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Look wide, beyond your immediate surroundings and limits,
and you see things in their right proportion.

Look above the level of things around you
and see a higher aim and possibility to your work.

- Sir Robert Baden-Powell





Abstract

Le galassie star-forming, come la Via Lattea, hanno formato stelle durante tutta
la propria vita (∼ 10 Gyrs) ad un tasso circa costante di ∼ 1 − 3M�yr−1 (e.g.
Fraternali & Tomassetti 2012). Tipicamente la massa di gas contenuta nel disco di
tali galassie può sostenere il processo di formazione stellare solo per pochi Gyr (e.g.
Bauermeister et al. 2010). Tale problema, noto come gas-consumption dilemma,
suggerisce la necessità di un continuo accrescimento di gas freddo da parte del
disco della galassia ad un tasso di ∼ 1M�yr−1 per compensare la conversione di
gas in stelle (Sancisi et al. 2008).
Indicazioni cosmologiche mostrano che questo gas proviene dall’Inter Galactic
Medium (IGM), che circonda le galassie nella forma di corona calda a tempe-
ratura viriale (T ∼ 106K). Le stime ottenute per la Via Lattea mostrano che la
massa barionica della corona è comparabile con la massa stellare presente nel disco
(Anderson & Bregman 2011). Queste corone cosmologiche sembrano dunque es-
sere una sostanziale riserva di gas che potrebbe sostenere il processo di formazione
stellare agli attuali tassi osservati. Tuttavia, non è ancora chiaro come il gas della
corona possa raffreddare e cadere sul disco, infatti temperature di circa 106 K im-
plicano tempi di cooling di qualche Gyr.
Marinacci et al. (2010) e Armillotta et al. (2016), tramite simulazioni idrodi-
namiche 2D, hanno mostrato che il gas coronale caldo può raffreddare in maniera
efficiente in seguito all’interazione con nubi fontana fredde (T ∼ 104 K) espulse
da feedback stellare fino ad alcuni kiloparsec dal disco galattico. Lo sviluppo
dell’instabilità di Kelvin-Helmholtz sulla superficie di contatto tra gas freddo e
corona, genera una rottura della nube che porta alla formazione di una coda tur-
bolenta, luogo del mixing tra i due gas. L’interazione tra i due fluidi causa la
diminuzione del tempo di cooling di parte del gas coronale e la sua condensazione.
I risultati fino ad ora ottenuti mostrano che dopo 60 Myr la massa di gas della
corona raffreddato dall’interazione con la nube è circa il 20% della massa iniziale
della nube. Questo gas segue la nube nella sua orbita fino alla ricaduta sul disco
rendendosi disponibile per la formazione stellare. Le simulazioni sono state ese-
guite con due codici Euleriani, paralleli e multidimensionali: ECHO++ (Del Zanna
et al. 2007) e ATHENA (Stone et al. 2008). La limitazione principale di questi
codici è la loro struttura a griglia fissa: la risoluzione iniziale è la stessa per l’intero
dominio durante tutta l’evoluzione. Con questi codici, simulazioni 3D richiedereb-
bero un tempo di calcolo proibitivo con le risorse a nostra disposizione.
Per poter esplorare il problema attraverso simulazioni 3D riducendo il tempo di
calcolo abbiamo scelto di utilizzare un codice MHD, parallelo a griglia adattiva
(Adaptive Mesh Refinement: AMR): ENZO (Bryan et al. 2014).
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ENZO utilizza una gerarchia adattiva di griglie a differenti livelli di risoluzione.
Il criterio di raffinamento ed il rapporto tra le dimensioni di celle di due livelli
consecutivi possono essere scelti dall’utente. La griglia a più bassa risoluzione co-
pre tutto il dominio della simulazione. Quando in una certa regione del dominio è
soddisfatto il criterio di raffinamento, vengono create griglie a risoluzione maggiore
da sostituire a quelle della regione interessata. Solo queste quindi saranno risolte
con maggior precisione, riducendo altamente il tempo di calcolo necessario.
La parte iniziale del lavoro di tesi è incentrata sul confronto tra i risultati ottenuti
da simulazioni 2D con ENZO a griglia fissa e quelli prodotti da ATHENA. Nelle
prime simulazioni dunque l’AMR non è attivo, in modo da verificare la concordanza
dei due codici sotto le stesse condizioni. Per poter effettuare questo confronto si
è introdotto in ENZO la stessa trattazione del cooling di ATHENA, mediante la
funzione di cooling (Sutherland & Dopita 1993). Nonostante esistano alcune dif-
ferenze negli algoritmi di risoluzione delle equazioni di Eulero, si è trovato un buon
accordo tra i due risultati.
Il passo successivo è lo sviluppo di simulazioni AMR inizialmente 2D, per valutare
le differenze tra griglie statiche e griglie adattive. In particolare, confrontando
l’evoluzione temporale del gas freddo (T < 2×104 K), si è cercato il criterio di raf-
finamento con il miglior accordo rispetto ai risultati ottenuti nei lavori precedenti.
Si è mostrato che il criterio più comunemente usato per tali simulazioni (over-
density) richiede un controllo eccessivo dei parametri e non consente un guadagno
in termini di tempo computazionale, rispetto alle simulazioni con codici a griglia
fissa. Esplorando varie alternative, si è trovato che il criterio che in minor tempo
computazionale garantisce un solido accordo con i risultati a griglia fissa è il cri-
terio Slope, applicato alla densità. Si è inoltre dimostrato essenziale ai fini della
correttezza dei risultati, includere la nube in una griglia ad alta risoluzione come
condizione iniziale.
Utilizzando il criterio Slope applicato alla densità, si è prodotta una simulazione
AMR 3D a risoluzione massima 2 pc × 2 pc, con lo scopo di una trattazione
più realistica del problema astrofisico. Tale simulazione ha permesso di stimare
una condensazione pari a ∼ 30% della massa iniziale della nube dopo 60 Myrs
di evoluzione. Questa discrepanza rispetto al caso 2D è dovuta alla maggior su-
perficie di contatto tra gas freddo e gas coronale, che permette uno sviluppo più
veloce dell’instabilità di KH e quindi un mixing più efficiente tra i due fluidi. In
questo scenario, la condensazione del gas coronale nella coda turbolenta è favorita,
giustificando la sovrastima della condensazione rispetto al caso 2D.
Lo scopo ultimo del lavoro di tesi è ottenere una descrizione più accurata dell’ in-
terazione tra disco e corona e determinare la quantità di gas coronale condensata e
accresciuta sul disco, in modo da comprendere il legame tra le galassie star-forming
e l’ambiente in cui esse evolvono.
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Chapter 1

Introduction

Over the last few years, evidence has been accumulated of the presence of extended
gaseous haloes surrounding disc galaxies, extending to hundreds of kiloparsec away
from the galactic plane. This so called Circumgalactic Medium (CGM) is supposed
to be in continuous interaction with the disc via the exchange of gas. Even though
the mechanisms driving these gas flows are still not well understood, the detection
of neutral gas up to a few kpc from the plane, seems to suggest that such interaction
actually takes place.
This Introduction will initially focus on the observational evidence of galactic
haloes, both in external galaxies and in the Milky Way (sec. 1.1), as well as on
the detections of the so called extra-planar gas: the neutral gas component of the
haloes. Section 1.2 illustrates the main features of the two main gas accretion
scenarios proposed in order to solve the gas-accretion dilemma, while section 1.3
describes the accretion model here studied. An outline of this work is given in
section 1.4.

1.1 Gaseous haloes in Star-forming galaxies

It is widely accepted that all star-forming galaxies are enveloped in hot (T ∼ 106 K)
gas haloes extending out to their virial radius (Fukugita & Peebles 2006), called
cosmological coronae. Cosmological models suggest that such structures could
contain the baryonic matter necessary for these galaxies to match the predictions
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given their hosting Dark Matter haloes (Komatsu et al. 2009). Thus solving the
problem of the so-called missing baryons. However, given the high temperatures
and low densities of this gas, its X-ray surface brightness would fall below the
sensitivity of the current instrumentation (Bregman 2007), providing a very low
detection rate.

1.1.1 External galaxies

A few observations of very massive galaxies have shown evidence of extended hot
(T > 106 K) gas structures at distance beyond 50 kpc from their galactic centre
(Bogdán et al. 2013a,b), as shown in fig 1.1. The masses estimated for these haloes
are similar to the baryonic masses contained in the disc (∼ 1011 M�) and the gas
is extremely rarefied, with densities around 10−3 − 10−4 cm−3.

Figure 1.1: X-Ray surface brightness of NGC1961 and NGC6753 as detected by Bogdán
et al. (2013a). Emission is detected at distances larger than 50 kpc (57 kpc for the fomer
and 63 kpc for the latter).

The lower component of galactic haloes (close to the disc) is primarily neutral
gas. Due to its low column density (NHI = 1019−20 cm−2), very sensitive obser-
vations are required to detect its emission. In edge-on galaxies, it is possible to
separate the halo H I emission from that of the disc, as in the case of NGC 891
(Oosterloo et al. 2007). Usually, this gas is referred to as extra-planar gas and its
mass is estimated to be around 10− 30% of the total H I mass of the galaxy (San-
cisi et al. 2008). The extra-planar gas, shows a decline of the rotational velocity
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with increasing height above the galactic plane. A vertical velocity gradient of

Figure 1.2: Contours of H I emission
map of NGC 891 overlaid on the op-
tical image of the galaxy (Oosterloo
et al. 2007).

∼ 15 − 30 km/s kpc−1 has been measured in
a significant number of spiral galaxies (Fra-
ternali et al. 2002; Oosterloo et al. 2007;
Zschaechner et al. 2011; Lucero et al. 2015).
Also, the kinematics of the extra-planar H I
gas shows the presence of non-circular motions
and in particular a possible large-scale inflow
(Fraternali et al. 2001). It has been argued
that this extra-planar gas in the vicinity of
the plane, could be originated by the galac-
tic fountain mechanism, where cold gas clouds
could be ejected from the disc into the corona
by stellar feedback (Melioli et al. 2008, 2009)
following ballistic trajectories and falling back
onto the disc in orbital times ∼ 80−100 Myrs
(Fraternali & Binney 2006). A brief descrip-
tion of this phenomenon is outlined in sec. 1.3.

The detection of high-velocity features in nearly face-on galaxies (Boomsma et al.
2008) seems to confirm the galactic origin of this gas, and links its spatial distri-
bution to the star formation in the disc.

1.1.2 The Milky Way

As a disc galaxy, the Milky Way presents the same gaseous components detected in
external galaxies. The existence of a hot (T & 106) gas halo surrounding the Milky
Way has been proposed by Spitzer (1956) as a way to provide pressure confinement
to the High-Velocity Clouds (HVCs). Since then, the search for a low-density,
high-temperature gaseous medium has been extremely important, as a way to link
observational properties of the Galaxy to cosmological structure formation (e.g.
Oort (1966)). The main evidence of the presence of this gas however, are mostly
indirect: the head-tail strucures of HVCs (Brüns et al. 2000; Putman et al. 2011),
the dispersion measure of pulsars in the Galactic halo (Gaensler et al. 2008) and
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ram pressure stripping of dwarf galaxies in the Local Group (Grcevich & Putman
2009). A more direct evidence of this gas comes from the OVII and OVIII emission
lines in the soft X-ray background (Miller & Bregman 2015) and OVII and OVIII
absorption lines in quasar spectra (e.g. Bregman & Lloyd-Davies (2007)). Using
these X-ray absorption lines, the density of the inner halo (d < 20 kpc) has been
estimated to be nH ≈ 8× 10−4 cm−3, while the dispersion measure of pulsars give
an average coronal density slightly lower: nH ≈ 2 × 10−4 cm−3. Despite these
detections, it is still unclear if the hot gas can extend to the virial radius of the
galaxy, and what is its mass. But for d < 250 kpc, the total mass of the corona
is estimated to be MCorona ≈ 1010 − 1011 M� (Anderson & Bregman 2010; Gupta
et al. 2012; Salem et al. 2015)
The cold (T . 104 K) component of the Galactic halo is mainly detected in the
High- and Intermediate- Velocity clouds (HVCs and IVCs respectively). HVCs are
neutral and ionized clouds whose velocities in the local standard rest deviate by
more than ∼ 90 km/s from the speed predicted by differentially rotating thin disc
(Wakker et al. 2004; Kalberla et al. 2005), while IVCs have deviation velocities
|vdev| = 30− 90 km/s (Wakker 2001; Wakker et al. 2004).

HVCs

The sky distribution of HVCs is quite complex and has a total covering fraction in
21cm of fc ≈ 0.35 at neutral gas column densities NHI = 7 × 1017 cm−2 (Wakker
et al. (2004) and references therein). The main structures are Compex C, the
Magellanic Stream (MS), Complex A, Complex H, the Anti-Center Cloud and
Complexes WA - WE (Fig. 1.3, top panel). The MS spans a distance range of
d = 50 − 100 kpc from the galactic disc and together with Complexes WA and
WE is generated by the interaction bewteen the Milky Way and two of its satel-
lite dwarf galaxies: Large Magellanic Cloud (LMC) and Small Magellanic Cloud
(SMC).
The distances of the other HVCs have been determined using the bracketing
method. The spectrum of a halo star at a known distance in the direction of
the cloud is examined and if absorption lines are seen, than it is inferred that the
cloud is in front of the star, while if no absorption features are detected, the cloud
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lays behind it. The typical distances of HVCs are . 10 kpc (except for the MS).
As for the metallicity, it is generally derived a value of Z ∼ 0.1 Z� (Wakker et al.
2004), with small deviations depending on the specific cloud. For instance, Com-
plex C metallicity has been constrained to 0.15 solar with a large spread (Sembach
et al. 2004), complex A metallicity is estimated around 0.1− 0.4 Z�.
The overall low metallicity of these structures is usually explained assuming an

extragalactic origin and in particular by two main scenarios: infall from intragroup
gas (pre-enriched intergalactic medium), or material stripped from satellite dwarf
galaxies accreting onto the Milky Way. However, a galactic origin is also possible.
In their work, Fraternali et al. (2015) show how the properties of Complex C can
be explained assuming a galactic-fountain origin and condensation from the CGM.

IVCs

The most relevant features in IVC gas are IV Arch, IV Spur, Complex K (in the
northern emisphere), the Anticenter (AC) shell and Pegasus-Pisces (PP) Arch (in
the southern emisphere). As afore mentioned, the deviation velocities of these
structures are around |vdev| = 30 − 90 km/s. Their distances from the plain
are measured via the bracketing method and generally do not exceed 2.5 kpc;
furthermore, many of the IVC complexes are spatially and kinematically connected
with 21 cm disc gas and their individual masses are of the order of 105 M�, giving
an estimate of the total mass of this gas ∼ 106 M�. Marasco & Fraternali (2011)
show that they are the local manifestation of the extraplanar layer surrounding
the MW and extending to vertical heights of 1.6+0.6

−0.4 kpc. In general, a higher
metallicity with respect to the HVCs is found via absorption-line measurements
(e.g. Wakker (2001)). The high metallicity of IVCs is the main indication that such
structures cannot have formed via extragalactic accretion, but must have galactic
origin. In particular, considering also their distribution in the disc-halo interface of
the Milky Way, the favored scenario for the origin of IVCs is the galactic fountain
mechanism (Shapiro & Field 1976; Bregman 1980; Norman & Ikeuchi 1989).
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Figure 1.3: Aitoff projection all-sky map showing the spatial distribution of HVCs (top
panel) with colours indicating vdev and IVCs (bottom panel) with contours at 1, 5 and
12× 1019 cm−3 in H I column density.

1.2 Gas accretion

A long standing problem in the evolution of Milky Way-type galaxies is how they
can sustain Star Formation (SF) for cosmological times. It is well known that the
amount of gas contained in their discs is sufficient to maintain the current Star



1.2. GAS ACCRETION 13

Formation Rates (SFR), almost constant throughout their lives (∼ 10 Gyrs, e.g.
Fraternali & Tomassetti (2012)), for a few Gyrs only (gas-consumption dilemma).
Furthermore, the gas content of such galaxies has remained roughly unchanged
throughout the Hubble Time (Zafar et al. 2013), thus the galaxy needs a constant
replenishment of gas from the outside at a rate of ∼ 1 M�yr−1 (Sancisi et al. 2008).
It is still debated how this gas can be gathered from the intergalactic medium, but
two main scenarios have been proposed over the years: the Cold mode and the Hot
mode accretion.

1.2.1 Cold mode

Figure 1.4: Temperature of the gas in Milky Way mass haloes at z = 2 simulated with
the Smoothed Particle Hydrodynamics (SPH) code Gadget-3. Panels show the gas in a
region of 1h−1 Mpc (comoving) on a side and 1h−1 Mpc (comoving) in projected depth.
The virial radius is shown as the circles. The halo mass isMh = 1.1×1012 M�; left panel
shows all gas particles, while left panel shows only the gas with temperature T < 105 K
(adapted from Kereš et al. (2009)).

Galaxies with halo masses below 1012 M� are supposed to be dominated by
the cold mode accretion. This mass treshold is mildly dependant on redshift, but
as the hierarchical structure formation model implies that less massive structures
formed first, it tells us that at high redshifts (z > 2), the cold mode must have
been the dominant accretion mechanism (Kereš et al. 2009). This model predicts
that filaments of cold gas can go through the dark matter (DM) halo reaching its
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central galaxy on timescales similar to the free fall time. In figure 1.4 a cosmolog-
ical simulation is reported where the cold filaments can be seen to reach, mostly
unscathed, the central galaxy hosted by a 1012 M� halo.
This accretion mode is permitted if the cooling time of the halo gas is shorter than
the free-fall time. In this case, shock-heating due to the collapse of gas in the DM
halo and to its collisional nature, does not take place. Any shock-heated material
would cool and collapse so rapidly that it would not be able to sustain the shock
front itself (Binney 1977).

1.2.2 Hot mode

When the mass of the halo is larger than 1012 M�, the Hot mode accretion mode
becomes dominant. Compared to the previous case, the cooling time of these
haloes is larger than the free fall time, but smaller than the Hubble time. Then,
gas infalling from the IGM into the DM halo is shock-heated to almost the virial
temperature of the halo (a few 106 K). At these temperatures, the gas resides in
quasi-hydrostatic equilibrium with the DM potential well (Rees & Ostriker 1977).
The gas then is able to cool and sink into the center of the potential where it is
converted into stars, starting from regions near the central galaxy and later moving
to higher distances.
Given temperatures around T ∼ 2 × 106 K (Bregman et al. 2015) and electron
densities ne ∼ 5.4 × 10−4 cm−3 (Anderson & Bregman 2011) the cooling time is
> 1 Gyrs. Thus it is still not clear how the coronal gas is able to cool down.
An hypotheses proposed for solving this problem was that cold clouds could form
due to the development of thermal instabilities in the corona (Kaufmann et al.
2006). However, it has been shown that heat conduction and buoyancy have as a
net effect the damping of thermal instabilities: cold clouds with sizes smaller than
10 kpc can form only at distances larger than 100 kpc from the plane (Binney
et al. 2009; Nipoti & Posti 2014), in contradiction with the spatial distribution
of HVCs. Furthermore, SPH, with an appropriate treatment of phase mixing and
Adaptive Mesh Refinement (AMR) cosmological simulations of MW-type galaxies,
show that spontaneous cooling through formation of thermal instabilities in the
corona should not occur (Joung et al. 2012; Hobbs et al. 2013).
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1.3 Galactic Fountain

In order to explain the cooling of the coronal gas, thus justifying the hot mode
accretion, Fraternali & Binney (2006) built a dynamical model of fountain clouds
ejected from the disc into the coronal gas, following ballistic trajectories in orbital
times around 100 Myrs. Applying this model to the 21 cm observations of the
extraplanar gas of two nearby spiral galaxies (NGC891 and NGC 2403) they were
able to reproduce its H I vertical distribution. At first, this model was not able to
match the vertical gradient of the rotational velocity. However, if accretion from
the ambient medium onto the clouds is permitted (Fraternali & Binney 2008),
then the velocity gradient can be explained as a loss of angular momentum by
the fountain clouds due to this interaction. Being the accretion rate the only free
parameter in this model and finding a value similar to those two galaxies’ SFR, they
were able to move the quest for a mechanism able to sustain Star Formation over
cosmic time to the process driving gas accretion onto galactic fountain clouds.
In order to study this interaction, Marinacci et al. (2010) performed 2D high
resolution hydrodynamical simulations with the fixed-grid code ECHO++ (Del
Zanna et al. 2007), of a cold (T = 104 K) disc-like metallicity cloud travelling
through the hot (T = 106 K) coronal gas of the MW. This motion produces
a Kelvin-Helmholtz (KH) instability at the interface between the cloud and the
corona, that gradually disrupts the cloud forming a turbulent wake of mixed gas.
This mixing drastically reduces the cooling time of the coronal gas, now able to
cool down efficiently enough to condense in the wake and be dragged by the cloud
back onto the disc. Furthermore, Marinacci et al. (2011) found that a relative
velocity treshold between the cloud and the corona exists below which the hot
corona stops absorbing momentum, suggesting that the corona must rotate, but
with a lower velocity with respect to that of the disc.
Using the model of Fraternali & Binney (2008), Marasco et al. (2012) were able
to reproduce the H I emission of the IVCs, thus proving their galactic origin.
They found that this mechanism induces an accretion of coronal gas onto the
disc at a rate of ∼ 2 M�yr−1. Moreover, including the condensation mechanism
implemented by Marinacci et al. (2010), Marasco et al. (2013) could reproduce
positions and velocities of most of the warm absorbers observed in the Galactic
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halo (an artistical representation of the model is presented in fig. 1.5). It has
also been demonstrated by Armillotta et al. (2016), that thermal conduction does
not play an essential role in the condensation mechanism. By performing similar
simulations as Marinacci et al. (2010) with the fixed-grid code ATHENA, and with
a specific treatment of thermal conduction, they estimated that the latter has the
only effect of delaying the condensation of the coronal gas onto the cloud’s wake.
The authors, also found that condensation is efficient only for haloes with masses
below 1013 M�, implying that the ability to cool the corona decreases going from
late-type to early-type disc galaxies.

Figure 1.5: Artistical representation of the Galactic Fountain model described in the
text. The cold cloud, initially spherical, while moving through the hot medium, gets
disrupted and in its wake mixes with the hot coronal gas. The head of the cloud and
the densest knots are expected to be detected via H I emission, while the warmer gas in
the wake can be detected in absorption in spectra of background halo stars or QSOs.
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1.4 This thesis

In the previous sections we outlined a schematic picture of the role of galactic
haloes in the evolution of star-forming galaxies. We explained the main accretion
scenarios, capable of sustaining SF over cosmic times and we pointed out the im-
portance of well describing the interaction between galactic discs and haloes. In
particular, we denoted as essential the condensation of coronal gas onto a galactic
fountain’s cloud wake, based on the model developed by Marinacci et al. (2010).
In this work, we performed hydrodynamical simulations of cold galactic fountain’s
clouds moving through a hot corona as described by Marinacci et al. (2010) and
Armillotta et al. (2016), but we move to a more practical and fast computing
scheme: Adaptive Mesh Refinement. This technique uses certain refinement crite-
ria to identify interesting regions in the computational domain and in these regions
only increase the resolution, while the remaining part of the domain is left at a
lower resolution. This selective behaviour generally speeds up the computation.
We aim at finding similar results for condensation obtained with fixed-grid codes
and, given the gain in computational speed, we perform a 3D high-resolution
hydrodynamical simulation, otherwise extremely time consuming. In a three di-
mensional representation of the problem, being the contact surface between the
cloud and the coronal gas larger than in a 2D geometry, we do expect a higher
condensation. Furthermore, a more realistic analysis of the problem could place
an accurate constraint on the accretion rate due to this process.
In chapter 2 we present the parallel, (magneto-)hydrodynamic, AMR code ENZO
used to perform all the simulations in this work. An accurate description of its
automated spatial and temporal refinement can be found there, together with the
modifications performed to the code in order to compare its results with those
obtained in previous works.
In chapter 3 we describe the simulations performed when no radiative cooling is
allowed. The cloud-corona interaction results in the development of a KH instabil-
ity, but not being able to radiatively cool, the cold gas gradually evaporates. We
present the different refinement criteria used, with particular attention dedicated
to the over-density criterion, as one of the most widely used.
Chapter 4 shows what changes in the results when radiative cooling is introduced.
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We compare there the results obtained with ENZO with those found by Armil-
lotta et al. (2016) using ATHENA (Stone et al. 2008). Also, the 3D results are
presented, and a new estimate of the condensation is found.
Chapter 5 contains a summary and the main results of this work.



Chapter 2

Introducing ENZO

In this work we used the AMR, magneto-hydrodynamical, parallel code ENZO to
perform the hydrodynamical simulations of this Thesis. This chapter is dedicated
to the description of ENZO’s main features. An explanation of the modifications
we made to the code can also be found here. The reason behind these modifications
is the search for an agreement with the results obtained using ATHENA: a fixed-
grid code. Our first aim is to evaluate how the introduction of AMR influences
the outcome of a previously treated problem.

2.1 Euler equations

Considering a fluid in its entirety it is possible to define it as a continuum as long
as the mean free path of its particles (λ) is much smaller than the characteristic
physical scale-length of the system (L). When this happens a fluid element dV
can be defined as a volume (often called Control Volume), whose linear length
is between λ and L, containing all the fluid’s particles enclosed in area S. If this
condition holds, the number of particles in the volume is large so that we can
define a mean velocity u describing the motion of dV . Given that the typical
length of interaction between particles is much smaller than the physical size of
the control volume, all particles are forced at any time into a random walk around
u. If we denote with dV ′ the translation of each point of the fluid element dV
through the mean velocity u over a generic time interval ∆t, we do not only

19
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expect a conservation of the total number of particles, but also that the particles
contained in dV ′ are the same ones previously enclosed in dV (only particles on
the volume surface could escape the fluid element, but they could also be replaced
by neighboring ones) (Shu 1991). The mean free path of a gas particle can be
aproximated as λ ∼ (nσ)−1, where n is the number density of the gas and σ the
particle cross section. Given the very low densities for astrophysical fluids (ranging
from 106 cm−3 for molecular clouds at temperature of order 10 K to 10−2 cm−3 in
the Hot Ionized Medium, HIM, at temperatures of order 106 K) and also the low
cross section (as an inferior limit computed for an hydrogen atom) σ ∼ 10−15 cm−3,
the mean free path is at most of order few 1016 cm ∼ 10−2pc (worst case scenario:
HIM). In any case, the typical sizes of the analysed problem are at least two orders
of magnitude greater, thus we can treat the fluid as a continuum and apply the
equations of hydrodynamics.

Figure 2.1: Left and right sketches are a schematical representation of Eulerian and
Lagrangian approach respectively. u is the fluid velocity and dV the infinitesimal control
volume (adapted from Anderson (1995)).

The derivation of the hydrodynamical equations is not unique because it can
be done following two main approaches: Eulerian and Lagrangian. Let’s consider
the same control volume dV discussed above. This volume could be either fixed in
space with the fluid moving through it (Eulerian approach), or it could be mov-
ing with the fluid such that the same particles are always included (Lagrangian
approach), as shown in fig. 2.1. The fluid flow equations obtained by direct ap-
plication of the conservation laws (for mass, momentum and energy) to the finite
control volume are in integral form, but they can be manipulated in order to be-
come partial differential equations (PDEs). This set of equations is usually called
Euler equations and a general analytical solution is not yet known. In the case of a
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fixed-in-space control volume the obtained equations are said to be in conservation
form, while in their PDE version they are referred to as in nonconservation form.
ENZO is an Eulerian method that solves the conservative (Eulerian) form of
(magneto-)hydrodynamical equations. In a 3D geometry the equations of con-
servation of mass, momentum and energy for an inviscid and un-magnetized fluid
in the absence of a gravitational potential, and in Cartesian coordinates, are re-
spectively:

∂ρ

∂t
+∇ · (ρu) = 0 (2.1a)

∂(ρu)
∂t

+∇ · (ρu⊗ u) = −∇P (2.1b)
∂ρE

∂t
+∇ · [(ρE + P )u] = 0 (2.1c)

Here ρ, E and u are the fluid density, total energy per unit mass per unit volume
and velocity respectively. In particular, the energy density E is defined as E =
e + u2/2, where e is the internal energy density. The symbol ⊗ represents the
dyadic product between two vectors. Equations 2.1a - 2.1b - 2.1c represent a
system of quasi-linear, first order PDEs, hyperbolic conservation laws This system
can be written in the following form:

∂U
∂t

+∇ · F(U) = 0 (2.2)

where U is the vector of conserved variables (ρ, ρu, ρE)T (apex T representing the
transpose operator) and F is the flux matrix F = (ρu, ρu⊗ u + P, (ρE + P )u)T .
Expanding the spatial derivative, the system 2.2 can be written as following:

∂U
∂t

+
3∑

n=1

∂Fn(U)
∂U

∂U
∂xn

= ∂U
∂t

+
3∑

n=1
Jn

∂U
∂xn

= 0 (2.3)

where Fn is the n-th column of matrix F and Ji is the Jacobian matrix, defined as:
Ji ≡ ∂Fi(U)/∂U. The definition of hyperbolic PDEs requires matrix Jn to have
m real eigenvalues λi and a complete set of linearly independent eigenvectors. The
eigenvalues of the Jacobian matrix for the Euler equations are λ+ = ui+cs, λ0 = ui

and λ− = ui− cs, where cs is the sound speed of the fluid and ui its velocity along
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direction i. Equation 2.3, locally assumes the form of a decoupled system of wave
equations, with respective propagation speeds given by the eigenvalues λi. Due to
the non linearity of Euler equations however, the interaction between waves may
lead to the formation of discontinuous solutions, with propagation speeds different
from the eigenvalues, such as shock waves and tangential (and in particular contact)
discontinuities1.
Many hydrodynamical codes use the fact that the Euler equations are an hyperbolic
set of PDEs in order to solve them. In general, the solution of a system of PDEs
is performed upon the introduction of Initial Conditions (IC) for the conservative
variables; the system of equations containing both PDEs and ICs is called Initial
Value Problem (IVP).

2.2 ENZO’s Hydro solvers

In order to solve the Euler equations, four different methods are implemented in
ENZO:

• Direct Eulerian Piecewise Parabolic Method (DE-PPM, Colella & Wood-
ward (1984)), lately extended to cosmology by Bryan et al. (1995). This
method is an explicit, higher-order version of Godunov’s methods for ideal
gas dynamics, only at use in pure hydrodynamical problems. It has at its
disposal a spatially third-order accurate piecewise parabolic monotonic in-
terpolation as well as a nonlinear Riemann solver for shock capturing. This
scheme accurately represents both smooth gradients and discontinuities over
linear intepolation;

• ZEUS: a finite-difference method alternative to the Godunov’s approach de-
veloped by Stone & Norman (1992a,b). The equations are solved by defini-
tion of two staggered grids, one of which containing cell-centered quantities
(density and total energy) while the other, velocity (the main difference be-
tween previous methods is indeed the face-centered definition of velocity).

1The former consists in a jump in all the fluid’s variables except the tangential velocity
component and the latter in density and tangential component of velocity only (just density in
a contact discontinuity).
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The algorithm is divided into two steps: the Source step updates momentum
and energy values taking into account pressure gradients and gravity forces;
the Transport step solves advection equation for conserved quantities across
cells’ boundaries.

• Godunov MUSCL, only HD (LeVeque 2002; Toro 1997), with Dedner diver-
gence cleaning as an extension to MHD (Dedner et al. 2002)(HD / MHD);

• Godunov MHD with Constrained Transport (MHD-CT): Second-order in
time and space, preserves the divergence constraint, ∇·B, to machine preci-
sion through the Constrained Transport (CT) methods described by Balsara
& Spicer (1999); Gardiner & Stone (2005).

In each simulation performed in this work, the DE-PPM method is used. A
detailed description of this method can be found in Colella & Woodward (1984),
but we chose to outline the main features here for completeness.
The Euler equations are solved on a three-dimensional Cartesian grid. The contin-
uous coordinates x, y and z are discretized in Nx, Ny and Nz cells within a finite
computational domain of size Lx, Ly and Lz. In the case of a uniform grid, the size
of each cell on the x-, y- and z-directions are ∆x = Lx/Nx, ∆y = Ly/Ny and ∆z =
Lz/Nz respectively, while the respective indices are i, j and k. The boundaries of
each (xi, yj, zk) cell are then: ([xi−1/2;xi+1/2], [yj−1/2, yj+1/2], [zk−1/2, zk+1/2]), with
a spatial separation ∆x, ∆y and ∆z respectively. The vector U containing the
conserved continuous variables can then be discretized assigning at each cell its
volume weighted average value between the cell’s boundaries:

Un
i,j,k = 1

∆x∆y∆z

∫ xi−1/2

xi−1/2

∫ yj−1/2

yj−1/2

∫ zk−1/2

zk−1/2

Un(x, y, z, t) dx dy dz (2.4)

Equation 2.3 can be rewritten in order to explicit the fluxes through a cell’s
face along each direction:

∂U
∂t

= ∂K
∂x

+ ∂G
∂y

+ ∂H
∂z

(2.5)

K, G and H being the fluxes along x-, y- and z-directions. In this formulation,
using the divergence theorem, the Euler equations can be solved in their integral
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form:

d

dt

∫∫∫
V

UdV +
∫∫

Ax
K · n dAx +

∫∫
Ay

G · n dAy +
∫∫

Az
H · n dAz = 0 (2.6)

Where V is the volume of the fluid element, Ax, Ay and Az the areas enclosing
the volume (surface boundary) on each direction and dAx, dAy and dAz the cor-
responding area elements, while n is the normal versor to each dAi. Equation 2.6
states that the change rate over time of the conserved variables in U depends only
on the total flux of those variables through the surface of the control volume.
ENZO works by discretization of equation 2.6 over a finit timestep ∆t:

Un+1
i,j,k = Un

i,j,k −
∆t
∆x

(
Fn+1/2
i+1/2,j,k − Fn+1

i−1/2,j,k

)
− ∆t

∆y
(
Gn+1/2
i,j+1/2,k −Gn+1/2

i,j−1/2,k

)
− ∆t

∆z
(
Hn+1/2
i,j,k+1/2 −Hn+1/2

i,j,k+1/2

)
(2.7)

Where tn+1 = tn + ∆t and ∆t is computed by imposing the Courant-Friedrichs-
Lewy condition (see sec. 2.3). The vectors of the time- and area-averaged fluxes
are:

Fn+1/2
i−1/2,j,k = 1

∆V

∫ tn+1

tn

∫∫
Ax

F(xi−1/2, y, z, t) dAx dt (2.8a)

Gn+1/2
i,j−1/2,k = 1

∆V

∫ tn+1

tn

∫∫
Ay

G(x, yj−1/2, z, t) dAy dt (2.8b)

Hn+1/2
i,j,k−1/2 = 1

∆V

∫ tn+1

tn

∫∫
Az

H(x, y, zk−1/2, t) dAz dt (2.8c)

From eq. 2.8 the solution is shown to depend on the values of the fluxes
at the cells’ boundaries, so that an accurate computation of the fluxes is needed.
These in return, depend on the values of the hydrodynamical variables at the cells’
boundaries. However, the hydrodynamical variables are cell-centered, so that an
interpolation is needed in order to compute them at the cells’ boundaries. The
precision of these values is strictly related to the method used for interpolation.
In this work a Piecewise Parabolic Method (PPM) is used.
At first, monotonic piecewise parabolic (third-order) interpolations in one dimen-
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sion are computed for p, ρ, and u. The pressure is determined by inversion of the
equation of state:

e = p

(γ − 1) (2.9)

The interpolation formula for some variable q is given by:

qj(x) = qL,j + x̃[∆qj + q6,j(1− x̃)] (2.10a)

x̃ ≡
x− xj−1/2

∆xj
, xj−1/2 ≤ x ≤ xj+1/2 (2.10b)

qL,j is the value of q at the left edge of zone j, while ∆qj and q6,j are analogous to
the slope and first-order correction to the slope of q (Colella & Woodward 1984):

∆qj ≡ qR,j − qL,j, q6,j ≡ 6[qj − 1/2(qL,j + qL,j)] (2.11)

Thus, the problem has been reduced to finding qL, j and qR, j. The resulting
formulae are complicated and are not reproduced here, but for a detailed analysis,
see Equations 1.7 to 1.10 of Colella & Woodward (1984).
Once the left and right states are found for each cell, we need to compute the
average of the fluxes over time. However, due to the discretization previously
described, a discontinuity is generated and a Riemann problem has to be solved.
A Riemann problem is a special case of Initial Value Problem (IVP), where the IC
is a discontinuity between two different constant states, one left (UL) and one right
(UR). Analytical solutions to such problems exist, but they would be too expensive
in terms of computational resources. This is the reason why hydrodynamical codes
use approximate Riemann solvers.

2.2.1 Riemann solvers

The Riemann problem to be solved has as solution a system of three waves prop-
agating away from the initial discontinuity: the central contact discontinuity and
two waves travelling one left and one right that could be either shocks or rarefaction
fans. Four different combinations of the left and the right shocks and rarefactions
are possible, but only one of these can be fully consistent with a chosen initial
condition. Once determined the correct physical state, the problem can be solved
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by resolution of an algaebric equation, thus using a series of approximate Riemann
solvers. Four different Riemann solvers have been implemented in ENZO:

• Two-shock (Toro 1997);

• Harten-Lax-Van Leer (HLL, Toro (1997));

• Harten-Lax-Van Leer with a contact discontinuity (HLLC, Toro (1997) );

• Harten-Lax-Van Leer with multiple discontinuities (HLLD, Miyoshi & Ku-
sano (2005)).

Two-shock is used only with the PPM method, and will be used in all the simula-
tions performed in this work. HLL and HLLC are used with PPM, MUSCL (both
with and without MHD) and MHD-CT. HLLD instead, is exclusively an MHD
solver, and works with both the MUSCL and MHD-CT methods. The two-shock
approximation is the assumption that both left and right waves are shocks, the
HLL method instead requires no central contact discontinuity and computes the
signal speed in the central region as an average over the two waves. HLLC modifies
the previous method by including the third central wave in the computation. For
the MHD case, four more waves need to be treated (increasing the total number
to 7), but as HLL and HLLC can be modified in order to consider this increase,
HLLD only accounts for two of the additional waves. While the fastest Riemann
solver here described is HLL, it is also the most dissipative one, followed, in order,
by two-shock and HLLD.
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2.3 Structured Adaptive Mesh Refinement

ENZO is an Eulerian, magneto-hydrodynamic, Adaptive Mesh Refinement (AMR)
code (Bryan et al. 2014). The code is multi-dimensional and parallelized using the
MPI (Message Passing Interface) library. The AMR grid patches are its main data
structure and each grid is solved as an indipendent computational fluid dynamic
problem with boundary conditions stored in the ghost zones (a layer of cells sur-
rounding the computational domain). The idea behind the Structured Adaptive
Mesh Refinement is the overlap of rectangular patches at different resolutions.

Figure 2.2: Refinement procedure for a cell at initial resolution 32 pc × 32 pc. Level 1 has 4
cells of 16 pc× 16 pc resolution (black line), level 2 has 16 cells of 8 pc× 8 pc (red), level 3 has
64 cells of 4 pc× 4 pc (blue) and level 4 contains 256 cells with size 2 pc× 2 pc (green).

Figure 2.3: The left panel shows a simple 3-
level hierarchy tree representation distributed
on 2 processors. The right panel shows a grid
cells distribution (Bryan et al. 2014).

The coarsest grid (also called root
grid) covers the whole computational
domain and its nodes identify the
linking points for smaller grids at
higher resolutions (see fig. 2.2). This
mechanism can be iterated indefi-
nitely and thus creates a tree of de-
pendant grids. For each grid at given
resolution, the parent grids are the
grids at lower resolution, while the
child grids are the grids at higher res-
olution. The grid at the lowest reso-

lution can only be a parent grid, while the grid at the highest resolution can only
be a child grid. All the grids at the same resolution belong to the same level; the
higher the level, the higher the resolution. The ratio between the sizes of parents
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and child grids cells is called refinement parameter and here on it is referred to as
r.
The enumeration in ENZO is 0-based, so that the first level, containing only the
coarsest grid, is identified by the number 0 while the second one by 1, and so on.
Fig. 2.2 shows a schematic representation of the overlap between grids at different
levels in 2D (in the figure, at each level is associated a colour, note that the center
of an inferior level’s cell is the fixing point for a higher level one).
Every grid has a kernel of “real” cells surrounded by a layer of “ghost” cells (fig.2.3).
The real cells are the ones in which the actual storage of all variables takes place.
The ghost cells instead, are used as an interface between adjacent grids and/or
parent and child grids. All the values stored in the ghost cells at every timestep
are due to interpolations or are needed by the hydrodynamics solvers. Thus, they
will not be considered in the analysis phase.
Fig. 2.3 shows an example of tree structure for a 2D AMR hierarchy, composed of
6 grids at three different levels (1 at level 0, 2 at level 1 and 3 at level 2). The left
panel shows how real and ghost cells are distributed on different processors: on
each processor a grid is a real grid if its data is allocated to that specific processor,
and it is a ghost grid if its data is allocate an a different processor. Each grid
then, is a real grid on exactly one processor, and a ghost one on all the others.
Communication between processors for transfer of a mesh or of data is performed
via MPI. The right panel shows the distribution of real and ghost cells over a single
grid.

Temporal Refinement

The only imposition upon the computation of the timestep is the satisfaction of the
Courant-Friedrichs-Lewy (CFL) condition. This condition requires the timestep
to be smaller than the sound-crossing time over a given cell so that, in the one-
dimensional case:

∆tx = min
(
kCFL

∆x
cs + |vx|

)
L

(2.12)

where kCFL is usually referred to as the CFL-parameter and must be: 0 < kCFL ≤ 1,
cs is the sound speed and vx the peculiar velocity on the x-direction. The min(...)L

formalism means that this value is computed for each cell on a given level L
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and the minium overall value is taken as the timestep. In the three-dimensional
generalization, the total timestep is a harmonic average of the minimum timesteps
on each direction:

∆tCFL = min
(

1
1/∆tx + 1/∆ty + 1/∆tz

)
L

(2.13)

Thus, given the linear dependence between the timestep and the size of a cell, in
ENZO timesteps are evaluated on each level. As for the evolution of the solution,
the hierarchy is advanced in a level-by-level basis on a W-cycle, as shown in fig.
2.4.

Figure 2.4: Left panel shows the proportionality between timesteps at different levels.
Right panel shows the timestep evolution implementation in ENZO: a W-cycle (Adapted
from Bryan et al. (2014)). In the figure, the ratio between two adjacent levels is 2, but
there is no restriction on the proportionality of timesteps between different levels. We
chose to use this ratio here for pure graphical convenience.

Once the timestep dt of the coarsest level has been fixed, the timestep of the
levels at higher resolution will be dt/rl, where r is the refinement parameter and
l is the level number. Initially, the entirety of the grids belonging to the coarsest
level l are advanced of a timestep dt (in fig. 2.4 indicated by the red line). Then
all grids at level l + 1 are advanced (blue line) and so on until the highest level is
reached. The latter is advanced for as many timesteps, dt/rlMAX , needed in order
to catch up with the solution at the level immediately above (lMAX− 1). After the
synchronization of these two levels, the above one is advanced of a proper step,
leading once again to the previous iteration. At the end of every timestep, the
ghost zones of each grid are updated with data from neighboring sibling grids (if
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any exist) and/or interpolated from a parent grid.

Boundary conditions and AMR consistency

The boundary conditions are external to the computational domain both for the
grid at the lowest level and for all the grids at highest levels located at the edges
of the computational domain. Instead the boundary conditions are internal for
siblings grids (child grids originated from the same parent grid). In both cases,
the code allows four choices:

• Reflecting, every conserved variable stored in the ghost zones equals its value
in the computational domain, except for velocity: vx(−x) = −vx(x);

• Outflow, the solution at the edge of the computational domain is duplicated
(q(−x) = q(0));

• Inflow, boundary values are fixed by a certain function: q(−x) = q0(−x, t);

• Periodic, boundary solution is copied by the other side of the domain:
q(−x) = q(xmax − x).

In this work, the Outflow condition is always applied, because it guarantees the
isolation of the cloud for the grids at the edges of the domain.
A refined region is simulated with at least two resolutions, thus a same volume has
multiple solutions. In order to maintain consistency, the quantities of the coarser
grids need to be updated with the finer values. This is done in the projection step,
using a volume-weighted average of the conserved variables:

qcoarse = r−d
d∑

i,j,k=1
qfinei,j,k (2.14)

Where r is the refinement factor: the ratio of the widths of two adjacent levels’
cells, d is the weight and it is the dimensionality, dimensionality −1 and 1 for cell-
centered, face-centered and node-centered quantities respectively. The sum is done
over all the finer cells covering a coarse one along each direction. The projection
step perturbs the Flux-conservative properties of the code (preferred in order to
maintain conserved quantities at machine resolution) since, at the boundary of a
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refined region, both coarse and fine cells are updated with different estimates of
the flux across the boundary (from coarse grid evolution and from the fine grid
average solution). Flux conservation is then restored in the Flux correction step by
correcting all the coarse cells lying outside the boundary of a fine region with the
difference between the fine and coarse estimates for the fluxes across the boundary,
and precisely:

qcoarse = q̃coarse −∆t
(

Fcoarse −
d∑

j,k=1
qfinej,k

)
. (2.15)

Here, Fcoarse is the Flux of the quantity qi across the i-direction, q̃coarse is the un-
corrected quantity in the coarse cell and the sum is over the rd−1 fine cells in the
perpendicular directions sharing a face with the coarse cell. As afore mentioned,
the solution of Euler equations on a multi-resolution, multi-grid setup is achieved
by solving the same equations on each grid separately. The convergence of dif-
ferent levels’ solutions is imposed in the projection and Flux correction steps here
explained.

2.3.1 Refinement Criteria

The revolutionary feature in ENZO is its automated refinement. The three main
parameters regulating the refinement in ENZO are RefineBy, CellFlagginMethod
and MaximumRefinementLevel. RefineBy is the refinement factor r. As per defi-
nition of r, from a coarser cell, a number of rd cells are obtained with a resolution
r-times larger, where d is the dimensionality of the problem. In general, this pa-
rameter must be an integer and, for most simulations, is set to 2, so that for a
2-D setup a refined cell produces 4 cells, each one at double resolution (half size)
with respect to the parent one (fig. 2.2). MaximumRefinementLevel sets the max-
imum level at which grids can be created, while CellFlagginMethod identifies the
criterion to be used for the refinement.

There are 13 different criteria for refinement: each criterion corresponds to an
integer number. In this Thesis, we investigated three of these criteria (tab. 2.1).
In the following, a review of the adopted criteria is reported, but for more details,
please refer to Bryan et al. (2014).
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CellFlaggingMethod Description
1 Refine by Slope
2 Refine by Baryon Mass
15 Refine by SecondDerivative

Table 2.1: Four principal parameters used in this study.

Slope

The Refine By slope criterion analyzes the normalized slope of a given thermo-
dynamical variable on adjacent cells. If this slope is greater than a specified value,
then the cells will be flagged and refined.
By indicating with q the chosen field and with the index i the cell’s position, the
slope s is defined as:

s = qi+1 + qi−1

2qi
(2.16)

This refinement criterion is regulated by two parameters: SlopeFlaggingFields
and MinimumSlopeForRefinement. The first one identifies the correct field to be
considered while the second one specifies the s value above which a cell must be
flagged.

Baryon Mass

Refine by Baryon Mass (here on called over-density criterion) is a criterion
designed to mimic a Lagrangian method, meaning that it tries to keep a fixed
mass resolution. A certain cell is refined if the baryonic mass contained within it
is larger than an upper limit value. The condition for refinement is:

Mg > ρflag(∆xroot)drεll (2.17)

where Mg = ρ(∆x)d, is the mass within each cell, ρ the density, ∆x its size, d
the dimension of the problem and ∆xroot the size of the root grid’s cell. It takes
into account the increase in density for each level (here indicated by the letter
l). The quantity ρflag is essentially the density that each level cell must have in
order to be flagged and then refined: this value is the product between the limit
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density of the root grid (ρ0) and the factor rd∗l. Therefore, the limit density of
each level increases with the order of the level, so that the last level has highest
spatial resolution and higher values of density. In the code, ρ0 is identified by
the parameter MinimumOverDensityForRefinement. Formula 2.17 can thus be
rewritten in a much more explicit way:

Mg > ρ0(∆xroot)drl∗(d+εl). (2.18)

Here εl is a parameter that can modify the “aggressiveness” of the refine-
ment by assuming any real number. In the code it is identified by the parameter
MinimumMassForRefinementLevelExponent. Setting it to negative the refinement
will be super-Lagrangian, so that each level has less gas mass per cell on average
than the coarser level above it. Setting it positive will lead to a sub-Lagrangian
behaviour, meaning that the refinement will be less aggressive than the Lagrangian
case. By default this parameter is set to 0 but it can assume any real value. In
particular, in the following it has been used to shrink the density limit interval
between two subsequent levels. Let us consider a 2D, 3 level hierarchy dataset
refined using the over-density criterion and a refinement factor r = 2. Adopting
a default value of 5 (in code units) for the OverDensity parameter, implies that
a 0 level cell is refined when the density reaches a value larger than 5. If εl = 0,
(default value) the next refinement is obtained, on a level 1 cell, at a density tresh-
old equal to OD1 = 5 ∗ 2d∗(l=1) = 20, and again on level 2 the treshold moves
to OD2 = 5 ∗ 2d∗(l=2) = 80. The ratio between the highest and lowest density
values is then: OD2/OD0 = 16. Instead, if εl is a negative value, such as −1,
OD1 = 5 ∗ 2l(d+εl) = 5 ∗ 2 = 10 and OD2 = 5 ∗ 22(2−1) = 5 ∗ 4 = 20. The density
ratio between highest and lowest levels is now: OD2/OD0 = 4. Using this new
setup, all densities above 20 will have the highest level spatial resolution.
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Second Derivative

The last criterion of refinement that we used, Refine by SecondDerivative, is
based upon the evaluation of a normalized second derivative of a given field on
each cell. We present here the reference formula, but for an exhaustive treatment
we recommend the reading of Löhner et al. (1987) and in particular, the documen-
tation of FLASH42. The main idea behind this criterion is that if the normalized
second derivative of a certain field, is greater than a specified treshold in a certain
cell, then that cell must be flagged and refined. The treshold in 2D is defined as
follows:

S =
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(2.19)

Where f is the field (Density, Total Energy, x-velocity, y-velocity...), selected in
the code by defining the parameter SecondDerivativeFlaggingFields and

∣∣∣fij∣∣∣
is an average of f over adjacent cells in all directions (i and j in 2D). The term ε

provides a method of ignoring small fluctuations and is set by default to 10−2. The
larger is this number, the more relevant are the fluctuations from the spatial aver-
age. In the code, this value is identified by the parameter SecondDerivativeEpsi-
lon. S is the appointed treshold and can vary in the interval [0, 1], usually a value
between 0.3 and 0.8 is recommended; in the code, the associated parameter is
MinimumSecondDerivativeForRefinement.

2.4 Modifications to ENZO

In order to reproduce with ENZO the same simulations performed by Marinacci
et al. (2010) and Armillotta et al. (2016), we need to adopt the same assumptions
of these authors. In particular, we must use the same cooling function, taken from
Sutherland & Dopita (1993).

2 http://flash.uchicago.edu/site/flashcode/user_support/flash4_ug/

http://flash.uchicago.edu/site/flashcode/user_support/flash4_ug/
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2.4.1 Radiative cooling

In our work, we have included the possibility for the gas to radiate, thus loosing
internal energy via radiative cooling. This is done by the introduction of an energy
loss term in the Energy conservation equation, so that equation 2.1c becomes:

∂e

∂t
+∇ · [(e+ P )u] = −ρ2Λ(T, Z) (2.20)

Where Λ is the energy lost by the gas via radiative cooling normalized to the
square of the total gas density ([erg cm3 s−1]) and ρΛ is the energy loss rate, per
unit volume, due to radiative cooling. The cooling rates adopted, are computed
under the assumption of Collisional Ionization Equilibrium (CIE), so they do not
depend on the hydrogen number density nH. They however do depend on temper-
ature and metallicity.
In ENZO, cooling rates can be calculated using different methods. We decided to
use the algorithm that reads the cooling rate values from a lookup table. By de-
fault, ENZO uses the Temperature dependant cooling function derived by Sarazin
& White (1987), but in order to compare our simulations with previous works, we
adopted the cooling function described in Sutherland & Dopita (1993). However,
while Armillotta et al. (2016) studied a multi-metallicity case of the problem,
we considered gas at metallicity [Fe/H] = −0.5. The cooling function for this
case is shown in fig. 2.5. The temperature interval ranges between 104 K and
108.5 K ' 3× 108 K.

The peak at T = 15.000 K is due to collisional recombination of H, while the
double peak at temperatures 104 K < T < 105 K is primarily due to recombina-
tion of He and to forbidden lines of highly ionized metals (OVII, OVIII, CIV, CV,
NIV, NV. . . ). At T ∼ 106 K recombinations of other highly ionized elements con-
tribute to the cooling rates, such as NeVI−NeIX, FeXII−FeXX, SiVIII−SiX. . . At
temperatures T > 107 K the only state a gas can be found is in full ionization,
meaning that electrons and ions can only interact via free-free transitions. Thus,
the fully ionized regime is governed by Bremsstrahlung emissivity.
The strong dependence of the cooling function on the temperature leads to the
necessity of computing, at each timestep, the temperature of each fluid element,
in order to obtain the corresponding cooling rate. The evolution of temperature
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Figure 2.5: Cooling function at [Fe/H] = -0.5, obtained by Sutherland & Dopita (1993)

as a function of mean molecular weight and metallicity is based upon the solution
of equation (2.9) rearranged as:

P

ρ
− kT

µ(T, Z) = 0 (2.21)

where k is the Boltzmann constant, Z the metallicity and µ is the mean molecular
weight. The mean molecular weight is a function of temperature, and it is inter-
polated on the same table containing the cooling rates, via an iterative method:
the secant method.
The cooling rates tabulated in Sutherland & Dopita (1993), that we call ΛSD, are
normalized by the product ntne, where nt = ∑ions

i ni is the total number density of
ions and ne is the number density of electrons. However, in our simulations, only
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the total number density of the gas is known, so we need to rearrange this param-
eter in a way that it is normalized to the total number density: N = (nt + ne). In
order to do so, a simple algebric manipulation is performed, obtaining:

Λ = ΛSD
ntne

(nt + ne)2µ2 (2.22)

All these rates are tabulated and read by the code at every timestep. Further-
more, when the computed temperature does not coincide with any of the tabulated
values, but is included in a temperature interval between two of them, a linear in-
terpolation (in logarithmic base) is performed in order to get an approximated
cooling rate. The density decomposition of the logarithmic temperature interval
4.0 < log T < 8.5, in 93 uniformly distributed points, defines a constant interval
of uncertainty ∆ log T = 0.05. The variation of the logarithmic cooling rates is
shallow enough to allow a good approximation in this interval.
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Chapter 3

Adiabatic simulations of fountain
clouds

This chapter is devoted to the study of the interaction between galactic fountain
clouds and the hot corona when no radiative cooling is permitted. In particular,
section 3.1 contains all information regarding the initial setup of simulations while
sections 3.2 and 3.3 show the results obtained when AMR is turned off and on
respectively. All simulations presented here are carried out with the ENZO code.

3.1 Setup of the simulations

The study of the galactic fountain phenomenon is here performed following pre-
vious works by Marinacci et al. (2010) and Armillotta et al. (2016). The overall
setup of the prototype simulation is that of a spherical, cold (∼ 1 × 104 K) gas
cloud of 100 pc radius moving along the x-axis with a velocity of 75 km/s. This
is the estimated velocity at which a cloud should be ejected from the disc in order
to reach heights of a few kiloparsecs. In this chapter we study the motion of the
cloud when no radiative cooling is considered. A complete model of the motion of
a fountain cloud through the corona, should take into account its interaction with
the gravitational potential of the galactic disc. A ballistic trajectory is expected,
where the ejected cloud orbits over the disc and falls back onto it in ∼ 100 Myrs
(Fraternali & Binney 2006). However, in these simulations we neglect the gravi-

39
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tational acceleration. This is justified because, during their orbits, the clouds do
not change significantly their distance from the galactic disc, reaching at most
heights of a few kpc. Also, their distances from the Galaxy center vary by less
than 30% (Fraternali & Binney 2006; Marasco et al. 2012). Furthermore, if the
corona is in hydrostatic equilibrium with the gravitational potential, the coronal
density is not expected to vary much and we can neglect its variation along the
clouds trajectories. We chose a radius of 100 pc because this is the typical radius
for a cloud in order to survive evaporation (due to ablation from the coronal gas
and mixing between the two fluids) long enough to fall back onto the disc (Mari-
nacci et al. 2010). Also, this radius produces similar masses as those observed by
Wakker et al. (2008) for Intermediate Velocity Clouds (IVCs).
The total particle density of the corona is set to n = 10−3 cm−3 and assuming pres-
sure equilibrium between the cloud and the coronal gas, a density of 2×10−1 cm−3

is found for the cloud. This value for coronal density implies ne ' 0.5×10−3 cm−3,
that is lower than the density ne ' 2.6 × 10−3 cm−3 found in Fukugita & Pee-
bles (2006) at r = 10 kpc for a very massive corona but it is comparable to
n = 4× 10−4 cm−3 at r = 10 kpc above the plane adopted by Heitsch & Putman
(2009). In order to smooth the density gradient at the cloud-corona interface,
an annulus of 10 pc width is introduced around the cloud, where the density de-
creases exponentially. This annulus allows the density transition from the high
value at the interior of the cloud to the rarefied values of the coronal gas, and its
spatial width is indicated by the parameter ∆ = 10 pc. The coronal temperature
is fixed at 2 × 106 K, as estimated observationally by Miller & Bregman (2015),
while the cloud temperature is initially set to 104 K. We analysed the evolution
of gas at temperatures below T = 2 × 104 K as a tracer for H I1. Given the high
temperatures, the coronal gas is fully ionized, while the cold gas cloud is assumed
completely neutral.

1Assuming Collisional Ionization Equilibrium (CIE), the gas at temperatures below 2× 104K
should be less than 50% ionized.
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Cloud Corona
Temperature [ K] 1× 104 2× 106

Density [ cm−3] 2× 10−1† 1× 10−3

X Velocity [ km/s] 75 0
Y velocity [ km/s] 0 0
Atomic weight* 2.069 0.998
† This value has been obtained by assuming pressure equilibrium and specifying
coronal density and temperature and cloud temperature: nc = Th

Tc
nh.

* The Atomic weight is multiplied by the factor mH
10−24 = 1.67, where mH is the

hydrogen mass.

Table 3.1: Initialization of the parameters for the implementation of the galac-
tic fountain simulation.

3.2 Non-AMR implementation

Starting from Marinacci et al. (2010), a number of simulations of galactic foun-
tain’s clouds have been performed over the last few years. The main goal has been
the estimation of the amount of hot gas accreted through the interaction between
the cloud and the corona, and the identification of a constraint on gas accretion
in Milky Way-type galaxies. The main follow-up of such studies is the work by
Armillotta et al. (2016), where thermal conduction is taken into account together
with radiative cooling. However, the greatest limitation of the previous analysis
is that only 2D simulations have been performed. This was due to the fixed-grid
that made the extension to a 3D geometry prohibitive. In particular the fixed-grid
codes: ECHO++ (Marinacci et al. 2010) and ATHENA (Armillotta et al. 2016)
have been used. Thus, an AMR implementation of the problem is required in
order to speed up the computation and open to the possibility of performing 3D
simulations of the problem.
In order to estimate the main differences with the other codes, we first performed
fixed-grid simulations of the galactic fountain model, using ENZO. The first step
of our investigation is to estimate the differences between the codes when radia-
tive cooling is switched off and ENZO is treated as a fixed-grid code. Once an
agreement with ATHENA is found in this case, then the same setup is used in the
AMR simulations.
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(a)

(b)

Figure 3.1: Initial setup of the temperature distribution in our adiabatic simulation with
ENZO fixed-grid (4 pc× 4 pc): the AMR is switched off. b) The temporal evolution of
the cloud is shown with temperature snapshots at different times (upper left corners).
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Not including radiative cooling in ENZO, the interaction between the cloud and
the coronal gas is uniquely the Kelvin - Helmholtz (KH) instability generated on
the interface between the two gases. The cloud, during its motion, is progressively
flattened perpendicularly to its motion by ram pressure, meanwhile its outer layers
get detached from the main body, forming a wake of turbulent gas in the opposite
direction to the cloud’s trajectory. The wake is the locus of mixing between the
two gases. Here, the creation of vortexes magnifies the contact surface between
hot and cold gas, enhancing the efficiency of mixing. The main effect of the lacking
of a radiative cooling function is the heating up of the cold material, so that the
cloud is constantly deprived of its constituents and faces a gradual evaporation.
Temperature snapshots of the system at fixed timesteps are presented in figure
3.1b. A perfect horizontal simmetry can be seen as well as the turbulent structure
of the wake. The head of the cloud is not completely disrupted, suggesting that
the time for complete evaporation could be much longer.
The temperature treshold for gas is T = 2 × 104 K, only gas temperatures below
this value are considered. All simulations are performed in a 2D geometry, by
suppression of the dimension perpendicular to the cloud velocity. This overall setup
implies that the cloud is indeed an infinite cylinder, travelling perpendicularly to
its long axis, with initial circular cross-section radius Rcl = 100 pc. The masses
obtained with these simulations are therefore quantities per unit lenght of the
cylinder. In order to relate these to the masses relative to an initially spherical
cloud of radius Rcl, we need to multiply them by the length 4Rcl/3 within which
the mass of the cylinder equals that of the spherical cloud.
The cold gas mass is obtained by summing mass densities over all cells satisfying
the condition Ti,j < 2 × 104 K, where subscripts “i” and “j” indicate the cell’s
position in the domain. This sum is then multiplied by the geometry correcting
factor, obtaining equation 3.1:

M = 4
3Rcl

m∑
i=1

n∑
j=1

ρi,j(T < 2× 104 K)Ai,j (3.1)

The mass - weighted velocity of the cold gas is instead calculated as follows:
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< v >=
∑Nx
i=1

∑Ny
j=1 ρi,j(T < 2× 104 K)vi,j(T < 2× 104 K)∑Nx

i=1
∑Ny
j=1 ρi,j(T < 2× 104 K)

(3.2)

Here, Nx and Ny correspond to the numbers of cells on the x and y directions
of the domain respectively. As a preliminary analysis, a comparison between the
two codes not using AMR on ENZO has been performed. The, constant in time,
resolution is everywhere in the domain fixed at 4 pc × 4 pc (as shown in figures
3.1). After the analysis, a temporal evolution curve for cold gas mass and mean
velocity is obtained, as shown in fig: 3.2. Here the red curve with triangles is the
one obtained with ENZO, while the green one with squares, with ATHENA.

Figure 3.2: Cold gas mass and mean velocity temporal evolutions. The red curve with
triangles is obtained with ENZO, the green one with squares, with ATHENA. MInit is
the cold gas initial mass.

From fig. 3.2 (left panel) we can obtain a first, rough estimate of the amount
of evaporated mass. The initial cold (T < 2 × 104 K) gas mass is MInit = 2.32 ×
104 M�, while at the end of the evolution it has been reduced to 1.98 × 104 M�,
thus a 15% decrease. In an initial phase, lasting up to 10 Myrs, the simulations
performed with ENZO and ATHENA behave exactly in the same way, due to the
fact that the instability has not yet developed. Later on, as the wake gets more
and more extended and the gas state more and more turbulent, the cold gas mass
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estimated by ENZO is slightly higher with respect to ATHENA. As shown in fig.
3.2 (left), this trend is more or less maintained over the whole evolution, up to
60 Myrs from the beginning. However the discrepancy between the two results,
at 60 Myrs, is less than 1% over the initial mass and not much higher at 40 and
45 Myrs where it reaches a maximum. As for the velocity, the two behaviours
are alike over the whole simulation time, except for the last point, where a 1.3%
divergence can be estimated. The conclusion of this initial analysis is that there is
an overall convergence for adiabatic simulations between the two codes if ENZO
is used as fixed grid (no AMR).

3.3 Introduction of the AMR

In this section we are going to explain how the introduction of AMR changes the
above results. The computational domain is initially divided into 150 × 50 cells
with resolution 40 pc× 40 pc. We initially studied the behaviour of ENZO when
the over-density criterion (see section 2.3.1) is used for refinement, allowing for a
high resolution to be reached in the most refined cells of 2.5 pc × 2.5 pc. Once
a set of appropriate values is found for this criterion, in order to speed up the
computation, we decrease the resolution of the most refined cells to 4 pc × 4 pc
(section 3.3.2). In section 3.3.4 we discuss the necessity of a different initialization
of the problem and we conclude by comparing the results obtained with different
refinement criteria.

3.3.1 Over-density refining criterion

We considered the most used criterion for refinement (Regan et al. 2007; Iaconi
et al. 2016; Luo et al. 2016; Kim et al. 2016) and looked for an agreement with
non-AMR data. The mentioned criterion is the Refinement By Barion Mass (see
chapter 2.3.1 for an accurate description), here on referred to as over-density. In
particular, by leaving the parameter MinimumMassForRefinementLevelExponent
to the default value of 0, a convergence of the results to a common value is requested
for different values of the parameter MinimumOverDensityForRefinement, in order
to identify the best suited to the problem. We set the lowest resolution to 40 pc×
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40 pc, the highest level to 4 and the refinement factor to 2 (for a detailed description
of these parameters see chapter 2) and we performed 4 different simulations by
simply varying this density treshold. Given this setup, the highest resolution
reached is 40 pc/24 = 2.5 pc in the densest regions, while resolutions in levels 1,
2, and 3 are respectively: 20 pc × 20 pc, 10 pc × 10 pc and 5 pc × 5 pc. The
purpose of this initial phase is to understand if a treshold in density exists that
can guarantee convergence. In tab 3.2 we show, for each initial overdensity for
refinement, the obtained densities relative to every level of refinement, computed
by replacing appropriate values into equation 2.18 (using the default value for
εl = 0.).

ρmin 8.350 0.418 0.167 0.017
Lev 1 33.4 1.672 0.668 0.069
Lev 2 133.6 6.688 2.672 0.267
Lev 3 533.4 26.752 10.688 1.07
Lev 4 2137.6 107.008 42.752 34.28

Densities are in 10−26 g/cm3.

Table 3.2: Adopted values for Minimum over-densities and density tresholds at each
level. ρmin is the density treshold of level 0 grids in physical units. From left to rigth,
they correspond to the over-densities OD = 5, 0.25, 0.1 and 0.01, whose gas temperature
distributions are shown in fig. 3.3.

The main goal in this first step is to identify the appropriate set of parameters
that properly resolve the wake of the cloud, during its whole evolution. The region
including the wake is the most important one in order to study the interaction
between the two fluids. Here, the development of a turbulent regime and the
creation of vortexes enhance the efficiency of mixing (as seen in fig. 3.1). In
order to maintain the advantage of an AMR code with respect to a fixed-grid, an
appropriate setting of refinement criteria and corresponding parameters has to be
done. If a criterion is verified at different levels in a large portion of the domain,
that whole portion is refined and the computational advantage of using an AMR
code would be negligible. In fig. 3.3 temperature snapshots at time 60 Myrs are
shown for the different choices of the MinimumOverDensityForRefinement (here
on, over-density) parameter. On top of the temperature maps the grids computed



3.3. INTRODUCTION OF THE AMR 47

by ENZO are outlined, in gray scale: a darker gray implies a higher level, thus a
region computed at higher resolution.

Figure 3.3: Temperature snapshots of the cloud in its final stage after 60 Myrs, for
4 different cases of initial overdensity (shown in the upper left of each panel). The
morphology of the wake is heavily dependant on this parameter.

The top left panel of figure 3.3 shows a grid distribution limited to the densest
region of the cloud, when the over-density parameter is set to 5. With this distribu-
tion the wake and the coronal gas are left at resolution 40 pc×40 pc, with dramatic
consequences for the evolution of the system. Furthermore, the value here adopted
is suggested on ENZO’s online documentation2 and on the reference paper (Bryan
et al. 2014). The situation changes when we decrease the over-density parameter:
for a value of 0.25 (top right panel) not only the cloud itself, but also part of the
wake is included in the first refinement grid; however this grid is only resolved at
20 pc× 20 pc. A further decrease in the over-density parameter leads to a better
inclusion of the wake. If the over-density parameter is set to 0.1, the whole wake
is well included in a 20 pc resolution grid, while vortexes at ∼ 4 kpc are resolved
at 10 pc.
The last simulation that we present has been carried out by setting the over-density
parameter to a fine-tuned very low value. This value has been determined in a
backward way: by assuming an overdensity 3.328 × 10−26 g/cm3 to be resolved
with a 2.5 pc× 2.5 pc resolution grid and dividing by the factor 2d∗l = 22∗4 = 256,
where l and d are the level and the dimensionality of the problem respectively. The

2http://enzo.readthedocs.io/en/latest/parameters/hierarchy.html

 http://enzo.readthedocs.io/en/latest/parameters/hierarchy.html
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grid refinement is far more extended over the whole domain, covering it with grids
at much higher resolutions than in the previous cases. The simulation’s domain is
indeed all resolved at 10 pc×10 pc resolution, while for exceeding values of density,
levels 3 and 4 are created (reaching resolutions 5 pc × 5 pc and 2.5 pc × 2.5 pc
respectively). Even if this coverage assures a good resolution for the cloud’s evolu-
tion, it partially neutralizes the advantages of working with an AMR code, because
the increase in resolution implies an increase in the overall number of cells, and
consequently in computational time. In this case the computational time is almost
2 h on 4 CPUs while for the previous simulations it was of a few minutes. As for
the fixed-grid simulation at resolution 4 pc× 4 pc, the computational time needed
on the same architechture is ∼ 8h.

Figure 3.4: Cold gas mass and mean velocity of the cold (T < 2 × 104 K) gas as a
function of time obtained with ENZO using AMR for different values of the over-density
parameter.

The trends of the cold gas mass and velocity, shown in fig. 3.4, are self-
explanatory. As expected, the most divergent result is the one obtained by setting
the over-density parameter to 5. Here the temporal curve is completely different
from the others. In this case, the result is biased by the dominant effect of nu-
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merical diffusion. In the Eulerian theory a cell must be big enough to represent a
statistically significant amount of gas with overall similar properties. The impli-
cation of this consideration is that gradients in fluid’s properties must be resolved
with an appropriate amount of adjacent cells, because each cell cannot represent
two states of the gas at the same time. Equivalently, any significative substructure
must be resolved by an appropriate number of adjacent cells. When this does not
happen, so that a single cell is overposed to a gradient or a substructure, the phys-
ical quantity stored in the cell does not return a realistic value for the underlying
gas, but a spatial mean instead. Furthermore, by testing this criterion with inter-
mediate values between 5 and 0.01, we found that an overall convergence is found
if the over-density parameter is below 0.12. Despite this “statistical” evidence,
figure 3.3 shows how the structures formed using different over-density parameters
clearly have different morphologies.
Figure 3.5 shows a zoomed region of the wake, first resolved at 2.5 pc×2.5 pc (left)
and then at 40 pc× 40 pc. The distribution of cold gas is greatly different in the
two cases. All the substructures in the highly resolved case are not distinguishable
at low resolution. This difference has the effect of dramatically smoothing the gra-
dients in the gas properties and potentially invalidate the final results. Numerical
diffusion is typical of eulerian codes and of course is not completely avoidable, due
to the limited cell’s size definition of this type of codes. For static grid codes, the
maximum resolution is reached everywhere in the domain, so that only gradients
on smaller scales will not be resolved. For AMR codes instead, there is a much
higher risk of numerical diffusion at every level if the refinement criterion perfor-
mance is not well monitored. This is exactly what happens when, in this problem
case, the over-density parameter is set to 5. Here, numerical diffusion is dominant
(fig. 3.3 top left panel), leading to a massive overestimation of evaporation of the
cloud gas (fig. 3.4, blue line with squares).
The problem of numerical diffusion can be limited by increasing the resolution,
thus resolving structures with a sufficient number of cells.
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Figure 3.5: Zooming over a typical structure in the 2.5 pc × 2.5 pc fixed resolution
simulation with ENZO. Overplotted cells in the left panel have dimensions 40 pc×40 pc
and represent the size of the initial (lowest) resolution of the AMR setup. Right panel
shows the configuration of the same region reached by the simulation with 40 pc×40 pc
cells.

3.3.2 Matching the fixed-grid results

Once established the best choice for this parameter, another set of tests has been
run, in order to compare the AMR to the static grid results obtained with ENZO.
The domain has been divided into 188 × 62 cells of initial resolution 32 pc ×
32 pc each. By setting the Refinement parameter to 2 and the highest generable
level to 3, the simulation is designed to reach, in the domain’s densest regions,
a 4 pc × 4 pc resolution. This is the same resolution adopted in the fixed-grid,
adiabatic simulations obtained with ATHENA and ENZO. Four different values
have been selected for the overdensity parameter, starting from previous analysis’
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best compromise between number of grids and accuracy (0.1) towards the minimum
one used (0.0078125). The results are shown in fig. 3.6 and are definitely not that
reassuring.

Figure 3.6: Cold gas mass and mean velocity temporal evolution for different initial
overdensities. Lowest resolution: 32 pc× 32 pc; highest resolution: 4 pc× 4 pc.

ρmin 0.167 0.167 0.017 0.013
Lev 1 0.668 0.667 0.067 0.052
Lev 2 2.672 2.645 0.267 0.209
Lev 3 10.688 10.581 1.069 0.835

Densities are in 10−26 g/cm3.

Table 3.3: Adopted values for Minimum over-densities and density tresholds at each level.
ρmin is the density treshold of level 0 grids in physical units. From left to rigth, they
correpsond to the over-densities OD = 0.1, 0.0999, 0.01 and 0.0078125, whose results are
shown in fig. 3.6.

Even if, as for the previous analysis, a convergence for solutions in AMR im-
plementations is reached, it seems that a discrepancy with the static grid results
exists: AMR sistematically overestimates the evaporation of the cloud (the de-
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crease of cold gas due to heating up by the coronal gas). This discrepancy is of
about 10% during the whole evolution, meaning that this treatment for refine-
ment is not completely accurate. Also, velocities show a divergence starting from
30 Myrs, up till the end of the simulation. For completeness, tab. 3.3 shows the
new values for initial over-densities adopted and the density tresholds for each
level.

3.3.3 Fine tuning of the overdensity parameters

(a)

(b)

Figure 3.7: Contours at ρ = 1.× 10−27 g/cm3 on a density snapshot obtained from the
fixed-grid simulation after 60 Myrs (3.7a) and temperature profile, at the same time, for
our fine-tuned overdensity simulation (see text) with overplotted refinement grids (3.7b).

The last attempt of finding convergence between non-AMR and AMR codes,
using the criterion before mentioned is performed on the basis of an “a posteriori”
analysis. We tried to select by hand the regions that we wished to be computed
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at high resolution by displaying density contours on ENZO 4 pc× 4 pc resolution
static grid’s output. Then we determined a set of parameters for the over-density
criterion that let us impose the highest resolution upon the desired regions. A
contour at density 1× 10−27 g/cm3 (corresponding to 0.1 in code units) has been
selected (fig. 3.7a). This choice is made in order to cover the wide area including
both wake and cloud throughout the whole evolution of the system.
There are two possible ways to reach the highest resolution at these densities. The
first one is to set the initial over-density to ρflag = ρ(l = 3)/23∗d = 0.1/26 = 0.0016,
but the first analysis showed that for a value below 0.1 the refinement is too
intensive, and a large part of the whole domain is refined, slowing down enormously
the simulation. The second one is to take an initial overdensity slightly larger than
the coronal density (in code units: 0.0998) and modify the exponent of equation
2.18 (MinimumMassForRefinementLevelExponent, εl), obtained by inversion of
equation 2.18, and precisely:

εl = 1
l

logr
[
ρ(l)
ρInit

]
− d (3.3)

Where l is the level, ρ(l) and ρInit are the density tresholds at level l and 0 respec-
tively and r is the refinement parameter.

Level (l), Resolution 1, 16 pc 2, 8 pc 3, 4 pc
ρ(l), εl = −1.99952 0.16688 0.16695 0.16700
ρ(l), εl = 0 0.667 2.669 10.677

Densities are in 10−26 g/cm3.

Table 3.4: Adopted fine-tuned values for Minimum overdensities and densitie tresholds
at each level in the case of εl = 0 (default) and the adopted value. The over-density
parameter at the coarsest level (32 pc) is 0.16683× 10−26 g/cm3.

Using εl (by default εl = 0), a modification to the density tresholds for each
level is possible to perform. We want to create 3 levels (composed of grids at
resolutions 16 pc× 16 pc, 8 pc× 8 pc and 4 pc× 4 pc respectively) in a way that
the higher one resolves densities of 1×10−27 g/cm3. Following this second method,
the value −1.99952 is found for εl. In this way the gap in density between each
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level is drastically reduced, as shown in tab. 3.4, and the desired density is reached
at the maximum spatial resolution 4 pc × 4 pc. Results for this last attempt are
shown in fig. 3.8. There is no appreciable improvement with respect to the other
cases, moreover the computational time is much longer.
The overall distribution of the best resolution grids follows the contours outlined
in fig. 3.7a quite well, as one may see in fig. 3.7b. The discrepancy between AMR
and non-AMR codes is still up to 10%. Another important feature showed in
fig. 3.7b is the distortion in gas spatial distribution with respect to the horizontal
axis. If in static grid codes there is a perfect horizontal simmetry, in the AMR
case, especially the last one analysed, we see no preferential axis of simmetry.
By comparing with the static grid 4 pc× 4 pc resolution simulation obtained with
ENZO (see fig. 3.1), the difference is quite striking and could open to an interesting
questioning about morphologies in AMR simulations. However, in order to proceed
with the further examination of the physical problem treated, we do not explore
the causes and the consequences of this spatial deformation here.

Figure 3.8: Cold gas mass and mean velocity temporal evolution for different initial over-
densities. Lowest resolution: 32 pc× 32 pc; highest resolution: 4 pc× 4 pc. Comparison
of non-AMR and AMR treatments.
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3.3.4 Initial high-resolution box

In the AMR experiments performed so far the full simulation box starts with
constant resolution and only after the first time step the refinement criteria are
applied. Here we consider the case in which the cloud is initially enveloped in a
grid at maximum resolution (4 pc × 4 pc). The domain’s setup can be seen in
figure 3.9.

Figure 3.9: The cloud is initially enveloped in a 4 pc×4 pc grid, while the rest of domain
is at 32 pc× 32 pc.

Figure 3.10: 60 Myrs temperature snapshot of AMR simulation with the initial config-
uration (high resolution box over the cloud) shown in fig. 3.9.

The evolution of the cloud with this initial configuration is much more similar
to the one obtained at fixed resolutions, at least for what concernes the temporal
evolution of the cold gas mass and velocity. Results are shown in figure 3.11.
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Figure 3.11: The blue line is obtained with the initial configuration described in the text.
Overplotted are the evolution for the best of the previous cases and fixed grid ENZO
and ATHENA results.

The overall agreement is much better than in the cases previously analysed,
except for strong oscillations in the mass that do seem to have a counterpart in
the velocity after 30 Myrs. At 60 Myrs a convergence is found. Also, a better
morphological reproduction of the non-AMR simulation is observed, as one may
see in fig. 3.10, even if an overall asimmetry is present. In fig. 3.12 and fig.
3.14 we report the temporal evolution of cold gas mass and velocity respectively,
obtained with values for the over-density parameter already tested without the
initial box setting. Every value for the over-density parameter (with εl = 0), now
well reproduces the results obtained with the fixed-grid simulations, exception
made for OD = 5. However, despite this agreement, the gas distribution is very
different from case to case (as shown in fig. 3.13) and the coverage of the grids at
high resolution resembles the one obtained without the Initial Box setting.
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Figure 3.12: Comparison of cold gas mass temporal evolution as obtained with different
values for the over-density parameter. In every box, the blue squares refer to simulations
with the initial box configuration, while the cyan dots to the simulations with coarse
initial resolution (section 3.3).

Figure 3.13: Temperature snapshots of the cloud in its final stage after 60 Myrs, for the
same 4 cases of initial overdensity (shown in the upper left of each panel), whose results
are shown in fig. 3.12 and 3.14
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Figure 3.14: Comparison of cold gas velocity temporal evolution as obtained with the
values for the over-density parameter shown in 3.12. In every box, the blue squares refer
to simulations with the initial box configuration, while the cyan dots to the simulations
with coarse initial resolution (section 3.3).

As previously mentioned, the over-density is the most used criterion for re-
finement in AMR simulations. This is why this chapter has been focussed on the
exploration of the whole parameter-spectrum for this criterion. We can conclude
that, at least for the study of turbulent mixing between different gas phases one
needs to adopt the following precautions: i) an initial refinement of the region of
interest (region at high density), ii) use very low values of the overdensity param-
eter, ideally two orders of magnitude lower than the default value in ENZO. This
makes the use of this criterion rather impractical and in the following we explore
the possibility of employing different refinement criteria.
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3.3.5 Other refinement criteria

Using the same intial setup, two more criteria for refinement have been adopted in
two separate runs. The two cited criteria are the Refinement for Second Derivative
and the Refinement By Slope, both described in chapter 2. The former has been
taken into account as applied to two different fields: density and total energy. In
each case, the associated parameters are fixed to the same values and precisely:
MinimumSecondDerivativeForRefinement = 0.3, and SecondDerivativeEpsilon
= 0.01. The first one is the treshold that a cell needs to exceed in order for it to
be refined. The second is a parameter used to avoid refining around oscillations
of the field with respect to the mean value. The higher the value, the more it
will filter out. Both these values are default. A comparison of these two tests is
shown in fig. 3.15b. At first glance one can immediately realize that this criterion
performs better than the overdensity. An overall agreement with respect to the
fixed-grid simulations is present throughout the all evolution. In particular, at
this point in analysis, this criterion seems to provide the best results out of all the
previous cases, both for its convergence to the Non-AMR case and for the spatial
distribution of the gas (see fig. 3.15). Furthermore, from figure 3.15b, a better
convergence is found if this criterion is applied to density, instead of total energy.
As one may notice from figure 3.16, we reach a convergence within 3% for mass
and 0.9% for mean velocity.
The last criterion used is the Refinement By Slope. Similarly to the Second Deriva-
tive criterion, this method refers to a spatial gradient of a certain field (selected by
the user) as a discriminating property for refinement. If, in a given cell, this value
is grater than a treshold (imposed by the user), the cell is refined. By using the de-
fault value for the parameter MinimumSlopeForRefinement (the treshold), while
still adopting the initial setup, we found that this criterion grants the best repro-
duction of the fixed-grid data, with an overall discrepancy of less than 1% during
the whole evolution except fot the time 40 Myrs where the divergence reaches a
maximum of 4%. A comparison between the best criteria for the adiabatic case is
shown in figure 3.16.
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(a) Morphological comparison of both of SecondDerivative tests.

(b) Cold gas mass and velocity temporal evolution for two tests.

Figure 3.15: A morphological (fig. 3.15a) and quantitative comparison (fig. 3.15b)
between the same criterion (Second Derivative) applied to two different fields: Density
and Total Energy.
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Tab. 3.5 shows the time performances of all the best cases for each criterion
used, compared to the computational time needed by the fixed-grid simulation
at resolution 4 pc × 4 pc. All simulations have been performed on a 8 CPUs
architechture.

Fixed-grid OD SD Slope

Computational time ∼ 8h ∼ 3h ∼ 34min ∼ 18min

Table 3.5: Computational time needed for fixed-grid and AMR simulations using the
described Refinement Criteria. OD indicates the Over-density criterion with fine-tuning;
SD the Second Derivative applied to density and Slope is applied to density too.

In conclusion, we identify the SecondDerivative and the Slope criteria applied
to density as the best suited for this problem, the latter being the fastest.

Figure 3.16: Comparison in cold gas mass and velocity for the adiabatic case. The two
most accurate criteria are compared with a percentage scatter with respect to the ENZO
simulation at fixed resolution 4 pc× 4 pc.
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Figure 3.17: Temperature snapshots after 60 Myrs obtained with the best simulations
for the adiabatic case of the Galactic Fountain mechanism.

With respect to the over-density they do not require a fine-tuning of the param-
eters and produce the best results in less computational time. It is thus reasonable
to use the Slope criterion applied to density as our first choice, followed by Sec-
ondDerivative (applied to density) and over-density (fine-tuned). By looking at
the temperature snapshots in fig. 3.17, a good follow-up of the evolution of the
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cloud is visible for all the three criteria used. However, a large portion of the entire
domain is resolved at the highest resolution for the over-density case, causing the
simulation to slow down considerably with respect to the other two shown. Both
the SecondDerivative and the Slope instead, guarantee an efficient coverage of the
domain, resolving at the highest resolution only the necessary regions, thus exploit-
ing the true strength of AMR techniques. Furthermore, as afore mentioned, the
definition of an initial box resolving the cloud at the highest resolution is essential
in order to have a good match between the results.
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Chapter 4

Simulations with Radiative
Cooling

In the previous chapter we found the best refinement criterion for adiabatic AMR
simulations using the ENZO code. In this chapter we consider a more realistic
treatment by including radiative cooling in the calculation. Our implementation
of radiative cooling is based on previous works by Marinacci et al. (2010) and
Armillotta et al. (2016), where the adopted cooling function is taken from Suther-
land & Dopita (1993) and implemented in ENZO as explained in section 2.4.1.
As previously described in chapter 3, during the motion of the cold fountain cloud
through the hot coronal gas, a turbulent wake develops behind the cloud where
the two gas components mix at an intermediate temperature. If this mixture can
radiatively cool, part of this gas can condence within the wake. Both Marinacci
et al. (2010) and Armillotta et al. (2016) used fixed-grid codes.
In this chapter, we try to understand how the introduction of the AMR treatment
affects the results obtained via fixed-grid codes and how the results depend on the
different refinement criteria. The fixed-grid results are hereby considered the most
accurate, and all the AMR simulations performed are compared to these ones. In
the next sections we use the expression accuracy relatively to AMR simulations,
to indicate their accordance with the fixed-grid results.

65
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4.1 Comparison with adiabatic simulations

Figure 4.1: Temperature snapshots after 60 Myrs of a cold (T = 104 K) cloud moving
through the hot (T = 2× 106 K) coronal gas. The top panel is obtained when radiative
cooling is included in the code, while the bottom panel shows the adiabatic case studied
in the previous chapter. Both the simulations are performed using ENZO as a fixed-grid
code at resolution 2 pc× 2 pc.

The introduction of radiative cooling, greatly modifies the charachteristics of
the wake behind the head of the cloud. In fig. 4.1 we show the temperature
snapshots of the system after 60 Myrs from the beginning of the cloud’s motion
through the hot (2 × 106 K) coronal gas. Both the simulations are performed
using ENZO as a fixed-grid code at resolution 2 pc × 2 pc, but the top panel is
obtained when radiative cooling is permitted, while the bottom panel shows the
adiabatic case studied in the previous chapter (chapter 3). First of all, the wake
is far less extended along the y-direction in the simulations with radiative cooling.
The initially spherical cloud is largely disrupted at the end of the simulation with
radiative cooling, while it is symmetrically flattened in the perpendicular direction
of the motion in the adiabatic case. Also, the wake is much cooler than in the adia-
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batic case where the development of turbulence and vortexes limits the presence of
cold gas in the external regions. The motion is almost laminar there and cold gas
can survive without mixing. The gas inside the wake is at temperature beetween
1× 104 K and 2× 106 K, but it is on average higher in the adiabatic case than in
the cooling case. The cold cloudlets populating the wake in the radiative cooling
case, cannot be seen in the adiabatic case, meaning that they can be formed only
assuming a combination of both turbulence and cooling. The interaction between
the corona and the cloud triggers the condensation of the hot gas onto the cloud’s
wake, enhancing the amount of cold gas during the evolution of the system. When
radiative cooling is permitted, cold gas is detectable also at large distances from
the head, leaving a trace of the cloud’s motion during its whole evolution. This be-
haviour is completely absent in the adiabatic case, where the warm gas in the back
of the wake is re-heaten through the mixing with the coronal gas. Finally, after
60 Myrs, the coronal temperature decreases from T = 2×106 K to T ' 1.8×106 K,
due to the introduction of radiative cooling.

4.2 Temporal resolution

In order to find the best compromise between computational time and accuracy
a set of four fixed-grid different simulations at increasing resolutions have been
performed with ENZO (fig. 4.2). At 20 pc× 20 pc and 10 pc× 10 pc resolutions
the results are greatly affected by numerical diffusion: the cloud maintains its
shape throughout the whole evolution and mixing is not efficient. As we move to
higher resolutions, the cloud is more and more disrupted, producing a long wake
of turbulent gas only in the 4 pc× 4 pc case.
We report the temporal evolution of cold gas mass and velocity in fig. 4.3. Note
that the condensation increases with increasing resolution. Increasing the resolu-
tion is the general solution to the problem of numerical diffusion, as mentioned in
chapter 3. Reducing the effect of numerical diffusion leads to a better represen-
tation of mixing between the coronal and the cloud gas, because structures where
the mixing is dominant are resolved with a sufficient amount of cells. For the
following test suite, we chose to work at the resolution 4 pc× 4 pc.



68 CHAPTER 4. SIMULATIONS WITH RADIATIVE COOLING

Figure 4.2: A comparison of the four simulations cited in the text is shown here: 20 pc×
20 pc, 10 pc × 10 pc, 8 pc × 8 pc and 4 pc × 4 pc. Each panel shows a temperature
snapshot of the simulations after 60 Myrs.

Figure 4.3: A comparison of cold (T < 2× 104 K) gas mass and mean velocity temporal
evolution is shown for four simulations obtained with ENZO, fixed-grid at different
resolutions.

As we outlined in the previous chapter, fixed-grid simulations at 4 pc × 4 pc
performed with ENZO (when AMR is not active) and ATHENA, reach a good
agreement in the estimation of the cold gas mass during the whole evolution of
the system. How radiative cooling perturbs this agreement depends largely on
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its implementation in both the codes. If we consider ENZO as a fixed-grid code,
no level hierarchy is present, thus the timestep is computed on the only existing
grid, covering the entire domain. Furthermore, the absence of gravitational and
magnetic fields implies that the only condition on the determination of timestep
is the Courant-Friedrichs-Lewy (CFL) condition for accuracy and stability of an
explicit finite difference discretization of the Euler equations. In particular, ENZO
imposes the effective timestep to be the minimum between all the timesteps com-
puted for every cell of the computational domain. Thus, in a one-dimensional
representation:

∆tx = min
(
kCFL

∆x
cs + |vx|

)
(4.1)

Where ∆x is the dimension of the cell, cs is the sound speed of the gas in that
cell and for an ideal fluid is cs = (γP/ρ)1/2 (γ being the ratio of specific heats,
P the pressure and ρ the density of the cell). vx is the velocity of the gas in
the cell along x-direction and kCFL is a dimensionless, numerical constant with
value 0 < kCFL ≤ 1 that ensures that the CFL condition is always met. This
one-dimensional formulation is extended to a multi-dimensional geometry using
the armonic average of the timestep found along each of the coordinate axes. So
letting ∆tx, ∆ty and ∆tz be the analogous of equation 4.1 along the x, y and z

axes we have:
∆tCFL = min

(
kCFL

1/∆tx + 1/∆ty + 1/∆tz

)
(4.2)

A typical value for the CFL parameter is kCFL ∼ 03−0.5 (Bryan et al. 2014). When
radiative cooling is considered, a further constraint on the timestep is used only
for the energy update, in order to include energy losses due to radiative cooling. In
particular, the cooling timestep is not permitted to exceed 10% of the minimum
cooling time. Thus, while the hydrodynamical timestep is limited by the CFL
condition, the cooling process is sub-cycled with a cooling timestep resolution.
When an adiabatic simulation is performed with ATHENA, the timestep is also
limited by the CFL condition. However, when a cooling function is implemented
the whole hydrodynamics is resolved with a timestep equal to the 10% of the
smallest cooling time.
In order to compare the results obtained with the two codes, we need first to find
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an agreement between the timesteps computed at every time by each one. Using
ENZO as a fixed-grid code (without AMR), we performed three simulations at
three different CFL parameters: 0.4, 0.1, 0.05 and compared the outcomes with
the results obtained with ATHENA at the same resolution (4 pc × 4 pc). This
comparison is shown in fig. 4.4.

Figure 4.4: Cold gas mass and velocity temporal evolution for three simulations with
different CFL parameter obtained with ENZO, compared to ATHENA. Below each panel
the residuals with respect to ATHENA results are shown.

We notice that the cold gas mass decreases with decreasing CFL parameter,
thus the timestep. The smallest deviation from ATHENA’s results is obtained
with a CFL parameter equal to 0.05, while for a standard value (i.e. 0.4) the
divergence is non-negligible at the end of the simulation. Given the relatively
small difference between the cases with 0.1 and 0.05 (at most one percentage point
in the condensation), we choose to adopt, for the following simulations, a CFL
parameter equal to 0.1 in order to maintain a low computational cost.
In Armillotta et al. (2016), simulations have been performed at a fixed resolution
of 2 pc × 2 pc, while the timestep is imposed to be 10% of the cooling time, in
order to temporally resolve the radiative cooling. Once the best CFL parameter
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has been found, we enhanced by a factor 2 the resolution in our simulations, in
order to compare the results obtained at 2 pc × 2 pc. Also, we extended the
time of computation to 80 Myrs in order to cover a greater fraction of the typical
orbital time of a fountain cloud (Fraternali & Binney 2006). The initial setup of
the simulations here described is the same used in the previous chapter (see tab.
3.1 in section 3.1): the coronal temperature and number density are T = 2×106 K
and n = 1 × 10−3 cm−3, while the temperature of the cloud’s gas is T = 104 K
and the number density is obtained assuming pressure equilibrium with the hot
medium, finding n = 1× 10−1 cm−3. Both fluids have metallicity [Fe/H] = 0.5.

Figure 4.5: Comparison of cold gas mass and velocity temporal evolution between
ATHENA and ENZO with no AMR at fixed resolution 2 pc× 2 pc.

The comparison between the results is shown in fig. 4.5. A general agree-
ment between the two codes is evident, but deviations of ENZO with respect to
ATHENA are clear at any time. In particular, at 80 Myrs ENZO underestimates
the condensation found with ATHENA by ∼ 10%, while the cold gas mean velocity
is of order 7% overestimated. Therefore, it appears that mixing between the two
phases of the gas is slightly less efficient using ENZO. In Fig. 4.6 we present the
fixed-grid simulation obtained with ENZO at the resolution 2 pc× 2 pc.
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Figure 4.6: Temperature snapshots of the gas at different times (upper right corners)
from the start of the fixed-grid simulation at resolution 2 pc×2 pc obtained with ENZO.

4.3 AMR simulations

In this section we describe the results obtained with ENZO once the AMR is active.
We based our analysis on the criteria described in chapter 2 and searched for a
convergence with the fixed-grid simulations, obtained with ENZO and ATHENA.
In chapter 3 we pointed out how the introduction of a high resolution box envelop-
ing the cloud in the initial configuration is essential for the outcome of this kind
of simulations. We also considered three different refinement criteria in order to
find the most suited for our case, identifying the Slope refinement criterion as the
fastest and the most accurate. The same criteria are used in these simulations.
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Moreover, we increased the number of levels from 3 to 4 with a refinement factor
r = 2. Thus, while the root (coarsest) grid has a resolution 32 pc × 32 pc, the
resolution on level 4 is 2 pc× 2 pc.

4.3.1 Over-density criterion

Figure 4.7: Temperature snapshot of the cloud after 80 Myrs, using the over-density
criterion for refinement and a density treshold for level 0 OD = 4. The overall resolution
is too low for the Kelvin-Helmholtz instability to fully develop. The distribution of the
boxes at the highest resolution (2 pc× 2 pc) is bearly sufficient to cover the head of the
cloud throughout the evolution. Due to this behaviour, the wake is completely absent.

In chapter 3 we found that the values suggested in Bryan et al. (2014) for the
over-density parameters are not well suited for this problem. We tested this result
also in the case with radiative cooling turned on by performing a single simulation
using a treshold in density OD = 4 for level 0 and εl = 0 (see eq. 2.18). The
gas temperature distribution after 80 Myrs is shown in Fig. 4.7. The resolution is
not high enough for the Kelvin-Helmholtz instability to fully develop and despite
its disruption the cloud walks through the hot medium without mixing efficiently.
As expected from the previous analysis of this criterion, a better tuning of the
parameters is needed in order to describe efficiently the mixing between the two
phases. As in chapter 3 we gradually decreased the initial treshold, looking for a
convergence of the cold gas temporal evolution. Having established that for the
adiabatic simulations a convergence is found for density tresholds below OD = 0.1,
we used this value to perform the first AMR simulation with radiative cooling. It
is however important to stress that this density treshold is very impractical: it can
only be used in these idealized condition and cannot be applied to other problems,
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since it is a slightly higher value than the coronal density in code units.

Figure 4.8: Temperature snapshot of the gas distribution after 80 Myrs using the over-
density criterion, compared to the fixed-grid simulation. The upper panel shows the
fixed-grid simulation, the one in the middle is the case with over-density = 0.1, while
the label "OD, fine-tuned" refers to the use of the parameter εl (see description in the
text).

The next step in the identification of the best set of parameters for the over-
density criterion is the “a posteriori“ approach adopted previously for the adia-
batic simulations. This method is explained in section 3.3.3, but here we used
ATHENA’s density outputs instead of ENZO’s. At any time, the regions we need
to describe at high resolution are the head of the cloud and the whole wake that
develops during its evolution. As mentioned in section 3.3.3 we determined the
density contour that includes such regions from the fixed-grid simulations per-
formed with ATHENA. The selected density value is 1× 10−27 g/cm3 (0.1 in code
units). We need to reach the resolution 2 pc×2 pc on those regions of the domain
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where the density is higher than 1 × 10−27 g/cm3. Using equation 3.3 we found:
εl = −1.9996. Once we insert this value in equation 2.18, we find, for each level,
the corresponding density treshold. The difference between the density tresholds
for the highest and the coarsest levels is the same as in section 3.3.3, however one
more level is introduced here. This implies that the spread between two density
tresholds belonging to two consecutive levels is shortened with respect to the adi-
abatic case.

Figure 4.9: Temporal evolution of cold gas mass and mean velocity, for the two imple-
mentations of the over-density criterion described in the text.

In fig. 4.8 it is possible to appreciate the great difference in the distribution of
grids at different levels between these two implementations of the same criterion.
When the over-density parameter is set to 0.1 the grids belonging to the highest
level (black rectangles in the figure) cover a small (segmented) fraction of the
domain. In particular, the cloud and its wake do not have a high enough resolution
to limit numerical diffusion. Most of the wake is in fact at resolution 16 pc×16 pc
(white contours); even though small patches at higher resolution can be seen,
they are not enough to cover all the relevant regions. The net effect of these
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differences is shown in fig. 4.9, where the temporal evolution of the cold gas mass
and mean velocity is reported. We can see how the amount of cold gas is always
higher when the over-density parameter is set to 0.1, in particular at times later
than 60 Myrs, while the mean velocity is sistematically underestimated. The fine-
tuned implementation instead, gives the overall better agreement with the fixed-
grid results obtained with ATHENA. Also, every simulation produces different
morphologies for the wake, with the fine-tuned simulation being more similar to
the fixed-grid simulations.
As a concluding note in table 4.1, we point out the computational times needed
to perform these simulations when they are run on a gnu platform with 8 CPUs.
While the density treshold OD = 0.1 helps reducing the overall computational
time, the Fine-tuned treshold, following the above discussion, needs much more
time to end and there is no real gain with respect to the fixed-grid.

Fixed-grid OD = 0.1 OD, Fine-tuned

Computational time ∼ 100h ∼ 15h ∼ 71h

Table 4.1: Computational time needed for fixed-grid and AMR simulations using the
two implementations of the over-density criterion described in the text.

4.3.2 Other refinement criteria

We have seen that the over-density criterion in its fine-tuned version is effective in
describing the evolution of cold gas mass and mean velocity over time. However,
the amount of refined cells generated using this approach largely reduces the code
performance. As a consequence, the loss in computational time expected by AMR
simulations with respect to fixed-grid simulations is not significant enough to ex-
tend the analysis to a three-dimensional geometry. Moreover the ad-hoc choice of
the treshold parameters makes this setup totally impractical for general purposes.
Thus, we search for alternatives, by performing the same simulation with other
refinement criteria. In particular, we use the following criteria: Refinement by
Normalized Second Derivative and Slope.
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Second-Derivative Criterion

Figure 4.10: Temperature snapshots after 80 Myrs from the start of the simulations,
obtained applying the Second Derivative Refinement criterion to Density (mid panel)
and Total Energy (bottom panel). The black boxes at the highest resolution (2 pc ×
2 pc) efficiently cover only the wake, while the rest of the domain is left at resolution
32 pc × 32 pc. The top panel shows the gas distribution obtained using ENZO as a
fixed-grid code.

Following the discussion of this criterion performed in the adiabatic simulations
(see section 3.3.5), we applied the Second Derivative Refinement Criterion both to
Density and Total Energy, using the new hierarchy of levels adopted here. In fig.
4.10 a morphological comparison of the gas distribution in both cases is presented.
The wake is well resolved at maximum resolution, while the rest of the domain
is left at resolution 32 pc × 32 pc. We point out here, that the parameters used
for these simulations are suggested in the online documentation1, hence no fine-
tuning is required. In these cases too, the distribution of the gas is morphologically

1http://enzo.readthedocs.io/en/latest/parameters/hierarchy.html

 http://enzo.readthedocs.io/en/latest/parameters/hierarchy.html
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different from the fixed-grid simulation and from one another. For instance, when
the criterion is applied to the Total Energy, the cold and warm gas is quite extended
in the y-direction, with spurs reaching ∼ 1 kpc from the main body of the wake.
When the field used for refinement is the density instead, the wake is more compact
and confined within 1 kpc on the y-axis.

Figure 4.11: Temporal evolution of the cold gas mass and mean velocity as obtained
applying the Second Derivative refinement criterion on density (magenta starred line)
and Total Energy (black dotted line).

Figure 4.11 shows the temporal evolution of the mass and average velocity of
the cold gas over 80 Myrs. Both methods well reproduce the trend obtained with
the ATHENA code, while they sligthly overestimate (underestimate) the amount
of mass (the mean velocity) with respect to ENZO’s fixed-grid evolution.
Despite the high level of accuracy and concordance with the fixed-grid results, this
method is unfortunately very expensive from a computational point of view. The
computation of the Normalized Second Derivative on each cell of the domain at
every timestep requires a long CPU time. In fact, on a 8 CPUs, gnu machine, both
these simulations require a computational time ∼ 70 h. This is the main obstacle
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to an efficient exploitation of the AMR potentialities.

Slope Criterion

Figure 4.12: Temperature snapshots after 80 Myrs from the start of the simulations,
obtained applying the Slope Refinement criterion to Density (mid panel) and Total
Energy (bottom panel). The distribution of the high resolution (black) grids accurately
covers the relevant regions of the wake, in particular if the Slope Criterion is applied to
density. Top panel shows the gas distribution obtained using ENZO as a fixed-grid code.

The Slope criterion can be applied to different fields as well. We chose to follow
the previous discussion and took into consideration the density and total energy
fields, in order to compare the results obtained using this criterion with the ones
found using the Second Derivative criterion. Fig. 4.12 shows a comparison of the
gas distribution after 80 Myrs from the start of the simulations, using the density
(middle panel) and the Total Energy (low panel) as assigned fields. In both cases,
the high resolution (2 pc×2 pc) grids are distributed all over the wake of the cloud,
and the lower level ones envelope the whole system in a mid resolution patch. The
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rest of the domain is left at the lowest resolution (32 pc× 32 pc).

Figure 4.13: Temporal evolution of the cold gas mass and mean veocity as obtained
applying the Slope refinement criterion on density (blue line, plus markers) and Total
Energy (black dotted line) compared to fixed-grid simulations obtained with ENZO (red
line with squares) and ATHENA (green line with diamonds).

A quantitative comparison can be performed by studying the temporal evolu-
tion of cold gas mass and velocity (fig. 4.13). When we apply the Slope criterion to
the total energy, the cold gas mass is sistematically overestimated during the whole
evolution of the cloud, while its application to density guarantees a much better
resemblance to the profile obtained with fixed-grid simulations. Both simulations
require a computational time ∼ 36h to complete.

4.3.3 Comparison between Refinement criteria

The results obtained in the previous sections can now be compared in order to find
the criterion that more than any other guarantees a low computational cost and
accuracy for our problem. As briefly pointed out previously, the morphology of the
wake is very sensitive to changes in setup of the simulations. As an example, in fig.
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4.14 we report the morphological comparison of the AMR simulations performed
using the Slope criterion applied to density on two different computers, both using
gnu libraries and compilers (different versions of the compilers are implemented
on each machine).

Figure 4.14: Temperature snapshot after 80 Myrs from the start of the simulation.
Panels are obtained running the simulation on two different 8CPUs, gnu machines.

This result is also found when other refinement criteria are used. Due to this
feature, we can not infer any constraint on the morphology of the wake. However,
if we consider the evolution of the cold gas mass and velocity, performing the
same simulation on different machines we can estimate the typical computational
error in our simulations. The determination of this error gives a constraint on the
uncertainties in the results obtained also with different criteria. In fig. 4.15 the
temporal evolution of the mass and mean velocity of cold gas are shown for each
refinement criterion. In particular, on each row the left panel shows the evolution
of the cold gas mass, while the right panel shows its mean velocity, obtained using
the criterion on two different machines (blue dotted and cyan starred lines). Both
machines use gnu libraries and compilers (different versions of the compilers are
implemented on each machine); the simulations are performed on 8 CPUs both on
machine 1 and on machine 2.
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Figure 4.15: Results of the AMR simulations performed on two different machines using
the OD Fine-tuned, the Second Derivative and the Slope criteria (from top to bottom);
the red squares are the results obtained with ENZO fixed-grid. Both machines use 8
CPUs and gnu libraries and compilers. Below each panel we show the residuals of each
simulation with respect to the fixed-grid one.
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Below each left and right panel, in fig. 4.15 we plotted the residuals of these two
simulations with respect to the fixed-grid one at resolution 2 pc × 2 pc obtained
with ENZO (red line, squared markers). The first column shows the temporal
evolution of the cold gas mass for the adopted criteria, using their best setup. The
second column instead shows the temporal evolution of the cold gas mean velocity
in each case. It is not possible to identify a common feature in the comparison
between the simulations run on the two machines, thus we conclude that the
spreads between the curves are due to random computational effects. The scatter
between the AMR results is at most 5 percent. In the following we use this value
as a measure of the intrinsic uncertainties of all simulations rms. Thus, AMR
simulations diverging by less than 5% from the fixed-grid results will be accepted
as a valid representation of the cloud evolution.

(a) Slope, Density (b) SD, Density

Figure 4.16: Cold gas mass distribution as a function of temperature for the AMR
simulations obtained using the Slope (left panel) and Second Derivative (right panel)
criteria, on different machines. All machines use different versions of gnu libraries and
compilers. Simulations are run on 8 CPUs on machine 1 and 2, while on machine 3, 24
CPUs have been used. Machine 3 is the Intel OmniPath Cluster MARCONI, developed
by CINECA and Lenovo, whose access has been granted after acceptance of a class C
proposal (approved project: HP10CZMLU1).
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Figure 4.17: Cold gas mass and mean velocity temporal evolution obtained for each
efficient refinement criterion described in this chapter. Below each panel the residuals
with respect to the ENZO fixed-grid dimulation are shown.

Another evidence of the difference between same simulations when they are
run on different machines is the cold gas mass distribution over temperature. Fig.
4.16 shows the mass distribution of the cold (T < 2 × 104 K) gas as a function
of temperature with histograms, after 70 Myrs for the slope and second deriva-
tive criteria obtained with different machines. All machines use gnu libraries and
different versions of compilers. In particular, machine 3 is the Intel OmniPath
Cluster MARCONI2. On the top left corner, the cold gas mass is appointed (in
solar masses) for each machine. After 70 Myrs the gas distribution is slightly dif-
ferent for each machine. In particular, for the Slope case, on machine 1 the cold
gas mass distribution is less peaked at temperatures T ∼ 104 − 104.15 K, while
the tail at lower temperatures is higher. This feature is present also in the Second
Derivative case, even if less accentuated. The distribution of the cold gas mass
on machines 2 and 3 is similar in both cases, even though the peak at T ∼ 104 K
is wider on machine 2 when the Second Derivative criterion is used. At tempera-

2The access to this computer cluster has been granted by the CINECA facility through the
submission and acceptance of the class C proposal HP10CZMLU1.
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tures T > 104.1 K (beyond the peak), machine 3 has a mass excess with respect to
machines 1 and 2, independently on the criterion used.
Finally, from figure 4.17 the temporal evolution of the cold gas mass and mean ve-
locity can be appreciated, as obtained using the best refinement criteria described
in this chapter. Despite the usual overestimation of condensed gas with respect to
the fixed-grid simulation obtained with ENZO, the discrepancy between the rms
is roughly 5 %. Thus, each one of the simulations here shown can be considered
equally valid to represent the cloud’s evolution. In particular, given the low com-
putational time needed by the Slope criterion with respect to the other criteria, we
conclude that the density slope criterion is the best AMR setup for our problem.

4.4 3D simulation

Figure 4.18: 3D prospective render of the
distribution of gas at T < 5×105 K after
60 Myrs. The camera is set at the head
(lower left) of the cloud pointing towards
the wake.

Having found the best refinement crite-
rion in terms of accuracy and speed, we
extended the study of a fountain cloud
moving through the MW’s corona to a 3D
geometry, in order to better understand
the phenomenon in a more realistic envi-
ronment. As for the 2D case, we set the
coarsest resolution to (32 pc)3 and four
levels of refinement are permitted, reach-
ing the highest resolution at (2 pc)3. As
discussed in chapter 3, in a 2D geometry,
the problem is studied as an infinite cylin-
der moving along the perpendicular direc-
tion to its major axis. The results are then
related to a 3D geometry multiplying the
mass by the factor 4/3Rcl, where Rcl is the
initial radius of the cloud. In the three-

dimensional representation the cloud is intially spherical and the mass of the cold
gas is obtained at any time by multiplying each cell’s density by its volume.
A larger contact surface between the cloud and the hot coronal gas in the 3D case
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implies a faster development of KH instabilities. We expect that a quicker mixing
between the two gas phases triggers a larger condensation of the coronal material.
Fig. 4.18 shows a render visualization of the gas distribution after 60 Myrs from
the start of the cloud motion. The whole structure is observed from the head of the
cloud at the lower left of the image, looking back to the wake and we overplot the
colormap. The wake is less extended along the y- and z- directions, with respect
to the 2D case.
In fig. 4.19 and 4.20 we present the distribution of gas at different times for our 3D,
AMR, high resolution simulation using the Slope criterion applied to density. Fig.
4.19 is obtained by slicing the temperature dataset at z = 0. Fig. 4.20 is instead a
projection of the temperature field, for the only gas at temperature T < 2×104 K.
The spatial distribution of the grids can be seen in fig. 4.19. Exception made for
the downstream of the wake, the Slope criterion seems to accurately follow the
evolution of the cloud during its motion through the hot coronal medium: the
majority of the relevant regions are enveloped in grids at resolution (2 pc)3. The
spatial distribution of the warm and cold gas is much more limited, at any time,
on the y-axis with respect to the 2D simulations, as previously noted on fig. 4.18
shows.
Fig. 4.20 shows a projection on the z-axis of the spatial distribution of the gas at
T < 2×104 K. The clumpy nature of the cold gas in the wake can be seen, starting
from 20 Myrs. In particular after 60 Myrs, when the cloud is almost completely
disrupted, the wake seems to be populated with cold structures of sizes ranging
from a few to tens of parsecs.
The quantitative results of the 3D simulation are shown in fig. 4.21 compared to
the 2D fixed-grid simulations obtained with ENZO and ATHENA. As expected,
the condensation of the coronal gas onto the wake of the cloud is extremely ef-
ficient, and the mass of cold gas increases over time much more than in the 2D
case. After 60 Myrs, the cold gas has increased its mass of a 30% with respect to
the initial cloud’s mass, instead of the 17% found with the AMR, applying the
Slope criterion to density, and the fixed-grid simulations performed with ENZO.
As for the mean velocity, the 3D simulation lies between the profile determined
with ATHENA and with ENZO. Thus, the mean velocity is not greatly sensitive
to changes in the distribution and mass of the cold gas.
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Figure 4.19: Slice at z = 0 of the temperature field at different times obtained from a
3D simulation with ENZO, using the Slope criterion applied to density. We overplot the
grids. The distribution of the high resolution (black) grids covers the whole wake except
for the extreme left part at every time. Lower resolutions grids (lighter grey) envelope
the whole system during its evolution.
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Figure 4.20: Projection on the z-axis of the density field at different times obtained from
a 3D simulation with ENZO, using the Slope criterion applied to density. Only the cold
(T < 2× 104 K) gas density is shown here.

We conclude that, in order to study the mixing occurring within a two phases
gas it is essential to perform three-dimensional simulations, only obtainable using
AMR techniques. In particular we do find that, using the AMR code ENZO, the
most convenient refinement criterion for such studies is the Slope criterion applied
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to density, that guarantees both accuracy and computational speed.

Figure 4.21: Temporal evolution of the cold gas mass and mean velocity obtained with
the 3D simulation and compared to the 2D fixed-grid results. The condensation etimated
using the 3D simulation is∼ 30% the initial mass of the cloud, almost double with respect
to the 2D simulations. For each panel, the residuals with respect to the ENZO, fixed-grid
simulation at resolution 2 pc× 2 pc are shown.

The 3D simulation of a galactic fountain cloud moving through a MW’s corona,
gives an estimate of condensation much higher than the one found using 2D fixed-
grid and AMR simulations. The increase in the contact surface between the cloud
and the coronal gas, enhances the interaction between the two fluids, fastening
the development of the K-H instability, thus the efficiency of mixing. Our inves-
tigation showed that a cold cloud, of initial mass 2 × 104 M� and radius 100 pc,
in 60 Myrs, can accrete 30% of its mass, from the coronal gas via condensation,
largely correcting the previous estimates of such phenomenon.
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Conclusions

The galactic fountain mechanism consists in the ejection of cold clouds from the
galaxy discs as a consequence of stellar feedback and supernova explosions (e.g.
Bregman (1980); Melioli et al. (2009)). Once ejected, the clouds move through the
hot corona surrounding Milky Way-type galaxies, mixing and accreting mass from
such medium. After a typical orbital time of 100 Myrs, the clouds fall back onto
the disc, refurbishing it of cold gas to sustain its star formation. In the Milky Way,
an observational evidence for this mechanism are the distribution of Intermediate
Velocity Clouds (IVCs): cold, almost solar metallicty clouds (Wakker et al. 2004)
and the kinematics of the extraplanar gas (Marasco et al. 2012; Fraternali et al.
2013).
In this Thesis we performed high resolution (2 pc × 2 pc) hydrodynamical sim-
ulations of cold (T = 104 K) galactic fountain clouds moving through a hot
(T = 2 × 106 K) corona, using a parallel, (magneto-) hydrodynamical, Adaptive-
Mesh Refinement (AMR) code: ENZO (Bryan et al. 2014). Up until today, only
simulations using fixed-grid codes had been performed and only in 2D, given that
the computational time needed by such codes to perform 3D simulations would
have been prohibitive. The advantage of using an AMR code resides in its auto-
matic refinement of regions where certain desired criteria are satisfied and allows
to cut down on computational times.
We performed two different sets of simulations:

• Adiabatic simulations (chapter 3). When radiative cooling is not included
in the code, the interaction between the cloud and the coronal gas is purely
a Kelvin-Helmholtz (KH) instability. The development of this instability
generates a turbulent warm wake, behind the cloud, constituted of gas at
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intermediate temperatures between those of the cloud and the corona. Due to
this interaction, after 60 Myrs the cloud is partially evaporated, while its head
is flattened perpendicularly to the cloud’s motion, due to ram pressure. We
studied the distribution of cold gas mass and average velocity as a function
of time in simulations run with different refinement criteria. The comparison
with results obtained with fixed-grid codes allowed us to identify the best
suited criterion for our problem. We found that the widely used over-density
criterion performs very poorly as it requires highly impractical values for
the density treshold. The best criterion is the Slope applied to density,
which is based on the evaluation of the spatial gradient of density along
each adjacent cell. Moreover, we found that it is essential to define a high
resolution (2 pc × 2 pc) grid covering the cloud as initial condition of the
simulations.

• Simulations with radiative cooling (chapter 4). In order to compare the
results on the condensation of the coronal gas onto the wake of the clouds
obtained with fixed-grid simulations (Armillotta et al. 2016), the same im-
plementation of radiative cooling has been introduced in the ENZO code
(chapter 2). At every timestep, the cooling rates at a cell’s temperature are
read from an input table and the energy subtraction due to this phenomenon
is performed in sub-cycles at temporal resolution ∆tCool = 10% min(tCool),
where the min() is taken over all the cells. Due to the difference in the tempo-
ral resolution of the hydrodynamics with the code ATHENA (whose results
are used for comparison) we looked for a Courant-Friedrichs-Lewy parame-
ter that allowed a convergence, finding the best compromise for kCFL = 0.1.
This configuration has been used to perform AMR simulations (at highest
resolution 2 pc × 2 pc) using different refinement criteria. We confirmed
that the Slope criterion is also in this case the best option for this kind of
simulations. The agreement with previous works is solid out to 60−80 Myrs
of evolution and a similar value for condensation has been found of ∼ 20%
of the initial mass of the cloud. The computational times are reduced of a
factor ∼ 3 with respect to fixed-grid simulations.
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Finally, an AMR (reaching highest resolution 2 pc × 2 pc), three-dimensional
simulation has been performed using the Slope criterion for refinement applied
to density, with an initial high resolution box enveloping the cloud. We found
that in 3D the spatial distribution of the cold gas is far more limited on the y-
and z-axes with respect to the 2D case. The clumpy structure of the cold gas
in the wake is confirmed and a new, more realistic, value for the condensation
has been found after 60 Myrs: 30% of the initial mass of the cloud is accreted
through condensation of the coronal gas in the cloud’s wake. This result may have
important consequences in our understanding of the interaction between galactic
discs and their surroundng environment and of the role of gas accretion in the
evolution of spiral galaxies.

Future perspective

The above discussion is affected by some simplifactions. First of all, an average
half-solar metallicity is assumed for both the fluids. The coronal gas, is expected
to have low (0.1− 0.3 Solar) metallicity, while the typical metallicities of IVCs is
almost solar. An implementation of a two-metallicity problem has been performed
in the adiabatic case, but we did not extend this modification to the simulations
including radiative cooling.
Moreover, the effect of heating due to photoionization is also not taken into acount
here. The two main sources of heating are the cosmological background and the
photoionizing flux coming from the disc. This phenomenon is expected to partially
neutralize the effect of condensation due to radiative cooling. A proper treatment
of heating in this kind of simulations will be crucial to quantify the condensation at
the disc-corona interface and investigate its role for gas accretion and the feeding
of star formation in MW-type galaxies.
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