesis
Before explaining the mathematical model, it is important to point out the hypothesis of the

model. These assumptions have been set in order to simplify the complexity of the model. The
hypothesis are:

1. Sailing speed is supposed to be constant between ports; therefore the speed in the result will
be considered as an average.

2. Canal cost is not considered in the objective function that minimizes the operative cost of the
company since it would increase the number of variables without any significant variation of
the final solution.

3. When the vessels enters and exits the ECA areas, the burnt fuel has to be changed and this
operation takes approximately one hour and it is not considered in the model.

4. The maximum capacity of the vessel is not accounted in this study. The model considers the
quantity transported, in Forty-foot Equivalent Unit (FFE), between some pairs of ports only
to weight the hours of delay that can arise between these ports.

The following paragraphs will describe the mathematical formulation of the model to solve the
LSRSOP. Firstly, sets, parameters and variables are defined, then the objective functions and the
constraints are explained in detail.

Sets and Parameters
As the ATSP has sets of vertices and arcs, the LSRSOP has sets of ports and legs between them.

Since the model takes into account the SECA, an additional partition of the ports and the legs has
been needed. This allows the model to identify legs inside and outside SECA and the crossing legs.
There is also a set for the pair of ports that have the maximum transit time. This is done in order
to avoid unnecessary constraints with high false MTT values. Table 4.1 describes each set. Tables
4.2 and 4.3 show the parameters used in the model.
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Table 4.1: LSRSOP Sets

Set Name Description
P Set of all the ports
A Set of all the legs
AE Set of legs inside SECA
AN Set of legs outside SECA
AC Set of crossing legs
AM Set of pair of ports that have a maximum transit time

Se Set of secants to calculate the bunker consumption as shown in
Section 4.2

Table 4.2: LSRSOP Parameters

Parameter Name Description Domain Unit of Measure
FCE Fuel cost inside SECA R+ [USD/ton]
FCN Fuel cost outside SECA R+ [USD/ton]
AV Number of available vessels Z [week] or [vessel]

TC

Market rate of a vessel called
time charter rate (TC rate),
i.e. cost of leasing a container
vessel

R+ [USD/day·vessel]

tstayi

Time spent in the port i,
i ∈ P R+ [hours]

R
Cost per hour per FFE for
not respecting the maximum
transit time

R+ [USD/hour·FFE]

vij

FFE, that is the quantity
transported from port i ∈ P
to port j ∈ P

Z [FFE]

MTT(i,j)

Maximum transit time
between port i and port j,
(i, j) ∈ AM

R+ [hours]

l(i,j)
Distance between port i and
port j, (i, j) ∈ A R+ [nautical miles]

maxS Maximum sailing speed of
the vessel R+ [nm/h]

minS Minimum sailing speed of the
vessel R+ [nm/h]
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Table 4.3: LSRSOP Parameters 2

Parameter Name Description Domain Unit of Measure

segIn(i,j)
Percentage of the arc
(i, j) ∈ A inside SECA R+ [1]

φp(i,j)

Slope of secant p ∈ Se of arc
(i, j) ∈ AN or the segement
of a crossing arc outside
SECA

R [1]

φcp(i,j)

Slope of secant p ∈ Se of arc
(i, j) ∈ AE or the segement
of a crossing arc inside SECA

R [1]

ωp(i,j)

Intersection of secant p ∈ Se
with the y-axes of arc
(i, j) ∈ AN or the segement
of a crossing arc outside
SECA

R+ [1]

ωcp(i,j)

Intersection of secant p ∈ Se
with the y-axes of arc
(i, j) ∈ AE or the segement
of a crossing arc inside SECA

R+ [1]

For an easier script of the model, it is possible to calculate the maximum ttmax(i,j) and minimum
ttmin(i,j) transit time on each leg (i, j) ∈ A as follows:

ttmin(i,j) =
l(i,j)

maxS

ttmax(i,j) =
l(i,j)

minS

Moreover, the parameters in Table 4.4 are required for the formulation that minimizes the
pollutants emitted. The external cost of emission (MOVE, 2014) is taken into account in order to
let the objective function have [USD] as unit of measure.
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Table 4.4: LSRSOP Emission Parameters

Parameter Name Description Domain Unit of Measure

CO2cost External cost for CO2
emitted R+ [USD/kg]

SO2cost External cost for SO2 emitted R+ [USD/ton]

CO2E
CO2 coefficient to compute
the emission inside SECA R+ [1]

CO2N
CO2 coefficient to compute
the emission outside SECA R+ [1]

SO%
E

Percentage content of SO2
into fuel used inside SECA R+ [1]

SO%
N

Percentage content of SO2
into fuel used outside SECA R+ [1]

Variables

The time of arrival in each port is used to define the subtour elimination constraints. The arrival
time of one random port is set to zero, meaning that it is the first and last port of the rotation.
Like the ATSP, a binary variable define if a leg is in the final solution or not. The sailing speed can
be derived by the transit time between ports. All the variables are described in Table 4.5.
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Table 4.5: LSRSOP Variables

Variable Name Description Domain Unit of Measure

x(i,j)

Binary variable that takes
value 1 if the arc (i, j) is used
in the solution

x ∈ {0, 1} [1]

ti Time of arrival at port i ∈ P R+ [hours]

τ(i,j) Travel time on arc (i, j) ∈ A R+ [hours]

τ c1(i,j)

Travel time on the segment
inside SECA of arc
(i, j) ∈ AC

R+ [hours]

τ c2(i,j)

Travel time on the segment
outside SECA of arc
(i, j) ∈ CA

R+ [hours]

f ij
Transit time from port i ∈ P
to port j ∈ P R+ [hours]

dij
Hours of delay from port
i ∈ P to port j ∈ P R+ [hours]

BCE(i,j)
Bunker consumption on arc
(i, j) ∈ AE R+ [tons]

BCN(i,j)
Bunker consumption on arc
(i, j) ∈ AN R+ [tons]

BCC1(i,j)

Bunker consumption on the
segment inside SECA of the
arc (i, j) ∈ AC

R+ [tons]

BCC2(i,j)

Bunker consumption on the
segment outside SECA of the
arc (i, j) ∈ AC

R+ [tons]

S Duration of the route Z [weeks]

4.4 Mathematical Model for the LSRSOP
It is possible to solve the LSRSOP either minimizing the pollutants emitted cost or the operational
cost of the vessel. The result of both the objective functions is the cost related to one vessel during
the whole route. The route will lasts S weeks and S is the number of employed vessels to guarantee
a weekly frequency to each port; see Section 1.1 for a further explanation.

The objective function 4.18 minimizes the pollutants emitted in the route. The bunker con-
sumption is multiplied for the percentage of SO2 contained into fuels and for a factor of 0.02 to
obtain the SO2 emitted. To compute the the CO2 emitted, the bunker consumption is multiplied
by a coefficient: CON for the fuel used outside the ECA and COE for the fuel burnt inside ECA
(Psaraftis et al., 2013). Both values are then multiplied by the external cost of emissions MOVE
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(2014) to have a final cost value in USD.

The objective function 4.19 minimizes the total operative cost. It includes four costs: bunker
cost of the legs inside the SECA and the segment of the crossing legs inside SECA (first line),
bunker cost of the legs outside the SECA and the segment of the crossing legs outside SECA (second
line), the cost of delays (third line) and the cost for leasing the vessel (fourth line). FCE and FCN
are the fuels costs [USD/ton] inside and outside SECA respectively since vessels has to use different
fuels. Bunker consumptions of each leg BCE, BCN, BCC1, BCC2 [ton] are calculated in constrains
4.32, 4.33, 4.34, 4.35. Vessels leasing cost is given by multiplying the daily fee [USD/day · vessel],
the number of weeks the route lasts and the number of days per week. Delays are allowed in the
final solution because there are strict time restrictions between ports and, for some instances, it
is not possible to meet all the maximum transit time constraints even if the vessel sails at the
maximum speed. Three values are multiplied to obtain the penalty cost: the cost per hour per
FFE for not respecting the maximum transit time [USD/hour·FFE], the variable that counts the
hours of delay and the FFE transported. Finally, the total operative cost will be exactly the cost of
the vessel during the route and it takes into account the cost of the delays between ports.

The two different objective functions and the constraints follow.

Minimize pollutants emitted cost:

(
SO2cost · SO%

E · 0.02 + CO2cost · COE
)
·
( ∑

(i,j)∈AE

BCE(i,j) +
∑

(i,j)∈AC

BCC1(i,j)

)
+

(
SO2cost · SO%

N · 0.02 + CO2cost · CON
)
·
( ∑

(i,j)∈AN

BCN(i,j) +
∑

(i,j)∈AC

BCC2(i,j)

) (4.18)

or

Minimize operational cost:

FCE ·
( ∑

(i,j)∈AE

BCE(i,j) +
∑

(i,j)∈AC

BCC1(i,j)

)
+

FCN ·
( ∑

(i,j)∈AN

BCN(i,j) +
∑

(i,j)∈AC

BCC2(i,j)

)
+

∑
i∈P

∑
j∈P

(
R · dij · vij

)
+

TC · S · 7

(4.19)
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Subject to:

x(δ−(i)) = 1 ∀i ∈ P (4.20)

x(δ+(i)) = 1 ∀i ∈ P (4.21)
t1 = 0 (4.22)

tj ≥ ti + tstayi + τ(i,j) −M1 · (1− x(i,j)) ∀(i, j) ∈ A\δ−(1) (4.23)

∑
(i,j)∈A

τ(i,j) +
∑
i∈P

tstayi = 168 · S (4.24)

1 ≤ S ≤ AV (4.25)

f ij − dij ≤MTT(i,j) ∀(i, j) ∈ AM (4.26)

f ik ≥ f ij + tstayj + τ(j,k) −M1 · (1− x(j,k)) ∀(i, k) ∈ A, j ∈ P, i 6= k

(4.27)

x(i,j) · ttmin(i,j) ≤ τ(i,j) ≤ x(i,j) · ttmax(i,j) ∀(i, j) ∈ A\AC (4.28)

x(i,j) · ttmin(i,j) · segIn(i,j) ≤ τ c1(i,j) ≤ x(i,j) · ttmax(i,j) · segIn(i,j) ∀(i, j) ∈ AC (4.29)

x(i,j) · ttmin(i,j) · (1− segIn(i,j)) ≤ τ c2(i,j) ≤ x(i,j) · ttmax(i,j) · (1− segIn(i,j)) ∀(i, j) ∈ AC (4.30)

τ(i,j) = τ c1(i,j) + τ c2(i,j) ∀(i, j) ∈ AC (4.31)

BCE(i,j) ≥ φcp(i,j) · τ(i,j) + ωcp(i,j) −M2 · (1− x(i,j)) ∀(i, j) ∈ AE, p ∈ Se (4.32)

BCN(i,j) ≥ φp(i,j) · τ(i,j) + ωp(i,j) −M2 · (1− x(i,j)) ∀(i, j) ∈ AN, p ∈ Se (4.33)

BCC1(i,j) ≥ φcp(i,j) · τ
c1
(i,j) + ωcp(i,j) −M2 · (1− x(i,j)) ∀(i, j) ∈ AC, p ∈ Se (4.34)

BCC2(i,j) ≥ φp(i,j) · τ
c2
(i,j) + ωp(i,j) −M2 · (1− x(i,j)) ∀(i, j) ∈ AC, p ∈ Se (4.35)

Constraints 4.20 and 4.21 ensure that all nodes have one outgoing and ingoing leg, where δ+(i)
and δ−(i) denote the set of outgoing and ingoing legs of node i respectively. In other words, all
the ports are visited once during the route. Constraints 4.23 are subtour elimination constraints
ensuring that the tour connects all the ports in a single rotation. Given a leg (i,j) in the solution
(x(i,j) = 1), tj time of arrival in j has to be greater or equal than the time of departure from i plus
τ(i,j) travelling time on the leg. If the leg is not in the solution, the constraint is not active thanks
to M1. Constraint 4.22 sets ports 1 as starting port. Therefore, constraints 4.23 excludes ingoing
arcs to port 1.
Constraint 4.24 enforces the rotation being a multiple of one week. S are the employed vessels
and they are to be less the available ones, AV (constraint 4.25). As explained in Section 1.1, the
number of weeks needed of the route coincides with the employed vessels, that is each port is visited
once in each week.
Constraints 4.26 are maximum transit time constraints and they also give the value to the delays
variables dij . Transit time between each pair of ports f ij is calculated in constraints 4.27. The
transit time from port i to port k has to be greater than the transit time from port i to port j,
plus the time the vessel stays in j, plus the travel time from port j to port k. These constraints are
not active when the arc (j, k) is not in the final route.
Constraints 4.28, 4.29, 4.30 set the travel times bounds, and therefore the sailing speed, according
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to the maximum and minimum vessel speeds. Constraints 4.28 are referred to legs outside the
SECAs; 4.29 and 4.30 limit the sailing speed in the crossing legs (set AC). Variables τ c1(i,j) and τ c2(i,j)
are the transit times in the segment of the leg inside and outside the SECAs, respectively; then
they are summed in constraints 4.31.
Constraints 4.32, 4.33, 4.34, 4.35 calculate the bunker consumption of the sets AE, AN and AC as
explained in section 6.2.
The domains of the variables are shown in Table 4.5.

Big M
In general the Big-M notation is known for increasing the computational time of problems and,

for this issue, it is always suggested to avoid it. As Williams (1999) explains, the Big-M value
should always be as small as possible. The running time increases with a high Big-M because the
lower bound decreases; therefore, the solver requires more time to "close" the gap between the
integer optimal solution and the relaxed solution.
There are two Big-M in the model to "deactivate" the constraints when the leg is not in the solution.
In particular, M1 has to be set to the largest value that the arrival time can take: M1 = 168 ·AV ;
it is used in constraints 4.23 and 4.27. M2 has to take the biggest value of the intersections in order
to not account the bunker consumption if the leg is not in the solution (constraints 4.32 4.33 4.34
4.35). Indeed the slope values are going to be always multiplied for zero is the leg is not in the final
route, thus the M2 has to be large enough to null the intersection value.
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Data Description

Data used as input to solve the model are described in this Chapter. A benchmark suite for liner
shipping network design problems is provided by Brouer et al. (2013) and it is available on the
web-site http://www.linerlib.org/. The benchmark has been defined by collecting real life data from
Maersk Line. Almost all the data used in the tests come from this benchmark. During this study,
three instances have been defined: 15 ports all around the world, 20 ports on the Atlantic Ocean
and 10 American ports; they are going to be called [15Wor], [20Atl] and [10Ame] respectively.

Ports

For the first instance, 15 ports have been chosen to simulate a whole global network. Indeed,
there are ports in North Europe, West and East US Coast and East Asia. Table 5.1 describes the
ports with the name and location. It also shows the time spent in the port by the vessel; these
values are not available in the benchmark cited above, therefore they have been generated randomly
in a range between 15 and 25.
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Table 5.1: World ports instance description

ID UNLocode Name Country Region Port stay
[hours]

1 BEANR Antwerp Belgium Europe 17
2 GBFXT Felixstowe United Kingdom UK 20
3 DEBRV Bremerhaven Germany Europe 17
4 NLRTM Rotterdam Netherlands Europe 17
5 FRLEH Le Havre France Europe 19

6 USEWR Newark United States US East
Coast 20

7 USCHS Charleston United States US East
Coast 17

8 PAMIT Manzanillo Panama US West
Coast 17

9 USLAX Los Angeles United States US West
Coast 17

10 USOAK Oakland United States US West
Coast 24

11 JPTYO Tokyo Japan Japan 17
12 JPUKB Kobe Japan Japan 22

13 HKHKG Hong Kong Hong Kong Hong
Kong 20

14 TWKHH Kaohsiung Taiwan Singa-
pore 21

15 KRPUS Busan Korea South
Korea 18

Twenty ports in the Atlantic Ocean have been chosen for the second instance. Their descriptions
are shown in Table 5.2. Like for the previous set of ports, the times spent in the ports have been
generated randomly in a range between 15 and 25. This instance cannot be solved to optimality,
therefore it has been resized to 10 ports, called [10Ame] in Chapter 6. These 10 ports are 1, 2, 4, 5,
7, 8, 9, 11 and 15 of Table 5.2. The third instance is made of American ports (Table 5.3).
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Table 5.2: Atlantic ports instance description

ID UNLocode Name Country Region Port stay
[hours]

1 DEHAM Hamburg Germany
North

Continent
Europe

24

2 BEANR Antwerp Belgium
North

Continent
Europe

15

3 BRPNG Paranagua Brazil Brazil 15
4 ITGIT Gioia Tauro Italy West Med 21

5 NLRTM Rotterdam Netherlands
North

Continent
Europe

20

6 USCHS Charleston United States US East Coast 25
7 USMIA Miami United States US Gulf Coast 23
8 USEWR Newark United States US East Coast 17
9 GBFXT Felixstowe United Kingdom UK 21
10 BRSSZ Santos Brazil Brazil 21

11 CAMTR Montreal Canada Canada East
Coast 23

12 GHTKD Takoradi Ghana West Africa 22
13 UYMVD Montevideo Uruguay Brazil 17
14 ZADUR Durban South Africa South Africa 16
15 MAPTM Tangier Morocco West Med 21
16 ESALG Algeciras Spain West Med 18
17 ESVLC Valencia Spain West Med 15
18 MACAS Casablanca Morocco West Med 21
19 AOLAD Luanda Angola West Africa 22

20 BEZEE Zeebrugge Belgium
North

Continent
Europe

23
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Table 5.3: American ports instance description

ID UNLocode Name Country Region Port stay
[hours]

1 PABLB Balboa Panama US West
Coast 25

2 COBUN Buenaventura Colombia South America
West Coast 25

3 PECLL Callao Peru South America
West Coast 18

4 CLIQQ Iquique Chile South America
West Coast 22

5 PAMIT Manzanillo Panama US West
Coast 19

6 USLAX Los Angeles United States US West
Coast 17

7 USOAK Oakland United States US West
Coast 25

8 USEWR Newark United States US East Coast 20
9 USCHS Charleston United States US East Coast 19
10 USMIA Miami United States US Gulf Coast 19

Vessel
The vessel used in this study is Panamax 2400. As its name says, vessels belonging to this

class can sail across the Panama Canal and it has a maximum capacity of 2400 FFE. Its features
-some of the parameters used in the tests- are described in Table 5.4. All the tests have been run
considering 20 available vessels (parameter AV in Table 4.2).

Table 5.4: Panamax 2400

Feature Value Unit of Measure
Capacity 2400 [FFE]
TC rate 21000 [USD/day]
Draft 11 [m]

Min speed 12 [nm/h]
Max speed 22 [nm/h]
Design speed 16 [nm/h]

Bunker cons at design speed 57.4 [ton/day]

Bunker Cost
Data available in bunkerworld web-site (BunkerWorld, 2017) have been used to set the two

bunker costs needed in the model. For the bunker cost inside SECA (FCE in the Table 4.4) the
value of the "Maximum 0.1% Sulphur - Distillate Index", hereafter BW0.1%S Index, has been
chosen. The value of the "BunkerWorld 380 Index", hereafter BWI380, has beeen set as the bunker
cost outside SECA (FCN). Figure 5.1 shows the actual values of these fuel classes.

As stated on the web-site, the BWI380 is a weighted daily index made up of 20 key bunkering
ports. To obtain a representative geographical spread, the ports were selected by size with reference
to their geographical importance. Marine diesel oil (MDO) and marine gas oil (MGO) are included
in the calculation of BWI.
About the BW0.1%S Index, it is a combined daily average dollar value index of distillate fuels that
comply with the 2015 Emissions Control Area (ECA) sulphur limit. To obtain a representative
geographical spread, the ports were selected by size with reference to their geographical importance.

In all the test shown in this reports, FCE takes value of 500 and FCN takes value of 320. Indeed,
the more refined fuel is more expensive since it emits less sulphur than the cheaper does.
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Figure 5.1: BW380 and BW0.1S cost (BunkerWorld, 2017)

Bunker Consumption
The Linearization Method (described in Section 4.2) of the bunker consumption function has

been used to deal with the cubic relation between sailing speed and bunker consumption. In order
to generate slopes and intersections of the diagram transit-time/consumption, 10 secants have
been taken into account. Since the model has two different fuel prices for the two sea areas, two
transit-time/consumption diagrams have been built: one for the inside SECA and one for the
outside SECA. There is, indeed, a parameter that measures the percentage inside SECA of each
leg: segIn(i,j), (i, j) ∈ A. Table 5.5 reports these values for the legs leaving Antwerp.

Table 5.5: Percentage of the leg inside SECA

from to %insideSECA
BEANR BEANR 0
BEANR GBFXT 1
BEANR DEBRV 1
BEANR NLRTM 1
BEANR FRLEH 1
BEANR USEWR 0,2
BEANR USCHS 0,2
BEANR PAMIT 0,1
BEANR USLAX 0,1
BEANR USOAK 0,1
BEANR JPTYO 0,05
BEANR JPUKB 0,05
BEANR HKHKG 0,05
BEANR TWKHH 0,05
BEANR KRPUS 0,05

Thanks to this parameter, it is possible to calculate values of slope and intersection for both inside
and outside SECA diagrams. Slope and intersection are the values of the transit-time/consumption
diagram outside SECA, slopeC and intersectionC are the values of the transit-time/consumption
diagram inside SECA. As expected, the values of the first diagram for the legs leaving Antwerp and
going to another port in Europe are zero. Table 5.6 shows slopes and intersections values both for
the inside and outside SECA diagrams for the first 8 secants from Antwerp (Belgium) to Newark
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(US).

Table 5.6: Example of values to calculate the bunker consumption (see Section 4.2 for further
explanations)

from to secant slope intersection slopeC intersectionC
BEANR USEWR 0 -22,39 8581,61 -1432,79 17305,72
BEANR USEWR 1 -19,11 7722,69 -1223,29 12353,11
BEANR USEWR 2 -16,45 6986,62 -1052,73 11185,87
BEANR USEWR 3 -14,26 6351,01 -912,47 10166,19
BEANR USEWR 4 -12,44 5798,39 -796,06 9774,18
BEANR USEWR 5 -10,92 5314,90 -698,64 8538,33
BEANR USEWR 6 -9,63 4889,47 -616,49 7831,49
BEANR USEWR 7 -8,54 4513,16 -546,74 7220,60

Emissions Cost
In order to compute the cost of emissions in the objective function 4.18, there is the need to

calculate the tonnes of SO2 and the kg of CO2 emitted in the route. They both depend on the
type of fuel used, therefore two different coefficient for each have to be used. The CO2 coefficient
to estimate the emissions has been set by IMO: a value of 3.1144 [kgCO2/ton] for heavy fuel
oil (outside SECA) and 3.206 [kgCO2/ton] of gas/diesel oil fuel (inside). To compute the SO2
emissions, the percentage of SO2 content in the fuel has to be multiplied to the fuel consumption
[ton] and an factor of 0.02, derived from the chemical reaction of sulphur with oxygen (Kontovas,
2014). In this study percentages of 0.1% and 3.5% have been chosen. As regard the external cost of
emissions, MOVE (2014) provides the two values: 37 [USD/tonCO2] and 12,700 [USD/tonSO2].

Maximum Transit Time
Not all the pairs of ports have a maximum transit time, therefore constraints 4.26 and 4.27 are

made only for a subset of A, called in the model AM. Some MTT values are shown in Table 5.7.

Quantity transported
Quantity transported is measured in Forty-foot Equivalent Unit (FFE). FFE is related to each

pair of ports and it is useful in the operational cost objective function in order to weight the possible
delay of the solution. Table 5.8 shows an exaple of quantity transported from Los Angeles.

Table 5.7: Example of MTT values

from to MTT
[hours] from to MTT

[hours]
BEANR DEBRV 264 USOAK TWKHH 504
BEANR USEWR 336 USOAK KRPUS 552
GBFXT PAMIT 480 HKHKG BEANR 696
GBFXT USLAX 888 HKHKG GBFXT 768

Table 5.8: Example of quantity transported in FFE

from to FFE from to FFE
USLAX DEBRV 2 USLAX HKHKG 319
USLAX NLRTM 1 USLAX TWKHH 231
USLAX FRLEH 0 USLAX KRPUS 380
USLAX PAMIT 9 USLAX PABLB 49
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Solution Methods and Results

This Chapter shows the methods used in this study to find the solution of the Liner Shipping
Routing and Speed Optimization Problem (LSRSOP). The running time to find the optimal solu-
tion varies according the size of the instance as input. As explained in Section 4.1, the Travelling
Salesman Problem is difficult to solve; moreover, the model defined to solve the LSRSOP adds
additional constraints to the TSP making harder the computational complexity. Indeed, besides
the well-known solving difficulties the subtour elimination constraints bring, the proposed model
considers the maximum transit time constraints between some pairs of ports. The instances used in
this analysis have been the ones described in Chapter 5; the 10 American ports, the 20 Atlantic
ports and the 15 World ports instances will be denoted as [10Ame], [20Atl] and [15Wor] respectively.
For the [20Atl] instance the 47% of pair of ports have a maximum transit time constraints while
this percentage is 66 for the [15Wor]. This is one of the reasons why the solver takes a long time to
solve the problem an it stops because a memory error occurs. Another reason is, of course, the
number of ports, that determines the number of constraints. Indeed, while the percentage of the
pairs of ports having a maximum transit time is 46% for the [10Ame] instance, the solver can find
the optimal solution in 548.2 seconds. The [20Atl] instance have been downsized to 10 ports in
order to have two instances that could be solved until optimality.

Therefore, according the above stated solving difficulties arisen from the instance as input, two
solutions approaches have been implemented: the Optimal Solution approach and the Heuristic
Approach. In the former, several techniques have been tested with the purpose of decreasing the
overall running time; moreover, the Pareto Frontier of a Bi-Objective Functions Model can be found
if the optimal solution is available. Instances used for these studies are the [10Ame] and the [10Atl]
instances. The Heuristic Approach has the purpose of defining the best strategy to find a satisfying
and feasible solution for the instances that would require too much running time to be solved until
optimality, that are [20Atl] and [15Wor] in this study.

The program codes have been executed on the Hight Performance Computing (HPC) infrastruc-
ture of DTU. The maximum requested memory for each run is 46gb on one node with 9 processors
per node (PPN). The code has been written in Julia for Mathematical Optimization (JuMP), a
domain-specific modelling language for mathematical optimization embedded in Julia language;
Gurobi was used as solver.

The Chapter is structured as follows. Section 6.1 introduces the heuristic techniques used in
this study; Section 6.2 describes the 2-Steps Method and contains the Route Generation Algorithm,
the Speed Optimization Model and the Hill-Climbing Algorithm. Results of the 2-Steps Method
are in Section 6.2.4. Sections 6.3 describes the Simulated Annealing Algorithm and Section 6.3.1
shows how its parameters are tuned.
Section 6.4 describes and shows the result of all the techniques tested to help the solver in the
research of the optimal solution. Results of the Bi-Objective function model are in Section 6.5.1;
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these results are analysed both in the company and the environmental point of view. A Sensitive
Analysis for the cost of delay was required to show the effect of this cost on the total operative cost
of the vessel (Section 6.6). Finally, an As-Is/To-Be Analysis is presented in Section 6.7 to estimate
the effect of the regulations issued by the International Maritime Organization (IMO) for the year
2020.

6.1 Heuristic Approach
The main issue for the LSRSOP is finding the optimal port calls sequence that minimizes the
objective function. Decreasing the complexing of the problem to obtain shorter running times is
possible. Given a port calls sequence, i.e. a route, the model has to find the optimal sailing speed
that minimizes the objective function; in this way, finding the best solution of the LSRSOP is
unlikely, but it possible to obtain a good feasible solution, not so far from the best one. Heuristic
approaches are usually used by decision makers to find a feasible and satisfying solution of problems
with an enormous number of possible solutions within a reasonable time. As regards the presented
LSRSOP, finding the best solution is hard for the solver when the operative cost of the shipping
company is minimized, therefore the presented heuristic approaches are going to minimize the cited
cost.

In this Section two heuristics are described and tuned in order to offer the best strategy to use
with complex instances. The first heuristic proposed is the Two-Steps Method tries to improve
the solution using the Hill-Climbing Algorithm, an algorithm that recombines the port calls to
create a new route; the second is the Simulated Annealing that improves the solution allowing worse
solutions if some condition are met in order to jump out any local optimums.

6.2 Two-Steps Method
The Two-Steps Method is inspired to the Two-Stages Approach used by Fagerholt (2004) to minimize
the total operational cost. Hvattum et al. (2013) defined the Speed Optimization Problem (SOP)
to find the optimal speed in quadratic time. The Two-Steps Method proposed in this study is
composed as follows:

1. Route Generation & SOP: The Route Generation Algorithm proposes randomly different
routes to the Speed Optimization Model; then, among all the routes, the one that best
optimizes the SOP is chosen. Step 1 ends when the time limit is reached.

2. Hill-Climbing & SOP: Given the best solution of Step 1, the Hill-Climbing Algorithm generates
a slight different route and the SOP evaluates whether it is better than the first one. This
attempt can be made several times according to the time limit.

The 2-Steps can be repeated by setting a global time limit. The decision maker is going to
choose this time limit according to the complexity of the problem and how much time he or she is
willing to allocate for the search. Of course, the more time is used, the more solutions are going to
be generated and improved.

In order to find the best 2-Step Method configuration, a single run has a global time limit of 5
minutes and the cycle Step 1 + Step 2 can be repeated more than once in the single run. Step 1
lasts 10 seconds and Step 2 improves the solution until the solver cannot propose better ones after
30 seconds. The number of the 2-Steps cycles in one test varies according to the efficiency of the
Hill-Climbing Algorithm: the more improvements it generates, the more Step 2 lasts; for example,
in the test of Figure 6.3 the 2-Steps cycle is repeated four times.
This algorithm is described in Section 6.2.3 and its best configuration is found in Section 6.2.4.
The Route Generation Algorithm is described in Section 6.2.1 and the model to solve the Speed
Optimization Porblem (SOP) is in Section 6.2.2.
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6.2.1 Routes Generation Algorithm
Algorithm 1 generates randomly different feasible routes. A route is feasible if all the ports are
visited once and the travelled distance is viable at the maximum speed with the available vessels.
This last hypothesis is important in order to ensure that the SOP does not optimize infeasible
routes. The solution to deal with this issue is described in Section 6.2.3. The algorithm can be
summarized as follows:

• Start from port 1 and add randomly other ports to the route until all the ports are visited;

• If the route has been already analysed from the Speed Optimization Algorithm, start the
Algorithm from the beginning;

• If the route has not been analysed yet by the SOP, give this route as output and update the
set of the analysed routes.

Inputs are the number of ports and the set of the routes already analysed in order to skip
the SOP of routes already generated. This set is initialized as empty. The output is: an array of
ordered ports, i.e. the rotation and the potentially updated set of analysed routes. The algorithm
always starts to build the rotation from the port number 1, then each following port is chosen
randomly between port 2 and the total number of ports. A boolean array called visited_ports keeps
track of the ports already in the rotation. Once a no-analysed feasible route is found, the boolean
values of x(i,j), (i, j) ∈ A will be parameters in the SOP.

Algorithm 6.1: Routes Generation Algorithm

Data: { analysed_routes, #ports}
create a boolean array of visited ports visited_ports;
visited_ports[1] ← true;
cur_port← 1;
create an array route with the port 1 as first element;
choose a random port j different from 1;
if the chosen port is not visited yet then

add this port to the array route;
cur_port← j;
visited_ports[j] ← true;

end
already ← false;
if the route visits all the ports and it was already in the set analysed_routes then

already ← true;
end
if the route is not in analysed_routes then

add the route to analysed_routes;
end
if already = true then

start the algorithm from the beginning;
end
Result: {Feasible route, x(i,j), (i, j) ∈ A values, analysed_routes}

6.2.2 Speed Optimization Problem
The SOP has basically the same formulation of the LSRSOP but it does not have to find the best
port calls sequence. Given a rotation, the SOP optimize the sailing speed minimizing the costs
of the objective function. Since not all the legs have to be considered in the constraints, it is
convenient resizing the sets in order to reduce the number of constraint (Table 6.1). The Big-M M2
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is not necessary now since the constraints to measure the bunker consumption are created only
for the used legs. On the other hand, the Big-M M1 is required only in constraints to calculate
the transit times between ports (constraints 6.5) and it is activated by x(i,j), (i, j) ∈ A. Indeed,
x(i,j) is a parameter in this model: it is equal to 1 if the arc (i,j) is in the rotation, 0 otherwise;
its values are calculated looking at the port calls sequence of the input route. As regard variables,
ti, i ∈ P are not needed any more since they were used only in the subtour elimination constraints
(constraints 4.23). In addition to x(i,j), (i, j) ∈ A, the other parameters are the same of LSRSOP
shown in Tables 4.2 and 4.3; Table 6.2 shows the variables of the SOP.

Table 6.1: SOP Sets

Set Name Description
P Set of all the ports
A Set of all the legs
AE2s Set of legs inside SECA
AN2s Set of legs outside SECA
AC2s Set of crossing legs
AM Set of arcs that have a maximum transit time
Se Set of secants to calculate the bunker consumption as shown in Section 4.2
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Table 6.2: SOP Variables

Variable Name Description Domain Unit of Measure

τ(i,j)
Travel time on arc
(i, j) ∈ A2s R+ [hours]

τ c1(i,j)

Travel time on the segment
inside SECA of arc
(i, j) ∈ AC2s

R+ [hours]

τ c2(i,j)

Travel time on the segment
outside SECA of arc
(i, j) ∈ AC2s

R+ [hours]

dij
Hours of delay from port
i ∈ P to port j ∈ P R+ [hours]

BCE(i,j)
Bunker consumption on arc
(i, j) ∈ AE2s R+ [tons]

BCN(i,j)
Bunker consumption on arc
(i, j) ∈ AN2s R+ [tons]

BCC1(i,j)

Bunker consumption on the
segment inside SECA of the
arc (i, j) ∈ A2sC

R+ [tons]

BCC2(i,j)

Bunker consumption on the
segment outside SECA of the
arc (i, j) ∈ AC2s

R+ [tons]

f ij
Transit time from port i ∈ P
to port j ∈ P R+ [hours]

S Duration of the route Z [weeks]

Mathematical Formulation

For a detailed description of the objective function and the constraints see Section 4.3. The
domains of the variables are shown in Table 6.2.

Minimize:

FCE ·
( ∑

(i,j)∈AE

BCE(i,j) +
∑

(i,j)∈AC

BCC1(i,j)

)
+

FCN ·
( ∑

(i,j)∈AN

BCN(i,j) +
∑

(i,j)∈AC

BCC2(i,j)

)
+

∑
i∈P

∑
j∈P

(
R · dij · vij

)
+

TC · S · 7

(6.1)
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Subject to:∑
(i,j)∈A2s

τ(i,j) +
∑
i∈P

tstayi = 168 · S (6.2)

1 ≤ S ≤ AV (6.3)

f ij − dij ≤MTT(i,j) ∀(i, j) ∈ AM (6.4)

f ik ≥ f ij + tstayj + τ(j,k) −M1 · (1− x(j,k)) ∀(i, k) ∈ A, j ∈ P, i 6= k (6.5)

ttmin(i,j) ≤ τ(i,j) ≤ ttmax(i,j) ∀(i, j) ∈ AE2s ∪AN2s (6.6)

ttmin(i,j) · segIn(i,j) ≤ τ c1(i,j) ≤ tt
max
(i,j) · segIn(i,j) ∀(i, j) ∈ AC2s (6.7)

ttmin(i,j) · (1− segIn(i,j)) ≤ τ c2(i,j) ≤ tt
max
(i,j) · (1− segIn(i,j)) ∀(i, j) ∈ AC2s (6.8)

τ(i,j) = τ c1(i,j) + τ c2(i,j) ∀(i, j) ∈ AC2s (6.9)

BCE(i,j) ≥ φcp(i,j) · τ(i,j) + ωcp(i,j) ∀(i, j) ∈ AE2s, p ∈ Se (6.10)

BCN(i,j) ≥ φp(i,j) · τ(i,j) + ωp(i,j) ∀(i, j) ∈ AN, p ∈ Se (6.11)

BCC1(i,j) ≥ φcp(i,j) · τ
c1
(i,j) + ωcp(i,j) ∀(i, j) ∈ AC2s, p ∈ Se (6.12)

BCC2(i,j) ≥ φp(i,j) · τ
c2
(i,j) + ωp(i,j) ∀(i, j) ∈ AC2s, p ∈ Se (6.13)

6.2.3 Hill-Climbing Algorithm

Once the best heuristic solution, among the routes generated in Step 1, has been selected from the
SOP, it is possible to try to improve it with the Hill-Climbing Algorithm. The basic idea behind this
algorithm is to switch some port calls in order to find a better and, in this case, cheaper solution.
Figure 6.1 shows 2 similar routes. Route b is shorter than route a and it hopefully has a lower
objective function value. The Hill-Climbing Algorithm tries to look for some good solution that the
Routes Generation Algorithm did not proposed.
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Figure 6.1: Length comparison between route a and route b

The classic approach of reverting a subsequence between two ports is not the best one for the
presented problem, especially when the distances between the ports are very large. Indeed, it
often generates routes that cannot be sailed with the maximum number of available vessels. For
example, given the route [1,2,3,4,5,6,7,8,9,10] and reverting the ports between 3 and 8, the route
[1,2,3,7,6,5,4,8,9,10] can result infeasible because, for example, if ports 3 and 4 belong to a continent
and ports 7 and 8 belong to a different one, the total distance is too long. For this reason, the
Algorithm proposed in this Section exchange the sequence of at most n ports. Figure 6.2 shows
an example where only 3 of 4 ports are exchanged in the new generated route. Of course, the
detailed-oriented reader is going to ask what is the maximum number of ports can be exchanged to
maximize the efficiency of the algorithm. The answer to this question is in Section 6.2.4 where the
results of the 2-Steps Method are shown.

Figure 6.2: Example of Hill-Climbing Algorithm: given a maximum number of 4 ports exchanged, 3 of
them are actually switched

Moreover, it is possible to calculate the maximum length of the route accessible with the available
vessels. The number of the employed vessels in the rotation is equal to the number of weeks the
rotation lasts in order to guarantee a weekly frequency to each port. Given the maximum sailing
speed maxS

[
nm
h

]
, the available vessels AV [weeks], the total time spend in ports tot_stay[hours]

and 168
[
hours
week

]
, the maximum accessible distance AD[nautical miles] is calculated as follows:

AD = maxS · (AV · 168− tot_stay) (6.14)

The AD value is used in the Hill-Climbing algorithm and in the Routes Generation Algorithm
to filter the the feasible rotation from the infeasible ones. In this way the efficiency of the study
increase since the SOP does not have to analyse infeasible routes.

Before the detailed description of the Hill-Climbing Algorithm, it can be summarized in the
next steps:
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• Given a sequence of port calls, divide it in three parts;

• Mix randomly the order of the ports in the second part;

• Join the three parts in order to obtain a new route, different from the starting one;

• If the new route has been already analysed from the Speed Optimization Algorithm, start the
algorithm again with the initial route;

• If the new route has not been analysed yet by the SOP, give this route as output and update
the set of the analysed routes.

Algorithm 2 shows the Hill-Climbing Algorithm in detail. The input is the best_route among
the ones generated from the Routes Generation Algorithm, the set of "improved" routes already
tested called tests(initialized as empty) and the number of ports. In the shown description the
output is a route with at most 4 switched port calls compared with the one as input and the
updated set of the already tested routes; see next section for a deeper analysis. If the route has
been already tested in the SOP, the algorithm generates a different new route starting from the one
as input.

Algorithm 6.2: Hill-Climbing Algorithm

Data: {best_route, tests, #ports}
create an empty array mix;
n ← random(1:(#ports− 3));
i ← 0;
while i < 4 do

add the element in position best_route[n+ i] to mix ;
i ← i + 1;

end
create an empty array end_route;
if best_route[n+ 3] 6= best_route[#ports] then

for i = (n+ 4) : #ports do
add the element in position best_route[i] to end_route;

end
end
create an array mix2 that has the same elements of mix in different order;
for i = n : #ports do

delete the last element of best_route;
end
append mix2 to best_route;
if best_route does not contain all the ports then

append end_route to best_route;
end
if best_route is in tests then

start again the algorithm with the initial route
else

add best_route to tests;
end
Result: {best_route, tests}

6.2.4 Two-Steps Method Results
Algorithm 2 breaks the rotation in three parts and changes the order of the ports of the second one,
then the parts are linked again having a slight different rotation as output. The question is: how
many ports the second part should contain in order to maximize the efficiency of the algorithm?
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This section shows the result of the Two-Steps Method. In particular, it has been tested which
one is the best Hill-Climbing configuration that finds best solutions. The method has the goal of
finding different feasible solutions in order to achieve a good feasible solution. Two tests have been
done: one on the [20Atl] instance and the second on the [15Wor] instance. Each test is composed
of 5 runs; the single run lasts 5 minutes. It is possible that the cycle Step 1 + Step 2 is going to be
repeated more than once in the single run. The first step, Route Generation Algorithm + SOP,
looks for the best route among the ones generated for 10 seconds; the second step, Hill-Climbing
Algorithm + SOP, improves the best solution of Step 1 until 30 seconds pass since the last SOP. In
the Step 2 no SOP is run either the route is too long or the route proposed by the Hill-Climbing
Algorithm has already been analysed. The run finishes, if, after Step 2, 5 minutes are passed from
the beginning of the run.
Tables 6.3 and 6.4 report the result of the 2-Steps Algorithm for the [15Wor] and [20Atl] instances
respectively. Three Hill-Climbing configurations are shown: when the algorithm changes the order
of at most 4, 3 or 2 ports in the route. For both the instance the best configuration is when the
algorithm exchanges at most 3 port calls. Indeed, the average of the tests is always the lowest for
the 3 switch strategy. This result is highlighted especially in the instance of 20 ports. Finally, figure
6.3 shows an example of the 2-Steps run for the [15Wor] instance.

Table 6.3: 2-Steps Method result, instance: 15 World ports

Test Best sol. 4 switch Best sol. 3 switch Best sol. 2 switch
1 241,592,681.05 240,098,749.76 241,218,289.84
2 213,188,812.90 214,499,885.15 245,766,752.17
3 256,124,083.77 245,732,501.10 205,315,511.94
4 292,239,636.83 233,245,682.93 225,402,870.38
5 214,359,651.16 229,423,919.95 250,980,207.57
Average 243,500,973.14 232,600,147.78 233,736,726.38
Std. D 32,811,909.21 11,903,910.93 18,542,192.03

Table 6.4: 2-Steps Method result, instance: 20 Atlantic ports

Test Best sol. 4 switch Best sol. 3 switch Best sol. 2 switch
1 756,639,344.18 661,892,894.50 906,069,184.08
2 694,756,666.63 714,683,348.33 803,337,709.08
3 722,857,180.35 785,154,758.53 793,022,827.90
4 694,756,666.63 610,260,293.65 825,813,462.55
5 670,105,340.74 686,600,802.55 923,361,453.20
Average 707,823,039.70 691,718,419.51 850,320,927.36
Std. D 33,064,868.04 64,824,601.08 60,278,307.41
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Figure 6.3: Example of 2-Step test for [15Wor] instance, maximum ports exchanged = 3; on the
x-axis is the running time from 0 to 300 seconds.

6.3 Simulated Annealing
The Simulated Annealing technique, hereafter SA, is a meta-heuristic algorithm that consists of
allowing the objective function to assume worse values in order to try to find a better value jumping
out the local minimum. Aarts et al. (1988) prove that the algorithm can find an optimal solution
with a high probability but the running time grows exponentially with the number of variables.
The aim of this study is to tune the set of parameters in order to propose a good strategy to find a
good solution for complex instances. The original meaning of annealing is the process of melting a
metal with a high temperature and then bring it to the solid state again decreasing gradually and
slowly the temperate. In optimization combinatorial problems, the algorithm starts from a given
solution and then new configurations are analysed; the temperature has the key determinant role of
deciding whether a worse solution has to be accepted or not. The lower the temperature, the less
probability the new configuration has to be accepted. If the new configuration has a worse but
similar solution from the current one, the probability of being accepted increases. Therefore, the
algorithm works like a random search for high temperature and then it tries to go in depth looking
for a good final solution with low temperatures. The difficulty of the method is the tuning phase
because there are a lot of parameters to set and their variation can give very different results.

Given a starting solution x0 with energy E0 (its solution value), the initial temperature T 0, the
final temperature T e and a cooling rate CR, the algorithm can be described with the following
steps:

1. Generate a new solution x1 starting from the current one with energy E1; set 4E = E1 −E0;

2. If 4E ≤ 0, the new configuration x1 has a better solution than the current x0; set x1 as the
current solution

3. If 4E ≥ 0, the new configuration x1 has a worse solution than the current x0; generate a
random number p ∈ [0, 1]; if p ≤ e−

4E
T0 , set x1 as the current solution;

4. If the current temperature T 0 is equal to the final temperature T e, end the algorithm;
otherwise, update T 0 = T 0 · CR and continue from step 1.

6.3.1 Simulated Annealing Tuning
The SA has a lot of parameters to be tuned. Indeed, the result can vary enormously not only
according to the running time, but also according the starting temperature and the cooling rate.
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In this study, only the parameter to set the final temperature will be tuned; the Hill-Climbing
Algorithm is used in the SA to find different routes that can have a worse or better solution
value than the current one. The Hill-Climbing construction used for this heuristic approach is the
3-switched ports since it has been proven being better than the other constructions (Section 6.2.4).
As it happens in the 2-Steps method, the routes generated from the Hill-Climbing algorithm having
a length higher than AD nautical miles are not analysed by the SOP since they require more than
20 vessels (Section 6.2.3).

Since different instances are tested, the starting and final solutions have to be related by a law to
compare the results. In this study, the running time links the two temperatures. Given the cooling
rate CR and the running time α in seconds, the final temperature will be calculate as follows:

T e = T 0 · CRα (6.15)

The CR can be calculated from 6.15 with the following formula:

CR =
(
T e

T 0

) 1
α

(6.16)

The final temperature T e is going to be a faction of the initial one and it will be tuned with the
parameter r:

T e = T 0 · r (6.17)

The starting temperature T 0 has been set so that a solution f% worse than the starting one x0
is going to be accepted with a probability of 50%. T 0 strongly influences the result according the
running time. If the running time increases, f has to increase as well, otherwise, if it is too small,
the SA is going to not accept any solutions for large part of the test. In this study, the running
time of one test is 5 minutes and f has been set to 5% because it has been noticed that the SA
works with this time/f combination. Therefore, the equation to set the initial temperature will be:

T 0 = −0.05 · x0

log(0.5) (6.18)

The instances tested are the [20Atl] and the [15Wor]. Five tests have been run for each value
of r; each test lasts 5 minutes. Tables 6.5 and 6.6 show the best values for each test for both the
instances. The result is that a value of r = 0.1 brings better averages of solutions. Figure 6.4 is a
test of when the parameter r is equal to 0.1 for the [15Wor] instance. Moreover, Figure 6.5 is a test
of when the parameter r is equal to 0.001 for the [20Atl] instance.

Table 6.5: Best values of the tests of Simulated Annealing Analysis for 20 Atlantic ports instances;
tuning the final temperature coefficient

r = 0.001 r = 0.01 r = 0.1
Test 1 994,463,227.02 968,102,324.40 1,007,717,067.46
Test 2 905,338,796.29 983,444,763.05 891,146,465.15
Test 3 965,581,427.51 1,021,296,018.47 882,389,950.85
Test 4 971,272,127.77 937,436,618.37 870,684,649.09
Test 5 978,776,650.24 930,636,094.90 970,314,792.54
Average 963,086,445.77 968,183,163.84 924,450,585.02
StD 34,054,024.22 36,773,056.43 60,839,686.56
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Table 6.6: Best values of the tests of Simulated Annealing Analysis for 15 World ports instances;
tuning the final temperature coefficient

r = 0.001 r = 0.01 r = 0.1
Test 1 317,560,003.92 359,162,646.33 305,026,771.17
Test 2 337,236,648.43 386,887,989.00 266,896,581.67
Test 3 422,428,040.81 300,300,479.73 278,562,197.39
Test 4 294,312,886.57 298,613,208.15 335,520,848.00
Test 5 300,866,394.29 267,313,184.38 413,293,421.16
Average 334,480,794.80 322,455,501.52 319,859,963.88
St D 51,894,158.51 48,987,077.39 58,535,722.45

Figure 6.4: Example of SA test for [15Wor] instance, r = 0.1; on the x-axis is the running time
from 0 to 300 seconds.

Figure 6.5: Example of SA test for [20Atl] instance, r = 0.001; on the x-axis is the running time
from 0 to 300 seconds.
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6.4 Optimal Solution
This section describes the techniques tested to find the optimal solution. Solving the problem until
optimality is very hard in terms of both time and memory allocation. The formulation proposed has
to deal with 2 issues: the number of subtour elimination constraints 4.22 and 4.23 and the maximum
transit times constraints 4.26 and 4.27. It is possible to help the solver in finding the optimal
solution by introducing dynamically inequalities, that means, adding to the model formulation
new constraints if certain conditions are met while the branch-and-bound tree is explored. JuMP
allows their addition by using callback functions. There are two types of these constraints: Lazy
Constraints and User Cuts; in this study only the second type of constraints has been used. For the
sake of completeness, the uses of Lazy Constraints and User Cuts are described before showing the
tested User Cuts strategies.

A common and useful way to reduce the number of constraints is to remove the subtour
elimination constraints and introduce them every time the MIP solver finds a subtour; these
constraints are called "lazy". An example of solving the TSP with lazy constraints is provided by
Iain Dunning and it is available on github (Dunning, 2013).
Moreover, it is possible to use User Cuts to tighten the LP relaxation. Like lazy constraints, user
cuts are introduced with a callback when a MIP solver reaches a new node in the branch-and-bound
tree. The difference between user cuts and lazy constraints is that the former are not part of the
original model and they are useful to eliminate a portion of the LP hull; the latter can remove a
polygon where integer solutions are (Figure 6.6).

Figure 6.6: Use of lazy constraints and user cuts in an integer linear program

An algorithm that introduces subtour elimination constraints when the solution is still relaxed
and that tightens the gap between the optimal and the relaxed solution is described in Section
6.4.1. Moreover other two types of user cuts have been tested to set lower bounds for the variables
used in maximum transit time constraints. They are shown in Section 6.4.3. Unfortunately, they
did not produce the expected improvements. The maximum flow algorithm has been tested with
the purpose of decreasing the running time, but it has mediocre results.

6.4.1 User Cut: Subtours
The subtour elimination constraints (SEC) 4.22 and 4.23 introduced by Miller, Tucker and Zemlin
(MTZ) produce a worse lower bound than the subtour elimination constraints proposed by Dantzig,
Fulkerson and Johnson (DFJ) (Öncan et al., 2009). Figure 6.7 shows the known relationships
between twenty-four ATSP formulations; indeed, among all the formulations, there are some proven
being more efficient than others. Gavish and Graves (GG) is proven being better than MTZ, and
DFJ is better than GG; therefore, it can be stated that DFJ is better than MTZ by transitive
property. The drawback of the DFJ’s formulation is that it creates an exponential number of
constraints in comparison with the number of vertices. The number of MTZ’s SEC is polynomial;
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thus DFJ’s formulation occupies much more memory and it takes more running time to solve the
problem.

Figure 6.7: Known relationships between twenty-four ATSP formulations (Öncan et al., 2009)

Given a subtour S and n ports, 2 ≤| S |≤ n− 1, the DFJ subtour elimination constraint has
the following formulation: ∑

(i,j)∈S

x(i,j) ≤ |S|−1 (6.19)

While constraints 4.22 and 4.23 are still active, the proposed algorithm finds a subtour when
the solution is relaxed and then it adds the DFJ constraint 6.19 as a user cut. In this way a portion
of the LP hull is cut with the result of tightening the gap between the optimal integer solution and
the LP relaxation.

Algorithm 3 shows all the steps to obtain a subtour starting from port 1. It can be summarized
as follows:

1. Starting from port 1, look for all the connection between ports; a port i is connected to port j
if x(i,j) ≥ 0.001

2. Every time a connection between port i and port j is found, update the outgoing (for port i)
and ingoing (for port j) variables

3. For each port, add it to the subtour if both the outgoing and ingoing variables are greater or
equal than 0.9

Figure 6.8 shows the first two subtours detected form the algorithm for the [10Ame] instance
run. Since the algorithm starts looking for subtours from port 1, the user cuts introduced will
be referred to the sets [1, 8, 2, 3, 4, 7, 6] and [1, 2, 8, 9, 5, 10]. With regards to the first LP relaxed
solution shown on the left, the following example shows how Algorithm 3 works until port 2:

1. Port 1 activates port 8; the ingoing and outgoing values are updated in this way:
outgoing_arcs[1] = 1, ingoing_arcs[8] = 1;
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2. Port 8 activates port 2; outgoing_arcs[8] = 0.4633 + 0.5366, ingoing_arcs[1] = 0.4633,
ingoing_arcs[2] = 0.5366;

3. Port 2 activates port 3; outgoing_arcs[2] = 0.5366 + 0.4633, ingoing_arcs[1] = 0.4633 +
0.53669, ingoing_arcs[3] = 0.4633;

At this point the outgoing and ingoing values of ports 1 and 8 are greater than 0.9 and they
will be added to the subtour in the end of the Algorithm. The Algorithm is described in detail in
the rest of the Section.

Figure 6.8: First (picture on the left) and second (picture on the right) subtours found from Algorithm 3
for [10Ame] instance run

The input data are the x values from the LP relaxation and the total number of ports. The
output data are the number of ports in the subtour and an array that contains the ports in the
subtour. Each port has an ingoing_arcs value and an outgoing_arcs value; if, in the end of
the algorithm, both of these values are higher than 0.9, the port is considered inside the subtour.
The visited_set set contain the visited ports and it is initialized having port 1. A port is active
when one leg is connected with another active port. Then in one of the subsequent iterations,
the algorithm finds the ports connected with the current active one and updates the respective
ingoing_arcs and outgoing_arcs values. Finally, an additional set visited_set2 is required in
order to not update the set visited_set while the first cycle "For" is still running. Once the subtour
is found, the constraint 6.19 is added to the model. If the number of ports in the subtour is equal
to the total number of the ports, no user cut is activated.
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Algorithm 6.3: Subtours in LP Relaxation Algorithm

Data: { x(i,j) ∈ R+ ∀(i, j) ∈ A, #ports}
create arrays called ingoing_arcs, outgoing_arcs, subtour;
initialize port 1 as active port;
subtour_length← 0;
create a set visited_set and add 1 to it;
create a set visited_set2;
while do

for i ∈ visited_set do
if i is an active port then

for j = 1:#ports do
if x(i,j) ≥ 0.001 then

set port i as not active;
ingoing_arcs[j] ← ingoing_arcs[j] + x(i,j);
outgoing_arcs[i] ← outgoing_arcs[i] + x(i,j);
if j is not in the set visited_set then

add j to visited_set2;
end

end
end

end
end
add elements of visited_set2 to visited_set;
if at least 1 port in visited_set is still active then

continue;
else

stop the while cycle
end

end
for each port i do

if ingoing_arcs[i] > 0.9 and outgoing_arcs[i] > 0.9 then
add i to subtour;
subtour_length← subtour_length+ 1;

end
end
Result: { subtour, subtour_length }

6.4.2 Subtour User Cut Result

As explained in the previous section, it is possible to use the subtours cuts to help the solver in
tightening the gap between the optimal integer solution and the LP relaxation. In particular,
this Section compare the running times of the MTZ’s complete model (4.18-4.35) and the MTZ’s
complete model enriched by DFJ’s User Cuts. The User Cut 6.19 is added when Algorithm 3 finds
a subtour while the solution is still relaxed.

The comparison between the two formulations is made for [10Atl] and [10Ame] instances
minimizing the operative cost because this is the worst case for the solver. For each instance and
solving approaches, table 6.7 shows the lower bound of the first root, the gap between this lower
bound and the final optimal solution and the total running time to obtain the optimal solution. Of
course, both of the strategies bring to the same optimal solution. The result of this analysis is that
the Subtour User Cut improves the efficiency of the formulation in the sense that the lower bound
increases faster than the complete model with not user cuts. The problem is that the introduced
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Table 6.7: Subtours User Cuts results compared with the complete model (4.18-4.35)

Instance Subtour
User Cuts

LB of the root
node

Optimal
solution value

Gap between
root node LB
and optimal
solution

Running time
[sec]

10 Atlantic
ports Yes 4,443,967.07 133,088,014.26 96.66% 1,375.92

No 4,323,999.97 133,088,014.26 96.75% 502.25
10 American
ports Yes 1,963,312.52 5,344,065.36 63.26% 720.44

No 1,850,643.56 5,344,065.36 65.37% 548.2

cuts increase the computational complexity and therefore the model takes more time to prove
optimality.

Tables 6.8 and 6.9 show the optimal solution of [10Atl] and [10Ame] instances respectively in
both the cases where operative costs and the external cost of emissions are minimized. Both of the
total costs are related to one vessel during the whole route. The objective function that minimizes
the operational costs of the shipping company is made of bunker cost, delays penalty cost and the
cost of leasing the vessel. The two objective functions bring to definitely different solutions. Results
for bigger instances, that are [20Atl] and [15Wor], are not reported since a memory error occurs
before the solver finds the optimal solution.

As expected, when the cost of pollutants is minimized, the operative costs increase since the
vessel sails as slow as possible in order to limit pollutants emissions. Indeed, bunker costs are
consistently lower than the ones of the solutions that minimizes operative cost; the high operative
cost is due to the fact the there are penalties for the maximum transit times not respected. The
bunker cost savings are not enough to cover the expenses for delays. This solution is unattainable
because it is unlikely that the sailing company is going to make profit in this case. A Bi-Objective
model is presented in Section 6.5 in order to find "golden line" solutions between the most convenient
solution for the company and the most sustainable one in Section 6.5.

Table 6.8: Optimal solution for both the objective functions, instance: 10 American ports

min: Operative cost min: External cost of
emissions

Route [1 5 9 10 8 6 7 4 3 2] [1 10 8 9 5 7 6 3 4 2]
Operative cost [USD] 5,344,065.36 13,481,012.18
Cost of emissions [USD] 28,953.54 8,076.43
Bunker cost [USD] 1,806,648.16 686,614.88
Penalty cost [USD] 2,655,417.20 11,177,397.30
Vessel cost [USD] 882,000.00 1,617,000.00
BC [ton] 4,809.19 1,700.98
CO2 emitted [kgCO2] 14,967.50 5,292.66
SO2 emitted [tonSO2] 2.24 0.62
CO2 emissin cost [USD] 553.80 195.83
SO2 emission cost [USD] 28,399.75 7,880.60
Weeks 6.00 11.00
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Table 6.9: Optimal solution for both the objective functions, instance: 10 Atlantic ports

min: Operative cost min: External cost of
emissions

Route [1 7 4 2 10 8 5 6 9 3 1] [1 7 2 8 6 5 9 3 10 4 1]
Operative cost [USD] 133,088,014.26 391,026,876.68
Cost of emissions [USD] 49,539.49 14,498.16
Bunker cost [USD] 3,629,877.89 3,052,576.68
Penalty cost [USD] 128,135,136.36 385,769,300.00
Vessel cost [USD] 1,323,000.00 2,205,000.00
BC [ton] 9,182.96 6,607.07
CO2 emitted [kgCO2] 28,960.60 21,069.63
SO2 emitted [tonSO2] 3.82 1.08
CO2 emissin cost [USD] 1,071.54 779.58
SO2 emission cost [USD] 48,467.94 13,718.58
Weeks 9.00 15.00

6.4.3 User Cuts: Lower Bounds for Delays and Transit Times

The Algorithm shown in this section has the goal of defining constraints that set lower bounds
for the hours of delay dij , i, j ∈ P and transit times f ij , i, j ∈ P variables. User Cuts 6.21 and 6.20
will be introduced, if all the conditions that will be defined in this Section are respected. Given a
path between two ports, the transit time at the fastest speed is necessary to compute the minimum
hours of delay. It is also possible that there is no delay between the two ports by sailing at the
maximum speed. The transit time at the fastest speed includes the time spent in the ports of the
path (parameters) and it is also the lower bound of the transit time variable between those two
ports. On each node of the branch-and-bound tree, the algorithm tries to find useful bounds for the
variables of each pair of ports with a maximum transit time constraint. The Algorithm to calculate
the maximum delay and the minimum transit time can be summarized as follows:

1. Given a pair of ports with maximum transit time constraints (origin and destination), the
Algorithm looks for the path with the highest x(i,j), (i, j) ∈ A values between origin and
destination;

2. If the path between origin and destination does not exist, stop the algorithm without adding
any constraints;

3. If the path is found, update the variables output of the Algorithm, i.e. the minimum achievable
transit time between origin and destination, the sum of the x(i,j) where (i,j) are the arcs
linking the origin and destination, and the number of ports between them.

This paragraph describes in depth the Algorithm. Input of the algorithm are the x(i,j), (i, j) ∈ A
relaxed values (called xStar), the pair of ports (from and to), the parameters of the distances, the
maximum sailing speed and the times in the ports. Moreover, the constraints that will be added
have to be active only when the path between the two ports is used; therefore the x variables are
another input in order to build an affine expression. For example, if the path from port 3 to port 2
is [3, 5, 15, 2], the relative affine expression will be: x(3,5) + x(5,15) + x(15,2).
A part from the affine expression aff_expr_x, the output will be the minimum hours of delay
(minT ) and the number of ports between from to to.
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Algorithm 6.4: Lower Bounds for Delays and Transit Times Algorithm

Data: { from, to, xStar, x(i,j) ∀(i, j) ∈ A, dist, maxS, t_stay }
create the affine expression aff_expr_x;
set the minimum transit time minT to 0;
current ← from;
next ← 0;
x_value ← 0;
create the set visited and add current to it;
add ← t_staycurr;
flow ← 0;
while do

stop ← false;
for i ∈ P \ visited do

if xStar(curr,i) ≥ x_value+ 0.01 then
add ← distcurr,i

maxS
+ t_stayi;

x_value ← xStar(curr,i);
next ← i;
stop ← true;

end
end
if stop = false and next 6= to or x_value ≤ 0.5 then

stop the algorithm without adding any constraint;
end
x_value ← 0;
add next to visited;
flow ← flow + xStar(curr,next);
aff_expr_x ← aff_expr_x + x(curr,next);
minT ← minT + add;
if the path ends in the destination "to" and flow ≥ (portsbetween+ 0.001) then

end the algorithm and add the user cut;
else

portsbetween ← portsbetween + 1;
current ← next;

end
end
Result: { minT, aff_expr_x, portsbetween}

For each pair of port in the set AM (Table 4.1), the algorithm tries to find the path with highest
x values among the pairs. The cycle for looks for the highest x value (xStar) starting from the
port from. Once this value is found, the minimum transit time, the set of visited ports (visited),
the value flow and the affine expression are updated. The cycle while is stopped if either the is no
connection between the pair of ports or the x value is too low. The inequality will be activated
only if the value flow is greater than the number of ports between the origin and the destination.
The lower bound for the transit time variable will be:

f ij ≥ minT · (aff_expr_x− portsbetween) (6.20)

As regard the lower bound for the delay variable, the constraint will be introduced if the
minimum transit time is greater than the maximum transit time parameter MTT(i,j), (i, j) ∈ AM .
The constraint introduced will be:
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dij ≥ (minT −MTT(i,j)) · (aff_expr_x− portsbetween) (6.21)

Lower Bounds for Delays Result
Results of the Delay Penalty User Cuts are shown in this paragraph. If a path between two

ports that have a maximum transit time constraint is found, the value of the affine expression is
grater than the number of the ports between the origin and destination and the minimum transit
time is grater than the transit limit, the cut 6.21 is introduced. Results for the [10Atl] and [10Ame]
instances are provided in Table 6.10. The runs have been stopped after 3600 seconds. While the
lower bound in the root node has a slight improvement than the one of the complete model when
no user cut is added, it is interesting that the solution found for the [10Atl] instance is the optimal
one, even if the gap is still large (93.1%).

Table 6.10: Maximum Delay User Cuts results compared with the complete model (4.18-4.35)

Instance
Max
Delay
User Cuts

LB of the root
node

Best integer
solution found

Gap between
root node LB
and optimal
solution

Running time

10 Atlantic
ports Yes 4,390,639.80 133,088,014.26 96.70% Time limit 1h,

gap: 93.1%
No 4,323,999.97 133,088,014.26 96.75% 502.25 sec

10 American
ports Yes 1,863,302.74 5,424,486.20 65.13% Time limit 1h,

gap: 48.1%
No 1,850,643.56 5,344,065.36 65.37% 548.2 sec

Lower Bounds for Transit Times Result
Results of the Transit Times User Cuts are shown in this paragraph. Constraint 6.20 is

introduced when the path between two ports having a maximum transit time is found and the
value of the affine expression is greater than the number for the ports between the origin and the
destination. Table 6.11 shows the results for the instance [10Atl] and [10Ame] instances; as for the
test before, the running time has been stopped after 3600 seconds. Clearly, the running time using
the two strategies of this section is longer than one using the Subtour User Cut.

Table 6.11: Transit Time User Cuts results compared with the complete model (4.18-4.35)

Instance
Transit
Time
User Cuts

LB of the root
node

Best integer
solution found

Gap between
root node LB
and optimal
solution

Running time

10 Atlantic
ports Yes 4,394,733.83 133,088,014.26 96.69% Time limit 1h,

gap: 91.4%
No 4,323,999.97 133,088,014.26 96.75% 502.25 sec

10 American
ports Yes 1,863,302.74 5,424,486.20 65.13% Time limit 1h,

gap: 47.1%
No 1,850,643.56 5,344,065.36 65.37% 548.2 sec

Maximum Flow Algorithm
The Maximum Flow or Minimum Cuts Algorithm has been widely used to improve the running

times of optimization problems. It was invented by Boykov and Kolmogorov and its application
for graph problems is well explained by Stephan Diederich (Stephan Diederich, 2006). There is a
predefined function in JuMP that allows the user to activate this algorithm. Unfortunately, the
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Table 6.12: Maximum Flow User Cuts results compared with the complete model (4.18-4.35)

Instance Subtour
User Cuts

LB of the root
node

Optimal
solution value

Gap between
root node LB
and optimal
solution

Running time
[sec]

10 Atlantic
ports Yes 4,323,999.97 133,088,014.26 96.75% Time limit 1h,

gap: 72%

No 4,323,999.97 133,088,014.26 96.75% 502.25
10 American
ports Yes 1,978,093.84 5,344,065.36 62.99% 3475.23

No 1,850,643.56 5,344,065.36 65.37% 548.2

running time is not improved for the problem presented in this study. Indeed, the optimal solution
for the [10Ame] instance is found in 3475.23 seconds and the [10Alt] instance seems to be complex
to solve: the time limit stops the run after 1 hour. Also in this case, the solver finds the best
solution soon, but it takes a long time to close the gap.

In conclusion, no one of the tested cuts applied to this problem decreases the running time.

6.5 Bi-Objective Function Model

It often happens that there are different conflicting objectives to consider while defining a good
solution for real world problems. The problem described in Chapter 2 is an example where there are
many goals that may influence the final strategy to put into practice. In this section a Bi-Objective
Model is defined to consider both operative costs and pollutants emitted to solve the LSRSOP.
Given two objective functions, the number of optimal solutions is finite but large, and it grows
exponentially with the number of the ports. The final aim is presenting a reasonable small set
of solutions to the decision maker. This set has to offer a good range of solutions among all the
efficient solutions to make the strategy selection easier. A solution is said efficient if its value
corresponds to a non-dominated point. Before defining a non-dominated point, we firstly need to
define a Bi-Objective problem. Formally, a Bi-Objective optimization problem can be defined as
follows:

min{z(x) = Cx : Ax = b, x ∈ {0, 1}n} (6.22)

where x ∈ {0, 1}n is a vector of n binary variables; C is the cost matrix Zp×n with p = 1, 2
objective functions and A ∈ Zm×n, b ∈ Zm are the matrix and vector to define the m constraints.
The set Y = z(X) = {Cx : x ∈ X} is the feasible set in objective space Rp. It defines the hull
region called Edgeworth-Pareto, shown in Figure 6.9 (Ehrgott et al., 2016). A solution x∗ ∈ X is
efficient if there is no x ∈ X such that Cx 5 Cx∗ and its corresponding point y∗ = Cx∗ is said
non-dominated. Point y dominates y′ if y 5 y′ and y 6= y′, that is, yp ≤ y′p for = 1, 2 with at least
one strict inequality. All the non-dominated points define the so called Pareto Frontier, i.e. the set
of optimal solutions for the bi-objective model. A solution x′ ∈ X is weakly efficient is there is no
x ∈ X such that Cx < Cx′ Eusébio et al. (2014). Points (9,1) an (1,9) are weakly non-dominated
points because they both belong to the Pareto Frontier but there are better non-dominated points,
(7,1) and (1,8) respectively.
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Figure 6.9: Edgeworth-Pareto hull (Ehrgott et al., 2016)

As regard the complexity of the bi-objective model, it is obvious that, since the single LSRSOP
is NP-hard, the bi-objective version of the LSRSOP is also NP-hard. There are several algorithms
to solve a multi-objective problem; in this study the scalarization technique has been chosen. The
scalarization consists of solving repeatedly a single objective problem with additional constraints to
find efficient solutions.

The ε-constraint method

The ε-constraint method is a scalarization algorithm that allow to find all the efficient solutions
with appropriate parameters. This is a very good property that the Weighted Sum method does not
have. The drawback of the the ε-constraint method is that it changes the structure of the problem
by adding constraints, making the problem harder to solve (Ehrgott et al., 2016). The ε-constraint
algorithm is described in this section.

Given two objective functions z1(x) and z2(x) and m constraints Ax = b as they were defined
above, the goal is finding points of the Pareto Frontier. Saying ε is the solution of min{z1(x)}, this
corresponds probably to weakly non-dominated point. Therefore, the problem 6.23 is solved to find
an efficient solution. In general, every time a point is found, there is the need to check whether it is
dominated by another point. Figure 6.10 is an example where ε = 5.5. The stating feasible solution
is dominated by the one visualized with a red point.

minimize z2(x)

subject to: Ax = b

z1(x) ≤ ε

(6.23)
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Figure 6.10: The ε-constraint method scalarization (Ehrgott et al., 2016)

Algorithm 5 shows how it is possible to find 3 points on the Pareto Frontier of a Bi-Objective
model. The input are the two objective functions and the constraints of the problem. Once 2
optimal solutions are found, it is possible to find a third point -if it exists- having the solution
values included in the ranges of the two points. This is made by setting the middle point of one
of the objective function values less than ε. The algorithm can continue in this way to find other
optimal solutions. In order to dead with tolerances of the solver, a small number is always added
to the ε, e.g. 0.001.

Algorithm 6.5: Non-dominated points on the Pareto Frontier research

Data: { Objective functions z1(x) z2(x) }
find solution ε minimizing OF z1(x);

find point {x1, y1} minimizing OF z2(x) and having z1(x) ≤ ε;

find solution ε minimizing OF z2(x);

find point {x2, y2} minimizing OF z1(x) and having z2(x) ≤ ε;

set a middle point as ε = x1+x2
2 ;

find point {x3, y3} minimizing OF z2(x) and having z1(x) ≤ ε;

check that {x3, y3} is non-dominated minimizing OF z1(x) and having z2(x) ≤ y3;
Result: {{x1,y1},{x2,y2}, {x3, y3}}

6.5.1 Bi-Objective Model Result
This section shows the result of the Bi-Objective function model analysis for the [10Ame] instance.
After the description of the points belonging to the Pareto Frontier a cost analysis is done for both
the company and the environmental points of view.

Every time a point of the Edgeworth-Pareto hull is found by minimizing one OF, it has to be
checked whether it is dominated by minimizing the other OF. Table 6.13 shows 5 dominated and
non-dominated points. For example, the Point 6 (8,269,609.76 ; 8,521.5) dominates the optimal
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solution of the Environmental point of view (Point 6 domin.). In those solutions the pollutants
emitted costs have almost the same value, but then the operational cost are minimized obtaining a
value of 8.269 Million[USD] instead of 9.403 Million[USD]. This is the proof that the Bi-Objective
model is a powerful tool to balance more conflicting factors that influence the final decision.

Figure 6.11 depicts 8 efficient solutions; their values are shown in Table 6.14. Points 3 and 4
have similar solution values, but they are both efficient solutions.

Table 6.13: Bi-Objective Model Result, example of dominate points, instance: 10 American Ports

Point: Operative cost [USD] External cost of emissions [USD]
Point 1 domin. 5,344,065.36 28,953.54
Point 1 5,344,065.46 28,953.51
Point 8 domin. 13,481,012.18 8,076.43
Point 8 13,463,742.98 8,076.53
Point 6 domin. 9,403,904.32 8,521.42
Point 6 8,269,609.76 8,521.52
Point 7 domin. 10,866,676.47 8,394.73
Point 7 10,085,004.14 8,394.83
Point 5 domin. 6,806,837.71 11,225.05
Point 5 6,806,824.72 11,225.05

Table 6.14: Bi-Objective function model result, instance: 20 Atlantic Ports

Point of graph
in Figure 6.14 Operative cost [USD] External cost of emissions [USD]

Point 1 5,344,065.46 28,953.51
Point 2 5,569,305.36 26,879.82
Point 3 6,040,498.82 15,518.63
Point 4 6,279,490.57 15,352.33
Point 5 6,806,824.72 11,225.05
Point 6 8,269,609.76 8,521.52
Point 7 10,085,004.14 8,394.83
Point 8 13,463,742.98 8,076.53
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Figure 6.11: Bi-Objective function model Result: Pareto frontier of 10 American Ports

6.5.2 The shipping company point of view

It is interesting at this point making a comparison between the solutions on the Pareto Frontier.
Figure 6.12 shows the average sailing speed of the 8 solutions. The average speeds of the first two
points are very high because those points minimize especially the operative cost of the vessel. The
solution of Point 2 has a slight higher average speed than the one of Point 1, indeed the bunker
consumptions of these solutions are 4,874.04 and 4,809.19 ton respectively. The average speed
decreases in solutions where emissions are less. When the operative cost is minimized, the vessel
has to sail fast in order to decrease the cost of delays. The advantage for the company when the
speed is optimized is the bunker cost saving. Indeed, as Table 6.15 shows, the bunker cost is less
and less when a "slow-sailing" solution is chosen. On the other hand, the cost of non-respected
transit times represents a consistent part of the total cost and the bunker consumption savings are
not enough to cover the expense for delays (Table 6.15). Moreover the slower-sailing solutions last 2
or 3 weeks more, therefore the cost for leasing the vessel increases as well. However, Points 7 and 8
are the proof of that, even if the bunker cost have small changes, the company can obtain high cost
savings changing the rotation in order to respect some maximum transit times. The rotations for
these solutions are consistently different, that is why the Operative Research can give a consistent
contribution to the management of shipping companies.
The operative cost of the company strongly depends on the cost per hour of delay. The sensitive
analysis of this value is interesting in order to calculate the operative cost variation. In general, the
cost of non-respected transit times is high for perishable goods. However, estimating its value is
very difficult since the vessel transports a lot of different goods. A value of 100 [USD/h·FFE] has
been estimated for the result shown until now. The results of the sensitive analysis of the delay
cost are reported in Section 6.6.
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Figure 6.12: Average sailing speeds in Knots for the solutions on the Pareto Frontier

Table 6.15: Bunker and delay penalty costs for the solutions on the Pareto Frontier

Point of graph
in Figure 6.14 Bunker cost [USD] Delay penalty cost [USD]

Point 1 1,806,648.93 2,655,416.53
Point 2 1,885,224.41 2,802,080.96
Point 3 1,475,078.95 3,536,419.87
Point 4 1,488,393.46 3,762,097.11
Point 5 1,169,130.46 4,461,694.26
Point 6 827,140.76 6,119,469.00
Point 7 957,690.07 7,657,314.07
Point 8 686,750.32 11,159,992.66

6.5.3 The environmental point of view
As regards pollutants emitted, Table 6.16 shows the amount of CO2 and SO2 emitted for each
point of the Pareto Frontier. Since, in general, the average sailing speed decreases from Point
1 to point 8, the vessel burns less fuel and therefore emissions decrease. Figures 6.13 and 6.14
compare the most convenient solution for the company and the other efficient ones. They show the
quantity of pollutants savings of the efficient solutions compared with the company best alternative,
and they also report the percentage of cost increment the company is going to pay whether it
chooses a different solution from its best one. Slow steaming strategy has positive result for the
environmental point of view. Indeed, saving of CO2 and SO2 emissions are relevant (25.69% and
46.81%) if the solution of Point 3 is chosen instead of the one corresponding to Point 1. Again,
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the cost of the delay strongly influences the final decision. Given a cost of 100 dollars per hour of
delay, the company is supposed to pay 13.03% to choose the solution of Point 3 instead of the one
of Point 1. The cost increment is 27.37% to switch to Point 5, that is actually a high variation.
Point 2 has a higher CO2 emissions than Point 1 because the vessel sails faster outside SECA; also
the average sailing speed is slight higher (Figure 6.12). Point 2 remains anyway a cheaper solution
for the environment because not only there is a savings in SO2 emissions, but also because the SO2
cost has a higher impact than the CO2 cost. These costs are respectively 12700 [USD/tonSO2]
and 37 [USD/tonCO2] (MOVE, 2014). Of course, the environmental benefit depends on how
much money the company is willing to pay more. If the national and intentional organizations
allocate money as incentive to decrease pollutants emitted, the shipping company will be able to
pay more. It is also true that emissions coming from the transportation of goods across the borders
cannot be attributed to a specific country, therefore national laws can bring a limited help to the
environmental cause.
Environmental safeguard is an international issue; indeed, there are several organizations and
committees working on the seaborne trade regulation. Based on the guidelines of the Paris
Agreement of 2015, the International Monetary Fund (IMF) suggested implementing a carbon
tax of 30 dollars per tonne of CO2 emitted. This fee can sound quite risible looking at the CO2
emissions of the shown solutions, but it may be not looking at the whole yearly network of a
shipping company. IMF states that $25 Billion of USD could have been raised in 2014 from the
shipping industry busineess. This tax accord still depends on the collaborative will of the single
countries therefore, issuing such duty is far from easy. However, the sulphur Emission Control
Areas regulations are currently into force and the shown results consider them. A further analysis
has been done on the basis of the new more strict regulations entering into force in 2020. The result
is shown in Section 6.7.

Table 6.16: CO2 and SO2 emissions of the Pareto Frontier solutions

Point of graph
in Figure 6.14 kg of CO2 tonnes of SO2

Point 1 14,967.50 2.236
Point 2 15,167.92 2.072
Point 3 11,122.72 1.190
Point 4 11,181.70 1.176
Point 5 8,670.44 0.859
Point 6 6,212.60 0.653
Point 7 6,994.20 0.641
Point 8 5,293.50 0.621
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Figure 6.13: CO2 savings in kg of the efficient solutions compared with the company most convenient
solution
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Figure 6.14: SO2 savings in ton of the efficient solutions compared with the company most convenient
solution

6.6 Sensitive Analysis for Delay Cost per Hour per FFE
The cost for the delays has a strong influence on the total cost of the company. For this reason, a
sensitive analysis has been done to calculate the operative cost variation for different values of this
cost. As stated before, it is difficult to estimate this value; probably the shipping company can do
it by looking at its revenue variation when the schedule is not completely respected. The results
shown in this report consider a cost of each hour of delay equal to 100 USD per hour per FFE. The
cost of delay is calculated in the objective function that minimizes the operative cost for each pair
of ports that have a maximum transit time constraint. Of course, it is possible that there is no
delay between two ports.
In the other two scenarios proposed, the penalty cost is calculated by accounting 75 and 50 USD
per hour of delay. Tables 6.17 and 6.18 compare these two new scenarios with the one used in all
the other analysis of this report for the [10Ame] and the [10Atl] instances respectively. As expected,
penalty costs results are considerably different, especially for the Atlantic route that has longer
distances. The best route that minimizes the operative cost does not change and the low delay fees
allow savings in the total costs of the vessel. However, this savings change according to the size of
the solved instance. Indeed, while the penalty cost has the same order of magnitude of the bunker
cost for the [10Ame], it is the biggest part of the total operative cost for the [10Atl] instance. This
is due to the hours of delay that are more in the second instance since distances are bigger.

Another interesting results is that the vessel can slow steam and save bunker cost if the cost of
penalty cost decreases. This is true in general but it happens only decreasing the cost from 100
USD to 75 USD in the [10Ame] instance. The reason why the bunker cost do not keep decreasing
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in the other cases is that the vessel cost is considered in the operative cost too. If the vessel has to
slow steam, there could be the need of sailing for a week more, that means paying an extra 167,000
USD for leasing. Moreover, the length of the route is constrained to be multiple of a week, thus
if the vessel has the opportunity to slow steam, it is likely that the penalty cost savings are not
enough to let it sail slowly for the whole extra week. Indeed, in the [10Ame] instance, if the cost of
delay is 40 [USD/hour · FFE], the bunker cost is going to be 1,262,205.26 USD and the route is
going to last 7 weeks. The total operative cost keeps decreasing with a value of 3,727,896.53 USD
because the savings of bunker and penalty costs are higher than the vessel leasing cost.

In conclusion, the penalty cost is without doubt a key determinant factor for the Liner Shipping
Routing and Speed Optimization Problem. A further analysis should be done in order to estimate
the cost of delay as better as possible. Also, shipping companies should analyse this cost and try to
find the amount that allows the vessel to sail slower in order to save bunker cost.

Table 6.17: Sensitive analysis for the cost of delays, instance: 10 American ports

100 $ per hour of
delay

75 $ per hour of
delay

50 $ per hour of
delay

Operative cost [USD] 5,344,065.36 4,680,124.00 4,015,794.56
Cost of emissions [USD] 28,953.54 29,022.29 29,022.29
Bunker cost [USD] 1,806,648.16 1,805,135.67 1,805,135.67
Penalty cost [USD] 2,655,417.20 1,992,988.33 1,328,658.89
Vessel cost [USD] 882,000.00 882,000.00 882,000.00
BC [ton] 4,809.19 4,809.19 4,809.19
CO2 emitted [kgCO2] 14,967.50 14,967.54 14,967.54
SO2 emitted [tonSO2] 2.2362 2.2416 2.2416
CO2 emissin cost [USD] 553.80 553.80 553.80
SO2 emission cost [USD] 28,399.75 28,468.49 28,468.49
Weeks 6 6 6

Table 6.18: Sensitive analysis for the cost of delays, instance: 10 Atlantic ports

100 $ per hour of
delay

75 $ per hour of
delay

50 $ per hour of
delay

Operative cost [USD] 133,088,014.26 101,054,230.17 69,020,446.07
Cost of emissions [USD] 49,539.49 49,539.49 49,539.49
Bunker cost [USD] 3,629,877.89 3,629,877.89 3,629,877.89
Penalty cost [USD] 128,135,136.36 96,101,352.27 64,067,568.18
Vessel cost [USD] 1,323,000.00 1,323,000.00 1,323,000.00
BC [ton] 9,182.96 9,182.96 9,182.96
CO2 emitted [kgCO2] 28,960.60 28,960.60 28,960.60
SO2 emitted [tonSO2] 3.82 3.82 3.82
CO2 emissin cost [USD] 1,071.54 1,071.54 1,071.54
SO2 emission cost [USD] 48,467.94 48,467.94 48,467.94
Weeks 9 9 9

6.7 As-is/To-be Analysis
Figure 1.6 of Chapter 1 depicts the new regulations issued by the IMO, the European Commission
and the Hong Kong and China Government Environmental Protection Departments. The limit
of sulphur content in the fuel all over the world will be 0.5%, and 0.1% in the Emission Control
Areas (ECAs). An As-Is and To-Be analysis has been done in order to evaluate the impact of these
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regulations both on the environmental and the company points of view. Table 6.19 shows how
some parameters of the model have been modified. The International Bunker Industry Association
(IBIA) has provided the potential fuels’ costs in 2020, given the new regulations (Association, 2017).
Therefore the costs of the fuels inside and outside ECAs have been modified looking at the cited
analysis. As regard the CO2 coeffient to calculate CO2 emissions, a value of 3.15 has been estimated
for the outside Emission Control Areas.

Table 6.19: Parameters comparison between As-Is and To-Be scenarios

As-Is To-Be
fuel price inside SECA [USD/ton] 500.00 620.00
fuel price outside SECA [USD/ton] 320.00 570.00
SO2% fuel inside SECA 0.01% 0.01%
SO2% fuel outside SECA 3.50% 0.50%
CO2 coefficient fuel inside SECA 3.209 3.209
CO2 coefficient fuel outside SECA 3.114 3.150

Tables 6.21 and 6.20 compare the current optimal solution and the optimal solution in 2020
for both the [10Atl] and [10Ame] instances. As expected, the SO2 emissions in the 2020 will be
definitely less than the current optimal solution with the result of a high increment of bunker costs.
It is not possible to compare the CO2 and SO2 emission costs because the parameters CO2cost and
SO2cost of Table 4.4 will be different in 2020. Running times of the To-Be scenarios are higher
because the complexity of the problem increases since the fuel costs are higher then the As-Is
scenario.

Since shipping companies are going to use more expensive fuels, they have to optimize their
rotations if they want to save costs and to be competitive in the market. Slow steaming remains
without doubts an efficient strategy to deal with the increment of fuel price and it does not require
investments. This strategy is of course cheaper that other strategies like designing lighter materials
for vessels or installing scrubbers to keep burning non-refined fuel.

Table 6.20: As-Is and To-Be analysis for 10 Atlantic ports instance, obj: operative cost

As-Is scenario To-Be scenario Savings(Loss)
Percentage

Route [1 7 4 2 10 8 5 6 9 3 1] [1 7 4 2 10 8 5 6 9 3 1] \
Operative cost [USD] 133,088,014.26 134,884,458.66 -1.35%
Bunker cost [USD] 3,629,877.89 5,426,322.29 -49.49%
Penalty cost [USD] 128,135,136.36 128,135,136.36 0.00%
Vessel cost [USD] 1,323,000.00 1,323,000.00 0.00%
BC [ton] 9,182.96 9,182.96 0.00%
CO2 emitted [kgCO2] 28,960.60 29,152.92 -0.66%
SO2 emitted [tonSO2] 3.82 0.61 83.99%
Weeks 9.00 9.00 \
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Table 6.21: As-Is and To-Be analysis for 10 American ports instance, obj: operative cost

As-Is scenario To-Be scenario Savings(Loss)
Percentage

Route [1 5 9 10 8 6 7 4 3 2] [1 5 9 10 8 6 7 4 3 2 1] \
Operative cost [USD] 5,344,065.36 6,349,360.47 -18.81%
Bunker cost [USD] 1,806,648.16 2,822,787.74 -56.24%
Penalty cost [USD] 2,655,417.20 2,644,572.73 0.41%
Vessel cost [USD] 882,000.00 882,000.00 0.00%
BC [ton] 4,809.19 4,797.06 0.25%
CO2 emitted [kgCO2] 14,967.50 15,215.12 -1.65%
SO2 emitted [tonSO2] 2.24 0.34 84.88%
Weeks 6.00 6.00 \
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Conclusion

The ambition of this thesis was to define a mathematical model to solve the Liner Shipping Routing
and Speed Optimization Problem while considering the Emission Control Areas (ECA). ECA are
zones where a more refined fuel has to be used in order to limit sulphur emissions. The main issue
of the model is to cope with Subtours Elimination Constraints (SEC) and Maximum Transit Time
Constraints. Indeed these constraints can be an enormous number according to the size of the
instance and the mathematical formulation. The final ambition was to solve instances as large as
possible and to analyse the impact of different scenarios on bunker cost and the environment. CO2
and SO2 are the pollutants considered in the analysis.

This study was focused on Liner Shipping since it represents a big portion of the international
seaborne trade. Moreover, a container ship sails usually at high speeds because its revenue strictly
depends on the respect of its schedule. Slow steaming is a cheap strategy that allows shipping
company to reduce bunker cost and it can be put immediately into practice. The most convenient
solution for the shipping company is sailing as slow as possible, that means reducing fuel consump-
tion, with respect to its time schedule. At the same time, vessels’ high speed cause high quantity of
pollutants; their emission are a significant quantity compared to other shipments. Slow steaming
has a strong positive result on the environmental impact as well.

Finding the optimal solution of the LSRSOP depends on the size of the instance. Indeed the
MTZ’s formulation for SEC has been chosen to reduce the number of these constraints, while the
number of constraints to find the transit time between ports increase exponentially with the number
of ports. Several attempts have been done to decrease the running time of the model and solve
instance with more than 10 ports. User Cuts are very effective to tighten the gap between the
incumbent solution and the lower bound; in particular, four user cuts strategy have been adopted.
The first introduces the DFJ’s formulation for SEC that has been proven being stronger than the
MTZ’s one. This user cut is introduced when a subtour is detected in the LP relaxation. The
second and the third user cuts have the purpose of setting lower bounds for the hours of delay
and transit time variables. Finally the fourth user cut is introduced when the max flow algorithm
identifies a subtour. Unfortunately, even if the user cuts let the solver find higher lower bounds, no
one of them improved the running time on the tested instances. Therefore, optimal solutions have
been found for instance with 10 ports.

A Bi-Objective Function Model has been used in order to consider both the operative cost and
the environmental impact. The latter is measured with the external cost of emissions. The two
objective functions propose two substantial different solutions; the Pareto Frontier describes optimal
solutions between the most convenient solution for the company and the most sustainable one. As
regards the environmental point of view, the results show a clear difference of pollutants emitted
between the efficient solutions. Moreover, by making a comparison between the company most
convenient solution and another non-dominated point close to the first, savings of CO2 and SO2 are
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of the order of 25% and 46% respectively with a cost increment of 13% for the company. Further
SO2 savings are shown in the As-Is/To-Be analysis that considers the new sulphur regulations that
are going to come into force on 2020. This future SO2 saving is due to the fact that vessels have to
use a more refined and expensive fuel not only in the ECA, but all over the world. CO2 emissions
are not regulated by an international policy, therefore there is not a big difference between the two
scenarios of the As-Is/To-Be analysis. Indeed, the different types of fuels produce almost the same
CO2 emissions.

The efficient points of the Pareto Frontier have different average sailing speeds; the lower is
the speed, the less is the bunker cost. At the same time, the hours of delay increase if the vessel
slows steam. Since the cost per hour per FFE has been estimated, a Sensitive Analysis was done to
show the variation of the penalty cost for different values of the parameter. This cost should be
estimated as precise as possible in order to evaluate whether the bunker cost savings can cover the
expenses for the non-respected maximum transit times.

Two different Heuristic Algorithms have been modelled in order to propose a feasible and good
solution for big instances that would require too long running time to be solved until optimality.
The model of instances of 20 ports runs for 3 days and the gap is not less than 90%. The described
heuristic algorithms are the 2-Steps Method and the Simulated Annealing and they have to be
considered as a starting point to be improved in order to find a good solution in reasonable time.
Indeed, it is very difficult to find the optimal tuning configuration of the parameters. Both of the
algorithms uses an Hill-Climbing algorithm that generates a slight different route in a different way
than the classic 2-Opt exchange. In the 2-Steps Method results, three different constructions of the
Hill-Climbing algorithm are tested and the best one is found. In the Simulated Annealing there are
usually several parameters to tune; in this study only one was tuned, trying to set the others to
a reasonable value. However, more instances should be tested to find better configuration of the
proposed algorithms; also other metahuristic techniques that find the local optima and then move
on new neighbourhoods may bring better results.

In terms of practical usage of the model, we have to remember that it is based on some
hypothesis; for example, the sailing speed is considered constant. These hypothesis are sometimes
unavoidable to model the reality. The model reflects the real world and can find optimal solutions
of small instances, that are medium-sized routes of 8 or 12 ports. Slow steaming is proven being
an effective strategy that the management of shipping companies can use in order to save money
and to be competitive on the market. Indeed, it is especially useful when new regulations may
limit their profit. Also, the model can be used by policy makers as well; indeed, they can simulate
different scenarios according to their regulations and it is possible to analyse the effects on both
the environment and the company.
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