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“The answer that came to me again and again was play. 

Every human society in recorded history has games. 

We don't just solve problems out of necessity. 

We do it for fun. 

Even as adults. 

Leave a human being alone with a knotted rope 

and they will unravel it. 

Leave a human being alone with blocks 

and they will build something. 

Games are part of what makes us human. 

We see the world as a mystery, 

a puzzle, 

because we've always been a species of problem-solvers.” 

- 

“The Talos Principle”  
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Abstract 

In the last few years, due to the new Deep Learning techniques, artificial neural networks 

have completely revolutionized the technologic landscape, demonstrating themselves 

effective in many tasks of Artificial Intelligence and similar research fields. Therefore it 

could be interesting to analyse how and by what measure deep networks can replace 

symbolic AI systems. After the impressive results obtained in the game of Go, the game of 

Nine Men’s Morris has been chosen as case of study in this work, because it is a widely 

spread and deeply studied board game. Therefore, the Neural Nine Men’s Morris system 

has been created, a completely sub-symbolic program which uses three deep networks to 

choose the best move for the game. Networks have been trained over a dataset of more 

than 1,500,000 pairs (game state, best move), created according to the choices of a 

symbolic AI system. The tests have demonstrated that the system has learnt the rules of 

the game, predicting a legal move in more than 99% of the cases. Moreover, it has reached 

an accuracy on the dataset of 39% and has developed its own game strategy, which results 

to be different from its trainer one, proving itself to be a better or a worse player according 

to its adversary. Results achieved in this case study  show that the key  issue in designing 

state-of-the-art AI systems in this context seems to be a good balance  between  symbolic 

and sub-symbolic techniques, giving more relevance to the latter, with the aim to reach a 

perfect integration of these technologies. 

 

Le reti neurali artificiali, grazie alle nuove tecniche di Deep Learning, hanno 

completamente rivoluzionato il panorama tecnologico degli ultimi anni, dimostrandosi 

efficaci in svariati compiti di Intelligenza Artificiale e ambiti affini. Sarebbe quindi 

interessante analizzare in che modo e in quale misura le deep network possano sostituire le 

IA simboliche. Dopo gli impressionanti risultati ottenuti nel gioco del Go, come caso di 

studio è stato scelto il gioco del Mulino, un gioco da tavolo largamente diffuso e 

ampiamente studiato. È stato quindi creato il sistema completamente sub-simbolico Neural 

Nine Men’s Morris, che sfrutta tre reti neurali per scegliere la mossa migliore. Le reti sono 

state addestrate su un dataset di più di 1.500.000 coppie (stato del gioco, mossa migliore), 

creato in base alle scelte di una IA simbolica. Il sistema ha dimostrato di aver imparato le 

regole del gioco proponendo una mossa valida in più del 99% dei casi di test. Inoltre ha 

raggiunto un’accuratezza del 39% rispetto al dataset e ha sviluppato una propria strategia 

di gioco diversa da quella della IA addestratrice, dimostrandosi un giocatore peggiore o 

migliore a seconda dell’avversario. I risultati ottenuti in questo caso di studio mostrano 

che, in questo contesto, la chiave del successo nella progettazione di sistemi AI allo stato 

dell’arte sembra essere un buon bilanciamento tra tecniche simboliche e sub-simboliche, 

dando più rilevanza a queste ultime, con lo scopo di raggiungere la perfetta integrazione di 

queste tecnologie.   
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Chapter 1 

1 Introduction 

Artificial neural networks first appeared more than 60 years ago and in the 

last decade have once again improved  artificial intelligence researches and  

applications,  achieving impressive results in tasks such as image and speech 

recognition and classification, natural language processing, sentiment 

analysis,  and  game playing. 

The new deep learning techniques take advantage from a huge amount of 

unstructured data and knowledge and the impressive computational power of 

modern computer architectures  in order to define very fast and effective  

machine learning algorithms, considered very interesting and promising by 

all the major ICT companies that are currently investing on them [1]. 

As evolution of neural networks, deep learning technologies are sub-

symbolic techniques that does not require an explicit representation and 

modelling of the problem to be solved. The solution is “hidden” inside the 

configuration of the networks and in the weights of its connections.  On the 

other hand, symbolic systems, in which knowledge and reasoning are 

expressed through rules and symbols manipulation, are still used in several 

Artificial Intelligence applications since they are generally more reliable, 

transparent and seem to perform better when solving problems where 

knowledge is explicit and specialized. 

Nowadays, a very important research issue in the Artificial Intelligence area  

is  trying to exploit the advantages of both symbolic and sub-symbolic 

approaches, combining or integrating them in a single hybrid system, 

therefore solving their apparent dichotomy. 

If we consider the context of board games, traditionally, Artificial 

Intelligence researchers have used symbolic techniques to approach the 

challenge to play, obtaining the impressive result of defeating human 

champions in many classical games like Chess, Draughts or Othello. 

Combining symbolic systems and neural networks, relying on the latter for 

tasks such as the evaluation of game states, the new hybrid systems have 

demonstrated themselves better player than their “ancestors”, being able to 

triumph even in the game of Go. Recognized as one of the most difficult 
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board game existing, until the last year the game of Go was considered too 

difficult for an AI system, but the hybrid program AlphaGo proved this belief 

wrong, earning itself the title of first computer program to defeat a Go 

international champion. 

A spontaneous question which rises is if a sub-symbolic system could 

substitute entirely a symbolic one. In particular, in the context of board 

games, the system should learn the game rules and constraints and optimizing 

some objective, providing a solution which is both good and acceptable 

without any a priori explicit knowledge about the problem and without any 

human intervention. If this is the case,  what are the strengths and weaknesses 

of this approach with respect to a symbolic one and how could them be 

merged together in a synergic way? 

The purpose of this thesis is to investigate this issue and try to give a first 

answer to this question by using a case study and therefore by designing, 

implementing testing a pure sub-symbolic system able to play a popular 

board game, Nine Men’s Morris, which is wide-spread, deeply studied and 

solved. 

The product of this work is Neural Nine Men’s Morris (NNMM), a program 

able to play the game following its rules and taking smart decisions using 

only sub-symbolic machine learning techniques based on neural networks. 

To train it, a dataset of 1,628,673 “good moves” has been created, which 

contains a set of states and the corresponding best moves according to a 

symbolic AI, that has the role of “teacher” of NNMM. 

What is aimed to achieve is not a symbolic AI system that chooses the best 

move according to explicit rules and heuristics by considering  future, 

possible  moves (states) that it and its adversary will make and therefore 

trying to identify  the more promising  move that would  lead to win the game 

(goal state).  The NNMM system is sub-symbolic instead and will learn to 

play simply following its “instinct”, developed after considering a huge 

number of examples, rather than following, a priori,  a complex strategy 

which explicitly involves  knowledge elicited from human expert player  

about the game. 

Using supervised learning and neural networks, the desired system will 

independently learn to recognize some patterns and features and to associate 

them to a particular move, so it will be able to predict the best move simply 

by watching the board. Furthermore, fed with thousands possible moves, this 

system will understand when a move is considered legal, even though nobody 

has explained it the rules of the game. 
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To make a comparison, the system will not be like a person who learns to 

play reading the rule book or strategy guides, but simply watching an expert 

playing. 

To verify if these goals have been accomplished, Neural Nine Men’s Morris 

will be tested firstly confronting its choices with the dataset ones and 

verifying if it respects the game rules, than its skill as player will be tested 

playing against other AI, among which there will be its “teacher”. 

 

Chapter 2 presents the problems of representing knowledge and how a 

system can increase its knowledge, describing the main approaches and the 

different types of learning. 

Chapter 3 examines the game of Nine Men’s Morris, analysing its rules, the 

way it can be represented in a computer system and comparing it to other 

popular board games. 

Chapter 4 explains neural network models,  showing some architectures 

invented through the decades and illustrating the principles behind them, 

finally focusing on approaches that have been proved successful playing 

board games. 

Chapter 5 describes what has been the approach to the problem, the dataset 

that has been created, the system which has been designed, its neural 

networks and how they have been realized and trained. 

Chapter 6 concerns the tests that have been done to tune the networks and 

evaluate the system in terms of accuracy with respect to the dataset, respect 

of game rules and skill as player against other AI. 

Chapter 7 sums up what tests have proven and proposes possible future 

works on this subject, both as improvements to NNMM and further studies 

on the sub-symbolic systems.  
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Chapter 2 

2 Knowledge and learning 

Artificial intelligence is probably one of the computer science research fields 

that deals the most with philosophy or cognitive science. Apparently vague 

and abstract questions like “what is knowledge?” and “what means to learn” 

became fundamental, because they are strictly linked with very practical 

questions that researches deal with: 

 How can knowledge be represented? 

 How can a system be taught with new knowledge? 

Knowledge representation and machine learning are considered two 

fundamental aspects for an AI that has the ambition to pass the Touring Test: 

it must store what it knows, it must adapt to new circumstances and be able to 

extrapolate patterns [2]. 

2.1 Symbolic approaches 

The theory that human thinking is a kind of symbols manipulation and that 

can be expressed as formal rules is deeply-rooted in western philosophy and 

expressed partially by Hobbes, Leibniz, Hume and Kant [3]. Therefore, for 

long time the dominant theory has been that many aspects of intelligence 

could be achieved manipulating symbols, so the best way to represent 

knowledge could be only to use symbols. 

This position is well embodied in Simon and Newell physical symbol system 

hypothesis: 

“A physical symbol system has the necessary and sufficient 

means for general intelligent action” [4] 

Following this idea, what are called physical symbol systems (or formal 

systems) have been defined and realized: systems which use physical patterns 

called symbols, combine them into structures called expressions and 

manipulate them with processes to obtain new expressions. 
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Examples of symbolic systems are formal logic, algebra or the rules of a 

board game such as chess: the pieces are the symbols, the positions of the 

pieces on the boards are the expressions and the legal moves that modify 

those positions are the processes. 

An important idea linked to this approach is the search space [5]. It is 

supposed that in any problem there is a space of states, defined by an initial 

state, a set of actions that can be done and a transition model that defines the 

consequences of the actions. Therefore the state space forms a direct graph in 

which the nodes are the states and the links are the actions. The solution to a 

problem is the sequence of actions that determine the path from the initial 

state to a goal state. Considering that a solution must begin from the initial 

state, the possible actions sequences form a search tree which has the initial 

state as root. Having a test that allows to determine if a given state is a goal 

state, an intelligent system can navigate the tree with the aim of founding a 

goal state and therefore the solution. To speed up the process, knowledge can 

be provided to the search algorithm, allowing it to evaluate the states and to 

infer faster a path to the goal [2]. 

Symbolic approaches are still researched today and have produced one of the 

first truly successful forms of artificial intelligence: expert systems. Built 

mainly by if-then rules, they are designed to solve complex problems and 

imitate the decision-making ability of human expert. They are knowledge-

based system, which means that are made by two distinct part: a knowledge 

base that represent facts about the world and an inference engine that permit 

them to discover new knowledge basing on the one that is already possessed. 

2.2 Sub-symbolic approaches 

Physical symbol system hypothesis has been criticized under many aspects 

because, according to some researchers, does not resemble a human 

intelligence. 

According to Dreyfus, part of the human intelligence derive from 

unconscious instincts that allow people to take quick decision using intuition; 

this aspect is unlikely to be captured by a formal rule [6]. 

The theory of embodied cognition affirms that symbol manipulation is just a 

little part of human intelligence, most of it depends by unconscious skills that 

derives from the body rather than the mind. 
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Brooks has written that sometimes symbols are not necessary: in the case of 

human basic skills like motion or perception they are a complicated 

representation of something that is far more simple [7]. 

 

The poor results obtained with symbol manipulation models, especially in 

their inability to handle flexible and robust processing in an efficient manner, 

lead in the 1980 to the connectionist paradigm [5]. It does not deny that at 

some levels human beings manipulate symbols, but suggest that this 

manipulation is not implied in cognition; it tries to model the source of all 

this unconscious skills and instinct as an interconnected network of simple 

and almost uniform units [2]. After an initial period of enthusiasm, the 

interest in connectionist models and systems had lowered for several years, 

but has rose again recently, stimulated by the great results achieved by the 

combination of new models and modern hardware. 

Even though connectionist and symbolic approaches are viewed as 

complementary, not competing, it is very interesting to investigate their limits 

comparing their results on the same task. 

2.3 Learning 

“An agent is learning if it improves his performance on future 

tasks after making observations about the world. Learning 

can range from the trivial, as exhibited by jotting down a 

phone number, to the profound, as exhibited by Albert 

Einstein, who inferred a new theory of the universe” [2] 

The purpose of machine learning is to give to a system the ability of make 

predictions about unknown data, predictions that will be helpful for the users 

or for the system itself, letting it able to improve its performance on a task. 

Taking advantage of a base knowledge acquired during training, the system 

infers new knowledge in the form of a model of the data and behaves 

according to it, letting the system able to perform tasks for which it has not 

explicitly programmed for. 

Indeed, there are many scenarios in which the system cannot be programmed 

for all the possible situations in which it will have to act, so it is fundamental 

that it could take decisions by its own experience. For example, the number 

of possible configurations it could be too vast for being anticipated by the 

designer, or in a dynamic environment could be impossible to predict which 
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changes my occur during time or simply human programmers could have no 

idea how to program a solution [2]. 

Training can be divided into three categories according to the feedback that is 

provided to the system: unsupervised learning, reinforcement learning and 

supervised learning, 

In unsupervised learning, the system analyse a set of known inputs and learns 

patterns that characterize the domain; a typical task is detecting potentially 

useful clusters of input example, which is called clustering. 

Reinforcement learning aim to teach a system to take action in a variable 

environment; depending on how much the system output is appropriate to the 

environment state, the system is fed with  a series reinforcements which can 

be rewards or punishments. 

Supervised learning consists into giving to the system a set of couple of 

inputs and desired output, making it learn the relation between input and 

output. 

In this work, to train the neural networks will be used supervised learning 

techniques, therefore it is necessary to describe this category in more detail. 

 Supervised Learning 

Formally, the task of supervised learning is [2]: 

Given a training set of N example input-output pairs 

(𝑥1, 𝑦1), (𝑥2, 𝑦2), … (𝑥𝑁 , 𝑦𝑁) 

 where each 𝑦𝑗 has been generated by an unknown function 

𝑦 = 𝑓(𝑥) 

 discover a function ℎ that approximates the true function 𝑓 

Function ℎ is called hypothesis and learning means to search through the 

space of all the possible hypothesis for one that is consistent and generalize 

well. 

A consistent hypothesis is an hypothesis which agrees with training data and 

it is said that generalizes well if it is able to predict the correct output for 

inputs which has not be trained on; this can be verified using only a part of 

the available data for the training set and using the remaining part as a test 

set. 
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According to the number of times that an hypothesis makes a correct or an 

incorrect prediction, there are several ways to measure its goodness. Given an 

hypothesis ℎ, a couple (𝑥, 𝑦) and calling a prediction ℎ(𝑥) wrong if 𝑦 ≠

ℎ(𝑥), correct otherwise, it is possible to define the error rate of ℎ as the 

proportion between the number of wrong predictions and the number of total 

predictions, in the same way is possible to define the accuracy of ℎ as the 

proportion between the number of correct predictions and the number of total 

predictions. 

These measures could be not informative enough, because not all the wrong 

prediction could be equally negative: for example, in a mail system, could be 

better to label a spam mail as important rather than label an important mail as 

spam. Therefore is typical to use a loss function 𝐿(𝑥, 𝑦, �̂�) that represents the 

cost of making a wrong prediction ℎ(𝑥) = �̂� rather than a correct one; often 

it is used a simplified version 𝐿(𝑦, �̂�) independent from 𝑥. 

According to this, the best hypothesis is the one that minimizes the expected 

loss over all the pairs that the system will encounter. For finding it, the 

probability distribution of the couples should be known, but because it is 

generally not known must be estimated on the set of training examples E. It is 

so defined the empirical loss: 

𝐸𝑚𝑝𝐿𝑜𝑠𝑠𝐿,𝐸(ℎ) =
1

𝑁
∑ 𝐿(𝑦, ℎ(𝑥))

(𝑥,𝑦)∈𝐸

 

Therefore, the best hypothesis is the one that minimizes the empirical loss. 

 

The two aims of finding an hypothesis that is so accurate to fit the data but 

also simple enough to generalise well are in conflict most of the times: 

optimizing the loss function probably will lead to overfitting, which is an 

excessive specialization of the hypothesis over the given example, leading to 

very low loss on the training set but an elevated loss on the test set.   

The trade-off between the two objective can be expressed through 

regularization, which is the process of penalizing complex (less regular)  

hypothesis; during the search of the best hypothesis are considered both the 

loss function and a complexity measure, aiming to minimize their weighted 

sum. 

 𝐶𝑜𝑠𝑡(ℎ) = 𝐸𝑚𝑝𝐿𝑜𝑠𝑠(ℎ) + 𝜆 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦(ℎ) 

The best hypothesis becomes the one that minimizes the whole cost.  
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Chapter 3 

3 Nine Men’s Morris 

Nine Men’s Morris, also called with other names like Mill Game, Merrils, or 

Cowboy Checkers, is a strategy board game for two players. 

It is a very ancient game [8], the oldest trace of it is in fact dated about 1400 

BC, and has been played through the centuries by many different 

civilizations; nowadays is played in many country of the world, such as 

United States, United Kingdom, Italy, India, Algeria [9] and Somalia [10]. 

This game has been deeply analysed by Ralph Gasser: he programmed 

Bushy, an AI that has been able to defeat the British champion in 1990; later, 

in 1993, he proved that the solution to this game is a draw using a brute force 

approach, which is an exhaustive exploration of the possible game states 

[11]. 

More recently, even the extended strong solutions have been found [12], 

which are the theoretical results for all possible game states reachable with 

slightly different initial configuration of the game. In the same study, the 

game has been ultrastrongly solved too, which means that has been proposed 

a strategy that increases the chance of the player to achieve a  result than is 

better than the theoretical one, maximizing the number of moves that leads to 

a loss and making distinction between draws. 

This game has been chosen as subject of this study because of these 

characteristics: 

 State space searches, so symbolic approaches, have been proved 

successful to solve and to play it. 

 The complexity of the state space is not very big, so the process of 

training could not require excessive resources in terms of time and 

hardware. 

 The choice of the best move implies several decisions and a legal move 

must satisfy constraints both on single decisions and their totality. So it 

will be interesting not only verifying if a sub-symbolic system is able to 

learn to do the best move, but also if is able to learn to do a fully legal 

move. 
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3.1 Rules 

There are some variants of the grid and of the rules, the most common ones 

are presented here. 

The game board, illustrated in Figure 3.1, consists in 3 concentric squares 

and 4 segments which link the midpoint of the sides of the squares. The 

intersections of two or more line create a grid of 24 points where checkers 

can be placed.  

 

Figure 3.1 Representation of Nine Men’s Morris game board 

Each player has nine checkers (also called stones or men), usually coloured 

white for a player and black for the other one; the two player are called white 

player and black player, depending on the colour of their checkers. 

When a player is able to align 3 checker along a line it is said he has “closed 

a mill” and he is allowed to remove from the game an opponent’s checker 

which is on the board but is not aligned in a mill. The removed checker is 

sometime called “eaten” or “captured”. 

Initially the board is empty and each player has its own checker in hand, than 

player alternately make a move, starting with the white player. 

The game proceed through 3 different phases that defines the moves that 

players are allowed to do: 

1) Initially players alternately place a stone on an empty position of the 

board. 

2) When both player have placed all their stones, they must slide a 

checker along a line to a nearby vacant point. 
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3) When a player is left with only 3 stones is able to “fly” or “jump”: he 

can move a checker from a point of the board to any other empty point 

of the board 

 

The game ends when one of this conditions occurs: 

 A player wins removing 7 adversary stone, leaving the opponent with less 

than 3 stones 

 A player is not able to make a legal move, so he loses 

 During phase 2 or 3, a configuration of the board is repeated, so it’s a 

draw. 

 

In case during phase 1 a player is able to close two mills at the same time, he 

can remove only one checker. 

In case a player close a mill but all opponent’s checker are aligned in a mill, 

he is allowed to remove one aligned checker 

3.2 Model of the problem 

Nine Men’s Morris is a perfect-information game, which means that all 

player, at any time during the game, access to all the information defining the 

game state and its possible continuation [13]. This means that the game state 

is shared by all players and that there are no stochastic elements to consider. 

It is important to underline that two of the ending conditions can be detected 

simply by the state of the game, but for the third condition became necessary 

to maintain a history of the states presented during the game. 

 Symmetries and state space 

Each configuration of the board can be transformed to obtain a symmetric 

configuration [11]. There are 5 axes of symmetry, as shown in Figure 3.2, but 

one is redundant because can be obtained as a combination of the other, so 

there are 4 axis that can lead up to 15 symmetric configurations. 

In the particular case in which both player have only 3 checkers left, there is 

one more relevant symmetry because all the three squares are interchangeable 

(not only the inner and the outer one). 
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Figure 3.2 Symmetries in Nine Men’s Morris game board 

So how many configuration can the board present? Taking into account only 

the configurations of phase 2 and 3 we can make the following 

considerations. 

Each of the 24 points of the board can be occupied by a white checker, a 

black checker or can be empty, so an upper bound for the number of possible 

states is 324, which is approximately 2.8 × 1011. 

However, it must be considered that every player has from 3 to 9 checker on 

the board and that some configuration are impossible: for example if a player 

has a closed mill, the other cannot have 9 checkers on the board. 

If symmetries are considered too, it is found that the game has 7,673,759,269 

possible states in phase 2 and phase 3 [11]. 

 Representation of the state 

The state of the game is made by 3 data: the state of the board, the phase of 

the game and the number of checkers each player has in his hand. The phase 

of the game can be deducted by the other two information, so only these two 

must be represented. 

The number of checkers in players’ hands can obviously be represented with 

two numbers. 

Due to its own peculiarity, it is easy to represent the board as an object of 1, 2 

or 3 dimensions. 
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1) It’s possible to enumerate the grid points and represent the board as an 

array, where the value of index i represents the state of the i-th point. A 

possible enumeration is presented in Figure 3.3. 
 

 

Figure 3.3 Enumeration of Nine Men’s Morris board positions 

 

2) Another simple representation of the board is as a 7x7 matrix, where only 

some elements of the matrix are relevant. Such representation is illustrated 

in Figure 3.4. 

 

Figure 3.4 2D representation of Nine Men’s Morris board (left) and relationship with the 

board (right). The white cells contains relevant elements. 
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3) The last representation is a three-dimensional object made by 3 matrix of 

size 3x3 which represents the three concentric squares of the grid. The 

center of each matrix is a not relevant element. Figure 3.5 presents such 

representation. 

 

Figure 3.5 3D representation of the board state. The three colors, yellow, orange and red, 

differentiate the elements belonging respectively to the inner, the middle and the outer 

square of the board. The grey elements are not relevant. 

Each point of the grid can assume three states: occupied by a white checker, 

occupied by a black checker or empty. So it’s easy to represent the possible 

states of a point of the board with 3 different values, for example (1, -1, 0) or 

(W, B, E). 

An important aspect to underline is that, as illustrated in Figure 3.6, none of 

the suggested representations of the board are capable to capture the concept 

of logical distance between two board points. For logical distance between 

two points is meant how much two points are distant according to the game 

rules and in this case can be defined by the minimum number of moves that 

are necessary for a checker to move from one point to another during phase 

2. 

1) Obviously the 1-dimensional representation cannot preserve the logical 

distance because imposes a linearization of the positions. 

2) The 2-dimensional representation fails because weight differently the 

distance of two points of the same square according to which is the 

square: the distance between two logically adjacent points of the inner 

square will be 1,  while the distance between two adjacent points in the 

middle one will be 2 and in the outer one will be 3: there is an 

overestimation of some distances. 
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3) The 3-dimensional representation fails because the points in the same 

angles of two different squares are represented at the same distance as the 

points in the midpoint of the same side of two different squares, but while 

the midpoint are linked so their distance is 1 or 2, the angles are not linked 

so their distance is 3 or 4: there is an underestimation of some distances. 

 

Figure 3.6 Differences between logical distance (in blue) and “physical” distance (in red) 

in the 2D representation (left) and the 3D representation (right) of the board 

 Representation of a move 

With the term “move” is meant the whole set of choices that a player takes 

during his turn. 

A very peculiar characteristic that make this problem different from many 

other board games is that a move is defined by a variable amount of 

information. 

For the entire game, an information that is always needed to define a move is 

where a player want to place his checker, this can be represented with the 

coordinates of that point. The coordinates of a point of the grid can be a 

single number, a couple or a triplet, according on the chosen board 

representation. This information will be referred to as the “TO” move part 

and will always be present in the move. 

In case that placing the checker causes the closing of a mill, another 

information that must be represented is the checker that the player wants to 

remove. This can be represented using the coordinates of the point where the 

checker is. This information will be referred to as the “REMOVE” move part 

and is the least frequent part in the move: during a single match, the 
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maximum number of moves with a REMOVE part is 13, 7 by the winning 

player and 6 by the losing one. 

Finally, during phase 2 and 3, the checker is moved from a position to 

another, so another information is where the checker is moved from, one 

more time this information is a point of the grid so can be represented with 

the coordinates. This information will be referred to as the “FROM” move 

part. 

So a move is defined by 1 to 3 coordinates among which only the first one is 

always present. For this reason a special point must be defined, a point that 

will be addressed by the EAT and FROM part in case the move do not require 

them. 

It is important to underline that for any game state there are constraints on 

each part itself, but there are also constraints on the whole move: the legality 

of the parts does not guarantee the legality of the full move. 

3.3 Comparison with other board games 

It is useful to analyse briefly other popular strategy board games, with the 

aim of finding similarities and differences with Nine Men’s Morris, in order 

to make considerations about which of the techniques that will be used in this 

case of study could be used for other games. 

All the games examined are perfect-information games played by two 

players. 

 Draughts 

Draughts or Checkers is another very wide-spread game, but unlike Nine 

Men’s Morris, which rules are almost the same everywhere, rules of 

Draughts change very much depending on the place where is played: Polish 

draughts, Canadian checkers, Russian draughts, English draughts and Italian 

draughts are only a few examples of the many different traditional versions 

[14]. 

For this reason is difficult to compare precisely those two games: between 

different versions change the size of the board, the number of checkers and, 

more important, what are the possible legal moves. 

What can be said for all versions is that the board is a squared checkerboard, 

so it can be easily represented as a 2-dimensional object, preserving the 

logical distance between two points and without the introduction of non-
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relevant objects. There is not the possibility to have checkers on hand, so the 

board representation is sufficient to represent the game state; an example of 

game state is presented in Figure 3.7. 

 

Figure 3.7 Example of game state in international draughts 

Another difference is that the definition of legal moves is the same for the 

whole game, but there are two types of checkers, Men and Kings, which can 

do different moves; so a point on the board can assume 5 possible states. 

The last important difference is that a move is defined by at least two points: 

the checkers that a player wants to move and the position where that checker 

will be moved. In the case of a move that captures more than one adversary 

checker, the move is defined also by the points in which the checker passes. 

So a move is formed by a variable number of parts, but if in Nine Men’s 

Morris the parts that form a move are semantically a syntactically different, 

each part of a Draughts move has the same meaning as the others.  

The game can end when a player loses either because he cannot make legal 

moves or because all his checkers are captured; each version of Draughts has 

its own conditions to determine the end in a draw, but substantially the game 

is declared a draw if none of the player has the possibility to win or if a 

certain state is reached many times. So while it is possible to determine if a 

player has won simply looking at the state, for detecting a draw it could be 

necessary to maintain history of the states. 

The state-space complexity changes between different versions: for example 

for the English draughts is estimated an upper bound of 1020 [15], while for 

the international International draughts the upper bound is 1030 [16]. The 

English version has been weakly solved [17], which means that not only the 
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game-theoretic values of the starting position is known, but a strategy to 

achieve it is known as well. 

In 1994, the computer program Chinook won the Checkers World 

Championship, achieving the title of first program to win a human world 

championship [18]. Chinook knowledge consisted of a library of opening 

moves, an incomplete end-game database and a move evaluation function 

which were used by a deep search algorithm to choose the best move. All this 

knowledge was programmed by Chinook creator, rather than obtained 

through machine learning. 

 Chess 

Chess is different from Nine Men’s Morris under almost any aspect. 

The chess board is an 8x8 checkerboard so, as has been said for draughts, can 

be easily represented as a 2-dimensional object, with all the positive aspects 

previously mentioned, and example of representation is shown in Figure 3.8. 

One more aspect in common with draughts is the presence of 6 different 

types of pieces and each one can do a different types of moves. 

 

Figure 3.8 Example of game state in chess 

A move is always defined by only two points, the one in which the piece is 

and the one in which the piece move, with a notable exception: the player 

who moves a pawn to the end of the board must decide the piece in which he 

wants the pawn get promoted to, but this decision occurs very few times 

during a game. 
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For almost any aspects, the chess board embodies the game state and the 

definition of legal moves remain the same for the whole game, the exception 

to this statement is the castling move. The castling move it’s a special move 

that the king can do with an allied tower, only under certain conditions of the 

board and only if none of the two has been moved since the beginning of the 

game, so it’s important to maintain these information in the game state. The 

castling move can still be represented with two points: for example the 

position of the king and of the chosen tower. 

The game ends with a winner when a player is under checkmate, which 

means that his king is threatened with capture and there is no way to remove 

that threat, so that player have lost. The game ends with a draw if a player has 

no legal move possible (stalemate) or if none of the player can put the other 

in checkmate, this is possible if only some pieces remains on the board. 

These conditions are detectable simply looking at the state. 

It is possible to end a game with a draw, under a player request, if one of two 

conditions occur: for 50 consecutive moves no pawn have been moved and 

no pieces has been captured or if the same state is reached for the third time 

(even not consecutively). The second condition is moreover relevant in an AI 

vs AI game, because it is possible for the players to remain stuck in a loop, so 

it is important to maintain a history of the game state. 

The state-space complexity for chess has not been calculated precisely yet, 

the upper bound estimated by different authors vary between 1043 and 1050 

[16]; due to its high complexity, chess is still an unsolved game. 

IBM’s computer Deep Blue was able to won a game against human world 

champion Kasparov in 1996 and to won a 6 game match the following 

year. Deep Blue relied on a vast resource of knowledge, such as a 

database of opening games played by past grandmasters, and applied a 

brute force approach, exploring that knowledge to figure out the best 

move. During the state search, the program considered the pieces on the 

board, their position, the safety of the King and the progress toward 

vantage states; the evaluation of all these components was made 

following the behaviour defined by the programmers, without the 

possibility to change it or adapt it to the opponent strategy [19]. 

“Kasparov isn't playing a computer, he's playing the ghosts of 

grandmasters past.” [19] 
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 Othello 

Othello is the easiest game to model between the ones which has been 

analysed so far. 

In Othello the board is a squared plane of size 8x8, so once again it can be 

represented as a 2-dimensional object, but like in Nine Men’s Morris, only 

one type of checker exists. 

 

Figure 3.9 Initial game state in Othello 

The board is sufficient to represent the game state, as illustrated in Figure 3.9, 

the definition of legal moves remain the same for the whole game and a move 

can be represented simply by a point on the board. 

An important characteristic is that if a player cannot make a legal move, he 

must pass the turn, while in the games analysed so long the impossibility for 

a player to make a legal move meant the end of the game. 

When none of the players can make a legal move, the game ends, and the 

player who has more checkers wins. So the end of the game can be detected 

simply by analysing the game state. 

The state-space complexity has been estimated to be 1028 [16] and it is still 

mathematically unsolved. 

The first Othello program computer able to won a single match against a 

human world champion was “The Moor” in 1980 [16], while in 1997 the 

program “Logistello” won a six games match against the human world 

champion. 
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Logistello relied upon a table-based pattern evaluation: to each 

occurrence of each pattern in each game state corresponded a value that 

would be added to the state value if those conditions were met. The 

search through the state space considered not only the best move but 

also some possible deviations, allowing the system to  learn from his 

games [20]. 

 Go 

The game of Go is a very ancient oriental strategy board game. As for 

Draught, the wide diffusion of this game among centuries has led to the born 

of many different versions of the rules. Only the basic rules are considered 

here. 

The game board is a grid made by 19x19 lines, even if it is possible to play 

with smaller boards, therefore it is easy to represent it with a 2-dimensional 

object, as shown in Figure 3.10. 

 

Figure 3.10 Example game state in go 

During his turn, a player may pass or place a “stone” on the board, so a move 

can be represented simply by the position where the stone will be placed, 

using an illegal coordinate to indicate the choice to pass. 



 

23 

For the whole game the definition of legal move is the same, but it is illegal 

to recreate a board state which has occurred previously, so in order to define 

legal moves, it is important to maintain an history of the game states. 

The game ends when both player passed and the outcome is determined by 

the last board configuration. 

For this reason, the state of the game could be defined by the board state, the 

set of previously reached board configuration and the last move made by a 

player. 

Go is probably the most complex traditional board game, because its 

complexity has been estimated to be  10172 [16] and is still unsolved. 

The computer program FUEGO [21] is considered one of the best open 

source go computer player [22], it uses symbolic techniques like Alpha-Beta 

Search and Monte Carlo Tree Search to explore the possibile moves and to 

choose the better one.  
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Chapter 4 

4 Artificial Neural Networks 

Artificial Neural Networks (so forth called neural networks or simply 

networks) have a long history, which goes back to the first studies on 

computational models of biological neural networks by McCulloch and Pitts 

in 1943 [23]. Through time, many models have been proposed, different 

either in the architecture of the network or in the elements that constitute it or 

in the training techniques. 

Partially inspired by the biological neuron model, as illustrated in Figure 4.1, 

Neural Networks  are a sub-symbolic approach to the problem of learning. 

Made by many simple units linked together, neural networks store the learned 

knowledge into the connections between these units as a numerical weight 

and into other parameters. 

 

Figure 4.1 Simplified models of biological neuron and artificial neuron. The biological 

neuron gather impulses/inputs through dendrites, aggregates them in the soma and 

propagate the impulse/output with the axon 
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In a neural network, a neuron is a computational unit that receives a set of 

inputs 𝑥𝑖, elaborates a weighted sum with weights 𝑤𝑖 and adds a bias 𝑏, than 

applies an activation function 𝑓 to compute the output 𝑦. Each neuron has 

therefore as many parameters as the number of inputs plus one. 

The output of each neuron can therefore be written as 

𝑌(𝑋) = 𝑓 (∑ 𝑥𝑖𝑤𝑖

𝑖

+ 𝑏) 

where 𝑥𝑖 are the neuron inputs, while 𝑤𝑖 and 𝑏 are the parameters to be 

learned. 

A typical activation function is the sigmoid function, but other possible 

activation functions will be discussed later. The plotting of this function is 

presented in Figure 4.2, while its definition is: 

𝑆(𝑡) =
1

1 + 𝑒−𝑡
 

 

Figure 4.2 Sigmoid function plotting 

4.1 Feed-forward model and network supervised 

training 

In the feed-forward neural network model, neurons are grouped in layers, 

stacked one on top of the other. Therefore, the first layer of neurons (input 

units), receive the data as input, while the others (hidden units) receive the 

output of the previous layer as input. The output of the network is made by 

the outputs of each neuron that belongs to the last layer (output units). A 

scheme of a possible artificial neural network is presented in Figure 4.3. 
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Figure 4.3 Feed-forward neural network architecture scheme 

For any given data, the network calculate an output based on his parameters 

and hyper-parameters. Training a network means to alter these parameters 

with the aim to make the outputs of the network similar to the desired outputs 

or, more formally, to optimize a loss function 𝐿 that has to measure the 

discrepancy between the output of the network and the target. 

 Gradient descent and backpropagation 

If the activation function is differentiable, the gradient descent can be applied 

to optimize the loss function: the gradient of the loss function with respect to 

each parameter is computed, than the parameters are modified by the gradient 

multiplied by an hyper-parameter 𝛼, called learning rate. An iteration on the 

whole training set, and the related gradient computation, is called training 

epoch. 

By applying this technique many times over the same data, it is possible to 

reach a local minimum of the loss function. The choice of the learning rate 

can dramatically influence the training: a small learning slows down the 

training and could make impossible to escape from a local minimum once it 

is reached, on the other hand an high learning rate could alter the weights too 

much on each gradient computation, making the global minimum impossible 

to reach. 

 

If the activation function is not linear and is differentiable, it is possible to 

train the network using the backpropagation technique [24]. The idea behind 
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backpropagation is to do a two-steps process: a propagation phase and an 

updating phase. 

During the forward propagation the data are given as input to the network 

and the output 𝑜𝑗 of each neuron is kept in memory; during the backward 

propagation the error on the output is calculated and propagated backwards, 

computing the error 𝛿𝑗 associated to each neuron. 

It is possible to compute the gradient of the loss function of any parameter of 

network following the chain rule: calling 𝑝𝑎𝑟𝑗 a parameter of the j-th neuron 

and 𝑛𝑒𝑡𝑗 the input to its activation function so that 𝑜𝑗 = 𝑓(𝑛𝑒𝑡𝑗), it results 

𝜕𝐿

𝜕𝑝𝑎𝑟𝑗
=

𝜕𝐿

𝜕𝑜𝑗

𝜕𝑜𝑗

𝜕𝑛𝑒𝑡𝑗

𝜕𝑛𝑒𝑡𝑗

𝜕𝑝𝑎𝑟𝑗
= 𝛿𝑗

𝜕𝑛𝑒𝑡𝑗

𝜕𝑝𝑎𝑟𝑗
 

Where 𝛿𝑗 is the error associated to the neuron and 
𝜕𝑛𝑒𝑡𝑗

𝜕𝑝𝑎𝑟𝑗
 can be defined for the 

weights and the bias of the neuron as 

𝜕𝑛𝑒𝑡𝑗

𝜕𝑤𝑖𝑗
=

𝜕(∑ 𝑜𝑘𝑤𝑘𝑗𝑘 + 𝑏𝑗)

𝜕𝑤𝑖𝑗
= 𝑜𝑖 

𝜕𝑛𝑒𝑡𝑗

𝜕𝑏𝑗
=

𝜕(∑ 𝑜𝑘𝑤𝑘𝑗𝑘 + 𝑏𝑗)

𝜕𝑏𝑗
= 1 

During the updating step it is thus possible to compute the gradient of the loss 

function with respect to each network parameter and finally apply the 

gradient descent. 

 Training process 

Testing the trained network on the same data used for training could provide 

a misleading result: the networks performance could be good even in 

presence of overfitting. To verify the ability of the network to generalize, it is 

a common practice to split the dataset into two subsets: the training set and 

the test set. 

During training it could be necessary to adjust some hyper-parameters, so it 

could be useful to test the network after each epoch of training. It is also 

important to underline that almost every network training will lead to an high 

overfitting, so it is important to stop the training at the right moment, a 

technique which is called early stopping. 

The training set therefore could be divided into two subsets: the actual 

training set that will be used for training and a validation set, that will be used 
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for testing after each epoch. This division can be defined for the whole 

training or can change within an epoch; for example the k-fold cross-

validation technique divides the training set into k partitions of the same size, 

during an epoch it does k training steps using one partition for validation and 

the others for training, computing the error and the accuracy scores as an 

average over the scores obtained in each step. 

Monitoring the performance of the network over the validation set is possible 

to determine if the network is improving or has already reached its maximum 

performance and therefore the training can be stopped. 

 

The amount of data used to calculate the gradient, and therefore to update the 

parameters, have repercussion on the accuracy and the speed of the training. 

Computing the gradient over the whole training set (batch optimization) 

could require a great amount of time, therefore it is common to use mini-

batch optimization, that means to compute the gradient only on a small subset 

of the data. The smaller the subset, the more inaccurate is the gradient 

estimation, but the faster is the gradient computation, so it will probably 

require more estimation but they will be faster. If the size of the batch is one, 

the gradient is computed independently for each training example; the 

approach is called stochastic optimization. 

 Softmax classifier and negative log likelihood loss 

In classification tasks or, more generally, if the output of the network must be 

one class out of many, it is a very common practice to put a softmax classifier 

as last layer of the network [25]. The softmax function takes a set of real 

values as input, which are considered as un-normalized log probabilities, and 

map them into normalized probabilities. 

More formally, calling 𝑓𝑗(𝑥) the score computed by the network for the class 

𝑗 with the provided input 𝑥, the probability 𝑃 that the input 𝑥 should be 

labelled as 𝑘 is: 

𝑃(𝑌 = 𝑘, 𝑥) =
𝑒𝑓𝑘(𝑥)

∑ 𝑒𝑓𝑗(𝑥)
𝑗

 

 

From this probability score is possible to obtain a loss score computing the 

negative log likelihood. 
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In information theory the difference between a true distribution 𝑡(𝑥) and a 

distribution 𝑝(𝑥) can be evaluated with the cross-entropy between them, 

which is defined as: 

𝐻(𝑡, 𝑝) = − ∑ 𝑡(𝑥) log 𝑝(𝑥)

𝑥

 

If as 𝑡(𝑥) is considered a distribution where all probability mass is on the 

correct class, so it is formed by only zeros except a 1 on the correct class, and 

as 𝑝(𝑥) is considered the probability distribution resulting from the softmax 

function, the result is the negative log likelihood of the correct class 𝑘, which 

will be used as loss function: 

𝐿𝑘 = − log 𝑃(𝑌 = 𝑘,  𝑥) = − log (
𝑒𝑓𝑘(𝑥)

∑ 𝑒𝑓𝑗(𝑥)
𝑗

) 

 Regularizations 

Two common regularization penalties used in the loss function are the L1 and 

L2 norms, which discourage the use of large weights in the network to obtain 

a more general model. The penalty is added to the loss function with a weight 

λ which is an hyper-parameter of the training. Calling 𝑊𝑖,𝑗 the weight of the 

connection between neurons 𝑖 and 𝑗, the two penalties are defined as: 

𝑅𝐿2(𝑊) = ∑ ∑ 𝑊𝑖,𝑗
2

𝑗𝑖

 

𝑅𝐿1(𝑊) = ∑ ∑|𝑊𝑖,𝑗|

𝑗𝑖

 

 Learning rate annealing 

On one hand a low learning rate requires many epochs of training to reduce 

the error significantly, but on the other hand a high learning rate slows down 

or prevents the system from achieving highest accuracy. 

The solution to this problem is the learning rate annealing, which means to 

reduce the learning rate after some epochs of training, obtaining an heavy and 

fast error reduction at first and a slow but constant one later. 
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Many learning rate annealing techniques have been designed: 

 Step decay: every few epochs the learning rate is reduced by some 

factor, for example it can be halved every 10 epochs, or divided by 10 

every 20 epochs. 

 Exponential decay: an initial learning rate 𝛼0 is established, than the 

learning rate for each epoch is defined as 𝛼 = 𝛼0𝑒−𝑘𝑡, where 𝑡 is the 

epoch and 𝑘 is an hyper-parameter 

 Proportional decay: similar to the previous one, but the learning rate is 

defined as 𝛼 =
𝛼0

(1+𝑘𝑡)
 

 Ensemble learning 

To achieve better results, it is a common machine learning technique to train 

more than one model and use them together to achieve better results. In 

bagging ensemble [26] all the models are trained independently and 

contribute equally to the final prediction, while in boosting ensemble [27] 

each model is trained with the aim of fixing the errors of the previous ones. 

In the case of neural networks, it is possible to train different models on the 

same data changing the architecture or an hyper-parameter, or train the same 

model on different data, or even use the same model trained on the same data 

but for a different amount of epochs. 

4.2 Historical background 

To better understand which are the problems which concerns modern 

networks and how they have been addressed, it useful to present the 

evolution of neural networks technologies since their invention. 

 Neuron and perceptron model 

In 1943, McCulloch and Pitts presented the first mathematical model based 

on human neurons [23]. The artificial neuron took a weighted sum of inputs 

with weight equals to +1 or -1 and applied a threshold; the output was binary, 

with value 1 if the sum is greater than 0, with value 0 otherwise. 

That model was than improved by Frank Rosenblatt, who proposed the 

Perceptron Algorithm in 1957 [28]: 

 𝑓(𝑥) = {
1 𝑖𝑓 𝑤 ∗ 𝑥 + 𝑏 > 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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The activation function was a binary step function, so it was not-

differentiable and therefore backpropagation was impossible; the update rule 

did not take into account any loss function or similar, indeed it was simply 

defined as: 

 𝑤𝑖(𝑡 + 1) = 𝑤𝑖(𝑡) + 𝛼(𝑑𝑗 − 𝑦𝑗(𝑡))𝑥𝑗𝑖 

The perceptron was physically implemented into a machine designed for 

image recognition called Mark 1 Perceptron. Few years later, in 1960, 

Widrow and Hoff stacked together many single units creating the first 

multilayer perceptrons: Adeline and Madaline. 

In 1969, Minsky and Papert wrote a book [29] in which they analysed the 

limits of the perceptron: they are able to solve only linearly separable 

problems, for example they underlined the impossibility to learn the XOR 

function, even though multilayer perceptron have not these limitations. 

 Backpropagation, CNNs and  DBNs 

Even if some progress was made during the sequent years, that book caused a 

general lack of interest in the research on perceptron, which last until 1986, 

when backpropagation was defined clearly [24] and became popular, greatly 

improving neural networks performances. 

 

The problem concerning neural networks still was that they were not 

scalable: an high number of layers or an high number of neurons in a layer 

brought to worse performance. 

 

LeNet-5, a Convolutional Neural Network for handwritten and machine-

printed character recognition, was realized in 1989 [30] and improved during 

the following decades. 

Designed specifically for computer vision tasks, convolutional neural 

networks have a different architecture: each neuron represented the 

convolution between the image of the previous layer and a filter, therefore 

the neurons of a layer were distributed along three dimensions and were 

connected to only few of neurons of the previous and of the successive layer. 

The learnable parameters of the network were the weights used in the 

convolution, which were shared between many neurons of the same layer. In 

this way the network resulted more independent from the size of the input 

image and therefore scaled better. 
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In 2006 Deep Belief Networks were presented, combining supervised and 

unsupervised training to achieve better results in a 2 step process [31]: firstly 

couples of adjacent layers were trained to reconstruct the input through 

Restricted Boltzman Machines, than the whole network was fine-tuned with 

backpropagation. 

The key of the success of this process resided in the first step: the 

unsupervised training initialized the parameters of the network, partially 

preventing the sigmoid function from saturating. 

4.3 Deep Networks and recent approaches 

In the last years, enthusiasm for neural networks has risen once again, 

probably due to a great results obtained in 2010 in speech recognition [32] 

and another one obtained in 2012 in image classification, when the network 

AlexNet [33] won the ImageNet Large Scale Visual Recognition Challenge 

classification task [34]. 

The success of neural networks still continue, indeed since 2012 the ILSVRC 

classification task has always been won by neural networks, which have also 

been successfully used in many other computer vision task [34]. 

These impressive achievements have been made possible thanks to new 

models and techniques which have been studied in the last 5 years. 

 Rectified Linear Unit 

The use of the sigmoid function has many downsides: it has two saturation 

zone in which the gradient is annealed, his mean is not zero and the 

computation of the exponential operator could be very expensive. 

Further studies on biological neurons and the advantages of sparsity have led 

to the definition of an alternative model of the artificial neuron [35], which 

has been successfully tested in convolutional networks performing supervised 

training tasks [36]. 

The rectifier neuron, also called ReLU (REctified Linear Unit), uses the 

rectifier activation function, which is plotted in Figure 4.4 and defined as: 

𝑟𝑒𝑐𝑡𝑖𝑓𝑖𝑒𝑟(𝑥) = 𝑚𝑎𝑥(𝑥, 0) 
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Figure 4.4 Rectifier function plotting 

As shown in Figure 4.5, for any given input, only a subset of the neurons are 

active, which implies that a paths selection is made on the whole network and 

this is the only non-linearity present in the network. The computation on the 

subset of active neurons is linear, so gradient flow well on the active paths 

making mathematical investigation easier and computations cheaper [36]. 

 

Figure 4.5 In a ReLU network the input operates a paths selection 

 Dropout 

As previously said, combining different models in ensemble learning often 

provides better results because they generalise better, but that comes at cost: 

training different architectures or the same architecture on different data is 

very expensive, using many large network at test time could be infeasible and 

the dataset could be not enough big to be divided in more than one training 

set. 

Dropout [37] is a technique presented as a solution to these problems, 

allowing to prevent overfitting in an efficient way: it consists in temporarily 

removing (dropping out) randomly chosen units of the neural network during 

training, along with their connections, as illustrated in Figure 4.6. 
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Figure 4.6 Example of a network before (left) and after (right) dropout application [37] 

During training time, for each case in a mini-batch, each unit has a certain 

probability to be retained. During test time all the units are active, so the 

trained network resembles an ensemble of networks, each one with a slightly 

different architecture but all sharing the same parameters. 

Dropout can be applied both on visible and hidden units and can be 

interpreted as a way to introduce noise inside the network, thus it acts as a 

regularizer. 

 He parameters initialization 

The initialization of the parameters is a key element of the training process 

because it could prevent the neuron saturation and therefore improve its 

learning ability, so the ReLU has been investigated to define the best 

initialization for its parameters. 

The result is that, to achieve better performance, the weights of each layer of 

the network should be sampled from a zero-mean Gaussian distribution 

whose standard deviation is √2 𝑛𝑙⁄ , where 𝑛𝑙 is the number of inputs of the l-

th layer [38]; this initialization is commonly called He initialization, from the 

name of one the authors of this study. 

 Adam update function 

To improve training performance, a new update method has been recently 

proposed: the Adam update consist in estimating the first and the second 

moments of the gradients, which are the mean and the uncentered variance, 
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and then computing an individual adaptive learning rate for each parameter 

[39]. 

Calling 𝑔𝑡 the gradients calculated at timestep 𝑡, the updated parameters  𝜃𝑡, 

are defined as follows: 

𝑚𝑡 = 𝛽1 ∗ 𝑚𝑡−1 + (1 − 𝛽1) ∗ 𝑔𝑡  𝑚�̂� = 𝑚𝑡 𝛽1
𝑡⁄  

𝑣𝑡 = 𝛽2 ∗ 𝑣𝑡−1 + (1 − 𝛽2) ∗ 𝑔𝑡
2  𝑣�̂� = 𝑣𝑡 𝛽2

𝑡⁄  

𝜃𝑡 = 𝜃𝑡−1 − 𝛼 ∗
𝑚�̂�

√𝑣�̂� + 𝜖
 

Where 𝑚𝑡 and 𝑣𝑡 are, respectively, the first and the second moment estimate, 

𝛽1 and 𝛽2 are their decay rates, 𝛼 is the learning rate and 𝜖 is a very small 

number. 

 Batch Normalization 

During the training, the parameters of each network’s layer change, resulting 

in the change of the distribution of the input of the following layers, 

producing what is called internal covariance shift [40]. This slows down the 

training because the parameters of the lower layers have to re-adjust in order 

to compensate for the change in the input distribution; moreover, if a 

saturating nonlinearity is used, this parameters change probably will move 

many dimensions of the input in the saturated regime of the nonlinearity, 

slowing down the convergence. 

The use of ReLU, appropriate parameter initialization and small learning 

rates can partially compensate this problem, but assuring a stable distribution 

of the nonlinearity inputs will accelerate the training because the optimizer 

will be less likely to get stuck in the saturated regime. The reduction of the 

internal covariance shift can be achieved by Batch Normalization [41], a 

technique that introduces a normalization steps before each nonlinearity, 

fixing means and variances of their inputs. This also reduce the dependence 

of the gradient on the initial values of the parameters, allowing the use of 

higher learning rates. 

Taking on exam a single layer, inputs are normalized computing mean and 

variance over each dimension, than they are scaled by two multi-dimensional 

parameters γ and β, that will be learned along with the other parameters of 

the network. 
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Given a d-dimensional input 𝑥 = (𝑥(1), 𝑥(2), … , 𝑥(𝑑)), the output of the 

normalization 𝑦 = (𝑦(1), 𝑦(2), … , 𝑦(𝑑)) is therefore defined as: 

 𝑦(𝑘) =
𝑥(𝑘)−𝐸[𝑥(𝑘)]

√𝑉𝑎𝑟[𝑥(𝑘)]

∗ 𝛾(𝑘) + 𝛽(𝑘) 

To conjugate this approach with stochastic optimization and therefore 

allowing the statistics used for normalization to participate in gradient 

backpropagation, a simplification is made: mean and variance are computed 

separately over each mini-batch. 

As already said, this technique allows to use of higher learning rates, 

therefore a faster training, but has another convenient consequence: since 

each training example is seen in conjunction with other examples in the mini-

batch, batch normalization regularize the model making it more general. 

4.4 Going deeper: most recent architectures 

If deep networks are better than shallow ones, are also deeper networks better 

than deep ones? 

As already said, the obstacle of the exploding or vanishing gradient can be 

resolved with normalized parameter initialization and normalization layers, 

but even with these expedients networks with an higher depth are not better: 

when deeper networks start converging, their accuracy gets saturated and 

then degrades. This could appear to be caused by overfitting, but further 

studies have noticed that deeper networks lead also to greater training errors 

[42]. 

In the last years different structures of networks have been investigated, 

leading to the construction of new architectures which have been proved to 

be have better performance than previous architectures. 

 Residual Networks 

The degradation problem has been solved with deep residual networks called 

ResNets [42]. The idea beyond them is that if some stacked layers can 

approximate a complicate function 𝐻(𝑥) which is the desired mapping, than 

they can also approximate the residual function 𝐹(𝑥) = 𝐻(𝑥) − 𝑥, the 

original function thus becomes 𝐻(𝑥) = 𝐹(𝑥) + 𝑥. In this way, the stacked 

layers approximates 𝐹(𝑥) rather than 𝐻(𝑥); these stacked layers are called 

residual units or residual blocks, and they are schemed in Figure 4.7. 
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Figure 4.7 A building block of a residual network 

These shortcut connections have thus been inserted every two layers of the 

networks, allowing the construction of good networks with more than 1000 

layers. Applying this architecture, a 152 layers network has been able to won 

the ILSVRC 2015 classification task [34]. 

Further researches done very recently have led to many design experiments 

illustrated in Figure 4.8: a different order of the layers [43] and the 

introduction of dropout in the residual block [44] achieved better results on 

typical computer vision tasks. These architectures can be used both with 

convolutional and fully connected layers. 

 

Figure 4.8 Three different versions of Residual Networks building blocks 
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 Dense Networks 

Following the idea of shorter paths from early layers to later ones, DenseNets 

[45] connects all layers directly to each other, concatenating rather than 

summing them. 

In feed-forward networks the output 𝑥𝑙 of the lth layer is the result of a 

function 𝐻𝑙 applied to the output of the previous layer, so 𝑥𝑙 = 𝐻𝑙(𝑥𝑙−1); in 

dense networks, the output of a layer depends from the output of all previous 

layers concatenated together, so 𝑥𝑙 = 𝐻𝑙([𝑥0, 𝑥1, … , 𝑥𝑙−1]). The set of layers 

linked together in this way compose a unique Dense Block. 

This architecture has been proposed for convolutional networks, which 

usually makes extended use of pooling layers, which change the size of 

feature-maps, but it is possible to use the concatenation operation only when 

the size of the feature-maps does not change, so there is need for a Transition 

Layer which do convolution and pooling between different Dense Blocks. 

An example of dense network, with a focus on its different components, is 

illustrated in Figure 4.9. 

 

Figure 4.9 An example of dense network made by two dense blocks (on the left), an 

example of dense block made by two layers (in the middle) and the detailed composition of 

a single convolutional layer (on the right) 
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4.5 Neural Networks for playing board games 

Neural networks have been widely applied to the solution of board games, 

especially to the most difficult ones, typically combined with other symbolic 

techniques in an hybrid system; for example using the network to 

numerically evaluate the game states and using that value to guide a search 

algorithm. 

 Evolutionary Neural Networks 

Neuroevolution is a machine learning technique which has been applied 

frequently in works concerning games and robotics, essentially it consists 

into training neural networks using evolutionary algorithms [46]. 

Many different networks (individuals) are created with randomly generated 

parameters, then they are used to perform a task. According on the result of 

the task and on their properties, each network is evaluated, then it is applied 

what is called selection: the worst networks are deleted while the best ones 

survive. Applying little changes to the parameters or the structures of the 

surviving networks, new ones are created and then the process restarts, using 

this new set of networks (population) for performing the task. 

It is possible to combine evolutionary neural networks with traditional space-

state exploration techniques (such as min-max search) to create an AI able to 

play a game: a population of different AI players is created, each one use the 

same algorithm to explore the space state and a different neural network to 

perform the evaluation of the game state, than players compete against each 

other or against a fixed adversary and they are selected depending on the 

result of the game. 

 Previous works in other games 

Evolutionary neural networks have been used successfully for draught in 

1999 [47]. 

In 2015 Giraffe has been created, an engine which has learned to play chess 

throught reinforcement learning and neural networks. Starting with a 

knowledge base of the rules and of features to extract from the board, Giraffe 

explores the game state space and evaluates the states using a neural network 

[48]. 

DeepChess is a neural network created in 2016; without any previous 

knowledge, the network has been taught to recognize features with 

unsupervised pretraining, than thanks to supervised training it has learnt to 
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choose the better between two states. This network can be used by a state-

space searching algorithm to decide which is the best possible move. It is the 

first end-to-end machine learning-based method that results in a grandmaster-

level chess playing performance [49]. 

Neural networks have been used in many works concerning Othello, either 

using evolutionary neural networks [50] [51] [52] [53] or reinforcement 

learning [54] [55]. 

4.6 Neural Networks for the game of Go 

Even though neural networks have been used to develop AIs able to play 

games, it is not common to train them to directly choose the best move in a 

game. Recently, a series of studies in which deep convolutional neural 

networks were trained to evaluate the best move in the game of Go have 

produced great results, which have culminated in a computer program 

defeating an international Go champion for the first time. 

 Clark and Storkey’s Network 

The first deep network [56] able to play the game of Go has been built in 

2014 and has scored an accuracy on the test set of more than 40%, achieving 

good results against other popular computer Go programs. 

The network takes a matrix representing the board as an input and provides 

the best move to make among the possible ones, excluded the choice to pass. 

The input matrix contains 3 information: the position of the player’s stones 

on the board, the position of its opponent’s ones and the illegal positions. The 

first two information are pre-processed into three channels each, dividing the 

stones on the base of the liberties they have, which are the number of stones 

that surround them, leading to a 7 channels matrix. 

The network is made by 7 convolutional layer followed by one fully 

connected layer and as activation function is used the rectifier. No 

regularization nor dropout has been used during training because overfitting 

was not considered a major problem. 

The dataset consisted into 16.5 million of couples board-move, the 4% was 

used for validation and 8% for testing, dividing the training set into mini-

batch of size 128. The training has lasted 9 epochs and the learning rate has 

been annealed only in the last 2. 
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 AlphaGo 

AlphaGo [22] is a program developed by Google DeepMind which has been 

able to achieve a winning rate higher than 99% against other Go computer 

programs, to defeat the European Go champion by 5 games to 0 and to defeat 

an international champion by 4 to 1. 

The program combines both symbolic and sub-symbolic techniques, using 3 

different convolutional neural networks trained in a supervised or 

unsupervised manner; in particular the policy network classifies the possible 

moves, predicting the best one. The network is made by 13 convolutional 

layers and uses the rectifier activation function. 

During supervised training, the policy network has taken as input a matrix 

with 48 channels, containing the board state and many pre-processed features 

extracted from it. 

The training set consisted of almost 30 million of moves, using 1 million as 

validation set and using one randomly sampled mini-batch for each step. The 

whole training has last 340 million of steps, beginning with a learning rate of 

0.003 and halving it each 80 million of steps.  
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Capitolo 5 

5 Neural Nine Men’s Morris 

Neural Nine Men’s Morris, (so forth abbreviated in NNMM), is the system 

which has been realized as product of this thesis: it is a Python system which 

is able to play Nine Men’s Morris using neural networks, therefore relying on 

sub-symbolic knowledge. 

It is possible to use it in train mode, to train existing or new neural networks 

on a given dataset of “best moves”; this gathered knowledge is then exploited 

in play mode, when NNMM is capable of predict, for any given game state, 

which is the best move according to what it has learned. 

 

A single network able to predict the best move in its entirety would have to 

choose between 1500 possible solutions: 24 possible choices for the first part 

of the move, 25 for the second, 25 for the third lead to 24 ∗ 25 ∗ 25 = 1500 

total choices. To correctly train a network to classify among so many classes 

would be necessary a very large training set having desired outputs well 

distributed among these classes, but the construction of a dataset with these 

characteristics is very difficult. 

Therefore, NNMM architecture is made by three networks, each one 

dedicated to the choice of a single part of the move, so they have to classify 

the inputs between 24 or 25 possible classes. Since these three decisions are 

strictly linked, the networks operate sequentially and the decision taken by a 

network is given as input to the sequent ones. 

The order in which the networks are stacked has been established on the basis 

of the frequencies of the move parts: the first decision is the TO one, which is 

always present, followed by the FROM one, which is present in phase 2 and 

3, while the REMOVE one is the last. 

 

So the working principle of the designed system is the following: 

1)  The board state is read and pre-processed 

2)  The first network predicts the best place where to put a stone. 
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3)  The second network predicts which is the stone that should be moved 

(if it is necessary) 

4)  Finally, the third network predicts if an adversary stone must be 

removed and chooses which one 

The final output of the system will therefore be the complete move, made by 

the aggregation of the three parts. 

 

Even though it is possible to represent the game state as a bi-dimensional 

image, the Fully Connected Network model has been chosen instead of the 

Convolutional Network one; this decision has been taken considering the 

available hardware resources and the problem characteristics, in particular for 

the differences between logical distance and “physical” distance of two board 

positions. 

5.1 Networks I/O model 

The output of each network is a probability distribution between 24 or 25 

numerical classes, respectively for the first network and the other two. These 

classes represent all the 24 positions on the board and, for the FROM and 

REMOVE networks, the possibility to do not indicate a position (class 0). 

The class with the highest probability is considered the position chosen by 

the network as the best one. 

The array representation of the board, presented in 3.2.2, has been chosen as 

input for the networks, so the complete input to each network will be an array 

representing the game state and the already made choices. 

 Binary raw representation 

 The first board representation is a binary array of size 118, following the 

representation indicated in Table 5.1 

This representation can be addressed as the “raw” representation of the 

game, because there are simply the information that a human player is aware 

of, without any additionally computed feature. 

The choices made by previous networks are represented as array of size 24 or 

25, with value 1 if the bit indicates the position with the highest probability, 0 

otherwise. 
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Bits Meaning 

24 For each position, the presence (1) or the absence (0) of a checker of 

the player 

24 Same purpose as the previous ones, but for the adversary checkers 

24 Indicates if a position is empty (1) or occupied (0) 

9 Number of checkers in player’s hand, as the number of consecutive 

bits with value 1 

Example: 6 becomes 111111000, 3 becomes 111000000 

9 Same as previous ones, but for adversary checkers 

9 Number of players’ checkers on board, as the number of consecutive 

bits with value 1 

9 Same as previous ones, but for adversary checkers 

3 Phase of game of the player, as the number of consecutive bits with 

value 1 

3 Same as previous ones, but for adversary 

Table 5.1 Binary raw representation of the input 

 Integer raw representation 

This representation is similar to the previous one but use integer numbers 

instead of binary ones, resulting in an array of size 30, as indicated in Table 

5.2. 

Numbers Meaning 

24 For each position, the presence of a checker of the player (+1), of 

his adversary (-1) or none of it (0) 

2 Number of checkers in the hands of the player and its adversary 

2 Number of checker on the board: the player’s ones and its 

adversary ones. 

3 Phase of game of the player and of its adversary 

Table 5.2 Integer raw representation of the input 

The choices made by previous networks are represented as two integers 

between 1 and 24 or between 0 and 24, that indicate the chosen position. 

5.2 Networks architecture 

Taking into account the most recent studies, described in 4.3 and 4.4, three 

different models of neural network have been realized, each one parametric 

in almost any of its aspects, to allow a better investigation of it. 
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The networks are made by fully connected layer of neurons and the rectifier 

function has been chosen as the activation function, therefore has been 

decided to initialize the weights with the He method. 

In each model it is possible to apply a dropout that turns-off input neurons 

with probability 𝑝𝑖; furthermore, before and after the application of the non-

linearity, it is possible to apply, respectively, batch normalization and a 

dropout with probability 𝑝. 

The last layer of the networks is a fully connected layer with 24 or 25 

neurons (the number depends by the network purpose) to which the softmax 

function is applied. 

 Residual network 

The first architecture is a residual network: the network has a fully connected 

layer with a parametric number of units, followed by a parametric amount of 

residual units. 

 

Figure 5.1 An example of a Residual Network with two blocks as implemented in the 

system, with a focus on the single building block (on the right) 

Considering all the improvements proposed for the residual network, the 

residual units have been realized as pictured in Figure 5.1. Each unit is 

composed by two layers with a parametric number of neurons and each layer 

is made by 4 operations: batch normalization, application of the rectifier 
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function, dropout and weighted sum, so an entire residual unit is made by 8 

operations. 

 Dense network 

The second architecture is a dense network with a single dense block, 

illustrated in Figure 5.2. Using fully connected layers instead of 

convolutional ones has made possible to construct the network without 

transition layers, because there is no more the need of pooling operations. 

The architecture of a single layer has been slightly modified, as represented 

in Figure 5.2: the operation applied to the layer input are, in order, batch 

normalization, rectity function, dropout and weighted sum. 

 

Figure 5.2 An example of dense network as implemented (left), with a focus on an example 

dense block made by two layers (middle) and a focus on the composition of a single fully-

connected layer (right) 

 Feed-forward network 

The last and simplest model is a feed-forward neural network, in which every 

layer is connected to the previous and the subsequent ones. 

The network is made by a parametric number of fully connected layers, each 

one composed by a parametric number of neurons, in which the following 
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sequence of operators is applied: weighted sum, batch normalization, rectify 

function and finally dropout. 

5.3 Dataset 

The dataset [57] used to train the networks is a text file made by 100154 

strings which represents game states and corresponding suggested moves. 

The application of all the possible symmetries to all the data greatly increase 

the size of the dataset, which reach the size of 1628673 unique pairs. 

 Dataset creation 

As part of the course of Foundations of Artificial Intelligence M, the 

instructors Prof. Paola Mello and Ing. Federico Chesani have proposed to the 

students the challenge to develop a software capable of playing Nine Men’s 

Morris using AI techniques [58] [59]. Working in small teams, students have 

developed 17 different programs which have played against each other both 

as white player and black player. 

The AI which has obtained the best results is DeepMill [60] (so forth 

abbreviated in DM), a Java application that exploits a NegaScout search, 

increasing the depth of the search over time until a timeout occurs. Therefore, 

it can be said that keeping fixed the available hardware and time resources, 

its choices are deterministic. On 32 matches played against 16 adversaries, it 

has won 30 times and the remaining 2 times the game has ended in a draw. 

Since this program follows a typical symbolic approach and has proved itself 

to be the best AI between the ones developed, it has been chosen as teacher 

for the neural network. 

Therefore the dataset is composed by the pairs of game states occurred during 

matches of Nine Men’s Morris and the choices made by DM with a time limit 

of about 60 seconds. To generalize better, the pairs do not consider the 

players as black or white but consider them as “me” and “adversary”. 

Between these pairs, all the ones where the state can be obtained from 

another dataset state (applying one of the symmetries previously described in 

3.2.1) have been excluded. 

Data have been gathered from 7244 matches of three different classes: 

 Firstly DM has played a full game against all the other students’ AI 

(including itself), both as white and as black player; this has brought to 

a collection of 491 data. 
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 Then, to compensate the fact that in previous games DM has never 

reached disadvantaged positions, games with custom start have been 

designed: these matches started with reachable configurations where 

one player has an advantage over the other one. Once again, DM has 

played against all the other AI, both as white and black player, 

allowing the gather of 1197 data. 

 To greatly increase the number of training examples, DM has disputed 

a series of game against itself and other players where the starting 

configuration has been randomly generated. It is important to point out 

that even if some arrangements have been made to generate realistic 

starting configurations, these initial states could be not reachable in a 

normal game. However, this does not weaken the usefulness of the 

dataset as a mean to train a neural network to recognize useful features, 

learn to play following the rules of the game and to choose the best 

move according to DM. 

 Dataset composition 

An entry of the dataset consist of a string of 31 to 35 characters: 

 The first 24 characters describe the board state with a letter 

representing the state of each position: O if the position is empty, M 

(Mine) if there is a checker of the player and E (Enemy) if there is an 

opponent one. 

 A sequence of 4 numbers completes the state representation, where the 

first two numbers represent, respectively, the number of checkers that 

the player has in its hands and the ones that his adversary has; the last 

two represent, in the same order, the number of checker that the 

players have on the board. 

 An hyphen divides the game state from the move description, which is 

written as pairs of coordinates letter-number; the meaning of each 

coordinate depends on the game phase: the parts of the move are 

written (if present) in the order FROM, TO and REMOVE. 

Example of dataset entries and corresponding states and moves are illustrated 

in Figure 5.3. 
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Figure 5.3 Two example of dataset entries and their corresponding meaning as a game 

state and a move (in green). The player’s stones are coloured in blue, while its 

adversary’s stones are coloured in red. 

As can be seen in Figure 5.4, the single decisions of the expanded dataset are 

almost equally distributed among symmetric positions; it is important to 

underline that the FROM part of the move is absent in nearly 20% of the 

cases, while the REMOVE part is absent in more than the 70%, making the 0 

class by far the most present. 

Calculating the entropy of the three choices, the TO one results to be the 

most uniformly distributed with an entropy of 4.53, followed tightly by the 

FROM one with 4.41, while the REMOVE decision has an entropy of barely 

2.00. 

 

Figure 5.4 Distribution of the decisions in the expanded dataset among the different 

classes, without considering the 0 class 

Another important semantic consideration about the dataset is that is made 

mostly by examples extracted from phase 2 of game, as can be seen in Figure 



 

50 

5.5, while phase 1 and 3 are almost equally present. This is perfectly 

reasonable because usually the second phase of the game is the longest one, 

therefore the one which provides an higher amount of pairs. The different 

distribution of examples among the three phases could influence the training, 

making the system better at playing in phase 2 than in the other phases. 

 

Figure 5.5 Composition of the expanded dataset among the different phases of the game 

5.4 Networks Training 

The training of each network is independent from the training of the other 

ones, but all of them are based on the same dataset of pairs 

[𝑔𝑎𝑚𝑒 𝑠𝑡𝑎𝑡𝑒, 𝑏𝑒𝑠𝑡 𝑚𝑜𝑣𝑒] and exploit the symmetries of the problem to 

increase the number of examples. 

The training process of a network follows the sequent workflow: 

1)  The dataset is read 

2)  Each entry of the dataset is expanded creating all the different 

symmetric entries 

3)  The entries are pre-processed into the chosen I/O model 

4)  The network is trained 

 

The use of the data is different among the networks: 

 The first network is trained using the board state as input and the 

choice “TO” of the entry as desired output. 
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 The second network is trained using both the board state and the choice 

“TO” of the entry as input, while the choice “FROM” of the entry is 

used as target. 

 Similarly to the second network, the training of the third one uses the 

board state and the choices “TO” and “FROM” of the entry as input,  

whereas the target is the “REMOVE” choice. 

 

The loss function chosen for the training is the negative log-likelihood of the 

target class, to which a L1 or a L2 regularization can be optionally added; the 

presence of the regularization, its type and its weight are training parameters. 

As update function has been chosen the Adam update, so three more training 

parameters are the learning rate 𝛼0 and the decay rates 𝑏1 and 𝑏2. The initial 

learning rate is progressively annealed through epochs with proportional 

decay, guided by the parameter 𝑘. 

The training follows the mini-batch optimization, but since the size of the 

batch is a parameter, batch optimization or stochastic optimization could be 

done too. 

Even if it has been mentioned as an architecture element, is important to 

underline that the dropout is a training technique, so the probability pi and p 

are other two training parameters. 

The early stopping technique is adopted: the network is saved each time it 

improves its accuracy on the validation set; if the accuracy does not improve 

for a parametric number patience of training epochs, the training is stopped. 

5.5 Play mode 

Once that three neural networks have been created and trained, Neural Nine 

Men’s Morris can use them to play. 

Using socket connection, any program can send a game state to NNMM (in 

the same format described previously as a dataset entry) and receive the best 

move according to the prediction done by the networks. 

As presented in Figure 5.6, once received, the game state is fed to the first 

network, which elaborates the best TO decision; the following networks 

elaborates, in order, the FROM decision and the REMOVE decision, 

receiving as input both the game state and the previously made decisions. 
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The legality of each decision and therefore of the entire move is guaranteed 

by the legality check. 

 

 

Figure 5.6 System gaming mode workflow 

 Legality check 

The legality check is the only symbolic element present in the system and 

verifies that the suggested decisions satisfy the game rules. 

Since the output of each network is the ranked list of alternatives, if the best 

one is not legal, the system considers and tests the second one and so on until 

it finds a legal decision, which will be considered the best one. 

The presence of this symbolic check is necessary because is not possible to 

guarantee that a system which relies only on sub-symbolic knowledge will be 

able to follow the game rules. 

Nonetheless, with a proper training, the legality check could became 

unnecessary: a very important part of the testing of the system will be to 

verify how many times it is able to make a completely legal move; in other 

words, verify if NNMM has learned to play following the rules without the 

help of any symbolic knowledge. 

5.6 Implementation 

Neural Nine Men’s Morris has been implemented in Python programming 

language [61], in particular the networks have been realized using the 
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Lasagne [62] and Theano [63] libraries. For testing purpose, a Java player has 

been also created, which operates as an interface between a Java game engine 

and the system. 

 

The file networks.py contains the functions for the creation of the networks 

described previously and also the persistence functions for saving and 

loading both networks structure and parameters. 

The functions for the training of a neural network are contained on the 

training.py file, allowing both to create a new one or load an existing one. 

The functions allow to specify all the parameters of the network and of the 

training. 

All the functions for the communication with other programs are written in 

the file connection.py 

 Data Processing 

The file dataprocessing.py contains the functions for the loading of the data 

and their pre-processing. 

The dataset loading function process each data into a state object and a 

numeric tuple that represents the corresponding move; each couple is then 

expanded in all the possible symmetries. 

The other functions of the module allow to convert the pairs state-move into 

an array, following the representations described in 5.1.1; it is possible to 

extend the module to operate on other representation. 

 Legality 

The file legality.py contains the functions for the validation of the network 

choices. The specific implementation of the functions is made to operate on 

the binary raw representation of the states, but is possible to realize 

equivalent functions for the other representations. 

 

The self-legality tests verify if a single choice is legal according to the game 

state: 

 The chosen TO position must be empty and, in phase 2, in one of the 

adjacent positions there must be a stone of the player 
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 The chosen FROM position must be a position different from 0 only in 

phase 2 and 3, in this case it must be occupied by a player’s stone. 

 The chosen REMOVE position, if it is different from 0, must be 

occupied by an adversarial stone; in addition, if the chosen stone is 

aligned in a mill, all the other adversary’s stones must be aligned. 

 

The other legality tests verify if a choice is legal according to the previous 

taken decisions: 

 In phase 2, the  chosen FROM position must be adjacent to the chosen 

TO position. 

 The REMOVE position must be different from 0 if and only if the 

other two choices realize the closing of a mill.  
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Capitolo 6 

6 Experimental Results 

To test the playing ability of NNMM at its best, the first problem has been to 

find a proper configuration to train different network architectures. 

A hyper-parameter space with high dimensionality, such as the one that 

defines the possibilities of architectures and training in NNMM, makes the 

problem to find the optimal configuration extremely difficult.  

Firstly, a wide tuning on a restricted dataset has been done, in order to find 

possible good configurations in a smaller amount of time. Then few 

configurations have been tested on the whole dataset. 

Once found a good configuration, to verify if the proposed system could be 

as good as its teacher, it has been tested in terms of accuracy of the 

prediction, legality of the prediction and goodness at playing. 

6.1 Tuning on restricted dataset 

To initially calibrate the hyper-parameters of the network, tests about the TO 

decision have been done using a partial dataset of 30,469 pairs expanded into 

49,1970 taking symmetries into account. The 5% of this dataset, therefore 

24,598 pairs, have been used as validation set, while the remaining has been 

used as training set. 

The decision to investigate the performance of the TO network, instead of the 

FROM or the REMOVE one, comes from the distribution of data among the 

classes which is more uniform in the TO decision. 

Of more than 100 tests, only the results of some interesting comparisons have 

been reported here. 

 FFNets testing 

Figure 6.1 and Figure 6.2 report the outcomes of 4 brief trainings of 100 

epochs on a 4 layers feed-forward neural network with different input 

dropout probability. Applying dropout over the input slows the training both 
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as time needed for the computation and as number of training epochs 

necessary for achieving a certain accuracy, but on the other hand using a low 

dropout can lead to a better final result in an acceptable amount of time. 

The parameters that have been kept fixed are presented in Table 6.1. 

Network Structure 4 layers: 200, 200, 100, 50 neurons 

Batch normalization Yes 

Dropout 𝑝 = 0% 

Regularization L1 with weight 0.001 

Update parameters 𝛼0 = 0.001, 𝑏1 = 0.99, 𝑏2 = 0.999, 𝑘 = 0.2 

Batch size 1000 

Table 6.1 Configuration of FFNets trainings on partial dataset for dropout testing  

 

Figure 6.1 Validation error for different percentages of input dropout in FFnets 

 

Figure 6.2 Validation accuracy for different percentages of input dropout in FFnets 
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Figure 6.3 and Figure 6.4 show how the network structure influences the 

performance: after 9 brief trainings of 100 epochs, it has been observed that 

feed-forward networks with too many neurons lead to worse performances, 

probably due to overfitting. 

The parameters that have been kept fixed are presented in Table 6.2. 

Network Structure 4 layers 

Batch normalization Yes 

Dropout 𝑝 = 0%, 𝑝𝑖 = 0% 

Regularization L1 with weight 0.001 

Update parameters 𝛼0 = 0.001, 𝑏1 = 0.99, 𝑏2 = 0.999, 𝑘 = 0.2 

Batch size 1000 

Table 6.2 Configuration of FFNets trainings on partial dataset for layers width testing 

 

Figure 6.3 Validation error for different number of neurons in FFnets 

 

Figure 6.4 Validation accuracy for different number of neurons in FFnets 
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 ResNets testing 

Figure 6.5 and Figure 6.6 report the impact of dropout application in residual 

networks. After 10 trainings of 500 epochs, the application of high 

percentages of dropout has demonstrated itself worse than low percentages, 

both in the first layer and in the following ones. 

The parameters that have been kept fixed are presented in Table 6.3. 

Network Structure 1° layer 100 neurons, 3 blocks of 200 neurons layers 

Batch normalization Yes 

Regularization L1 with weight 0.001 

Update parameters 𝛼0 = 0.001, 𝑏1 = 0.99, 𝑏2 = 0.999, 𝑘 = 0.2 

Batch size 2000 

Table 6.3 Configuration of ResNets trainings on partial dataset for dropout testing  

 

Figure 6.5 Validation error for different percentages of dropout in ResNets 

 

Figure 6.6 Validation accuracy for different percentages of dropout in ResNets 
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Figure 6.7 and Figure 6.8 show how the depth of the network influences the 

performance. All the trainings have been done over 500 epochs and despite 

the great difference between the number of residual blocks of the networks, 

the highest accuracy reached is very similar. 

The parameters that have been kept fixed are presented in Table 6.4. 

Network Structure 1° layer 200 neurons, blocks of 300 neurons layers 

Batch normalization No 

Dropout 𝑝 = 10%, 𝑝𝑖 = 0% 

Regularization L1 with weight 0.001 

Update parameters 𝛼0 = 0.001, 𝑏1 = 0.99, 𝑏2 = 0.999, 𝑘 = 0.1 

Batch size 2000 

Table 6.4 Configuration of FFNets trainings on partial dataset for depth testing 

 

Figure 6.7 Validation error for different number of residual blocks in ResNets 

 

Figure 6.8 Validation accuracy for different number of residual blocks in ResNets 
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 Comparison between the architectures 

To decide which architecture could be the best for this case of study, the best 

results obtained for each one of the three architecture have been compared, as 

it can be seen in Figure 6.9 and Figure 6.10. 

 

Figure 6.9 Validation error for the best TO network for of each architecture 

 

Figure 6.10 Validation accuracy for the best TO network for each architecture 

Residual networks and Feed-Forward networks provide similar results 

(respectively 50.91% and 50.37% of top validation accuracy), which are 

better than the ones achieved by Dense networks (46.71%). To choose the 

architecture to be considered for the tuning on the whole dataset, the time 

needed to reach the best accuracy has been taken into account: the FFNet has 
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reached the best accuracy in about 48 hours, while the ResNet has reached it 

in less than 20 hours. 

The parameters for the three network trainings are presented in Table 6.5, 

Table 6.6 and Table 6.7. 

Architecture Residual Network 

Network Structure 1° layer: 200 neurons, 10 blocks of 300 neurons layers 

Batch normalization No 

Dropout 𝑝 = 10%, 𝑝𝑖 = 10% 

Regularization L1 with weight 0.001 

Update parameters 𝛼0 = 0.001, 𝑏1 = 0.99, 𝑏2 = 0.999, 𝑘 = 0.1 

Batch size 5000 

Table 6.5 Configuration of the best ResNet training on the partial dataset 

Architecture Feed Forward Network 

Network Structure 4 layers of 500 neurons 

Batch normalization Yes 

Dropout 𝑝 = 10%, 𝑝𝑖 = 10% 

Regularization L1 with weight 0.001 

Update parameters 𝛼0 = 0.001, 𝑏1 = 0.99, 𝑏2 = 0.999, 𝑘 = 0.1 

Batch size 5000 

Table 6.6 Configuration of the best FFNet training on the partial dataset 

Architecture Dense Network 

Network Structure 1° layer: 200 neurons, 3 layers of 100 neurons 

Batch normalization No 

Dropout 𝑝 = 0%, 𝑝𝑖 = 0% 

Regularization L1 with weight 0.001 

Update parameters 𝛼0 = 0.002, 𝑏1 = 0.99, 𝑏2 = 0.999, 𝑘 = 0.1 

Batch size 2000 

Table 6.7 Configuration of the best DenseNet training on the partial dataset 

6.2 Tuning on whole dataset 

For the tuning on the whole dataset, few configurations have been 

experimented using the 5% of the expanded dataset, therefore 81,433 pairs, 

as validation set. 

The experiments have focused on different depths and different regularizers 

and have been done with a patience of 50 epochs. 
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 TO network tuning 

Figure 6.11 and Figure 6.12 shows the results of the TO network tuning. The 

highest validation accuracy reached in the 4 trainings differs for less than 1% 

and the best one (53.98%) is slightly better than the best validation accuracy 

obtained on the partial dataset. 

The experiment which has provided the best outcome is the first, with a top 

validation accuracy of 53.98%, which results to be the longest experiment 

too, with about 18 hours needed to reach it as presented in Figure 6.13. The 

parameters used in the trainings are presented in Table 6.8. 

Architecture Residual Network 

Network Structure 

1, 2, 3 

4 

 

1° layer: 200 neurons, 10 blocks of 300 neurons layers 

1° layer: 200 neurons, 30 blocks of 300 neurons layers 

Batch normalization 

1, 2, 4 

3 

 

No 

Yes 

Dropout 

1, 3 

2, 4 

 

𝑝 = 10%, 𝑝𝑖 = 10% 

𝑝 = 0%, 𝑝𝑖 = 0% 

Regularization 

1, 2, 4 

3 

 

L1 with weight 0.001 

L1 with weight 0.0001 

Update parameters 

1, 2, 3 

4 

 

𝛼0 = 0.001, 𝑏1 = 0.99, 𝑏2 = 0.999, 𝑘 = 0.1 

𝛼0 = 0.001, 𝑏1 = 0.99, 𝑏2 = 0.999, 𝑘 = 0.2 

Batch size 20000 

Table 6.8 Configurations of TO trainings of the networks on whole dataset 
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Figure 6.11 Validation error for the TO networks 

 

Figure 6.12 Validation accuracy for the TO networks 

 

Figure 6.13 Time needed to reach the best accuracy for the TO networks 
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 FROM network tuning 

In Figure 6.14 and Figure 6.15 the trainings of the FROM networks are 

presented, which have all reached the similar result of about 89% of top 

validation accuracy. Once again the first configuration has proven to be the 

best with an outcome of 89.53% and has been the fastest, requiring about 3 

hours, as showed in Figure 6.16. The parameters used are presented in Table 

6.9. 

Architecture Residual Network 

Network Structure 

1, 2 

3 

 

1° layer: 200 neurons, 10 blocks of 300 neurons layers 

1° layer: 200 neurons, 30 blocks of 300 neurons layers 

Batch normalization 

1, 3 

2 

 

No 

Yes 

Dropout 

1, 2 

3 

 

𝑝 = 10%, 𝑝𝑖 = 10% 

𝑝 = 0%, 𝑝𝑖 = 0% 

Regularization L1 with weight 0.001 

Update parameters 

1, 2 

3 

 

𝛼0 = 0.001, 𝑏1 = 0.99, 𝑏2 = 0.999, 𝑘 = 0.1 

𝛼0 = 0.001, 𝑏1 = 0.99, 𝑏2 = 0.999, 𝑘 = 0.2 

Batch size 20000 

Table 6.9 Configurations of FROM trainings of the networks on whole dataset 

 

Figure 6.14 Validation error for the FROM networks 
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Figure 6.15 Validation accuracy for the FROM networks 

 

Figure 6.16 Time needed to reach the best accuracy for the FROM networks 

 REMOVE network tuning 

The considerations done for the different FROM trainings of the networks 

holds for the REMOVE ones as shown in Figure 6.17, Figure 6.18 and Figure 

6.19: the highest top validation accuracy is almost the same for each training, 

but this time the use of a deeper networks with no dropout nor batch 

normalization has provided better results both as accuracy reached (86.47% 

against 86.26%) and time spent (about 30 minutes less) as shown in Figure 

6.19. 
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The networks trainings parameter are presented in Table 6.10. 

Architecture Residual Network 

Network Structure 

1 

2 

 

1° layer: 200 neurons, 10 blocks of 300 neurons layers 

1° layer: 200 neurons, 30 blocks of 300 neurons layers 

Batch normalization No 

Dropout 

1 

2 

 

𝑝 = 10%, 𝑝𝑖 = 10% 

𝑝 = 0%, 𝑝𝑖 = 0% 

Regularization L1 with weight 0.001 

Update parameters 

1 

2 

 

𝛼0 = 0.001, 𝑏1 = 0.99, 𝑏2 = 0.999, 𝑘 = 0.1 

𝛼0 = 0.001, 𝑏1 = 0.99, 𝑏2 = 0.999, 𝑘 = 0.2 

Batch size 20000 

Table 6.10 Configurations of REMOVE trainings of the networks on whole dataset 

 

Figure 6.17 Validation accuracy for the REMOVE networks 
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Figure 6.18 Validation accuracy for the REMOVE networks 

 

Figure 6.19 Time needed to reach the best accuracy for the REMOVE networks 

 Best Networks performance 

Using the configurations which have proved to provide the best results, the 

three networks have been trained using the 85% of the dataset as training set, 

5% as validation set and the remaining 10% as test set. 

As shown in Figure 6.20, the FROM and REMOVE networks have reached a 

high test accuracy (respectively about 90% and 85%), while the TO network 

has not surpassed the 55%. 
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Figure 6.20 Accuracy of the best networks at the end of the test training 

It is important to underline that the accuracy over the different sets of data are 

extremely similar, which means that the networks have maintained a good 

generalization and that there is not the problem of overfitting.  

The difference between the results of the networks could be explained by the 

composition of the dataset: as explained in 5.3.2, the TO decision is the most 

uniformly distributed among the 24 classes, therefore probably its 

classification it is the most difficult to learn. 

Even if two networks out of three have reached a good accuracy, their 

performance alone does not give a full insight of how accurate the entire 

system will be, because the three networks work in pipeline. Probably, being 

the TO network the first and most inaccurate one, it will penalize heavily the 

whole system. 

6.3 Accuracy test 

To verify if NNMM is able to approximate the symbolic reasoning of DM 

using the three best networks, its accuracy has been tested: each entry of the 

expanded dataset has been given as input to the system asking it to predict the 

best move without considering the legality check. Then, the accuracy of each 

decision and of the whole move have been measured. The accuracy on the 

whole move has been calculated separately for each phase of the game in 

which the player can be, to better understand which are the game phases in 

which the system plays best and worst. 

Given that the 0 class is frequently present for the FROM and the REMOVE 

decision of the dataset, the accuracy of these decisions has been computed 
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separately for the cases where the target class in the dataset is 0 and where it 

is  different. 

The outcome of this test is illustrated in Figure 6.21 and it results to be: 

 TO accuracy: 54.39% 

 FROM accuracy: 64.40% 

 FROM not 0 accuracy: 56.28% 

 REMOVE accuracy: 78.19% 

 REMOVE not 0 accuracy: 51.27% 

 Whole MOVE accuracy: 39.54% 

 Whole MOVE phase 1 accuracy: 47.91% 

 Whole MOVE phase 2 accuracy: 38.71% 

 Whole MOVE phase 3 accuracy: 33.67% 

 

Figure 6.21 Accuracy of NNMM in the different decisions 

It is evident that working in pipeline makes the networks more inaccurate and 

this is probably caused by the TO network which has provided the worst 

results and thus influences the choices of the following ones. This is more 

evident in the “not 0” accuracy tests, in which the decisions of each network 

are strongly correlated. 

Nonetheless, the system is able to reach an accuracy of almost 40%, which is 

a satisfying achievement. The accuracy decreases with the progression of the 

game along the three phases, confuting the supposition expressed in 5.3.2, 

that a dataset with a high number of phase 2 examples would have led to a 

better specialization in that phase. 
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6.4 Legality test 

As previously said, an interesting issue is whether the system is capable of 

understanding the game rules or not. To answer this question, the decisions 

taken by the system have been analysed, in each of the three parts, from the 

point of view of a legality check. 

To better understand which rules the system has learned and which it has not, 

the legality of two particular cases has been investigated too: 

 The legality of the whole FROM decision when the game state is in the 

second phase, during which the FROM decision has more constraints 

 The legality of the whole REMOVE decision when it is different from 

0, therefore when the chosen move consists of the removal of an 

opposite stone.  

 

The outcome of this test results to be: 

 TO self legality: 99.99% 

 FROM self legality: 99.99% 

 REMOVE self legality: 99.59% 

 FROM-TO relation legality: 100% 

 REMOVE-FROM-TO relation legality: 99.97% 

 Whole FROM legality: 99.99% 

 Whole phase 2 FROM legality: 99.99% 

 Whole REMOVE legality: 99.55% 

 Whole chosen REMOVE legality: 98.68% 

 Whole MOVE legality: 99.55% 

 

It is evident that the system has almost completely learnt to correctly play to 

Nine Men’s Morris, violating the rules in less than 1% of the cases. 

In particular, the rules about moving or placing a player stone have been 

learnt almost perfectly (less than 0.01% of error), while the rules about 

removing a player stone, when is possible to remove a stone and which stone 

should be removed, are the ones that NNMM violates the most (about 0.45% 

of error). 
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6.5 Gaming test 

The accuracy test has given information about the tendency of the system to 

do the same move which DM has done, but it has not provided any clue about 

the true “skills” of NNMM as a player: even if the choice is different, the 

move predicted by the system could be equivalent or even better than the one 

elaborated by DM. 

To figure out how good can be NNMM at playing a real Nine Men’s Morris 

match, the system has played against each one of the other AI developed for 

the course of Foundations of Artificial Intelligence M. 

 

To have a better measurement of the achieved results, a new training of each 

network has been done for this test, using the same parameters of the 

previous one, but changing the composition of the training set. Since the 

dataset is composed by the matches done by DM against the other AI, even 

an highly overfitted system could be able to win almost any match against 

those same AI, because no learning principle nor random element have been 

implemented in them. Therefore all the game state obtained from the regular 

matches between DM and the other AI have been removed from the dataset; 

the 5% of remaining entries have been used as validation set, obtaining the 

outcomes presented in Figure 6.22. 

 

Figure 6.22 Accuracy of the best networks at the end of the game training 

As presented in Table 6.11, NNMM has been able to win 18 matches out of 

34, with 7 draws and 9 defeats, performing worse than DM. In particular the 

two matches against its “teacher” have ended both with a victory of DM 

eliminating 7 stones of NNMM. 
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An interesting observation that can be done is that in many cases, even if 

both the AI have won the match, the victory has been achieved in different 

ways: for example, against AI n° 12 as white player, DM has won suffocating 

the adversary (leaving him with no possible moves), while NNMM has 

removed 7 of its stones. Moreover NNMM has outperformed DM in a case,  

defeating an opponent that DM has not been able to beat: the match 

4vsNNMM has ended with the latter suffocating the former, while the match 

4vsDM ended in a draw. 

This outcomes suggests that NNMM has learnt its own evaluation strategy, 

which is different from DM’s one and could be better, worse or equivalent to 

it according to the specific case. 

The system has won most of the games as White player, this could be caused 

by an advantage of the white player in the game or by a better ability of the 

system with white checkers. To verify this, the system, playing as white, has 

challenged itself, playing as black. The game has ended in a draw, suggesting 

that the differences in the results could be caused by characteristics of the 

game itself. 

AI DM as Black DM as White NNMM as Black NNMM as White 

1 WIN (removing) WIN (timeout) WIN (removing) WIN (removing) 

2 WIN (removing) WIN (timeout) LOSS (suffocating) LOSS (suffocating) 

3 WIN (timeout) WIN (timeout) DRAW LOSS (removing) 

4 DRAW WIN (suffocating) WIN (suffocating) WIN (suffocating) 

5 WIN (suffocating) WIN (suffocating) WIN (suffocating) WIN (suffocating) 

6 WIN (suffocating) WIN (removing) LOSS (removing) WIN (removing) 

7 WIN (suffocating) WIN (suffocating) DRAW WIN (removing) 

8 WIN (suffocating) WIN (suffocating) DRAW WIN (removing) 

9 WIN (suffocating) WIN (removing) WIN (suffocating) DRAW 

10 DRAW WIN (removing) LOSS (suffocating) LOSS (removing) 

11 WIN (removing) WIN (timeout) DRAW WIN (removing) 

12 WIN (suffocating) WIN (suffocating) WIN (removing) DRAW 

13 WIN (suffocating) WIN (suffocating) WIN (suffocating) WIN (removing) 

14 WIN (removing) WIN (suffocating) LOSS (suffocating) WIN (removing) 

16 WIN (suffocating) WIN (removing) DRAW WIN (timeout) 

17 WIN (suffocating) WIN (suffocating) WIN (suffocating) WIN (timeout) 

DM DRAW LOSS (removing) LOSS (removing) 

NNMM   DRAW 

Table 6.11 Outcomes of the matches played by DM and NNMM against other AI 
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One last consideration is that the legality check of NNMM has not modified 

the choices of the network in any of the matches; this confirms what has been 

said previously, that the system could play most of the matches following the 

rules independently from a symbolic validation. 
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Capitolo 7 

7 Conclusions and future 

developments 

The resulting product of this thesis is Neural Nine Men’s Morris (NNMM), a 

software program that is able to play the game of Nine Men’s Morris relying 

only upon neural networks knowledge, and a dataset of good moves for the 

same game. 

The dataset is available online [57] and contains 1,628,673 states both 

reachable and unreachable during a normal match, decreasing the probability 

of reaching a training state during a testing match. The moves contained in it 

could be different from the optimal ones, however it constitutes a good 

knowledge base, from which other AI system can learn to play the game. 

The NNMM system has been proven to be able to play following the rules of 

the game, while its ability as a player is generally worse than the symbolic AI 

used to generate the dataset. Having trained the system upon the choices of 

another AI system, it was unlikely for it to defeat its “teacher” at Nine Men’s 

Morris, indeed it has lost the match both as white and black player. The 

outcomes of the matches disputed against other AI have been very different 

from the results of the “teacher” matches, worse in some cases but better in 

one; this suggests that the system has learnt its own evaluation strategy, 

which can be better or worse than the training one according to the specific 

case. 

7.1 NNMM and its neural networks 

Even if NNMM has demonstrated to not be able to win a whole match 

against DM, it could be interesting to study how it performs in certain game 

phases or situations starting from a fixed state. For example, if it is able to 

win a match starting from a vantage state or if it is able to reach a draw 

starting from a disadvantaged one. 
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As previously said, due to the limited time and resources available for this 

study, many training configurations have not been tested, so it is probable 

that a further tuning of the system hyper-parameters could lead to a better 

configuration for the networks and therefore to better results. 

Furthermore, the training could be enhanced with more advanced techniques, 

such as k fold cross validation, regularization weight decay or introducing 

more randomness, for example using residual networks with stochastic depth 

[64]. 

The application of unsupervised learning techniques could enhance the 

networks performances, making them learning from games against other AI 

systems or even against themselves. 

Another influent element that could be studied is how the performance of the 

networks changes with a different input representation: besides the proposed 

integer representation, an input which embodies pre-calculated features could 

help the networks to understand which are the good moves. For example, 

which position must the player occupy to close a mill or to prevent a closing 

of the adversary could be codified in the input. It is important to underline 

that these features could be extracted with symbolic techniques but also 

applying sub-symbolic extraction methods, without compromising the aim of 

the study. 

Finally, a different relation between the networks, therefore a different 

architecture of the whole system, could improve the final outcome. The 

simpler possibility is a different order of the networks, for example 

postponing the TO network, which has resulted to be the most inaccurate. A 

more interesting proposal could be to use 5 networks instead of 3, using two 

networks for the FROM and REMOVE parts: a network for the decision 

about if the part should be present in the move or not and a network which, in 

the first case, predicts the best position. 

7.2 Symbolic and sub-symbolic systems 

In this case of study, sub-symbolic techniques have proven themselves 

capable to respect rules and compliance with a success rate of almost 100%. 

On the contrary, to emulate a symbolic strategy using neural networks seems 

to be more tough. 

Besides their performance, another issue about full sub-symbolic systems is 

that they are not transparent: the knowledge stored in the parameters is not 
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easily interpretable, so the logic behind their decisions cannot be understood 

and this can be an obstacle in matter of safety and reliability of the programs. 

Therefore it is unlikely that pure sub-symbolic AI could totally replace  

symbolic ones, but maybe they could have a higher relevance in hybrid 

systems: the sub-symbolic part could select a set of alternatives among which 

the symbolic part of the system will choose or, in other words, it could be 

used to do a fast initial pruning of the search space or as tool to order the 

states that should be explored. 

Indeed, if a properly trained network is able to respect the constraints of a 

problem in almost any cases and to provide good (even if not optimal) 

outputs, the symbolic part of the system could simply analyse the more 

probable choices of the network, instead of the most probable only, verifying 

their legality and evaluating them with a symbolic strategy. 

Applying this consideration to this case of study it is possible to suggest the 

following workflow: for each input, a sub-symbolic system such as NNMM 

could suggest a set of moves (for example, if each network provides 3 

decisions, for each input state the output could consist of 27 moves ranked by 

their probability) and a symbolic system could check the legality of each 

move and evaluate them with a score function or even do a very small search 

starting with those moves. 

In case of necessity, a way to improve the respect of constraints could be to 

add a legality contribute in the loss function: heavily penalizing the illegal 

choices, the networks could learn to observe the rules as first thing, then learn 

the optimization strategy. 

 

The dichotomy between symbolic and sub-symbolic can be overcome not 

only with hybrid systems made by cooperating but separate parts, but even 

with hybrids where elements of both the typologies are fully integrated 

together. In these systems often there is a symbolic interpretation of the sub-

symbolic connections between the elements and symbolic relations can be 

realised through sub-symbolic links. Even if studies in this field have been 

conducted since the 80s, the possible applications of the new deep network 

technologies still have to be fully investigated, so it remains an open research 

field [1].  
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