Preparation and characterization of grafted nonwoven membranes for bioseparations

Pierini, Giulia (2016) Preparation and characterization of grafted nonwoven membranes for bioseparations. [Laurea magistrale], Università di Bologna, Corso di Studio in Ingegneria chimica e di processo [LM-DM270]
Documenti full-text disponibili:
[img] Documento PDF
Disponibile con Licenza: Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0

Download (3MB)


Protein purification plays a crucial role in biotechnology and biomanufacturing, where downstream unit operations account for 40%-80% of the overall costs. To overcome this issue, companies strive to simplify the separation process by reducing the number of steps and replacing expensive separation devices. In this context, commercially available polybutylene terephthalate (PBT) melt-blown nonwoven membranes have been developed as a novel disposable membrane chromatography support. The PBT nonwoven membrane is able to capture products and reduce contaminants by ion exchange chromatography. The PBT nonwoven membrane was modified by grafting a poly(glycidyl methacrylate) (GMA) layer by either photo-induced graft polymerization or heat induced graft polymerization. The epoxy groups of GMA monomer were subsequently converted into cation and anion exchangers by reaction with either sulfonic acid groups or diethylamine (DEA), respectively. Several parameters of the procedure were studied, especially the effect of (i) % weight gain and (ii) ligand density on the static protein binding capacity. Bovine Serum Albumin (BSA) and human Immunoglobulin G (hIgG) were utilized as model proteins in the anion and cation exchange studies. The performance of ion exchange PBT nonwovens by HIG was evaluated under flow conditions. The anion- and cation- exchange HIG PBT nonwovens were evaluated for their ability to selectively adsorb and elute BSA or hIgG from a mixture of proteins. Cation exchange nonwovens were not able to reach a good protein separation, whereas anion exchange HIG nonwovens were able to absorb and elute BSA with very high value of purity and yield, in only one step of purification.

Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Pierini, Giulia
Relatore della tesi
Correlatore della tesi
Corso di studio
Ingegneria di processo
Ordinamento Cds
Parole chiave
Protein purification,polybutylene terephthalate (PBT),nonwoven membranes,ion exchange
Data di discussione della Tesi
7 Ottobre 2016

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento