Riconoscimento real-time di gesture tramite tecniche di machine learning

Pavllo, Dario (2016) Riconoscimento real-time di gesture tramite tecniche di machine learning. [Laurea], Università di Bologna, Corso di Studio in Ingegneria e scienze informatiche [L-DM270] - Cesena
Documenti full-text disponibili:
[img]
Anteprima
Documento PDF
Disponibile con Licenza: Creative Commons Attribuzione - Non commerciale - Condividi allo stesso modo 3.0

Download (5MB) | Anteprima

Abstract

Il riconoscimento delle gesture è un tema di ricerca che sta acquisendo sempre più popolarità, specialmente negli ultimi anni, grazie ai progressi tecnologici dei dispositivi embedded e dei sensori. Lo scopo di questa tesi è quello di utilizzare alcune tecniche di machine learning per realizzare un sistema in grado di riconoscere e classificare in tempo reale i gesti delle mani, a partire dai segnali mioelettrici (EMG) prodotti dai muscoli. Inoltre, per consentire il riconoscimento di movimenti spaziali complessi, verranno elaborati anche segnali di tipo inerziale, provenienti da una Inertial Measurement Unit (IMU) provvista di accelerometro, giroscopio e magnetometro. La prima parte della tesi, oltre ad offrire una panoramica sui dispositivi wearable e sui sensori, si occuperà di analizzare alcune tecniche per la classificazione di sequenze temporali, evidenziandone vantaggi e svantaggi. In particolare, verranno considerati approcci basati su Dynamic Time Warping (DTW), Hidden Markov Models (HMM), e reti neurali ricorrenti (RNN) di tipo Long Short-Term Memory (LSTM), che rappresentano una delle ultime evoluzioni nel campo del deep learning. La seconda parte, invece, riguarderà il progetto vero e proprio. Verrà impiegato il dispositivo wearable Myo di Thalmic Labs come caso di studio, e saranno applicate nel dettaglio le tecniche basate su DTW e HMM per progettare e realizzare un framework in grado di eseguire il riconoscimento real-time di gesture. Il capitolo finale mostrerà i risultati ottenuti (fornendo anche un confronto tra le tecniche analizzate), sia per la classificazione di gesture isolate che per il riconoscimento in tempo reale.

Abstract
Tipologia del documento
Tesi di laurea (Laurea)
Autore della tesi
Pavllo, Dario
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum ingegneria informatica
Ordinamento Cds
DM270
Parole chiave
Gesture recognition, machine Learning, dynamic time warping, hidden markov models, long short-term memory, Myo, wearable devices
Data di discussione della Tesi
14 Luglio 2016
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento

^