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"We succeeded in taking that picture, and, if you look at it,
you see a dot. That’s here. That’s home. That’s us. On it,
everyone you ever heard of, every human being who ever
lived, lived out their lives on a mote of dust, suspended in a
sunbeam. The Earth is a very small stage in a vast cosmic
arena. Think of the rivers of blood spilled by all those
generals and emperors so that in glory and in triumph they
could become the momentary masters of a fraction of a dot.
Our posturings, our imagined self-importance, the delusion
that we have some privileged position in the universe, are
challenged by this point of pale light.”

Carl Sagan (1934-1996)



“Don’t you hear my call though you’re many years away
Don’t you hear me calling you
Write your letters in the sand
For the day I take your hand
In the land that our grandchildren knew.”

Queen, ’39, A Night at the Opera (1975)

To anyone who still looks up and asks questions about the Universe.
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Sommario

L’espansione accelerata dell’Universo e la natura dell’Energia Oscura sono tuttora
questioni aperte in cosmologia. Realizzare una mappatura su grande scala dell’Universo
può aiutare a studiare questi problemi, determinando il tasso di espansione dell’Universo
e di crescita delle strutture cosmiche. In particolare, le oscillazioni acustiche barioniche
(BAO) propagatesi all’epoca della ricombinazione originano un picco nella funzione di
correlazione delle galassie sulla scala caratteristica dell’orizzonte sonoro (rs ⇡ 150Mpc,
una scala sufficientemente grande da “proteggere” il segnale dalle forti non linearità),
oppure una serie di oscillazioni nello spettro di potenza, la cui lunghezza d’onda
è proporzionale a �s ' 2⇡/rs. Dato che la scala dell’orizzonte sonoro può essere
determinata con grande precisione dalla posizione del primo picco nello spettro di
potenza angolare del fondo cosmico a microonde (CMB, le cui oscillazioni hanno le
stesse origini fisiche del BAO, in quanto fino alla ricombinazione vi era un unico plasma
di barioni e fotoni), il picco del BAO nella funzione di correlazione delle galassie può
essere utilizzato come un “righello standard” per estrarre informazione cosmologica
fondamentale, come l’evoluzione nel tempo del parametro di Hubble, H(z), e la distanza
angolare DA(z).

Scopo di questa tesi è quello di testare sistematicamente, e possibilmente migliorare,
gli strumenti di investigazione statistica utilizzati ad oggi per modellare il picco BAO,
tenendo conto dell’evoluzione non lineare delle strutture, delle distorsioni dovute
alle velocità peculiari delle galassie e del bias dei traccianti cosmici utilizzati per
mappare la materia oscura. Per poter fare questo, abbiamo analizzato cataloghi
di galassie, nuclei galattici attivi (AGN) ed ammassi di galassie ottenuti da una
delle più grandi simulazioni idrodinamiche cosmologiche disponibili, le Magneticum
Simulations (http://www.magneticum.org/), considerando un ampio intervallo di
redshift, 0.2  z  2.
Nonostante il picco BAO sia a grandi scale, l’evoluzione non lineare e le velocità
peculiari fanno sì che il segnale del BAO sia smussato e allargato rispetto alle predizioni
della teoria lineare. in particolare a bassi redshift. La ricostruzione del campo di
densità lineare è un metodo per risolvere il problema. Uno degli obiettivi principali di
questa tesi è l’implementazione e la verifica di un codice di ricostruzione, analizzando
le sue prestazioni in funzione del redshift e degli oggetti cosmici usati come traccianti.
La grande maggioranza delle analisi presentate in questo lavoro è stata realizzata
tramite le CosmoBolognaLib, una raccolta di librerie C++/Python specificatamente
pensata per calcoli cosmologici (Marulli, Veropalumbo, and Moresco, 2016).
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Abstract

The accelerated expansion of the Universe and the nature of the Dark Energy are
still open questions in cosmology. One of the most powerful ways to investigate these
issues is to map the large-scale structure of the Universe, to constrain its expansion
history and growth of structures.

In particular, baryon acoustic oscillations (BAO) occurred at recombination make
a peak in the correlation function of galaxies at the characteristic scale of the sound
horizon (rs ⇡ 150Mpc, a sufficiently large scale to “protect” the signal from strong
non-linearities), or alternatively a series of oscillations in the power spectrum, whose
wavelength is related to �s ' 2⇡/rs. Since the sound horizon can be estimated with
a great precision from the position of the first peak in the angular power spectrum
of the Cosmic Microwave Background (which has the same physical origin of BAO,
oscillations of the baryons-photons plasma), the BAO peak in the correlation function
can be used as a standard ruler, providing paramount cosmological information, as the
redshift evolution of the Hubble parameter, H(z), and the angular distance parameter,
DA(z).

The aim of this thesis is to systematically test and possibly improve the state-of-
the-art statistical methods to model the BAO peak, taking into account the non-linear
evolution of matter overdensities, redshift-space distortions and the bias of cosmic
tracers. To do that, we analyse mock samples of galaxies, quasars and galaxy clusters
extracted from one of the largest available cosmological hydrodynamical simulations of
the standard ⇤CDM model (http://www.magneticum.org/). We extract cosmological
constraints from the BAO peak through different statistical tools in the redshift range
0.2 < z < 2.

Although the BAO peak is at large scales, non-linear growth and galaxy peculiar
velocities make the BAO signal smoothed and broader with respect to linear predictions,
especially at low redshifts. A possible method to overcome these issues is the so-called
reconstruction of the density field: one of the primary goals of this work is to implement
a reconstruction method, to check its performances as a function of sample selections
and redshift.

All the analyses presented in this thesis are performed by using the CosmoBolog-
naLib, a large set of Open Source C++/Python numerical libraries for cosmological
calculations (Marulli, Veropalumbo, and Moresco, 2016).

xii
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Introduction

"It is my supposition that the Universe in not only queerer
than we imagine, is queerer than we can imagine."

John B. S. Haldane (1892-1964)

At the end of the 19th century there was the conviction that almost everything
was discovered in physics. Michelson, especially known for his experiment with Morely
to measure the speed of light, and awarded with the Nobel Prize in Physics in 1907,
said that “most of the grand underlying principles have been firmly established” and
that “the future truths of physical science are to be looked for in the sixth place
of decimals”. Philipp von Jolly, professor of Physics in Munich, advised his young
student Max Planck not to go into physics, because “in this field, almost everything is
already discovered, and all that remains is to fill a few unimportant holes”. These few
unimportant holes, probably the same of the “two clouds” which for William Thomson,
best known as Lord Kelvin, “obscure the beauty and clearness of the dynamical theory”,
are specifically the same Michelson-Morely’s experiment, which couldn’t detect the
luminous ether, and the black body radiation effect known as ultraviolet catastrophe.

Well, exactly from these dark clouds, in the earliest years of 20th century, that a
young student, Max Planck, and another german-born physicist, Albert Einstein, put
the bases of the two most important and most experimentally tested theories of our
times, the Quantum Mechanics and the General Relativity (just think about the last
confirmed General Relativity’s prediction, the detection of the gravitational waves, B. P.
Abbott et al., 2016). Solutions of the Einstein’s equations provide several cosmological
models of the Universe: the pure gravitational field equation suggests a dynamical
Universe, in contrast with the model accepted at the time; Einstein himself added a
term to the equation, the Cosmological Constant ⇤, to describe a static Universe. After
Hubble discovery of the Universe expansion, Einstein admitted that the Cosmological
Constant was “the biggest blunder of his life”: if he would trust his pure equation, he
could "rewind" the space-time expansion developing a Big Bang theory years before
that Edwin Hubble measured the recession velocities of spiral galaxies.

Nowadays, in the early years of 21st century, the same equations of General
Relativity, together with observational data, tell us that we are really far away from a
complete understanding of the reality. With the discovery of the accelerated expansion
of the Universe through the study of distant type Ia Supernovae (see Riess et al.,
1998), for which Perlmutter, Schmidt and Riess won the Nobel prize in 2011, a lot
of open questions arise: which force is driving the expansion? Is gravity different on

xiii
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large scale? The Cosmological Constant appears again in the equations of the current
standard cosmological model, the ⇤ Cold Dark Matter (⇤CDM) model. Independent
measurements from distant supernovae, the Cosmic Microwave Background and the
large-scale structure of the Universe, attest that the 69% of the content in energy of
the Universe is made of Dark Energy, 26% of Cold Dark Matter, 5% of baryons and
10

�5
% of radiation (P. Ade et al., 2016), where the adjective “dark” is an elegant way

to say “we really don’t know what it is”. In just a century, we passed from knowing
everything excepted for a few holes to knowing only the 5% of the Universe!
With this work we want to take a small step toward the understanding of the nature
of the Dark Energy, by testing and possibly improving the modeling of a standard
ruler used to constrain paramount cosmological parameters, the Baryonic Acoustic
Oscillations (BAO) peaks.
At first time, after the Big Bang, the Universe was hotter and denser than today,
the baryonic matter was completely ionized and photons were coupled with baryons
through continuos Thomson scattering; Cold Dark Matter, on the contrary, for its low
interaction was already decoupled.
Initial fluctuations in the Dark Matter density distribution drove acoustic oscillations
of the baryon-photon plasma, trapped in the dark matter gravitational potential. With
the expansion of the Universe the temperature of baryons was getting lower, until it
was low enough to form first atoms, at the so-called “recombination time” (although
it was more properly the first combination of atoms). By consequence there was the
baryon-photon decoupling, and the photon waves were free to stream away (technically
their mean free path was of the order of the scale of the Universe), but the baryon
density waves expanded until the dark matter gravitational attraction made them
return into the center of the potential well. Despite of this, we expected a residual
overdensity in the matter distribution at the scale of the sound horizon, i.e. the BAO
peak, as well as a series of oscillation in the Cosmic Microwave Background (CMB),
the first radiation we get from recombination time.
Both oscillations were detected and measured: the BAO peak in the Two-Point
Correlation Function of galaxies and galaxy clusters (D. J. Eisenstein, Zehavi, et al.,
2005), and the acoustic peaks in the power spectrum of the CMB (Torbet et al., 1999,
G. Hinshaw et al., 2007) .
Since we can measure with great precision the scale of the sound horizon from the first
peak position in the CMB, we can use the BAO peak position as a standard ruler to
constrain the most important cosmological parameters, as the Hubble parameter, in
order to understand the expansion history of the Universe and so the nature of the
Dark Energy.
The most precise is the BAO detection, the best are the constraints to the cosmological
parameters; since non-linearity and peculiar velocities can smooth the BAO peak,
technique as the reconstruction of the linear density filed are applied to enhance the
signal (D. J. Eisenstein, H.-J. Seo, Sirko, et al., 2007). In this work we test all the
techniques and tools to get the best detection of the BAO, using N-body simulations.
This work is organized as follow:

The first chapter presents the Einstein’s theory of gravity and discusses the princi-
ples on which modern cosmology is based on. It also exposes the main cosmological
models.

The second chapter , after a brief exposure of the history of the Universe, shows
the cosmological structure formation and growth, exploring both linear and
non-linear regime.
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The third chapter introduces the clustering of cosmic structures and the main tools
to analyse it, in order to extract cosmological information.

The forth chapter gives a brief introduction to numerical N-body and hydrodynam-
ical simulations.

The fifth chapter exposes the Baryonic Acoustic Oscillations theory and the recon-
struction technique, showing several observational results.

The sixth chapter after a brief introduction to the Magneticum Simulations, that
we have analysed in this work, it exposes in details the methods adopted in the
analysis.

The seventh chapter presents and discusses the obtained results.

The eighth chapter gives the conclusions and discusses about the future perspec-
tives.





Chapter 1

Cosmological Models

“He used to do surgery
For girls in the eighties
But gravity always wins”

Radiohead, Fake Plastics Trees, The Bends (1995)

Cosmology (from the greek ó�µo& “Universe” and �o�◆́↵ “study of”) is the study of
the origin, evolution, and fate of the Universe. Studying the Universe as a whole means
as a matter of fact studying gravity (excluding the very first moments after the Big
Bang), as it is the dominant force on large scales. The strong and the weak interaction,
in fact, work on sub-atomic scales and the electromagnetic force, that in theory scales
as the inverse of the squared distance exactly as the gravitational force, in practice
isn’t effective for the total neutral charge of cosmic bodies.

1.1 Elements of General Relativity
General Relativity (Einstein, 1915) is a geometrical theory: as in the Special

Relativity (Einstein, 1905), time is not considered as an absolute, but just the forth
coordinate of the spacetime. The genial idea of Einstein was to consider gravity not as
a force, but as the effect of the geometrical distortion of the spacetime.
In Special Relativity, the separation in spacetime of two different events, E1 = (t, x, y, z)
and E2 = (t+ dt, x+ dx, y + dy, z + dz), is defined as

ds2 = c2dt2 � (dx2
+ dy2 + dz2), (1.1)

where ds2 is invariant for coordinate change. The integral over the path of a massive
particle gives stationary values, so

Z

path

ds = 0. (1.2)

In a flat spacetime, as the Minkowski spacetime, this means that the shortest path
between two points is a straight line.

1
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This is no more strictly true in General Relativity, when the spacetime may be curved:
we have that

ds2 = gijdx
idxj , (1.3)

where the indices i and j span between 0 and 3, being x0
= ct and x1,3 the space

coordinates. An interval ds2 > 0 is called time-like, and ds/c represents the time
difference measured by a clock which moves freely between the two points xi and
xi

+ dx. A space-like interval is when ds2 < 0; it measures the distance between the
two points from the point of view of an observer at rest. An interval ds2 = 0 is called
light-like, and it represents the interval which a photon may crosses, from a point xi to
another xi

+ dx.
The metric tensor gij describes the geometry of the spacetime; the shortest path
between two points, called geodesic, for non-Euclidean geometries is not a straight line.
The general equation of a geodesic is

d2xi

ds2
+ �

i
kl +

dxk

ds

dxl

ds
= 0, (1.4)

where �ikl is the Christoffel symbol, defined as

�

i
kl ⌘

1

2

glm

@gmk

@xl
+

@gml

@xk
+

@gkl
@xm

�
, (1.5)

and
gimgmk = �ik, (1.6)

where �ik is the Kronecker delta.
Starting from Christoffel symbols, we can define another tensor which well describes
the geometrical properties of the spacetime: the Riemann–Christoffel tensor

Ri
klm ⌘ @�ikm

@xl
� @�ikl

@xm
+ �

i
nl�

n
km � �inm�nkl, (1.7)

and the Ricci tensor Rik ⌘ Rl
ilk. The Ricci scalar R ⌘ gikRik gives a measure of the

curvature of the spacetime.
We can now define the Einstein tensor

Gik ⌘ Rik � 1

2

gikR. (1.8)

The fundamental equation of Einstein’s gravity may be written as follow:

Gik =

8⇡G

c4
Tik, (1.9)

where G is the Universal Gravitational Constant. Tik is the so-called Energy-Momentum
Tensor, which describes the matter distribution for a perfect fluid:

Tik = (p+ ⇢c2)UiUk � pgik, (1.10)

where p is the pressure, ⇢ is the density and Ui is the four-velocity

Ui = gikU
k
= gik

dxk

ds
, (1.11)

xk being the spacetime trajectory of the fluid element.
The matter-energy distribution incurves the spacetime, and the spacetime distorts the
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matter-energy distribution.
In the weak gravitational field limit, as we expect, Einstein’s equation returns the
Poisson’s equation describing Newton’s gravity,

r2� = 4⇡G⇢. (1.12)

General Relativity’s field equation, written as above, doesn’t admit a cosmological
static solution: as we already told, Einstein added a term to equilibrate the gravity,
the Cosmological Constant:

Gik ⌘ Rik � 1

2

gikR� ⇤gik =

8⇡G

c4
Tik. (1.13)

Note that we can add the term both in the Einstein tensor or in the Energy-Momentum
Tensor: in the first case we modify the properties of the spacetime itself, in the second
way we add a component of energy-matter with particular properties, i.e. the Dark
Energy.

1.2 Cosmological Principles
General Relativity is one of the most tested physical theory and until now it was

confirmed in all the experiments, from the deviation of the light rays in proximity of
the sun disk by Sir Arthur Eddington (1919) to the gravitational waves detection by
LIGO and Virgo collaborations (B. P. Abbott et al., 2016).
However, it is very hard to solve the Einstein’s field equations to make a completed
model of the Universe. Einstein himself and the first cosmologists proposed a principle
to simplify the models, specifically the complexity of a general matter distribution,
lowering the degrees of freedom of the system with the hypothesis of symmetries of
the energy-matter distribution.
In particular, the Cosmological Principle, on which the whole modern cosmology is
built, asserts that the Universe is homogenous and isotopic. The homogeneity is the
translational invariance, the isotropy the rotational invariance; isotropy does not imply
homogeneity without the assumption of not being in a special position of the Universe,
the so-called Copernican Principle. According to these principles, the properties of the
Universe at sufficiently large scales should be the same in each point.
Since from General Relativity we know that we are not in a three-dimensional space,
but in a four-dimensional spacetime, the Cosmological Principle can be extended to
the Perfect Cosmological Principle: the properties of the Universe are the same in
all regions, all directions and at all times. This principle was originally formulated
by Bondi and Gold (H. Bondi and T. Gold, 1948), and it led Hoyle to develop a
steady-state cosmological model, in which the expansion of the Universe was contrasted
by a small amount of matter created continuously. This model was later abandoned by
the scientific community, after the discover of the Cosmic Microwave Background by
Penzias and Wilson (Penzias and Wilson, 1965).
When it was formulated, the Cosmological Principle had not even the smallest obser-
vational confirmation, but it was fundamental to lead to simple cosmological models.
Nowadays, we know from CMB that that the primordial Universe was isotropic with a
precision of one part over 10

5 (Smoot et al., 1992); moreover, the magnitude-distance
relation of the type Ia Supernovae shows that the Universe is isotropic on the very
large scales (Campanelli et al., 2011, Lin et al., 2016); we have also indirect tests of
the homogeneity of the Universe (see Heavens et al., 2011). So far, all the observations
are in agreement with the Cosmological Principle.
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1.3 The Robertson-Walker metric
Once we assume the Cosmological Principle, from pure geometrical considerations,

we get a univocal metric, called the Robertson-Walker metric:

ds2 = (cdt)2 � a(t)2


dr2

1�Kr2
+ r2(d✓2 + sin

2 ✓d'2
)

�
, (1.14)

where ✓, ' and r are polar, comoving coordinates. The comoving coordinates are at
rest with the Universe expansion: by consequence the comoving distance between two
objects does not change with time, not taking account of peculiar velocities of the two
objects.
The a(t) parameter is called the expansion parameter or cosmic scale factor: it has the
dimension of a length and it is expressed as a function of the proper time t, measured
by a clock moving with the object. The curvature parameter, K, could have three
different values:

• K = 1, the spacetime is a hypersphere: closed, without boundaries but with
finite volume;

• K = 0, the spacetime is Euclidean, flat;

• K = �1, the spacetime has a negative curvature, i.e. it is open;

We will see how these three different values of K lead to different fates of the Universe
in the Friedmann cosmological models.

1.4 About Cosmological Distances
In a Universe in which spacetime is expanding, carrying on all its content (Hubble

Flow), and the information travels with a finite speed which is at least several order of
magnitude smaller than the measurement you’re interest in, it is not easy to define the
distance between two points. As a consequence, there is not a univocal definition of
distance in cosmology.

• The proper distance, DP , is the distance measured in a hypersurface of constant
proper time (dt = 0), i.e., with a Robertson-Walker metric:

DP (r, t) = a(t)

Z
drp

1�Kr2
= a(t)f(r) = a(t)

(
sin

�1
(r) K = 1

sinh

�1
(r) K = �1

r K = 0

. (1.15)

• The comoving distance, DC , is then the proper distance at present time t0:

DC(r) = a0f(r) =
a0
a(t)

DP . (1.16)

Proper and comoving distances cannot be directly measured by observations,
because the light we received from distant objects travels with a finite speed
and so it needs a different amount of time to arrive to our telescopes; we cannot
therefore make measurements along a surface of constant proper time, but only
along the set of light paths travelling to us from the past -our past-light cone
(P. Coles and Lucchin, 2002).
We can define distances that are directly related to observations:
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• The luminosity distance,DL, is defined assuming the flux conservation, that is

DL =

✓
L

4⇡l

◆1/2

= a20
r

a
, (1.17)

where L is the luminosity of the source, l is the flux received by the observer,
r the coordinate distance and a the cosmic scale factor. It is clear from this
equation the importance of identifying Standard Candles, objects with known
absolute magnitudes, such as Supernovae of type Ia, to measure cosmological
distances.

• The angular distance, DA, on the contrary preserves the geometrical properties of
the space, in particular the angular size of an object seen from a certain distance.
If D# is the proper diameter of the object and �# is the subtended angle, the
angular distance is defined as

DA ⌘ a0
D#

�#
= ar. (1.18)

In this case, it is fundamental to have an object of fixed and known proper
diameter, i.e. a “Standard Ruler”. The BAO feature, as we will see, it is a perfect
candidate.

A possible way of testing the Robertson-Walker metric is through the duality
equation:

DA = a(t)r = DL
a2

a20
; (1.19)

any consistent violation of this relation would highlight deviations from the assumed
homogeneity and isotropy of the Universe. Until now, we have no evidence of deviation
from the duality relation.

1.5 The Hubble Law
The proper distance between an observer and any source changes with time, because

of the expansion of the Universe: the source will have a radial velocity with respect to
the observer

vr =

dDP

dt
= ȧf(r) =

ȧ

a
DP . (1.20)

This radial velocity, that Edwin Hubble measured, pointing the Hooker Telescope of
Mt. Wilson to a group of spiral galaxies, led him to the discovery of a Universe in
expansion, with a velocity proportional to the distance. The equation (1.20) is so
called Hubble Law, and the parameter

H(t) ⌘ ȧ

a
(1.21)

is called Hubble parameter. The value of the Hubble parameter at the present time is a
paramount cosmological information; the last measurement, released from the Planck
Collaboration (Planck Collaboration, Adam, et al., 2016), is

H0 = 67.8± 0.9 km s�1Mpc�1. (1.22)
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This value expresses the isotropic expansion rate of the Universe, and it is the same in
all the space at fixed cosmic time. We can also define the reduced Hubble constant,
that is

h ⌘ H0

100Km s�1Mpc�1 (1.23)

1.5.1 The Deceleration Parameter
The Hubble parameter represents the first derivative of the cosmic scale factor.

Expanding a(t) in power series around today, t0, we can see how H(t) varies with the
content of the Universe. Up to the second derivative, we have:

a(t) = a0[1 +H0(t� t0)�
1

2

q0H
2
0 (t� t0)

2
+ ...], (1.24)

the Deceleration Parameter can then be the defined as:

q ⌘ � ä(t)a(t)

ȧ(t)2
, (1.25)

and we will call q0 the present time value of q.

1.5.2 Redshift
The Hubble Law can be used to measure galaxy distances: the radial velocity of

galaxies due to the expansion of the Universe causes in fact a measurable redshift in
the galaxy spectra.
In the relativistic Doppler effect we have that

1 + z = �(1 +
vk
c
), (1.26)

where

� =

✓
1� v2

c2

◆�1

. (1.27)

However, until galaxy recession velocities are non-relativistic (v ⌧ c), equation (1.26)
can be reduced to

z ⇡
vk
c
. (1.28)

The redshift is defined as follows:

z ⌘ �0 � �e

�e
, (1.29)

where �e is the wavelength of the radiation emitted by the source and �0 is the
wavelength received by the observer. From equation (1.14), integrating over the path
of a light-like interval, it is demonstrated that

a

�e
=

a0
�0

, (1.30)

and then
1 + z =

a0
a
. (1.31)
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Combining equations (1.20) and (1.28) we can write the Hubble Law, in the non-
relativistic limit, as

cz ⇡ H(z)DP . (1.32)

Of course, the radial component of peculiar velocities of the galaxies degenerates with
the radial velocity due to the expansion of the Universe, so the uncertainty on the
distance calculated with the redshift grows-up, as we will discuss in section 3.5.1.

Note that the Hubble parameter, H(t), has the dimension of the inverse of time
and the deceleration parameter, q(t), is dimensionless. If we combine the equations
(1.31) and (1.24), we obtain that

z = H0(t� t0) + (1 +

1

2

q0)H
2
0 (t0 � t)2 + ..., (1.33)

which inverted gives

t0 � t =
1

H0


z �

✓
1 +

1

2

q0

◆
z2 + ...

�
, (1.34)

where t0 is so-called Hubble Time and represents the Universe age (tH ⇡ 13.7Gyr).

1.6 Cosmological Models
Combining the Einstein equations (1.9) and (1.10) with the Robertson-Walker

metric (1.14), we can derive the two Friedmann equations

ä = �4⇡

3

G

✓
⇢+

3p

c2

◆
a2 (1.35)

ȧ2 +Kc2 =

8

3

⇡G⇢a2. (1.36)

Solving these two equations, joined to the adiabatic condition, it is possible to describe
the expansion of the spacetime. The adiabatic condition is the assumption that the
Universe is a closed system: if it doesn’t loose energy, then

dU = �pdV, (1.37)

where U = ⇢c2a3 is the internal energy, p is the pressure and V = a3 is the volume.
The eq. (1.37) can be written also as

d(⇢c2a3) = �pda3 (1.38)

or equivalently as
⇢̇+ 3

⇣
⇢+

p

c2

⌘ ȧ

a
= 0. (1.39)

Note that equations (1.35), (1.36), (1.38) are not independent: from two of these we
can determine the third one.
It’s moreover remarkable the Birkhoff ’s theorem (1923): any spherically symmetric
vacuum solution of Einstein’s equations is locally isometric to a region in Schwarzschild
spacetime. The Schwarzschild’s solution of the Einstein field equations describes the
geometry of the spacetime around a spherical neutral mass, without any angular
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moment. Its corollary demonstrates that the spacetime inside a homogeneous and
isotropic spherical distribution of mass-energy, M , and radius, r, can be described by
a Minkowski metric. That is, the spacetime is flat, so we can work in the Newtonian
limit, until the condition

GM

rc2
⌧ 1, (1.40)

is valid.

1.6.1 Einstein Universe
If we recall the first Friedmann equation (1.35), we can note that a static Universe,

that is ä = ȧ = 0, is possible only if

⇢ = �3p

c2
. (1.41)

This means that either the density or the pressure should be negative! To solve this
problem, Einstein introduced the Cosmological Constant ⇤ in his field equation (1.13).
A similar approach consists in modifying the Energy-Momentum Tensor as follow:

Rik � 1

2

gikR =

8⇡G

c4
˜Tik, (1.42)

where ˜Tik is obtained by substituting the effective pressure and density, p̃ and ⇢̃, to
preserve the form of the Friedmann equations (1.35) and (1.36):

˜Tik = �p̃gij + (p̃+ ⇢̃c2)UiUj = Tij +
⇤c4

8⇡G
gij , (1.43)

where
p̃ = p� ⇤c4

8⇡G ; ⇢̃ = ⇢+ ⇤c2

8⇡G ;

(1.44)

Equations (1.35) and (1.36) are then

ä = �4⇡

3

G

✓
⇢̃+

3p̃

c2

◆
a2 (1.45)

ȧ2 +Kc2 =

8

3

⇡G⇢̃a2. (1.46)

If we consider a “dust Universe”, where the pressure is negligible (p = 0), we obtain

⇤ =

K
a2 , ⇢ =

Kc2

4⇡Ga2 . (1.47)

The density must be positive, so K = 1 and ⇤ > 0: the Einstein Universe is static
(but not stable!) and it is spherical.

1.6.2 De Sitter and Lemaître models
The de Sitter Universe is a model formulated in 1917, in which the Universe is

empty and flat (p = 0; ⇢ = 0; K = 0), completely dominated by the Cosmological
Constant; from equations (1.44) and (1.46) we have that

ȧ2 =

1

3

⇤c2a2, (1.48)
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from which we can note that ⇤ is positive. The solution of the equation (1.48) is

a = A exp

"✓
1

3

⇤

◆1/2

ct

#
, (1.49)

which gives a Hubble parameter constant in time:

H(t) =
ȧ

a
= c

✓
⇤

3

◆1/2

. (1.50)

The de Sitter model is actually used to describe the inflationary epoch of the Universe,
when for a certain period of time the Universe was exponentially expanding.
The Lemaître Universe is a model formulated in 1927. In this model the parameter of
curvature is positive too, and the cosmic scale factor always increases, excepted for a
short period in which it results constant (“stagnation”). The stagnation was explaining
the apparent surplus of quasars and galaxies at z ⇡ 2 until it was discovered that it
was just an apparent effect.

1.6.3 The Friedmann Model
The Russian cosmologist Alexander Friedmann solved the equations (1.35) and

(1.36) for a general case, giving the description of the properties of the main cosmological
models (Friedmann, 1922). He was however almost completely ignored, either because
he wrote in german or because he died soon after the publications. The two Friedmann
equations depend on three parameters: a(t), p and ⇢; we can add an equation of state
to solve the system. When a cosmological component has a particles mean free path
smaller than the scale of the cosmic structure physical phenomena, we can describes it
as a perfect fluid, that is fully characterised by the following equation of state:

p = w⇢c2, (1.51)

where w is a constant parameter which, in a Universe without any Cosmological
Constant, spans the so-called Zel’dovich Interval 0  w  1. The w parameter is
linked to the adiabatic sound speed in the fluid as follow:

vs =

✓
@p

@⇢

◆1/2

S

= c
p
w. (1.52)

We can assign at the various components of the Universe the following w parameters:

• w = 0, the “dust” case, with p = 0, to describe non-relativistic and non-degenerate
matter;

• w =

1
3 for ultra-relativistic particles in thermal equilibrium, both not degenerated

matter and radiation;

• w = �1, for the Cosmological Constant equation of state;

The Energy-Momentum Tensor can therefore be written as a sum of different compo-
nents:

Tµ⌫ ⌘
X

i

T (i)
µ⌫ . (1.53)
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From equations (1.37) and (1.51) we can get the relation

⇢a3(1+w)
= ⇢0wa

3(1+w)
0 . (1.54)

where the suffix “0” indicates, as usual, the parameter measured at present time.
We can rewrite the equation (1.36) to highlight the dependence of Robertson-Walker
metric’s curvature on the Universe content:

K

a2
=

1

c2

✓
ȧ

a

◆2✓ ⇢

⇢c
� 1

◆
, (1.55)

where the ⇢c parameter is the critical density

⇢c ⌘
3H2

(t)

8⇡G
. (1.56)

If the total density of the Universe is equal to the critical density, then the geometry
of the spacetime is Euclidean. We can define also a density parameter

⌦(t) ⌘ ⇢(t)

⇢c(t)
. (1.57)

We will indicate the density parameter of a single component, having equation of state
with w, ⌦w, while the total density parameter will be ⌦tot =

P
i ⌦w

i

.
The density parameter provides information on the geometry of the spacetime:

• if ⌦tot = 1, the Universe is flat;

• if ⌦tot < 1, the Universe is open;

• if ⌦tot > 1, the Universe is closed;

It is interesting to calculate the time dependencies of cosmological parameters, to
study the expansion history of the Universe. Equivalently, we can study how the
parameters depend on redshift, because there is a univocal time-redshift relation for
a fixed cosmology. From the adiabatic expansion condition (1.37) we can obtain the
equation

⇢w(z) = ⇢0w(1 + z)3(1+w), (1.58)

while combining the Hubble Law (1.20) with the Second Friedmann Equation (1.36)
we obtain that

H2
(z) = H2

0 (1 + z)2
"
1�

X

i

⌦0w
i

+

X

i

⌦0w
i

(1 + z)1+3w
i

#
. (1.59)

Moreover, from the first Friedmann Equation (1.35) we can get the second derivative
of the cosmic expansion parameter

ä = �4⇡

3

G⇢(1 + 3w)a. (1.60)

Since we know from observations that H0 > 0, and so ȧ > 0, these two equations show
that in a homogeneous and isotropic Universe where w is within the Zel’dovich Interval
the cosmic scale factor a(z) grows monotonically with the redshift. As a consequence,
as we can see in figure (1.1), there must be an initial singularity, where the cosmic
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Figure 1.1: The cosmic scale factor monotonically increases with the time; the concavity
makes the curve crosses the time axis, and so there must be an initial singularity
or Big Bang. Figure from (P. Coles and Lucchin, 2002).

scale factor is zero and the redshift, the density and the temperature are infinite: the
Big Bang cannot be avoided, unless we consider a strong Cosmological Constant, which
would introduce a flection point in the cosmic scale factor curve.

If we measure the values of the cosmological density parameters today, we can
reconstruct the time evolution of the parameters. Considering just the dominant
component in the different ages simplifies a lot the calculations: equation (1.59), for
example, is reduced to

H2
(z) = H2

0 (1 + z)2
⇥
1� ⌦0w + ⌦0w(1 + z)1+3w

⇤
, (1.61)

thus from equation (1.58), we have that

⌦w(z) =
⌦0w(1 + z)1+3w

1� ⌦0w + ⌦0w(1 + z)1+3w
, (1.62)

which can be rewritten as

⌦

�1
w (z)� 1 =

⌦

�1
0 � 1

(1 + z)1+3w
. (1.63)

This equation, valid for a single component Universe, shows that the geometry of the
spacetime cannot change with time: a closed Universe will be always closed, and so
a flat or an open one. Moreover, as we can see in Figure (1.2), at high redshift the
spacetime tends to the flatness.

Assuming a flat single-component Universe (Einstein - de Sitter Model , hereafter
EdS), the equations are even more simplified; for instance, equation (1.61) reduces
ulteriorly to

H(z) = H0(1 + z)
3(1+w)

2
; (1.64)

the various parameters can be determined just substituting the equation-of-state
parameter w. Furthermore, it can be shown that

q =

1 + 3w

2

; (1.65)

this means that an EdS Universe, composed either by matter or by radiation, is in
constant deceleration.
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Figure 1.2: Three different evolutions of the density parameter ⌦ in redshift; it emerges
that the geometry of the spacetime cannot change in time: the curves under
and over ⌦ = 1 never cross the line. It is also evident that an open or a closed
Universe tend to the flatness with the redshift; this means that to observe today
|⌦(t0)� 1|  0.01, at the Planck time tP (⇡ 5.39⇥ 10�44 s after the Big Bang)
it should be |⌦(tP )� 1| = 10�62.

A cosmological model provides information on the past evolution of the Universe,
and on the future trend of the cosmological parameters, thus constraining the actual
age and fate of the Universe. In figure (1.3) we see how models that have in common
the same cosmic scale factor observed today (a0) can have completely different origins
and fates (depending also on H0):

• a flat Universe composed only by matter (⌦m = 1) has an age of about 10 Gyr,
and will asymptotically expand until the so-called “heath death” ;

• an open Universe (⌦T < 1) has an age that is greater than a flat Universe, while
its end will be very similar, even if its size per cosmic time will be a little greater;

• a closed Universe (⌦T > 1) is younger than a flat Universe. The expansion of the
spacetime will reach a turning point, beyond which there will be a contraction
until another singularity, the so-called Big Crunch;

• the ⇤CDM model is a flat Universe, which today is made of 30% of matter and
70% of Cosmological Constant. This Universe has an age of 13.7 Gyr, and the
cosmic scale factor presents a flection point; as a consequence, the size of the
Universe diverges.

1.6.4 The Standard Cosmological Model
The cosmological model most in agreement with observations nowadays is the flat

⇤CDM model. The main component today is the Cosmological Constant (⇡ 70%),
which is driving the accelerated expansion of the Universe. The 25% of the total energy
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Figure 1.3: Different evolutions of the cosmic scale factor (i.e. the size of the Universe) as a
function of the time, for different values of the density factor. The time axis is
centered at 0, i.e. today. We can note as all the curves without Cosmological
Constant are concave and cross the time axis. As a consequence, in all of
these models the Big Bang cannot be avoided. We can also note that the
bigger is ⌦m, the younger is our Universe. Closed Universes (⌦m > 1) expands
up to a maximum size, then collapse to another singularity, the so called Big
Crunch. As we can see from the dashed line, models with the cosmological
constant, even if ⌦T = 1, have a flection point and then diverge. Figure from
https://en.wikipedia.org/wiki/Hubble’s_law.

https://en.wikipedia.org/wiki/Hubble's_law
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budget is made by cold dark matter, that is not fully understood yet. Nevertheless,
we have several and independent evidences of its existence and some theories on its
nature (e.g. Bertone et al., 2005 ). Only 5% of the energy content of the Universe is
made of baryons and radiation. The sum of all the components has, to a very high
level of approximation, the value 1 (see Table (1.1)), so the spacetime is flat.
From equation (1.63) it is evident that the distance between ⌦ and the value 1 gets
lower with the redshift, as Figure (1.2) shows. At the Planck time tP (⇡ 5.39⇥ 10

�44

s after the Big Bang), it should be |⌦(tP )� 1| = 10

�62 to have |⌦(t0)� 1|  0.01 at
present time! This apparent fine tuning problem, known as flatness problem, may be
resolved by inflationary models 1.

In table (1.1) we resume the values of the main cosmological parameters for the
⇤CDM model, as released from the Planck collaboration, from CMB Power Spectra,
plus lensing reconstruction and external data as BAO (P. Ade et al., 2016).

H0 (Kms�1
) ⌦⇤ ⌦m Age(Gyr)

67.90± 0.55 0.6935± 0.0072 0.3065± 0.0072 13.796± 0.029

Table 1.1: Cosmological parameters plus best-fit 68% confidence levels, obtained combining
data from the Planck Satellite CMB temperature power spectra, data from the
reconstruction of lensing and other large-scale structures external data (P. Ade
et al., 2016).

1.6.5 Cosmological Horizons
Let us consider a sphere, centered at a generic point of the Universe, with a radius

equivalent to the maximum distance from which a signal could have reached that point
in the spacetime, that is

RH(t) = a(t)

Z t

0

c dt0

a(t0)
. (1.66)

The distance c dt0 travelled by a photon between t0 and t0 + dt0 is multiplied by a factor
a(t)/a(t0) to take into account the expansion of the Universe. If this integral converges,
this sphere is called particle horizon: all the points inside the particle horizon could in
principle have interacted in some way with the center; on the contrary, it is impossible
for the central point to receive a signal or any kind of information coming from outside
the particle horizon. If the integral diverges, in theory it is possible that this point has
received signals from the whole Universe.
For ⌦w = 1, the integral can be approximated to

RH(t) ⇡ 3

1 + w

1 + 3w
ct. (1.67)

In particular, RH(t) = 3ct for a dust Universe and RH(t) = 2ct for a radiative model.
In the other hand, in a pure de Sitter cosmological model, there is no particle horizon,

1see Evrard and P. Coles (1995) for the demonstration that the flatness problem may be only an
apparent fine tuning problem, due to wrong assumptions.
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because the integral of equation (1.66) diverges. Different cosmological models have
different particle horizons, comoving sizes and angles (see Figure (1.4)); measuring
the angle that subtends the particle horizon at a time t of known proper size gives
information on the spacetime geometry.
It is important not to confuse the particle horizon with the Hubble sphere, or speed
of light sphere: its radius, the so-called Hubble radius, is the distance travelled by a
particle at the speed of light in the Hubble flow, that is

Rc = c
a

ȧ
=

c

H
. (1.68)

The Hubble radius can also be seen as the proper distance travelled by light in a
Hubble time. It is easy to see that for a flat spacetime it coincides approximately to
the particle horizon:

Rc =
3

2

(1 + w)ct =
1

2

(1 + 3w)RH ⇡ RH . (1.69)

However, once a point enters the particle horizon, it cannot ever go out of it; the
particle horizon at time t takes into account all the past history of the Universe, while
the Hubble sphere is defined with the proper distance, so it is instantly defined at a
time t. By consequence, a point can be in the particle horizon but not in the Hubble
sphere, or can enter in the Hubble sphere, go out and re-enter.
It is interesting to notice that, for the Hubble Law (1.20), points where proper distance
is larger than Rc = c/H0 recess with velocities greater than the speed of light.
Observations of the CMB temperature show great homogeneity between points that
apparently should be out of each other particle horizons. Inflationary theories explain
how physical properties of two points that apparently were never been casually con-
nected are so similar (horizon problem) and other issues as the magnetic monopoles
problem 2 or the flatness problem, making use of the Hubble spheres.
Finally, despite it is more used in black hole studies than in cosmology, for completeness
we introduce the event horizon, that is the complementary of the particle horizon: it is
the sphere that separates the points of the spacetime which could, in principle, emit a
signal that can reach the center in a future, from ones which cannot. Its radius is

RE(t) = a(t)

Z t
max

t

c dt0

a(t0)
. (1.70)

Friedmann models with w belonging to the Zel’dovich interval do not have a event
horizon, contrary to the de Sitter models.

2 GUTs models predict a magnetic monopoles density such that the Universe would be closed,
with a very high density parameter, which is totally in contrast with the observations.
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Figure 1.4: This figure shows how the spacetime geometry of the Universe makes cosmological
models differ in angles, horizons and comoving distances. In particular, models
of open Universe have larger horizons and distances, but tinier angles; flat
models with a Cosmological Constant has larger sizes, but smaller horizons.
Figure from (Hamilton, 1998).



Chapter 2

Cosmic Structures

“In the darkness something was happening at last. A voice
had begun to sing. Sometimes it seemed to come from all
directions at once. There were no words. There was hardly
even a tune. But it was, beyond comparison, the most
beautiful noise he had ever heard. It was so beautiful he
could hardly bear it.”

C.S.Lewis, The Magician’s Nephew (1955)

2.1 Short history of the Universe
Ironically, the Big Bang model describes and predicts well the Universe until a

tiny fraction of second before the Big Bang itself: precisely, 10�43 seconds, the Planck
time, before the singularity. Over this time, that is established by the Heisenberg’s
indetermination principle, the size of the Universe is small enough to present both
quantum and gravitational effects. Nobody was capable to formulate a completely
satisfying quantum gravity theory, despite all the tentatives made by the theoretical
physicists since Einstein’s times. It is even possible that a quantum gravity theory
allows to avoid the primordial singularity, describing the Universe also before the Big
Bang, like the loop quantum gravity (e.g. Bojowald, 2008).
The CMB provides a direct evidence that the Universe at z ⇡ 1000 was hotter than
now. For this reason the standard cosmological model is also known as Hot Big Bang.
It is proved that at high temperature the electromagnetic force is joined to the weak
interaction in the so-called electroweak interaction (S. Weinberg, 1967); this symmetry
is broken at low temperature. There are theories aimed at unifying the strong inter-
action (GUTs, Grand Unified Theories) and the gravitational force (supersymmetry
theories) to the electroweak force. In some GUT models superheavy (1015 GeV) bosons
mediate the unified interaction. The Higgs boson would brake the GUT symmetry;
however there are not strong observational evidences for any of these models. The idea
that all the fundamental forces are just different sides of the same interaction is very
attractive, but scientists could not yet formulate the so-called Theory of Everything.
The break of a symmetry is called transition phase: during the GUT transition phase,
that is when the Universe had a temperature of 1015 GeV and the strong interaction

17
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was separated from the electroweak force, the baryon number was not conserved. This
minimum difference between matter and antimatter could explain the baryogenesis,
that is the actual matter-antimatter discrepancy.

About 10

�32 - 10�33 after the Big Bang, the Universe is believed to have experi-
enced an instantaneous and exponential expansion called “inflation”. Nowadays there
are many inflationary models, originally developed by Alan Guth (A. H. Guth, 1981) to
solve some main cosmological problems, such as the flatness problem and the horizon
problem. It also solves the magnetic monopoles problem and explains the Gaussian
anisotropies of the primordial Universe. Moreover, the assumed initial scalar field
(inflaton) spontaneously leads to the baryogenesis. The inflationary models, nowadays,
are accepted by the largest part of the scientific community, and strongly confirmed
by the CMB data from the Planck satellite A. H. Guth et al., 2014. Nevertheless,
these models are contested by a few scientists, which consider inflation as a scientific
paradigm and claim untestable predictions and lack of empirical evidences (P. J. Stein-
hardt, 2011; Ijjas et al., 2013; Ijjas et al., 2014).

Figure (2.1) shows the redshift evolution of the density parameters. At the beginning,
the radiation was the main component of the Universe. After the transition phase
period, while the temperature was getting lower, quarks started to bounded into
hadrons (the “hadron epoch”), and after about 10 seconds from the Big Bang, during
the primordial nucleosynthesis, almost all the hydrogen and helium nuclei of the
Universe were formed, with a small percentage of other light elements.
About 47000 years after the Big Bang (z ⇡ 3600), soon after the so-called equivalence
time, the matter started to be dominant. Approximatively 380000 years after the
Big Bang (z ⇡ 1088), at the recombination time, the Universe had a temperature of
⇡ 4000 K, which is sufficiently low to start to bind electrons and protons in hydrogen
atoms, making the Universe transparent to the radiation (more precisely, “optically
thin”). Residual interaction between the matter and photons continued until z ⇡ 400

(matter-radiation decoupling). Later, after the re-heating operated by the luminous
structures, matter and radiation will be locally coupled again.
The matter epoch finished when the Dark Energy started to be the dominant component
of the Universe ,“just” 4 billion years ago, about 9,8 billion years after the Big Bang.

2.2 Cosmological Structures Formation
One of the main goals of a cosmological model is to make a link between the past

Universe and the present one. The Universe today contains in fact galaxies, clusters,
and, on larger scales, filaments and voids. In fact it looks inhomogeneous, at scales
of tens Mpc, and it shows effects of the non-linear evolution of its structures. The
Universe looks homogeneous today only at the largest scales that can be mapped with
the actual surveys, of the order of hundreds Mpc. On the other hand, the Universe at
the time of recombination looked smooth and homogeneous as we can see from the
CMB light produced 13,7 billions of years ago.
In the Jeans Theory, the structures are formed by the gravitational collapse of small
perturbations in a homogeneous mean fluid. Nevertheless, the distribution of photon-
matter plasma constrained by the CMB appeared, in the first observations, homoge-
neous with a precision of 10�4. Eventual anisotropies of the order of 10�5, predicted
by the Jeans theory, would lead to clusters with a mass of ⇡ 10

13 M�, formed in
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Figure 2.1: Typical behaviours of the density parameters, as a function of the redshift, in
Dark Energy cosmological models. The radiation (purple line) was the dominant
component for the first 50,000 years after the Big Bang. For most of the time
the matter (blue line) was the main component, until the Dark Energy (green
line) took its place about 4 billion years ago. Figure from Bamba et al. (2014).

the redshift range ⇡ 2 � 20 (Zel’dovich, 1972). The discovery of small, Gaussian
anisotropies of the order of 10

�5 in the CMB (Smoot et al., 1992), thus, gave an
important observational confirmation to the Jeans Theory.

At first, we need to define the punctual density contrast:

�(x) ⌘ ⇢(x)� ⇢̄

⇢̄
, (2.1)

where ⇢(x) is the punctual density field, and ⇢̄ is the mean density of the Universe. In
the Fourier space, we have that

ˆ�(k) =
1

(2⇡)3

Z
d3x �(x) eikx, (2.2)

where k = 2⇡/x. It is impossible to model the density contrast field exactly, because it
is made by stochastic processes. We are interested instead to the statistical information
contained in it. Since we have just one Universe from which we can obtain statistical
samples, we will work on the hypothesis of Fair Sample: the parts of the Universe
sufficiently distant from each other evolved independently.
The first central moment of the punctual density contrast, that is the mean, is null by
construction; if we consider just Gaussian fluctuations, the only non-null moment is
the variance:

�2 ⌘ 1

V1

Z
d3x < �2(x) >, (2.3)

or equivalently, in the Fourier space:

�2 ⌘ 1

(2⇡)3 V1

Z
d3k < �2(k) >, (2.4)



20 CHAPTER 2. COSMIC STRUCTURES

where V1 is virtually the volume of the Universe, and the symbol <> means an average
on all the sub-volumes in which the Universe is divided. We can also define the power
spectrum , P (k), as

P (k) ⌘< �2(k) > . (2.5)

The power spectrum gives a measure of the contribution of a scale k to the total density
fluctuation �(x); its real-space corresponding quantity is the two-point correlation
function, defined as follows:

⇠(r) ⌘ 1

(2⇡)3

Z
d3kP (k)eik·r. (2.6)

The power spectrum and the two-point correlation function are linked by the Wiener-
Khintchine theorem:

P (k) =

Z
⇠(r)eik·rdr. (2.7)

The inflation theory predicts an initial power spectrum of the following form:

P (k) = Akn, (2.8)

where n is the so-called spectral index. Zel’dovich and Harrison proposed independently
to set n = 1 (Harrison, 1970, Zel’dovich, 1970): in this way, the Harrison-Zel’dovich
Spectrum has the property to be scale-invariant, and the resultant anisotropies on
the CMB are smaller than 10

�4 , that is the precision achieved at that epoch. The
observations today provides values consistent with n = 1 (Planck Collaboration, P. A.
Ade, et al., 2014), a value that is also predicted by inflationary models. We will discuss
more specifically about the two-point correlation functions in the Chapter 3.
To compare theory and observations, we need to trace the contrast field in some way.
The easiest one is to count luminous objects as galaxies, that constitute a discrete
distribution, and to make an average on a given volume. Specifically, for an object of
mass M , we have to pick a minimum radius R to have a mean density ⇢̄ / M/R3. We
define the Mass Variance as the convolution of the power spectrum with a window
function ˜WR(k), that is used to filter all the information on scales smaller than R:

�2
M ⌘ 1

(2⇡)3V1

Z
d3k < �2(k) > ˜W 2

R(k). (2.9)

It is often used �2
8 , the mass variance computed with R = 8h�1 Mpc, for historical

reasons:
�2
8 ⌘ 1

(2⇡)3V1

Z
d3k < �2(k) > ˜W 2

R=8(k), (2.10)

in particular, in the galaxy distribution �2
8(z = 0) ⇡ 1 .

2.3 Linear theory
Since, as we already discussed in section 2.2, CMB temperature fluctuations are of

the order of
�T

T
= 10

�5, (2.11)

we can use the perturbation’s linear theory to describes the initial evolution of the
cosmic structures, finding analytical solutions that are valid until �(x) < 1.
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Jeans demonstrated that small density and velocity fluctuations in a homogenous and
isotropic mean fluid can grow, accreting mass until the gravitational collapse. The
condition for the collapse is simply that the initial perturbation’s length must be larger
than a certain scale, called the Jeans Length, �J . We can evaluate the forces acting on
a spherical density fluctuation �⇢, of mass M and length �, in a homogeneous fluid of
mean density ⇢, to have a simple order-of-magnitude idea of the situation:

Fg ⇡ GM

�2
⇡ G⇢�3

�2
= Fp ⇡ p�2

⇢3
⇡ c2s

�
. (2.12)

The overdense region will collapse if the self-gravitational force per unit of mass, Fg, is
greater than the pressure force per unit mass, Fp, that is if � > cs(G⇢)�1/2, where cs
is the speed of sound in the fluid; the Jeans length is then

�J ' cs

r
1

G⇢
. (2.13)

A similar result is achievable by equilibrating the self-gravitational energy, U , of the
overdensity with the kinetic energy, K, of the thermal gas, which tends to spread the
perturbation,

U ⇡ G⇢�3

�
= K ⇡ c2s, (2.14)

or the gravitational free-fall time, ⌧ff , with the hydrodynamical time, ⌧h:

⌧ff ⇡ 1

(G⇢)1/2
= ⌧h ⇡ �

cs
. (2.15)

If � < �J , the self-gravity of the overdensity is not sufficient for the mass infall in
the gravitational well, and the perturbation propagates as an acoustical wave.

2.3.1 Jeans Theory in a static Universe
We consider here a homogeneous, isotropic, adiabatic and static Universe with

time-independent matter density. We can set the following hydrodynamical equation
system for a Newtonian, collisional fluid:

Continuity Equation
@⇢

@t
+r · (⇢v) = 0 (2.16)

Euler Equation
@v

@t
+ (v ·r)v = �1

⇢
r⇢�r� (2.17)

Poisson Equation r2
� = 4⇡G⇢ (2.18)

Equation of State p = p(⇢, S) (2.19)

Entropy Conservation
@s

@t
+ v ·rs = 0 (2.20)

where ⇢ is the density, v the velocity, � the gravitational potential, s the entropy.
Once we solved this set of equations for the Universe’s background, we introduce a
small perturbation, imposing that the perturbed solutions are still valid; if we look for
solutions in the form of plane waves, we get the following dispersion relation in Fourier
space:

!2 � c2sk
2
+ 4⇡G⇢0 = 0, (2.21)
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where ! is the wave frequency and k is the wave number. In this way we obtain the
Jeans length as follows:

�J = cs

r
⇡

G⇢
. (2.22)

Considering a collisionless fluid, where the particle’s pressure is null, we have to
substitute equations (2.16) and (2.17) with the Liouville equation:

@f

@t
+r · fv +rv · fv̇ = 0, (2.23)

where f is the phase-space distribution function and rV ⌘ (@/@v). The Jeans length
in this case is

�J = c⇤

r
⇡

G⇢
, (2.24)

where c⇤ replaces the sound speed in equation (2.22):

c�2
⇤ =

R
v�2fd3vR
fd3v

⌘< v�2 > . (2.25)

In particular, for a Maxwellian distribution

f(v) =
⇢

(2⇡�2
)

3/2
exp

✓
�v2

2�2

◆
, (2.26)

we have that v⇤ = �. In a collisionless fluid (as the dark matter one), if the scale of a
perturbation is shorter than the Jeans length, the fluctuation will dissipate in a time
of the order of ⌧ ⇡ �/c⇤, a process called free streaming, very similar to the Landau
damping in a collisionless plasma.

2.3.2 The Jeans Theory in a Universe in expansion
In an expanding Universe the background density, ⇢B, is not constant, but time

dependent; the peculiar velocities of cosmic structures follow the Hubble Law (1.20).
By substituting opportunely these terms in equation (2.16) we get

⇢̇B + 3H(t)⇢B = 0; (2.27)

we can obtain again a dispersion relation:

¨�k + 2H(t) ˙�k + (k2c2s � 4⇡G⇢b)�k = 0. (2.28)

Both the expansion of the Universe, represented by the Hubble friction term 2H(t) ˙�k,
and the peculiar velocity field of the fluid, k2c2s�k, are opposite to the gravitational
collapse of the perturbation.
The Jeans length in this case is

�J = cs

r
⇡

G⇢B
. (2.29)

These results are valid only on scales inside the particle horizon: outside the
horizon, in fact, for the absence of causal connection between particles, there cannot
be microphysical processes; only gravitational effects are influent. This means that
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outside the particle horizon the perturbations always grow due to the absence of the
pressure that can oppose the gravitational collapse. Moreover, all the components of
the Universe are gravitationally bounded. This means that it is sufficient to study
only the behaviour of the main component of the Universe at a time t: the other
components will follow the dominant one. As already discussed in section 2.1, at first
the main component of the Universe was the radiation; after the equivalence it was the
matter. Since the dark matter is dominant on the baryonic matter, in an EdS Universe
we have that

�R / �B / �DM / a(t)2 if z > zeq; (2.30)
�DM / �B / �R / a(t) if z < zeq; (2.31)

where �R, �B , �DM are fluctuations of radiation, baryons and dark matter respec-
tively, and a is the cosmic scale factor.
Figure (2.2) shows the time evolution of the density fluctuations, in ⇤CDM model.
The accretion of an overdensity continue until the scales of the perturbation enter
into the particle horizon; the microphysical processes are again effective, and different
components behave in different way:

• The radiation fluctuations have a Jeans scale larger than the horizon particle:
because of their speed, these fluctuations never collapse, neither before nor after
the equivalence time.

• The growth of dark matter fluctuations time is “frozen” before the equivalence
due to the so-called Meszaros Effect or stagnation: the lack of the radiation
pressure after the equivalence makes the dark matter to collapse again, after the
equivalence, with �DM / a(t).

• The baryon fluctuations follow the radiation ones, oscillating like acoustic waves
until the decoupling, adec; after that epoch, the baryons fall into the dark matter’s
potential wells (baryons catch-up), with �B = �DM (1� adec/a).

Let �+ be the density perturbation growing modes in time. It can be demonstrated
that, generically,

�+(t) = H(t)

Z t

0

dt

a2H2
(t)

= �H(z)

Z z

1

(1 + z)dz

a20H
3
(z)

; (2.32)

this equation cannot be solved analytically. Nevertheless, in a EdS Universe, where
⌦0,m = 1, through equation (1.64) we can get that

�+(z) / (1 + z)�1 / a. (2.33)

In general, the cosmic structures form faster in closed models, and slower in open ones,
relative to a flat Universe, i.e. the higher is the matter content of the Universe, the
faster is the growth of overdensities. We can define the linear growth rate parameter as:

f ⌘ d ln�+
d lna

, (2.34)

It is valid the approximation

f ⇡ ⌦m(z)� +

⌦⇤

70

✓
1 +

1

2

⌦m

◆
; (2.35)
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where the growth index, �, is predicted by the GR, � = 0.545 (L. Wang and P. J.
Steinhardt, 1998a, Linder, 2005). Notice that, when the Cosmological Constant, ⇤, is
negligible, equation (2.35) reduces to

f ⇡ ⌦m(z)� . (2.36)

Figure 2.2: Evolution of dark matter (solid line) and baryon (dashed line) perturbations
in a ⇤CDM model. Outside the particle horizon all the components are
gravitationally bounded and grow together; after entering the particle horizon,
the dark matter perturbation keeps growing, while the baryon-photon fluid
oscillates. After the decoupling, the radiation keeps oscillating, while the
baryons fall in the dark matter wells, in the so-called baryon catch-up. Figure
from https://en.wikipedia.org/wiki/Structure_formation.

2.3.3 Critical Masses and Structure Formation Scenarios
We introduce now some critical lengths and masses that define the evolution of a

perturbation:

• Starting from the Jeans length given by equation (2.29), we can define the Jeans
Mass:

MJ ⌘ 4

3

⇡⇢�3
J ; (2.37)

an overdensity of mass M > MJ will collapse for its self-gravity; if M < MJ the
perturbation keeps oscillating.

• The free-streaming length is the path travelled by a dark matter particle in a
time t:

�fs(t) = a(t)

Z t

0

v(t0)

a(t0)
dt0; (2.38)

https://en.wikipedia.org/wiki/Structure_formation


2.4. NON-LINEAR THEORY 25

where v is the velocity of the perturbation. The free-streaming mass is then

Mfs ⌘
4

3

⇡⇢�3
fs; (2.39)

A dark matter perturbation with MDM < Mfs streams away, completely erased.

• The comoving mean squared displacement of baryons in a photon-baryon plasma
is:

< dx2 >/ c
l

a2
d⌧, (2.40)

where l / a3 is the mean free path of the baryons. The baryon total displacement
at a time t is then

x2
(t) =

Z t

0

c l dt

a2
/ c

Z t

0
a dt; (2.41)

the Silk length and the Silk Mass are defined, respectively, as

�S ⌘ a(t)x (2.42)

MS ⌘ 4

3

⇡⇢�3
S . (2.43)

Before the decoupling, a baryon perturbation with MB < MS is damped by the
Thomson scatter with the photons (Silk, 1967).

The Jeans Mass for the dark matter at the equivalence time is a paramount quan-
tity, providing the masses of the initial dark matter haloes that will form the cosmic
structures. This value, though, is dependent on the mass of the dark matter particles:
-The cold dark matter (CDM) particles are already non-relativistic before the de-
coupling from the radiation; the Jeans Mass for the CDM at the equivalence is
M (CDM)

J (zeq) ⇡ 10

7�8M�; the formation scenario with CDM is the so-called Bottom-
Up: as the power is larger at the small scales, small objects formed at first (galaxies,
groups), and clusters and superclusters formed for aggregation of the smaller structures.
-The hot dark matter (HDM) is composed by light, relativistic particles at the decou-
pling; the Jeans Mass for HDM at the equivalence is M (HDM)

J (zeq) ⇡ 10

14�15M�; the
power is larger at the large scales, the first objects to collapse are the biggest ones.
The small objects have to form for fragmentations: it is the Top-Down scenario.
Nowadays, observations indicate that the Bottom-Up is the most reliable formation
scenario: galaxy clusters are younger than the galaxies themselves.

2.4 Non-Linear Theory
Galaxies, clusters and filaments are all non-linear structures: to describe their

formation, we can use the Jeans Theory only until � . 1; for � > 1 the assumptions
of the Jeans Theory are no more valid, and we have to develop non-linear techniques.
Nowadays, we do not have any analytical solution for the gravitational collapse of
non-linear anisotropies, unless we consider very simplified models with particular
boundary conditions (Shandarin and Zeldovich, 1989, Sahni and P. Coles, 1995);
another possibility to study the non-linear regime of structure formation is to rely on
numerical simulations, that will be treated in the Chapter 4.
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2.4.1 Spherical “TopHat” Collapse
The simplest case we can consider is a spherical perturbation. This perturbation

can be thought as a spherical Friedmann Universe, expanding in an EdS Universe.
This system has three main phases:

• the initial expansion, following the EdS background Universe;

• the collapse: after it has reached the maximum expansion in a time tM , the
gravitational force of the overdensity leads to the collapse, as a spherical Universe;

• the virialization: after 2tM , the collapse is contrasted by the matter internal
pressure, and after an oscillating phase the structure will be virialized at t ⇡ 3tM .

Although this is a very simplified model, it can be demonstrated that a similar result is
obtained with an initial ellipsoidal fluctuation. Moreover, the paramount contribution
of this model is to show how different cosmology models lead to different scenarios:
the turn-around time, tM , depends on the cosmological model:

tM =

⇡

2Hi

⌦p(ti)

(⌦p(ti)� 1)

3/2
; (2.44)

the periods of time involved in the structures formation depend significantly on the
cosmological parameters, moreover the values of the density fluctuations at the time
of collapse, �c, can be substantially different, in contrast with the linear theory case.
To have an idea of the values involved, in the linear theory �c = 1.686, for an EdS
Universe, while the non-linear theory predicts density fluctuations, at the collapse time,
of the order of hundreds.

2.4.2 The Press & Schechter Theory
Press & Schechter developed a theory to extract cosmological information from the

halo mass function, that is the comoving number of objects as a function of mass and
at a given redshifts (W. H. Press and Schechter, 1974). We can assume that the initial
distribution of the perturbations was Gaussian (with a cut on � = �1 by definition of
�), as the inflationary models predict. The shape of the distribution changes in time.
The idea of the Press & Schechter model is to compute the probability of having a
perturbation with � > �c in a time t, that is the probability of a structure to collapse,
in linear regime, where the Gaussianity of the distribution is preserved. From this
probability, Press & Schechter derived the halo mass function:

n(M, z)dM =

r
2

⇡

�c
�M (z)

⇢̄M (z)

M2

����
d ln�M

d lnM

���� exp
✓
� �2c
2�2

M (z)

◆
dM, (2.45)

where �M is the mass variance (equation (2.9)). The shape of the Press & Schechter
halo mass function, shown in Figure (2.3), is a power-law with a cut-off at higher
masses for lower redshift. To compare the theory with the observations we have to link
the mass distribution (CDM and baryons) with the distribution of luminous tracers
that we can observe; assuming a linear bias factor between CDM and baryons, the
halo mass function can be used to constrain the product �M⌦M . Since the growth
of overdensities is slower in open models (and also in a ⇤CDM model) than in a flat
EdS Universe, we expect that in the last model the structures formed later. In other
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words, in an open Universe, which has a lower growing rate with respect to a flat EdS
Universe, it takes more time to reach the same value of � observed today, i.e. the
structures formed earlier.

Figure 2.3: Press & Schechter mass function for a flat EdS Universe of pure matter (left
panel) and for the ⇤CDM model (right panel), as a function of redshift. The
shape of the mass function is a power-law, with a cut-off at higher masses for
lower redshifts. The cluster mass ranges, close to the cut-off, are highlighted.
Figure from Lima Neto et al., 2014.

2.5 Perturbation Theory
More generically, we can follow the non-linear evolution of matter density fluctua-

tions in the cosmological Perturbation Theory (PT). This theory can be developed
either in an Eulerian perspective (EPT), fixing a local system in space and watching
the fluid flows in time, or in a Lagrangian perspective, following each fluid volume
trajectory through space and time (LPT). We will briefly expose the fundamentals of
LPT; our notation and formalism is closed to that in Padmanabhan, M. White, and
Cohn (2009), to which we refer the reader for further details.
The current (or Eulerian) comoving coordinate, x, of each fluid volume, is related to
the initial (or Lagrangian) position, q, through a displacement vector field  :

x(q, t) = q+ (q, t). (2.46)

It is evident that  (q, t
0

) = 0. Hereafter, the dependencies of the quantities will not
be explicit anymore. The displacement field can be related to the overdensities as
follows:

�(x) =

Z
d3q�(D)

(x� q� )� 1, (2.47)

where �(D) is the three-dimensional Dirac � function. Analogously, in the Fourier space

�(k) =

Z
d3qe�ik·q �e�ik· � 1

�
. (2.48)

In LPT, as also in EPT, the displacement field is expanded in powers of the linear
density field:

 =  

(1)
+ 

(2)
+ ... (2.49)
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where  (n) is nth-order in �. Expanding the exponential in the equation (2.48), we
can obtain a perturbative series for the overdensity:

� = �(1) + �(2) + ... (2.50)

The density field is linked to the gravitational potential, �, through a Poisson-like
equation. From equation (2.28), we have that

d2 

dt2
+ 2H

d 

dt
= �rx�[q + ]. (2.51)

The displacement field has the general form

 

(n)
(k) =

i

n!

Z nY

i=1


d3ki

(2⇡)3

�
⇥ (2⇡)3�(D)

 
X

i

ki � k

!
⇥

⇥L

(n)
(k1, ...,kn,k)�l(k1)...�l(kn), (2.52)

where the L

(n) terms have closed form expression, generated by recurrence relations.
Let J be the Jacobian of the transformation between Lagrangian and Eulerian coordi-
nates, defined as

J ⌘
����
@x

@q

���� . (2.53)

We have that
J = |det D | = | det(I + R)|. (2.54)

That is, we can decompose the deformation tensor D in the identity tensor I plus the
shear of the displacement , R ⌘ @ /@q. We can obtaining the Jacobian through the
Eulerian and Lagrangian densities, by requiring the mass conservation:

⇢(x)d3x = ⇢(q)d3q, (2.55)

from which
⇢̄[�(x)]d3x = ⇢̄d3q; (2.56)

⇢̄ is the mean density of the Universe. Hence, we have that

J (q) =
1

1 + �(x)
. (2.57)

Notice that, when the Jacobian vanishes, we expect a singularity, that is a collapse to
an infinity density. Thus, this results is valid until the shell-crossing occurs. At the
first crossing of trajectories, in fact, fluid elements with different initial positions, q,
end up to the same Eulerian positions, x, according to the mapping of equation (2.46).

2.5.1 The Zel’dovich approximation
At the first order, we have that the relation between the Eulerian and the Lagrangian

gradient is J r
x

⇡ r
q

, where J ⇡ 1 +r
q

· .
The evolution of fluid elements at linear order is local, i.e. it does not depend on the
behaviour of the rest of the fluid elements. Moreover, we assume the displacement field
as irrotational, r

q

⇥ (q) = 0. Since we have not vorticity,

 

(1)
(q) = ��(1)+ r

q

�

(1)
(q), (2.58)
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where �(1)+ is the first-order growing mode of the density fluctuations. From equation
(2.55) we have the following relation:

 

(1)
(q) ⌘ r

q

· (1)
(q) = ��(1)(q). (2.59)

Combining the equations (2.58) and (2.59), we get:

r
q

· (1)
(q) = r2

q

�

(1)
(q) = �(1)(q), (2.60)

where
�(1)(q) = �(1)+ (q)�(q). (2.61)

The first-order Poisson-like equation is, then:

r2
q

�

(1)
(q) = �(1)(q), (2.62)

From these results, we can obtain the first-order L term of equation (2.52),

L

(1)
=

k

k2
; (2.63)

the displacement field, hence, can be calculated directly from the Fourier transform of
the density field, combining the equations (2.52) and (2.63):

 

(1)
= � ik

k2
�(1)(k). (2.64)

This is the so-called Zel’dovich approximation (Zel’dovich, 1970; M. White, 2014), that
is a first-order LPT expansion of the displacement field.
In particular, combining the equations (2.46) and (2.58), we find that

r(t,q) = a(t)[q� �(1)+ r
q

�

(1)
(q)], (2.65)

where r = a(t)x.
We can show that, from a certain point of view, the Zel’dovich approximation is a
non-linear Eulerian approximation. In the Eulerian dynamics, non-linearity is encoded
in the Poisson equation, which is equivalent to the Eulerian Zel’dovich approximation.
From equation (2.65) we can write the velocity field, taking into account the Universe
expansion, as

u =

dr

dt
�Hr = a

dx

dt
= �a ˙�(1)+ r

q

�

(1)
(q), (2.66)

that is, the velocity field is curl-free. Thus, it can be written as a gradient of a velocity
potential, V:

u = �r
x

V

a
. (2.67)

We can postulate various velocity potential forms. It can be shown that within the
Zel’dovich approximation:

V =

2f

3⌦mH
�. (2.68)

(Munshi et al., 1994; Hui and Bertschinger, 1996; Roman Scoccimarro, 1997). The
Zel’dovich approximation is therefore equivalent to the replacement of the Poisson
equation by

u =

2f

3⌦maH
r�. (2.69)
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We can check this result by considering the equation of motion in Lagrangian coordi-
nates:

a
@u

@t
+ aHu = �r

x

�; (2.70)

combining the equations (2.70) and (2.69) we get

@u

@t
+Hu =

3⌦mH

2f
u. (2.71)

Noting that

r
q

· u =  

0 ⌘ @ 

@⌧
, (2.72)

where d⌧ = dt/a, we can obtain the differential equation

a�1
 

00
+H 0

=

3⌦mH

2f
 

0. (2.73)

It is possible to prove that the Zel’dovich solution,  = ��(1)+ �(q), indeed solves this
equation. The final position of each particle depends only on the initial position and on
the displacement field; the equation (2.69) means that the particles move on straight
lines (in comoving coordinates), in the direction of their initial velocities, as a kind of
inertial motion.
From equation (2.57),

⇢(q, t) =
⇢̄

(1� �(1)+ �1)(1� �+�2)(1� �+�3)

, (2.74)

where �n are the eigenvalues of the displacement shear, R, we can describe the geometry
of the gravitational collapse:

• if none of the eigenvalues is positive, there is no collapse, the cosmic voids expand;

• if just one eigenvalue is positive the geometry of the collapse is one-dimensional
(the so-called “pancakes”);

• if two eigenvalues are positive the collapse is two-dimensional: as a consequence,
it will form a cosmic filament;

• if three eigenvalues are positive there is a three-dimensional collapse, that leads
to the formation of a cosmic node (cluster);

According to the N-body simulations, the most reliable collapse is the two-dimensional
one; the cosmic web is thus mainly constituted by cosmic filaments, as clustering
measurements confirm.
The Zel’dovich approximation is more accurate in a lower dimensional collapse, and it
is exactly valid for one-dimensional collapsing system, until the shell-crossing (Buchert,
1993). Since the gravitational collapse preferentially proceeds along the direction of the
strongest gravitational acceleration, and it becomes progressively lower dimensional
with the passage of time (Yoshisato et al., 2006), we can conclude that the Zel’dovich
approximation is quite accurate, and incorporates the essence itself of the non-linear
gravitational collapse.
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2.5.2 Second-order LPT
We expose now some of the results of the second-order LPT (2LPT). The 2LPT

improves remarkably the Zel’dovich approximation in describing the global properties
of density and velocity field (Weiss et al., 1996). The 2LPT takes into account the non-
locality of the gravitational collapse, i.e. it considers the correction to the Zel’dovich
approximation due to the tidal effects. The second-order density field, obtained by
expanding equation (2.48), is

�(k)(2) =

Z
d3qe�ik·q

"
�i (2) � (k · (1)

)

2

2

#
, (2.75)

(Padmanabhan, M. White, and Cohn, 2009) or, equivalently, through the equation
(2.52),

�(2) =
1

2

Z
d3k1d3k2
(2⇡)3

�(D)
(k1 + k2 � k)⇥

⇥�l(k1)�l(k2)

h
k · L(2)

(k1,k2,k) + k · L(1)
(k1)k · L(1)

(k2)

i
. (2.76)

The divergence of the second-order displacement describes the tidal effects:
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where

 

(1)
k,l =

@ (1)
k

@ql
, (2.78)

and �(2)+ is the second-order growing mode of the density fluctuations.
The second-order Poisson-like equation is

r2
q

�

(2)
=

X

i>j


�

(1)
ii �

(1)
jj �

⇣
�

(1)
ij

⌘2�
, (2.79)

while the 2PT equation equivalent to the first-order relation (2.58) is

 

(2)
(q) = ��(2)+ r

q

�

(2)
(q). (2.80)

Thus, we find that the mapping from Eulerian to Lagrangian in the 2LPT is

x = q� �(1)+ r
q

�

(1)
(q) + �(2)+ r

q

�

(2)
(q). (2.81)





Chapter 3

Clustering

“...and everything under the sun is in tune
but the sun is eclipsed by the moon.
There is no dark side of the moon really.
Matter of fact it’s all dark.”

Pink Floyd , Eclipse, The Dark Side of the Moon
(1973)

The Friedmann models, and the theories of the formation and evolution of cosmic
structures, should be now linked in some way to the observations. Measuring clustering
means to study the statistical properties of the Universe, by analysing three-dimensional
maps traced by the cosmic structures. In order to extract the most accurate cosmological
information from the clustering of extragalactic sources, through the statistical tools
that we will describe in this chapter, the survey should be the largest possible, to be
statistically representative of the Universe and thus to minimise the so-called cosmic
variance, a source of uncertainty discussed in section 3.3.

3.1 Correlation Functions
We can re-define the two-point correlation function of the matter distribution,

starting from equation (2.6), as

⇠(r) ⌘ h�(x)�(x+ r)i, (3.1)

where, as usual, the hi symbol means a spatial average, while � is the punctual contrast
field (2.1). The two-point correlation function measures the discrepancy of a population
with respect to a random distribution: the joint probability P12 of finding a couple of
objects in two comoving volumes, dV1 and dV2, separated by a comoving distance r, is

dP12 = n̄2
V [1 + ⇠(r)]dV1dV2, (3.2)

where n̄V is the mean density of the matter distribution over a volume representative
of the Universe. If the distribution is perfectly random, then ⇠(r) = 0; if objects are

33
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clustered, ⇠(r) > 0; if ⇠(r) < 0 the objects are avoiding each others at that scale.
From equation (3.2) we can compute the mean number of objects expected at a certain
distance from another object, that is

hnir =

4

3

⇡n̄r3 + 4⇡n̄

Z r

0
⇠(r012)r

02
12dr

0
12. (3.3)

The second term of the right-hand side of equation (3.3) represents the excess (or
the defect) relative to a random distribution; according to the definition of the mean
density of the Universe, at the limit of r ! 1, this term must be zero:

lim

r!1

Z r

0
⇠(r012)r

02
12dr

0
12 = 0. (3.4)

For two-dimensional distributions, we can similarly measure the angular correlation
function !(✓):

dP12 = n̄2
⌦[1 + !(✓12)]d⌦1d⌦2; (3.5)

where n̄⌦ is the mean density over a solid angle in the sky. The angular correlation
function measures then the excess probability of finding a couple of objects in two
small solid angles d⌦1 and d⌦2, separated by an angle ✓12.
In analogous way to equation(3.2) we can define higher-order correlation functions; for
example, the probability of finding three objects in three disjoint volumes is

dP3 ⌘ n̄3
V [1 + ⇠(r12) + ⇠(r13) + ⇠(r23) + ⇣(r12, r13, r23)]dV1dV2dV3, (3.6)

where ⇣(r12, r13, r23) is called connected three-point correlation function. It is hard to
extract cosmological information from the higher-order correlation functions, since
they depend on more the one parameter, differently from the two-point correlation
function. It has been demonstrated that a hierarchical model, in which all ⇠(N) have a
self-similar behavior, describes fairly well the higher-order correlation functions. In this
way, the Nth-point correlation function is related to the (N-1)th correlation function
through simple scaling rules, and so on until the two-point correlation function. The
model of the three-point correlation function is

⇣(r12, r13, r23) ⌘ ⇠(3)(r12, r13, r23) = Q(⇠12⇠13 + ⇠13⇠23 + ⇠23⇠12), (3.7)

where Q is a constant. The observations agree with this result, finding that Q ⇡ 1 at
scales 50 h�1 kpc < r < 5 h�1 Mpc (P. Coles and Lucchin, 2002). This equation can
be generalised to higher orders, but this is beyond the aims of this thesis. For further
information on this topic, see e.g. P. Coles and Lucchin (2002).

3.2 The bias factor
Until now, we have considered the correlation function of the matter distribution.

The largest fraction of the matter in the Universe is composed by CDM, which interacts
with the baryons substantially through gravitational forces. To extract cosmological
information from galaxy redshift surveys it is necessary to link the matter distribution
to the spatial properties of cosmic tracers. In section 2.3.2, we described how the
baryons fell in the CDM potential wells. Contrary to the CDM, baryon fluctuations
undergo also non-gravitational astrophysical processes, as, for example, the radiative
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transfer.Thus, the matter distribution is linked to the astrophysical objects that we
can observe now via a complex function, f (M. Davis and Geller, 1976):

�obj(x) = f(�m(x)). (3.8)

This function should take into account all the physical processes occurred in the
formation history of the tracers. This request is translated in multiple dependences,
e.g. with quantities such as the mass, the magnitude, the density of the environment,
the richness, colours, morphological and spectral types, as well as non-locality, and
non-linear evolution of the observable objects (e.g. M. Davis and Geller, 1976; Loveday
et al., 1995; Norberg, Baugh, Hawkins, et al., 2001; Christodoulou et al., 2012; Marulli,
Bolzonella, et al., 2013). In its general form, f can be stochastic and non-local.
Stochasticity, however, has small effects except for adding a little extra variance (R.
Scoccimarro, 2000). The link between matter and its tracers can be modeled with a
non-linear and non-local relation, as follows (McDonald and Roy, 2009):

�obj(x) = b1�m(x) +
1

2

b2
⇥
�2m(x)� �2

⇤
+

1

2

bs2
⇥
s2(x)� hs2i

⇤
+O

�
s3(x)

�
, (3.9)

where b1 and b2 are the linear and second-order non-linear bias terms, while bs2 is
the non-local bias term. The non-locality is originated by the tidal tensor term, s,
while the �2 and hs2i terms ensure that the condition h�obji = 0 is verified (for further
information, see McDonald and Roy, 2009).
In some cases, we can simplify the equation (3.9) at the first order, assuming only a
linear bias factor:

�obj = b�m; (3.10)

we can notice that the linear bias is scale-independent, contrary to the non-linear
and non-local bias terms of equation (3.9). This bias factor gives information on the
clustering level of the tracers; for instance, a bias b > 1 means a higher clustering of
the tracers with respect to the underlying matter. Combining the equations (3.10) and
(3.1), we have:

b =

s
⇠obj(r)

⇠m(r)
. (3.11)

The correlation function of both matter and tracers has positive values at small scales,
and a power-law shape:

⇠(r) =

✓
r

r0

◆��

, (3.12)

with � ⇡ 1.8 in the range 0.1h�1 Mpc  r  10h�1Mpc (e.g. Shanks et al., 1989) .
Being positive at small scales, the correlation function must be negative at larger scales
(see equation (3.4)). The so-called correlation length, r0, represents the physical scale
at which the correlation is equal to 1. In general, the correlation length is dependent
on the properties of tracers used to measure the correlation function. In the local
Universe (z ⇡ 0), for instance, it has been measured, from the Metcalife and the Parker
galaxy redshift surveys (Metcalfe et al., 1989; Q. A. Parker et al., 1986), that r0 ⇡ 5

Mpc for galaxies (Shanks et al., 1989) and r0 ⇡ 10 � 25 Mpc for the Abell galaxy
clusters (P. Coles and Lucchin, 2002). There are evidences of a redshift evolution of
the correlation length. Marulli, Bolzonella, et al. (2013), for instance, showed that r0
increases with time between z ⇡ 1 and z ⇡ 0.6, and, moreover, that r0 grows faster for
faint galaxies compared to brightest ones.
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Galaxy clusters have larger biases than galaxies, and, in general, the clustering level
of the massive objects is higher than the bias of low massive ones. This is expected
in the standard cosmological scenario of the hierarchical growth of cosmic structures,
described in section 2.3.3. We can easily understand this relation looking at the Figure
(3.1):

Figure 3.1: Illustrative picture of the density field, decomposed in planar waves. The small-
scale fluctuations (solid sinusoid) have wavelengths of the order of galaxy sizes,
while the dashed line are the largest wavelength component. The horizontal
line represents the threshold beyond which a density peak can collapse. The
peaks above this threshold, evidenced with the shades, will form the rarest,
most massive and clustered objects of the density field. Original figure from
https://ned.ipac.caltech.edu/level5/Sept03/Peacock/Peacock6_2.html

if we decompose the density field in planar waves with different wavelengths, and
impose a threshold to the collapse of the structures (in some way, as in the Press &
Schechter Theory, section 2.4.2), the rare, highest density peaks are naturally closer,
forming, by collapse, massive objects strongly clustered (Kaiser, 1984). Fry (1996)
and Tegmark and P. J. Peebles (1998) showed theoretically that the bias depends
on the redshift; in particular, the bias is larger at high redshift. Figure (3.2) clearly
shows how the bias depends on stellar masses and redshifts, as measured from the
galaxy VIMOS Public Extragalactic Redshift Survey (VIPERS, Guzzo et al., 2014),
by Marulli, Bolzonella, et al. (2013).

As we already discussed, the bias is scale dependent; Mann et al. (1998) showed
that this dependence is weaker at large scales, where the bias tends to a constant value.
We will discuss about the advantages and disadvantages of using a particular cosmic
tracer in section 5.6.2.

3.3 The cosmic variance
Since the distribution of objects is discrete and finite, the accuracy of clustering

measurements will be limited by the cosmic variance, that arises from the finite volume
of the cosmic tracer sampling, compared to the underlying large-scale matter density
fluctuations. This usually represents a significant source of uncertainty, especially
in deep surveys, which tend to cover relatively small areas. Assuming P (N) as the
probability of finding N objects in a volume V , hNi as the mean and hN2i as the
variance of the sample, we can define the relative cosmic variance as follows:

�2
cv ⌘ hN2i � hNi2

hNi2 � 1

hNi , (3.13)

https://ned.ipac.caltech.edu/level5/Sept03/Peacock/Peacock6_2.html
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Figure 3.2: Bias of the VIPERS galaxy survey as a function of the stellar masses. The
symbols and the colours refer to different redshift ranges, as shown in the legend:
the blue squares refer to 0.5 < z < 0.7, the red diamonds 0.7 < z < 0.9 and
the green circles 0.9 < z < 1.1. The bias increases both with the mass and the
redshift, as expected from the theory. Figure from Marulli, Bolzonella, et al.
(2013).

where the last term is the Poissonian shot noise (Somerville et al., 2004), that cannot
be avoided, as it is due to the discreteness of the distribution.
It can be shown that the relative cosmic variance of a population of known two-point
correlation function, ⇠(r), is

�2
cv =

1

V 2

Z R

0
⇠(|r1 � r2|)dV1dV2. (3.14)

If the correlation function has a power-law form, as in equation (3.12), then equation
(3.14) is reduced to

�2
cv = J2

✓
r

r0

◆�

, (3.15)

where J2 = 72/[(3� �)4� �)(6� �)2� ] (see e.g. P. J. E. Peebles, 1980).

3.4 Two-point correlation function estimators
In order to estimate the two-point correlation function of a distribution of objects,

we have to compare the pair count of our data catalogue with a random distribution,
that should reproduce the angular and radial selection function of the data catalogue.
We can define a simple estimator as follows. Let N and Nr be the number of data and
random points, respectively. We can count all the data and random pairs within the
distance bin range (r ��r, r +�r), DD(r) and RR(r). Since the total number of
pairs is NDD = ND(ND � 1)/2 for the data and NRR = NR(NR � 1)/2 for the random
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sample, we can derive that

dP12 =

DD(r)

NDD
; (3.16)

n̄2dV1dV2 =

RR(r)

Nrr
. (3.17)

The Peebles-Hauser estimator, also called natural estimator, can be obtained by
substituting equations (3.16) and (3.17) in (3.2) (P. J. Peebles and Hauser, 1974):

ˆ⇠PH(r) =
NRR

NDD

DD(r)

RR(r)
� 1. (3.18)

Since this estimator is heavily affected by shot noise at large scales (Labatie et al.,
2010), more accurate estimators have been proposed. In this work we will use the
Landy-Szalay estimator (Landy and Szalay, 1993):

ˆ⇠LS(r) = 1 +

NRR

NDD

DD(r)

RR(r)
� 2

NRR

NDR

DR(r)

RR(r)
, (3.19)

where DR(r) represents the number of the data-random pairs. Such a estimator
is almost unbiased, and its variance is nearly Poisson; for these characteristics the
Landy-Szalay estimator is preferred with respect to several other estimators (see e.g.
Kerscher et al., 2000).

3.5 Dynamical and geometrical distortions
As we already discussed, in order to perform clustering analyses, we need first to

construct three-dimensional maps of the Universe. In general, for each object in the
map we have the angular coordinates on the sky, and the redshift. Thus, to obtain
a three-dimensional map in comoving coordinates, we have to convert angles, and
redshift, into comoving distances.

3.5.1 Dynamical distortions
We can calculate the comoving distance, Dc,?, between two points on the sky

separated by an angle �#, by using equation (1.16) and assuming a fiducial cosmological
model:

Dc,? = (1 + z)DA�#, (3.20)

where DA is the angular distance described in equation (1.18). In order to convert
redshift measurements into comoving distances along the line-of-sight, we can combine
equations (1.16) and (1.32):

Dc,k =

cz(1 + z)

H(z)
. (3.21)

The cosmological redshift, zc, (see equation (1.20)), is caused by the Hubble flow. How-
ever, also the peculiar velocities of the cosmic tracers, precisely the radial component of
such velocities, can add an extra redshift term. In general, we have that the observed
redshift can be written as follows:

zobs = zc +
vk
c
(1 + zc) +

�z

c
, (3.22)
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where the cosmological redshift, zc, is due to the expansion of the Universe, vk is the
line-of-sight component of the peculiar velocity of the observed object, and �z is the
error on the redshift measure.
If zobs is used in equation (3.21) to estimate the comoving distance, even if we do
not consider the redshift errors, the three-dimensional cosmic structure map will be
distorted, because of the radial peculiar velocities. This effect is called dynamical
distortion, or equivalently Redshift Space Distortion (RSD). We can distinguish between
two different types of RSD:

• the so-called Fingers of God are the effects of peculiar velocities at the small
scales (r  5 Mpc). At these scales, the dominant velocities are the random
motions of the galaxies inside the clusters, that act like an extra uncertainty in
the redshift measurement (e.g. Marulli, Veropalumbo, Moscardini, et al., 2015);

• the Kaiser effect is the result of the large-scale peculiar velocities, that represent
the coherent infalling of galaxies into the cluster potential wells (Kaiser, 1987).

In general, the RSD are more effective in sample of “small” objects, like galaxies, which
have higher peculiar velocities, both random and coherent. It is possible to model the
RSD, to remove the contribution of peculiar velocities to the cosmological redshift, as
we will briefly see in section 3.6.1. Hereafter, we will talk about redshift space when we
refer to the space where cosmological distances are affected by RSD; on the contrary, we
will talk about real space if we have corrected for the dynamical distortions. Moreover,
r will refer to the distances in the real space, while s to the ones in the redshift space.
These two distances are related by the following equation:

s = r +
vk(r)êk
aH(a)

, (3.23)

where êk is the line-of-sight unit vector. We can thus link the real and the redshift
density fields, as follows:

�(s) = [1 + �(r)]

����
d3s

d3r

����� 1. (3.24)

3.5.2 Geometrical distortions
Even if we remove the RSD, thus working in the real space, we can have other

distortion effects. The most significant ones, called geometrical distortions, are caused
by eventual errors on the assumed fiducial cosmology. Let us consider two observed
objects, separated by an angle �# and with a cosmological redshift difference �z,
assumed small (�z ⌧). The radial and the transverse components of the comoving
distance between the two objects, obtained from equations (3.21) and (3.20), are
respectively:

rk =

c

H(z)
�z; (3.25)

r? = (1 + z)DA(z)�#, (3.26)

where the angular distance can be written as

DA(z) =
1

1 + z

Z z

0

dz0

H(z0)
. (3.27)

The two distance components have different dependencies on the Hubble parameter,
thus on the adopted cosmological model. This means that, if we assume different
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cosmological models, the transversal and the radial distance vary in a different way,
causing the geometrical distortions. In particular, we have that

rk,1
rk,2

=

H2(z)

H1(z)
; (3.28)

r?,1

r?,2
=

DA,1(z)

DA,2(z)
; (3.29)

where the subscripts 1, 2 refer to different cosmological models.

3.5.3 The Alcock-Paczynski test
The geometrical distortions can be modeled and thus corrected. Moreover, we

can use the geometrical distortions to infer constraints on cosmological parameters.
This can be done by using the so-called Alcock-Paczynski test (AP test, Alcock and
Paczynski, 1979). This test is based on the idea of observing an object of known shape.
Specifically, since the shapes of the observed objects are different from the one expected,
due to geometrical distortions, the cosmological parameters that induce the distortions
can be “adjusted” to restore the right geometry. As an example, we can consider a flat
⇤CDM model, neglecting the radiation density contribution and imposing w⇤ = �1.
In this case, since ⌦⇤ = 1� ⌦m, the equation (1.59) can be reduced as follows:

H(z) = H0(1 + z)
⇥
⌦0,m(1 + z) + (1� ⌦0,m)(1 + z)�2

⇤1/2
. (3.30)

We can notice that the geometrical distortions depend on the redshift of the observation.
A wrong value of the ⌦0,m parameter will introduce geometric distortions. This effect
can be described by the following parameter:

FAP (z) ⌘
(rk/r?)f
(rk/r?)t

=

[DA(z)H(z)]f
[DA(z)H(z)]t

; (3.31)

where the f and t subscripts refer to the fiducial and the test cosmological models
assumed, respectively. If FAP = 1, the test cosmological model coincides with the
fiducial one, i.e. there are no geometrical distortions. If FAP > 1, the radial distortion
is larger than the transversal one (line-of-sight stretching); vice versa, if FAP < 1, the
largest distortion is in the transversal component (line-of-sight shrinking).
In general, the effect of the geometrical distortions increases at higher redshifts. In
particular, in cosmological models where ⌦m,t > ⌦m,f , the line-of-sight shrinking
increases; on the contrary, when ⌦m,t > ⌦m,f the line-of-sight stretching is higher.

3.6 Anisotropic correlation functions
We introduce now the two-dimensional correlation function, ⇠(rk, r?), obtained by

decomposing the distance r, in the radial and transversal components. We can extend
the Landy-Szalay estimator, of equation (3.19), for the two-dimensional correlation
function, as follow:

ˆ⇠LS(rk, r?) = 1 +

NRR

NDD

DD(rk, r?)

RR(rk, r?)
� 2

NRR

NDR

DR(rk, r?)

RR(rk, r?)
. (3.32)

Under the assumption of the Cosmological Principle, being the Universe isotropic, the
correlation function should be isotropic too. Thus, the iso-correlation curves of the
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two-dimensional correlation function should be circular. Nevertheless, dynamical and
geometrical distortions can brake the circular symmetry, adding anisotropies that can
be modeled to extract cosmological information. In the following sections, we will
summarise the effects of the distortions on the correlation function and how to extract
cosmological information.

3.6.1 Effects of RSD on the two-point correlation function
Let us consider two objects, with observed redshifts corresponding to the velocities

v1 and v2. The separation in the redshift space is then s = v1 � v2, and the observer’s
line-of-sight can be defined as l ⌘ (v1 + v2)/2. Thus, the components parallel and
perpendicular to the line-of-sight, are

⇡ =

s · l
|l| , (3.33)

and
rp =

p
s · s� ⇡2, (3.34)

respectively. The redshift space two-dimensional correlation function is then ⇠(rp,⇡).
In redshift space, the large-scale distances along the line-of-sight tend to be underesti-
mated, due to the Kaiser effect; thus, the iso-correlation curves are elliptic instead of
circular; at small scales, on the contrary, the random motion of the objects stretches
the iso-correlation curves, the so-called Fingers of God. In Figure (3.3) it is shown
how the iso-correlation curves, circular in the real space, are deformed by the Kaiser
effect and by the Fingers of God. If the two effects are present at the same time,
the iso-correlation curves appear as squashed circles (due to the coherent motions)
elongated on the line-of-sight (for the random motions of the objects).

We cannot model the Finger of God effect in linear theory, but we can use non-linear
methods. For instance, we can use the conservation of particles pairs,

@⇠

@t
=

1

ax2

@

@x

⇥
x2

(1 + ⇠)v12
⇤
, (3.35)

where x is the comoving coordinates and v12 = |s|. Equation (3.35) is just the first one
of an infinite set of equations called BBGKY hierarchy (M. Davis and P. J. Peebles,
1977), which describe the evolution of the galaxy correlation functions in an expanding
universe. To close the hierarchy, we have to make the assumption that the two-point
correlation function has a power-law form, as in the equation (3.12); moreover, the
three-point correlation function must have the hierarchical model form of equation (3.7).
Under these assumptions, the so-called cosmic virial theorem applies (P. J. Peebles,
1976):

hv212(r)i = C�H
2
0Q⌦mr20r

2�� , (3.36)

where C� ⇡ 23.8 if � = 1.8. Assuming that the radial small-scale anisotropy in ⇠(rp,⇡)
is due to the Fingers of God, caused by the peculiar velocity v12, we can estimate ⌦m.
The Kaiser effect on the correlation function depends on the cosine of the angle, µ,
between the line-of-sight, l, and the separation, s. Kaiser (1987) showed that it is
easier to model this directional dependence in the power spectrum; in particular, the
relation between the power spectra in redshift and real space, in linear regime and by
assuming parallel plane is

Ps(k) = Pr(k)
⇥
1 + fµ2

+ f2µ4
⇤
. (3.37)
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Figure 3.3: Figure from Hawkins et al. (2003), which shows RSD effects on the iso-correlation
curves in the two-dimensional correlation function, ⇠(�,⇡), where � ⌘ rp and ⇡
are the transversal and the radial components of the separation, respectively.
On the top-left panel, we have the real-space correlation function, i.e. the
undistorted, circular, curves. On the top-right panel, the squashing effect of the
coherent motions at large scales distorts the iso-contours. On the bottom-left,
the stretching is caused by random peculiar velocities at small scales. On the
bottom right panel, the joint result of the Fingers of God and the Kaiser effect
on ⇠(�,⇡) is shown.
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Notice that, when modeling the power spectrum in such a way, different assumptions
are made. It is assumed the value of the linear regime, the plane parallel approximation,
that is we assume the position vectors of a galaxy pair can be treated as parallel, and
the distance observer approximation, where we assume that the displacement due to
RSD is much smaller than the galaxy distance (Beutler et al., 2014).
In configuration space, from equation (3.37) we can derive a simple relation between
the angle-averaged correlation function in real and in redshift space (Kaiser, 1987;
Hamilton, 1992), that is:

⇠(s) = ⇠(r)

✓
1 +

2

3

f +

1

5

f2

◆
. (3.38)

To study the correlation anisotropy, it is more advantageous to expand the two-
dimensional correlation function ⇠(rp,⇡) into spherical harmonics:

⇠l(r) =
2l + 1

2

Z +1

�1
⇠(r sin ✓, r cos ✓)Pl(cos ✓)d cos ✓, (3.39)

where Pl(cos ✓) is the Legendre polynomial of the multipole l. The quadrupole-monopole
ratio gives a robust test for the RSD:

⇠2
⇠0

=

4
3f +

4
7f

2

1 +

2
3f +

1
5f

2
; (3.40)

again, we can estimate ⌦m from the growth rate parameter f . We can take into
account the bias in equations (3.37), (3.38), (3.39) and (3.40) by substituting f with
the effective growth parameter, or distortion parameter, �:

�(z) ⌘ f(z)

b(z)
. (3.41)

Equation (3.41) assumes a linear bias, that is a reliable approximation at large scales,
where the Kaiser effect is dominant.
Figure (3.4) shows how this model fits the anisotropic galaxy two-point correlation
function of the 2dF Galaxy Redshift Survey (Hawkins et al., 2003). Fixing the cos-
mological model, it is possible to constrain the � parameter; alternatively, having an
estimation of the growth rate factor, f , we can obtained the linear bias, b.

The RSD can be also corrected by integrating the ⇠(rp,⇡) along the line-of-sight,
thus defining the projected correlation function:

wp(rp) =

Z 1

�1
⇠(rp,⇡)d⇡. (3.42)

The linear bias, b, can be estimated with the following simple equation:

b =

s
wt

p(rp)

wm
p (rp)

, (3.43)

where wt
p(rp) is the projected correlation function of the cosmic tracer and wm

p (rp) is
the projected correlation function of the underlying matter distribution.
As an alternative statistics, the clustering wedges, ⇠?(s) and ⇠k(s), have been proposed
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Figure 3.4: Contours of ⇠(�,⇡), of the 2dF Galaxy Redshift Survey (solid lines). ⇡ and �
are the radial and the transversal components of the separation, respectively.
The best-fit model (dashed line) well reproduces the features caused by the
dynamical distortions. Figure from Hawkins et al. (2003).

to extract the anisotropic cosmological information (Kazin et al., 2012). The latter are
the average of ⇠(µ, s) over the intervals �µ 0  µ  0.5 and 0.5  µ  1, respectively,
that is:

⇠�µ(s) ⌘
1

�µ

Z µ
max

µ
min

⇠(µ, s)dµ . (3.44)

The clustering wedges are related to the multipoles, as follow:

⇠?(s) = ⇠0(s)�
3

8

⇠2(s) +
15

128

⇠4(s), (3.45)

⇠k(s) = ⇠0(s)�
3

8

⇠2(s)�
15

128

⇠4(s). (3.46)

For more details on models and fit methods used to correct the RSD, in both con-
figuration and Fourier space, see e.g. de la Torre and Guzzo (2012) and de la Torre,
Guzzo, et al. (2013).

3.6.2 Geometrical distortions on the correlation function
Geometrical distortions, as well as dynamical distortions, warp the iso-correlation

curves of the two-point correlation function, ⇠(rk, r?). Since we can model the shape of
⇠(rk, r?), we can apply the AP test, described in section 3.5.3, to study the expansion
of the Universe and its geometry. This method has the great advantage not to be
dependent on structure evolution.
Since the AP test consists in comparing a known object shape in fiducial and test
cosmologies, and we know how RSD warp the shape of iso-correlation contours (thanks
to the models described in section 3.6.1), we can do an AP test on the dynamical
distorted two-dimensional correlation function. Figures (3.5) and (3.6) show the
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effects of geometrical distortions in the galaxy two-point correlation function, in real
and redshift space, respectively. The analysis was made by using the Magneticum
Simulations, a series of hydrodynamical simulations that will be described in detail in
section 6.1. Figures (3.5) and (3.6), from Gaspari (2016), highlight the dependence of
geometrical distortions on the redshift; in particular, the contours are more warped at
higher redshift. It is also evident that, for cosmological models where ⌦m,t > ⌦m,f ,
the line-of-sight shrinking increases; vice versa, the line-of-sight stretching is higher
for ⌦m,t > ⌦m,f . In the redshift space, we can appreciate the combined effects of
geometrical and dynamical distortions, both at the small and large scales.

Figure 3.5: Iso-correlation contours, relative to the levels ⇠(r?, rk) = [1, 0.5, 0.2, 0.1, 0.05] of
the Magneticum Simulations galaxy catalogue, in real space. The top panels
refer to z = 0.2, the middle to z = 0.52, the bottom to z = 0.72, as reported
on the top of the central boxes. In the left panels, the test cosmological model
has ⌦m = 0, in the middle ⌦m = 0.272, in the right panel ⌦m = 1. The fiducial
cosmological model has ⌦m = 0.272. The solid blue lines are the measured
correlation functions, the dashed red lines represent the best-fit models computed
at the test cosmology, while the dashed green lines show the models at the
fiducial cosmology. Figure from Gaspari (2016).

3.7 Errors estimation
The errors of a clustering measurement are expressed through the covariance

matrix. The covariance matrix measures all the correlations between the values of the
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Figure 3.6: Same as Figure (3.5), but in the redshift space. The Fingers of God and the
Kaiser effect are clearly visible, warping the circular shape of both measured
correlations and models. The geometrical distortions make the red dashed lines
not to coincide with the green dashed lines. Figure from Gaspari (2016).
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correlation function at different separations.
A first, rough method to estimate the correlation function errors is to consider data
and random pair distributions as Poissonian processes. If the expected value is N ,
then the variance is N too. The Poissonian errors, �DD, of the data pair counts, DD,
will be then �DD =

p
DD. By propagating the Poissanian errors of data and random

pair counts, in a correlation estimator as the one in equation (3.19), gives as a result
an estimate of the correlation function errors. At small scales this is a fair estimate,
while at larger scales this estimate significantly underestimates the real errors, not
taking into account the cosmic variance.
There are so-called "internal" and "external" methods to estimate the error covariance
matrix. The external method consists in using a sufficiently large number N of
independent mock galaxy catalogues, similar to the original dataset, and to measure
the correlation function in each mock catalogue. The covariance matrix is then

C(⇠i, ⇠j) =
1

N

NX

k=0

(⇠ki � ¯⇠i)(⇠
k
j � ¯⇠j), (3.47)

where i, j iterate the correlation function bins, and ⇠k is the correlation function of the
kth mock. ¯⇠j is the mean correlation function, in the jth bin, averaged over the mocks.
It is challenging to reproduce faithful mocks of a dataset, and furthermore it is very
expensive in terms of computational time.
The internal methods, such as Jackknife and Bootstrap, perturb in someway the
original dataset itself, to generate statistically relevant subsamples (see Norberg,
Baugh, Gaztañaga, et al., 2009 and references therein). In particular, in the Jackknife
resampling, the dataset is split in Nsub sub-volumes. By omitting, in turn, each
sub-volume, we can consider Nsub � 1 sub-samples, each one composed of Nsub � 1

sub-volumes. The final volume of each new catalogue is (Nsub � 1)/Nsub times the
volume of the original one. The covariance matrix for Nsub Jackknife resampling is

Cjack(⇠i, ⇠j) =
(Nsub � 1)

Nsub

N
subX

k=1

(⇠ki � ¯⇠i)(⇠
k
j � ¯⇠j) , (3.48)

where ⇠ki is the measure of the correlation function in the kth sub-sample and ith bin.
¯⇠i is the mean value of the correlation function over the sub-samples, that is

¯⇠i =
N

subX

k=1

⇠ki
N

. (3.49)

The (Nsub�1) factor in the equation (3.48) takes into account the lack of independence
of the Nsub resampling of the original dataset. Indeed, only two sub-volumes are
different (or, equivalently, Nsub � 2 sub-volumes are identical) from a copy to another.
The Bootstrap resampling is instead performed by selecting randomly NR of Nsub

subsamples. In the original dataset, all sub-volumes have equal weight; in the resam-
pling, the weight is the number of times each sub-volume has been selected. We can
have (Nsub + Nr � 1)!/(Nsub � 1)!Nr! different possible Bootstrap resamplings, but
usually it is set a number of realizations, N, of the order of a hundred, for reasons
of computational time. In general it is set NR = Nsub. The covariance matrix for N
Bootstrap resampling is

Cboot(⇠i, ⇠j) =
1

(N � 1)

NX

k=1

(⇠ki � ¯⇠i)(⇠
k
j � ¯⇠j) . (3.50)
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Notice that there is not the (N-1) factor of the equation (3.48), because the Bootstrap
copies should be more independent than the Jackknife resampling.



Chapter 4

Numerical simulations

“No Time, No Space
another Race of vibrations
the Sea of the Simulation
keep your feelings in memories...”

Franco Battiato, No Time No Space, Mondi
Lontanissimi (1985)

Numerical simulations allow to treat problems that have no analytical solutions, as
the gravitational N -body problem or the non-linear growing of matter density fluctua-
tions. N -body simulations follow the evolution of a gravitational system composed by
N particles, computing the forces acting on each particle, by calculating the gravita-
tional potential of the density field. One of the main issues of numerical simulations is
to balance the resolution, i.e. the mass of each particle, with the computational time.
The CDM evolution can be accurately described through N-body simulations, because
CDM are collisionless particles which interact substantially only through gravitational
forces. On the other hand, to describe the evolution of baryonic matter we need
hydrodynamical codes, which solve the hydrodynamical equations. Furthermore, we
have to model astrophysical processes such as the dynamics of gas cooling, the galaxy
building by consecutive merging events, the spectroscopic and chemical evolution of
stellar population, etc. In this chapter we briefly discuss about the several approaches
one can follow to develop such codes.

4.1 N-body simulations
From equations (2.18), (2.28) and (2.69) we get the following analytic system of

equations we want to solve:
8
<

:

¨

xi + 2H ˙

xi = �r�
a2 = �GM

i

a3

P
j 6=i,j

Mj
x

i

�x

j

|x
i

�x

j

|3 =

F

i

a3

r2
� = 4⇡G�(t,xi)⇢̄(t) =

3H2
0⌦0�
2a

, (4.1)

where Mi, xi, Fi are the mass, the comoving coordinates and the gravitational force
on the i-th particle, respectively. N-body simulations can describe the evolution of
a gravitational system, by computing the position and the velocity of each massive
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particle measuring the gravitational force acting on it. To do this, N-body codes have
to solve the following set of equations:

8
>><

>>:

Fi = GMi

P
i 6=j

Mjr
�2
ij

˙

vi = FiM
�1
i

˙

xi = vi

, (4.2)

where vi is the velocity of the i-th particle, and rij the comoving distance between the
i-th and j-th particles. These equations have to be integrated for each particle and
time interval:

vi(t+�t) = vi(t) +
Fi

Mi
�t+O(�t2); (4.3)

xi(t+�t) = xi(t) + vi�t+O(�t2); (4.4)

the position and velocity at t1 will be the initial conditions for the integration at
t2. The various N-body algorithms can be classified according to the specific method
they use to compute Fi. In the following sections we describe the main methodologies
proposed to implement N-body simulations.

4.1.1 Particle-Particle method
The most direct way to solve the equation system (4.2) is to compute, for each time

interval �t, the gravity force acting on each particle by adding all the contributes due
to the other particles. This implies to compute the forces acting on all the N(N � 1)/2
particle pairs, integrating then the equations of motion. A numerical issue of this
method is that the gravitational forces tend to infinite when the distance tends to zero.
Thus, a softening parameter, ✏, is introduced, such that

F (r) ' (r2 + ✏2)�1. (4.5)

The softening parameter can be interpreted as the physical dimension of the particles.
Nevertheless, in cosmological simulations the particles are not physical objects, such
as galaxies, so the ✏ value has not a strictly physical meaning. In general its value is
chosen to ensure sufficiently good performances of the codes.

The method described above, called Particle-Particle (PP), is easy to implement,
and very accurate. However, it requires to compute ' N2 forces at each time step, so
the computational time scales with the squared number of the particles. This implies
that such a code can be used with a relatively small number of objects, reducing the
mass resolution, compared to the other methods described in the following sections.

4.1.2 Particle-Mesh method
In order to reduce the computational time, one can compute the field quantities, such

as the gravitational potential and the density field, on a spatial grid. The consequence
is to reduce the spatial accuracy, especially at small scales, because of the averaging of
the density field. This method is called Particle-Mesh (PM). After the computation
of the density field through particle interpolation (different interpolation techniques
can be exploited), the fast Fourier transform can be used to calculate the gravitational
potential through the Poisson equation, and then Fourier anti-tranform to have the
force field in configuration space. It can be demonstrated that the computational time
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of this method scales as ' N + 5M3logM3 ⌧ N2,where M is the number of the grid
nodes (see G. Efstathiou et al., 1985 and references therein). In conclusion, the PM is
fast in terms of computational time, at the expense of a low spatial accuracy due to
the use of the grid cells.

4.1.3 Particle-Particle-Particle-Mesh method

The Particle-Particle-Particle-Mesh (P3M) method joins together the best charac-
teristics of PP and PM methods. The gravitational force acting on the i-th particle is
decomposed in two contributions. The contribution of the particles inside a sphere of a
given critical radius rc, centered on the i-th particle, is computed with the PP method,
ensuring a good resolution at small scales. Outside this sphere, the force contribution
is computed with the PM method, which ensures a short computational time. In this
case, the PP scales as N ·Nrc < N2, being Nrc the mean number of particles inside
the spheres with radius rc, while the PM method scales as ' N + 5M3logM3 ⌧ N2.
The critical radius must be accurately chosen, because a large -or a short- radius
would imply that the P3M method will be too close to the PP or to the PM method,
respectively, with their consequent problematics. Moreover, simulating, for instance,
the growth of structures, as the clustering level gets higher, more particles enter inside
the critical radius, thus reducing the efficiency of the method.

4.1.4 Hierarchical Tree method

The force computation in the Hierarchical Tree (HT) method is done by direct sum
only for the closest particles, as in the P3M method. On the contrary, the gravitational
contribute of the farthest particles is computed by expanding in multipoles the potential.
At each time step a hierarchical tree is generated. There are different types of trees;
for instance, in the Barnes-Hut tree (Barnes and Hut, 1986), the entire volume of
the simulation is divided in cells, and each cell is divided is sub-cells, and so on until
each cell contains only one particle or zero. The not-empty cells are the tree nodes.
According to a required criterion on the distances, a given node can be either considered
as a single, or grouped with the closest nodes. For large distances, the gravitational
force can be computed considering the particles group as a unique virtual particle,
situated on the mass center of the cell. Also, the gravitational forces of the virtual
particles can be expanded in multipoles, filtering the high terms. On the other hand,
for short distances, where the approximation in multipoles is less accurate, one can
consider the sub-nodes, substantially calculating the gravitational force as in the PP
method.
This method is quite accurate and fast, scaling as N logN .
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4.2 Hydrodynamical simulations
The aim of hydrodynamical codes is to solve the system of equations treated in

section 2.3.1, and following reported:

Continuity Equation
@⇢

@t
+r · (⇢v) = 0 (4.6)

Euler Equation
@v

@t
+ (v ·r)v = �1

⇢
r⇢�r� (4.7)

Poisson Equation r2
� = 4⇡G⇢ (4.8)

Equation of State p = p(⇢, S) (4.9)

Entropy Conservation
@s

@t
+ v ·rs = 0 (4.10)

Analogously to the discussion in section 2.5, two different approaches can be followed
to solve this set of equations:

• Eulerian methods. In this approach, a grid is used to compute the mean values
of the quantities. The grid can be either fixed or adaptive. A better resolution
can be obtained by refining the grid dynamically, in the regions where the
density is high. The conservation equations are solved by using finite-differences
methods. Codes of this type can accurately describe shocks and discontinuities,
and are especially efficient for magnetohydrodynamic studies (e.g. Stone and
M. L. Norman, 1992). Furthermore, they can be easily coupled with Eulerian
N-body simulations that use grids (e.g. the PM method).

• Lagrangian methods. In this approach the hydrodynamical quantities are com-
puted at particles positions. One of the most used Lagrangian methods is the
so-called Smoothed Particle Hydrodynamics (SPH, see e.g. Gingold and Joseph J
Monaghan, 1977 and Joe J Monaghan, 1992). This method computes the prop-
erties of the fluid, such as temperature, density and pressure, at each position,
as a weighted average of these properties around the point. It is clear that, in
this treatment, the continuous properties of the fluid are traced by a discrete
number of particles, i.e. the integrals become sums. For these reasons, these
codes are less indicated to treat shocks and discontinuities. The sums can be
performed over a small subsample of close particles, because the hydrodynamical
forces vanish at large distances. In general, Lagrangian methods are easier to
implement with respect to Eulerian, and have higher spatial resolution, at the
expense of a lower mass resolution.

4.3 Other Astrophysical processes
In addiction to the CDM physics simulated through N-body simulations, and

baryon hydrodynamics described with Eulerian or Lagrangian methods, we might
want to consider also other astrophysical processes, which in general are significant
on scales smaller than resolution scale of the simulation. The main physical processes
are the following: cooling (i.e. radiative losses), star formation, AGN feedback,
stellar population evolution, chemical enrichment, magnetic fields, thermal conduction,
turbulence, winds, viscosity, etc. It is not the aim of this thesis to develop these
arguments in detail; however, some of them will be briefly treated in the specific
context of the Magneticum simulations, in section 6.1.



Chapter 5

BAO theory and Reconstruction
technique

“Sounds of laughter, shades of life
are ringing through my opened ears
inciting and inviting me.
Limitless undying love, which
shines around me like a million suns,
it calls me on and on across the Universe”

The Beatles, Across the Universe, No One’s Gonna
Change Our World (1969)

5.1 Acoustic oscillations in the baryon-photon plasma

The earliest Universe was not perfectly isotropic; quantum fluctuations of the
spacetime metric, expanded by the inflation (Marochnik and Usikov, 2015, Cao et al.,
2004), are presumably the seeds of primordial overdensities, made of CDM particles,
photons, baryons and neutrinos, in approximately equal fractions. Neutrinos, being
extremely weak interactive particles, decoupled first from the other components and
streamed away. After the CDM decoupling, only photons and baryons were coupled,
through continuous Thomson scattering. This lasted until the recombination time.
When, for the first time, electrons and protons formed hydrogen atoms, the photon
mean free path became larger than the size of the Universe, due to the small number
of free electrons. The baryon-photon plasma was gravitationally attracted by the
CDM potential wells, but the overdensities growth and the plasma, fallen into the
wells, heated up the photons and provided a radiation pressure that pushed away the
baryon-photon fluid, equilibrating the gravitational force. The interaction of these two
forces produced spherical sound waves within the plasma, though smoothed by the Silk
damping on comoving scales of ⇡ 8� 10 Mpc (Silk, 1967). These acoustic oscillations
travelled around the primordial Universe, expanding until the recombination time.
Figure (5.1) describes the main phases of this evolution. The radius of the baryon-
photon acoustic shell is proportional to the mean distance travelled by a sound wave in
the time period between the Big Bang and the recombination. This distance, hereafter
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called acoustic scale or sound horizon, is given by:

rs =

Z t
rec

0

cs(t)

a(t)
dt =

Z 1

z
rec

cs(z)

H(z)
dz. (5.1)

The Hubble parameter, H(z), depends on the values of the matter-radiation density
parameters; on the other hand, the speed of sound, cs, is dependent on the baryon-
to-photon ratio, ⌘. In the standard cosmological model, we assume that the Hubble
parameter depends only on ⌦mh2. After the recombination, the characteristic time of
the Thomson scatter between photons and electrons is greater than the Hubble time:
photons are free to stream away, carrying the information of the acoustic features to
us; the “earliest light” of the Universe which we could ever observe comes from the
so-called last scattering surface, and forms the CMB.

5.2 The Cosmic Microwave Background
The CMB is a black-body radiation permeating the entire Universe, with a density

of ⇢0 ⇡ 415 cm�3 photons. Even if the initial black-body temperature was ⇡ 4000

K, at z ⇡ 1100, the cosmic background is detected in the microwaves because of the
cosmological redshift caused by the expansion of the Universe, that brings the black-
body temperature down to 2.726 K today. This is, precisely, the mean temperature
of the CMB over the whole sky. As we already mentioned in section 2.2, in fact, the
CMB is not perfectly isotropic. There are indeed small temperature fluctuations,

�T

T
⌘ T (✓,')� ¯T

¯T
= 10

�5, (5.2)

where ✓ and ' are the angular coordinates in the sky. We can expand the temperature
fluctuations on the celestial surface as a sum of spherical harmonics:

�T

T
=

1X

l=0

lX

m=�l

almYlm(✓,'), (5.3)

where

Ylm(✓,') =

s
2l + 1

4⇡

(l �m)!

(l +m)!

Pm
l (cos ✓)ei', (5.4)

being Pm
l the Legendre polynomial of the multipole l, and �l  m  l. Analogously

to the matter Power Spectrum (2.5) case, we can define the Angular Power Spectrum
of the CMB as

Cl,m ⌘< |alm|2 >⌘ (2l + 1)

�1
lX

m=�l

a2lm. (5.5)

The monopole (l = 0) represents the mean value of the temperature, averaged over all
the possible observers. The dipole (l = 1) measures the redshift of the CMB photons
due to the Earth motion. Opportunely subtracting the Earth orbital motion around
the Sun, the Solar System revolution around the Milky Way, and our galaxy motion
towards the centre of the Local Group, it provides the speed and direction of the Local
Group with respect to a comoving cosmological frame, in which the CMB is isotropic.
The result is a velocity of ⇡ 600 km/s toward the point of galactic coordinates l =
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Figure 5.1: Time evolution of a single point-like perturbation generated at the origin,
composed by CDM (black), baryons (blue), radiation (red) and neutrinos (green).
In each panel both the cosmic time and the redshift are reported. The panels
show the mass profiles of the fractional perturbations of each species versus the
comoving radii. The energy density of relativistic components are multiplied
by a factor 3/4 to have the same scale. In the top panels, we can see how the
baryon-photon plasma perturbation is propagating at the sound speed, while the
neutrino perturbation, already decoupled, is quickly spreading out. The CDM
perturbation, on the other hand, is growing due to gravitational collapse. In the
central panels, the recombination decoupled baryons and radiation; neutrino
and photon perturbations are spreading, while the baryon overdensity stays at
the acoustic scale. In the bottom panels, the neutrino and photon fluctuations
are completely erased, while the CDM and the baryons are gravitationally
interacting, with a significant baryon infalling in the CDM well, and a rising
of the CDM overdensity at the sound horizon. Figure from D. J. Eisenstein,
H.-J. Seo, and M. White (2007).

268

�, b = 27

�, in the direction of the Hydra-Centaurus (Rowan-Robinson et al., 1990).

Figure (5.2) shows the Angular Power Spectrum of the CMB, as measured by the
ESA’s satellite Planck. The acoustic features are immediately evident; they are the
product of the oscillations of the baryon-photon fluid in the CDM potential wells.
The symmetry of the amplitude of the oscillations, due to the equilibrium between
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Figure 5.2: CMB Angular Power Spectrum from ESA’s satellite Planck. The first acoustical
peak marks the sound horizon at the last scattering time and thus the geometry
of the Universe, while the fraction between the first and the second peak provides
a measure of the baryon density. At higher l, that is at shorter scales, the Silk
dumping smooths the oscillations. At the largest scales there is a plateau, which
implies that the primordial spectrum is approximately a Harrison-Zel’dovich
Spectrum. Figure from Planck Collaboration, P. A. Ade, et al. (2014).

kinetic energy of radiation pressure and gravitational potential energy, is broken by
the baryon drag which makes the CDM potential wells deeper (leading to higher
temperatures of the baryon-photon plasma). This, combined to the different phases
(�' = ⇡/2) between the velocity field and the gravitational field, leads to higher peaks
corresponding to the maximum compression, and lower peaks corresponding to the
maximum rarefaction of the baryon-photon fluid.
In particular, the largest allowed wavelength has the size of the sound horizon; this
means that the first acoustic peak (often called the Doppler peak in a misleading way),
which corresponds to the first maximum compression, signs the angle which subtends
the acoustic scale. Moreover, the difference of the amplitudes between compression and
rarefaction peaks provides a measure of ⌦b; since the CMB Angular Power Spectrum is
also sensitive to ⌦m, through the equation (5.1), we can assess both the angle and the
comoving size of the sound horizon. As shown in section 1.6.5, this provides a measure
of the geometry of the Universe, that is the curvature parameter, K, or equivalently
the total density parameter, ⌦T . In a flat Universe, where K = 0, the first acoustic
peak would be centered at l ⇡ 200 (or ⇡ 1

�). Until now all the observations are in
agreement with this value (Planck Collaboration, Adam, et al., 2016). The comoving
size of the sound horizon at the last scattering time has a weak dependence on the
cosmology; its estimated value is rs ⇡ 150 Mpc.
We can notice that the third peak is not as high as the first one, nor the forth compared
to the second one, and so on; this effect is due to the Silk damping, that is the diffusion
of the baryons caused by the scattering with the photons, as discussed in section 2.3.3.
At scales larger than the first acoustic peak (lower l), outside the particle horizon at
the last scattering time, the absence of causal connection between particles makes the
microphysical processes ineffective. This means that we can measure the primordial
power spectrum, which, being scale-invariant, forms a plateau, in agreement with the
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predicted Zel’dovich spectral index, introduced in section 2.2.
The anisotropies that occurred at the last scattering time, that is the so-called primary
anisotropies, are not the only ones imprinted in the CMB. Physical processes occurred
during the photon travel from the last scattering surface to us cause the so-called
secondary anisotropies. Phenomena such as the integrated Sachs–Wolfe effect (Sachs
and Wolfe, 1967), the Rees-Sciama effect (Rees and Sciama, 1968), the thermal and
kinetic Sunyaev-Zel’dovich effects (R. A. Sunyaev and Zeldovich, 1970), that will not
be treated here, perturb the primary signal. Nevertheless, if opportunely treated, these
effects provide paramount information on the evolution of cosmic structures.
Constraints on the main cosmological parameters provided by the analysis of the CMB
anisotropies, from the Planck satellite, have been previously reported in Table (1.1).

5.3 The Baryonic Acoustic Oscillations

The lack of radiation pressure after the recombination rapidly decreases the sound
speed in the baryon fluid essentially to zero, freezing the baryonic sound wave at the
acoustic scale. Despite the successive infall into the CDM wells, a residual baryonic
overdensity remains at the sound horizon, attracting also the CDM (see Figure (5.1)).
The probability of gravitational collapse is thus higher at the acoustic scale, and so the
formation of structures. As a consequence, there will be a preferred galaxy separation
scale, corresponding to the sound horizon, detectable as a small bump in the galaxy
correlation function.
The spherical perturbations are initially generated in different positions, and the
interference of the different sound waves is on average destructive. Nevertheless, we
still expect to have a signal, because of the large radius of the BAO shells: for this
reason, the acoustic overdensities have a non-negligible weight in comparison to the
low intrinsic large-scale correlation in the CDM (D. J. Eisenstein, 2005b).
Since the baryon-photon fluid of the primordial Universe was relativistic, with a sound
speed of cs ⇡ c/

p
3, the acoustic scale is very large, about 150 Mpc, as derived from

the CMB (section 5.2). The BAO signal, due to its intrinsic size, is “protected” from
non-linearities in the low-redshift Universe. Moreover, it depends only weakly on the
cosmology, and the acoustic feature scale is quite stable. Indeed, both theoretical
works and numerical simulations infer an accuracy better than 1% (see D. H. Weinberg
et al. (2013) and references therein). These facts make the BAO a perfect standard
ruler. Thus, it is one of the best probes to study the geometry of the Universe and to
investigate the Dark Energy properties.
In the Fourier space, each crest of the initial sound wave generates a planar wave
that travels a distance equal to the sound horizon (e.g. Hu and Sugiyama, 1996;
D. J. Eisenstein and Hu, 1998). If the baryon perturbation ends on a CDM crest, the
interference is constructive. On the other hand, if the baryon crest ends on a CDM
trough, the interference is destructive. As a result, the matter power spectrum presents
a series of harmonic oscillations, that depend on the relation between the perturbation
wavelength and the acoustic scale (�s ' 2⇡/rs). Mathematically, a Dirac delta in the
correlation function corresponds, through the theorem (2.7), to a sinusoid. The Silk
diffusion (see section 2.3.3), that smooths the peak in the correlation function, damps
the higher harmonics in the power spectrum.
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5.3.1 How to detect the BAO
The acoustic oscillations were theorised as a potential effect in the CMB in the

late 1960s (Sakharov, 1966). Further studies (Bond and G. Efstathiou, 1984; G.
Efstathiou and Bond, 1986; Hu and M. White, 1996) investigated possible methods to
use the acoustic scale as a standard ruler (Kamionkowski et al., 1994; Jungman et al.,
1996). These works were later extended to the matter power spectrum. Pure baryon
cosmologies predict a very strong matter acoustical oscillations (P. J. Peebles and Yu,
1970; R. A. Sunyaev and Zeldovich, 1970). However, since the signal is significantly
weaker in CDM models, the chances of detecting these features seemed very low. After
the discovery of the accelerated expansion of the Universe through type Ia Supernovae
(Riess et al., 1998; Perlmutter et al., 1999; Schmidt, 1999), the interest on the BAO
started to increase again (D. J. Eisenstein, 2005a). The BAO feature, in fact, being a
standard ruler (Hu and Sugiyama, 1996; D. J. Eisenstein and Hu, 1998), can break the
distance scale degeneracy between ⌦m and H(z) at different redshifts, constraining
the Dark Energy equation of state (D. Eisenstein, 2002; Blake and Glazebrook, 2003;
H.-J. Seo and D. J. Eisenstein, 2003). Nevertheless, the large size of the acoustic
scale and the weakness of the signal (10% contrast in the power spectrum) imply
significant statistical issues, making it necessary to survey very large volumes, of the
order of ⇡ 1 h�3 Gpc3 (Tegmark, 1997). After several theoretical and observational
investigations (e.g. W. J. Percival et al., 2001), the BAO was finally detected both in
the galaxy correlation function and in the power spectrum (D. J. Eisenstein, Zehavi,
et al., 2005, S. Cole et al., 2005), using the Sloan Digital Sky Survey (SDSS, York
et al., 2000). Figure (5.3) shows the correlation function measured by D. J. Eisenstein,
Zehavi, et al. (2005), from a sample of 46748 luminous red galaxies, that provided the
first detection of the BAO peak, with 3.4 � significance.
They defined a spherically-averaged distance measurement, DV (z):

DV (z) ⌘

DM (z)2

cz

H(z)

�1/3
, (5.6)

where DM is the comoving angular distance, obtained by combining the equations
(1.18) and (1.16):

DM = (1 + z)DA(z). (5.7)

They defined also the ratio, R, of the angle-averaged distance at the redshift of the
measurements, to the comoving angular distance at z = 1089 (the redshift of decoupling,
C. L. Bennett et al., 2003):

R(z) ⌘ DV (z)

DM (zdec)
. (5.8)

This robust distance measurement is predicted by linear perturbation theory, and links
the matter with the photon acoustic waves.
To constrain the Dark Energy models, they defined another parameter, independent of
the acoustic scale in the CMB and so useful especially at low redshifts:

A ⌘ DV (z)

p
⌦mH2

0

zc
. (5.9)

We can notice that this parameter is also independent on the Hubble constant, H0,
since DV / H�1

0 . Assuming the following fiducial cosmological parameters, ⌦m = 0.3,
⌦⇤ = 0.7 and h = 0.7, they found that DV (z = 0.35) = 1334 Mpc with a 1� uncertainty
of 4.7%, while R(z = 0.35) and A(z = 0.35) were measured with uncertainties of 3.7%
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Figure 5.3: Galaxy two-point correlation function, from a spectroscopic sample of 46748
luminous red galaxies from the SDSS (York et al., 2000). Notice that the y-axis is
partially linear and partially logarithmic. The inset panel is a zoom of the BAO
peak, at comoving separation s ⇡ 100 h�1 Mpc. The colored solid lines represent
models computed with different cosmological parameters: ⌦mh2 = 0.12 (green),
⌦mh2 = 0.13 (red), ⌦mh2 = 014 (blue), all with ⌦bh

2 = 0.024; the magenta line
indicates a pure CDM model, with ⌦mh2 = 0.105. Figure from D. J. Eisenstein,
Zehavi, et al. (2005).
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and 3.6%, respectively. Further observational results and general considerations on the
BAO surveys will be reported in section 5.6.

5.3.2 Non-linearity in the BAO theory

Despite of the large scales of the BAO, there are still some effects that can slightly
distort this standard ruler, especially at low redshift. The growth of structures, the
peculiar velocities and the bias, behave differently from how the linear theory predicts
(Meiksin et al., 1999; H.-J. Seo and D. J. Eisenstein, 2005; Angulo, Baugh, et al., 2008).
Different theoretical approaches can be used to describe the non-linear evolution of
the BAO feature. In particular, the most widely-used models are the following ones:

• the 2PT, with the possibility of combining its analytic results with numerical
simulations, in order to compute the mean pairwise displacement of tracers within
the Zel’dovich approximation (D. J. Eisenstein, H.-J. Seo, and M. White, 2007;
Padmanabhan and M. White, 2009);

• the renormalised perturbation theory (RPT, M. Crocce and R. Scoccimarro,
2008). This theory describes the non-linear growth of structures by decomposing
it into a linear propagation plus interactions, and summing over all possibilities.
To do this, one makes a resummation of an infinite subset of contributions to
the perturbation theory expansion, getting a new series expansion, which is not
a perturbative expansion in the amplitude of fluctuations. A treatment of this
theory is above the aim of this thesis, for further details see M. Crocce and
Román Scoccimarro (2006).

These theories are all in agreement, and show that non-linear effects cause both a
broadening and a shift of the BAO peak toward smaller scales, in the correlation
function, or equivalently in the power spectrum. In particular, the maximum shift in
the correlation function, at z = 0, is of the order of 0.5� 1%, ensuring a high stability
of the BAO scale.
Figure (5.4) compares the predictions of the linear theory and RPT. In the RPT, the
BAO peak is smoothed and shifted on smaller scales, with respect to the linear theory
prediction, in excellent agreement with measurements from numerical simulations (M.
Crocce and R. Scoccimarro, 2008).

The width of the final BAO peak in the correlation function, �bao, can be seen as
the quadrature sum between the initial width, �IC , due to the Silk dumping, and the
mean-squared displacement between pairs, ⌃NL (Orban and D. H. Weinberg, 2011):

�2
bao = �2

IC + ⌃

2
NL, (5.10)

where
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Figure 5.4: The effects of non-linearities in the correlation function, at redshift z = 0. The
data points with error bars are measurements from a numerical simulation, the
red solid line is the prediction given by the RPT (M. Crocce and R. Scoccimarro,
2008), while the blue dashed line represents the linear theory prediction. Figure
from M. Crocce and R. Scoccimarro (2008).

In the limit of r12 ! 1, the equation (5.11) becomes

⌃

2
L =

1

3⇡2

Z 1

0
PL(q)dq, (5.13)

that is the rms displacement of particles in the PT, including the contribution from bulk
motions, that shifts coherently all the particles at large scales. In other words, the rms
pairwise displacement, ⌃NL, is asymptotic to the Zel’dovich displacement. However, in
this work, ⌃NL was not computed through equation (5.11)), but it was considered as
a fixed parameter of the model. It can be shown that the non-linear evolution damps
the harmonics oscillations in the power spectrum by a factor exp(�k2⌃2

NL):

PNL(k) = PL(k)e
�k2⌃2

NL . (5.14)

Figure (5.5) shows a comparison between the power spectrum predicted by the linear
theory, and the non-linear power spectrum computed through N-body simulations.
Alternatively, the so-called Boltzmann codes can be used to get accurate predictions of
both linear and non-linear matter power spectra (see e.g. CAMB, Lewis and Challinor,
2011; CLASS, Lesgourgues, 2011). The RSD, and in particular the Kaiser effect, causes
an extra broadening of the BAO peak, blurring the clustering measurements along the
line-of-sight and creating anisotropies in the broadband clustering. The bias can also
change the amplitudes of both the correlation function and the power spectrum, with
minor effects on their shapes. The non-linear evolution can alter the relative weights
of overdense and underdense regions, shifting the scale of the BAO peak. Numerical
simulations predict a BAO shift of 0.1%� 0.8%, at z = 1, depending on the strength
of the bias (Mehta, H.-J. Seo, et al., 2011).
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Figure 5.5: Non-linearities in the power spectrum, in real (top) and in redshift space
(bottom), as a function of the redshift (from H.-J. Seo, Siegel, et al., 2008). The
solid black lines are computed with numerical simulations, while the dashed lines
are the linear predictions. The grey lines represent the large-scale amplitudes
expected in linear theory. In redshift space, the power spectra are shifted for
clarity purpose.

5.4 Reconstruction of the BAO

As discussed in the previous section, the non-linear evolution of cosmic structures
smooths and shifts the BAO peak, possibly introducing systematics in the acoustic
scale constraints, if these effects are not properly modelled.
A possible method to overcome this issue is the so-called reconstruction of the linear
density field (D. J. Eisenstein, H.-J. Seo, Sirko, et al., 2007). The idea of the method
is quite simple: to move back galaxies from where we observe them now to where
they were at the beginning, before structures growth. Since the acoustic scale is very
large, we expect that the motion of galaxies can be reliably modelled by the PT. The
connection between the velocity and the density fields at these scales is almost linear,
thus the density fluctuations that we measure are the ones that generate the bulk
flows. We can so predict the velocity field, and thus compute the reverse motion of the
galaxies.
Figure (5.6) shows the main effects of such a method, in a two-dimensional cosmological
density field. In the initial linear density field, the BAO shell coincides with the acoustic
scale, which has a radius of ⇡ 150 Mpc. Evolving the density field in time, with the
Zel’dovich approximation (discussed in section 2.5.1) the BAO feature is distorted,
and its rms width is broader. Thus, we loose accuracy in estimating the acoustic scale.
Nevertheless, once obtained the displacement field from the actual density field, we
can apply a reverse Zel’dovich approximation to move back the objects, restoring the
linearity. In this way, the BAO feature marks better the acoustic scale and the width
of the shell is narrower. Thus it is possible to infer a more precise constraint on the
sound horizon.



5.4. RECONSTRUCTION OF THE BAO 63

Figure 5.6: Illustrative picture of the BAO reconstruction method. Each panel shows a
slice of a simulated cosmological density field, highlighting the acoustic scale
with a red circle. The boxes contain a Gaussian having the same width as
the rms radial distribution of the BAO feature (black points) with respect to
the centroid (blue points). Top-left: at the beginning, in linear regime, the
density field was smooth. The BAO shell is a symmetrical sphere, with radius
⇡ 150 Mpc, that perfectly marks the acoustic scale. Top-right: evolving the
density field within the Zel’dovich approximation up to the present time, the
BAO shell is distorted and broadened, due to the large-scale velocity field. The
actual Gaussian (solid line) became wider than the initial one (dashed line).
Bottom-left: the Lagrangian displacement field is overplotted on the previous
panel. From an estimation of the actual displacement field, the reconstruction
“rewinds the gravity” reversing the Zel’dovich approximation, to obtain the linear
density field. Bottom-right: reconstructed density field. Again, the BAO feature
marks well the acoustic scale. The new Gaussian (solid line), representing the
rms radius, is narrower compared to the previous one (short-dashed line), and
quite similar to the initial one (long-dashed line). This means that it is easier to
extract accurately the acoustic scale from the BAO feature in the reconstructed
density field. Figure from Padmanabhan, Xu, et al. (2012)
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5.4.1 The Zel’dovich approximation in redshift space
With the Zel’dovich approximation we can estimate the large-scale velocity field.

From the density field, in the redshift space, we can correct the Kaiser effect, which
degrades the measurement of the acoustic scale along the line of sight, and the effects
of the linear bias.
The treatment of RSD is easier with LPT than with ELT (Matsubara, 2008). In LPT,
in fact, we have that

 s =  +

ŝ · ˙

 

H
ŝ, (5.15)

where  is the displacement in real space,  s is the displacement in redshift space
and ŝ is the unit vector in the line-of-sight direction. This relation is exactly linear
even in non-linear regimes, on the contrary of its Eulerian counterpart.
It can be shown that the PT equation (2.60), in redshift space, can be expanded at
the first order as follows:

r · (1)
+ fr · ( sŝ) = ��

b
, (5.16)

where  s ⌘  (1) · ŝ is the displacement in the line-of-sight direction, and f is the linear
growth rate parameter (Nusser and M. Davis, 1994; Padmanabhan, Xu, et al., 2012;
Burden, W. J. Percival, Manera, et al., 2014). Hereafter, unless contrary statements,
we will use the notation  ⌘  (1). The second term of equation (5.16) is the correction
due to the coherent infall of galaxies into larger structures. Assuming  as irrotational
(see section 2.5.1),  = r�, we have that

r2
�+ fr · (r�s) ŝ = ��

b
. (5.17)

We can solve equation (5.17) for the scalar field �, fixing the linear bias, b, and the
linear growth factor, f , by using the finite difference method to approximate the
derivatives (see Padmanabhan, Xu, et al., 2012 for further details). Alternatively, it is
possible to solve the displacement field by using the Fast Fourier Transform method
(FTT). Following Burden, W. J. Percival, and Howlett (2015), we can decompose the
 sŝ term of equation (5.16), through the Helmholtz’s Theorem, into a solenoidal and
an irrotational component:

 sŝ = rA+r⇥B, (5.18)

where A and B are scalar and vector potential fields, respectively. By substituting
equation (5.18) in equation (5.16) , we obtain that

r(�+ fA) = �rr�2 �

b
. (5.19)

Equation (5.19) does not allow to solve equation (5.16), to find the displacement field,
using FFTs. However, assuming the approximation made by Burden, W. J. Percival,
Manera, et al. (2014), that  sŝ is irrotational,

 sŝ ⇡ rA, (5.20)

equation (5.19) becomes

 + f ( sŝ) = �rr�2 �

b
. (5.21)
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We can compute the right-hand side of equation (5.21) using the FFTs 1; the displace-
ment field is then

 = IFFT

� ik�(k)

k2b

�
� f

1 + f

⇢
IFFT


� ik�(k)

k2b

�
· ˆs
�
s, (5.22)

where IFTTs are the inverse of FFTs.

5.4.2 A simple reconstruction algorithm
In this section we describe the fundamental steps of a generic reconstruction

algorithm (D. J. Eisenstein, H.-J. Seo, Sirko, et al., 2007; Padmanabhan, Xu, et al.,
2012; Burden, W. J. Percival, Manera, et al., 2014):

• Compute the density field using mass tracers.

• Fourier transform the density field.

• Smooth the density field to filter out the high-k non-linearities (generally at k
equivalent to 10� 20h�1 Mpc), harder to model. This is equivalent to multiply
by a function S(k), that monotonically decreases from unity, at low k, to zero, at
high k:

�smooth(k) = S(k)�(k), (5.23)

where �smooth(k) is the smoothed density field. Generally, it is used a Gaussian
filter:

S (k) = e�k2R2/2. (5.24)

• Estimate the displacement field  ; the simplest way is to use the Zel’dovich
Approximation (equation 2.64), that relates the displacement field to the density
field in Fourier space. Taking into account the smoothing (equation (5.23)), we
have that

 = � ik

k2
�smooth(k). (5.25)

• Fourier anti-transform to compute the displacement field in configuration space.

• Shift the galaxy comoving positions by � , thus inverting equation (2.46), to
get:

q = x(q, t
0

)� (q, t
0

), (5.26)

where x(q, t0) are the galaxy comoving coordinates measured at t = t0, and q

are their initial Lagrangian positions.

• In case, add the term �f ( · ŝ) ŝ, to correct for RSD (this exactly removes the
Kaiser effect at first order, see equation (5.16)):

q = x(q, t
0

)� (q, t
0

)�f ( (q, t
0

) · ŝ) ŝ. (5.27)

Figures (5.7) and (5.8) show the final effect of such a method on the angular power
spectrum and two-point correlation function, respectively. The two figures report the
clustering measurements before and after the reconstruction, at z = 0.3, compared with

1Burden, W. J. Percival, and Howlett (2015) suggest also an extra 3/7 factor on the growth factor,
f , to take into account the solenoidal component. This correction, however, is not well tested yet
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the initial ones, at z = 49. These figures, from D. J. Eisenstein, H.-J. Seo, Sirko, et al.
(2007), show the averaged measurements over 30 simulations, in both real and redshift
space. In real space, two different Gaussian filters are applied, with radii 10 and 20 h�1

Mpc. The reconstruction with the 10 h�1 Mpc Gaussian smoothing restores better the
higher harmonic oscillations in the power spectra, damped by the non-linear effects.
Moreover, with this filter, the acoustic peak in the correlation function is nearly fully
restored.
Until now, we have discussed about how to correct the reconstruction method only for
the large-scale velocity distortions. As discussed in section (3.6.1), the Fingers of God
stretch the iso-correlation contours along the line-of-sight, degrading the accuracy of
the acoustic scale measurements. To take into account this further effect, we should
also compress the Fingers of God to their original position in real space. The real-space
measurements shown in Figures (5.7) and (5.8) highlight the effects of this Finger-of-
God compression, realised by moving all cluster particles to the center of mass of the
host cluster, and then applying the reconstruction in such a compressed density field.
The improvement on the constraints of the acoustic scale is clear, in both correlation
function and power spectra. D. J. Eisenstein, H.-J. Seo, Sirko, et al. (2007) found
that a 1h�3Gpc3 survey should provide a distant measurement of 1.4% in real space
and 1.9% in redshift space, at z = 0.3. The reconstruction method improves these
measurements to 0.75% and 0.95% in real and redshift space, respectively. In principle,
with a perfect reconstruction, it is possible to achieve a 0.5% distance (although shot
noise from reasonable galaxy samples would degrade this to 0.55 � 0.60%). As a
consequence, the actual precision is a factor of 3.5 worse than the cosmic variance,
but the reconstruction method improves the measurement accuracy by a factor of
2. Once that the errors are below the rms width of the acoustic peak, that is 8h�1

Mpc, the possible improvements of the measure of the acoustic scales get lower. The
reconstruction is less effective at high redshifts: the displacement are smaller, so we
can get good results using only the largest scales. We expect the best improvements (a
factor 2-3) at low redshifts, where the non-linearities are larger.

Padmanabhan, Xu, et al., 2012 applied the reconstruction technique on the clus-
tering measurements from the SDSS Data Release 7 (SDSS DR7) Luminous Red
Galaxy sample (W. J. Percival et al., 2010), at z = 0.35, after testing it on 160
LasDamas N -body simulations (C. McBride et al., 2009). Figure (5.9) shows how well
the reconstruction restores the isotropy of the two-dimensional correlation function, by
correcting the RSD, in the LasDamas simulations. The measured correlation functions,
from real data, before and after the reconstruction, are shown on Figure (5.10). In
this case the reconstruction technique reduces the non-linear smoothing scale from
⌃NL = 8.1h�1Mpc to ⌃NL = 4.4h�1Mpc. The BAO detection significance improves
from 3.3� to 4.2�. Furthermore, the errors in the angle-averaged distance measurement,
pre and post reconstruction, are 3.5% and 1.9%, respectively, equivalent to survey a
volume three times larger. The final angle averaged distance, assuming a sound horizon
of 154.25 Mpc, is DV (z = 0.35) = 1.356± 0.025Gpc.
In general, the reconstruction technique increases the statistical accuracy of the BAO
detection by a factor of 1.5-2, which is equivalent to have a factor 2-4 gain in the size
of the survey (D. H. Weinberg et al., 2013).
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Figure 5.7: Angle-averaged matter power spectra, in redshift (top panel) and real (bottom
panel) space. The black solid lines are at z = 47, while the blue dashed lines
at z = 0.3. At low redshifts, the BAO peaks are clearly smoothed, due to
large-scale velocity field. In real space, the reconstruction has been applied
with two Gaussian filters of 10 h�1 Mpc (magenta long dashed line) and 20 h�1

Mpc (red dot-dashed line). The reconstruction restores the highest harmonics,
damped by the non-linear evolution. In redshift space, both the magenta and red
lines have been obtained with a 10 h�1 Mpc filtering; the magenta long-dashed
line includes the Fingers of God compression, contrary to the red dot-dashed
line. The increase of power at large k is essentially irrelevant to the accuracy
of the acoustic signature, as it can marginalise over these broadband changes.
Figure from D. J. Eisenstein, H.-J. Seo, Sirko, et al. (2007).

Figure 5.8: Real-space (left panel) and redshift-space (right panel) matter correlation func-
tions. All the symbols are as in Figure (5.7) . After the the reconstruction, the
BAO peak is enhanced, providing a better accuracy in the evaluation of the
acoustic scale, around 100 h�1 Mpc. Figure from D. J. Eisenstein, H.-J. Seo,
Sirko, et al. (2007).
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Figure 5.9: Two-dimensional galaxy correlation functions, averaged over 160 LasDamas
N -body simulations. The line-of-sight separation is in the y-axis, while the
transverse component in the x-axis, both in Mpc. The top panels show the
correlation function pre-reconstruction, while the bottom panels refer to the
post-reconstruction, in real (left) and redshift (right) space. The asymmetry of
the BAO feature in redshift space, due to RSD and, in particular, to the Kaiser
effect, is corrected with the reconstruction. Moreover, in both real and redshift
spaces the BAO signal in the reconstructed galaxy density field is enhanced.
Figure from Padmanabhan, Xu, et al. (2012).

Figure 5.10: Unreconstructed (left panel) and reconstructed (right panel) galaxy two-point
correlation functions, from the SDSS DR7 Luminous Red Galaxy sample, at
z = 0.35. The s2 factor, multiplied to the ⇠(s), enhances the BAO peak in
the plot. The error bars are the standard deviation of the 160 LasDamas
simulations. Figure from Padmanabhan, Xu, et al. (2012).



5.4. RECONSTRUCTION OF THE BAO 69

5.4.3 Reconstruction in the 2LPT
D. J. Eisenstein, H.-J. Seo, Sirko, et al. (2007) presented the BAO reconstruction

method, and tested it with numerical simulations. Padmanabhan, M. White, and Cohn
(2009) used the 2LPT to analytically describe the method (see also M. White, 2015
and Achitouv and Blake, 2015). Now we use the formalism developed in section 2.5, to
describe the main points of the reconstruction method, described in the previous section.

• From equation (2.48), we can write a particle density field as follows:

�(k) =

Z
d3qe�ik·q �e�ik· 0 � 1

�
. (5.28)

• We can shift the original particles by  rec, the negative Zel’dovich displacement
field of equation (5.25), obtaining the displaced density field:

�d(k) =

Z
d3qe�ik·q

⇣
e�ik·[ 0+ rec] � 1

⌘
. (5.29)

Notice that if the original density field were linear, and S(k) = 1 (see equation
(5.23)), the reconstruction would undo the original displacement exactly, moving
back the particles to their original positions and giving �d(k) = 0.

• Shifting a spatially uniform grid of particles by  rec, we can obtain the shifted
density field, that is:

�s(k) =

Z
d3qe�ik·q �e�ik· rec � 1

�
; (5.30)

assuming a linear field, we have that �s(k) = ��(k).

• The reconstruction density field, �rec(k), defined as �rec(k) = �d(k)� �s(k), is
thus:

�rec(k) =

Z
d3qe�ik·qe�ik· rec

�
e�ik· 0 � 1

�
. (5.31)

The reconstructed power spectrum is then

Prec(k) / h
���2rec

��i. (5.32)

Notice that since S(k) /  rec, in the limit of S(k) ! 0 the reconstruction is not
effective.

Now we expand the reconstruction density field within the 2LPT, as in equation
(2.50):

�rec = �(1)rec + �(2)rec + ... (5.33)

The reconstructed field is equal to the first-order linear density field. At second order,
we have that

�(2)rec = �(2) � 1

2

Z
d3k1d3k2
(2⇡)3

�(D)
(k1 + k2 � k)⇥

⇥�l(k1)�l(k2)k · L(1)
(k1)k · L(1)

(k2) [S(k1) + S(k2)] , (5.34)
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where �(2) is given by equation (2.76), reported here:

�(2) =
1

2

Z
d3k1d3k2
(2⇡)3

�(D)
(k1 + k2 � k)⇥

⇥�l(k1)�l(k2)

h
k · L(2)

(k1,k2,k) + k · L(1)
(k1)k · L(1)

(k2)

i
. (5.35)

We can notice that the second-order terms in the reconstructed density field do not
vanish. The second-order density field, in fact, contains L

(2) terms, on the contrary
of the reconstructed density field, which contains only L

(1) terms. Thus, we have
demonstrated that the reconstruction method cannot fully cancel the non-linearity, i.e.
it does not restore the linear density field, but provides a density field with second-order
corrections. Furthermore, studying the reconstructed power spectrum within the 2LPT,
one can show that the reconstruction method reduces the mode coupling terms, which
introduces out-of-phase oscillations in the power spectrum, thus shifting the acoustic
peaks (see D. J. Eisenstein, H.-J. Seo, Sirko, et al. (2007) for more details).

5.5 Extract cosmological informations from BAO
The BAO marks the acoustic scale indirectly. In fact, the decoupling of the baryon-

photon fluid is consequent to the recombination. More precisely, the decoupling of the
radiation from the baryons (and the resulting last scattering surface) happened earlier
than the decoupling of matter from the photons. Moreover, the Silk dumping alters the
effective recombination redshift, as a function of the wavelength, and the growing-modes
after the recombination are due to the velocity perturbations at recombination, rather
than to the density fluctuations. As a result, the sound horizon, defined in the equation
(5.1), is not marked by the maximum of the BAO peak in the correlation function, and
the harmonics in the power spectrum have not the same scales of the oscillations in
the CMB. Nevertheless, all these effects can be accurately computed with Boltzmann
codes, that provide precise predictions for power spectra in both matter and radiation.
The appropriate method to extract cosmological information from the BAO peak in
the two-point correlation function, i.e. to measure the acoustic scale using the BAO
standard ruler, is to fit a fiducial cosmological model, as a template, to the data
over a given range of scales, using the correct covariance matrix (see section 3.7) and
likelihood.

5.5.1 Fundamentals of Bayesian methods in cosmology
Let X be a random variable and # a set of a model parameters, which describe the

observed data X, x̂ = {x̂1, x̂2, ..., x̂N}. Being p(X|#) the probability density function
(pdf), the likelihood function, L, is defined as follows:

L(✓) = p(X = x̂|✓). (5.36)

Thus, the likelihood represents the density probability of observing the data that have
been measured, as a function of the model parameters. Let x̂ = {x̂1, x̂2, ..., x̂N} be N
independent measurements of a Gaussian-distributed quantity, and µ and � the mean
and the standard deviation of the distribution, respectively. Considering # = {µ,�},
we have that

L(µ,#) = p(X = x̂|µ,�) =
NY

i=1

1p
2⇡�

exp

✓
�1

2

(x̂i � µ)2

�2

◆
. (5.37)
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Equation (5.37) is usually written as follows:

L(✓) = L0 exp(��2/2), (5.38)

where the so-called chi-squared is defined as

�2 ⌘
NX

i=1

(x̂i � µ)2

�2
. (5.39)

We can estimate the model parameters maximising the probability of obtaining the
data we got. To do this, we define the maximum likelihood estimator:

✓ML ⌘ max✓L(✓). (5.40)

It can be shown that ✓ML converges to the true values of the parameters for infinite
data points, and it is asymptotically the minimum variance estimator, i.e. the one
with the smallest errors. To calculate the maximum likelihood estimator, we impose
its first derivative to be null and its second derivative to be negative:

@L(✓)
@✓

��
✓
ML

= 0; (5.41)

@2L(✓2)
@✓

��
✓
ML

< 0. (5.42)

Notice that this is not strictly equivalent to find the most probable parameters of the
model. To do so, we introduce the Bayes Theorem:

P (✓|X) =

L(✓)P (✓)

P (X)

, (5.43)

where P (✓|X) is the posterior probability for ✓, that represents our degree of belief
about the values of ✓, when we already know the data, X. P (✓) is the prior probability
distribution, that represents our degree of belief about the values of ✓, ignoring the data.
Finally, P (X) is a normalising constant, called the evidence or marginal likelihood, that
ensures that the posterior is normalised to unity:

P (X) =

Z
d✓L(✓)P (✓). (5.44)

In general, the posterior and the likelihood do not coincides. Several methods can be
used in order to compute the posterior. In this work, we used the so-called Markov
Chain Monte Carlo (MCMC) methods, which generate chains having a sample density,
in the space of the parameters, that is proportional to the posterior pdf. If the chain
is not long enough, the Monte Carlo estimation is not sufficiently accurate, due to the
low number of samples, thus the method does not converge. For more details on the
MCMC methods, and in general on the Bayesian statistic applied in cosmology, see
e.g. Trotta (2017).

5.5.2 Modeling and fitting the BAO in the correlation function
The non-linear matter two-point correlation function, ⇠DM (r), can be obtained by

Fourier transforming the matter power spectrum, PDM (k), as follows:

⇠DM (r) =
1

2⇡2

Z
dk k2PDM (k)

sin(kr)

kr
. (5.45)
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In this work we used the so-called de-wiggled model, specifically designed to fit the
BAO in the matter power spectrum (D. J. Eisenstein, H.-J. Seo, and M. White, 2007):

PDM (k) = [PL(k)� Pnw(k)]e
�k2⌃2

NL

/2
+ Pnw(k), (5.46)

where the linear power spectrum, PL(k), can be computed with a Boltzmann code,
and Pnw is the power spectrum without the BAO feature (see for further details D. J.
Eisenstein and Hu (1998) and Veropalumbo et al., 2016).
A robust theoretical model, that can be used to fit the BAO data in the two-point
correlation function of cosmic tracers, is the following:

⇠(r) = B2⇠DM (↵r) +A(r), (5.47)

where the B2 factor describes the bias of the cosmic tracers, and the A(r) function
can be modelled as follows:

A(r) = A0 +
A1

r
+

A2

r2
, (5.48)

where A0, A1,A2 are nuisance parameters, used to minimize the effects of the un-
modelled broadband signal, as the scale-dependent bias and residual geometrical and
dynamical distortions (Xu, Padmanabhan, et al., 2012; Anderson, E. Aubourg, et al.,
2012; Anderson, É. Aubourg, et al., 2014; Veropalumbo et al., 2016).
We can consider a Gaussian likelihood for this model. From equation (5.38) we have
that

L(↵, B,A0, A1, A2) / exp(��2/2). (5.49)

In this case, equation (5.39) becomes

�2
=

nX

i=0

nX

j=0

(⇠i � ⇠mi )C�1
ij (⇠j � ⇠mj ), (5.50)

where ⇠i and ⇠mi are the measured two-point correlation function and the model in
the i-th bin, respectively, and C�1

ij is the inverted covariance matrix. By assuming
the priors, we can use the MCMC technique to populate the parameter space, thus
getting the posteriors. The main goal is to constrain the ↵ parameter, that represents
the isotropic shift of the BAO peak from the expected position, due to an incorrect
assumption of the cosmological model. We can define the ↵ parameter as

↵ ⌘ DV (z)/rs
DV,f (z)/rs,f

=

"
D2

A(z)

D2
A,f (z)

Hf (z)

H(z)

#1/3
rs,f
rs

, (5.51)

where DV is defined in equation (5.6). ↵ = 1 means that the fiducial cosmological
model coincides with the true one. On the contrary, if ↵ 6= 1, the acoustic scale of
the assumed model is incorrect, or the distance scale assumed is wrong. In particular,
when ↵ < 1, the acoustic scale is shifted toward higher scales; on the other hand, when
↵ > 1 the sound horizon is shifted toward smaller scales. Several investigations have
been performed to test the robustness of this method, using polynomials of different
orders, and changing the values of the ⌃NL parameter (that enters the model through
the non-linear dark matter power spectrum, see equations (5.14) and (5.46)) and the
nuisance parameters (H.-J. Seo, Eckel, et al., 2010). It has been demonstrated, in
particular, that the nuisance parameters do not impact significantly the constraints on
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the ↵ parameter.
From equation (5.6) it is also evident that the two quantities H(z) and DA(z) are
degenerate when cosmological constraints are extracted from DV (z). The information
contained in clustering anisotropies can be exploited to break this degeneracy (Okumura
et al., 2008; Chuang and Y. Wang, 2012; Kazin et al., 2012; Sánchez, Kazin, et al.,
2013). Anisotropic BAO analyses apply implicitly the Alcock-Paczynski test, discussed
in section 3.5.3, exploiting the difference between line-of-sight and transverse scales.
The two-dimensional correlation function, ⇠(µ, s), is the simplest statistics that can be
used to extract information from clustering anisotropies (see section 3.6). However,
the expected signal-to-noise ratio of ⇠(µ, s) at large scales is low, even for large-volume
surveys, and, in addition, the covariance matrix is hard to be computed due to the
large number of bins (Okumura et al., 2008; Blake, Kazin, et al., 2011; Sánchez, Kazin,
et al., 2013). Nevertheless, the information encoded in ⇠(µ, s) can be condensed in one-
dimensional projections, which can be measured with high signal-to-noise, and whose
covariance matrices are easy to handle. Several statistical methodologies have been
developed to extract anisotropic constraints (e.g. Okumura et al., 2008; Padmanabhan
and M. White, 2008; Chuang and Y. Wang, 2012; Kazin et al., 2012; Xu, Cuesta,
et al., 2013). In particular, Padmanabhan and M. White (2008) proposed to use the
multipole expansion of the two-point correlation function in Legendre polynomials.
The multipoles, opportunely modelled (see e.g. Xu, Cuesta, et al., 2013), provide an
estimate of both radial and transversal components of the ↵ parameter. The isotropic-
averaged shift, ↵ (equation (5.51)), in fact, can be decomposed into line-of-sight and
transverse components, ↵k and ↵?, as follow:

↵ = ↵1/3
k ↵2/3

? , (5.52)

where
↵k =

DM (z)rs,f
DM,f (z)rs

, (5.53)

↵? =

Hf (z)rs,f
H(z)rs

. (5.54)

We can define the anisotropic BAO signal parameter, or anisotropic warping factor, ✏,
as:

1 + ✏ ⌘
✓
↵k

↵?

◆1/3

=

✓
DA,f (z)

DA(z)

Hf (z)

H(z)

◆1/3

; (5.55)

If there are no anisotropies, ✏ = 0.
Combining equations (5.51) and (5.55), and using the value of rs provided by CMB
analysis (section 5.2), it is possible to disentangle DA(z) and H(z), as follows:

DA(z)

rs
=

↵

1 + ✏

DA,f (z)

rs,f
; (5.56)

H(z) rs =
1

↵(1 + ✏)2
Hf (z)rs,f . (5.57)

Alternatively, modeling the full-shape of the clustering wedges (see section 3.6.1), we
can obtain the following two parameters, that can break the degeneracy between DA(z)
and H(z) (Kazin et al., 2012; Sánchez, Kazin, et al., 2013):

d? ⌘ DA(z)

rs(zrec)
, (5.58)
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dk ⌘ cz

rs(zrec)H(z)
. (5.59)

Joining the BAO and CMB constraints, from the equation (1.59) we can obtain con-
straints on the Dark Energy equation-of-state, defined in the equation (1.51).

5.6 BAO surveys
The galaxy redshift surveys specifically designed for BAO investigations aim at

balancing the shot noise and the cosmic variance terms at the wave-numbers where
the acoustic oscillations are found, that is k ⇡ 0.1� 0.2hMpc�1. These two quantities
are directly related to the volume of the survey and the sample density, as showed in
equation (3.13). In this section we discuss about the different characteristics of BAO
surveys, focusing on the properties of cosmic tracers, sampling density, redshift ranges
and accuracy of the measurements. Finally, we present the results obtained by several
BAO surveys analyses.

5.6.1 Accuracy of redshift measurements
Larger errors on redshift measurements can compromise the evaluation of cosmo-

logical distances (see equation (3.22)), hampering a good evaluation of cosmological
distances. This can also impact clustering at large scales, broadening the BAO feature.
Photometric redshift surveys can collect data for a large number of galaxies, but are
generically affected by large redshift errors (it is not trivial to derive good photometric
redshifts). Spectroscopic redshift surveys, on the other hand, are much more accu-
rate, at the expense of larger shot noise uncertainties (H.-J. Seo and D. J. Eisenstein,
2003; H.-J. Seo and D. J. Eisenstein, 2007). The difference between spectroscopic
and photometric redshift errors can be very large: for instance, in the SDSS DR7,
at redshift range 0.1 < z < 0.7, the spectroscopic error is �z,sp ⇡ 30 km/s, while
the photometric one is �z,ph = 7000 km/s. For �z � 1000 km/s the BAO peak is
totally smeared, and cannot be used to constrain cosmological parameters. It has been
calculated that redshift errors below 300 km/s are required to infer reliable constraints
from BAO (D. H. Weinberg et al., 2013). Photometric redshift surveys could be a valid
alternative at high redshifts, where they can sample large volumes and the accuracy of
spectroscopic redshifts is worst. An intermediate approach such as using an instrument
with several narrow bands, could be, in some regimes, an interesting solution (Benítez
et al., 2009).

5.6.2 Cosmic tracers of the density field
We expand here the discussion of section 3.2, summarising the advantages and

disadvantages of using different cosmic tracers for BAO analyses.

• The standard choice is to use galaxies as tracers. For instance, luminous red
galaxies have been preferentially used at low redshift (e.g. D. J. Eisenstein,
Zehavi, et al., 2005; Padmanabhan, Xu, et al., 2012). They have a high surface
brightness, that allows trivial spectroscopy measurements, and a strong bias,
b ⇡ 2. Moreover, it is relatively simply to select them using photometry (D. J.
Eisenstein, Annis, et al., 2001). At z � 1, blue galaxies are better tracers. Indeed,
red galaxies are fainter than the blue galaxies in the optical band, because of the
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K correction (Glazebrook and Blake, 2005). Star forming galaxies, furthermore,
can be selected exploiting their emission lines.

• Clusters of galaxies can also be used as tracers of the matter density field (Angulo
et al., 2005; Hütsi, 2010). In fact, clusters surveys are subsamples of galaxy
surveys, obtained by selecting only the brightest cluster galaxies (BCG). Thus,
the shot noise errors are larger in cluster correlation function measurements, but
this is well balanced by the higher bias, which enhances the clustering signal.
In fact, it can be shown that the accuracy of the BAO detection is higher with
respect to what can be obtained with galaxy samples of comparable number of
objects (Veropalumbo et al., 2014; Veropalumbo et al., 2016). Galaxy clusters
are almost insensitive to non-linear dynamical distortions at small scales. This
reflects in a sharp, quasi-linear BAO peak; the reconstruction technique, thus, is
expected to be less effective for this type of tracers. Moreover, galaxy clusters are
detectable in a wide wavelength range, from radio to X-ray. As a consequence,
several methods, that exploit different astrophysical processes, allow to measure
the main properties of these objects, such as mass, temperature, and density
profile. This information can be used to estimate the bias, since there is a
tight correlation between cluster and CDM halo mass functions (for further
details, see Tinker et al., 2010). As discussed in section 2.3.3, in the Bottom-Up
scenario, small objects form at first. Since galaxy clusters are the largest collapsed
structures in the present Universe, they are also the youngest. This means that
we can observe these objects only at small redshifts, avoiding deep surveys.

• Active galaxy nuclei (AGN) have been used as large-scale structure tracers since
many years (Sawangwit et al., 2012). Also AGN surveys can be considered as
subsamples of galaxy surveys. AGN can be easily distinguished from normal
galaxies, thanks to their particular spectra. Their clustering at small scales
can be modelled by a power-law with a slope � ⇡ 1.8, as for normal galaxies.
Similarly to the cluster case, the reduced number of AGN is compensated by the
high bias of these objects, which provides a strong clustering signal. Because
of their high luminosity and easy selection, they are particularly indicated for
wide-field surveys, at high redshifts.

• The Ly↵ forest is another interesting cosmic density tracer. It is a series of
narrow lines, due to Ly↵ resonance absorption in hydrogen clouds, spread in
wavelength because of the cosmological redshift, and observable in high-redshift
quasar spectra. With the Ly↵ forest, it is possible to study three-dimensionally
the BAO feature in the distribution of neutral hydrogen, even in a relatively
object-poor sample of AGN. In fact, each spectrum provides hundreds of density
measurements, in multiple line-of-sights, rather than just a single one (McDonald
and D. J. Eisenstein, 2007; M. L. Norman et al., 2009; McQuinn and M. White,
2011). First detections of the BAO feature at high redshifts (2 < z < 3.5) have
been already preformed (Busca et al., 2013; Slosar et al., 2013; Delubac et al.,
2015).

• It is also possible to trace the large-scale structures with 21 cm intensity mapping
(Peterson et al., 2006; Ansari et al., 2008; Chang et al., 2008; Wyithe et al., 2008;
H.-J. Seo, Dodelson, et al., 2010). This technique does not sample the single



76 CHAPTER 5. BAO THEORY AND RECONSTRUCTION TECHNIQUE

galaxies, but it measures the combined 21 cm emission of all the galaxies in a
given region. The BAO information is contained in the large-scale density field,
but it is hard to extract it because the signal is order-of-magnitudes weaker than
the galactic and extragalactic backgrounds. Nevertheless, techniques such as
cross-correlation between intensity maps and galaxy surveys can help to remove
the foreground extra-signal, leaving the background intact. Furthermore, the
reconstruction technique can enhance the signal, improving in principle the accu-
racy of H(z) by 10� 40% (H.-J. Seo and Hirata, 2016).

• Finally, cosmic voids, that trace the minima of the density field, can be used
for BAO analysis (Liang et al., 2016). Kitaura et al. (2016), for the first time,
performed a > 3� detection of the BAO with cosmic voids. Their claim is
that the isotropy of these expanding regions, joined to the absence of a strong
gravitational pull (“void centers represent the most quiet places in the Universe”),
can reduce the effect of non-linear evolution, avoiding the need of techniques such
as the reconstruction. Further studies are necessary to demonstrate this claim.

5.6.3 State-of-the-art and future perspective

The actual largest cosmological survey, the Baryon Oscillation Spectroscopic Survey
(BOSS, K. S. Dawson, Schlegel, et al., 2013), that is part of the SDSS III (D. J.
Eisenstein, D. H. Weinberg, et al., 2011), provides a catalogue of 1.2 million massive
galaxies in a volume of 18.7 Gpc3. Usually, this survey is split in a low-redshift sample,
LOWZ (0.12 < z < 0.43), and a high-redshift sample, CMASS (0.43 < z < 0.70).
Several clustering analyses have been performed on this survey, achieving the aim of
performing a 1% distant measurement. Figures (5.11) and (5.12) show the anisotropic
clustering measurements, performed by Vargas-Magaña et al. (2016), superimposed to
the mean values over 1000 BOSS mock samples. In this work, the survey has been
divided in three redshift bins, partially overlapping, at mean redshifts of 0.38, 0.51,
and 0.61. In particular, Figure (5.11) shows the first three galaxy multipoles, making
a comparison before and after the reconstruction technique has been applied. While
the hexadecapole has a mean value of zero at large scales, in spite of low signal-to-
noise ratio, the pre-reconstruction quadrupole is negative. We can notice how the
post-reconstruction quadrupole is significantly closer to zero, meaning that such a
technique has partially removed the non-linear anisotropies in the correlation function.
Figure (5.12) shows the clustering wedges, in the same redshift bins, both before and
after the reconstruction. In this case, the reconstruction method clearly enhances the
large-scale signal in ⇠k(r), while the clustering level of ⇠?(r) is significantly lower after
the reconstruction. In both the cases, however, after the reconstruction the BAO peak
is sharper. Furthermore, Vargas-Magaña et al. (2016) performed an analysis of both
statistical and systematic errors. They found that, in this analysis, systematics are
significantly lower than statistical errors: the results of this work, obtained by only the
BAO analysis, are reported in Table (5.1).

Veropalumbo et al. (2016) selected a number of 12910, 42215 and 11816 galaxy
clusters, at median redshift z = 0.2, z = 0.3, z = 0.5, respectively, from the BOSS
survey and the SDSS DR7 (Abazajian et al., 2009). Figure (5.13) shows the measured
cluster angle-averaged correlation functions, with its best-fit model. As expected,
despite of using the largest ever spectroscopic sample of galaxy clusters, the constraints
on distance scales are not comparable with the BOSS galaxy ones. However, at all the
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z DV (z)(rs,f/rs) (Mpc) H(z)(rs/rs,f ) (Kms�1 Mpc�1
) DA(z)(rs,f/rs) (Mpc)

0.38 1475± 14± 3 80.5± 2.2± 0.5 1092± 16± 4

0.51 1872± 16± 4 90.9± 2.1± 0.6 1308± 18± 5

0.61 2131± 20± 4 99.1± 2.5± 0.6 1423± 23± 5

z DM (z)(rs,f/rs) (Mpc) ↵ ✏

0.38 1507± 22± 6 0.9995± 0.0098 0.0152± 0.0125
0.51 1975± 27± 8 0.9928± 0.0084 �0.0036± 0.0107
0.61 2291± 37± 8 0.9820± 0.0091 �0.0109± 0.0125

Table 5.1: Results of the BAO analysis of the clustering measurements from the BOSS
galaxy survey (Vargas-Magaña et al., 2016). The contribution of the systematic
errors to the total budget is explicit, as x ± �stat ± �sys, where �stat are the
statistical errors and �sys are the systematics. We can notice that the systematics
are significantly lower than the statistical errors. The total error is then computed
with summing the two contributes in quadrature, �2

tot = �2
stat + �2

sys. The ↵ and
✏ parameters are quoted with their systematics errors.

Figure 5.11: Correlation function multipoles, from the BOSS galaxy survey, before and
after the reconstruction (left and right panels, respectively). The top panels
show the monopoles, the middle panels the quadrupoles, the bottom panels
the hexadecapoles. The points with the error bars are the data measurements,
while the lines represent the mean values computed with 1000 BOSS mock
samples. The colours are referred to different redshift bins: 0.2 < z < 0.5 (red),
0.4 < z < 0.6 (blue), 0.5 < z < 0.75(green). Figure from Vargas-Magaña et al.
(2016).

redshift bins considered, the BAO peak has been detected at significance larger than
2�. Thanks to this, they could infer a 3% angle-averaged distance, DV (z), at redshift
z = 0.3 and z = 0.5, while at z = 0.2 the accuracy is 6%.

Kitaura et al. (2016) used the BOSS survey to unveil a 3.2� accuracy BAO detection
from the cosmic voids, shown in Figure (5.14), inferring a 2.2% distance measurement.

Delubac et al. (2015) detected the BAO feature, with a 5� significance, in the Ly↵



78 CHAPTER 5. BAO THEORY AND RECONSTRUCTION TECHNIQUE

Figure 5.12: Clustering wedges, from the BOSS galaxy survey, before and after the recon-
struction (left and right panels, respectively). The top panels show r2⇠k(r),
while the bottom panels r2⇠?(r). The points with the error bars are the data
measurements, while the lines the mean values computed with 1000 BOSS
mock samples. The colours are referred to different redshift bins: 0.2 < z < 0.5
(red), 0.4 < z < 0.6 (blue), 0.5 < z < 0.75(green). Figure from Vargas-Magaña
et al. (2016).

Figure 5.13: Angle-averaged correlation functions from spectroscopic cluster samples, ob-
tained joining BOSS and SDSS DR7 catalogues of BCG. In each panel, the
legend show the number of objects and the median redshift. The dashed lines
are the best-fit models, while the shaded areas represent the 68% posterior
uncertainties provided by the MCMC analysis (see section 5.5.1). Figure from
Veropalumbo et al. (2016).

forest flux-correlation function of 137562 quasars, in the redshift range 2.1 < z < 3.5,
from the BOSS survey. Figure (5.15) shows the correlation functions measured in
three different angular regions. From this clustering analysis, they obtained a 3%
DA/rs measurement, and a 5.8% precision on DH/rs. Figure (5.16) shows clustering
results from Ly↵ Forest data that have been used to constrain some main cosmological
parameters of the o⇤CDM model 2. The combination of galaxy and Ly↵ forest data
yields a marginalised constraint of ⌦⇤ = 0.73+0.25

�0.68, at 99.9% confidence, implying a
detection of the Dark Energy with an accuracy higher than 3�, from BAO analysis

2this model assumes that the Dark Energy is a cosmological constant, but allows ⌦⇤ = 0 and an
arbitrary ⌦T .
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Figure 5.14: Angle-averaged correlation function from voids, using the BOSS luminous red
galaxy sample. The black points with error bars are the data, the blue solid
line and the blue shaded area are the mean, and the 1� region, respectively, of
1000 mock voids catalogues. The inset shows the best-fit models, considering
the BAO feature (“wiggle”, red) or not (“non-wiggle”, black), to estimate the
significance of the BAO detection. Figure from Kitaura et al. (2016).

alone. Since the CMB provides the same acoustic scale, it works as a BAO experiment
at higher redshift. Thus combining CMB and BAO the constraints are much tighter:
⌦⇤ = 0.72+0.030

�0.034, at 68% confidence, implying a 20� Dark Energy detection (É. Aubourg
et al., 2015).

Alam et al. (2016) combined different BOSS analysis tools, including BAO, Alcock-
Paczynski test and RSD distortions, in both configuration and Fourier spaces, with
different statistics such as multipoles or clustering wedges, and various tracers, as Ly↵
Forest and galaxies. Figure (5.17) shows the two-point correlation function, ⇠(sk, s?),
as measured in the redshift space, compared to ⇠(µ, s) obtained from an ensemble of
BOSS mock catalogues (Sánchez, Kazin, et al., 2013). ⇠(sk, s?) contains both the
geometrical and dynamical distortions, which hold most of the anisotropic information
used to disentangle DM (z)/rs, H(z)rs and f�8.

Figure (5.18) shows the post-reconstructions multipoles in both the power spectrum
and the correlation function, in three different redshift bins: 0.2 < z < 0.5, 0.4 < z <
0.6, 0.5 < z < 0.75. In particular, the top panels show the monopoles, the middle
panels the quadrupoles, and the bottom panels the BAO rings, in the redshift range
0.4 < z < 0.6, as reconstructed from the monopoles and the quadrupoles, thus filtering
all the higher-order multipoles. Decomposing the radial and transversal components,
it is displayed x(p, µ) = x0(p) +L2(µ)x2(p), where x represents either s2 multiplied by
the correlation function or (Pl � Pl,smooth)/P0,smooth(k), where the subscript “smooth”
denotes the best-fit model with no BAO feature. The parameter p represents either
the separation, s, or the Fourier mode, k; L2 is the second-order Legendre polynomial,
pk = µp and p? =

p
p2 � µ2p2. Such a display represents the angle-averaged BAO

measurement, and the accuracy of the circular shapes of the BAO rings gives a measure
of the geometrical distortions.

Figure (5.19) shows the constraints on DM (z)(rs,f/rs), H(z)(rs/rs,f ), and f(z)�8(z)
clustering measurements, obtained by modelling the BAO and RSD in both correlation
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function and power spectrum, in comparison with the Planck ⇤CDM model. In this
figure are also shown the constraints obtained by compressing the different cosmological
information, provided by the anisotropic BAO and RSD investigations, into a unique
set of parameters, through a brand new technique called consensus (for further details
see Sánchez, Grieb, et al., 2017). The consensus constraints are ⇡ 10� 20% tighter
than the most accurate measurement from the original set.

Figure (5.20) shows the so-called “Hubble diagram”, which displays three different
distance measures, DV /rs, DA/rs, and DH/rs, where DH ⌘ c/H(z), showing how
these quantities converge at low redshifts. All the measurements are obtained from
BAO surveys, such as the BOSS, the 6dF Galaxy Survey (Jones et al., 2004), at mean
redshift of z ⇡ 0.15, the SDSS-II DR7 (W. J. Percival et al., 2010), whose clustering
analysis provided a 2.7% DV /rs at z = 0.275 measurement, and the WiggleZ survey
(Blake, Kazin, et al., 2011), in which a 4.9� BAO detection at mean redshift z = 0.6
provided a 4.5% accurate measurement of the A parameter (see equation (5.9)). All
these measurements are in agreement with the ⇤CDM model predictions, over plotted
in the figure.

In Table (5.2) are shown some of the final constraints on the main cosmological
parameters obtained from the clustering analysis of the BOSS survey, combined with
the data from the Planck Satellite CMB temperature power spectra (Alam et al., 2016)
.

H0 (Kms�1 Mpc�1
) ⌦k ⌦m w

67.6± 0.5 0.0003± 0.0026 0.311± 0.006 �1.01± 0.06

Table 5.2: Constraints on four main cosmological parameters from the clustering analysis
of the BOSS survey, combined with the data from the Planck Satellite CMB
temperature power spectra (Alam et al., 2016).

The sensitivity of the BAO to the Dark Energy starts to decline at redshift z ⇡ 3.5.
Sampling a sufficient fraction of the entire comoving volume over such redshift, with
high sampling density, will ensure that the sample variance dominates over the shot
noise. Sampling at the same redshift, with the same methods, different sky regions is
thus not redundant. Since just a few percent of the sky, mainly at low redshift, has
been covered until now, the BAO surveys have a great possibility of growth.
An on-going survey is the eBOSS (extended Baryon Oscillations Spectroscopic Survey,
K. S. Dawson, Kneib, et al., 2016), which is sampling massive galaxies at redshifts
0.6 < z < 2.2, providing Ly↵ forest measurements at redshift z > 2.1.
Future projects are the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX,
Hill and HETDEX Consortium, 2016), which plans to survey 800000 Ly↵ emission-line
galaxies at redshifts 1.8 < z < 3.7, with a large set of integral-field spectrographs; the
Dark Energy Spectroscopic Instrument (DESI, Levi et al., 2013), which will survey
4 million red galaxies and 3 million quasars, creating three-dimensional galaxy maps
at z < 2 and Ly↵ forest at z > 2; J-PAS (Benitez et al., 2014), that will measure
0.003(1 + z) photometric redshifts for 9 ⇥ 10

7 galaxies, 7 ⇥ 10

5 galaxy clusters and
groups, plus several million AGN, in a effective volume of 14 Gpc3 up to z = 1.3. the
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ESA space mission Euclid (Laureijs et al., 2011), that will be composed by a wide
and two deep surveys, providing both spectroscopic and photometric measurements.
The wide survey will cover an area of 14000 deg2 up to z < 2., while the two deep
fields will cover each one a 20 deg2 area. In particular, Euclid will combine weak
lensing and BAO analyses to improve the constraints on cosmological parameters. For
the BAO analysis, Euclid will use a slitless spectrometer, that will detect million of
H↵ emission line galaxies in the near-infrared band, providing a redshift accuracy of
dz/(1 + z) = 0.001 (Cimatti et al., 2009).
There are many near-future experiments with the aim of detecting the BAO in 21 cm
intensity maps, such as the Baryon Acoustic Oscillations Broadband and Broad-beam
Array (BAOBAB, Pober et al., 2013), the Canadian Hydrogen Intensity Mapping
Experiment (CHIME, Bandura et al., 2014) and the Hydrogen Intensity and Real-time
Analysis eXperiment (HIRAX, Newburgh et al., 2016).
To approach the limit of the cosmic variance at z > 1, it requires ⇡ 10

8 galaxies.
Next-generation interferometers, such as the Square Kilometer Array, should be capable
to detect the 21 cm line of the neutral hydrogen in emission-line galaxies. Such interfer-
ometers could in principle sample spectroscopically 10

9 galaxies in the redshift range
z = 2� 3 (Abdalla and Rawlings, 2005), reaching the sample variance limit over half of
the sky, thus probably being the most valuable BAO experiment in the very next future.
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Figure 5.15: Ly↵ forest flux-correlation functions from a BOSS quasar catalogue, in the
redshift range 2.1 < z < 3.5. The measurements are in three different angular
regions: µ > 0.8 (top panel), 0.8 > µ > 0.5 (middle panel) and 0.5 > µ > 0,
where µ is the central value of rk/

q
r2k + r2? in each (rk, r?) bin (bottom panel).

The solid line is the best fit, while the dashed curve is the best fit keeping
both the ↵? and ↵k parameters (see section 5.5.2, equations (5.53) and (5.54))
set to the unity. Figure from Delubac et al. (2015).
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Figure 5.16: Constraints on ⌦⇤ (left panel) and c/(H0rs) (right panel) in the o⇤CDM model.
Green curves show the combined constraints from galaxy and Ly↵ Forest BAO
analysis. Black curves include also the measurement of DM (z = 1090)/rs from
the CMB acoustic scale, with no assumption on the value of rs, except that
is the same scale as the BAO. Blue and red curves represent the result of
combining the CMB with Ly↵ Forest and galaxies, respectively. Figure from
É. Aubourg et al. (2015).

Figure 5.17: Left panel: unreconstructed ⇠(sk, s?), measured from the BOSS galaxy survey,
at redshifts 0.5 < z < 0.75 (Alam et al., 2016). The color scale shows the data
and the contours show the prediction of the best-fit model. The RSD shrink the
iso-curves in the line-of-sight direction, and also the BAO ring, clearly visible.
Right panel: ⇠(s, µ) from an ensemble of BOSS mock catalogues (Sánchez,
Kazin, et al., 2013). The solid contours lines follow the color scheme, while the
dashed contour lines represent the multipoles expansion. The contours line are
not horizontal, i.e. there is not isotropic clustering, due to RSD. The BAO
feature can be noticed at s ⇡ 110h�1 Mpc.
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Figure 5.18: BAO signal in Fourier (left panels) and configuration (right panels) space. The
top panels show the monopoles, data (points) and best-fit BAO models (curves),
in three different redshift bins: 0.2 < z < 0.5 (red diamonds), 0.4 < z < 0.6
(black triangles), 0.5 < z < 0.75 (blue circles), as shown in the legend. The
power spectrum is visualised as (P0�P0,smooth)/P0,smooth, while the correlation
function ⇠0�⇠0,smooth, where the subscript “smooth” denotes the best-fit model
with no BAO feature. For clarity, there is an offset between the data at the
highest and lowest redshifts, of ±0.15 in the power spectra and ±0.004 in the
correlation functions. The middle panels show the quadrupoles, displayed as
(P2 � P2,smooth)/P2,smooth in the power spectrum and ⇠2 � ⇠2(✏ = 0). If the
reconstruction was perfect, and the fiducial model corrected, both the curves
and the points would be flat. The bottom panels show the measurements in
the redshift range 0.4 < z < 0.6 decomposed in the radial and transversal
components. It is displayed x(p, µ) = x0(p) + L2(µ)x2(p), where x represents
either s2 multiplied by the correlation function or (Pl�Pl,smooth)/P0,smooth(k).
The parameter p represents either the separation, s, or the Fourier mode, k;
L2 is the second-order Legendre polynomial, pk = µp and p? =

p
p2 � µ2p2.

Figure from Alam et al. (2016).
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Figure 5.19: Top panels: two-dimensional 68% and 95% marginalized constraints on
DM (z)(rs,f/rs), H(z)(rs/rs,f ), and f(z)�8(z), at middle redshift, in the BOSS
survey. The blue solid contour lines represent the fiducial Planck ⇤CDM model,
while the black solid lines represent the consensus of the parameters. Bottom
panels: the data points are the final consensus of the parameters, overplotted
on the Planck ⇤CDM model (blu line) as a function of the redshift. The
results of the BOSS analysis are in good agreement with the fiducial Planck
⇤CDM model. Figure from Alam et al. (2016).

Figure 5.20: The “BAO Hubble diagram”, from É. Aubourg et al., 2015. All the data points
are BAO measurements of DV /rs (blue), DM/rs (red), and zDH/rs (green),
where DH ⌘ c/H(z). The sources of the measurements are showed in the
legend; the filled points represents the BOSS data. The lines are the prediction
of the fiducial Planck ⇤CDM model. The

p
z factor scaling factor is just for

plot necessity.





Chapter 6

BAO analysis of Magneticum
simulations

“Behind every man now alive stand 30 ghosts,
for that is the ratio by which the dead outnumber the living.”

Arthur C. Clarke, 2001: A Space Odyssey (1968)

Nowadays, the reconstruction is a standard technique in clustering analysis. Future
BAO surveys are specifically designed to take into account the potential improvements
given by this method. Reconstruction is expected to be more effective at low redshifts,
where non-linear evolution strongly affects the clustering of objects. Nevertheless, since
previous works focused mainly on reconstructing the density field of specific galaxy
surveys, we lack a general evaluation of the reconstruction performances in different
regimes. This thesis aims at estimating the impact of the reconstruction method on
the constraints of cosmological parameters, inferred through BAO analyses at different
redshifts. Moreover, we want to investigate how the reconstruction efficiency varies
for different cosmic tracers. So far, no one applied the reconstruction method on
density fields traced by galaxy clusters. Thus, it is not clear whether the reconstruction
can improve the accuracy of BAO from galaxy clusters or not. We investigate this,
furthermore quantifying the gain obtained by the reconstruction at different redshifts,
trying to constrain the limits beyond which this technique is not effective. To do
this, we have performed a clustering analysis on the Magneticum simulations, a set of
cosmological hydrodynamical simulations described in the next section. In particular,
we have analysed the angle-averaged two-point correlation function of galaxy, galaxy
cluster and AGN mocks catalogues, at the following redshifts: z = 0.2, z = 0.52,
z = 0.72, z = 1, z = 1.5, z = 2.
The adopted procedure, exposed in details in this chapter, is schematically reported
here:

• since the cosmological simulations provide real-space catalogues, we have turned
our mock samples in redshift space, to simulate realistic observations;

• we have computed the angle averaged two-point correlation function, repeating
the measurement at all the redshifts considered, for the different cosmic tracers;
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• by computing and modelling the projected correlation function, we have estimated
the bias of the tracers;

• we have implemented and tested a reconstruction code, and used it to “shift” the
original catalogues, in order to restore the linear density field;

• after the reconstruction has been applied, we have re-computed the angle-averaged
two-point correlation function;

• we have modelled the two-point correlation function both before and after the
application of the reconstruction method, to estimate the differences on the
constraints of the inferred best-fit model parameters.

6.1 Magneticum Simulations
The Magneticum simulations1 (Dolag et al., in preparation), are a set of hydrody-

namical simulations over different cosmological volumes, characterised by an excellent
spatial resolution. They are based on the P-GADGET3 code (V. Springel, 2005), which
solves the gravitational forces with an hybrid approach between HT and PM methods
(i.e. the TREE-PM method), while the hydrodynamical part is implemented with an
entropy-conserving formulation of a SPH formalism (see V. Springel and L. Hernquist,
2002). The adopted cosmological model is a flat ⇤CDM scenario, with the parameters
chosen to match the seven-year Wilkinson Microwave Anisotropy Probe (WMAP7,
Komatsu et al., 2011) and reported in Table (6.1).

H0 (kms�1 Mpc�1
) ⌦0,m ⌦0,b �0,8

70.4 0.272 0.0456 0.809

Table 6.1: Cosmological parameters of Magneticum simulations, within a ⇤CDM Universe
(from Komatsu et al., 2011).

The simulations cover a volume with periodic boundary conditions, initially filled
with an equal number of CDM and baryon particles, which satisfy the relation

mb

mDM
=

⌦b

⌦DM
. (6.1)

In this way the different abundances of the two components are correctly taken into
account, despite their number is the same.
The low viscosity of SPH codes helps to properly track turbulences (Dolag, Vazza,
et al., 2005), and it also allows to treat radiative cooling, heating from a uniform time-
independent background and star formation with the associated feedback. Radiative
cooling rates are implemented following Wiersma et al. (2009), while the CMB and the
X-ray background are taken into account following Haardt and Madau (2001). The
contribute to the cooling from eleven elements (H, He, C, N, O, Ne, Mg, Si, S, Ca,
Fe) have been pre-computed using the CLOUDY photoionization code (Ferland et al.,
1998), within an optically thin gas in photoionization equilibrium.

1
http://magneticum.org/index.html

http://magneticum.org/index.html
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The star formation model describes a multiphase structure (V. Springel and L. Hern-
quist, 2003); in particular, the intra-stellar medium (ISM) is considered as a two-phases
medium. Cold clouds, formed from the cooling of hot gas, that are above a certain
density threshold, are embedded in the hot gas phase, by assuming pressure equilibrium.
The Supernovae feedback is also taken into account, by heating the two-phases medium
and possibly evaporating the cold clouds. A fraction of 10% of massive stars are
assumed to explode as type II Supernovae, each one releasing 10

51 erg that trigger
galactic winds at velocity of vwind = 350 km/s, with a mass loading rate proportional
to the star formation rate (SFR).
Metals are produced by type II and type Ia supernovae, and by stars in the asymptotic
giant branch (AGB) phase, as a function of their lifetime, modeled according to the
mass-lifetime function provided by Padovani and Matteucci (1993), following Woosley
and Weaver (1995), Van den Hoek and Groenewegen (1997), Thielemann et al. (2003).
The assumed initial mass function is from Chabrier (2003).
The black hole growth and AGN feedback are modeled following V. Springel, S. D.
White, Jenkins, et al. (2005) and Di Matteo et al. (2005). The black holes are repre-
sented as collisionless sink particles, within the most massive objects, with an initial
mass of 10 M�. The black holes accrete gas according the Bondi-Hoyle-Lyttleton
approximation (Hoyle and Lyttleton, 1939; Hermann Bondi and Hoyle, 1944; HJ Bondi,
1952) :

˙MBH =

4⇡G2M2
BHfboost⇢

c2s + v2)3/2
, (6.2)

where ⇢ and cs are the density and the sound speed within the surrounding gas, fboost
is a density boost factor, typically fboost ⇡ 100, and v is the velocity of the black hole
with respect to the surrounding gas. The radiated bolometric luminosity is

Lbol = ✏r ˙MBHc2, (6.3)

where the radiative efficiency, ✏r, is fixed to the value of 0.1 for a non-rapidly spinning
black hole, according to Shakura and R. A. Sunyaev (1973).
When the simulation runs, CDM and baryon particles interact gravitationally. The
self-gravitating CDM haloes are identified with a Friend-of-Friend (FoF) algorithm (see
e.g. W. Press and M. Davis, 1982), which recognises the virialised groups which have
at least 32 CDM particles within a distance l < 0.16¯l, where ¯l is the mean distance
between particles (Dolag, Borgani, et al., 2009). At each time step, a modified version of
the SUBFIND algorithm (V. Springel, S. D. White, Tormen, et al., 2001), identifies the
substructures within self-gravitating CDM haloes. The physical properties, obtained
from the hydrodynamics of the baryon particles within each substructure, determine
the nature of the object: galaxy, AGN or galaxy cluster.
In particular, each substructure has a SFR associated, as a function of its mass, and
consequently a number of “star-particles”, according to the initial mass function. These
particle will be recognized as galaxies. From Magneticum galaxy catalogues we have
position, velocity, absolute magnitude in multi-bands, stellar mass and SFR of each
galaxy.
AGN are active galaxies, selected according to the bolometric luminosity of their central
black holes (see Hirschmann et al., 2014). A paramount quantity to describe the AGN
evolution is the accretion rate, usually normalised to the Eddington accretion rate:

fEd ⌘
˙MBH

˙MEd

, (6.4)
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where the Eddington accretion rate, ˙MEd, is calculated by balancing the radiation
pressure with the gravitational attraction between the black hole and the surrounding
gas, assuming a spherically symmetric accretion and a non-spinning black hole.
Galaxy clusters are identified as the matter substructures (both baryon and CDM)
within the same virialised FoF halo. The central particle of the group determines the
cluster position, while the cluster velocity is the mean velocity of all the particles within
the halo. The galaxy cluster properties include also the mass and the temperature
at the radius R500 (defined as the radius where the density is 500 times the critical
density of the Universe) and the X-ray luminosity due to bremsstrahlung emission.
It is important to notice that, within this cluster definition, we are considering not
only real galaxy clusters, but also low-mass objects, as galaxy groups or just haloes.
This is why we have such a large number of clusters at high redshifts, and we can
perform clustering analysis up to z = 2, which is impossible with real galaxy-clusters.
To consider the real galaxy clusters, we should impose a mass cut, as shown in the
next chapter. However, to simplify the discussion, hereafter the word cluster will be
referred to the Magneticum definition.
For further details on Magneticum simulations, see Marulli, Veropalumbo, Moscardini,
et al. (2015) and references therein.

As already mentioned, the Magneticum set includes simulations of different volumes
and resolutions (see http://magneticum.org/simulations.html). For this work we
use the Box1 volume, with mr resolution, hereafter Box1mr: the properties of this
simulation are reported in Table (6.2), while a map of the snapshot at z = 0 is shown
in Figure (6.1). Finally, Table (6.3) reports the mean properties of the galaxy, AGN
and cluster catalogues used in this work, in six different snapshots, at z = 0.2, z = 0.52,
z = 0.72, z = 1, z = 1.5, z = 2.

Table 6.2: Main characteristics of the Box1mr Magneticum simulation: cosmological volume,
number of particles N , mass m of CDM and gas particles, and softening scales
for CDM, gas and stars (✏CDM , ✏gas and ✏? respectively).

V (Mpc h�1) N mDM (M� h�1) mgas (M� h�1)

896 2 · 15263 1.3 · 1010 2.6 · 109

✏CDM (kpc h�1) ✏gas (kpc h�1) ✏? (kpc h�1)

10 10 5

6.2 CosmoBolognaLib

For the clustering analysis of the simulation, we have used the CosmoBolognaLib
(CBL) (Marulli, Veropalumbo, and Moresco, 2016), a large set of C++ libraries for
cosmological computations, which can can be easily included in high-level language

http://magneticum.org/simulations.html
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Figure 6.1: Snapshot of the Box1mr, one of the Magneticum simulations, at z = 0. The
region shown spans a total size of 1300 Mpc, and contains 7 ⇥ 109 CDM,
gas, star and black hole particles. The galaxies and the stars are colored in
white. The gas, which fills the space between the galaxies, is colored according
to its temperature, from cold/brown to hot/light blue. Figure from http:
//magneticum.org/media.html

codes, such as Python. CBL is a living project, fully publicly available 2, especially
indicated for cosmological investigations of the large-scale structure. Among the
other things, CBL allows to asset a cosmological framework, to handle astronomical
catalogues and to measure two-point and three-point statistics in configuration space.
Moreover, it is possible to estimate the errors through different covariance matrices and
model the two-point correlation function, performing the MCMC likelihood sampling
technique. For further details, see Marulli, Veropalumbo, and Moresco (2016).

2
http://apps.difa.unibo.it/files/people/federico.marulli3/CosmoBolognaLib/Doc/html/

index.html

http://magneticum.org/media.html
http://magneticum.org/media.html
http://apps.difa.unibo.it/files/people/federico.marulli3/CosmoBolognaLib/Doc/html/index.html
http://apps.difa.unibo.it/files/people/federico.marulli3/CosmoBolognaLib/Doc/html/index.html
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Table 6.3: Mean properties of the catalogues from the Box1mr of Magneticum Simulations,
at the redshifts of interest in this work: z = 0.2, z = 0.52, z = 0.72, z = 1.,
z = 1.5, z = 2. For galaxy catalogues, we reported the mean stellar mass, M?,
G-band magnitude and SFR. For cluster catalogues, we reported the total mass,
M500, the temperature, T500, and the X-ray luminosity, L500, at the r500 radius.
For AGN catalogues, the mass of the black hole, MBH , its bolometric luminosity,
Lbol, and the normalised accretion rate, fEd.

Galaxies Nobj (106) M? (1010 M�h�1) G SFR (M�h�1yr�1)

z=0.20 3.24 8.9 -21.48 16.24
z=0.52 2.87 7.6 -21.19 21.72
z=0.72 2.60 6.8 -21.04 25.78
z=1.00 2.18 5.7 -20.87 32.77
z=1.50 1.64 4.4 -20.57 42.35
z=2.00 1.12 3.3 -20.27 48.33
Clusters Nobj (105) M500 (1012 M�h�1) T500 (Kev) L500 (1042 erg s�1)

z=0.20 5.3 8.3 0.239 6.11
z=0.52 4.8 7.2 0.240 7.76
z=0.72 4.3 6.5 0.227 9.52
z=1.00 3.5 5.5 0.226 10.80
z=1.50 2.4 4.4 0.203 13.14
z=2.00 1.4 3.4 0.170 14.33
AGN Nobj (105) MBH (108 M�h�1

) Lbol (1045 erg s�1) fEd

z=0.20 9.5 6.0 0.59 0.03
z=0.52 6.9 6.7 1.13 0.05
z=0.72 5.6 6.9 1.26 0.06
z=1.00 3.6 8.2 2.80 0.10
z=1.50 2.0 8.9 9.26 0.21
z=2.00 0.9 8.1 16.34 0.25
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6.3 Reconstruction Algorithm

We have implemented a reconstruction algorithm in the CBL, that uses the Fast
Fourier Transform method (FTT) to solve the displacement field in redshift space, as
discussed in section 5.4.1. Such an algorithm is composed by the following steps:

• take in input the data and random catalogues;

• if the input catalogues are in redshift space, transform them in real-space,
assuming a fiducial cosmological model, through equation (3.22);

• create a three-dimensional grid, computing the number of objects in each grid
cell of a given size rcell, by using the particle-in-cell method;

• compute the density field converting the grid in Fourier space, using the FFT;

�(k) = FTT[grid(rcell,q)], (6.5)

being q = (x, y, z) the comoving coordinates of catalogue objects;

• smooth the density field through a Gaussian filter, assuming a given radius
rsmooth:

�smooth(k) = �(k) exp

✓
�k2r2smooth

2

◆
; (6.6)

• compute the displacement field in Fourier space, adopting the Zel’dovich approx-
imation and using a given bias, b:

 = � ik

k2
�smooth(k)

b
; (6.7)

• compute the displacement field in configuration space, by using the IFFT:

 = IFFT

� ik�smooth(k)

k2b

�
; (6.8)

• eventually compute the displacement field corrected for RSD, hereafter  RSD:

 RSD =  � f

1 + f

⇢
IFFT


� ik�smooth(k)

k2b

�
· ˆs
�
s, (6.9)

where the growth factor, f , is an input parameter;

• shift the data catalogue using the displacement field corrected for RSD:

q = q� RSD; (6.10)

• shift the random catalogue using the displacement field, without RSD correction:

q = q� ; (6.11)
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6.4 Testing the reconstruction algorithm

We have tested the reconstruction algorithm implemented on the CBL using the
Magneticum mock catalogues. At first, we investigate the impact of varying the
input parameters on the reconstruction performances. To do this, we used the galaxy
catalogue at z = 0.52. Moreover, we discuss about how to estimate (or choose) such
parameters, exposing also the fiducial values used in this work. We also perform other
tests, like a check of eventual velocity bias and a comparison with a different code,
using different Magneticum catalogues depending on the type of test performed and
its purpose.

6.4.1 The Gaussian smoothing scale

The smoothing scale is the parameter that impacts the most the reconstruction
efficiency. In fact, if we smooth at scales too small, the reconstruction is heavily affected
by the shot noise. On the contrary, by oversmoothing, the displacement is reduced,
i.e. the reconstruction is less effective. For a sufficiently large number of tracers, the
best choice would be to smooth at small scales, e.g. rsmooth = 5h�1 Mpc. Moreover,
such a small smoothing radius heavily distorts the correlation function at small
scales. On the contrary, large smoothing scales, of the order of rsmooth = 20h�1 Mpc,
degrades the reconstructed BAO peak, although it is still enhanced with respect
to the unreconstructed one. This is another proof that the large-scale bulk flows
damp the BAO peak, because we can correct them even with large smoothing scales.
Figure (6.2) shows the angle-averaged two-point correlation function, computed after
the application of the reconstruction technique, by using three different Gaussian
filters, with rsmooth = 10h�1 Mpc, rsmooth = 15h�1 Mpc, rsmooth = 20h�1 Mpc, in
the galaxy catalogue at z = 0.52. Modelling the BAO peak as shown in section
6.6, we have inferred a value of the ↵ parameter ↵ = 1.062± 032, ↵ = 1.066± 0.034,
↵ = 1.067±0.031, respectively. Even if, as expected, the reconstruction is more effective
with the 10h�1 Mpc Gaussian filter, the values of the ↵ parameters are widely within
their errors. Nevertheless, we can notice that, at small scales, the reconstruction with
a smoothing radius of 15h�1 Mpc better corrects the RSD compared to the other two
cases. For these reasons, our choice has been to perform a Gaussian smoothing at the
fiducial scale of 15h�1 Mpc, a value widely used in previous works (e.g. Padmanabhan,
Xu, et al., 2012).

6.4.2 The bias

The bias has a strong effect on the reconstruction. If we underestimate the bias,
then we overestimate the density field and, as a consequence, the displacement field.
On the contrary, overestimating the bias, we underestimate the density field and so
the displacement field. We have inferred the linear bias by modelling the projected
correlation function. After turning the Magneticum catalogues into redshift-space
mocks, by using equation (3.22), the linear bias can be estimated through equation
(3.43), reported here:

b =

s
wt

p(rp)

wm
p (rp)

, (6.12)
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Figure 6.2: Galaxy two-point correlation function, at z = 0.52, computed reconstructing
the density field with smoothing scales of rsmooth = 10h�1 Mpc (black circles),
rsmooth = 15h�1 Mpc (red diamonds), rsmooth = 20h�1 Mpc (blue hexagons).
The error bars are computed with the Jackknife method. Notice how the
reconstruction technique with a Gaussian filter at rsmooth = 15h�1 Mpc corrects
the RSD distortions, at small scales, better than using the other two filters.

where

wm
p (rp) =

Z p
⇡2
max

+r2
p

r2
p

dr
2r⇠(r)q
r2 � r2p

(6.13)

(Veropalumbo et al., 2016), and the matter correlation function, ⇠(r), is given by
equation (5.45). The projected correlation function of tracers, wt

p(rp), has been
measured by creating random catalogues 5 times larger than the data, to minimise the
shot noise error, in 10 logarithmic bins within 1� 50h�1 Mpc. The two-dimensional
correlation function, ⇠(rp,⇡), has been integrated up to ⇡max = 50h�1 Mpc, a value
that well balance the robustness with the need of excluding noisy bins at large scales.
We have modelled the projected correlation function in the range of 5� 50h�1 Mpc, by
generating 100 MCMC chains of 10000 samples, with a Gaussian likelihood (equation
5.38). We have assumed a uniform bias prior of b�8 in the range of 1� 5. The value of
the bias, given by equation (6.12), is then calculated by averaging all the values over
the bins within the fit range. The modelled projected correlation functions, together
with the bias values that we have estimated, are presented in the next chapter.

6.4.3 The growth factor
The growth factor is used to restore the isotropy of the correlation function (ne-

glecting the impact of geometric and other distortions). Several investigations (e.g.
Padmanabhan, Xu, et al., 2012) have demonstrated that the impact of this parameter
on the accuracy of the reconstruction is marginal. In this thesis, we have compute the
growth rate directly from the fiducial cosmological model, through equation (2.34),
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following e.g. L. Wang and P. J. Steinhardt (1998b), Kiakotou et al. (2008) and Gong
et al. (2009).

6.4.4 The cell radius
The cell radius defines the resolution of the three-dimensional grid used to computed

the density field. We test the possible impact of different choices of rcell to the recon-
struction performances, by running three different methods, with rcell = 5h�1 Mpc,
rcell = 10h�1 Mpc, rcell = 20h�1 Mpc. Figure (6.3) shows the result of this anal-
ysis: the measured two-point correlation functions appear almost identical for all
the cases. By modelling the BAO peak, we have estimated the following ↵ param-
eters: ↵ = 1.071 ± 033, ↵ = 1.071 ± 0.033, ↵ = 1.066 ± 0.033 for rcell = 5h�1 Mpc,
rcell = 10h�1 Mpc, rcell = 20h�1 Mpc respectively . Since the accuracy of the ↵
parameter is equivalent for all the cell radii considered, we set our fiducial cell radius
value to the intermediate scale considered, rcell = 10h�1 Mpc. In conclusion, the effect
of varying rcell is marginal on the efficacy of the reconstruction.

Figure 6.3: Same of Figure (6.2), but varying rcell instead of rsmooth . In particular, the
different curves refer to rcell = 5h�1 Mpc, rcell = 10h�1 Mpc, rcell = 20h�1 Mpc.
The measured correlation function measured for these three different cases is
almost identical.

6.5 The velocity bias
As discussed, the observable cosmic objects do not trace precisely the density field of

the underlying matter. This means that it can be possible they do not trace fairly also
the matter velocity field. Since we know the true velocity field of the mock catalogues,
we can compare it to the displacement field computed by the reconstruction. Figure
(6.4) shows the relation between velocity and displacement fields, for galaxy mocks at
low (z = 0.2) and high (z = 2) redshifts. Figure (6.5), instead, shows the velocity and
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displacement fields of galaxy cluster as a function of the mass, at z = 0.2, z = 0.52
and z = 2. We used in the first case galaxy catalogues, to show the velocity bias of the
objects with the expected highest peculiar velocities, at the extremes of the redshift
range considered. In the second case, we used the galaxy cluster catalogues because of
the known viral mass, M500. As expected, small objects with high peculiar velocities
can cause an underestimation of the displacement field, due to RSD not fully taken
into account. Nevertheless, the displacement is a low-scattered monotonic function of
the velocity, so the displacement field well traces the true velocity field, i.e. there is
not a significant velocity bias.

Figure 6.4: Norm of the displacement field, , computed through the reconstruction method,
averaged in bins of the norm of the true velocity field, in galaxy mocks at z = 0.2
(left panel) and z = 2 (right panel). We have fitted the data with cubic splines
(red dashed lines). Error bars, too small to be appreciated, are the fraction of
standard deviation over the square root of point number in each bin. Notice
how both the velocity and displacement field norms are larger at low redshifts,
implying that the reconstruction is more effective in the near Universe, as
expected.

Figure (6.6) shows the effect of the reconstruction on the two-dimensional correlation
function on the galaxy catalogue at z=0.2. In this mock sample we expect the
reconstruction to be the most effective. The BAO rings are highlighted in both the
unreconstructed real-space and redshift-space correlation functions. In particular, the
isotropy of the BAO is clearly lost in redshift space. By reconstructing the density
field, the symmetry of the BAO is approximately restored. Furthermore, the BAO is
significantly enhanced, even with respect to the real-space correlation function.

6.5.1 Comparison between different reconstruction algorithms

As discussed in section 6.3, we have shifted only data catalogues for RSD correction.
In fact, it has been demonstrated that the RSD correction is not effective adding the
extra RSD shift on both data and random catalogues (e.g. Padmanabhan, Xu, et al.,
2012, M. White, 2015). We test this, by trying both the methods. Moreover, we
test our reconstruction implementation using a different algorithm, implemented by
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Figure 6.5: Displacement (red) and velocity (black) field norms, as a function of the mass,
for galaxy clusters at z = 0.2 (left panel), z = 0.52 (middle panel) and z = 2.
(right panel). The error bars are computed in the same way as Figure (6.4).
The displacement field is normalised at a fixed value in all the panels, to show
the dependences of this quantity on the redshift.

Martin White, based on the finite difference method, and publicly available 3. Using
the reconstruction by White, both data and random are shifted for the RSD correction
term.
Figure (6.7) shows the result of this test. The two-point correlation functions, recon-
structed by using the “single” and “double” shifts, are overplotted to the unreconstructed
ones, in both real and redshift space, for the galaxy catalogue at z = 0.52. The mea-
sured correlation function, after applying White’s reconstruction, is almost coincident
to the one measured after shifting both data and random with our algorithm. Both
the correlation functions follow the redshift-space correlation function at small scales,
above the real-space unreconstructed one. This overestimation of the clustering signal
at small scales is due to the Fingers of God. The one-shift reconstructed correlation
function, on the contrary, is quite similar to the unreconstructed real-space one, at
intermediate and small scales. Notice that, even in this case, the reconstruction cannot
correct for the RSD at the smallest scales. At the large scales, all the reconstructed
correlation functions show a sharper BAO peak compared to both the unreconstructed
ones. Thus, our test confirms that, by shifting only data, the reconstruction technique
reduces the effects of RSD, while shifting both data and random not. Moreover, this
test shows that our implementation of the reconstruction is fully consistent with the
one in the code by White.

3
https://github.com/martinjameswhite/recon_code/blob/master/recon.cpp

https://github.com/martinjameswhite/recon_code/blob/master/recon.cpp
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Figure 6.6: The top panels show the galaxy two-dimensional correlation function, at z = 0.2,
in real (left) and redshift space (right). The bottom-left panel shows the
reconstructed two-dimensional correlation function. The displayed contour
levels of the two-dimensional correlation functions correspond to the following
values: ⇠(r?, rk) = [0.1, 0.01, 0.001, 0.00001]. The bottom-right panel shows the
two-point correlation functions corresponding to other panels: unreconstructed in
real (black diamonds) and redshift (red diamonds) space, and reconstructed (blue
circles) ones. In the latter panel we have highlighted with colored vertical lines
the bins covering the BAO peak: r = 96.25h�1 Mpc (red), r = 103.75h�1 Mpc
(blue), r = 111.25h�1 Mpc (yellow), r = 118.75h�1 Mpc (green). The same
colour-code is used with the radii of the BAO rings in the two-dimensional
correlation functions.
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Figure 6.7: Two-point correlation function measured in Magneticum Box1amr galaxy cata-
logue, at z = 0.52. The black and red diamonds represent the real-space and
redshift-space unreconstructed two-point correlation function, respectively. The
circles represent the reconstructed correlation function. The reconstruction has
been applied by shifting only the data (blue), both data and random (green)
and with a different algorithm, that shifts both data and random, by Martin
White (purple).
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6.6 Modelling the BAO peak in the two-point corre-
lation function

Once computed the reconstructed angle-averaged two-point correlation function,
we can model the BAO peak to extract the cosmological information. We used the
same procedure discussed in section (5.5.2). In particular, our model is

⇠(r) = (b�8)
2⇠DM (↵r) +A(r), (6.14)

being ⇠DM the Fourier transform of the de-wiggle power spectrum:

PDM (k) = [PL(k)� Pnw(k)]e
�k2⌃2

NL

/2
+ Pnw(k), (6.15)

where the linear power spectrum, PL(k), is computed with CAMB (Lewis and Challinor,
2011). We modelled the two-point correlation function over the range of 60  r 
160h�1 Mpc, not considering the scales where corrections for RSD of the reconstruction
method are less effective. We have computed the posterior for the ↵ and (b�8)
parameters by running 500 MCMC chains, each one sampling 150000 points. We have
fixed the A(r) parameter to zero, to be sure that the chains reach the convergence,
and we have repeated the computation with different length of the chains, up to
30000 points. We have assumed a Gaussian likelihood, and uniform priors for both
the parameters, in a range of 0.7 � 1.3 for ↵ and 1 � 15 for b�8. The value that
maximises the posterior distribution, in case of Gaussian likelihoods, is the mean over
the chain samples. We have recomputed the best-fit models varying ⌃NL in a range
of 0  ⌃NL  100, with a step of 1h�1 Mpc for ⌃NL  15h�1 Mpc and 10h�1 Mpc
for ⌃NL > 15h�1 Mpc. Once we have computed the best values of the parameters for
each ⌃NL, we determined the �2 of all the models. Finally, we selected the best-fit by
minimising the �2 over the ⌃NL, thus obtaining a rough estimation of ⌃NL itself, and
the best-fit parameters ↵ and b�8. We show the modelled BAO peaks and the values
inferred for the ↵ parameter values in the next chapter.

6.7 Error estimation
We discussed about the different possible methods to estimate the errors, introducing

the Poisson, Jackknife and Bootstrap error estimations, in section 3.7. Since CBL
allows to compute all such errors, we have tested the performances of the three different
methods. Figure (6.8) shows the comparison between Poisson, Jackknife and Bootstrap
error estimators, with 125 Jackknife resampling and 100 Bootstrap mocks. Since we
found that all the cosmic tracers show similar qualitative behaviours at the redshifts
considered, we described specifically only the case of clusters at z = 2. Clearly, the
Poisson statistic underestimates the error at large scales, with respect to Jackknife and
Bootstrap, that appear quite similar to each other.

Our fiducial choice has been to use a Jackknife covariance matrix, that is faster to
compute with respect to Bootstrap, and it gives similar results. Figure (6.9) shows
the correlation matrices of galaxies at z = 0.2 and AGN at z = 2, before and after the
reconstruction. Being C(cov)

ij the covariance matrix, described by equation (3.47), the
correlation matrix C(corr)

ij is defined as follows:

C(corr)
ij ⌘

C(cov)
ijq

C(cov)
ii C(cov)

jj

. (6.16)
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Figure 6.8: Comparison between Poisson (green), Jackknife (red) and Bootstrap (black)
errors, for the mock catalogue of galaxy clusters at z = 2.

The highest correlations in the original matrix are in the elements close to the diagonal;
the out-of-diagonal elements are more scattered, and large scales bins have in general
the lowest signal. Applying the reconstruction, the elements close to the diagonal
have almost the same signal, even if more definite (notice that the diagonal elements
are normalised to the unity). The final effect of the reconstruction is to smooth
and regularise the correlation matrix. At high redshifts, the intrinsic scatter of the
correlation matrix is high, due to the lower number of objects. We can notice that
the reconstruction is less effective at high redshifts, as expected, because of the small
displacement field vectors: both before and after the reconstruction the correlation
matrices are “blurred”.
Since we want to use the same covariance matrix for a large range of redshifts and
different tracers, we considered only the diagonal of the Jackknife matrix. In this way,
we mitigate the noise of out-of-diagonal elements, which may affect the accuracy of
the BAO modelling.
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Figure 6.9: Jackknife normalised correlation matrices before (left) and after (right) the
reconstruction, for galaxies at z = 0.2 (top) and AGN at z = 2 (bottom). The
correlation matrices are computed in a range of 10 � 160h�1 Mpc, to encode
the BAO scale. The reconstruction smooths the main contrasts in the original
matrices. It is more effective at low redshifts, where the matrices are less blurred
with respect to the ones at higher redshifts.





Chapter 7

Results

“Never imagine yourself not to be otherwise than what it
might appear to others that what you were or might have
been was not otherwise than what you had been would have
appeared to them to be otherwise. ”

Lewis Carroll, Alice’s Adventures in Wonderland
(1865)

We have reconstructed the density field traced by galaxies, galaxy clusters and
AGN from Magneticum simulations, in the redshift range 0.2  z  2, to estimate the
reconstruction gain in different regimes. In the next sections, we present the results
that we have obtained in this analysis. In particular, in the first section we show the
modelling of the projected two-point correlation function, used to estimate the linear
bias, that is required by the reconstruction method. Then we model the BAO peak
in the monopole of the two-point correlation function, providing constraints on the
↵ parameter. The latter is a paramount quantity, being directly related to the main
cosmological parameters. Thus, it can be used to extract cosmological information.
Moreover, we discuss about the ⌃NL parameter, that is inferred by applying a �2 test
to the BAO model fit. We used the latter to also estimate the significance of the BAO
detection. Finally, we show the result obtained by applying the mass cut M > 10

13M�
to the cluster catalogues at redshifts 0.2  z  0.72. Since the Magneticum mocks
are composed also by small structures, not considerable as “real galaxy cluster”, we
applied this mass cut to simulate more reliable clusters. We show this further analysis
in section 7.2.1, discussing the main results obtained.

7.1 Modelling the linear bias
Following the procedure described in the previous chapter, and in particular in

section 6.4.2, we have modelled the projected correlation function to estimate the linear
bias of the selected tracers. We used this method, instead of more direct techniques
such as the modelling of the two-point correlation function in real space, to follow as
close as possible the procedure with real data. Thus, we integrate the redshift-space
correlation function along the line-of-sight up to up to ⇡max = 50h�1 Mpc, which
ensures the robustness of the method and at the same time it excludes the noise
of large bins. The biases inferred, reported in Table (7.1), will be one of the input
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quantities of the reconstruction method. Figures (7.1), (7.2) and (7.3) show the best-fit
models for galaxies, clusters and AGN, respectively.

Figure 7.1: The black circles represent the measured projected correlation functions of
galaxies, while the red dashed lines are their best-fit models, in the 5�50h�1 Mpc
range. The redshifts of measurements are displayed on the top of the boxes.
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Figure 7.2: Same of Figure (7.1), but for galaxy clusters.
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Figure 7.3: Same of Figure (7.1), but for AGN.

As expected, the bias shows a clear redshift evolution, for all the cosmic tracers
considered in this analysis (Marulli, Bolzonella, et al., 2013). Notice that AGN biases
are larger than the cluster ones, at all redshifts. “Real” galaxy clusters are more
massive than AGN. However, according to the cluster definition in the Magneticum
simulations, discussed in section 6.1, also smaller objects, such as galaxy groups or
haloes, are included in this class. For this reason we have a higher number of less
biased objects with respect to observable cluster catalogues. This is why, for example,
we can perform clustering analyses with these tracers up to z = 2, while the observable
clusters at those redshifts would be a few. To overcome this issue, we have applied a
mass cut of M > 10

13M� on the catalogue, analyse more reliable cluster mock samples.

7.2 Constraints on the ↵ parameter
To estimate the isotropic shift of the BAO peak, ↵, we have modelled the monopole

of the two point correlation function, as described in section 6.6. Figures (7.4), (7.5)
and (7.6) show the ��2 of the model fits as a function of ⌃NL, that is the difference
between the value of �2 found for each model and the minimum �2 over all models.
Our fiducial values of ⌃NL, inferred by selecting the ones that minimise the �2 (that is
where the curves match the x-axis) are reported in Table (7.1). From these figures we
can also estimate the significance of the BAO peak detection (see e.g. Veropalumbo
et al., 2016). The ⌃NL parameter, in fact, represent the degradation of the BAO
features in the power spectrum. This means that, for high values of ⌃NL, the BAO peak
completely disappears (i.e. ⇠(r) ! ⇠nw(r) in equation (5.46)). Thus, for a single free
parameter, that is one degree of freedom, a 1� detection correspond to ��2

= 1, a 2�
detection to ��2

= 4, a 3� detection to ��2
= 9, and so on. We found that, at z = 0.2,
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the BAO detection with the galaxy and cluster catalogues have a 2� significance before
the reconstruction, and a 3� significance after applying this technique. In an analogous
way, the AGN catalogue provided a 1� detection pre-reconstruction, that turns in a
3� detection post-reconstruction. We can conclude that the reconstruction method, by
removing part of non-linearities in the BAO peak, clearly improves the significance of
the detections.

As expected, the accuracy of the detection degrades at high redshifts. At z = 2, the
BAO peak is detected with 1� accuracy pre-reconstruction and 2� post-reconstruction
in galaxy catalogues, while for clusters we have a 2� detection both pre and post
reconstruction. Since structures are in general more linear with respect to the near
Universe, the reconstruction is less useful at high redshifts. We have a non-detection
of the BAO peak for AGN at z = 2, both for pre- and post-reconstruction. This is due
to the high shot noise of these measurements, because of the paucity of the sample
(see Table 6.3).
As expected, the pre-reconstruction values of ⌃NL are higher at low redshifts with
respect to the ones at high redshifts, in both galaxy and AGN cases. The ⌃NL

parameters of cluster models have lower values with respect to AGN and galaxies at
the same redshifts, because of their larger size, which make them be well described by
the linear theory (e.g. Veropalumbo et al., 2014; Veropalumbo et al., 2016). Cluster
models do not present a clear redshift evolution of the ⌃NL parameters. The post-
reconstruction best-fit models have systematically lower ⌃NL values with respect to
unreconstructed models. This demonstrates the effectiveness of the reconstruction
method, which corrects for the non-linear evolution of structures. Figure (7.7) shows
the evolution of the non-linear correction obtained with this method. Such corrections
are more effective at low redshifts, and gradually degrade at higher redshift. Notice
that, for this reason, post-reconstruction models do not show a ⌃NL redshift evolution
similar to the pre-reconstruction ones.
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Figure 7.4: ��2 of the BAO fit models as a function of ⌃NL. The solid lines refer to the
results obtained with galaxies, before (black) and after (red) the reconstruction;
the dashed lines refer to the clusters (blue before the reconstruction, and orange
after), while the dash-dotted lines to the AGN (purple before the reconstruction,
and green after). These curves are referred to z = 0.2 (top panel) and z = 0.52
(bottom panel).
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Figure 7.5: ��2 of the BAO fit models as a function of ⌃NL, at z = 0.72 (top panel) and
z = 1 (bottom panel). The symbols are the same of Figure (7.4).
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Figure 7.6: ��2 of the BAO fit models as a function of ⌃NL, at z = 1.5 (top panel) and
z = 2 (bottom panel). The symbols are the same of Figure (7.4).
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Figure 7.7: Difference between ⌃NL parameters of the best-fit models before and after the
reconstruction, for galaxies (black circles), clusters (red diamonds) and AGN
(blue hexagons).
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Figures (7.8), (7.9) and (7.10) show the measured two-point correlation functions
and the BAO best-fit models, for galaxies, clusters and AGN, respectively. We fit
the BAO peak in the range 60 � 160h�1 Mpc, to use also the intermediate scales
thus improving the constraint accuracy, but not considering the smallest scales, more
affected by non-linear RSD effects.
The constraints on the ↵ parameter, reported in Table (7.1), are shown in Figure
(7.11). The reconstruction method clearly enhances the BAO peak at low redshifts,
correcting for non-linear effects and RSD, for all the cosmic tracers considered. The
offset between pre- and post-reconstruction models tends to decrease at high redshifts.
This is due to the high shot noise, which makes the uncertainties larger, combined to the
more linear regime of high redshift objects, which makes the reconstruction less effective.

Figure 7.8: Galaxy two-point correlation functions before (black circles) and after (red
diamonds) the reconstruction. The black and red solid lines are the best-fit
models, before and after the reconstruction, respectively. The BAO fit was
performed in the range of 60� 160h�1 Mpc. Error bars are computed with the
Jackknife method. The redshifts of the measurements are displayed on the top
of the boxes.
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Figure 7.9: Same of Figure (7.8), but for galaxy clusters.

Figure 7.10: Same of Figure (7.8), but for AGN.
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Figure 7.11: Constraints on the ↵ parameter, estimated by using galaxies (top), clusters
(middle) and AGN (bottom) as tracers. Circles and diamonds represent the
values inferred pre- and post-reconstruction, respectively. The horizontal lines
mark the average ↵ values over the redshifts, before and after the reconstruction,
according to the colours shown in the legend.
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Galaxies ↵pre ↵post ⌃NL,pre [h�1Mpc] ⌃NL,post [h�1Mpc] b

z=0.20 1.101 ±0.026 1.074 ±0.015 14 6 1.34
z=0.52 1.082 ±0.026 1.070 ±0.017 14 7 1.56
z=0.72 1.085 ±0.051 1.066 ±0.034 14 7 1.71
z=1.00 1.079 ±0.048 1.067 ±0.034 12 7 1.95
z=1.50 1.095 ±0.049 1.079 ±0.037 11 7 2.42
z=2.00 1.115 ±0.027 1.091 ±0.020 11 8 2.97
Clusters ↵pre ↵post ⌃NL,pre [h�1Mpc] ⌃NL,post [h�1Mpc] b

z=0.20 1.071 ±0.021 1.056 ±0.016 10 4 1.47
z=0.52 1.055 ±0.025 1.066 ±0.021 12 9 1.77
z=0.72 1.056 ±0.054 1.070 ±0.040 12 8 1.97
z=1.00 1.064 ±0.046 1.052 ±0.036 6 2 2.30
z=1.50 1.059 ±0.055 1.054 ±0.043 9 6 2.96
z=2.00 1.055 ±0.029 1.044 ±0.027 13 12 3.72
AGN ↵pre ↵post ⌃NL,pre [h�1Mpc] ⌃NL,post [h�1Mpc] b

z=0.20 1.079 ±0.060 1.070 ±0.038 14 7 1.65
z=0.52 1.075 ±0.059 1.060 ±0.037 12 6 1.99
z=0.72 1.083 ±0.059 1.060 ±0.040 12 7 2.21
z=1.00 1.054 ±0.062 1.059 ±0.042 12 8 2.61
z=1.50 1.045 ±0.062 1.050 ±0.048 11 9 3.29
z=2.00 1.057 ±0.096 1.061 ±0.095 26 26 4.18

Table 7.1: Constraints on the isotropic shift parameter ↵, pre- and post-reconstruction, with
the corresponding values of ⌃NL and bias.

7.2.1 Selecting more realistic samples of galaxy clusters

Since the full Magneticum cluster catalogues include also small objects, to faint to
be observed, we have selected subsamples imposing a mass threshold of 1013 M�, to
simulate more realistic samples of groups and clusters of galaxies at z = 0.2, z = 0.52,
z = 0.72. We found that, at higher redshifts than the ones considered, the paucity of
the selected objects does not allow a BAO analysis in the simulated volume considered.
By applying the same analysis method used previously, we inferred a bias b = 2.00 at
z = 0.2, b = 2.44 at z = 0.52 and b = 2.76 at z = 0.72, significantly higher with respect
to the catalogues previously analysed at the same redshifts. Figure (7.12) shows the
��2 of the BAO best-fit models, as a function of ⌃NL.

We have detected the BAO peak with an accuracy higher than 2� in all the cases,
except for the pre-reconstruction clusters at z = 0.72, which provided a 1� detection.
As expected, since we are considering the most massive objects, structures are more
linear with respect to the whole cluster catalogue. We found that ⌃NL,pre = 9h�1 Mpc
and ⌃NL,post = 4h�1 Mpc at z = 0.2, ⌃NL,pre = 9h�1 Mpc and ⌃NL,post = 5h�1 Mpc
at z = 0.52, and ⌃NL,pre = 10h�1 Mpc and ⌃NL,post = 4h�1 Mpc at z = 0.72. Figure
(7.13) shows the BAO best-fit models pre- and post-reconstruction, computed with
these values of ⌃NL.

Figure (7.14) shows the resulting constraints on ↵. The post-reconstruction ↵ values
are moving toward the unity, i.e. to the true cosmological model, with respect to the pre-
reconstruction one, even if not significantly. The ↵ parameters at z = 0.2 and z = 0.52,
both pre- and post-reconstruction, are consistent with unity. In particular, we found
that ↵pre = 1.055± 0.061 and ↵post = 1.042± 0.043 at z = 0.2; ↵pre = 1.062± 0.061
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Figure 7.12: ��2 of BAO best-fit models for clusters with a mass cut of 1013 M�, at z = 0.2
(solid lines, red for pre and black for post reconstruction), z = 0.52 (dashed
lines, blue for pre and orange for post reconstruction), z = 0.72 (dot-dashed
lines, purple for pre and green for post reconstruction). The dotted lines
mark the significance of the BAO peak detection: all the detections have
a 2� significance, except for the pre-reconstruction case at z = 0.72, which
corresponds to a 1� detection.

Figure 7.13: Two-point correlation functions for galaxy clusters with M > 1013 M�, before
(black circles) and after (red diamonds) the reconstruction, at z = 0.2 (left),
z = 0.52(middle) and z = 0.72 (right). The black solid lines represent the
BAO best-fit model pre-reconstruction, while the red solid lines are referred to
the model post-reconstruction.

and ↵post = 1.044± 0.0442 at z = 0.52; ↵pre = 1.079± 0.066 and ↵post = 1.052± 0.042
at z = 0.72.
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The errors are larger compared to the whole cluster catalogue, because of the higher
shot noise. Nevertheless, we found that the reconstruction provides large benefits also
in these subsample, reducing ↵ errors by a factor ⇡ 1.3� 1.5, without a strong redshift
dependence.
We plan further studies applying different cuts as a function of the redshifts, on cluster
and AGN catalogues, to constrain how the reconstruction efficacy varies with a given
observable used to define the selected subsample.

Figure 7.14: Constraints on ↵ provided by the analysis of mock cluster catalogues with
M > 1013M�, in the redshift range 0.2  z  0.72. The black circles
and the red diamonds represent the pre- and post-reconstruction parameters,
respectively.

7.2.2 The cosmic variance effects
We are measuring the BAO peak in the two-point correlation function at scales

of rbao ⇡ 100� 110h�1Mpc. In order to analyse a large set of catalogues, spanning a
wide redshifts range for several cosmic tracers, we used the Box1mr of the Magneticum
simulations, which has, as discussed, a box side of rbox = 896h�1Mpc. This box is
sufficiently large to significantly detect the BAO peak, however, since the relation
rbao ⌧ rbox is not valid, we expect to be affected by cosmic variance. However, since
this thesis aims at estimating the effects of the reconstruction on the ↵ parameter
accuracy, i.e. the fraction between ↵ errors pre- and post-reconstruction, and not at
the absolute values of ↵ and its error, cosmic variance is not a main issue.
We can notice that most of all the inferred ↵ estimations performed in the previous
sections are significantly different from unity. This is expected, though we used the
fiducial cosmological model of Magneticum Simulations, due to the cosmic variance,
which can shift the BAO peak.
To confirm such expectations, we have performed a simple test. We have used a galaxy
cluster catalogue with the same mass cut of M > 10

13 M� applied in the previous
section, but using the Box0mr of the Magneticum Simulations. The latter is the largest
simulation of the whole Magneticum set, with a 2668h�1Mpc box side (19.4 Gpc3 of
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cosmological volume), and a resolution of 2⇥ 4536

3 particles. This simulation has been
set with an identical cosmological model of the Box1mr. Using the same methods and
cosmological models, we have estimated the ↵ parameter in the largest simulation. If
the ↵ parameter inferred using the Box0mr is found consistent to unity, the methods
used is confirmed corrected, and all the deviations from ↵ = 1 must be attributed to
cosmic variance, since the only variation between the procedures is the cosmological
volume of the simulations. We have modelled the two-point correlation function of the
galaxy clusters with M > 10

13 M� in real space, at z = 0.47 (a value close to z = 0.52,
used in the previous analyses), with the same procedure adopted in section 7.2 and
described in section 6.6. We have detected the BAO peak with a 11� significance, and
the isotropic shift inferred is ↵ = 1± 0.01. Thus, we can conclude that any deviation
from the unity of the ↵ parameter for Box1mr is mainly caused by the cosmic variance.
Figure (7.15) shows the best-fit models for the galaxy clusters with M > 10

13 M�, in
real space and before the reconstruction using the Box0mr, and in redshift space, for
both pre- and post-reconstruction, using the Box1mr.

Figure 7.15: Two-point correlation function, measured in real space, at z = 0.47, using the
Box0mr of Magneticum simulations (blue hexagons), and in redshift space, at
z = 0.52, using the Box1mr (black circles), for galaxy clusters with a mass
cut of M > 1013 M�. The red diamonds represent the post-reconstruction
correlation function, computed using the Box1mr at z = 0.52. The solid lines
represent the BAO best-fit models, computed using the Box0mr (blue) and
the Box1mr, both reconstructed (red) and not (black). The error bars are
computed with the Jackknife method, using 125 resampling. Notice that, as
expected, the correlation function computed using the Box0mr has a better
accuracy with respect to the ones computed using the Box1mr.

Clearly the BAO peaks measured before the reconstruction, using the Box0mr and
the Box1mr, are centered at different scales. In particular, the BAO peak measured
using the largest simulation is detected at larger scales. Reconstructing the density field
in the Box1mr, the BAO peak is shifted toward larger scales, because the method applied
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takes into account the displacement field due to non linear evolution of structures.
Nevertheless, even by reconstructing the density field we cannot take into account the
cosmic variance in the smaller simulation. As a final result, the BAO peak is detected
at the smaller scale in the Box1mr pre-reconstruction and at the larger scale in the
Box0mr, whit respect to the post-reconstruction peak in the Box1mr, that is found
between the other two.

7.3 Constraining the main cosmological parameters
The ↵ parameter is directly related to the main cosmological parameters through

equation (5.51). Thus, by constraining the ↵ parameter, we also constrain a function
of the Hubble parameter H(z), and so ⌦0,m and ⌦0,, where ⌦0,⇤ = 1�⌦0,m. We have
modelled the ↵ parameters estimated in the previous sections, to quantify the effect
of the reconstruction in increasing the accuracy of the estimation of these paramount
cosmological parameters. The model used is the one described by equation (5.51). For
each cosmic tracer, we have combined the ↵ parameters, inferred by modelling the
BAO peak, at all the redshifts considered, assuming that the different mock catalogues
are independent. We have fixed the fiducial sound horizon, rs,f , and volume-averaged
distance, DV,f , to the values provided by the cosmological model adopted by the
Magneticum Simulations (see section 6.1). In an analogous way to the BAO modelling,
explained in details in section 6.6, we have computed the posterior of the free parameter
⌦0,m by using a Gaussian Likelihood and the MCMC chains. As a result, we found
that the reconstruction method improve the accuracy of ⌦0,m by a factor ⇡ 1.5 using
galaxies, ⇡ 1.28 using clusters, and ⇡ 1.12 using AGN as tracers of the cosmic density
field.

7.4 Discussion
The reconstruction is expected to be more effective for small objects at low redshifts,

because of the higher non-linearity of such structures (e.g. D. J. Eisenstein, H.-J. Seo,
Sirko, et al., 2007). Indeed, we found that the reconstruction improves the constraints
on ↵ by a factor ⇡ 1.7 for galaxies, ⇡ 1.6 for AGN and ⇡ 1.35 for clusters, at z = 0.2
in perfect agreement with the theory, and with past measurements in the galaxy case
(e.g. D. H. Weinberg et al., 2013 and references therein). At this redshift, the fiducial
volume distance is DV,f (z = 0.2) = 802 Mpc. Assuming a sound horizon equal to the
fiducial one, we can infer a volume averaged-distance of 862±12Mpc by reconstructing
the galaxy catalogue, that is a 1.4% distance measurement, with respect to a 2.4%
of pre-reconstruction. In analogous way, we found that the distance measurements
before and after the reconstruction for galaxy clusters have a 2% and a 1.5% accuracy,
respectively. In the AGN case it is found a 5.6% accuracy for the distance measurement
before the reconstruction, and a 3.6% accuracy after applying the technique. Notice
that, as expected, the reconstruction efficacy degrades at higher redshifts. The more
linear behaviour of structures at high redshifts is the reason why they do not need a
reconstruction of the density field. In other words, we can say that, due to the high
redshift, the displacements of objects is short, thus the reconstruction method is not
effective. Figure (7.16) shows the fraction between the ↵ uncertainties before and
after the reconstruction, as a function of the redshift. Linear regressions for galaxies,
clusters and AGN are overplotted, excluding the AGN point at z = 2, that represents
a non-detection. We notice that the AGN goes faster to unity, that is where the
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reconstruction is ineffective, with respect to clusters and galaxies. However, at z = 1.5,
the reconstruction can improve the constraint accuracy on ↵ by a factor ⇡ 1.3. The
reconstruction technique is found to be more effective for galaxy tracers. At z = 2,
we still expect a ⇡ 1.4 factor between the pre- and post-reconstruction errors of ↵,
having a 2.4% distance measurement pre-reconstruction and a 1.8% measurement
post-reconstruction.

Figure 7.16: Fraction between pre- and post-reconstruction ↵ uncertainties as a function
of the redshift, for galaxies (black circles), clusters (red diamonds) and AGN
(blue hexagons). The solid lines are the linear regressions of the points, black
for galaxies, red for clusters and blue for AGN. The AGN point at z = 2. was
not considered, as it represents a non-detection of the BAO.

It is important to notice that our galaxy sample density spans from n = 4.5 ⇥
10

�3h3Mpc�3 at z = 0.2 to n = 1.2 ⇥ 10

�3h3Mpc�3 at z = 2. For comparison, the
CMASS sample of BOSS has a number density of n = 3⇥ 10

�4h3Mpc�3, the WiggleZ
n = 2 ⇥ 10

�4h3Mpc�3 while Euclid plans to have number density in the range of
n = 0.15�4.8⇥10

�3h3Mpc�3 (depending on the redshift of the subsample) and J-PAS
between 10

�3 � 10

�2h3Mpc�3 (see Angulo, S. D. White, et al., 2014 and references
therein). On the other hand, the number density of galaxy clusters in the Box1mr
goes from n = 7 ⇥ 10

�4h3Mpc�3 at z = 0.2 to n = 2 ⇥ 10

�4h3Mpc�3 at z = 2,
while the AGN number density goes from n = 1.3 ⇥ 10

�3h3Mpc�3 at z = 0.2 to
n = 1⇥ 10

�4h3Mpc�3 at z = 2.
The scatter of ↵ constraints from galaxy clusters is higher with respect to the

other objects, as expected due to shot noise. Furthermore, the cluster linear regression
has a more gentle slope with respect to galaxies and AGN. This means that, even if
the reconstruction is less effective for clusters compared to the other cosmic tracers,
this technique can still provide some improvements on cosmological constraints. In
fact, we found that, by using galaxy clusters as tracers of the cosmic density field, the
reconstruction improves the accuracy of ⌦0,m by a factor 1.28.



Chapter 8

Conclusions and future
perspectives

“Every year is getting shorter; never seem to find the time
Plans that either come to naught
or half a page of scribbled lines
Hanging on in quiet desperation is the English way
The time is gone, the song is over
Thought I’d something more to say.”

Pink Floyd, Time, The Dark Side of the Moon (1973)

The BAO provides one of the most accurate probes of the accelerated expansion
of the Universe, and it is paramount to investigate the Dark Energy nature. Large
part of its power is in the accuracy of its theoretical modelling. By reconstructing the
density field, it is possible to enlarge significantly the constraining power of the BAO.
In this thesis, we have analysed galaxy, cluster and AGN mock catalogues from the
Magneticum simulation Box1mr, a hydrodynamical simulation of cosmological volume
of 0.719 Gpc3, at redshifts z = 0.2, z = 0.52, z = 0.72, z = 1., z = 1.5, z = 2. This is
the most extensive investigation on the BAO reconstruction method for redshift range
and cosmic tracers used. The density of our mock samples are consistent with the ones
of the main BAO near-future projects, such as Euclid and J-PAS. We have implemented
and tested a reconstruction code, and we have used it to reconstruct the density field of
Magneticum mocks. We have modelled the BAO peak in the angle-averaged two-point
correlation function, finding the constraints on the isotropic shift, ↵, before and after
the reconstruction.
The main results presented in this thesis can be summarized as follows.

• The bias was estimated by exploiting the projected correlation function, a method
which ensures results as close as possible to the ones obtainable with real data.

• The density field of cosmic tracers obtained from the considered mock catalogues
was reconstructed by using a brand new algorithm, that we have implemented in
the CBL and tested.

• We have modelled the BAO peak in the redshift space, both before and after the
application of the reconstruction method.

123
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• The fraction between the constraint accuracies before and after the reconstruction
has a linear-like dependency on the redshift, with different slopes for the different
cosmic tracers considered. In particular, AGN have a steeper slope, and galaxy
clusters a more gentle slope, with respect to galaxies.

• The reconstruction reduces the value of the ⌃NL parameter of the BAO best-fit
models up to 8h�1Mpc for galaxies at z = 0.2. The reducing factor of ⌃NL for
different cosmic tracers has a redshift evolution similar to the reducing factor of
the ↵ constraints accuracy. This is a clear confirmation that the reconstruction
method improves the constraints on the cosmological parameters, by partially
correcting the non-linearities of cosmic structures. We found that also the value
of ⌃NL for galaxy clusters is reduced by the reconstruction technique, even if a
little less than the other two tracers considered in this work.

• By reducing the ⌃NL of the model, the reconstruction technique improves the
significance of the BAO peak detection. We found that the BAO peak detection
in the AGN catalogue at z = 0.2 has a 1� significance before the reconstruction,
while it has a 3� significance after. We found several other improvements on
the significance of the BAO detection, above all for AGN and galaxies. Galaxy
clusters, due to their large size, are quasi-linear structures. As expected, we
found that they have already a lower ⌃NL with respect to the other tracers, thus
the application of the reconstruction technique, in this case, is less necessary.

• The reconstruction technique is more effective with galaxies, because of their
strong non-linear evolutions. This technique can improve the ↵ constraints
by a factor 1.8 at z = 2, and 1.4 at z = 2. This, combined to the higher
number of galaxies with respect to AGN and galaxy clusters, makes the distance
measurements inferred with galaxy catalogues the most accurate.

• The reconstruction has a similar effect on AGN and galaxies, although the efficacy
on AGN seems to degrade a little faster with respect to galaxies.

• The reconstruction, as said, is less important for galaxy clusters, due to their
intrinsic linearity. Thus, these tracers do not strictly need the use of such
techniques, confirming the results of previous works, e.g. Veropalumbo et al.
(2014); Veropalumbo et al. (2016). This is a further demonstration of the power of
galaxy clusters as tracers of the cosmic density field. Nevertheless, we found that
even the cluster performances are a little improved by using the reconstruction. In
particular, imposing a cluster mass threshold of M = 10

13M�, the reconstruction
improves the constraints on the isotropic shift by a factor 1.3� 1.5 in a redshift
range 0.2  z  0.72. Interesting, this factor seems to have a weak dependency
on the redshift.

• By modelling the ↵ parameters obtained by the BAO analysis, we have constrained
the paramount cosmological parameter ⌦0,m. We found that, by reconstructing
the density field, the accuracy on the estimation of ⌦0,m improves by a factor
⇡ 1.5 using galaxies, ⇡ 1.28 using clusters, and ⇡ 1.12 using AGN as cosmic
tracers.

We plan to extend this analysis to anisotropic clustering, modelling the clustering
wedges and multipoles to fully exploit the BAO cosmological potential. To do this, we
will use the Box0mr of the Magneticum simulations, which has a cosmological volume



125

of 19.4 Gpc3, ensuring an extraordinary statistical precision. Moreover, we want to
apply further cuts on AGN and cluster catalogues, to investigate how the effects of the
reconstruction vary for the different sample selections. Finally, we aim at analysing real
data catalogues. In particular, we want to extend the analysis by Veropalumbo et al.
(2016), performed on galaxy cluster catalogues within the redshift range considered
in this thesis. Since we found that reconstruction improves the constraints in ↵, and
then in the main cosmological parameters, also in cluster catalogues, we want to try
our reconstruction code on the cluster samples selected from BOSS and SDSS DR7.
Moreover, we want to apply the BAO reconstruction analysis to the incoming J-PAS
survey. This is the natural combination of the theoretical work, performed with mock
samples, discussed in this thesis, with the work carried out at the Centro de Estudios
de Física del Cosmos de Aragón (CEFCA) thanks to a summer fellowship, using data
from the J-PLUS survey (Cenarro et al., 2015). This survey is a J-PAS precursor, useful
for both the photometric calibrations of the incoming bigger survey and the scientific
investigation of the near Universe. In particular, at CEFCA we have performed galaxy
clustering measurements, in both configuration and Fourier space. Moreover, we have
investigated how systematics errors, such as stellar contamination, star density, seeing,
signal-to-noise ratio, atmospheric conditions, etc., could affect the measurements. As a
final result of the work, we have developed a pipeline for the analysis of systematic
errors in clustering measurements. The J-PLUS survey does not allow to perform BAO
analyses, however the familiarity with the J-PLUS facility is a good starting point on
the perspective of the incoming J-PAS, that is one of the most promising BAO survey
in the very next future.





Bibliography

Abazajian, K. N., J. K. Adelman-McCarthy, M. A. Agüeros, S. S. Allam, C. Allende
Prieto, et al. (2009). “The Seventh Data Release of the Sloan Digital Sky Survey”. In:
The Astrophysical Journal Supplement 182, 543-558, pp. 543–558. doi: 10.1088/
0067-0049/182/2/543. arXiv: 0812.0649 (cit. on p. 76).

Abbott, B. P., R. Abbott, T. D. Abbott, M. R. Abernathy, F. Acernese, K. Ackley,
C. Adams, T. Adams, P. Addesso, R. X. Adhikari, et al. (2016). “Observation
of Gravitational Waves from a Binary Black Hole Merger”. In: Physical Review
Letters 116.6, 061102, p. 061102. doi: 10.1103/PhysRevLett.116.061102. arXiv:
1602.03837 [gr-qc] (cit. on pp. xiii, 3).

Abdalla, F. B. and S. Rawlings (2005). “Probing dark energy with baryonic oscilla-
tions and future radio surveys of neutral hydrogen”. In: Monthly Notices of Royal
Astronomical Society 360, pp. 27–40. doi: 10.1111/j.1365-2966.2005.08650.x.
eprint: astro-ph/0411342 (cit. on p. 81).

Achitouv, I. and C. Blake (2015). “Improving reconstruction of the baryon acoustic peak:
The effect of local environment”. In: Physical Review D 92.8, 083523, p. 083523.
doi: 10.1103/PhysRevD.92.083523. arXiv: 1507.03584 (cit. on p. 69).

Ade, PAR, N Aghanim, M Arnaud, M Ashdown, J Aumont, C Baccigalupi, AJ
Banday, RB Barreiro, JG Bartlett, N Bartolo, et al. (2016). “Planck 2015 results-
XIII. Cosmological parameters”. In: Astronomy and Astrophysics 594, A13 (cit. on
pp. xiv, 14).

Alam, S., M. Ata, S. Bailey, F. Beutler, D. Bizyaev, et al. (2016). “The clustering
of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey:
cosmological analysis of the DR12 galaxy sample”. In: ArXiv e-prints. arXiv:
1607.03155 (cit. on pp. 79, 80, 83–85).

Alcock, C. and B. Paczynski (1979). “An evolution free test for non-zero cosmological
constant”. In: Nature 281, p. 358. doi: 10.1038/281358a0 (cit. on p. 40).

Anderson, L., E. Aubourg, S. Bailey, D. Bizyaev, M. Blanton, et al. (2012). “The
clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey:
baryon acoustic oscillations in the Data Release 9 spectroscopic galaxy sample”. In:
Monthly Notices of Royal Astronomical Society 427, pp. 3435–3467. doi: 10.1111/
j.1365-2966.2012.22066.x. arXiv: 1203.6594 (cit. on p. 72).

Anderson, L., É. Aubourg, S. Bailey, F. Beutler, V. Bhardwaj, et al. (2014). “The
clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey:
baryon acoustic oscillations in the Data Releases 10 and 11 Galaxy samples”. In:
Monthly Notices of Royal Astronomical Society 441, pp. 24–62. doi: 10.1093/
mnras/stu523. arXiv: 1312.4877 (cit. on p. 72).

Angulo, R. E. et al. (2005). “Constraints on the dark energy equation of state from
the imprint of baryons on the power spectrum of clusters”. In: Monthly Notices of

127

http://dx.doi.org/10.1088/0067-0049/182/2/543
http://dx.doi.org/10.1088/0067-0049/182/2/543
http://arxiv.org/abs/0812.0649
http://dx.doi.org/10.1103/PhysRevLett.116.061102
http://arxiv.org/abs/1602.03837
http://dx.doi.org/10.1111/j.1365-2966.2005.08650.x
astro-ph/0411342
http://dx.doi.org/10.1103/PhysRevD.92.083523
http://arxiv.org/abs/1507.03584
http://arxiv.org/abs/1607.03155
http://dx.doi.org/10.1038/281358a0
http://dx.doi.org/10.1111/j.1365-2966.2012.22066.x
http://dx.doi.org/10.1111/j.1365-2966.2012.22066.x
http://arxiv.org/abs/1203.6594
http://dx.doi.org/10.1093/mnras/stu523
http://dx.doi.org/10.1093/mnras/stu523
http://arxiv.org/abs/1312.4877


128 Bibliography

Royal Astronomical Society 362, pp. L25–L29. doi: 10.1111/j.1745-3933.2005.
00067.x. eprint: astro-ph/0504456 (cit. on p. 75).

Angulo, R. E., C. M. Baugh, C. S. Frenk, and C. G. Lacey (2008). “The detectability of
baryonic acoustic oscillations in future galaxy surveys”. In: Monthly Notices of Royal
Astronomical Society 383, pp. 755–776. doi: 10.1111/j.1365-2966.2007.12587.x.
eprint: astro-ph/0702543 (cit. on p. 60).

Angulo, R. E., S. D. M. White, V. Springel, and B. Henriques (2014). “Galaxy formation
on the largest scales: the impact of astrophysics on the baryonic acoustic oscillation
peak”. In: Monthly Notices of Royal Astronomical Society 442, pp. 2131–2144. doi:
10.1093/mnras/stu905. arXiv: 1311.7100 (cit. on p. 122).

Ansari, R., J. -. Le Goff, C. Magneville, M. Moniez, N. Palanque-Delabrouille, J.
Rich, V. Ruhlmann-Kleider, and C. Yèche (2008). “Reconstruction of HI power
spectra with radio-interferometers to study dark energy”. In: ArXiv e-prints. arXiv:
0807.3614 (cit. on p. 75).

Aubourg, É., S. Bailey, J. E. Bautista, F. Beutler, V. Bhardwaj, et al. (2015). “Cos-
mological implications of baryon acoustic oscillation measurements”. In: Physical
Review D 92.12, 123516, p. 123516. doi: 10.1103/PhysRevD.92.123516. arXiv:
1411.1074 (cit. on pp. 79, 83, 85).

Bagla, J. S., H. K. Jassal, and T. Padmanabhan (2003). “Cosmology with tachyon field
as dark energy”. In: Physical Review D 67.6, 063504, p. 063504. doi: 10.1103/
PhysRevD.67.063504. eprint: astro-ph/0212198.

Bamba, K., M. W. Hossain, R. Myrzakulov, S. Nojiri, and M. Sami (2014). “Cosmologi-
cal investigations of (extended) nonlinear massive gravity schemes with nonminimal
coupling”. In: Physical Review D 89.8, 083518, p. 083518. doi: 10.1103/PhysRevD.
89.083518. arXiv: 1309.6413 [hep-th] (cit. on p. 19).

Bandura, K., G. E. Addison, M. Amiri, J. R. Bond, D. Campbell-Wilson, et al. (2014).
“Canadian Hydrogen Intensity Mapping Experiment (CHIME) pathfinder”. In:
Ground-based and Airborne Telescopes V. Vol. 9145. proc.SPIE, p. 914522. doi:
10.1117/12.2054950. arXiv: 1406.2288 [astro-ph.IM] (cit. on p. 81).

Barnes, J. and P. Hut (1986). “A hierarchical O(N log N) force-calculation algorithm”.
In: Nature 324, pp. 446–449. doi: 10.1038/324446a0 (cit. on p. 51).

Benitez, N., R. Dupke, M. Moles, L. Sodre, J. Cenarro, et al. (2014). “J-PAS: The
Javalambre-Physics of the Accelerated Universe Astrophysical Survey”. In: ArXiv
e-prints. arXiv: 1403.5237 [astro-ph.CO] (cit. on p. 80).

Benítez, N., E. Gaztañaga, R. Miquel, F. Castander, M. Moles, et al. (2009). “Measuring
Baryon Acoustic Oscillations Along the Line of Sight with Photometric Redshifts:
The PAU Survey”. In: The Astrophysical Journal 691, pp. 241–260. doi: 10.1088/
0004-637X/691/1/241. arXiv: 0807.0535 (cit. on p. 74).

Bennett, C. L., M. Halpern, G. Hinshaw, N. Jarosik, A. Kogut, et al. (2003). “First-Year
Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps
and Basic Results”. In: The Astrophysical Journal Supplement Series 148, pp. 1–27.
doi: 10.1086/377253. eprint: astro-ph/0302207 (cit. on p. 58).

Bertone, G., D. Hooper, and J. Silk (2005). “Particle dark matter: evidence, candidates
and constraints”. In: Physics Reports 405, pp. 279–390. doi: 10.1016/j.physrep.
2004.08.031. eprint: hep-ph/0404175 (cit. on p. 14).

Beutler, Florian, Shun Saito, Hee-Jong Seo, Jon Brinkmann, Kyle S Dawson, Daniel
J Eisenstein, Andreu Font-Ribera, Shirley Ho, Cameron K McBride, Francesco
Montesano, et al. (2014). “The clustering of galaxies in the SDSS-III Baryon
Oscillation Spectroscopic Survey: testing gravity with redshift space distortions

http://dx.doi.org/10.1111/j.1745-3933.2005.00067.x
http://dx.doi.org/10.1111/j.1745-3933.2005.00067.x
astro-ph/0504456
http://dx.doi.org/10.1111/j.1365-2966.2007.12587.x
astro-ph/0702543
http://dx.doi.org/10.1093/mnras/stu905
http://arxiv.org/abs/1311.7100
http://arxiv.org/abs/0807.3614
http://dx.doi.org/10.1103/PhysRevD.92.123516
http://arxiv.org/abs/1411.1074
http://dx.doi.org/10.1103/PhysRevD.67.063504
http://dx.doi.org/10.1103/PhysRevD.67.063504
astro-ph/0212198
http://dx.doi.org/10.1103/PhysRevD.89.083518
http://dx.doi.org/10.1103/PhysRevD.89.083518
http://arxiv.org/abs/1309.6413
http://dx.doi.org/10.1117/12.2054950
http://arxiv.org/abs/1406.2288
http://dx.doi.org/10.1038/324446a0
http://arxiv.org/abs/1403.5237
http://dx.doi.org/10.1088/0004-637X/691/1/241
http://dx.doi.org/10.1088/0004-637X/691/1/241
http://arxiv.org/abs/0807.0535
http://dx.doi.org/10.1086/377253
astro-ph/0302207
http://dx.doi.org/10.1016/j.physrep.2004.08.031
http://dx.doi.org/10.1016/j.physrep.2004.08.031
hep-ph/0404175


Bibliography 129

using the power spectrum multipoles”. In: Monthly Notices of Royal Astronomical
Society 443.2, pp. 1065–1089 (cit. on p. 43).

Blake, C. and K. Glazebrook (2003). “Probing Dark Energy Using Baryonic Oscillations
in the Galaxy Power Spectrum as a Cosmological Ruler”. In: The Astrophysical
Journal 594, pp. 665–673. doi: 10.1086/376983. eprint: astro-ph/0301632 (cit.
on p. 58).

Blake, C., E. A. Kazin, F. Beutler, T. M. Davis, D. Parkinson, et al. (2011). “The
WiggleZ Dark Energy Survey: mapping the distance-redshift relation with baryon
acoustic oscillations”. In: Monthly Notices of Royal Astronomical Society 418,
pp. 1707–1724. doi: 10.1111/j.1365-2966.2011.19592.x. arXiv: 1108.2635
(cit. on pp. 73, 80).

Bojowald, M. (2008). “Loop Quantum Cosmology”. In: Living Reviews in Relativity 11,
4, p. 4. doi: 10.12942/lrr-2008-4 (cit. on p. 17).

Bond, J. R. and G. Efstathiou (1984). “Cosmic background radiation anisotropies in
universes dominated by nonbaryonic dark matter”. In: The Astrophysical Journal
Letters 285, pp. L45–L48. doi: 10.1086/184362 (cit. on p. 58).

Bondi, H. and T. Gold (1948). “The Steady-State Theory of the Expanding Universe”.
In: Monthly Notices of Royal Astronomical Society 108, p. 252. doi: 10.1093/
mnras/108.3.252 (cit. on p. 3).

Bondi, Hermann and Fred Hoyle (1944). “On the mechanism of accretion by stars”. In:
Monthly Notices of Royal Astronomical Society 104.5, pp. 273–282 (cit. on p. 89).

Bondi, HJ (1952). “On spherically symmetrical accretion”. In: Monthly Notices of the
Royal Astronomical Society 112.2, pp. 195–204 (cit. on p. 89).

Buchert, Th (1993). “Lagrangian perturbation theory-A key-model for large-scale
structure”. In: Astronomy and Astrophysics 267, pp. L51–L54 (cit. on p. 30).

Burden, A., W. J. Percival, and C. Howlett (2015). “Reconstruction in Fourier space”.
In: Monthly Notices of Royal Astronomical Society 453, pp. 456–468. doi: 10.1093/
mnras/stv1581. arXiv: 1504.02591 (cit. on pp. 64, 65).

Burden, A., W. J. Percival, M. Manera, A. J. Cuesta, M. Vargas Magana, and S. Ho
(2014). “Efficient reconstruction of linear baryon acoustic oscillations in galaxy
surveys”. In: Monthly Notices of Astronomical Royal Society 445, pp. 3152–3168.
doi: 10.1093/mnras/stu1965. arXiv: 1408.1348 (cit. on pp. 64, 65).

Busca, N. G., T. Delubac, J. Rich, S. Bailey, A. Font-Ribera, et al. (2013). “Baryon
acoustic oscillations in the Ly↵ forest of BOSS quasars”. In: Astronomy and Astro-
physics 552, A96, A96. doi: 10.1051/0004-6361/201220724. arXiv: 1211.2616
[astro-ph.CO] (cit. on p. 75).

Campanelli, L., P. Cea, G. L. Fogli, and A. Marrone (2011). “Testing the isotropy of the
Universe with type Ia supernovae”. In: Physical Review D 83.10, 103503, p. 103503.
doi: 10.1103/PhysRevD.83.103503. arXiv: 1012.5596 [astro-ph.CO] (cit. on
p. 3).

Cao, F. J., H. J. de Vega, and N. G. Sánchez (2004). “Quantum inflaton, primordial
perturbations, and CMB fluctuations”. In: Physical Review D 70.8, 083528, p. 083528.
doi: 10.1103/PhysRevD.70.083528. eprint: astro-ph/0406168 (cit. on p. 53).

Cenarro, J., A. Marin-Franch, M. Moles, D. Cristobal-Hornillos, C. Mendes de Oliveira,
and L. Sodre (2015). “J-PLUS: The Javalambre Photometric Local Universe Survey”.
In: IAU General Assembly 22, 2257478, p. 2257478 (cit. on p. 125).

Chabrier, Gilles (2003). “Galactic Stellar and Substellar Initial Mass FunctionThe page
charges for this Review were partially covered by a generous gift from a PASP
supporter.” In: Publications of the Astronomical Society of the Pacific 115.809,
p. 763 (cit. on p. 89).

http://dx.doi.org/10.1086/376983
astro-ph/0301632
http://dx.doi.org/10.1111/j.1365-2966.2011.19592.x
http://arxiv.org/abs/1108.2635
http://dx.doi.org/10.12942/lrr-2008-4
http://dx.doi.org/10.1086/184362
http://dx.doi.org/10.1093/mnras/108.3.252
http://dx.doi.org/10.1093/mnras/108.3.252
http://dx.doi.org/10.1093/mnras/stv1581
http://dx.doi.org/10.1093/mnras/stv1581
http://arxiv.org/abs/1504.02591
http://dx.doi.org/10.1093/mnras/stu1965
http://arxiv.org/abs/1408.1348
http://dx.doi.org/10.1051/0004-6361/201220724
http://arxiv.org/abs/1211.2616
http://arxiv.org/abs/1211.2616
http://dx.doi.org/10.1103/PhysRevD.83.103503
http://arxiv.org/abs/1012.5596
http://dx.doi.org/10.1103/PhysRevD.70.083528
astro-ph/0406168


130 Bibliography

Chang, T.-C., U.-L. Pen, J. B. Peterson, and P. McDonald (2008). “Baryon Acoustic
Oscillation Intensity Mapping of Dark Energy”. In: Physical Review Letters 100.9,
091303, p. 091303. doi: 10.1103/PhysRevLett.100.091303. arXiv: 0709.3672
(cit. on p. 75).

Christodoulou, L., C. Eminian, J. Loveday, P. Norberg, I. K. Baldry, et al. (2012).
“Galaxy And Mass Assembly (GAMA): colour- and luminosity-dependent clustering
from calibrated photometric redshifts”. In: Monthly Notices of Royal Astronomical
Society 425, pp. 1527–1548. doi: 10.1111/j.1365-2966.2012.21434.x. arXiv:
1206.0943 (cit. on p. 35).

Chuang, C.-H. and Y. Wang (2012). “Measurements of H(z) and DA(z) from the two-
dimensional two-point correlation function of Sloan Digital Sky Survey luminous
red galaxies”. In: Monthly Notices of Royal Astronomical Society 426, pp. 226–236.
doi: 10.1111/j.1365-2966.2012.21565.x. arXiv: 1102.2251 (cit. on p. 73).

Cimatti, A, R Laureijs, B Leibundgut, A Reéfrégier, N Thatte, R Nichol, M Steinmetz,
E Valentijn, P Rosati, and S Lilly (2009). Euclid assessment study report for the
ESA cosmic visions. Tech. rep. (cit. on p. 81).

Cole, S., W. J. Percival, J. A. Peacock, P. Norberg, C. M. Baugh, et al. (2005). “The
2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and
cosmological implications”. In: Monthly Notices of Royal Astronomical Society
362, pp. 505–534. doi: 10.1111/j.1365-2966.2005.09318.x. eprint: astro-
ph/0501174 (cit. on p. 58).

Coles, P. and F. Lucchin (2002). Cosmology: The Origin and Evolution of Cosmic
Structure, Second Edition. John Wiley and Sons, p. 512 (cit. on pp. 4, 11, 34, 35).

Crocce, M. and R. Scoccimarro (2008). “Nonlinear evolution of baryon acoustic oscilla-
tions”. In: Physical Review D 77.2, 023533, p. 023533. doi: 10.1103/PhysRevD.77.
023533. arXiv: 0704.2783 (cit. on pp. 60, 61).

Crocce, Martín and Román Scoccimarro (2006). “Renormalized cosmological perturba-
tion theory”. In: Physical Review D 73 (6), p. 063519. doi: 10.1103/PhysRevD.73.
063519. url: http://link.aps.org/doi/10.1103/PhysRevD.73.063519 (cit. on
p. 60).

Davis, M. and M. J. Geller (1976). “Galaxy Correlations as a Function of Morphological
Type”. In: The Astrophysical Journal 208, pp. 13–19. doi: 10.1086/154575 (cit. on
p. 35).

Davis, M. and P. J. E. Peebles (1977). “On the integration of the BBGKY equations
for the development of strongly nonlinear clustering in an expanding universe”. In:
Astrophysical Journal Supplement Series 34, pp. 425–450. doi: 10.1086/190456
(cit. on p. 41).

Dawson, K. S., J.-P. Kneib, W. J. Percival, S. Alam, F. D. Albareti, et al. (2016).
“The SDSS-IV Extended Baryon Oscillation Spectroscopic Survey: Overview and
Early Data”. In: The Astrophysical Journal 151, 44, p. 44. doi: 10.3847/0004-
6256/151/2/44. arXiv: 1508.04473 (cit. on p. 80).

Dawson, K. S., D. J. Schlegel, C. P. Ahn, S. F. Anderson, É. Aubourg, et al. (2013).
“The Baryon Oscillation Spectroscopic Survey of SDSS-III”. In: The Astrophysical
Journal 145, 10, p. 10. doi: 10.1088/0004-6256/145/1/10. arXiv: 1208.0022
(cit. on p. 76).

de la Torre, S. and L. Guzzo (2012). “Modelling non-linear redshift-space distortions in
the galaxy clustering pattern: systematic errors on the growth rate parameter”. In:
Monthly Notices of Royal Astronomical Society 427, pp. 327–342. doi: 10.1111/j.
1365-2966.2012.21824.x. arXiv: 1202.5559 (cit. on p. 44).

http://dx.doi.org/10.1103/PhysRevLett.100.091303
http://arxiv.org/abs/0709.3672
http://dx.doi.org/10.1111/j.1365-2966.2012.21434.x
http://arxiv.org/abs/1206.0943
http://dx.doi.org/10.1111/j.1365-2966.2012.21565.x
http://arxiv.org/abs/1102.2251
http://dx.doi.org/10.1111/j.1365-2966.2005.09318.x
astro-ph/0501174
astro-ph/0501174
http://dx.doi.org/10.1103/PhysRevD.77.023533
http://dx.doi.org/10.1103/PhysRevD.77.023533
http://arxiv.org/abs/0704.2783
http://dx.doi.org/10.1103/PhysRevD.73.063519
http://dx.doi.org/10.1103/PhysRevD.73.063519
http://link.aps.org/doi/10.1103/PhysRevD.73.063519
http://dx.doi.org/10.1086/154575
http://dx.doi.org/10.1086/190456
http://dx.doi.org/10.3847/0004-6256/151/2/44
http://dx.doi.org/10.3847/0004-6256/151/2/44
http://arxiv.org/abs/1508.04473
http://dx.doi.org/10.1088/0004-6256/145/1/10
http://arxiv.org/abs/1208.0022
http://dx.doi.org/10.1111/j.1365-2966.2012.21824.x
http://dx.doi.org/10.1111/j.1365-2966.2012.21824.x
http://arxiv.org/abs/1202.5559


Bibliography 131

de la Torre, S., L. Guzzo, J. A. Peacock, E. Branchini, A. Iovino, et al. (2013). “The
VIMOS Public Extragalactic Redshift Survey (VIPERS) . Galaxy clustering and
redshift-space distortions at z ' 0.8 in the first data release”. In: Astronomy
and Astrophysics 557, A54, A54. doi: 10.1051/0004-6361/201321463. arXiv:
1303.2622 (cit. on p. 44).

Delubac, T., J. E. Bautista, N. G. Busca, J. Rich, D. Kirkby, et al. (2015). “Baryon
acoustic oscillations in the Ly↵ forest of BOSS DR11 quasars”. In: Astronomy
and Astrophysics 574, A59, A59. doi: 10.1051/0004-6361/201423969. arXiv:
1404.1801 (cit. on pp. 75, 77, 82).

Di Matteo, Tiziana, Volker Springel, and Lars Hernquist (2005). “Energy input from
quasars regulates the growth and activity of black holes and their host galaxies”.
In: Nature 433.7026, pp. 604–607 (cit. on p. 89).

Dolag, K, S Borgani, G Murante, and V Springel (2009). “Substructures in hydrody-
namical cluster simulations”. In: Monthly Notices of the Royal Astronomical Society
399.2, pp. 497–514 (cit. on p. 89).

Dolag, K, F Vazza, Gf Brunetti, and G Tormen (2005). “Turbulent gas motions in
galaxy cluster simulations: the role of smoothed particle hydrodynamics viscosity”.
In: Monthly Notices of Royal Astronomical Society 364.3, pp. 753–772 (cit. on
p. 88).

Efstathiou, G. and J. R. Bond (1986). “Microwave background fluctuations and dark
matter”. In: Philosophical Transactions of the Royal Society of London Series A
320, pp. 585–594. doi: 10.1098/rsta.1986.0139 (cit. on p. 58).

Efstathiou, George, M Davis, SDM White, and CS Frenk (1985). “Numerical tech-
niques for large cosmological N-body simulations”. In: The Astrophysical Journal
Supplement Series 57, pp. 241–260 (cit. on p. 51).

Einstein, A. (1905). “Zur Elektrodynamik bewegter Körper”. In: Annalen der Physik
322, pp. 891–921. doi: 10.1002/andp.19053221004 (cit. on p. 1).

— (1915). “Zur allgemeinen Relativitätstheorie”. In: Sitzungsberichte der Königlich
Preußischen Akademie der Wissenschaften (Berlin), Seite 778-786. (Cit. on p. 1).

Eisenstein, D. (2002). “Large-Scale Structure Future Surveys”. In: Next Generation
Wide-Field Multi-Object Spectroscopy. Ed. by M. J. I. Brown and A. Dey. Vol. 280.
Astronomical Society of the Pacific Conference Series, p. 35 (cit. on p. 58).

Eisenstein, D. J. (2005a). “Dark energy and cosmic sound [review article]”. In: New
Astronomy Reviews 49, pp. 360–365. doi: 10.1016/j.newar.2005.08.005 (cit. on
p. 58).

— (2005b). The Acoustic Peak Primer. url: https://www.cfa.harvard.edu/
~deisenst/acousticpeak/spherical_acoustic.pdf (cit. on p. 57).

Eisenstein, D. J., J. Annis, J. E. Gunn, A. S. Szalay, A. J. Connolly, et al. (2001).
“Spectroscopic Target Selection for the Sloan Digital Sky Survey: The Luminous
Red Galaxy Sample”. In: The Astrophysical Journal 122, pp. 2267–2280. doi:
10.1086/323717. eprint: astro-ph/0108153 (cit. on p. 74).

Eisenstein, D. J. and W. Hu (1998). “Baryonic Features in the Matter Transfer Function”.
In: The Astrophysical Journal 496, pp. 605–614. doi: 10.1086/305424. eprint:
astro-ph/9709112 (cit. on pp. 57, 58, 72).

Eisenstein, D. J., H.-J. Seo, E. Sirko, and D. N. Spergel (2007). “Improving Cosmological
Distance Measurements by Reconstruction of the Baryon Acoustic Peak”. In: The
Astrophysical Journal 664, pp. 675–679. doi: 10.1086/518712. eprint: astro-
ph/0604362 (cit. on pp. xiv, 62, 65–67, 69, 70, 121).

Eisenstein, D. J., H.-J. Seo, and M. White (2007). “On the Robustness of the Acoustic
Scale in the Low-Redshift Clustering of Matter”. In: The Astrophysical Journal 664,

http://dx.doi.org/10.1051/0004-6361/201321463
http://arxiv.org/abs/1303.2622
http://dx.doi.org/10.1051/0004-6361/201423969
http://arxiv.org/abs/1404.1801
http://dx.doi.org/10.1098/rsta.1986.0139
http://dx.doi.org/10.1002/andp.19053221004
http://dx.doi.org/10.1016/j.newar.2005.08.005
https://www.cfa.harvard.edu/~deisenst/acousticpeak/spherical_acoustic.pdf
https://www.cfa.harvard.edu/~deisenst/acousticpeak/spherical_acoustic.pdf
http://dx.doi.org/10.1086/323717
astro-ph/0108153
http://dx.doi.org/10.1086/305424
astro-ph/9709112
http://dx.doi.org/10.1086/518712
astro-ph/0604362
astro-ph/0604362


132 Bibliography

pp. 660–674. doi: 10.1086/518755. eprint: astro-ph/0604361 (cit. on pp. 55, 60,
72).

Eisenstein, D. J., D. H. Weinberg, E. Agol, H. Aihara, C. Allende Prieto, et al. (2011).
“SDSS-III: Massive Spectroscopic Surveys of the Distant Universe, the Milky Way,
and Extra-Solar Planetary Systems”. In: The Astrophysical Journal 142, 72, p. 72.
doi: 10.1088/0004-6256/142/3/72. arXiv: 1101.1529 [astro-ph.IM] (cit. on
p. 76).

Eisenstein, D. J., I. Zehavi, D. W. Hogg, R. Scoccimarro, M. R. Blanton, et al. (2005).
“Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of
SDSS Luminous Red Galaxies”. In: The Astrophysical Journal 633, pp. 560–574.
doi: 10.1086/466512. eprint: astro-ph/0501171 (cit. on pp. xiv, 58, 59, 74).

Evrard, Guillaume and Peter Coles (1995). “Getting the measure of the flatness
problem”. In: Classical and Quantum Gravity 12.10, p. L93 (cit. on p. 14).

Ferland, G. J., K. T. Korista, D. A. Verner, J. W. Ferguson, J. B. Kingdon, and E. M.
Verner (1998). “CLOUDY 90: Numerical Simulation of Plasmas and Their Spectra”.
In: The Publications of the Astronomical Society of the Pacific 110, pp. 761–778.
doi: 10.1086/316190 (cit. on p. 88).

Friedmann, A. (1922). “Über die Krümmung des Raumes”. In: Zeitschrift fur Physik
10, pp. 377–386. doi: 10.1007/BF01332580 (cit. on p. 9).

Fry, J. N. (1996). “The Evolution of Bias”. In: The Astrophysical Journal Letters 461,
p. L65. doi: 10.1086/310006 (cit. on p. 36).

Gaspari, Matteo (2016). “Vincoli cosmologici dalle distorsioni geometriche della funzione
di correlazione”. MA thesis. Alma Mater Studiorum, University of Bologna. url:
http://amslaurea.unibo.it/9855/ (cit. on pp. 45, 46).

Gingold, Robert A and Joseph J Monaghan (1977). “Smoothed particle hydrodynam-
ics: theory and application to non-spherical stars”. In: Monthly Notices of Royal
Astronomical Society 181.3, pp. 375–389 (cit. on p. 52).

Glazebrook, K. and C. Blake (2005). “Measuring the Cosmic Evolution of Dark Energy
with Baryonic Oscillations in the Galaxy Power Spectrum”. In: The Astrophysical
Journal 631, pp. 1–20. doi: 10.1086/432497. eprint: astro-ph/0505608 (cit. on
p. 75).

Gong, Yungui, Mustapha Ishak, Anzhong Wang, et al. (2009). “Growth factor parametriza-
tion in curved space”. In: Physical Review D 80.2, p. 023002 (cit. on p. 96).

Guth, A. H. (1981). “Inflationary universe: A possible solution to the horizon and flatness
problems”. In: Physical Review D 23, pp. 347–356. doi: 10.1103/PhysRevD.23.347
(cit. on p. 18).

Guth, Alan H, David I Kaiser, and Yasunori Nomura (2014). “Inflationary paradigm
after Planck 2013”. In: Physics Letters B 733, pp. 112–119 (cit. on p. 18).

Guzzo, L., M. Scodeggio, B. Garilli, B. R. Granett, A. Fritz, et al. (2014). “The VIMOS
Public Extragalactic Redshift Survey (VIPERS). An unprecedented view of galaxies
and large-scale structure at 0.5 < z < 1.2”. In: Astronomy and Astrophysics 566,
A108, A108. doi: 10.1051/0004-6361/201321489. arXiv: 1303.2623 (cit. on
p. 36).

Haardt, F. and P. Madau (2001). “Modelling the UV/X-ray cosmic background with
CUBA”. In: Clusters of Galaxies and the High Redshift Universe Observed in X-rays.
Ed. by D. M. Neumann and J. T. V. Tran. eprint: astro-ph/0106018 (cit. on
p. 88).

Hamilton, A. J. S. (1992). “Measuring Omega and the real correlation function from
the redshift correlation function”. In: Astrophysical Journal Letters 385, pp. L5–L8.
doi: 10.1086/186264 (cit. on p. 43).

http://dx.doi.org/10.1086/518755
astro-ph/0604361
http://dx.doi.org/10.1088/0004-6256/142/3/72
http://arxiv.org/abs/1101.1529
http://dx.doi.org/10.1086/466512
astro-ph/0501171
http://dx.doi.org/10.1086/316190
http://dx.doi.org/10.1007/BF01332580
http://dx.doi.org/10.1086/310006
http://amslaurea.unibo.it/9855/
http://dx.doi.org/10.1086/432497
astro-ph/0505608
http://dx.doi.org/10.1103/PhysRevD.23.347
http://dx.doi.org/10.1051/0004-6361/201321489
http://arxiv.org/abs/1303.2623
astro-ph/0106018
http://dx.doi.org/10.1086/186264


Bibliography 133

— (1998). “Linear Redshift Distortions: A Review”. In: The Evolving Universe: Selected
Topics on Large-Scale Structure and on the Properties of Galaxies. Ed. by Donald
Hamilton. Dordrecht: Springer Netherlands, pp. 185–275. isbn: 978-94-011-4960-0.
doi: 10.1007/978-94-011-4960-0_17. url: http://dx.doi.org/10.1007/978-
94-011-4960-0_17 (cit. on p. 16).

Harrison, E. R. (1970). “Fluctuations at the Threshold of Classical Cosmology”. In:
Physical Review D 1, pp. 2726–2730. doi: 10.1103/PhysRevD.1.2726 (cit. on
p. 20).

Hawkins, E., S. Maddox, S. Cole, O. Lahav, D. S. Madgwick, et al. (2003). “The 2dF
Galaxy Redshift Survey: correlation functions, peculiar velocities and the matter
density of the Universe”. In: Monthly Notices of Royal Astronomical Society 346,
pp. 78–96. doi: 10.1046/j.1365-2966.2003.07063.x. eprint: astro-ph/0212375
(cit. on pp. 42–44).

Heavens, A. F., R. Jimenez, and R. Maartens (2011). “Testing homogeneity with
the fossil record of galaxies”. In: Journal of Cosmology and Astroparticle Physics
2011.09, p. 035. url: http://stacks.iop.org/1475-7516/2011/i=09/a=035
(cit. on p. 3).

Hill, G. J. and HETDEX Consortium (2016). “HETDEX and VIRUS: Panoramic
Integral Field Spectroscopy with 35k Fibers”. In: Multi-Object Spectroscopy in the
Next Decade: Big Questions, Large Surveys, and Wide Fields. Ed. by I. Skillen,
M. Barcells, and S. Trager. Vol. 507. Astronomical Society of the Pacific Conference
Series, p. 393 (cit. on p. 80).

Hinshaw, G., M. R. Nolta, C. L. Bennett, R. Bean, O. Doré, et al. (2007). “Three-
Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Temperature
Analysis”. In: The Astrophysical Journal 170, pp. 288–334. doi: 10.1086/513698.
eprint: astro-ph/0603451 (cit. on p. xiv).

Hirschmann, Michaela, Klaus Dolag, Alexandro Saro, Lisa Bachmann, Stefano Borgani,
and Andreas Burkert (2014). “Cosmological simulations of black hole growth: AGN
luminosities and downsizing”. In: Monthly Notices of Royal Astronomical Society
442.3, pp. 2304–2324 (cit. on p. 89).

Hoyle, Fred and Raymond A Lyttleton (1939). “The effect of interstellar matter on
climatic variation”. In: Mathematical Proceedings of the Cambridge Philosophical
Society. Vol. 35. 03. Cambridge Univ Press, pp. 405–415 (cit. on p. 89).

Hu, W. and N. Sugiyama (1996). “Small-Scale Cosmological Perturbations: an Analytic
Approach”. In: The Astrophysical Journal 471, p. 542. doi: 10.1086/177989. eprint:
astro-ph/9510117 (cit. on pp. 57, 58).

Hu, W. and M. White (1996). “Acoustic Signatures in the Cosmic Microwave Back-
ground”. In: The Astrophysical Journal 471, p. 30. doi: 10.1086/177951. eprint:
astro-ph/9602019 (cit. on p. 58).

Hui, Lam and Edmund Bertschinger (1996). “Local approximations to the gravitational
collapse of cold matter”. In: The Astrophysical Journal 471.1, p. 1 (cit. on p. 29).

Hütsi, G. (2010). “Power spectrum of the maxBCG sample: detection of acoustic
oscillations using galaxy clusters”. In: Monthly Notices of Royal Astronomical
Society 401, pp. 2477–2489. doi: 10.1111/j.1365-2966.2009.15824.x. arXiv:
0910.0492 (cit. on p. 75).

Ijjas, A., P. J. Steinhardt, and A. Loeb (2013). “Inflationary paradigm in trouble after
Planck2013”. In: Physics Letters B 723, pp. 261–266. doi: 10.1016/j.physletb.
2013.05.023. arXiv: 1304.2785 [astro-ph.CO] (cit. on p. 18).

— (2014). “Inflationary schism”. In: Physics Letters B 736, pp. 142–146. doi: 10.1016/
j.physletb.2014.07.012 (cit. on p. 18).

http://dx.doi.org/10.1007/978-94-011-4960-0_17
http://dx.doi.org/10.1007/978-94-011-4960-0_17
http://dx.doi.org/10.1007/978-94-011-4960-0_17
http://dx.doi.org/10.1103/PhysRevD.1.2726
http://dx.doi.org/10.1046/j.1365-2966.2003.07063.x
astro-ph/0212375
http://stacks.iop.org/1475-7516/2011/i=09/a=035
http://dx.doi.org/10.1086/513698
astro-ph/0603451
http://dx.doi.org/10.1086/177989
astro-ph/9510117
http://dx.doi.org/10.1086/177951
astro-ph/9602019
http://dx.doi.org/10.1111/j.1365-2966.2009.15824.x
http://arxiv.org/abs/0910.0492
http://dx.doi.org/10.1016/j.physletb.2013.05.023
http://dx.doi.org/10.1016/j.physletb.2013.05.023
http://arxiv.org/abs/1304.2785
http://dx.doi.org/10.1016/j.physletb.2014.07.012
http://dx.doi.org/10.1016/j.physletb.2014.07.012


134 Bibliography

Jones, D Heath, Will Saunders, Matthew Colless, Mike A Read, Quentin A Parker,
Fred G Watson, Lachlan A Campbell, Daniel Burkey, Thomas Mauch, Lesa Moore,
et al. (2004). “The 6dF Galaxy Survey: samples, observational techniques and the
first data release”. In: Monthly Notices of the Royal Astronomical Society 355.3,
pp. 747–763 (cit. on p. 80).

Jungman, G., M. Kamionkowski, A. Kosowsky, and D. N. Spergel (1996). “Cosmological-
parameter determination with microwave background maps”. In: Physical Review D
54, pp. 1332–1344. doi: 10.1103/PhysRevD.54.1332. eprint: astro-ph/9512139
(cit. on p. 58).

Kaiser, N. (1984). “On the spatial correlations of Abell clusters”. In: The Astrophysical
Journal Letters 284, pp. L9–L12. doi: 10.1086/184341 (cit. on p. 36).

— (1987). “Clustering in real space and in redshift space”. In: Monthly Notices of
Royal Society 227, pp. 1–21. doi: 10.1093/mnras/227.1.1 (cit. on pp. 39, 41, 43).

Kamionkowski, M., D. N. Spergel, and N. Sugiyama (1994). “Small-scale cosmic
microwave background anisotropies as probe of the geometry of the universe”. In:
The Astrophysical Journal Letters 426, pp. 57–60. doi: 10.1086/187339. eprint:
astro-ph/9401003 (cit. on p. 58).

Kazin, E. A., A. G. Sánchez, and M. R. Blanton (2012). “Improving measurements
of H(z) and DA (z) by analysing clustering anisotropies”. In: Monthly Notices of
Royal Astronomical Society 419, pp. 3223–3243. doi: 10.1111/j.1365-2966.2011.
19962.x. arXiv: 1105.2037 (cit. on pp. 44, 73).

Kerscher, M., I. Szapudi, and A. S. Szalay (2000). “A Comparison of Estimators for
the Two-Point Correlation Function”. In: The Astrophysical Journal Letters 535,
pp. L13–L16. doi: 10.1086/312702. eprint: astro-ph/9912088 (cit. on p. 38).

Kiakotou, Angeliki, Øystein Elgarøy, and Ofer Lahav (2008). “Neutrino mass, dark
energy, and the linear growth factor”. In: Physical Review D 77.6, p. 063005 (cit. on
p. 96).

Kitaura, F.-S., C.-H. Chuang, Y. Liang, C. Zhao, C. Tao, et al. (2016). “Signatures
of the Primordial Universe from Its Emptiness: Measurement of Baryon Acoustic
Oscillations from Minima of the Density Field”. In: Physical Review Letters 116.17,
171301, p. 171301. doi: 10.1103/PhysRevLett.116.171301. arXiv: 1511.04405
(cit. on pp. 76, 77, 79).

Komatsu, Eiichiro, KM Smith, J Dunkley, CL Bennett, B Gold, G Hinshaw, N Jarosik,
D Larson, MR Nolta, L Page, et al. (2011). “Seven-year wilkinson microwave
anisotropy probe (WMAP*) observations: cosmological interpretation”. In: The
Astrophysical Journal Supplement Series 192.2, p. 18 (cit. on p. 88).

Labatie, A., J.-L. Starck, M. Lachièze-Rey, and P. Arnalte-Mur (2010). “Uncertainty
in 2-point correlation function estimators and BAO detection in SDSS DR7”. In:
ArXiv e-prints. arXiv: 1009.1232 [astro-ph.CO] (cit. on p. 38).

Landy, S. D. and A. S. Szalay (1993). “Bias and variance of angular correlation
functions”. In: The Astrophysical Journal 412, pp. 64–71. doi: 10.1086/172900
(cit. on p. 38).

Laureijs, R., J. Amiaux, S. Arduini, J. -. Auguères, J. Brinchmann, R. Cole, M. Cropper,
C. Dabin, L. Duvet, A. Ealet, et al. (2011). “Euclid Definition Study Report”. In:
ArXiv e-prints. arXiv: 1110.3193 [astro-ph.CO] (cit. on p. 81).

Leclercq, Florent (2015). “Bayesian large-scale structure inference and cosmic web
analysis”. In: arXiv preprint arXiv:1512.04985. url: https://arxiv.org/abs/
1512.04985.

Lesgourgues, J. (2011). “The Cosmic Linear Anisotropy Solving System (CLASS) I:
Overview”. In: ArXiv e-prints. arXiv: 1104.2932 [astro-ph.IM] (cit. on p. 61).

http://dx.doi.org/10.1103/PhysRevD.54.1332
astro-ph/9512139
http://dx.doi.org/10.1086/184341
http://dx.doi.org/10.1093/mnras/227.1.1
http://dx.doi.org/10.1086/187339
astro-ph/9401003
http://dx.doi.org/10.1111/j.1365-2966.2011.19962.x
http://dx.doi.org/10.1111/j.1365-2966.2011.19962.x
http://arxiv.org/abs/1105.2037
http://dx.doi.org/10.1086/312702
astro-ph/9912088
http://dx.doi.org/10.1103/PhysRevLett.116.171301
http://arxiv.org/abs/1511.04405
http://arxiv.org/abs/1009.1232
http://dx.doi.org/10.1086/172900
http://arxiv.org/abs/1110.3193
https://arxiv.org/abs/1512.04985
https://arxiv.org/abs/1512.04985
http://arxiv.org/abs/1104.2932


Bibliography 135

Levi, M., C. Bebek, T. Beers, R. Blum, R. Cahn, et al. (2013). “The DESI Exper-
iment, a whitepaper for Snowmass 2013”. In: ArXiv e-prints. arXiv: 1308.0847
[astro-ph.CO] (cit. on p. 80).

Lewis, A. and A. Challinor (2011). CAMB: Code for Anisotropies in the Microwave
Background. Astrophysics Source Code Library. ascl: 1102.026 (cit. on pp. 61,
101).

Liang, Y., C. Zhao, C.-H. Chuang, F.-S. Kitaura, and C. Tao (2016). “Measuring baryon
acoustic oscillations from the clustering of voids”. In: Monthly Notices of Royal
Astronomical Society 459, pp. 4020–4028. doi: 10.1093/mnras/stw884. arXiv:
1511.04391 (cit. on p. 76).

Lima Neto, G. B., T. F. Lagana, F. Andrade-Santos, and R. E. G. Machado (2014).
“Structure in galaxy clusters”. In: ArXiv e-prints. arXiv: 1406.1496 (cit. on p. 27).

Lin, H.-N., S. Wang, Z. Chang, and X. Li (2016). “Testing the isotropy of the Universe
by using the JLA compilation of Type Ia supernovae”. In: Monthly Notices of
Astronomical Society 456, pp. 1881–1885. doi: 10.1093/mnras/stv2804. arXiv:
1504.03428 (cit. on p. 3).

Linder, E. V. (2005). “Cosmic growth history and expansion history”. In: Physical
Review D 72.4, 043529, p. 043529. doi: 10.1103/PhysRevD.72.043529. eprint:
astro-ph/0507263 (cit. on p. 24).

Loveday, J., S. J. Maddox, G. Efstathiou, and B. A. Peterson (1995). “The Stromlo-APM
redshift survey. 2: Variation of galaxy clustering with morphology and luminosity”.
In: The Astrophysical Journal 442, pp. 457–468. doi: 10.1086/175453. eprint:
astro-ph/9410018 (cit. on p. 35).

Mann, R. G., J. A. Peacock, and A. F. Heavens (1998). “Eulerian bias and the galaxy
density field”. In: Monthly Notices of Royal Astronomical Society 293, p. 209. doi:
10.1046/j.1365-8711.1998.01053.x. eprint: astro-ph/9708031 (cit. on p. 36).

Marochnik, L. and D. Usikov (2015). “Inflation and CMB anisotropy from quantum
metric fluctuations”. In: Gravitation and Cosmology 21, pp. 118–122. doi: 10.1134/
S0202289315020061. arXiv: 1410.1416 [physics.gen-ph] (cit. on p. 53).

Marulli, F., D. Bianchi, E. Branchini, L. Guzzo, L. Moscardini, and R. E. Angulo (2012).
“Cosmology with clustering anisotropies: disentangling dynamic and geometric
distortions in galaxy redshift surveys”. In: Monthly Notices of Royal Astronomical
Society 426, pp. 2566–2580. doi: 10.1111/j.1365-2966.2012.21875.x. arXiv:
1203.1002 [astro-ph.CO].

Marulli, F., M. Bolzonella, E. Branchini, I. Davidzon, S. de la Torre, et al. (2013).
“The VIMOS Public Extragalactic Redshift Survey (VIPERS) . Luminosity and
stellar mass dependence of galaxy clustering at 0.5 < z < 1.1”. In: Astronomy
and Astrophysics 557, A17, A17. doi: 10.1051/0004-6361/201321476. arXiv:
1303.2633 (cit. on pp. 35–37, 108).

Marulli, F., A. Veropalumbo, and M. Moresco (2016). “CosmoBolognaLib: C++ libraries
for cosmological calculations”. In: Astronomy and Computing 14, pp. 35–42. doi:
10.1016/j.ascom.2016.01.005. arXiv: 1511.00012 (cit. on pp. xi, xii, 90, 91).

Marulli, F., A. Veropalumbo, L. Moscardini, A. Cimatti, and K. Dolag (2015). “Redshift-
space distortions of galaxies, clusters and AGN: testing how the accuracy of growth
rate measurements depends on scales and sample selections”. In: ArXiv e-prints.
arXiv: 1505.01170 (cit. on pp. 39, 90).

Matsubara, T. (2008). “Nonlinear perturbation theory with halo bias and redshift-
space distortions via the Lagrangian picture”. In: Physical Review D 78.8, 083519,
p. 083519. doi: 10.1103/PhysRevD.78.083519. arXiv: 0807.1733 (cit. on p. 64).

http://arxiv.org/abs/1308.0847
http://arxiv.org/abs/1308.0847
1102.026
http://dx.doi.org/10.1093/mnras/stw884
http://arxiv.org/abs/1511.04391
http://arxiv.org/abs/1406.1496
http://dx.doi.org/10.1093/mnras/stv2804
http://arxiv.org/abs/1504.03428
http://dx.doi.org/10.1103/PhysRevD.72.043529
astro-ph/0507263
http://dx.doi.org/10.1086/175453
astro-ph/9410018
http://dx.doi.org/10.1046/j.1365-8711.1998.01053.x
astro-ph/9708031
http://dx.doi.org/10.1134/S0202289315020061
http://dx.doi.org/10.1134/S0202289315020061
http://arxiv.org/abs/1410.1416
http://dx.doi.org/10.1111/j.1365-2966.2012.21875.x
http://arxiv.org/abs/1203.1002
http://dx.doi.org/10.1051/0004-6361/201321476
http://arxiv.org/abs/1303.2633
http://dx.doi.org/10.1016/j.ascom.2016.01.005
http://arxiv.org/abs/1511.00012
http://arxiv.org/abs/1505.01170
http://dx.doi.org/10.1103/PhysRevD.78.083519
http://arxiv.org/abs/0807.1733


136 Bibliography

McBride, C., A. Berlind, R. Scoccimarro, R. Wechsler, M. Busha, J. Gardner, and F.
van den Bosch (2009). “LasDamas Mock Galaxy Catalogs for SDSS”. In: American
Astronomical Society Meeting Abstracts #213. Vol. 41. Bulletin of the American
Astronomical Society, p. 253 (cit. on p. 66).

McDonald, P. and D. J. Eisenstein (2007). “Dark energy and curvature from a future
baryonic acoustic oscillation survey using the Lyman-↵ forest”. In: Physical Review
D 76.6, 063009, p. 063009. doi: 10.1103/PhysRevD.76.063009. eprint: astro-
ph/0607122 (cit. on p. 75).

McDonald, P. and A. Roy (2009). “Clustering of dark matter tracers: generalizing bias
for the coming era of precision LSS”. In: Journal of Cosmology and Astroparticle
Physics 8, 020, p. 020. doi: 10.1088/1475-7516/2009/08/020. arXiv: 0902.0991
[astro-ph.CO] (cit. on p. 35).

McQuinn, M. and M. White (2011). “On estimating Ly↵ forest correlations between mul-
tiple sightlines”. In: Monthly Notices of Royal Astronomical Society 415, pp. 2257–
2269. doi: 10.1111/j.1365-2966.2011.18855.x. arXiv: 1102.1752 (cit. on
p. 75).

Mehta, K. T., A. J. Cuesta, X. Xu, D. J. Eisenstein, and N. Padmanabhan (2012).
“A 2 per cent distance to z = 0.35 by reconstructing baryon acoustic oscillations -
III. Cosmological measurements and interpretation”. In: Monthly Notices of Royal
Astronomical Society 427, pp. 2168–2179. doi: 10.1111/j.1365- 2966.2012.
21112.x. arXiv: 1202.0092.

Mehta, K. T., H.-J. Seo, J. Eckel, D. J. Eisenstein, M. Metchnik, P. Pinto, and
X. Xu (2011). “Galaxy Bias and Its Effects on the Baryon Acoustic Oscillation
Measurements”. In: The Astrophysical Journal 734, 94, p. 94. doi: 10.1088/0004-
637X/734/2/94. arXiv: 1104.1178 [astro-ph.CO] (cit. on p. 61).

Meiksin, A., M. White, and J. A. Peacock (1999). “Baryonic signatures in large-scale
structure”. In: Monthly Notices of Royal Astronomical Society 304, pp. 851–864.
doi: 10.1046/j.1365-8711.1999.02369.x. eprint: astro-ph/9812214 (cit. on
p. 60).

Metcalfe, N., R. Fong, T. Shanks, and D. Kilkenny (1989). “An extended galaxy redshift
survey. I - The catalogue”. In: Monthly Notices of Royal Astronomical Society 236,
pp. 207–234. doi: 10.1093/mnras/236.2.207 (cit. on p. 35).

Monaghan, Joe J (1992). “Smoothed particle hydrodynamics”. In: Annual Review of
Astronomy and Astrophysics 30.1, pp. 543–574 (cit. on p. 52).

Munshi, D., V. Sahni, and A. A. Starobinsky (1994). “Nonlinear approximations
to gravitational instability: A comparison in the quasi-linear regime”. In: The
Astrophysical Journal 436, pp. 517–527. doi: 10.1086/174925. eprint: astro-
ph/9402065 (cit. on p. 29).

Newburgh, L. B., K. Bandura, M. A. Bucher, T.-C. Chang, H. C. Chiang, et al.
(2016). “HIRAX: a probe of dark energy and radio transients”. In: Society of Photo-
Optical Instrumentation Engineers (SPIE) Conference Series. Vol. 9906. proc.SPIE,
p. 99065X. doi: 10.1117/12.2234286. arXiv: 1607.02059 [astro-ph.IM] (cit. on
p. 81).

Norberg, P., C. M. Baugh, E. Gaztañaga, and D. J. Croton (2009). “Statistical analysis
of galaxy surveys - I. Robust error estimation for two-point clustering statistics”.
In: Monthly Notices of Royal Astronomical Society 396, pp. 19–38. doi: 10.1111/
j.1365-2966.2009.14389.x. arXiv: 0810.1885 (cit. on p. 47).

Norberg, P., C. M. Baugh, E. Hawkins, S. Maddox, J. A. Peacock, et al. (2001).
“The 2dF Galaxy Redshift Survey: luminosity dependence of galaxy clustering”. In:

http://dx.doi.org/10.1103/PhysRevD.76.063009
astro-ph/0607122
astro-ph/0607122
http://dx.doi.org/10.1088/1475-7516/2009/08/020
http://arxiv.org/abs/0902.0991
http://arxiv.org/abs/0902.0991
http://dx.doi.org/10.1111/j.1365-2966.2011.18855.x
http://arxiv.org/abs/1102.1752
http://dx.doi.org/10.1111/j.1365-2966.2012.21112.x
http://dx.doi.org/10.1111/j.1365-2966.2012.21112.x
http://arxiv.org/abs/1202.0092
http://dx.doi.org/10.1088/0004-637X/734/2/94
http://dx.doi.org/10.1088/0004-637X/734/2/94
http://arxiv.org/abs/1104.1178
http://dx.doi.org/10.1046/j.1365-8711.1999.02369.x
astro-ph/9812214
http://dx.doi.org/10.1093/mnras/236.2.207
http://dx.doi.org/10.1086/174925
astro-ph/9402065
astro-ph/9402065
http://dx.doi.org/10.1117/12.2234286
http://arxiv.org/abs/1607.02059
http://dx.doi.org/10.1111/j.1365-2966.2009.14389.x
http://dx.doi.org/10.1111/j.1365-2966.2009.14389.x
http://arxiv.org/abs/0810.1885


Bibliography 137

Monthly Notices of Royal Astronomy Society 328, pp. 64–70. doi: 10.1046/j.1365-
8711.2001.04839.x. eprint: astro-ph/0105500 (cit. on p. 35).

Norman, M. L., P. Paschos, and R. Harkness (2009). “Baryon acoustic oscillations in
the Lyman alpha forest”. In: Journal of Physics Conference Series. Vol. 180. Journal
of Physics Conference Series, p. 012021. doi: 10.1088/1742-6596/180/1/012021.
arXiv: 0908.0964 (cit. on p. 75).

Nusser, A. and M. Davis (1994). “On the prediction of velocity fields from redshift
space galaxy samples”. In: The Astrophysical Journal 421, pp. L1–L4. doi: 10.
1086/187172. eprint: astro-ph/9309009 (cit. on p. 64).

Okumura, T., T. Matsubara, D. J. Eisenstein, I. Kayo, C. Hikage, A. S. Szalay, and
D. P. Schneider (2008). “Large-Scale Anisotropic Correlation Function of SDSS
Luminous Red Galaxies”. In: The Astrophysical Journal 676, 889-898, pp. 889–898.
doi: 10.1086/528951. arXiv: 0711.3640 (cit. on p. 73).

Orban, C. and D. H. Weinberg (2011). “Self-similar bumps and wiggles: Isolating the
evolution of the BAO peak with power-law initial conditions”. In: Physical Review
D 84.6, 063501, p. 063501. doi: 10.1103/PhysRevD.84.063501. arXiv: 1101.1523
(cit. on p. 60).

Padmanabhan, N. and M. White (2008). “Constraining anisotropic baryon oscillations”.
In: Physical Review D 77.12, 123540, p. 123540. doi: 10.1103/PhysRevD.77.
123540. arXiv: 0804.0799 (cit. on p. 73).

— (2009). “Calibrating the baryon oscillation ruler for matter and halos”. In: Physical
Review D 80.6, 063508, p. 063508. doi: 10.1103/PhysRevD.80.063508. arXiv:
0906.1198 [astro-ph.CO] (cit. on p. 60).

Padmanabhan, N., M. White, and J. D. Cohn (2009). “Reconstructing baryon oscil-
lations: A Lagrangian theory perspective”. In: Physical Review D 79.6, 063523,
p. 063523. doi: 10.1103/PhysRevD.79.063523. arXiv: 0812.2905 (cit. on pp. 27,
31, 69).

Padmanabhan, N., X. Xu, D. J. Eisenstein, R. Scalzo, A. J. Cuesta, K. T. Mehta,
and E. Kazin (2012). “A 2 per cent distance to z = 0.35 by reconstructing baryon
acoustic oscillations - I. Methods and application to the Sloan Digital Sky Survey”.
In: Monthly Notices of Royal Astronomical Society 427, pp. 2132–2145. doi: 10.
1111/j.1365-2966.2012.21888.x. arXiv: 1202.0090 (cit. on pp. 63–66, 68, 74,
94, 95, 97).

Padovani, Paolo and Francesca Matteucci (1993). “Stellar mass loss in elliptical galaxies
and the fueling of active galactic nuclei”. In: The Astrophysical Journal 416, p. 26
(cit. on p. 89).

Parker, Q. A., H. T. MacGillivray, P. W. Hill, and R. J. Dodd (1986). “Three-
dimensional structure in field 349 of the southern sky survey. I - Redshifts for
a magnitude-limited sample of galaxies from slit spectra”. In: Monthly Notices of
Royal Astronomical Society 220, pp. 901–925. doi: 10.1093/mnras/220.4.901
(cit. on p. 35).

Peebles, P. J. E. (1976). “A Cosmic Virial Theorem”. In: Astrophysical Journal Letters
205, p. L109. doi: 10.1086/182101 (cit. on p. 41).

Peebles, P. J. E. and M. G. Hauser (1974). “Statistical Analysis of Catalogs of Extra-
galactic Objects. III. The Shane-Wirtanen and Zwicky Catalogs”. In: Astrophysical
Journal Supplement 28, p. 19. doi: 10.1086/190308 (cit. on p. 38).

Peebles, P. J. E. and J. T. Yu (1970). “Primeval Adiabatic Perturbation in an Expanding
Universe”. In: The Astrophysical Journal 162, p. 815. doi: 10.1086/150713 (cit. on
p. 58).

http://dx.doi.org/10.1046/j.1365-8711.2001.04839.x
http://dx.doi.org/10.1046/j.1365-8711.2001.04839.x
astro-ph/0105500
http://dx.doi.org/10.1088/1742-6596/180/1/012021
http://arxiv.org/abs/0908.0964
http://dx.doi.org/10.1086/187172
http://dx.doi.org/10.1086/187172
astro-ph/9309009
http://dx.doi.org/10.1086/528951
http://arxiv.org/abs/0711.3640
http://dx.doi.org/10.1103/PhysRevD.84.063501
http://arxiv.org/abs/1101.1523
http://dx.doi.org/10.1103/PhysRevD.77.123540
http://dx.doi.org/10.1103/PhysRevD.77.123540
http://arxiv.org/abs/0804.0799
http://dx.doi.org/10.1103/PhysRevD.80.063508
http://arxiv.org/abs/0906.1198
http://dx.doi.org/10.1103/PhysRevD.79.063523
http://arxiv.org/abs/0812.2905
http://dx.doi.org/10.1111/j.1365-2966.2012.21888.x
http://dx.doi.org/10.1111/j.1365-2966.2012.21888.x
http://arxiv.org/abs/1202.0090
http://dx.doi.org/10.1093/mnras/220.4.901
http://dx.doi.org/10.1086/182101
http://dx.doi.org/10.1086/190308
http://dx.doi.org/10.1086/150713


138 Bibliography

Peebles, Phillip James Edwin (1980). The large-scale structure of the universe. Princeton
university press (cit. on p. 37).

Penzias, A. A. and R. W. Wilson (1965). “A Measurement of Excess Antenna Tem-
perature at 4080 Mc/s.” In: The Astrophysical Journal 142, pp. 419–421. doi:
10.1086/148307 (cit. on p. 3).

Percival, W. J., C. M. Baugh, J. Bland-Hawthorn, T. Bridges, R. Cannon, et al. (2001).
“The 2dF Galaxy Redshift Survey: the power spectrum and the matter content of the
Universe”. In: Monthly Notices of Royal Astronomical Society 327, pp. 1297–1306.
doi: 10.1046/j.1365-8711.2001.04827.x. eprint: astro-ph/0105252 (cit. on
p. 58).

Percival, Will J, Beth A Reid, Daniel J Eisenstein, Neta A Bahcall, Tamas Budavari,
Joshua A Frieman, Masataka Fukugita, James E Gunn, Željko Ivezić, Gillian R
Knapp, et al. (2010). “Baryon acoustic oscillations in the Sloan Digital Sky Survey
data release 7 galaxy sample”. In: Monthly Notices of the Royal Astronomical Society
401.4, pp. 2148–2168 (cit. on pp. 66, 80).

Perlmutter, S., M. S. Turner, and M. White (1999). “Constraining Dark Energy with
Type Ia Supernovae and Large-Scale Structure”. In: Physical Review Letters 83,
pp. 670–673. doi: 10.1103/PhysRevLett.83.670. eprint: astro-ph/9901052
(cit. on p. 58).

Peterson, J. B., K. Bandura, and U. L. Pen (2006). “The Hubble Sphere Hydrogen
Survey”. In: ArXiv Astrophysics e-prints. eprint: astro-ph/0606104 (cit. on p. 75).

Planck Collaboration, R. Adam, P. A. R. Ade, N. Aghanim, Y. Akrami, et al. (2016).
“Planck 2015 results. I. Overview of products and scientific results”. In: Astronomy
and Astrophysics 594, A1, A1. doi: 10.1051/0004- 6361/201527101. arXiv:
1502.01582 (cit. on pp. 5, 56).

Planck Collaboration, P. A. R. Ade, N. Aghanim, C. Armitage-Caplan, M. Arnaud,
et al. (2014). “Planck 2013 results. XV. CMB power spectra and likelihood”. In:
Astronomy and Astrophysics 571, A15, A15. doi: 10.1051/0004-6361/201321573.
arXiv: 1303.5075 (cit. on pp. 20, 56).

Pober, J. C., A. R. Parsons, D. R. DeBoer, P. McDonald, M. McQuinn, J. E. Aguirre, Z.
Ali, R. F. Bradley, T.-C. Chang, and M. F. Morales (2013). “The Baryon Acoustic
Oscillation Broadband and Broad-beam Array: Design Overview and Sensitivity
Forecasts”. In: The Astrophysical Journal 145, 65, p. 65. doi: 10.1088/0004-
6256/145/3/65. arXiv: 1210.2413 (cit. on p. 81).

Press, W. H. and P. Schechter (1974). “Formation of Galaxies and Clusters of Galaxies
by Self-Similar Gravitational Condensation”. In: The Astrophysical Journal 187,
pp. 425–438. doi: 10.1086/152650 (cit. on p. 26).

Press, WH and M Davis (1982). “How to identify and weigh virialized clusters of galaxies
in a complete redshift catalog”. In: The Astrophysical Journal 259, pp. 449–473
(cit. on p. 89).

Rees, M. J. and D. W. Sciama (1968). “Large-scale Density Inhomogeneities in the
Universe”. In: Nature 217, pp. 511–516. doi: 10.1038/217511a0 (cit. on p. 57).

Riess, A. G., A. V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, et al. (1998).
“Observational Evidence from Supernovae for an Accelerating Universe and a
Cosmological Constant”. In: The Astrophysical Journal 116, pp. 1009–1038. doi:
10.1086/300499. eprint: astro-ph/9805201 (cit. on pp. xiii, 58).

Rowan-Robinson, M., A. Lawrence, W. Saunders, J. Crawford, R. Ellis, et al. (1990).
“A Sparse-Sampled Redshift Survey of IRAS Galaxies - Part One - the Convergence
of the IRAS Dipole and the Origin of Our Motion with Respect to the Microwave

http://dx.doi.org/10.1086/148307
http://dx.doi.org/10.1046/j.1365-8711.2001.04827.x
astro-ph/0105252
http://dx.doi.org/10.1103/PhysRevLett.83.670
astro-ph/9901052
astro-ph/0606104
http://dx.doi.org/10.1051/0004-6361/201527101
http://arxiv.org/abs/1502.01582
http://dx.doi.org/10.1051/0004-6361/201321573
http://arxiv.org/abs/1303.5075
http://dx.doi.org/10.1088/0004-6256/145/3/65
http://dx.doi.org/10.1088/0004-6256/145/3/65
http://arxiv.org/abs/1210.2413
http://dx.doi.org/10.1086/152650
http://dx.doi.org/10.1038/217511a0
http://dx.doi.org/10.1086/300499
astro-ph/9805201


Bibliography 139

Background”. In: Monthly Notices of Royal Astronomical Society 247, p. 1 (cit. on
p. 55).

Sachs, R. K. and A. M. Wolfe (1967). “Perturbations of a Cosmological Model and
Angular Variations of the Microwave Background”. In: The Astrophysical Journal
147, p. 73. doi: 10.1086/148982 (cit. on p. 57).

Sahni, V. and P. Coles (1995). “Approximation methods for non-linear gravitational
clustering”. In: Physics Reports 262, pp. 1–135. doi: 10.1016/0370-1573(95)
00014-8. eprint: astro-ph/9505005 (cit. on p. 25).

Sakharov, A. D. (1966). “The Initial Stage of an Expanding Universe and the Appearance
of a Nonuniform Distribution of Matter”. In: Soviet Journal of Experimental and
Theoretical Physics 22, p. 241 (cit. on p. 58).

Sánchez, A. G., J. N. Grieb, S. Salazar-Albornoz, S. Alam, F. Beutler, et al. (2017). “The
clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic
Survey: combining correlated Gaussian posterior distributions”. In: Monthly Notices
of Royal Astronomical Society 464, pp. 1493–1501. doi: 10.1093/mnras/stw2495.
arXiv: 1607.03146 (cit. on p. 80).

Sánchez, A. G., E. A. Kazin, F. Beutler, C.-H. Chuang, A. J. Cuesta, et al. (2013).
“The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey:
cosmological constraints from the full shape of the clustering wedges”. In: Monthly
Notices of Royal Astronomical Society 433, pp. 1202–1222. doi: 10.1093/mnras/
stt799. arXiv: 1303.4396 (cit. on pp. 73, 79, 83).

Sánchez, A. G., C. G. Scóccola, A. J. Ross, W. Percival, M. Manera, et al. (2012).
“The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey:
cosmological implications of the large-scale two-point correlation function”. In:
Monthly Notices of Royal Astronomical Society 425, pp. 415–437. doi: 10.1111/j.
1365-2966.2012.21502.x. arXiv: 1203.6616.

Sawangwit, U., T. Shanks, S. M. Croom, M. J. Drinkwater, S. Fine, D. Parkinson, and
N. P. Ross (2012). “Measuring BAO and non-Gaussianity via QSO clustering”. In:
Monthly Notices of Royal Astronomical Society 420, pp. 1916–1925. doi: 10.1111/
j.1365-2966.2011.19848.x. arXiv: 1108.1198 [astro-ph.CO] (cit. on p. 75).

Schmidt, B. (1999). Investigating Type Ia Supernovae and an Accelerating Universe.
HST Proposal (cit. on p. 58).

Scoccimarro, R. (2000). “The Bispectrum: From Theory to Observations”. In: The
Astrophysical Journal 544, pp. 597–615. doi: 10.1086/317248. eprint: astro-
ph/0004086 (cit. on p. 35).

Scoccimarro, Roman (1997). “Cosmological perturbations: Entering the nonlinear
regime”. In: The Astrophysical Journal 487.1, p. 1 (cit. on p. 29).

Seo, H.-J., S. Dodelson, J. Marriner, D. Mcginnis, A. Stebbins, C. Stoughton, and A.
Vallinotto (2010). “A Ground-based 21 cm Baryon Acoustic Oscillation Survey”. In:
The Astrophysical Journal 721, pp. 164–173. doi: 10.1088/0004-637X/721/1/164.
arXiv: 0910.5007 (cit. on p. 75).

Seo, H.-J., J. Eckel, D. J. Eisenstein, K. Mehta, M. Metchnik, N. Padmanabhan, P.
Pinto, R. Takahashi, M. White, and X. Xu (2010). “High-precision Predictions
for the Acoustic Scale in the Nonlinear Regime”. In: The Astrophysical Journal
720, pp. 1650–1667. doi: 10.1088/0004-637X/720/2/1650. arXiv: 0910.5005
[astro-ph.CO] (cit. on p. 72).

Seo, H.-J. and D. J. Eisenstein (2003). “Probing Dark Energy with Baryonic Acoustic
Oscillations from Future Large Galaxy Redshift Surveys”. In: The Astrophysical
Journal 598, pp. 720–740. doi: 10.1086/379122. eprint: astro-ph/0307460 (cit.
on pp. 58, 74).

http://dx.doi.org/10.1086/148982
http://dx.doi.org/10.1016/0370-1573(95)00014-8
http://dx.doi.org/10.1016/0370-1573(95)00014-8
astro-ph/9505005
http://dx.doi.org/10.1093/mnras/stw2495
http://arxiv.org/abs/1607.03146
http://dx.doi.org/10.1093/mnras/stt799
http://dx.doi.org/10.1093/mnras/stt799
http://arxiv.org/abs/1303.4396
http://dx.doi.org/10.1111/j.1365-2966.2012.21502.x
http://dx.doi.org/10.1111/j.1365-2966.2012.21502.x
http://arxiv.org/abs/1203.6616
http://dx.doi.org/10.1111/j.1365-2966.2011.19848.x
http://dx.doi.org/10.1111/j.1365-2966.2011.19848.x
http://arxiv.org/abs/1108.1198
http://dx.doi.org/10.1086/317248
astro-ph/0004086
astro-ph/0004086
http://dx.doi.org/10.1088/0004-637X/721/1/164
http://arxiv.org/abs/0910.5007
http://dx.doi.org/10.1088/0004-637X/720/2/1650
http://arxiv.org/abs/0910.5005
http://arxiv.org/abs/0910.5005
http://dx.doi.org/10.1086/379122
astro-ph/0307460


140 Bibliography

Seo, H.-J. and D. J. Eisenstein (2005). “Baryonic Acoustic Oscillations in Simulated
Galaxy Redshift Surveys”. In: The Astrophysical Journal 633, pp. 575–588. doi:
10.1086/491599. eprint: astro-ph/0507338 (cit. on p. 60).

— (2007). “Improved Forecasts for the Baryon Acoustic Oscillations and Cosmological
Distance Scale”. In: The Astrophysical Journal 665, pp. 14–24. doi: 10.1086/519549.
eprint: astro-ph/0701079 (cit. on p. 74).

Seo, H.-J. and C. M. Hirata (2016). “The foreground wedge and 21-cm BAO surveys”.
In: Monthly Notices of Royal Astronomical Society 456, pp. 3142–3156. doi: 10.
1093/mnras/stv2806. arXiv: 1508.06503 (cit. on p. 76).

Seo, H.-J., E. R. Siegel, D. J. Eisenstein, and M. White (2008). “Nonlinear Structure
Formation and the Acoustic Scale”. In: The Astrophysical Journal 686, 13-24,
pp. 13–24. doi: 10.1086/589921. arXiv: 0805.0117 (cit. on p. 62).

Shakura, N I and Rashid Alievich Sunyaev (1973). “Black holes in binary systems.
Observational appearance.” In: Astronomy and Astrophysics 24, pp. 337–355 (cit. on
p. 89).

Shandarin, S. F. and Y. B. Zeldovich (1989). “The large-scale structure of the universe:
Turbulence, intermittency, structures in a self-gravitating medium”. In: Reviews
of Modern Physics 61, pp. 185–220. doi: 10.1103/RevModPhys.61.185 (cit. on
p. 25).

Shanks, T., D. H. Sutton, R. Fong, and N. Metcalfe (1989). “An Extended Galaxy
Redshift Survey - Part Three - Constraints on Largescale Structure”. In: Monthly
Notices of Royal Astronomical Society 237, p. 589. doi: 10.1093/mnras/237.3.589
(cit. on p. 35).

Silk, J. (1967). “Fluctuations in the Primordial Fireball”. In: Nature 215, pp. 1155–1156.
doi: 10.1038/2151155a0 (cit. on pp. 25, 53).

Slosar, A., V. Iršič, D. Kirkby, S. Bailey, N. G. Busca, et al. (2013). “Measurement
of baryon acoustic oscillations in the Lyman-↵ forest fluctuations in BOSS data
release 9”. In: Journal of Cosmology and Astroparticle Physics 4, 026, p. 026. doi:
10.1088/1475-7516/2013/04/026. arXiv: 1301.3459 (cit. on p. 75).

Smoot, G. F., C. L. Bennett, A. Kogut, E. L. Wright, J. Aymon, et al. (1992). “Structure
in the COBE differential microwave radiometer first-year maps”. In: The Astro-
physical Journal Letters 396, pp. L1–L5. doi: 10.1086/186504 (cit. on pp. 3,
19).

Somerville, Rachel S, Kyoungsoo Lee, Henry C Ferguson, Jonathan P Gardner, Leonidas
A Moustakas, and Mauro Giavalisco (2004). “Cosmic variance in the great observa-
tories origins deep survey”. In: The Astrophysical Journal Letters 600.2, p. L171
(cit. on p. 37).

Springel, V. and L. Hernquist (2003). “Cosmological smoothed particle hydrodynamics
simulations: a hybrid multiphase model for star formation”. In: Monthly Notices of
Royal Astronomical Society 339, pp. 289–311. doi: 10.1046/j.1365-8711.2003.
06206.x. eprint: astro-ph/0206393 (cit. on p. 89).

Springel, Volker (2005). “The cosmological simulation code GADGET-2”. In: Monthly
Notices of Royal Astronomical Society 364.4, pp. 1105–1134 (cit. on p. 88).

Springel, Volker and Lars Hernquist (2002). “Cosmological smoothed particle hy-
drodynamics simulations: the entropy equation”. In: Monthly Notices of Royal
Astronomical Society 333.3, pp. 649–664 (cit. on p. 88).

Springel, Volker, Simon DM White, Adrian Jenkins, Carlos S Frenk, Naoki Yoshida,
Liang Gao, Julio Navarro, Robert Thacker, Darren Croton, John Helly, et al. (2005).
“Simulations of the formation, evolution and clustering of galaxies and quasars”. In:
nature 435.7042, pp. 629–636 (cit. on p. 89).

http://dx.doi.org/10.1086/491599
astro-ph/0507338
http://dx.doi.org/10.1086/519549
astro-ph/0701079
http://dx.doi.org/10.1093/mnras/stv2806
http://dx.doi.org/10.1093/mnras/stv2806
http://arxiv.org/abs/1508.06503
http://dx.doi.org/10.1086/589921
http://arxiv.org/abs/0805.0117
http://dx.doi.org/10.1103/RevModPhys.61.185
http://dx.doi.org/10.1093/mnras/237.3.589
http://dx.doi.org/10.1038/2151155a0
http://dx.doi.org/10.1088/1475-7516/2013/04/026
http://arxiv.org/abs/1301.3459
http://dx.doi.org/10.1086/186504
http://dx.doi.org/10.1046/j.1365-8711.2003.06206.x
http://dx.doi.org/10.1046/j.1365-8711.2003.06206.x
astro-ph/0206393


Bibliography 141

Springel, Volker, Simon DM White, Giuseppe Tormen, and Guinevere Kauffmann
(2001). “Populating a cluster of galaxies–I. Results at z= 0”. In: Monthly Notices of
Royal Astronomical Society 328.3, pp. 726–750 (cit. on p. 89).

Steinhardt, P. J. (2011). “The Inflation Debate”. In: Scientific American 304.4, pp. 36–
43. doi: 10.1038/scientificamerican0411-36 (cit. on p. 18).

Stone, James M and Michael L Norman (1992). “ZEUS-2D: A radiation magnetohydro-
dynamics code for astrophysical flows in two space dimensions. I-The hydrodynamic
algorithms and tests.” In: The Astrophysical Journal Supplement Series 80, pp. 753–
790 (cit. on p. 52).

Sunyaev, R. A. and Y. B. Zeldovich (1970). “Small-Scale Fluctuations of Relic Radia-
tion”. In: Astrophysics and Space Science 7, pp. 3–19. doi: 10.1007/BF00653471
(cit. on pp. 57, 58).

Tegmark, M. (1997). “Measuring Cosmological Parameters with Galaxy Surveys”. In:
Physical Review Letters 79, pp. 3806–3809. doi: 10.1103/PhysRevLett.79.3806.
eprint: astro-ph/9706198 (cit. on p. 58).

Tegmark, M. and P. J. E. Peebles (1998). “The Time Evolution of Bias”. In: The
Astrophysical Journal Letters 500, pp. L79–L82. doi: 10.1086/311426. eprint:
astro-ph/9804067 (cit. on p. 36).

Thielemann, F.-K., D. Argast, F. Brachwitz, W. R. Hix, P. Höflich, M. Liebendörfer,
G. Martinez-Pinedo, A. Mezzacappa, I. Panov, and T. Rauscher (2003). “Nuclear
cross sections, nuclear structure and stellar nucleosynthesis”. In: Nuclear Physics A
718, pp. 139–146. doi: 10.1016/S0375-9474(03)00704-8 (cit. on p. 89).

Tinker, Jeremy L, Brant E Robertson, Andrey V Kravtsov, Anatoly Klypin, Michael S
Warren, Gustavo Yepes, and Stefan Gottlöber (2010). “The large-scale bias of dark
matter halos: numerical calibration and model tests”. In: The Astrophysical Journal
724.2, p. 878 (cit. on p. 75).

Torbet, E., M. J. Devlin, W. B. Dorwart, T. Herbig, A. D. Miller, M. R. Nolta, L.
Page, J. Puchalla, and H. T. Tran (1999). “A Measurement of the Angular Power
Spectrum of the Microwave Background Made from the High Chilean Andes”. In:
The Astrophysical Journal Letters 521, pp. L79–L82. doi: 10.1086/312197. eprint:
astro-ph/9905100 (cit. on p. xiv).

Trotta, R. (2017). “Bayesian Methods in Cosmology”. In: ArXiv e-prints. arXiv: 1701.
01467 (cit. on p. 71).

Van den Hoek, LB and Martin AT Groenewegen (1997). “New theoretical yields of
intermediate mass stars”. In: Astronomy and Astrophysics Supplement Series 123.2,
pp. 305–328 (cit. on p. 89).

Vargas-Magaña, M., S. Ho, A. J. Cuesta, R. O’Connell, A. J. Ross, et al. (2016). “The
clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic
Survey: theoretical systematics and Baryon Acoustic Oscillations in the galaxy
correlation function”. In: ArXiv e-prints. arXiv: 1610.03506 (cit. on pp. 76–78).

Veropalumbo, A., F. Marulli, L. Moscardini, M. Moresco, and A. Cimatti (2014). “An
improved measurement of baryon acoustic oscillations from the correlation function
of galaxy clusters at z
0.3”. In: Monthly Notices of Royal Astronomical Society 442, pp. 3275–3283. doi:
10.1093/mnras/stu1050. arXiv: 1311.5895 (cit. on pp. 75, 109, 124).

— (2016). “Measuring the distance-redshift relation with the baryon acoustic oscilla-
tions of galaxy clusters”. In: Monthly Notices of Royal Astronomical Society 458,
pp. 1909–1920. doi: 10.1093/mnras/stw306. arXiv: 1510.08852 (cit. on pp. 72,
75, 76, 78, 95, 108, 109, 124, 125).

http://dx.doi.org/10.1038/scientificamerican0411-36
http://dx.doi.org/10.1007/BF00653471
http://dx.doi.org/10.1103/PhysRevLett.79.3806
astro-ph/9706198
http://dx.doi.org/10.1086/311426
astro-ph/9804067
http://dx.doi.org/10.1016/S0375-9474(03)00704-8
http://dx.doi.org/10.1086/312197
astro-ph/9905100
http://arxiv.org/abs/1701.01467
http://arxiv.org/abs/1701.01467
http://arxiv.org/abs/1610.03506
http://dx.doi.org/10.1093/mnras/stu1050
http://arxiv.org/abs/1311.5895
http://dx.doi.org/10.1093/mnras/stw306
http://arxiv.org/abs/1510.08852


142 Bibliography

Wang, L. and P. J. Steinhardt (1998a). “Cluster Abundance Constraints for Cosmo-
logical Models with a Time-varying, Spatially Inhomogeneous Energy Component
with Negative Pressure”. In: The Astrophysical Journal 508, pp. 483–490. doi:
10.1086/306436. eprint: astro-ph/9804015 (cit. on p. 24).

Wang, Limin and Paul J Steinhardt (1998b). “Cluster abundance constraints for cos-
mological models with a time-varying, spatially inhomogeneous energy component
with negative pressure”. In: The Astrophysical Journal 508.2, p. 483 (cit. on p. 96).

Weinberg, D. H., M. J. Mortonson, D. J. Eisenstein, C. Hirata, A. G. Riess, and E.
Rozo (2013). “Observational probes of cosmic acceleration”. In: Physics Reports 530,
pp. 87–255. doi: 10.1016/j.physrep.2013.05.001. arXiv: 1201.2434 (cit. on
pp. 57, 66, 74, 121).

Weinberg, S. (1967). “A Model of Leptons”. In: Physical Review Letters 19, pp. 1264–
1266. doi: 10.1103/PhysRevLett.19.1264 (cit. on p. 17).

Weiss, Arno G, Stefan Gottlöber, and Thomas Buchert (1996). “Optimizing higher
order Lagrangian perturbation theory for standard CDM and BSI models”. In:
Monthly Notices of the Royal Astronomical Society 278.4, pp. 953–964 (cit. on
p. 31).

White, M. (2010). “Shot noise and reconstruction of the acoustic peak”. In: ArXiv
e-prints. arXiv: 1004.0250 [astro-ph.CO].

— (2014). “The Zel’dovich approximation”. In: Monthly notices of Royal Astronomical
Society 439, pp. 3630–3640. doi: 10.1093/mnras/stu209. arXiv: 1401.5466 (cit.
on p. 29).

— (2015). “Reconstruction within the Zeldovich approximation”. In: Monthly Notices
of Royal Astronomical Society 450, pp. 3822–3828. doi: 10.1093/mnras/stv842.
arXiv: 1504.03677 (cit. on pp. 69, 97).

Wiersma, Robert PC, Joop Schaye, and Britton D Smith (2009). “The effect of
photoionization on the cooling rates of enriched, astrophysical plasmas”. In: Monthly
Notices of Royal Astronomical Society 393.1, pp. 99–107 (cit. on p. 88).

Woosley, SE and Thomas A Weaver (1995). “The evolution and explosion of massive
stars. II. Explosive hydrodynamics and nucleosynthesis”. In: The Astrophysical
Journal Supplement Series 101, p. 181 (cit. on p. 89).

Wyithe, J. S. B., A. Loeb, and P. M. Geil (2008). “Baryonic acoustic oscillations
in 21-cm emission: a probe of dark energy out to high redshifts”. In: Monthly
Notices of Royal Astronomical Society 383, pp. 1195–1209. doi: 10.1111/j.1365-
2966.2007.12631.x. arXiv: 0709.2955 (cit. on p. 75).

Xu, X., A. J. Cuesta, N. Padmanabhan, D. J. Eisenstein, and C. K. McBride (2013).
“Measuring DA and H at z=0.35 from the SDSS DR7 LRGs using baryon acoustic
oscillations”. In: Monthly Notices of Royal Astronomical Society 431, pp. 2834–2860.
doi: 10.1093/mnras/stt379. arXiv: 1206.6732 (cit. on p. 73).

Xu, X., N. Padmanabhan, D. J. Eisenstein, K. T. Mehta, and A. J. Cuesta (2012).
“A 2 per cent distance to z = 0.35 by reconstructing baryon acoustic oscillations
- II. Fitting techniques”. In: Monthly Notices of Royal Astronomical Society 427,
pp. 2146–2167. doi: 10.1111/j.1365-2966.2012.21573.x. arXiv: 1202.0091
(cit. on p. 72).

York, D. G., J. Adelman, J. E. Anderson Jr., S. F. Anderson, J. Annis, et al. (2000).
“The Sloan Digital Sky Survey: Technical Summary”. In: The Astrophysical Journal
120, pp. 1579–1587. doi: 10.1086/301513. eprint: astro-ph/0006396 (cit. on
pp. 58, 59).

http://dx.doi.org/10.1086/306436
astro-ph/9804015
http://dx.doi.org/10.1016/j.physrep.2013.05.001
http://arxiv.org/abs/1201.2434
http://dx.doi.org/10.1103/PhysRevLett.19.1264
http://arxiv.org/abs/1004.0250
http://dx.doi.org/10.1093/mnras/stu209
http://arxiv.org/abs/1401.5466
http://dx.doi.org/10.1093/mnras/stv842
http://arxiv.org/abs/1504.03677
http://dx.doi.org/10.1111/j.1365-2966.2007.12631.x
http://dx.doi.org/10.1111/j.1365-2966.2007.12631.x
http://arxiv.org/abs/0709.2955
http://dx.doi.org/10.1093/mnras/stt379
http://arxiv.org/abs/1206.6732
http://dx.doi.org/10.1111/j.1365-2966.2012.21573.x
http://arxiv.org/abs/1202.0091
http://dx.doi.org/10.1086/301513
astro-ph/0006396


Bibliography 143

Yoshisato, Ayako, Masahiro Morikawa, Naoteru Gouda, and Hideaki Mouri (2006).
“Why is the Zel’dovich Approximation So Accurate?” In: The Astrophysical Journal
637.2, p. 555 (cit. on p. 30).

Zel’dovich, Y. B. (1970). “Gravitational instability: An approximate theory for large
density perturbations.” In: Astronomy and Astrophysics 5, pp. 84–89 (cit. on pp. 20,
29).

— (1972). “A hypothesis, unifying the structure and the entropy of the Universe”. In:
Monthly Notices of Royal Astronomical Society 160, 1P. doi: 10.1093/mnras/160.
1.1P (cit. on p. 19).

http://dx.doi.org/10.1093/mnras/160.1.1P
http://dx.doi.org/10.1093/mnras/160.1.1P


"A hundred years from now, people will look back on us and
laugh. They’ll say, ’You know what people used to believe?
They believed in photons and electrons. Can you imagine
anything so silly?’ They’ll have a good laugh, because by
then there will be newer and better fantasies. And
meanwhile, you feel the way the boat moves? That’s the sea.
That’s real. You smell the salt in the air? You feel the
sunlight on your skin? That’s all real. You see all of us
together? That’s real. Life is wonderful. It’s a gift to be
alive, to see the sun and breathe the air. And there isn’t
really anything else.”

Michael Crichton, The Lost World (1995)



“I don’t know half of you half as well as I should like;
and I like less than half of you half as well as you deserve.”

J.R.R. Tolkien, The Fellowship of the Ring (1954)
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