
ALMA MATER STUDIORUM
UNIVERSITÀ DI BOLOGNA

SCUOLA DI INGEGNERIA E ARCHITETTURA

CAMPUS DI CESENA

Corso di Laurea Magistrale in Ingegneria e Scienze Informatiche

A FOUNDATIONAL LIBRARY FOR
AGGREGATE PROGRAMMING

Tesi in

Ingegneria dei Sistemi Software Adattativi Complessi

Relatore

Prof. MIRKO VIROLI

Correlatori

Dott. JACOB BEAL

Dott. DANILO PIANINI

Presentata da

MATTEO FRANCIA

ANNO ACCADEMICO 2015–2016

SESSIONE III

KEYWORDS

Aggregate programming

Programming languages

Self-organisation

Application programming interface

Simulation

To my beloved parents,

sources of inspiration

vii

Acknowledgements

This thesis is the result of the three months I spent as a visiting researcher

at the University of Iowa, a life-changing experience.

I am grateful to Mirko Viroli, who supervised me in the past six months,

and to Danilo Pianini, for his continuous support while working on this dis-

sertation. Special thanks to “Jake” Beal, who supervised me during the time

I spent at the University of Iowa.

I wish to thank the people with whom I shared the APICe laboratory, for

the fun we had together.

I would like to show my deepest gratitude to my family, especially to my

parents, for encouraging me to achieve my life goals, and to Laura, for the

life we share together.

Matteo Francia. March 16, 2017

viii

Contents

Abstract xi

1 Introduction 1

2 Background 5

2.1 Motivation . 5

2.2 Field calculus . 7

2.2.1 Self-stabilising field calculus 11

2.2.2 Substitution principle 11

2.2.3 Resilience . 12

2.3 Protelis: an aggregate programming language 13

2.4 Building blocks . 15

2.4.1 Spreading . 18

2.4.2 Accumulation . 20

2.4.3 Time . 22

2.4.4 Sparse choice . 22

2.5 Towards an aggregate library 23

3 Protelis-Lang library 25

3.1 Requirements . 25

3.2 Analysis . 26

3.3 Design . 30

3.4 Implementation . 35

3.4.1 Spreading . 36

ix

x CONTENTS

3.4.2 Accumulation . 37

3.4.3 Symmetry breaking . 40

3.4.4 State . 40

3.4.5 Meta patterns . 40

3.4.6 Non-self-stabilising functions 43

3.5 Demos . 45

4 Engineering an algorithm 49

4.1 Testing framework . 51

4.2 Quantitative analysis . 53

4.3 Protelis-Lang improvement workflow 55

4.4 Engineering distanceTo as a case study 55

4.4.1 Qualitative analysis and unit testing 57

5 Evaluation 63

5.1 Scenario 1: meeting a celebrity 64

5.2 Scenario 2: resource allocation 67

6 Conclusion 73

Bibliography 75

Sommario

L’elevata diffusione di entità computazionali ha contribuito alla costruzione di

sistemi distribuiti fortemente eterogenei. L’ingegnerizzazione di sistemi auto-

organizzanti, incentrata sull’interazione tra singoli dispositivi, è intrinsecamente

complessa, poiché i dettagli di basso livello, come la comunicazione e l’efficienza,

condizionano il design del sistema. Una pletora di nuovi linguaggi e tecnologie

consente di progettare e di coordinare il comportamento collettivo di tali sis-

temi, astraendone i singoli componenti. In tale gruppo rientra il field calculus,

il quale modella i sistemi distribuiti in termini di composizione e manipolazione

di field, “mappe” dispositivo-valore variabili nel tempo, attraverso quattro op-

eratori sufficientemente generici e semplici al fine di rendere universale il mod-

ello e di consentire la verifica di proprietà formali, come la stabilizzazione di

sistemi auto-organizzanti. L’aggregate programming, ponendo le sue fondamenta

nel field calculus, utilizza field computazionali per garantire elasticità, scalabilità

e composizione di servizi distribuiti tramite, ad esempio, il linguaggio Protelis.

Questa tesi contribuisce alla creazione di una libreria Protelis per l’aggregate pro-

gramming, attraverso la creazione di interfacce di programmazione (API) adatte

all’ingegnerizzazione di sistemi auto-organizzanti con crescente complessità. La

libreria raccoglie, all’interno di un unico framework, algoritmi tra loro eterogenei

e meta-pattern per la coordinazione di entità computazionali. Lo sviluppo della

libreria richiede la progettazione di un ambiente minimale di testing e pone nuove

sfide nella definizione di unit e regression testing in ambienti auto-organizzanti.

L’efficienza e l’espressività del lavoro proposto sono testate e valutate empirica-

mente attraverso la simulazione di scenari pervasive computing a larga scala.

xi

Abstract

Ubiquitous computing has led to the creation of highly-heterogeneous distributed

systems. Engineering these systems is challenging, particularly in mapping from

collective specifications to the behaviour of individual devices. Researchers have

developed new technologies and DSLs that abstract from the device-to-device in-

teraction. Among them, field calculus models distributed systems in terms of

composition and manipulation of fields—a mapping from a device to an arbitrary

value—by means of four general constructs also tractable for formal analysis. Ag-

gregate programming, leveraging field calculus, engineers self-organising systems

using the field abstraction to provide inherent guarantees of resilience, scalability,

and safe composition (e.g., via the Protelis Java-hosted language). However, field

calculus operators are too low-level for pragmatic use in complex systems develop-

ment. We thus present a prototype API intended to raise the level of abstraction

and thereby provide an accessible and user-friendly interface for the construction

of complex resilient distributed systems. In particular, we have systematically or-

ganised in a unified framework a large and heterogeneous collection of algorithms

and usage patterns, including methods for common tasks such as leader election,

distance estimation, collection of distributed values, and gossip-based information

dissemination. This library is tested against a new testing framework for the aggre-

gate programming, rising new challenges such as defining what unit and regression

testing are in the field of self-organising systems. We illustrate the efficacy and

expressiveness of this library through scenarios of large-scale pervasive computing

and their empirical evaluation in simulation.

xii

Chapter 1

Introduction

Pervasive computing has led to the creation of complex and heterogeneous

distributed systems [1, 2]. Computation has become cheap enough to embed

computing devices (FPGAs, micro-controllers, etc.) in any aspect of our lives.

Yet a wide gap lies between the requirements of fully-distributed systems

and their design. A programmer knows what the aggregate behaviour of the

system should be, but its design, implementation and debug are significant

challenges to overcome.

The need of global-to-local1 compilation strategy has been recognised

before [3]. Indeed, the design of aggregate distributed systems should make

coordination implicit, enable a modular and unanticipated composition of

heterogeneous services, and leverage heterogeneous coordination mechanisms

to address applications with different space-time abstractions [4].

Researchers have deployed new DSLs (domain specific languages) to de-

scribe aggregate behaviours in a number of models, systems, and technologies

across many different fields. Despite the heterogeneity of these prior ap-

proaches and the problems they aim to address, from a software engineering

perspective they tend to cluster into five main classes of approach [3]: making

device interaction implicit (e.g., TOTA [5], MPI [6], NetLogo [7], Hood [8]),

providing means to compose geometric and topological constructions (e.g.,

1Compiling aggregate specifications into actions and interactions of individual devices.

1

2 CHAPTER 1. INTRODUCTION

Origami Shape Language [9], Growing Point Language [10], ASCAPE [11]),

and providing generalisable constructs for space-time computing (e.g., Pro-

telis [12], Proto [13], MGS [14]).

It is from this last, and particularly Proto, that field calculus and the

aggregate programming approach derive, aiming at a generalisation that can

effectively encompass the vast majority of the above approaches, as will be

generally necessary for building complex distributed systems across a wide

range of application domains. Aggregate programming is a paradigm that

models large-scale adaptive systems, shifting the focus from the perspective of

a single component to the whole aggregate. Its layered approach (Figure 1.1)

addresses IoT (Internet of Things) systems [15] with five abstraction layers.

With a bottom-up view: (i) Each device has its own capabilities. Com-

munication and device-to-device interaction are extremely heterogeneous and

might require ad-hoc considerations that should not impact on the design of

the aggregate. (ii) Field calculus [16] is a prominent approach to aggregate

programming that addresses distributed systems as a functional composition

of computational fields. Being a terse model, field calculus allows one to

formally verify properties such as self-stabilisation, guaranteeing that feed-

forward compositions of its constructs maintain the same properties. (iii)

Core calculi are too low-level for system construction [17], allowing one to

write unsafe and fragile programs. Field calculus constructs are then com-

bined into resilient2 coordination operators (“building block” algorithms)

[18] leveraged to organise adaptive systems around well known coordination

and state-tracking patterns. The analysis of self-organising systems suggests

three basic mechanisms needed to ground complex applications: diffusion

of information in the network, aggregation of distributed information, and

“evaporation” of information [19]. (iv) User-friendly APIs (application pro-

gramming interfaces) compose building blocks into functions which encapsu-

late general complex mechanisms. (v) Application code imports APIs and

built-in functions to fulfil the system requirements: an aggregate program is

2Providing the ability to adapt to unexpected changes in working conditions.

3

Figure 1.1: The layered approach of aggregate computing shifts the focus

from the single device perspective to a cooperative collection of devices.

Software and hardware capabilities of devices are leveraged to implement

aggregate-level field calculus constructs. “Building block” algorithms with

provable resilience properties combine these constructs, and are further com-

bined to deploy user-friendly APIs for a fully-resilient coordination of IoT

systems. Adapted from [2].

4 CHAPTER 1. INTRODUCTION

a manipulation of data constructs across a region (either a discrete network

or continuous space).

This dissertation contributes with the creation of protelis-lang, a new

foundational library for self-organising distributed systems deployed within

the Protelis framework. The Protelis language [12] implements the seman-

tic of field calculus. Its highly-extensible functional approach addresses the

terseness of field calculus, allowing an incremental deployment of building

block algorithms and APIs for a fully-resilient coordination of distributed

systems. In particular, protelis-lang captures and systematically organ-

ises in a unified framework a large and heterogeneous collection of algorithms

and usage patterns, including methods for common tasks such as leader elec-

tion, distance estimation, collection of distributed values, and gossip-based

information dissemination.

The remainder of this dissertation is organised as follows. Chapter 2 re-

views the vision of the aggregate programming paradigm and field calculus as

universal approach to aggregate programming, and then provides an overview

of the Protelis language for programming aggregate systems. Chapter 3 de-

scribes how protelis-lang is engineered around bio-inspired patterns from

[19] and their implementation as building blocks. Chapter 4 extends the

workflow proposed in [20] and describes how a testing framework affects the

deployment of both aggregate algorithms and protelis-lang, showing how

unit testing and performance evaluation can be carried out. In Chapter 5 the

efficacy and expressiveness of this library are illustrated through scenarios of

large-scale pervasive computing and their empirical evaluation in simulation.

Chapter 2

Background

This section summarises the layered architecture of aggregate programming,

starting with its vision and motivation. Field calculus is a universal approach

to aggregate programming. Despite its universality, field calculus is still too

terse to be leveraged as an actual engineering tool for complex systems.

The Java-based Protelis language implements field calculus and represents

a step forward to address aggregate programming challenges. New user-

friendly APIs can be built leveraging Protelis, hence dramatically reducing

the abstraction gap between requirements and design of aggregate systems.

2.1 Motivation

Computational entities pervade the environment, highlighting the need for

new paradigms and coordination strategies to govern a collection of devices.

Pervasive computing and smart cities both envision a future in which in-

terconnected devices will “augment” everyday life. Infrastructural, personal

and wearable “smart” devices will lead to a pervasive continuum—a dis-

tributed and very dense substrate of devices—that hosts services to manage

aspects of our lives. Device-to-device interaction will be context-dependent

and adaptive to unexpected contingencies.

Programming and managing such complex distributed systems is chal-

5

6 CHAPTER 2. BACKGROUND

lenging and is subject of ongoing investigation in contexts such as cyberphys-

ical systems, pervasive computing, robotic systems, and large-scale wireless

sensor networks [21]. Distributed systems raise challenges such as robustness

to faults, adaptiveness to changes in network topology and the native open-

ness of pervasive scenarios. These challenges require flexible and dynamical

deployment of code to devices across the network, to adaptively change its

scope of execution, and to predictably integrate it with the existing services.

Researchers have recognised the need of new paradigms to engineer these col-

lective systems and, particularly, to coordinate complex and distributed ac-

tivities [18]. Aggregate programming models distributed systems in terms of

their aggregate behaviours, e.g., “distribute a dispersal signal in overcrowded

areas at mass events,” and encapsulates self-organisation techniques to guar-

antee a fully-resilient and robust coordination of complex services. Effective

models and programming languages are needed to handle distributed systems

as native aggregates of devices [16], hence diverging from a device-centric per-

spective: devices are instead perceived as a single collective entity. Languages

approaching aggregate programming should then provide both mechanisms

for writing aggregate specifications and a global-to-local mapping to translate

them into means of coordination of individual devices.

Several approaches to aggregate programming model the entire system

as dynamically evolving fields [3]. Among them, field calculus is a universal

approach to aggregate programming in which fields are first-class abstrac-

tions leveraged to model sensors, state, and results of computation. The

operational semantics of the field calculus produce a unified model support-

ing self-organisation and code mobility. Fields of first-class functions allow

the distribution of code by means of device interactions and higher-order

calculus.

2.2. FIELD CALCULUS 7

Figure 2.1: Manipulation of continuous and discrete computational fields.

Fields of temperatures are transformed into boolean fields. Adapted from

[22].

2.2 Field calculus

Many approaches based on computation over continuous space and time have

addressed the aggregate programming challenge: [3] identifies more than 100

significant languages and models for spatial computers. Spatial computing

covers a wide range of applications and biases in their approach to com-

putational models. Examples of spatial computers include sensor networks,

robot swarms, mobile ad-hoc networks, etc. Several of these leverage coor-

dination models and languages (e.g., TOTA [23], Linda [24]) through which

diffusion, recombination, and composition of information scattered in the

system produce global, dynamically evolving computational fields. Formally,

a computational field generalise the notion of field in physics [16]: “a com-

putational field is a map from every computational device in a space to an

arbitrary computational object” (Figure 2.1). Fields are aggregate-level dis-

tributed data structures that gradually adapt to changes in the underlying

topology and interaction with the environment. Fields can be composed to

implement self-organising coordination patterns.

Field calculus captures and formalises abstractions of existing coordi-

8 CHAPTER 2. BACKGROUND

nation languages or models targeting aggregate programming. This “core

calculus” approach captures semantics in a tiny language, expressive enough

to be universal [25] yet tractable for mathematical analysis. Historically, field

calculus is inspired by Proto [13]. They both express aggregate behaviour

by a functional composition of operators that manipulate continuous fields

and predict the behaviour of computational fields from underlying interac-

tions between individual devices. These manipulations are compiled into

local rules iteratively executed in asynchronous “computation rounds:” each

device receives messages from its neighbours, computes the local value of

fields, and finally spreads the result of this computation to its neighbours1.

Both behaviour (computation and state of a device) and interaction (mes-

sage content) are modelled as annotated evaluation trees. Field construction,

propagation, and restriction are then supported by local evaluation “against”

the evaluation trees received from neighbours.

The higher-order extension of field calculus (HFC) embeds first-class func-

tions, allowing the handling of functions just like any other value. Code can

be dynamically injected, moved, and executed in network domains: func-

tions can be fed with other functions as arguments, return new functions,

and be assigned to variables. HFC also supports anonymous functions and

code migration—the functionalities being executed by a device can change

over time. Together, first-class functions (what to compute) and domain-

restriction (where to compute) allow predictable and safe composition of

robust self-organisation mechanisms [21].

The syntax of higher-order field calculus is depicted in Figure 2.2. Five

constructs are composed into programs using a Lisp-like syntax.

• Built-in function call (b e1 ... en): “point-wise” operations involv-

ing neither state nor communication. The built-in function b is applied

to its e1, ..., en input fields, and its output field maps each device

to the result of a local computation, e.g., mathematical functions (e.g.,

1The definition of “neighbourhood” and communication between neighbours are ab-

stracted away by field calculus.

2.2. FIELD CALCULUS 9

l ::= c〈l〉 | λ ;; Local value

λ ::= b | f | (fun (x) e) ;; Function value

e ::= l | x | (e e) ;; Expression

| (rep x w e)

| (nbr e)

| (if e e e)

w ::= x | l ;; Variable or local value

F ::= (def f(x) e) ;; Function declaration

P ::= F e ;; Program

Figure 2.2: Syntax of higher order field calculus. Adapted from [21].

(add 1 2)) and context-dependent operators (e.g., (uid) returns the

device UID).

• Function definition and function call: abstraction and recursion are

supported by function definition def f(x1, ..., xn) e, where xi are

formal arguments and e is the function body. (f e1 ... en) applies

f to n input fields.

• Time evolution (rep x e0 e): the “repeat” construct supports stateful

evolving fields. rep initialises the state variable x to e0, then updates

it computing e against the previous value of x.

• Neighbourhood field construction (nbr e): nbr encapsules interaction

between devices, and returns a field that maps each neighbouring device

to its most recent available value of field e. Such “neighbouring” fields

can then be manipulated and summarised with built-in *-hood oper-

ators, e.g., (min-hood (nbr e)) outputs a field mapping each device

to the minimum value of e amongst its neighbours.

• Domain restriction (if e0 e1 e2): branching is implemented by this

construct, which computes e1 in the restricted domain where e0 is true,

10 CHAPTER 2. BACKGROUND

Figure 2.3: Every coordination mechanism can be expressed in field calcu-

lus, but many may be difficult or impossible to express within its guaran-

teed self-stabilising subset. If one coordination mechanism is asymptotically

equivalent to another mechanism in the self-stabilising subset, however, then

it is guaranteed to be safely composable as well. Adapted from [20].

and e2 in the restricted domain where e0 is false.

A field calculus program is then interpretable either as an aggregate-level

computation on fields or as an equivalent “compiled” version automatically

generated with local interaction rules. Each program consists of a set of

function definitions and a main expression eM evaluated within a network

of interconnected devices. When a device fires, it computes eM and outputs

its “value tree:,” a tree which tracks the results of the sub-expressions en-

countered during the evaluation. Each evaluation on a device is performed

against the most recently received value-trees of its neighbours, and the pro-

duced value-tree is conversely made available to the device’s neighbours at

the end of the computational round.

2.2. FIELD CALCULUS 11

2.2.1 Self-stabilising field calculus

Under fixed environmental conditions K, a network in state N is stable if

no device firing changes its state. A network in state N self-stabilises to a

stable state N0 iff through a sufficiently long fair2 sequence of transitions it

necessarily reaches N0 and remains there. If the network self-stabilises to N0,

then it does so to a globally unique state that is unequivocally determined

by the environmental conditions K (namely, is independent of N). Then, N0

can be interpreted as the output of the aggregate computation [20]. Hence, a

program P is self-stabilising if its field computations react to and recover from

any change in environmental conditions, eventually reaching N0 regardless

any current state N .

In the context of an open system, self-stabilisation entails that any sub-

expression of the aggregate program can be associated to a final and stable

field, reached in finite time while adapting to changes in the underlying

environment. This acts as the sought bridge between the sub-expressions

in program code and the emergent global outcome3 [26].

Self-stabilisation is generally undecidable, given that computational

rounds are not even guaranteed to terminate due to the universality of lo-

cal computation. Thus, ensuring self-stabilisation is a matter of isolating

fragments of the calculus that produce only self-stabilising field expressions.

This problem has been addressed in [20] which also describes a self-stabilising

sub-language of field calculus.

2.2.2 Substitution principle

Because of their generality, some coordination algorithms may not achieve

good dynamic performance. More performing mechanisms exist but may be

2Assumption under which devices fire at almost the same frequency, assuring that no

device is perceived as disconnected by its neighbours.
3While engineering a field calculus program, we can reason in terms of the field each

expression stabilises to, rather than the expression itself. The global result is eventually a

manipulation of self-stabilised fields.

12 CHAPTER 2. BACKGROUND

difficult to express in the self-stabilising calculus (Figure 2.3).

The “substitution principle” extends the properties of self-stabilising cal-

culus: “given functions λ, λ′ with same type, λ is substitutable for λ′ iff for

any self-stabilising list of expressions e, (λ e) always self-stabilises to the

same value as (λ′ e)” [20]. Namely, two self-stabilising functions are “sub-

stitutable” if they eventually converge to the same stable state N0 when fed

with the same inputs. Indeed, as self-stabilisation does not consider the tran-

sients of these functions, as long as the converged values are the same, the

two functions are swappable without affecting self-stabilisation. A coordina-

tion mechanism with desirable dynamic properties can replace another one,

improving overall performance.

2.2.3 Resilience

Resilience is the ability to adapt to unexpected changes in working conditions

[27], ensuring that the system achieves its goals in spite of certain classes of

change (e.g., density of devices, perturbations). The aggregate computing

framework (Figure 1.1) should provide inherent resilience: adaptation to

changes is detracted from the responsibilities of an aggregate program and

is demanded to the underlying layers.

Self-stabilisation guarantees resilience only to occasional disruption. Field

evolution reaches the stable state N0 only if there is enough time following

the last perturbation. However, even small perturbations to the network

topology can significantly affect the result of computation.

[20, 28] propose two approaches to ensure resilience to ongoing perturba-

tions: (i) the former presents an engineering methodology to replace coor-

dination mechanisms with alternative and more specialised implementations

that can better trade off speed with adaptiveness in certain contexts of usage

(described in Chapter 4); (ii) the latter turns gossiping into a self-stabilising

process by means of running parallel replicas of gossiping.

2.3. PROTELIS: AN AGGREGATE PROGRAMMING LANGUAGE 13

2.3 Protelis: an aggregate programming lan-

guage

The key idea of aggregate computing is to consider computational fields as

a first-class abstraction: any computation is therefore seen as a purely func-

tional transformation of fields. The computational field calculus [29, 30]

provides a universal [25] formal foundation for this approach (syntax, typ-

ing, denotational and operational semantics, behaviour properties such as

self-stabilisation). Being a theoretical model, any implementation of field

calculus requires both an interpreter and an architecture to handle commu-

nication, execution, and interfacing with external components. In addition,

a framework for field calculus should be portable across both simulation en-

vironments and real networked devices.

The Protelis language [12] has been developed as an implementation of

field calculus similarly to the Proto VM [31]. A parser translates Protelis

code into a field calculus semantics that is executed by the interpreter at

regular intervals, communicating with other devices and drawing contextual

information from environment variables implemented as a tuple of key-value

pairs. Protelis includes the universality and self-stabilisation properties of

field calculus [29] in a modern programming language with the following

features [12]: (i) a functional paradigm with an imperative Java-like syn-

tax, which significantly reduces barriers to adoption; (ii) full interoperability

with the Java runtime and API; (iii) complete coverage of the field calcu-

lus constructs; and (iv) higher-order mechanisms to enhance reusability and

flexibility, and to support code mobility.

Embedding Protelis within Java ensures accessibility, portability, and ease

of integration. Java reflection allows dynamic invocation of arbitrary Java

code, thus allowing integration of aggregate programs with a rich existing

ecosystem of libraries, devices, and applications. Still, Protelis is overall a

purely functional language: a program is made of a set of function definitions

(essentially, libraries formed by modules) with a main expression as starting

14 CHAPTER 2. BACKGROUND

P ::= I F s; ;; Program
I ::= import m | import m.∗ ;; Protelis/Java import
F ::= def f(x) {s;} ;; Function definition
s ::= e | let x = e | x = e ;; Statement
w ::= x | l | [w] | f | (x)->{s;} ;; Variable/Value
e ::= w ;; Expression
| b(e) | f(e) | e.apply(e) ;; Fun/Op Calls
| e.m(e) ;; Method Calls
| rep(x<-w){s;} ;; Persistent state
| if(e){s;} else {s′;} ;; Exclusive branch
| mux(e){s;} else {s′;} ;; Inclusive branch
| nbr{s;} ;; Neighborhood values

Figure 2.4: Protelis abstract syntax. Adapted from [12].

point of the global computation—ultimately carried on by the collection of

available devices undergoing repetitive computational rounds.

The abstract syntax of Protelis is shown in Figure 2.4—overbar semi-

formal notation is used to denote sequences of syntactic elements. In Pro-

telis, any expression denotes a whole computational field (a space-time data

structure), hence functions compute fields out of fields. Local values l (num-

bers, strings, Booleans), tuples (e.g., [1, 2, "s"]), function names f, and

anonymous functions ((x)->{e}), all represent “constant” fields (mapping

to the same value at every device at every time). Each statement is an ex-

pression to be evaluated, and a statement sequence s evaluates to the result

of the last statement. Expressions are variables, values, and function calls

(applied to a built-in function b, a user-defined function f, a Java method

e.m, and—by apply notation—an expression e returning a function itself).

Protelis implements the field-calculus constructs (introduced in Sec-

tion 2.2) to address space-time computation, and adds mux as an additional

branching operator:

• rep(x<-w){s;}, illustrated in Figure 2.5(a), defines a time-varying

2.4. BUILDING BLOCKS 15

field that is initially w, and is continuously updated at each round

by the unary function taking variable x and evaluating body s (e.g.,

rep(x<-0){x + 1} is the field counting computation rounds at each

device);

• nbr{e}, illustrated in Figure 2.5(b), models device-to-device interaction

and creates a field where each device maps its neighbours (including

itself) to their latest available evaluation of e (such fields are then

usually reduced again with a built-in hood functions like max, min,

average, and so on, as described below);

• if(e){s;} else {s′;}, illustrated in Figure 2.5(c), performs an exclusive

branch, partitioning the network into two space-time subregions (where

e evaluates to true/false, respectively), computing s in the former

and s′ in the latter, in isolation;

• mux(e){s;} else {s′;} construct is an inclusive multiplexing branch: the

two fields obtained by computing s and s′ are superimposed, using the

former where e evaluates to true, and the second where e evaluates to

false.

Listing 2.1 shows a composition of field calculus operators into higher-

level and more user-friendly functions written in Protelis.

2.4 Building blocks

Though field calculus is a step toward practical applications, as shown in Fig-

ure 1.1, its terseness makes it too low-level for programming resilient systems

[17]. The “Resilient coordination” layer composes field calculus constructs in

a collection of higher-level building block algorithms, simple and generalised

basis elements of an “algebra” of programs with desirable resilience proper-

ties [12]. Four self-stabilising algorithms (Figure 2.6) are introduced in [18]

and elaborated in [20]: G (spreading), C (aggregation), T (temporary state),

16 CHAPTER 2. BACKGROUND

H A

A

D

H

T

H
K

B

(a) rep: time-varying field (b) nbr: field from neigh-

bours

(c) if: exclusive branching

Figure 2.5: Field calculus core operators. Adapted from [17].

/* Estimating distance to a source region */

def distanceTo(source) {

/* Time -varying field: minimum distance to source */

rep(d <- Infinity) {

/* Inclusive multiplexing: all devices evaluate both branches.

* Returns 0 if source is true , a positive distance otherwise */

mux (source) {

0

} else {

minHood(nbr{d} + nbrRange)

}

}

}

/* Estimating distance to a source region while avoiding obstacles */

def distanceToWithObstacle(source , obstacle) {

/* Exclusive branching: evaluate distanceTo if obstacle is false ,

* evaluate Infinity otherwise */

if (obstacle) {

Infinity

} else {

distanceTo(source)

}

}

Listing 2.1: Leveraging rep, nbr, if, mux to build higher-level and user-
friendly functions. Adapted from [12].

2.4. BUILDING BLOCKS 17

(a) G: spreading (b) C: accumulation

3

1
7

2

4

3
3

1

0

(c) T: time (d) S: sparse choice

Figure 2.6: Self-organising distributed systems are often built on bio-inspired

mechanisms, summarised in [19], such as diffusion and accumulation of in-

formation over space and time, and symmetry breaking through mutual

inhibition. The four building-block algorithms proposed in [18] and re-

fined in [20] address these mechanisms. Their self-stabilisation and eventual

consistency—adaptiveness to changes in device density, topology, etc.—have

been formally proved in [20, 22], and transfer to any feed forward composition

of these blocks. Reproduced from [17].

18 CHAPTER 2. BACKGROUND

and S (symmetry breaking through mutual inhibition). Critically, any pro-

gram constructed using only these operators for coordination and state (or

their equivalents, per the modular proof established in [20]) is guaranteed to

be self-stabilising and to have good scaling properties (though timing details

of course vary depending on usage details). “Feed-forward” compositions of

such algorithms are self-stabilising too. Indeed, if the input of an algorithm

is stable, then its output self-stabilises as well. Any algorithm consuming

its output will be fed with an input that stops changing, and eventually all

algorithms will self-stabilise.

Building blocks are highly general, allowing a programmer to build and

coordinate distributed application across different applications. Each of

them captures best practises to develop flexible decentralised specifics, hid-

ing the low-level details of field calculus and satisfying three features: (i)

self-stabilisation, building blocks eventually converge and, in addition, they

are capable of reactively adjusting to changes in the input field and network

structure; (ii) scalability to large networks; (iii) resiliency, compositions of

building blocks inherit their resilient features.

2.4.1 Spreading

G, illustrated in Figure 2.6(a), produces resilient diffusion of information away

from a source region, spreading this information outward along a spanning

tree built applying the triangle inequality constraint, and possibly modifying

that information as it spreads. In the case of multiple sources, the space

is effectively partitioned into sub-regions, one per source, with each device

receiving information only from its nearest source. Many functions address-

ing information diffusion can be based on G, e.g., estimating distance to one

or more designated source devices and broadcasting a value from a source

(Listing 2.2).

2.4. BUILDING BLOCKS 19

/* source: from where information is spread

* init: field spread from source

* metric: how to estimate distance

* accumulate: how to accumulate information ascending along the gradient

*/

def G(source , init , metric , accumulate) {

rep (distanceValue <- [Infinity , init]) {

mux (source) { [0, init] }

else {

let ndv = nbr(distanceValue);

minHood ([ndv.get(0) + metric.apply (), accumulate.apply(ndv.get(1))])

}

}.get(1)

}

/* Distance to source */

def distanceTo(source) {

/* nbrRange: field of distances of current device to its neighbours */

distanceToWithMetric(source , nbrRange)

}

def distanceToWithMetric(source , metric) {

G(source , 0, metric , (v) -> {v + metric.apply()})

}

/* Spread value from a source */

def broadcast(source , value) {

G(source , value , () -> {nbrRange}, (v) -> {v})

}

Listing 2.2: G implementation and examples of G-related functions. Adapted
from [18].

/* potential: gradient descended to aggregate information

* accumulate: how to aggregate information descending along the gradient

* local: local value

* null: null value in case of no neighbours

*/

def C(potential , accumulate , local , null) {

rep (v <- local) {

reduce.apply(local ,

hood(

/* built -in operator to reduce a field to a value */

(acc , element) -> { reduce.apply(acc , element) }, null ,

/* build a spanning tree descending along a potential */

mux (nbr(getParent(potential)) == self) { nbr(v) }

else { null }

))

}

}

/* Count devices in a given region */

def countDevices(sink) {

C(distanceTo(sink), (acc , elem) -> {acc + elem}, 1, 0)

}

/* Estimate the average value in a network */

def average(sink , value) {

C(distanceTo(sink), (acc , elem)->{acc+elem}, value , 0)/countDevices(sink)

}

/* Share a global agreement on scattered data */

def summarize(sink , accumulate , local , null) {

broadcast(sink , C(distanceTo(sink), accumulate , local , null))

}

Listing 2.3: C implementation and examples of C-related functions. Adapted
from [18].

20 CHAPTER 2. BACKGROUND

G: implementation details

Each device keeps track of the distanceValue which is initialised to the tuple

[Infinity, init]. Its first element represents the actual shortest distance

to the closest source, while the latter is the accumulated value. Devices

evaluate both branches of mux. While the former is a point-wise expression,

the latter maps the neighbours of each device to their most recent available

value of distanceValue. This value is updated applying the accumulate

function to the sum of the field of distances to the closest source and the

field of distances to each device’s neighbours. The resulting field is finally

reduced to the tuple containing the shortest distance to the source region.

Devices in which source is true are the origins of the gradient, and return

[0, init].

2.4.2 Accumulation

C, illustrated in Figure 2.6(b) is the complement of G, addressing resilient

aggregation of information across space: C is fed with what to aggregate, then

performs that aggregation along a spanning tree down a potential gradient

towards a source device that thus eventually reduces all the information

scattered through a region into a single summary value (Listing 2.3).

C: implementation details

Each device keeps track of the value v initialised to local, and then aggre-

gates values scattered along the network. The hood built-in function reduces

a field to a single value iteratively applying reduce to pairs of elements. acc

is initialised to the first element of the field, and is updated to the result of

each aggregation. In this case hood is fed with: the reduce function, a null

value, and a field containing the latest available value of v for the neighbours

whose parent4 is the current device and null for the others.

4Neighbour with the lowest potential.

2.4. BUILDING BLOCKS 21

/* length: time period

* zero: value representing zero state

* decay: how to decrease time

*/

def T(length , zero , decay) {

rep (leftTime <- length) {

min(length , max(zero , decay.apply(leftTime)))

}

}

/* Return true once every length time */

def cyclicTimerWithDecay(length , decay) {

rep (leftTime <- length) {

if (leftTime == 0) {

length

} else {

T(length , 0, (t) -> {t - decay})

}

} == length

}

Listing 2.4: T implementation and examples of T-related functions. Adapted
from [18].

/* grain: component size

* metric: unit measure of grain

*/

def S(grain , metric) {

breakUsingUids(randomUid (), grain , metric)

}

/* Return the tuple [random number , device UID] */

def randomUid () {

rep (identifier <- [self.nextRandomDouble (), self.getDeviceUID ()]) {

identifier

}

}

/* Break network symmetry */

def breakUsingUids(uid , grain , metric) {

rep (lead <- uid) {

distanceCompetition(distanceToWithMetric(uid == lead , metric),

lead , uid , grain , metric)

} == uid

}

/* Compete to find the leader */

def distanceCompetition(d, lead , uid , grain , metric) {

mux (d > grain) { uid }

else {

let thr = 0.5 * grain;

mux (d >= thr) { [Infinity , Infinity] }

else {

minHood(

mux (nbr(d) + metric.apply () >= thr) { [Infinity , Infinity] }

else { nbr(lead) }

)

}

}

}

Listing 2.5: S implementation. Adapted from [18].

22 CHAPTER 2. BACKGROUND

Figure 2.7: Distance competition in S from the perspective of leader L. L

is the current leader of the yellow component with a grain radius. Orange

devices, located within grain/2, compete with L, while purple devices, more

distant than grain/2 from L, are ignored during the competition. Devices

L’, more distant than grain from L, propose themselves as leaders of a new

partition.

2.4.3 Time

T, illustrated in Figure 2.6(c) implements a flexible timer, which progresses

from some initial state to a “zero” state at a potentially time-varying state

(Listing 2.4).

T: implementation details

Each device keeps track of the leftTime value which is initialised to the

length of the timer, and then returns the minimum between length and the

maximum between zero and the value returned applying the decay function

to the remaining time.

2.4.4 Sparse choice

S, illustrated in Figure 2.6(d), breaks symmetry through mutual inhibition,

in which devices compete against others to become leaders, generating a

random Voronoi partition with a characteristic grain size (Listing 2.5).

2.5. TOWARDS AN AGGREGATE LIBRARY 23

S: implementation details

Each device is identified by a tuple containing a random value and its univer-

sal identifier. S breaks symmetry creating random partitions whose leaders

are the devices identified by the minimum random value within a grain

range. In distanceCompetition (Figure 2.7), devices compete against the

others, and propose themselves as leaders in case they are farther than grain

from the nearest leader. Otherwise, devices compute the minimum value of

the field of leaders’ identifiers in which devices more distant than grain/2

from the closest leader are excluded from the competition (their identifiers are

replaced with the tuple [Infinity, Infinity]). breakUsingUids (hence

S) then returns true if distanceCompetition elects the current device as

a leader, false otherwise. As result, S elects a set of leaders such that no

device is more distant than grain from a leader, and no leaders are closer

than grain/2.

2.5 Towards an aggregate library

The layered architecture of aggregate programming allows a hierarchical com-

position of best-effort practices, encapsulating even complex coordination

mechanisms in a single higher-level component (e.g., a function). Build-

ing blocks represent the foundation of more complex APIs (Figure 1.1) that

considerably reduce the abstraction gap between application requirements

and system design. Functions such as distanceTo (Listing 2.2), average,

summarize (Listing 2.3), etc., can be leveraged as higher-level “primitives”

of new libraries for aggregate programming.

This approach is suitable for large-scale scenarios such as crowd applica-

tions that involve people at mass public events (marathon, city festival, etc.).

Personal and infrastructural devices communicate and coordinate with the

others, and their opportunistic interaction smoothly supports services such

as: crowd detection, crowd-aware navigation, dispersal advice, etc. A dis-

tributed service is encapsulated and managed as a single function. Program-

24 CHAPTER 2. BACKGROUND

/* Estimating crowd density */

def dangerousDensity(p, r) {

let mr = managementRegions(r*2, () -> { nbrRange });

let danger = average(mr, densityEst(p, r)) > 2.17

&& summarize(mr , sum , 1 / p, 0) > 300;

if(danger) {

high

} else {

low

}

}

/* Check if an area has been exposed at overcrowd risk in a given time */

def crowdTracking(p, r, t) {

let crowdRgn = recentTrue(densityEst(p, r) > 1.08, t);

if(crowdRgn) {

dangerousDensity(p, r)

} else {

none

};

}

/* Disseminate warning signals */

def crowdWarning(p, r, warn , t) {

distanceTo(crowdTracking(p,r,t) == high) < warn

}

Listing 2.6: Example of small crowd application that supports crowd
estimation and warning dissemination in Protelis. Adapted from [2].

mers compose modules to build the desired application specifying where each

service should be executed and how information flows between them. For in-

stance, a crowd estimation service maps information about the location of a

device to a crowd density computational field. This serves as an input for

crowd-aware navigation, which outputs vectors of recommended travel and

warnings that are in turn an input for producing dispersal advice.

Due to the high concentration of people in constrained areas, danger-

ous overcrowding issues emerge possibly leading to injuries [2]. Estimating

crowd density, performing an overcrowding risk assessment and disseminat-

ing warnings are achieved with few lines of Protelis code (Listing 2.6). The

proposed program is resilient and adaptive, enabling it to effectively estimate

crowd density (none, low, high) and distribute warnings while executing

on numerous mobile devices. Functions introduced before are composed here

to show how a crowd-management library can be built on top them.

Chapter 3

Protelis-Lang library

“There is no code without

project, no project without

problem analysis, no problem

analysis without requirements.”

Antonio Natali

In this section, we engineer protelis-lang on the bases of a multi-stage

process including requirements analysis, problem analysis, and design. Out-

puts from each stage are qualitatively represented in Figure 3.1.

3.1 Requirements

While a programmer may have clear ideas about the aggregate behaviours

desired from a system, the details required to implement such behaviours

in the low-level operations of field calculus (or their corresponding Protelis

syntax) are often quite intricate and sensitive to details of their implemen-

tation. This is particularly true for ensuring that behaviours are resilient

and scalable, as these properties are often quite difficult to validate using

either formal analysis or empirical testing [17]. In order to fulfil the promise

of aggregate programming, we need a comprehensive library that provides

25

26 CHAPTER 3. PROTELIS-LANG LIBRARY

higher-level building blocks that are already guaranteed to be resilient and

scalable, thus insulating application programmers from these challenges.

The terseness of field calculus allows a programmer to design fragile

programs and requires one to “manually” address coordination and state-

tracking challenges. Building block algorithms partially reduce the com-

plexity of writing aggregate programs, still, being general functions they

require specialisation. Though building blocks hide resilient best practices

“under the hood,” avoiding directly use of field calculus constructs, there is

a considerable gap to bridge with respect to application requirements. The

protelis-lang library is located at the “Developer APIs” layer of the aggre-

gate programming stack (Figure 1.1), and, as such, our work should define

extensible and general core modules on which more specific ones can be built.

While analysing the requirements, we highlighted three key ideas: build-

ing blocks, resiliency and scalability. All of them were previously addressed

in Chapter 2. As such, we defined a two-stage process to engineer our li-

brary. The first challenge is defining, organising, and formalising what has

already been published. In the second stage, we defined the boundaries of

protelis-lang through a comparison with the state-of-art literature and fill

in the missing places with respect to the existing technologies and DSLs.

3.2 Analysis

In order to construct our prototype library, we drew upon three sources in

an effort to more systematically define its scope and populate its contents.

At the core of the library is the system of four self-stabilising building-block

operators identified in [18] and elaborated in [20]: G (spreading), C (aggre-

gation), T (temporary state), and S (sparse choice). Critically, any program

constructed using only these operators for coordination and state (or their

equivalents) is guaranteed to be self-stabilising and to have good scaling prop-

erties (though timing details of course vary depending on usage details). We

then searched through all of the prior publications referenced for their as-

3.2. ANALYSIS 27

Building-Blocks

Core-Modules

Protelis-Lang
(Developer-APIs)

Universal

Specific-Modules
Domain--
Specific

Efficient-
Mechanisms

Meta

Meta-Programming

(a) We need a comprehensive and highly extensible library providing higher-level

building blocks, guaranteeing inherent resilience, and which is organised around

domain-specific modules that depend on global modules (core modules and meta-

programming modules).

MetaCore modules

Universal

spreading
...

accumulation
...

sparsechoice
...

time
...

Protelis Lang
(Developer APIs)

meta
...

(b) Self-organising systems are built around spreading, and accumulation of in-

formation over space and time [3, 19]. accumulation and sparsechoice depend

on spreading as they require metrics and distance-based potentials. We added

sparsechoice module for symmetry breaking.

MetaCoreFmodules

Universal

spreading
G,FdistanceTo
broadcast,
dilate,F
nbrRange,F...

accumulation
C,Fsummarize,
average,
countDevices,F
...

FFsparsechoice
S,F...

time
T,FcyclicTimer,
cyclicFunction,
limitedMemory,F
...

ProtelisFLang
(DeveloperFAPIs)

meta
boundSpreading,
multiRegion,
multiInstance,
...

(c) Modules are populated with building-block related functions.

Figure 3.1: Engineering the “Developer APIs” layer from Figure 1.1. We

deployed the core modules of protelis-lang following three stages: (a)

requirement analysis, (b) problem analysis and (c) design of protelis-lang.

Green arrows depict inter-module dependencies.

28 CHAPTER 3. PROTELIS-LANG LIBRARY

protelis)

nonselfstabilizing)

lang)

state)

coord)

sparsechoice)

spreading)

accumula5on)

meta)

nonselfstabilizing)

Figure 3.2: Organisation of protelis-lang library: spreading,

accumulation, state and sparsechoice are built around the four resilient

“building block” operators described in [18] and illustrated in Figure 2.6,

while meta contains higher-order coordination patterns and lang contains

utility functions. The nonselfstabilizing sub-packages expose additional

less resilient building blocks that must be applied with care for that reason.

sociated algorithms and code fragments, importing and adapting those that

could be mapped onto one or more of these operators or proved equivalent,

along with any other patterns and supporting functions of interest.

Finally, we compared the contents thus identified in two broad surveys:

the systematic analysis of space-oriented aggregate programming languages

in [3] and the analysis of biologically-inspired self-organisation patterns in [19]

in order to more systematically define our scope of coverage and to identify

and fill any coverage gaps that we could identify.

In particular, at this time we specifically rule out of scope of the library al-

gorithms that control device movement (e.g., flocking and swarming) or that

3.2. ANALYSIS 29

Figure 3.3: Classification of and inter-relations between bio-inspired mecha-

nisms to ease the engineering of self-organising artificial systems. Adapted

from [19].

work with coordinate information (e.g., localisation algorithms). Analysis of

self-organisation patterns suggests three basic mechanisms needed to ground

complex applications [19]: diffusion of information in the network as an ad-

vertisement mechanism, aggregation of distributed information as a sensing

mechanism, and “evaporation” of information as a refresh mechanism. As

spreading, aggregation and evaporation are foundational mechanisms upon

which more complex patterns are built (Figure 3.3), we drew parallels with

G, C and T. Encouragingly, we found that the building-block operators corre-

spond nicely with these three bio-inspired mechanisms.

G draws from both aggregation and spreading patterns, diffusing and ag-

gregating information ascending along a gradient. G is also related to the

gradient pattern as it allows diffusion of information along with the distance

from the source (Listing 3.1). However, as G partitions a network of devices in

“isolated” spatial sub-regions, G does not allow the aggregation of gradients

propagated by different sources. Finally, G represents a possible implemen-

tation of the ant foraging pattern in which the origin of the gradient and

devices represent respectively nest and ants looking for food.

30 CHAPTER 3. PROTELIS-LANG LIBRARY

Both C and aggregation pattern merge, filter, and reduce information scat-

tered in the system, avoiding network and memory overload. While C aggre-

gates data down a potential, aggregation locally applies a fusion operator to

process and synthesises macro information.

Gossip composes both aggregation and spreading patterns to eventu-

ally share a global agreement about local values scattered in the system.

summarize (Listing 2.3), a feed forward composition of C and G, is a possi-

ble self-stabilising implementation of gossip that aggregates information in

a sink and then broadcasts it back. The same composition can be leveraged

to implement the quorum sensing pattern for taking collective decisions in

systems where a minimum number of devices satisfying a certain condition

is required.

As information might become outdated, functions should rely on more

recent data. Evaporation pattern periodically reduces the relevance of data

over time, and T can be leveraged to address this pattern (Listing 3.3).

The analogies between building blocks and the basic bio-inspired patterns

suggest a possible organisation for our library around G, C, T, and S—though

symmetry breaking is not addressed in [19], and prove that functionalities

furnished by protelis-lang can potentially address a wide range of appli-

cations.

3.3 Design

While software development is immune from almost all physical laws,

entropy—the degree of disorder—hits hard [32]. Well-designed code consider-

ably affects the productivity of system designers and programmers, especially

when it comes to working with state-of-art technologies. According to Dave

Thomas [33]: “Clean code can be read, and enhanced by a developer other

than its original author. It has unit and acceptance tests. It has meaningful

names. It provides one way rather than many ways for doing one thing. It

has minimal dependencies, which are explicitly defined, and provides a clear

3.3. DESIGN 31

and minimal API.”

Testing

The three test driven development laws guarantee that minimal tests virtu-

ally cover all the library code [34]. To manage testing complexity, we use

Gradle as a tool for the automatic build of our library, JUnit as a testing

framework, and we structured tests as follows:

• Test cases should be short and descriptive. Testing requires the creation

of a new simulation environment, which we kept as simple as possible.

In particular, testing an aggregate program, addressed in Chapter 4,

requires the scenario configuration against which Protelis code is tested.

They both cover only the strictly necessary specifications to test the

desired feature;

• Every test function has one and only one concept assertion;

• Test names should be short and descriptive. Each function within the

library must be tested and may require multiple unit and regression

tests. In this case, test name should be a concatenation of “function

name + feature being tested.”

Naming conventions

The name of a variable or a function should be as expressive as possible,

explaining what it does, and how it is used. If a name requires a comment,

then the name does not reveal its intent [33]. For instance, the function

definition def ebf(s) /* exponential back-off filter */ may lead to

disinformation. We prefer descriptive pronounceable names, such as def

exponentialBackoffFilter(signal). Indeed, the programmer, at first

sight, can expect what the exponentialBackoffFilter function does, still,

at a later stage, she should check the unit tests as they formalise the be-

haviour of the function.

32 CHAPTER 3. PROTELIS-LANG LIBRARY

The Protelis language does not support types and function overload-

ing. As such, we adopted internal naming conventions and introduced a

Javadoc-compliant documentation1 describing each function signature. For

instance, distanceTo (Listing 2.2) feeds G with the self.nbrRange() met-

ric. As such the field of distances returned by distanceTo strictly depends

on the back-end implementation of the Protelis ExecutionContext. We

also wanted a generic version of this function to deal with ad-hoc met-

rics. Thus we introduced a new function whose name is the concatena-

tion of “base function name + With + additional parameters,” resulting

in distanceToWithMetric. distanceTo then performs an inner call to the

generic distanceToWithMetric that takes the desired metric as a parameter.

/* ----- Function signatures , type is described after each parameter ---- */

/**

* Compute distance to a source.

*

* @param source bool , whether the current device is a source

* @return num , distance to the closest source

*/

def distanceTo(source) { ... }

/**

* Compute distance to a source.

*

* @param source bool , whether the current device is a source

* @param metric ()->num , how to estimate distances

* @return num , distance to the closest source

*/

def distanceToWithMetric(source , metric) { ... }

/**

* Distance to neighbors.

*

* @return num , field of distances from each neighor

*/

def nbrRange () { self.nbrRange () }

/**

* Hop to neighbors.

*

* @return num , field of ‘1‘s (hop to each neighor)

*/

def nbrRangeHopDistance () { 1 }

/* ----- Function invokations ---- */

distanceTo(source) /* distance based on ExecutionContext implementation */

distanceToWithMetric(source , nbrRange) /* same as above */

distanceToWithMetric(source , nbrRangeHopDistance) /* hops to the source */

1Documentation is omitted in the other listings because of space issues.

3.3. DESIGN 33

General but minimal API

Being a generally scoped library, protelis-lang may allow multiple solu-

tions to certain problems. For instance, broadcasting the number of devices

in a network:

broadcast(sink , countDevices(distanceTo(sink))); /* broadcast devices */

summarize(sink , sum , 1, 0); /* broadcast devices */

Still, the core functionalities should be minimal enough to avoid redundancy.

Exceptions to this rule exist in case of new functions with sensible differ-

ences in the dynamic features are added to protelis-lang extending the

substitution library (Chapter 4). For instance, we ended up having sev-

eral substitutable functions, such as G-crfGradient-flexGradient and C-

CMultiIdempotent-CMultiDivisible.

Functions as first-class abstractions

The statements within the body of a function should be all at the same level

of abstraction. Mixing different levels within a function is always confusing

for code readers [33]. While reading a Protelis program, the main function

should be followed by those at the next level of abstraction, so that we can

read the program descending one level of abstraction at a time as we read

down the list of functions (step-down rule [33]).

We now consider two abstraction levels:

• Field calculus constructs.

def distanceTo(source) {

rep (accumulator <- Infinity) {

mux (source) { 0 }

else { minHood(self.nbrRange () + nbr(accumulator)) }

}

}

The translation of the previous code in natural language is: distanceTo

keeps track of an accumulator initialised to Infinity. If a device is

a source, then it fires 0, otherwise it fires the minimum value of the

sum of two fields: distances to its neighbours, and neighbours’ values

of accumulator.

34 CHAPTER 3. PROTELIS-LANG LIBRARY

• Specialising building blocks.

def sum(sink , value) {

C(distanceTo(sink), (a, b) -> { a + b }), value , 0)

}

Translating this snippet into natural language is straightforward: C ac-

cumulates the sum of devices’ value descending along the shortest path

to the sink. This code does not include any field calculus constructs:

the higher the abstraction level, the easier the explanation in natural

language.

• Mixing abstraction levels.

def broadcastSumMixedAbstraction(sink , value) {

rep (accumulator <- value) {

mux(sink) { sum(sink , value) }

else { maxHood PlusSelf(nbr(accumulator)) }

}

}

One the one hand, mixing different abstraction levels makes things

hardly understandable. Each device keeps track of an accumulator

initialised to value. All devices compute sum, but if a device is a sink,

then it fires the actual sum, else it fires the minimum value from the

field of neighbours’ accumulator.

• Same abstraction level.

def broadcastSumSameAbstraction(sink , value) {

broadcast(sink , sum(sink , value))

}

On the other hand, using the same abstraction

level dramatically simplifies the understanding of the

code. Indeed, broadcastSumSameAbstraction and

broadcastSumMixedAbstraction behave the same, but the for-

mer is easily understandable: sink devices broadcast the sum of the

values accumulated in them.

Functions should avoid side effects and have a small number of arguments.

Arguments are hard to test, as they increase the number of input combina-

tions to be tested. Testing every combination of appropriate values can be

3.4. IMPLEMENTATION 35

daunting. When a function requires too many parameters (namely, more

than three), it is likely that some of those arguments ought to be wrapped

into a function or aggregated in a single value [33].

def broadcastSum4(sink , region , obstacle , value) {

broadcast(sink ,

if (region && !obstacle) { sum(sink , value) }

else { 0 }

)

}

def broadcastSum3(sink , condition , value) { /* merge region and obstacle */

broadcast(sink , sum(sink , if (condition) { value } else { 0 }))

}

def broadcastSum(sink , value) { /* merge condition and value */

broadcast(sink , sum(sink , value))

}

broadcastSum4 addresses two tasks: broadcasting information and filtering

obstacles and devices which are not part of region. An orthogonal2 design

promotes reuse. If functions have specific, well-defined responsibilities, they

can be combined with new components in ways that were not envisioned be-

fore [32]. Functions should be loosely coupled, self-contained, and with a clear

scope. Modular code reduces maintenance issues, reducing development and

testing, promoting reuse—the more loosely coupled the functions, the easier

they are to reconfigure and reengineer, isolating “bad” code. broadcastSum3

partially optimises broadcastSum4, aggregating the two boolean parameters.

However, this function is still responsible for the two tasks. broadcastSum

gets rid of the filtering functionality addressing only broadcasting of a generic

value.

We provided multiple versions of the same functions with an increasing

generality level (again, distanceTo and distanceToWithMetric), trying to

keep the numbers of parameters as small as possible.

3.4 Implementation

The layered approach of aggregate programming is suitable for engineering

orthogonal systems. We composed our library as a set of cooperating mod-

2Modular, component-based.

36 CHAPTER 3. PROTELIS-LANG LIBRARY

ules, each of which implements functionality independent of the others. Mod-

ules are organised into universal and more specific layers, that respectively

provide an increasing level of abstraction.

The result is a prototype protelis-lang library, counting more than

150 distinct functions, organised as shown in Figure 3.2. Each of the four

“building block” operators is the basis for module exploiting its pattern:

spreading, accumulation, sparsechoice, and time. Associated with these

are nonselfstabilizing modules that collect related useful patterns that

must be handled with care due to their lack of resilience. At a yet higher

level of abstraction, the meta module collects general purpose patterns for

combining and modulating other functions, and finally lang contains a set

of simple utility and glue functions used by other modules.

The remainder of this section describes each module (except the simplistic

lang) in more detail.

3.4.1 Spreading

The protelis:coord:spreading module is based around the information

spreading operator G, illustrated in Figure 2.6(a). This operator produces

resilient diffusion of information away from a source region, spreading this

information outward along a spanning tree built applying the triangle in-

equality constraint, and possibly modifying that information as it spreads.

The time this takes is proportional to the diameter of the region in which G

is executing.

Listing 3.1 shows example excerpts from spreading, showing how G is ex-

ploited to build functions based on information moving towards the edges of

a spatial region. One such example is broadcast, which spreads a copy of in-

formation held by the source region. Others include distanceTo, a computa-

tion of distance of every location from a source region and distanceBetween,

which provides every location with an estimate of the shortest distance be-

tween two regions.

The module also includes alternatives to G that perform better for some

3.4. IMPLEMENTATION 37

applications, as the self-stabilisation rate of G is inversely bounded by the

distance between the closest pair of neighbours and their communication

speed [35]. These two alternatives are more specialised but functionally

equivalent, and thus may be safely substituted for G [20]. One alternative,

crfGradient [35], is a distance measure that self-repairs very rapidly but is

sensitive to repeated small perturbations, while the other, flexGradient [36]

is a distance measure that tolerates small distortions in return for smoother

change over time.

3.4.2 Accumulation

The protelis:coord:accumulation module is based around the informa-

tion accumulation operator C, illustrated in Figure 2.6(b). This operator is

the complement of G, addressing resilient aggregation of information across

space: C is fed with what to aggregate, then performs that aggregation along

a spanning tree down a potential gradient towards a source device that thus

eventually reduces all the information scattered through a region into a single

summary value. The time this takes is proportional to the diameter of the

region in which C is executing.

Even small perturbations, however, can cause loss or duplication of data,

resulting in transient disruptions that impact stabilisation. Accordingly,

protelis:coord:accumulation provides alternatives to C that use multiple

paths down the potential field rather than just one: as cMultiIdempotent

and cMultiDivisible and their specialisations cMultiMin, cMultiSum, etc.

On top of C, other functions are built that use it (and often combinations

with G) to implement collective state estimation, such as summarize, which

shares the result of an accumulation through a region, countDevices, which

counts the number of devices in a region, and average, which estimates the

average of a local value across a region (Listing 3.2).

38 CHAPTER 3. PROTELIS-LANG LIBRARY

module protelis:coord:spreading

/* Signature of G */

def G(src , init , metric , accumulate) { ... }

/* Dynamically computes routes between regions */

def channel(source , dest , thr) {

distanceTo(source)+distanceTo(dest)<=distanceBetween(source , dest)+thr

}

/* Check if a device is close to a source */

def closerThan(source , range) {

distanceToWithMetric(source , nbrRange) < range

}

/* Self -healing gradient that reconfigures in O(diameter) */

def crfGradient(source , maxHop) { ... }

}

/* Forecast obstacles along a path to a source */

def directProjectionWithMetric(source , obstacle , metric) {

G(source , obstacle , metric , (v) -> { obstacle || Gnull(v, false) })

}

/* Compute a distance to a source */

def distanceTo(source) {

distanceToWithMetric(source , nbrRange)

}

/* Extend distanceTo to support unconventional metrics */

def distanceToWithMetric(source , metric) {

G(source , 0, metric , (v) -> { v + metric.apply() })

}

/* Compute the distance between two regions with unconventional metric */

def distanceBetweenWithMetric(regionA , regionB , metric) {

broadcast(regionA , distanceToWithMetric(regionB , metric))

}

/* Dilate a spatial region */

def dilate(region , width) {

dilateWithMetric(region , nbrRange , width)

}

/* Dilate a spatial region with unconventional metric */

def dilateWithMetric(region , metric , width) {

distanceToWithMetric(region , metric) < width

}

/* Self -healing gradient with optimized change propagation */

def flexGradient(source , epsilon , rate , range , distortion) { ... }

/* Diffuse information along with distance from source */

def gradient(src , init , metric , acc) {

G(src , [0, init], metric , v -> {

[addRangeWithMetric(v.get(0), metric), acc.apply(v.get (1))]

})

}

/* Spread and aggregate information from multiple sources */

def multiGradient(sources , init , metric , accumulate) {

multiInstance(sources ,

id ->{gradient(id == getUID (), init , metric , accumulate)},

[Infinity , init]

)

}

/* Computing a Voronoi partition */

def voronoiPatitioningWithMetric(seed , id , metric) {

G(seed , id, metric , identity)

}

Listing 3.1: Example functions from spreading.

3.4. IMPLEMENTATION 39

module protelis:coord:accumulate

/* Signature of C */

def C(potential , accumulate , local , null) { ... }

/* Aggregate information from neighbours */

def aggregation(local , reduce) {

hood((a, b) -> { reduce.apply(a, b) }, local , nbr(local))

}

/* Spread average information value */

def average(sink , value) { ... }

/* Apply the idempotent f to reduce info desceding a potential */

def cMultiIdempotent(potential , f, local , default) { ... }/**

/* Find the minimum value desceding along a potential */

def cMultiMin(potential , local) {

cMultiIdempotent(potential , min , local , Infinity)

}

/* Find the maximum value desceding along a potential */

def cMultiMax(potential , local) {

-cMultiMin(potential , -local)

}

/* Sum values descending along a potential */

def cMultiSum(potential , local) { ... }

/* Devices agree on a common value */

def consensus(init , f) {

rep (val <- init) { val + f.apply(sumHood(nbr(val) - val)) }

}

/* Estimate network diameter */

def diameterWithMetric(source , metric) {

let d = distanceToWithMetric(source , metric);

2 * rep (maxd <- 0) {max(if(d<Infinity){d}else{0}, maxHood(nbr(maxd)))}

}

/* Find neighbor with the lowest potential */

def getParent(potential , f) { ... }

/* Share Laplacian consensus */

def laplacianConsensus(init , epsilon) {

consensus(init , (v) -> {epsilon * v})

}

/* Aggregate information in source and spread it back */

def summarize(src , reduce , local , null) { ... }

/* Estimate the number of devices within a spatial region */

def countDevices(pot) {

countDevicesWithCondition(pot , true)

}

/* Estimate the number of devices in which condition holds */

def countDevicesWithCondition(pot , condition) {

C(pot , sum , if (condition) { 1 } else { 0 }, 0)

}

/* Estimate and broadcast the average value within a spatial region */

def average(sink , value) { ... }

/* Execute code according to the number of devices */

def quorumSensing(pot , zero , thr , under , over) {

quorumSensingWithCondition(pot , zero , thr , true , under , over)

}

/* Execute code according to the num. of devices in which condition holds */

def quorumSensingWithCondition(pot , zero , thr , condition , under , over) {

let c = broadcast(pot == zero , countDevicesWithCondition(pot , condition));

if (c < thr) { under.apply(c) } else { over.apply(c) }

}

Listing 3.2: Example functions from accumulation.

40 CHAPTER 3. PROTELIS-LANG LIBRARY

3.4.3 Symmetry breaking

The protelis:coord:sparsechoice module currently contains only the

symmetry breaking operator S, implemented in Listing 2.5 and illustrated

in Figure 2.6(d). This algorithm breaks symmetry through mutual inhibi-

tion, in which devices compete against others to become leaders, generating

a random Voronoi partition with a characteristic grain size grain in expected

time O(grain). Example applications include designating a leader device to

act as a single aggregation point, breaking a space into management regions,

or clustering a network.

3.4.4 State

The protelis:state:time module is based around the temporary state op-

erator T, illustrated in Figure 2.6(c). This operator essentially implements a

flexible timer, which progresses from some initial state to a “zero” state at a

potentially time-varying state.

Listing 3.3 shows example excerpts from state, exploiting T for manage-

ment of time and memories. For example, countDown tracks a timer count-

ing seconds down to zero, cyclicFunction executes a function once every

length seconds, and limitedMemory holds a value for a specified number

of seconds. Other self-stabilising functions in the module provide related

functionality not based on T, such as isRisingEdge, which checks for a ris-

ing edge in a binary signal and exponentialBackoffFilter, which filters a

signal to smooth out noise.

3.4.5 Meta patterns

In organising the prior code, we noticed a number places in which variants

of several functions we created followed a shared pattern. Following the

“strategy” design pattern [37], we have factored out these common coordina-

tion mechanisms (taking advantage of the higher-order function capabilities

of Protelis) and collected them in the protelis:coord:meta module. This

3.4. IMPLEMENTATION 41

module protelis:state:time

/* Signature of T */

def T(initial , zero , decay) { ... }

/* Count down a period with a flexible definition of time */

def countDownWithDecay(length , dt) {

T(length , 0, (t) -> {t - dt})

}

/* Count down a certain number of seconds */

def countDown(length) {

countDownWithDecay(length , self.getDeltaTime ())

}

/* Return true once every length time */

def cyclicTimerWithDecay(length , decay) {

rep (left <- length) {

if (left == 0) { length }

else { countDownWithDecay(length , decay) }

} == length

}

/* Periodically invoke a function */

def cyclicFunction(length , f, null) {

cyclicFunctionWithDecay(length , self.getDeltaTime (), f, null)

}

def cyclicFunctionWithDecay(length , decay , f, null) {

if (cyclicTimerWithDecay(length , decay)) { f.apply() }

else { null }

}

/* Decrease relevance of information over time */

def evaporation(length , info , decay) {

T([length , info], [0, info], t->{[t.get(0)-decay , t.get(1)]})

}

/* Filter noise signal */

def exponentialBackoffFilter(signal , a) {

rep (old <- signal) { signal * a + old * (1 - a) }

}

/* Whether a signal has been stable for a certain time */

def isSignalStableWithDt(signal , time , dt) {

rep (old <- [signal , 0]) {

mux (signal == old.get (0)) { [signal , old.get(1) + dt] }

else { [signal , 0] }

}.get(1) >= time

}

/* Whether an event was true within timeout */

def isRecentEvent(event , timeout) {

if (event) { true }

else { countDown(timeout) > 0}

}

/* Hold a value until a specified timeout */

def limitedMemory(value , null , timeout , dt) { ... }

/* Wait a certain time */

def waitWithDecay(timeout , dt) {

countDownWithDecay(timeout , dt) <= 0

}

/* Apply a function after a given time */

def waitAndApply(timeout , f, null) {

if (wait(timeout)) { f.apply() } else { null }

}

Listing 3.3: Example functions from time.

42 CHAPTER 3. PROTELIS-LANG LIBRARY

module protelis:coord:meta

/* Distributed publish subscribe pattern */

def publishSubscribe(pub , sub , info , null) {

if (C(distanceTo(pub), or, sub , false)) {

broadcast(pub , info)

} else { null }

}

/* Run an instance of f for every source */

def multiInstance(srcs , f, null) {

alignedMap(

nbr(sources.map(self , id -> {[id, null]})),

(key , field) -> { true },

(key , field) -> { f.apply(key) },

null

)

}

/* Space -time binary branching */

def boundSpreading(region , f, null) {

if (region) { f.apply() }

else { null }

}

/* Restricts the execution of f where filter(d) holds */

def multiRegion(d, filter , f, null) {

if (filter.apply(discriminant)) {

let res = alignedMap(

nbr ([[discriminant , default]]),

(key , field) -> { filter.apply(key) },

(key , field) -> { function.apply () }, default);

if (res == []) { default } else { res.get(0).get (1) }

} else { default }

}

/* Gossip active sources */

def findSources(source) {

let k = 5; /* number of replicated replicas */

findSourcesWithId(source , getUID (),

roundTripTime(diameter(S(Infinity , nbrRange)))/(k-1), k);

}

def findSourcesWithId(source , id, diameter , numberOfReplicas) {

timeReplicatedWithK (() -> {

rep(v <- []) {

v.union(unionHood(nbr(v))).union(if(source){[id]}else {[]})

}

}, [id], diameter , numberOfReplicas)

}

/* Feed f with pre -processed data */

def preProcessAndApply(input , pre , f) {

f.apply(pre.apply(input))

}

/* Feed f with pre -processed data , and then post -process the output */

def processAndApply(input , pre , f, post) {

post.apply(f.apply(pre.apply(input)))

}

/* Apply f, and then post -process the output */

def postProcessAndApply(input , f, post) {

post.apply(f.apply(input))

}

Listing 3.4: Example functions from meta.

3.4. IMPLEMENTATION 43

module thus defines a family of general purpose patterns that enhance code

reusability by allowing a number of families of useful variant functions to

be generated by higher-order composition rather than by implementing a

combinatorial collection of variants.

Listing 3.4 shows example excerpts from meta. One such is a simple

publish-subscribe pattern for asynchronous and decoupled event notification

(inspired by prior work such as [38]) in which autonomous publishers dif-

fuse event notifications to the consumers without an explicit registration

process, and information is routed and delivered to the consumers follow-

ing the shortest path from the producers. Others focus on restriction in

space and time, allowing different sub-regions to carry on different computa-

tions and controlling the scope of a distributed computation. For instance,

multiInstance runs multiple copies of a process in parallel, one for each

identified “source,” and aggregates their outputs. By sharing information,

processes convey an extended perception of the system to each device. Wrap-

ping G into multiInstance enables sharing of information between sources

and running concurrent instances of gradient (namely, the multiGradient

function), overstepping the implicit partitioning of G3. boundSpreading al-

lows a function to run only where certain conditions hold, and multiRegion

generalises branching to use a generic discriminator with potentially many

values rather than a binary one (Figure 3.4).

3.4.6 Non-self-stabilising functions

Being universal, field calculus can express any coordination mechanism con-

structed from local interactions, and it is only a small fraction of such

coordination mechanisms that are self-stabilising. Self-stabilisation is ex-

tremely valuable for ensuring resilience, but there are cases in which non-self-

stabilising coordination or state mechanisms still have a role to play. Since

these are inherently dangerous for constructing a resilient system, however,

we have segregated them into their own nonselfstabilizing modules to

3Gradient bio-inspired pattern [19].

44 CHAPTER 3. PROTELIS-LANG LIBRARY

Figure 3.4: multiRegion splits a network into multiple subspaces (various

colours), applying domain restriction with respect to a generic discriminant

rather than the binary one requested by if. Grey links are ignored because

they cross between the different subspaces.

module protelis:coord:nonselfstabilizing:accumulation

/* Share global agreement on scattered data */

def gossip(value , function) {

rep(v <- value) {

function.apply(v, hood((a,b) -> {function.apply(a,b)}, value , nbr(v)))

}

}

/* Gossip whether the device has ever experienced a given condition */

def gossipEver(a) {

rep (ever <- false) {

a || anyHood(nbr(ever))

}

}

Listing 3.5: Example functions from nonselfstabilizing:accumulation.

3.5. DEMOS 45

ensure that they are not used without knowledge that one is doing so.

One example in this package is gossip (Listing 3.5), which like the self-

stabilising summarize, allows devices to eventually share an aggregated value.

Since the gossip function spreads and accumulates information in all direc-

tions, rather than just up a gradient, it operates much more quickly and much

more robustly than summarize. That same universal information spreading,

however, means that the values produced by gossip always change monotoni-

cally and cannot recover from a perturbation or track a value that moves both

up and down, meaning that it is not self-stabilising. The gossip function

thus has important uses when it is used in a context where its monotonicity

is not problematic, but may fail if composed in other contexts.

Finally, we note that one active area of investigation is the transfor-

mation of non-self-stabilising algorithms into self-stabilising algorithms that

retain many of their properties. In the specific case of gossip, for example, it

has recently been demonstrated that gossip can be transformed into a self-

stabilising variant by running several instances overlapping in time [28], and

this functionality can be implemented with protelis-lang by application

of the timeReplicated pattern from meta.

3.5 Demos

The following two demos qualitatively show how protelis-lang can flex-

ibly address resilient distributed applications. The former demonstration,

groupNoisyDevices, shows how functionalities from multiple modules can be

composed together to perform risk assessments in noisy scenarios, while tsp

leverages the multiInstance meta-pattern to address the travelling sales-

man problem in aggregate systems (e.g., defining a path across some point

of interests (POIs) while visiting a city).

Drawing from all the modules described before, groupNoisyDevices

(Listing 3.6) clusters misbehaving groups of neighbouring devices, electing

leaders as their representatives (to which, for instance, resources can be al-

46 CHAPTER 3. PROTELIS-LANG LIBRARY

located). boundSpreading constraints the scope of the inner anonymous

function in noisy regions smoothed by dilate. The dilate function widens

the boundaries of these regions, so that close areas are perceived as a single

component during leader election. Hence, instead of having fragmented noisy

groups, we cluster them together, potentially reducing the number of elected

leaders (this aspect should be tuned according to the application domain). S

elects representative devices responsible for performing risk assessments by

aggregating the number of misbehaving devices through the countDevices

function. Gathering the number of devices provides a raw estimation of the

entities exposed to potential risks, e.g., resources can be distributed to the

leaders depending on the number of devices they cluster.

The travelling salesman problem is a well known problem in combinatorial

optimisation [39]. The proposed solution, based on the “nearest-neighbour”

heuristic, outputs an indicative path that may diverge from the optimal one,

but which is still acceptable due to the wide range of unpredictable sources

of variability in real world networks4 (e.g., movement of devices). tsp is

a self-stabilising function that defines a dynamic path across a sequence of

unanticipated points. Indeed, this solution gradually spreads information in

the system, avoiding the need of a centralised knowledge at the beginning of

the computation. tsp (Listing 3.7) leverages the multiGradient pattern to

estimate a possible path in a fully-distributed environment. The POI clos-

est to the starting point A selects the next closest POI to reach, the second

POI selects the third closest not-visited point and so on. multiGradient

runs multiple gradient instances, one for each POI, which are aggregated

by each device. Functions based on the multiInstance pattern emphasise

information reduction (basically, computing tuples out of tuples). Given

a tuple of POIs, findClosest returns the closest one, while getId and

getVisitedPOIs access to the information wrapped in a tuple.

4If the changes in the network topology are too fast, even finding the closest point of

interest (POI) ends up being an hard task.

3.5. DEMOS 47

/* import accumulation , meta , sparsechoice , spreading , utils */

def groupNoisyDevices(noise , dangerThr , dilateThr , grain) {

boundSpreading(

dilate(noise > dangerThr , dilateThr),

() -> {

let leader = S(grain , nbrRange);

[leader , countDevices(distanceTo(leader))]

},

[false , -1]

)

}

Listing 3.6: groupNoisyDevices

(a) Noisy devices above the security thresh-

old are represented with a wider red circle.

(b) groupNoisyDevices elects leaders

(blue) to cluster misbehaving regions.

Figure 3.5: Noisy regions are smoothed with dilate. boundSpreading con-

strains the execution scope of S inside these areas, and countDevices pro-

vides an estimation of misbehaving devices.

48 CHAPTER 3. PROTELIS-LANG LIBRARY

/* import meta , spreading , utils */

def tsp(poi , A) {

rep (v <- null) {

let pois = multiGradient(findSources(poi), v, nbrRange , identity);

mux (A) {

let nearestPOI = /* choose closest POI */

findClosest(pois.filter(self , a->{getId(a)!= getUID ()}), null());

[getId(nearestPOI), [getUID ()]]

} else {

let p = getPrev(pois.filter(self , a->{poi&& getNext(a)== getUID ()}));

if (getId(p) != nullId ()) {

let nearestPOI = findClosest(pois.filter(self ,

(a) -> { poi /* consider only POIs ... */

&& !getVisitedPOIs(p).contains(getId(a)) /* !visited yet */

&& getId(a) != getUID () /* != myself */

}), null);

if (nullId () == getId(nearestPOI)) { null }

else {[getId(nearestPOI), getVisitedPOIs(p).union([getUID ()])]}

} else { null }

}

}

}

Listing 3.7: tsp. Null values are replaced with a generic null.

Figure 3.6: Estimate the shortest path (red), starting from A (blue), to cover

POIs (green) in a fully distributed environment.

Chapter 4

Engineering an algorithm

A software engineering approach to algorithm development usually consists of

analysis, design, implementation and empirical evaluation [40]. Engineering

an aggregate program follows an iterative three-stage process (Figure 4.1)

that progressively treats complex specification, resilience, and efficiency [20]:

1. Analysis of requirements and self-organising specification. Analysing

the requirements of the distributed application, and understanding how

the system should behave under which assumptions;

2. Minimal resilient design with known coordination patterns. Decompos-

ing requirements into coordination patterns (e.g., information spread-

ing and aggregation, state tracking) following an analysis of the prob-

lem, and mapping these patterns to well-known building blocks. This

mapping designs and provides a minimal implementation of the dis-

tributed system;

3. (Ad-hoc) Optimisation. Defining which building blocks should be con-

sidered for replacement with a mechanism from the substitution library

expected to provide better performance, confirming the improvement

by analysis or simulation, then iterating, until no further improvement

can be made.

49

50 CHAPTER 4. ENGINEERING AN ALGORITHM

UnitBtesting

MinimalBResilient
Implementation

Regr.Btesting

Optimized
Implementation

TestBplan

Self-Org.BSystem
Specification

Engineering Workflow Tool Improvement Workflow

Decompose

Optimize

Identify

substitutions

Engineer coordination

mechanisms
New building blocks

EfficientBCoordination
Mechanisms

kBuildingBBlockk
Library

Substitution
Library

Protelis Lang

Extend

Figure 4.1: Workflow for engineering self-organising systems: an aggregate

specification is decomposed into self-stabilising building blocks, then opti-

mised by substitution of equivalent high-performance coordination mecha-

nisms from protelis-lang. Adapted from [20].

4.1. TESTING FRAMEWORK 51

Figure 4.2: Abstract Protelis architecture: an interpreter executes a pre-

parsed Protelis program at regular intervals, communicating with other de-

vices and drawing contextual information from a store of environment vari-

ables. A minimal Alchemist incarnation handles communication between

devices, and other aspects of the environment to be simulated. Adapted

from [12].

4.1 Testing framework

Testing frameworks, as development tools, enhance the engineering process

[41]. Testing against contracts1 ensures that a given function honours its

contract and tells whether the code meets the contract, and whether the

contract means what we think it means. In stage 1, a test plan (namely,

a contract) can be extracted by analysing and formalising the application

requirements, and defining how the algorithm should behave over a wide

range of test cases and “boundary” conditions. Unit testing, in stage 2,

guarantees that the minimal implementation is not exposed to any bug and

satisfies the test plan.

Unit tests load an artificial, and extremely minimal, simulation environ-

1Design by contract: documenting the responsibilities of software modules. A correct

program does no more and no less than it claims to do [33].

52 CHAPTER 4. ENGINEERING AN ALGORITHM

ment deployed within the Alchemist simulator (Figure 4.2) [42], then check

the output returned by the function being tested against known values or

previous runs of the same test (regression testing in stage 3).

Having modular code to be tested reduces the impact of changes to any

other component in the system. As aggregate programming addresses collec-

tive behaviours, defining what a unit is may be a “problem.” Despite point-

wise expressions (e.g., arithmetic operations, tuples), an aggregate program

manipulates computational fields over space and time. As such, even a single

specification may be compiled to complex device-to-device interaction. From

now on, a function will be considered as a unit even if it may perform inner

calls to other functions.

Unit tests are extended with regression tests in stage 3 to verify that the

component still behaves correctly even after code optimisation or substitu-

tion. Unit and regression testing increase confidence in code maintenance,

catching any defects or misbehaviours introduced due to any change.

Testing self-stabilisation requires, at least, to assert two properties: (i)

Stabilisation test (Figure 4.3(a)), in which, given an initial state N , the net-

work is assured to converge to N0; (ii) Self-stabilisation test (Figure 4.3(b)),

in which, after a perturbation of a stable state N0, the network reacts to

the change and eventually converges to N0 again. Note that self-stabilisation

implicitly asserts stabilisation.

Complete black- and white-box tests are both, often, impossible as the

combinations of possible inputs may be too many to be tested extensively in

a limited amount of time, thus only a very-small subset of all possible inputs

is considered. Selecting the subset with the highest probability of finding

errors is crucial: well-selected test cases considerably reduce the number of

tests to be carried out to exclude bugs and misbehaviours with a reasonable

confidence degree. The “equivalence partitioning” approach [43] partitions

the input domain into a finite number of equivalence classes, so that testing

a representative value of each class is equivalent to a test of any other value

in the same class. If a test does not detect any error, then no other test cases

4.2. QUANTITATIVE ANALYSIS 53

in the equivalence class fail unless the partitioning is wrong.

Test cases that explore boundary conditions2 have a higher pay-off than

test cases that do not. Rather than selecting any element in an equivalence

class as being representative, boundary-value analysis requires that one or

more elements are selected to test the edges of the equivalence class they are

part of.

Algorithms can be tested against both equivalence classes and boundary

conditions. For instance, if we partition the input space with respect to

spatial displacements of devices: (i) Class A. A perturbed grid in which

devices are almost uniformly distributed allows the testing of an algorithm

against fair spatial conditions; (ii) Boundary condition of class A. A test

case within a symmetric grid of devices verifies whether the system behaves

wrong in case of structural symmetry; (iii) Class B. A random distribution

of devices (still connected enough to avoid network segmentation) tests the

algorithm in scenarios with heterogeneous densities of devices.

Equivalence partitioning and boundary analysis are delegated to the ex-

pertise of the tester, as it is often impossible to explore the space of all the

possible combinations. Test case design can be further improved in terms

of error guessing. Given a particular program, intuition and experience lead

the designer to guess possible errors and then write tests to expose them.

Bugs are then detected after the deployment of the algorithm, and as such

should be addressed with new regression tests.

4.2 Quantitative analysis

A quantitative analysis of performance should follow the “minimal resilient

implementation phase,” producing an estimation of algorithm performance

and optimising such implementation iterating over the suitable substitu-

tions. The performance assessment amounts to the evaluation of stabilisation

time with respect to some parameter such as: (i) size of the network and

2Boundary conditions are situations near the edges of equivalence classes.

54 CHAPTER 4. ENGINEERING AN ALGORITHM

(a) Stabilisation. distanceTo eventually converges to the stable state N0. A distance-

based potential is spread from the source (bottom-left corner) until stabilises at time t′.

(b) Self-stabilisation. After distanceTo reached N0, the system is perturbed adding and

then removing a new source at time t̂. Being a self-stabilising function, distanceTo

recovers from the perturbation, converging to N0 again.

Figure 4.3: Testing stabilisation and self-stabilisation of the distanceTo

function. Colour saturation increases with the distance to the closest source

(green wide circle).

diameter—the larger the diameter, the longer is required to propagate mes-

sages across the network; (ii) dynamics of input—transients may vary with

respect to different states of input, e.g., the rising value problem; (iii) depth

of nested functions—nested functions affect outer functions’ performance.

Considering the function G, whose complexity is proportional to the network

diameter O(diameter), then having nested G functions raises the complexity

of the program to O(p ∗ diameter) where p is the nesting order.

Performance evaluation requires ad-hoc considerations. For instance, as

discussed in [2], G and C have stabilisation time that is linear in the network

diameter under the assumption of stable input, “regular” metric and partially

synchronous network, while T is strictly dependent on the decay function used

as argument. In general, specific empirical analysis must be conducted.

4.3. PROTELIS-LANG IMPROVEMENT WORKFLOW 55

4.3 Protelis-Lang improvement workflow

protelis-lang is a modular and extensible composition of building blocks

and functions addressing both state-tracking and coordination, which can in

turn be considered either to implement the application or as part of the sub-

stitution library. New building blocks, coordination mechanisms and func-

tions can extend this library, widening its scope of application and the as-

sets of the substitution library. Indeed, protelis-lang and the engineering

process of an aggregate program intersect: once a new algorithm has been

deployed and properly tested, it can be imported into the library if it in-

troduces either new functionalities or an efficient and alternative solution to

known problems (e.g., crfGradient, flexGradient and G).

These two engineering processes require standard tools for versioning and

continuous integration. protelis-lang is organised following the git-flow

model3, automatically built with Gradle4 [44] and deployed on Maven Cen-

tral5 [45] through TravisCI6 [46].

4.4 Engineering distanceTo as a case study

This section shows how aggregate algorithms can be implemented, refined

and tested, taking distanceTo—which we introduced in Chapter 2—as a case

study. Considering this requirement: “creating an algorithm in which each

device estimates its distance to a source region,” the distanceTo algorithm

is engineered here.

1. Analysis of requirements and self-organising specification. We can

draw parallels between the requirements and bio-inspired patterns [19].

distanceTo and the gradient pattern are nicely related, as the latter

diffuses information about the distance to its origin.

3https://github.com/nvie/gitflow
4https://gradle.org
5https://mvnrepository.com/
6https://travis-ci.org/Protelis

https://github.com/nvie/gitflow
https://gradle.org
https://mvnrepository.com/
https://travis-ci.org/Protelis

56 CHAPTER 4. ENGINEERING AN ALGORITHM

Self-organising specification: aggregate algorithms should self-stabilise

in a time proportional to the network diameter. However, even small

changes in the network topology can cause the disruption of a distance-

based field, whose self-healing rate should take the rising value problem

into account.

2. Minimal resilient design with know coordination patterns. The analo-

gies between G and the gradient bio-inspired are shown in Chapter 2.

Thus, specialising G may provide an acceptable minimal implementa-

tion to start working on with (Listing 2.2).

3. (Ad-hoc) Optimisation. In a long-lived system, both the sources

and devices distribution may change over time. Self-healing gradients

are subject to the rising value problem [35]—local variation in mes-

sage speed constrains self-healing rate by the shortest neighbour-to-

neighbour distance in the network. crfGradient adjusts very quickly

to changes in the network, thus is good in scenarios where the tran-

sient should be as short as possible. However, fast potential changes

can make many devices’ values rise before converging again to their cor-

rect values. Indeed, even the smallest changes in the source or network

can produce small estimate changes throughout the network, leading

to high communication and energy costs. In many applications, such

as routing and geometric restriction of processes, devices far from the

source need only coarse estimates [36]. flexGradient algorithm has a

tunable trade-off between precision and communication cost. Frequent

small changes in the network or source thus cause frequent estimate

changes only within a distance proportional to the magnitude of the

change.

When fed with the same inputs, distanceTo, crfGradient and

flexGradient self-stabilise to the same outputs. Being substitutable func-

tions, one can replace the others depending on the application scenario [20].

4.4. ENGINEERING DISTANCETO AS A CASE STUDY 57

4.4.1 Qualitative analysis and unit testing

Figure 4.6(a) qualitatively shows how distanceTo diffuses a gradient from

two sources, until the system is perturbed by removing a source (Fig-

ure 4.6(b)), and the algorithm begins its self-healing phase. As G suffers

of the rising value problem, the self-healing rate of distanceTo is con-

strained by the shortest neighbour-to-neighbour distance in the network (Fig-

ure 4.7(a)). crfGradient, drawn from the substitution library (namely, a

subset of protelis-lang), has a faster self-healing rate, as this gradient can

rise at an arbitrary speed (Figure 4.7(b)) [35].

The Protelis repository7 includes the Protelis-Test (Figure 4.4) testing

framework based on JUnit8. Test cases require both an Alchemist compliant

YAML configuration—from which the expected result of the simulation is

parsed—and the Protelis code to be tested. Each test requires a number of

steps t′ within which the algorithm is guaranteed to stabilise, and then an

additional range t′′ within which stabilisation is checked.

As both distanceTo and crfGradient are substitutable functions, their

test cases are indeed similar. Listing 4.2 describes the expected result for

each device UID, the structure of the discrete network (e.g., grid, rectangle,

circle and composition of them), the Protelis program to be executed (List-

ing 4.3) and the communication range between devices. To assert their self-

stabilisation, both algorithms are tested against source perturbation: after

their stabilisation to N0, one of the two sources is removed at time t̂ (namely

50), the algorithms start new transients which gradually self-stabilise to N0

again. To check the stability of the results, test cases assert that the outputs

have been stable to N0 for at least t′′.

Note that performance is not addressed by the standard testing proce-

dure, as an accurate study requires ad-hoc experiments with respect to com-

plex network dynamics.

7https://github.com/Protelis/Protelis
8http://junit.org/junit4/

https://github.com/Protelis/Protelis
http://junit.org/junit4/

58 CHAPTER 4. ENGINEERING AN ALGORITHM

AlchemistfSimulator

Protelisf
Incarnation

ProtelisfProgram

YAML

Protelis-Lang

Protelisfcode
Protelis-Test

initialise

register
observer

checkResult

expectedfresult simulationf
configuration

Figure 4.4: The Protelis-Test Java-based framework leverages the Al-

chemist simulator to test functions from protelis-lang. Protelis-Test

initialises and registers an observer to the Alchemist engine. After each

simulation step, the Alchemist Engine invokes the checkResult method on

such observer for validating the simulation outcome. Black arrows represent

control flows, while green arrows are generic resource imports.

void checkResult(final long currStep , final int stabilizationSteps ,

final int stabilitySteps , final Environment <Object > env ,

final List <Pair <String , String >> expectedResult , /* ... */) {

if (currStep >= stabilizationSteps - stabilitySteps) {

/* Get result from simulation environment (in which Protelis

* code is executed); compare it with ‘expectedResult ‘ (parsed

* from YAML file); if they differ , then test fails */

}

}

Listing 4.1: checkResult method validates the simulation result against the
expected result. Recalling Figure 4.3(b): currStep is the current simulation
step (t), stabilizationSteps is the number of steps after which the function
is guaranteed to be stabilised (t′), and stabilitySteps is the number of steps
within which stabilisation is asserted (t′′). expectedResult is parsed from
the YAML configuration.

4.4. ENGINEERING DISTANCETO AS A CASE STUDY 59

Test results are defined here (namely state N0).

result:

{0 0.00, 1 1.00, 2 2.00, 3 3.00,

4 1.00, 5 1.41, 6 2.41, 7 3.41,

8 2.00, 9 2.41, 10 2.82, 11 3.82}

incarnation: test

network -model:

type: EuclideanDistance

parameters: [1.5]

program: &program

- time -distribution: 1

program: distanceTo #crfGradient

displacements:

- in: #devices are displaced in a uniform grid

type: Grid

parameters: [0, 0, 3, 2, 1, 1, 0, 0]

programs:

- *program

Listing 4.2: YAML configuration of distanceTo and crfGradient tests.
This configuration also contains the expected outcome of the simulation
(result), which is parsed and tested by Protelis-Test.

/* import ... */

let source = getUID () == "0"

|| getUID () == "5" /* two sources */

&& timeSinceStart () <= 50; /* one source is removed after 50 time

units*/

distanceTo(source) /* crfGradient(source , 1.5) */

Listing 4.3: Protelis code to test distanceTo and crfGradient. getUID

returns device UID as string, and timeSinceStart counts the time elapsed
since the beginning of the code execution. To prove their self-stabilisation,
both algorithms are tested against source perturbation, asserting that
distanceTo and crfGradient self-stabilise to N0.

Figure 4.5: Unit tests of distanceTo and crfGradient. As these functions

are substitutable, their tests are similar. They only differ in the function

being invoked.

60 CHAPTER 4. ENGINEERING AN ALGORITHM

(a) Distance-based potential: a gradient is diffused from two sources (big green circles).

Both distanceTo and crfGradient stabilise to N0 when fed with a stable input. Colour

saturation increases with the distance to the closest source.

(b) At time t̂, the system is perturbed by removing the central source (reaching state N).

distanceTo and crfGradient react to this perturbation and gradually self-stabilise to

N0.

Figure 4.6: Qualitative analysis of self-stabilisation. Being substitutable

functions, both distanceTo and crfGradient stabilise to N0 following dif-

ferent transients.

4.4. ENGINEERING DISTANCETO AS A CASE STUDY 61

(a) distanceTo potential.

(b) crfGradient potential.

Figure 4.7: Comparison of distanceTo and crfGradient transients at time

t, where t̂ < t < t′, while converging from state N to state N0. distanceTo

healing ratio is slower than crfGradient, though both provably reconfigure

in O(diameter) time.

62 CHAPTER 4. ENGINEERING AN ALGORITHM

Chapter 5

Evaluation

We now demonstrate that protelis-lang can indeed provide benefits in the

quality, flexibility, and modularity of coding resilient distributed systems. In

particular, we aim to show how functions from protelis-lang can be easily

combined in order to reduce the abstraction gap without compromising the

overall performance. The workflow for this approach begins early in the

design phase of an aggregate application, with a programmer identifying

well-known coordination problems. Identifying these problems should then

lead to selection of design patterns that can be readily factored across the

algorithms and patterns included in the library.

To illustrate this workflow, we present two application scenarios in the

context of public mass events, a particularly challenging pervasive scenario in

that they involve mass numbers of personal mobile devices that often over-

whelm available fixed wireless infrastructure, strongly limiting the degree

to which cloud assets can be used as part of a distributed systems solu-

tion. For both scenarios, we execute our experiments using the Alchemist

simulator [42]. Devices are scattered with an approximate uniform random

distribution along the streets of the Italian city of Cesena, representing some

combination of mobile and infrastructural devices participating in the sys-

tem. In order to ensure a good connectivity in such of sparse environment

with a varying number of devices (n), we tune the communication range such

63

64 CHAPTER 5. EVALUATION

that the expected number of neighbours for every device is 10; namely, de-

vices communicate within a unit disc of radius r =
√

(10 ∗m)/(π ∗ n), where

m is the entire area considered.

For each scenario, we show: (i) a simple Protelis implementation based

on protelis-lang, that only partially addresses the scenario issues; (ii) an

extended solution, making use of the advanced multiInstance pattern, that

provides a better solution; (iii) a qualitative evaluation of the results; (iv) a

quantitative evaluation, showing the performance impact of relying on library

code.

Note that the goal is not to demonstrate optimality, but rather to demon-

strate how simply resilient behaviour with reasonable performance can be

achieved with our library. Since protelis-lang extensively leverages high-

order functions, however, the presented solutions could be easily improved,

extended, and tuned by changing the specific implementation of the desired

component, with only minor changes to the Protelis code.

5.1 Scenario 1: meeting a celebrity

In our scenario, a celebrity, e.g. a movie star, is a featured attendee of

an event and moves along a scheduled path through the streets of the city.

Many people want to see the celebrity, but crowd movement is constrained,

can become dangerous if too many people mob to the same area at the same

time, and cannot be easily centrally managed if the crowd is large enough to

overwhelm fixed communication infrastructure. In our scenario, then, people

wishing to meet the celebrity should rendezvous at a number of different

meeting points along the path, while avoiding the creation of perilously dense

areas in the process. Allocation of people must respect security constraints

of meeting places, such as their maximum capacity. We approach this in two

separated stages: first defining meeting points and then managing the crowd

with respect to the capacity of each meeting point.

Geographic allocation of meeting points, implemented in Listing 5.1 as

5.1. SCENARIO 1: MEETING A CELEBRITY 65

/* import meta , sparsechoice , spreading , time */

def clustering(path , grain , d) {

boundSpreading(path ,

() -> {

let l = S(grain , nbrRange);

l && isSignalStable(l, roundTripTime(d))

}, false)

}

Listing 5.1: S elects a set of meeting points following the path travelled by
a celebrity. isSignalStable ensures that a meeting point has been stable
before being considered.

/* import accumulation , spreading , utils */

def meetTheVIP(A, mp, arrT , v, wantsToGo , goAnyway , thr){

let t = distanceBetween(mp, A)/v;

let d = distanceTo(mp);

let c = countDevicesWithCondition(d, wantsToGo &&d/v<t);

broadcast(t<arrT &&(!(c>thr)|| goAnyway), getUID ())

}

Listing 5.2: Meet the Celebrity : person A chooses the closest (in time) non-
overcrowded meeting point mp, considering v as her movement speed, arrT
as the ETA of the celebrity, and thr as crowd threshold.

/* import accumulation , meta , spreading , utils */

def meetTheVIP(mp,arrT ,v,wantsToGo ,goAnyway ,thr ,chs) {

let t = broadcast(mp , arrT);

let d = distanceTo(mp);

let ids = findSources(mp);

let mps = multiGradient(ids ,

[countDevicesWithCondition(d, d/v<t), arrT],

nbrRange , identity);

if(wantsToGo) {chs.apply(mps , goAnyway , thr)}

else{/* nullUID */}

}

Listing 5.3: Meet the Celebrity improved solution. This function is
parametric with respect to the crowd management algorithm chs.

66 CHAPTER 5. EVALUATION

the function clustering, is the first step to avoid the creation of overcrowded

regions. We select a number of areas along the path of the celebrity by re-

stricting the scope of S using boundSpreading. S elects a set of meeting

points through mutual inhibition, creating a Voronoi partition with a com-

ponent size grain, such that no device is more distant than grain from a

leader, and no leaders are closer than grain/2. Assuming a mean capacity

of meeting points c and a uniform distribution of attendees, we can compute

grain =
√

(c ∗m)/(n ∗ π). Since values of S may flicker during the tran-

sient, the isSignalStable state function is exploited to consider only stable

values1.

clustering’s output is fed as the mp (meeting point) parameter of

meetTheVIP (Listing 5.2), which chooses a suitable destination for a per-

son A, avoiding all places in which either the celebrity will arrive earlier,

or the number of forecasted attendees reached the security threshold. The

solution in Listing 5.2 leverages distanceTo and distanceBetween, though

these, being based on G, are unable to forward information about more than

a single meeting point. As a consequence, people can only get allocated to

the closest meeting point, which may prevent some from meeting a celebrity

who might otherwise have travelled to a farther meeting point.

Listing 5.3 presents a better solution, based on multiGradient (which

is in turn based on G and multiInstance) to overcome the limitations of

the previous algorithm, diffusing information from all the meeting points.

The risk of overcrowding is reduced, since attendees can then get distributed

across all the meeting points. The overcrowding risk of a meeting point is

assessed by counting how many people could reach it before the celebrity

passes by. Reflecting the modular approach of protelis-lang, meetTheVIP

accepts the specific crowd management algorithm as a parameter (chs). The

crowd management algorithm chosen for the scope of this dissertation thus

considers: (i) meeting points reachable before the celebrity passes by; (ii) the

1A signal is considered stable if does not change for a time greater or equal to the round

trip of a message under a weak fairness assumption on devices firing [28]

5.2. SCENARIO 2: RESOURCE ALLOCATION 67

possibility for an attendee to forcibly include overcrowded areas in the range

of possible POIs; (iii) attendees are steered towards the closest POI only if

their estimated time arrival is shorter than one third of the celebrity’s; (iv)

otherwise, attendees are steered towards the less-crowded remaining meeting

points. The simulation screenshot in Figure 5.1(a) shows an example of

meeting places being selected and how attendees end up distributed across

them.

As can be seen, a system for this scenario can be implemented with min-

imal glue code over the functions provided by protelis-lang. The modular

decomposition of “Meet the Celebrity” scenario into two sub-problems allows

us to separately analyse the allocation of meeting points and crowd manage-

ment functionalities. The time required by clustering to stabilise depends

on the set of leaders elected by S [18] and thus might not linearly scale with

the diameter of the network. On the other hand Figure 5.1(b) shows that,

given a set of stable meeting points, crowd management stabilises linearly

(
√
n) with respect to the diameter of the network.

5.2 Scenario 2: resource allocation

Security services (e.g. medical teams) presence and displacement at a mass

event should be arranged according to the estimated level of participation

and the spatial arrangement of the event. Even if best practices are ap-

plied in placing such services, however, emergent situations may arise where

the actual optimal (or close to optimal) resource allocation is non-trivial:

for instance, security personnel can be allocated according to their mobility

capabilities; ambulances can move farther than units on foot, and as such

should move towards farther people. Complementarily, units on foot should

preferentially aid the closest person. Whichever case, sharing information

between health-care personnel and attendees is essential for a proper team

coordination to happen.

Listing 5.4 shows a naive solution based on partitioning the network with

68 CHAPTER 5. EVALUATION

(a) Meeting points (wide circles) are dynamically defined across Cesena’s map, allowing

people to meet a celebrity. Black points are attendees not interested to meet the celebrity

or else prevented by overcrowding risk. Other people share the colour of the meeting point

they are being steered towards.

0 200 400 600 800 1000 1200 1400 1600

Number of devices

0

10

20

30

40

50

60

70

S
im

u
la

ti
o
n
 t

im
e
 (

s)

"Meet the celebrity" stabilization chart

vip fitting curve

vip mean time

(b) Stabilisation time of Listing 5.3. Each point is the average of 70 simulations with

random device displacements. Error bars show ±1 standard deviation.

Figure 5.1: Qualitative and quantitative analysis of “Meeting the Celebrity”

scenario

5.2. SCENARIO 2: RESOURCE ALLOCATION 69

/* import accumulation , spreading , utils */

def resourceAllocation(dngr , res , needRes , maxD , allocate) {

rep (ress <- []) {

let d = distanceTo(dngr);

let resToDanger = C(d, (a, b) -> { a.union(b) },

if (res && allocate.apply(

gradient(dngr , [ress , needRes], nbrRange , identity), maxD)) {

[[getUID (), d]]

} else {[]}, []);

if (dngr) { resToDanger } else {[]}

}

}

Listing 5.4: Resource allocation. dngr: whether the person is in danger, res
: whether the person is part of security personnel, needRes: estimation of
resources needed, maxD: range covered by the resource, allocate: allocation
criteria. An example execution is shown in Figure 5.2(a).

/* import accumulation , meta , spreading , utils */

def resourceAllocation(dngr , res , needRes , maxD , canMove , allocate) {

let ids = findSources(dngr);

let closest = distanceTo(dngr);

let closeRes = countDevicesWithCondition(closest ,res);

rep (ress <- []) {

let bcst = multiGradient(ids ,

[ress , closeRes , needRes], nbrRange , identity);

let dst = allocate.apply(bcst ,closest ,maxD ,canMove);

let resToDanger = multiInstance(ids ,

id -> {

C(distanceTo(id== getUID ()), (a,b)->{a.union(b)},

if (res && getId(dst) == id) {

[[getUID (), getDistance(dst)]]

} else {[]}, []);

}, [/* nullUID */, []]).reduce(/*id=getUID ()*/);

if (dngr) {resToDanger} else {[]}

}

}

Listing 5.5: Resource allocation improved solution. dngr: whether the person
is in danger, res: whether the person is part of security personnel, needRes
: estimation of resources needed, maxD: range covered by the resource,
canMove: predisposition to move towards people father than the closest
one, allocate: allocation criteria. Even though G and C partitions the
network in sub-regions of devices, multiInstance pattern runs an instance
of a function for all the devices satisfying a certain condition, namely being
in danger. Security personnel share information about people in need and
allocate themselves according to allocate. An example execution is shown
in Figure 5.2(b).

70 CHAPTER 5. EVALUATION

C and G, which can lead to unfair resource assignment, while an improved

solution leveraging multiInstance is shown in Listing 5.5. An example

showing this difference between the two is shown in Figure 5.2(a) and Fig-

ure 5.2(b): in the former, only two out of the six available resources allocated,

while all of them are allocated in Listing 5.5. The main difference between

the two proposed algorithms is to be found into the use of multiInstance

(and multiGradient, which is based upon it), though the basic structure is

substantially shared. As in the previous example, in the naive implemen-

tation only the closest person in need of help is considered by the medical

team, de-facto preventing more sophisticated allocations.

In second proposed implementation, security personnel receive informa-

tion from all the attendees in need and can be potentially allocated to any

of them, performing a better resource distribution. A key part of both al-

gorithms is the allocate function, which encapsulates the actual allocation

criteria. The strategy we used in our experiment is the following: (i) every

security unit may intervene within a maxD radius; (ii) only those units for

which canMove yields true may assist other people than the closest one; (iii)

units that canMove are randomly allocated to people in danger, attendees

with no close units get a probability boost; (iv) if a unit is unemployed, it

may participate the request of a person in need who is already being ser-

viced. Such rules do not prevent a particularly unfortunate distribution of

security personnel to be unable to optimally cover the needs of the atten-

dance. However, since the allocation strategy is abstracted away from the

core algorithm, a more sophisticated version with better heuristics could be

plugged in without any other change in the program structure.

Figure 5.3 shows that both the proposed solutions scale and stabilise with
√
n (with n the number of devices). The naive strategy, however, suffers

from multiple disruptions and reconstructions of its fragile C spanning tree,

hindering performance at low network diameter.

5.2. SCENARIO 2: RESOURCE ALLOCATION 71

(a) Naive resource allocation scenario. As both G and C cluster the network in sub-regions,

only the people in need (red dots) closest to the security personnel (blue dots) get serviced.

The shortest paths connecting security personnel and attendees in need is depicted in

orange.

(b) By exploiting multiInstance to execute overlapping instances of G and C, it is possible

to allocate security personnel (blue dots) in such a way that all requesters (red dots) get

served. Orange dots depict shortest paths.

Figure 5.2: Qualitative and quantitative analysis of “Resource Allocation”

scenario

72 CHAPTER 5. EVALUATION

0 200 400 600 800 1000 1200 1400 1600

Number of devices

0

10

20

30

40

50

60

S
im

u
la

ti
o
n
 t

im
e
 (

s)

"Resource allocation" stabilization chart

resourceAllocation fitting curve

resourceAllocationNaive fitting curve

resourceAllocation mean time

resourceAllocationNaive mean time

Figure 5.3: Stabilisation time of naive (blue) and improved (red) resource

allocation. Each point is the average of 50 simulations with random device

displacements. Error bars show ±1 standard deviation.

Chapter 6

Conclusion

In this dissertation, we have presented a Protelis library, protelis-lang,

that implements a prototype API for resilient system design and extends

the workflow for engineering aggregate algorithms with a testing framework.

The protelis-lang library bridges a critical gap that has heretofore existed

in the aggregate programming framework, between the theoretical results

providing properties of resilience, scalability, safe composition, etc., and the

pragmatics of exploiting and applying these properties in the construction of

complex distributed systems.

Field calculus needs higher abstractions to scale with system complex-

ity. Highly general building block algorithms have been built on top of

them, allowing fully-resilient coordination of computational entities. The

protelis-lang library is organised around these operators, providing mod-

ules for spreading, aggregation and evaporation of information, symmetry

breaking through mutual inhibition, and meta-patterns which extend the

application scope of existing algorithms. The efficacy, flexibility and expres-

siveness of this library are illustrated through scenarios of large-scale crowd

application and their empirical evaluation in simulation.

This prototype, of course, leaves room for improvements and completion:

just as with any other library, we expect that there are many refinements that

can be made in its contents and their organisation, and that these will be

73

74 CHAPTER 6. CONCLUSION

most readily discovered as the library is leveraged for its intended purpose of

building applications. There are also important classes of functionality that

were not in the scope of this effort, such as coordinated movement algorithms,

to be addressed either through expansion of this library or construction of

complementary libraries. Finally, the protelis-lang library can also serve

as a foundation for the construction of domain-specific APIs customised for

particular application areas, such as emergency service coordination, home

automation, or public event management.

Bibliography

[1] Mahadev Satyanarayanan. Pervasive computing: Vision and challenges.

IEEE Personal communications, 8(4):10–17, 2001.

[2] Jacob Beal, Danilo Pianini, and Mirko Viroli. Aggregate programming

for the internet of things. IEEE Computer, 48(9):22–30, 2015.

[3] Jacob Beal, Stefan Dulman, Kyle Usbeck, Mirko Viroli, and Niko-

laus Correll. Organizing the aggregate: Languages for spatial com-

puting. In Marjan Mernik, editor, Formal and Practical Aspects

of Domain-Specific Languages: Recent Developments, chapter 16,

pages 436–501. IGI Global, 2013. A longer version available at: tt

http://arxiv.org/abs/1202.5509.

[4] Jacob Beal and Mirko Viroli. Aggregate programming: From founda-

tions to applications. In Advanced Lectures of the 16th International

School on Formal Methods for the Quantitative Evaluation of Collective

Adaptive Systems - Volume 9700, pages 233–260, New York, NY, USA,

2016. Springer-Verlag New York, Inc.

[5] Marco Mamei and Franco Zambonelli. Programming pervasive and mo-

bile computing applications: The tota approach. ACM Trans. on Soft-

ware Engineering Methodologies, 18(4):1–56, 2009.

[6] Message Passing Interface Forum. MPI: A Message-Passing Interface

Standard Version 2.2, September 2009.

75

76 BIBLIOGRAPHY

[7] E. Sklar. Netlogo, a multi-agent simulation environment. Artificial life,

13(3):303–311, 2007.

[8] Kamin Whitehouse, Cory Sharp, Eric Brewer, and David Culler. Hood:

a neighborhood abstraction for sensor networks. In Proceedings of the

2nd international conference on Mobile systems, applications, and ser-

vices. ACM Press, 2004.

[9] Radhika Nagpal. Programmable Self-Assembly: Constructing Global

Shape using Biologically-inspired Local Interactions and Origami Math-

ematics. PhD thesis, MIT, 2001.

[10] Daniel Coore. Botanical Computing: A Developmental Approach to

Generating Interconnect Topologies on an Amorphous Computer. PhD

thesis, MIT, 1999.

[11] M.E. Inchiosa and M.T. Parker. Overcoming design and development

challenges in agent-based modeling using ascape. Proceedings of the

National Academy of Sciences of the United States of America, 99(Suppl

3):7304, 2002.

[12] Danilo Pianini, Mirko Viroli, and Jacob Beal. Protelis: practical aggre-

gate programming. In Proceedings of the 30th Annual ACM Symposium

on Applied Computing, pages 1846–1853. ACM, 2015.

[13] Jacob Beal and Jonathan Bachrach. Infrastructure for engineered emer-

gence on sensor/actuator networks. IEEE Intelligent Systems, 21(2):10–

19, 2006.

[14] Jean-Louis Giavitto, Christophe Godin, Olivier Michel, and Przemyslaw

Prusinkiewicz. Computational models for integrative and developmental

biology. Technical Report 72-2002, Univerite d’Evry, LaMI, 2002.

[15] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of

things: A survey. Computer networks, 54(15):2787–2805, 2010.

BIBLIOGRAPHY 77

[16] Mirko Viroli, Ferruccio Damiani, and Jacob Beal. A calculus of compu-

tational fields. In Advances in Service-Oriented and Cloud Computing,

pages 114–128. Springer, 2013.

[17] Jacob Beal and Mirko Viroli. Space–time programming. Phil. Trans. R.

Soc. A, 373(2046):20140220, 2015.

[18] Jacob Beal and Mirko Viroli. Building blocks for aggregate program-

ming of self-organising applications. In Proceedings of the 2014 IEEE

Eighth International Conference on Self-Adaptive and Self-Organizing

Systems Workshops, SASOW ’14, pages 8–13, Washington, DC, USA,

2014. IEEE Computer Society.

[19] Jose Luis Fernandez-Marquez, Giovanna Di Marzo Serugendo, Sara

Montagna, Mirko Viroli, and Josep Lluis Arcos. Description and com-

position of bio-inspired design patterns: a complete overview. Natural

Computing, 12(1):43–67, 2013.

[20] Mirko Viroli, Jacob Beal, Ferruccio Damiani, and Danilo Pianini. Ef-

ficient engineering of complex self-organising systems by self-stabilising

fields. In Self-Adaptive and Self-Organizing Systems (SASO), 2015 IEEE

9th International Conference on, pages 81–90. IEEE, 2015.

[21] Ferruccio Damiani, Mirko Viroli, Danilo Pianini, and Jacob Beal. Code

mobility meets self-organisation: a higher-order calculus of computa-

tional fields. In Formal Techniques for Distributed Objects, Components,

and Systems, pages 113–128. Springer, 2015.

[22] Jacob Beal, Mirko Viroli, Danilo Pianini, and Ferruccio Damiani. Self-

adaptation to device distribution changes. In Giacomo Cabri, Gauthier

Picard, and Niranjan Suri, editors, 10th IEEE International Conference

on Self-Adaptive and Self-Organizing Systems, SASO 2016, Augsburg,

Germany, September 12-16, 2016, pages 60–69, 2016.

78 BIBLIOGRAPHY

[23] Marco Mamei and Franco Zambonelli. Programming pervasive and mo-

bile computing applications: The tota approach. ACM Transactions on

Software Engineering and Methodology (TOSEM), 18(4):15, 2009.

[24] Mirko Viroli, Danilo Pianini, and Jacob Beal. Linda in space-time:

an adaptive coordination model for mobile ad-hoc environments. In

International Conference on Coordination Languages and Models, pages

212–229. Springer, 2012.

[25] Jacob Beal, Mirko Viroli, and Ferruccio Damiani. Towards a unified

model of spatial computing. In 7th Spatial Computing Workshop (SCW

2014), AAMAS, 2014.

[26] Ferruccio Damiani and Mirko Viroli. Type-based self-stabilisation for

computational fields. arXiv preprint arXiv:1509.05659, 2015.

[27] Mirko Viroli and Jacob Beal. Resiliency with aggregate computing:

State of the art and roadmap. arXiv preprint arXiv:1607.02231, 2016.

[28] Danilo Pianini, Jacob Beal, and Mirko Viroli. Improving gossip dynam-

ics through overlapping replicates. In Alberto Lluch Lafuente and José

Proença, editors, Coordination Models and Languages - 18th IFIP WG

6.1 International Conference, COORDINATION 2016, Held as Part of

the 11th International Federated Conference on Distributed Computing

Techniques, DisCoTec 2016, Heraklion, Crete, Greece, June 6-9, 2016,

Proceedings, volume 9686 of Lecture Notes in Computer Science, pages

192–207. Springer, 2016.

[29] Ferruccio Damiani, Mirko Viroli, and Jacob Beal. A type-sound calculus

of computational fields. Science of Computer Programming, 117:17 – 44,

2016.

[30] Mirko Viroli, Giorgio Audrito, Ferruccio Damiani, Danilo Pianini, and

Jacob Beal. A higher-order calculus of computational fields. CoRR,

abs/1610.08116, 2016.

BIBLIOGRAPHY 79

[31] Jonathan Bachrach and Jacob Beal. Building spatial computers. 2007.

[32] Andrew Hunt. The pragmatic programmer. Pearson Education India,

2000.

[33] Robert C Martin. Clean code: a handbook of agile software craftsman-

ship. Pearson Education, 2009.

[34] Robert C Martin. Professionalism and test-driven development. Ieee

Software, 24(3), 2007.

[35] Jacob Beal, Jonathan Bachrach, Dan Vickery, and Mark Tobenkin. Fast

self-healing gradients. In Proceedings of the 2008 ACM symposium on

Applied computing, pages 1969–1975. ACM, 2008.

[36] Jacob Beal. Flexible self-healing gradients. In Proceedings of the 2009

ACM Symposium on Applied Computing, SAC ’09, pages 1197–1201,

New York, NY, USA, 2009. ACM.

[37] Erich Gamma. Design patterns: elements of reusable object-oriented

software. Pearson Education India, 1995.

[38] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Design

and evaluation of a wide-area event notification service. ACM Trans.

Comput. Syst., 19(3):332–383, August 2001.

[39] Mandell Bellmore and George L Nemhauser. The traveling salesman

problem: a survey. Operations Research, 16(3):538–558, 1968.

[40] Peter Sanders. Algorithm engineering–an attempt at a definition. In

Efficient Algorithms, pages 321–340. Springer, 2009.

[41] Kent Beck. Test-driven development: by example. Addison-Wesley Pro-

fessional, 2003.

[42] Danilo Pianini, Sara Montagna, and Mirko Viroli. Chemical-oriented

simulation of computational systems with alchemist. Journal of Simu-

lation, 7(3):202–215, 2013.

80 BIBLIOGRAPHY

[43] Glenford J Myers, Corey Sandler, and Tom Badgett. The art of software

testing. John Wiley & Sons, 2011.

[44] Tim Berglund and Matthew McCullough. Building and Testing with

Gradle. ” O’Reilly Media, Inc.”, 2011.

[45] John Casey, Vincent Massol, Brett Porter, and Carlos Sanchez. Better

builds with maven. The How-to Guide for Maven, 2:p61, 2008.

[46] BN Vasilescu, SB van Schuylenburg, JJHM Wulms, Alexander Sere-

brenik, and Mark GJ van den Brand. Continuous integration in github:

experiences with travis-ci. 2014.

	Abstract
	Introduction
	Background
	Motivation
	Field calculus
	Self-stabilising field calculus
	Substitution principle
	Resilience

	Protelis: an aggregate programming language
	Building blocks
	Spreading
	Accumulation
	Time
	Sparse choice

	Towards an aggregate library

	Protelis-Lang library
	Requirements
	Analysis
	Design
	Implementation
	Spreading
	Accumulation
	Symmetry breaking
	State
	Meta patterns
	Non-self-stabilising functions

	Demos

	Engineering an algorithm
	Testing framework
	Quantitative analysis
	Protelis-Lang improvement workflow
	Engineering distanceTo as a case study
	Qualitative analysis and unit testing

	Evaluation
	Scenario 1: meeting a celebrity
	Scenario 2: resource allocation

	Conclusion
	Bibliography

